Using precision farming to improve animal welfare.

van Erp-van der Kooij, E. and Rutter, S.M. (2020) Using precision farming to improve animal welfare. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 15 (051).

[img] Text
Mark Rutter using precision upload.pdf - Accepted Version
Restricted to Repository staff only until 31 December 2100.

Download (818kB) | Request a copy

Abstract

Animal welfare is a multidimensional phenomenon and currently its on-farm assessment requires complex, multidimensional frameworks involving farm audits which are time-consuming, infrequent and expensive. The core principle of precision agriculture is to use sensor technologies to improve the efficiency of resource use by targeting resources to where they give a benefit. Precision livestock farming (PLF) enables farm animal management to move away from the group level to monitoring and managing individual animals. A range of precision livestock monitoring and control technologies have been developed, primarily to improve livestock production efficiency. Examples include using camera systems monitoring the movement of housed broiler chickens to detect problems with feeding systems or disease and leg-mounted accelerometers enabling the detection of the early stages of lameness in dairy cows. These systems are already improving farm animal welfare by, for example, improving the detection of health issues enabling more rapid treatment, or the detection of problems with feeding systems helping to reduce the risk of hunger. Environmental monitoring and control in buildings can improve animal comfort, and automatic milking systems facilitate animal choice and improve human-animal interactions. Although these precision livestock technologies monitor some parameters relevant to farm animal welfare (e.g. feeding, health), none of the systems yet provide the broad, multidimensional integration that is required to give a complete assessment of an animal's welfare. However, data from PLF sensors could potentially be integrated into automated animal welfare assessment systems, although further research is needed to define and validate this approach.

Item Type: Article
Divisions: Veterinary Health and Animal Sciences (from 1.08.20 to 31.08.21)
Depositing User: Ms Kath Osborn
Date Deposited: 24 Dec 2020 10:37
Last Modified: 22 Jul 2021 11:29
URI: https://hau.repository.guildhe.ac.uk/id/eprint/17613

Actions (login required)

Edit Item Edit Item