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Abstract 16 

In camelids, the development of assisted reproductive technologies is impaired by the viscous 17 

nature of the semen. The protease papain has shown promise in reducing viscosity, although its 18 

effect on sperm integrity is unknown. This study determined the optimal papain concentration 19 

and exposure time to reduce seminal plasma viscosity and investigated the effect of papain and 20 

its inhibitor E-64 on sperm function and cryopreservation in alpacas. 21 

Papain (0.1mg/mL, 20 min, 37°C) eliminated alpaca semen viscosity whilst maintaining sperm 22 

motility, viability, acrosome integrity and DNA integrity. Furthermore E-64 (10µm, 5 min, 37°C) 23 

inhibited the papain without impairing sperm function.. Cryopreserved, papain-treatedalpaca 24 

spermatozoa, exhibited higher total motility rates after chilling and at 0 h and 1 h post-thaw 25 

compared to control (untreated) samples. 26 

Papain and E-64 are effective at reducing alpaca seminal plasma viscosity without impairing 27 

sperm integrity and improve post-thaw motility rates of cryopreserved alpaca sperm.  The use of 28 

papain and E-64 to eliminate the viscous component of camelid semen may aid the development 29 

of assisted reproductive technologies in camelids. 30 
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Introduction 31 

The development of semen cryopreservation and other assisted reproductive technologies in 32 

camelids is hindered by the viscous nature of camelid seminal plasma. The highly viscous semen 33 

does not evenly homogenise with cryodiluents on mixing, preventing adequate contact between 34 

the cryoprotectants and sperm membrane during freezing. It is therefore necessary to reduce 35 

seminal plasma viscosity without impairing sperm function prior to freezing in order to improve 36 

the success and enhance the development of cryopreservation protocols in camelids. 37 

In dromedary (Skidmore and Billah, 2006) and Bactrian (Niasari-Naslaji et al. 2007) camels the 38 

viscous seminal plasma partially liquefies within 20-30 min of ejaculation facilitating mixing of the 39 

diluent with the semen whereas the semen of new world camelids (alpaca, llama, vicuna and 40 

guanaco) is viscous for 18-24h after ejaculation (Garnica et al. 1993). The relatively rapid 41 

liquefaction of camel semen has enabled some success in sperm cryopreservation particularly in 42 

the Bactrian camel (Niasari-Naslaji et al, 2007) although pregnancy rates with frozen-thawed 43 

semen are still not commercially acceptable in the Dromedary (Deen et al. 2003). Conversely, in 44 

alpacas and llamas, cryopreservation of “non-liquefied” viscous semen is unsuccessful with low 45 

sperm motility obtained post-thaw (Adams et al. 2009). 46 

The cause of the viscosity within seminal plasma is unknown. It has been postulated that 47 

glycosaminoglycans (GAGs) are responsible (Ali et al. 1976; Perk 1962).  However, while GAGs are 48 

abundant in alpaca seminal plasma (Kershaw-Young et al. 2012), enzymes that degrade GAGs do 49 

not completely eliminate the viscosity of semen (Kershaw-Young et al. 2013) . Conversely, generic 50 

proteases including papain and proteinase K , trypsin, fibrinolysin, and collagenase (Bravo et al. 51 

2000
a
; Bravo et al. 1999; Giuliano, et al. 2010; Morton et al. 2008) all reduce the viscosity of 52 

alpaca seminal plasma, suggesting that proteins, not GAGs, are the predominant cause of the 53 

viscosity. In Bactrian camels where seminal plasma viscosity is reportedly lower than dromedary 54 

or alpaca seminal plasma with little gelatinous material (Zhao, 2000) a reduction of viscosity via 55 
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mechanical stirring with a clip, aids the success of cryopreservation.(Niasari-Naslaji et al. 2007). 56 

Consequently, research on liquid and frozen storage of camelid semen has focussed on reducing 57 

the viscosity of the seminal plasma by mechanical and enzymatic methods (Bravo et al. 2000
a
; 58 

Bravo et al. 1999; Giuliano et al. 2010; Morton et al. 2008). Trypsin, fibrinolysin and proteinase K 59 

(Bravo et al. 2000
a
; Kershaw-Young et al. 2013) all have detrimental effects on sperm function and 60 

integrity. Some success has been achieved using collagenase (Conde et al. 2008; Giuliano et al. 61 

2010) but other studies have reported deleterious effects of collagenase on sperm motility 62 

(Morton et al. 2008).  Papain, the cysteine protease enzyme present in papaya (Carica papaya) 63 

has shown promise as a reducer of viscosity in seminal plasma however the acrosomes  of alpaca 64 

spermatozoa were impaired  when exposed to this enzyme over 10 min to 1 h at concentrations 65 

of 0.5 – 4 mg/ml (Morton et al. 2008).  Conversely papain rapidly reduced seminal plasma 66 

viscosity with no effect on sperm motility, viability, DNA integrity or acrosome integrity when 67 

added to the viscous semen at a low final concentration of 0.1 mg/ml (Kershaw-Young et al. 68 

2013). 69 

Following enzymatic degradation of viscosity, the downstream application of cryopreservation 70 

often entails prolonged chilling of the viscosity-reduced semen over a two hour period prior to 71 

freezing, resulting in prolonged exposure of the spermatozoa to any enzymes present in the 72 

“liquefaction” diluent. Consequently, in order to overcome the negative effects of prolonged 73 

exposure to papain on the acrosome integrity of alpaca spermatozoa, it would be advantageous 74 

to inhibit the papain following liquefaction. Trans-Epoxysuccinyl-L-leucylamido(4-75 

guanidino)butane (E-64) is a protease inhibitor that binds to the active thiol group of cysteine 76 

proteases, including papain, collagenase and trypsin, substantially reducing their function (Barrett 77 

et al. 1982; Barrett et al. 1981; Tamai et al. 1981). The specific nature and low toxicity of this 78 

inhibitor make it a promising option for inhibiting papain and reducing the potential impacts of 79 

long term exposure on spermatozoa. 80 
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As the viscous seminal plasma is currently the major impediment to the success of 81 

cryopreservation in camelids, a reduction in seminal plasma viscosity whilst maintaining sperm 82 

function could aid freezing and thawing. Consequently the potential of papain and its inhibitor E-83 

64 to reduce viscosity and improve motility rates after cryopreservation merits investigation. 84 

.   85 

In order to determine the potential use of papain as a viscosity reducing enzyme in camelid 86 

semen, we investigated (1) the effect of papain concentration and time, and the inhibitor E-64, on 87 

alpaca seminal plasma viscosity and sperm function,) and (2)the effect of papain treatment of 88 

semen on the viscosity of semen and motility of alpaca sperm during and after cryopreservation. 89 

Materials and Methods 90 

 91 

Animals 92 

All experiments were performed using male alpacas under authorization from the University of 93 

Sydney animal ethics committee. Animals were housed in paddocks on natural pasture with water 94 

provided ad libitum and their diets supplemented with Lucerne hay. All males were > 3 y, had a 95 

body condition score >3 and had testes more than 3 cm long (Tibary and Vaughan, 2006).  96 

 97 

Experimental Design  98 

Three experiments were conducted. Experiments 1 and 2 determined the effect of concentration 99 

and time of exposure to papain (exp 1), and the papain inhibitor E-64 (exp 2), on the viscosity of 100 

alpaca seminal plasma and sperm function. Experiment 3 investigated the effect of treatment of 101 

spermatozoa with papain (Sigma-Aldrich, St Louis, MO, USA) and E-64 (Sigma-Aldrich, St Louis, 102 

MO, USA ) on the total motility of alpaca sperm during chilling, freezing and post-thaw in order to 103 

investigate the effect of enzyme reduction in viscosity on the success of alpaca sperm 104 
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cryopreservation. 105 

 106 

Experiment 1: Optimisation of Papain Concentration and Time 107 

 108 

Semen was collected from six male alpacas (≥2 ejaculates/male, n = 15) using an artificial vagina 109 

fitted inside a mannequin (Morton et al. 2010
a
). Within 5 min of collection, semen was assessed 110 

for volume, viscosity, and total motility and concentration of spermatozoa as described below. 111 

Only samples with a volume >1mL, viscosity ≥ 15mm, total motility ≥ 50% and concentration ≥ 10 112 

x 10
6
 spermatozoa/ mL were used. Following collection, 1 mL of semen was diluted 1:1 in pre-113 

warmed Tris-citrate-fructose buffer (300 mM Tris, 94.7 mM citric acid, 27.8 mM fructose) (Evans 114 

and Maxwell, 1987) and pipetted up and down six times to ensure even mixing. The diluted 115 

semen was allocated to four treatment groups: (1) 390µl diluted semen plus 10µl 0.02M PBS 116 

(control), (2) 390µl diluted semen plus 10µl 0.04 mg/mL papain (final concentration 0.001 mg/ml), 117 

(3) 390µl diluted semen plus 10µl 0.4 mg/mL papain (final concentration 0.01 mg/ml), (4) 390µl 118 

diluted semen plus 10µl 4.0 mg/mL papain (final concentration 0.1 mg/ml).Samples were 119 

incubated for 30 min at 37°C in a water bath. Semen viscosity, and total motility and acrosome 120 

integrity of spermatozoa were assessed immediately after dilution (time 0) and at 5, 10, 20 and 30 121 

min after treatment. 122 

 123 

Experiment 2: Inhibition of Papain with E-64 124 

Semen was collected from six male alpacas (≥2 ejaculates/male, n = 15) and assessed and selected 125 

as for experiment 1. Semen was then diluted 1:1 in pre-warmed Tris-citrate-fructose buffer (Evans 126 

and Maxwell, 1987). In a preliminary experiment we determined that 0.1mg/mL papain incubated 127 

with 10μM N-(trans-Epoxysuccinyl)-L-leucine 4-guanidinobutylamide (E-64) at 37°C for 5 min then 128 

incubated with alpaca semen for 20min at 37°C was ineffective at reducing viscosity, indicating 129 

that 10μM E-64 for 5 min at 37°C inhibits papain as described previously (Barrett et al. 1982). 130 
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Consequently, 10μM E-64 for 5 min at 37°C was used in the present study. 131 

Diluted semen samples were allocated to two treatment groups, (1) 792µl diluted semen plus 8µl 132 

0.02 M PBS (control; treatment 1) and (2) 792µl diluted semen plus 8µl 10.0 mg/mL papain (final 133 

concentration 0.1 mg/mL; treatment 2), and incubated at 37°C for 20 min in a water bath. Each 134 

aliquot was then divided further into two treatment groups, (1) 297µl semen plus 3µl 0.02M PBS 135 

(control; treatment A) and (2) 297µl semen plus 3µl 1mM E-64 (final concentration 10µM; 136 

treatment B), and incubated at 37°C for 5 min in a water bath. This resulted in four samples for 137 

assessment: 1A (no papain, no E-64), 1B (no papain, E-64 treatment,) 2A (papain treatment, no E-138 

64), 2B (papain treatment, E-64 treatment). Semen viscosity and total motility, acrosome 139 

integrity, viability and DNA integrity of spermatozoa were assessed immediately after dilution (0 140 

min), after papain or PBS but prior to E-64 treatment (20 min), and after E-64 or PBS treatment 141 

(25 min). 142 

143 

Experiment 3: Cryopreservation of Papain-treated Semen 144 

Semen was collected from four male alpacas (≥2 ejaculates/male, n = 10) using an artificial vagina 145 

(Morton et al. 2010
a
) and assessed for volume, viscosity, and total motility and concentration of 146 

spermatozoa as described below. Only samples with a volume >1mL, viscosity ≥ 15mm, total 147 

motility ≥ 50% and concentration ≥ 40 x 10
6
 spermatozoa/ mL were used. Following collection, 148 

semen was divided into 2 aliquots and diluted 1:1 in either pre-warmed Tris-citrate-fructose 149 

(fructose) extender (300 mM Tris, 94.7 mM citric acid, 27.8 mM fructose, pH 6.9) (Evans and 150 

Maxwell, 1987) or 11% lactose extender (11% lactose w/v, pH 6.9 (Morton et al. 2007) as used 151 

previously for camelid spermatozoa (Morton et al. 2007;  Niasari-Naslaji et al. 2006) and pipetted 152 

up and down six times to ensure even mixing. Diluted semen samples were allocated to two 153 

treatment groups (1) 0.1mg/ml papain (final concentration) and (2) PBS (control) for 20min at 154 

37°C. Papain-treated samples were then incubated with 10µM E-64 (final concentration) and 155 
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control samples with PBS for 5min at 37°C. Next, fructose-diluted samples were re-extended (1:1) 156 

with pre-warmed (37°C) tris-citrate-fructose freezing extender (300 mM Tris, 94.7 mM citric acid, 157 

27.8 mM fructose, 20% egg yolk, 12% glycerol) and lactose-diluted samples were re-extended 158 

(1:1) with pre-warmed lactose freezing extender (11% lactose, 20% egg yolk, 12% glycerol). Final 159 

egg yolk and glycerol concentrations were 10% and 6%, respectively. Samples were chilled to 4°C 160 

over 2h then frozen as 200µl pellets on dry ice as described previously (Evans and Maxwell, 1987), 161 

then stored in liquid nitrogen. Total motility of spermatozoa and semen viscosity were assessed 162 

prior to dilution (pre-dilution) immediately after dilution (post-dilution), following papain and E-163 

64 treatment (post-treatment) and after chilling to 4°C but before freezing (post-chill). 164 

After 4 weeks storage in liquid nitrogen, the frozen pellets were thawed in glass tubes by vigorous 165 

shaking in a water bath at 37°C. Samples were then diluted with either pre-warmed fructose 166 

extender (samples cryopreserved in fructose extender) or 11% lactose extender (samples 167 

cryopreserved in lactose extender) to a final seminal plasma concentration of 10% as this 168 

concentration is optimal  to prolong motility, preserve acrosome integrity and maintain viability of 169 

alpaca spermatozoa (Kershaw-Young and Maxwell, 2011) and total sperm motility was assessed at 170 

0, 1 and 3h post-thaw. 171 

172 

Analysis of semen viscosity and sperm parameters 173 

174 

Viscosity of semen and concentration and motility of spermatozoa 175 

Samples (10µl) were diluted (1:9) in 90µl 3% sodium chloride (Sigma) and the concentration of 176 

spermatozoa was assessed using a haemocytometer (Evans and Maxwell, 1987). Viscosity was 177 

assessed using the thread test (Bravo et al. 2000
a
). Briefly, 50µl of semen or sample was drawn 178 

into a pipette, 25µl was pipetted onto a warm glass slide and the pipette was lifted vertically 179 

forming a thread of sample. The length at which the thread snapped was recorded as the 180 

measurement of viscosity. As the viscosity of seminal plasma varies between males, the initial 181 
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viscosity measurement (mm) was taken as 100% viscosity. Subsequent measurements were 182 

recorded in mm then converted to a percentage value of the initial measurement for data 183 

analysis. Total motility of spermatozoa was assessed subjectively at X 100 magnification under 184 

phase contrast microscopy (Olympus, Tokyo, Japan) by placing 10 µL of semen or sample on a 185 

warm slide and covering with a warm coverslip (Evans and Maxwell, 1987). All motile sperm, 186 

whether oscillatory or progressive, were considered motile and used to generate a value for total 187 

motility. 188 

189 

Acrosome integrity of spermatozoa, experiment 1 190 

Acrosome integrity of spermatozoa was assessed as described previously (Kershaw-Young and 191 

Maxwell, 2011). Briefly, 20µl of sample was fixed in 0.1% neutral buffered formalin and stored at 192 

4°C until analysis. Seminal plasma was removed by centrifugation and the spermatozoa 193 

resuspended in 0.02M PBS to 10 x 10
6
/mL. Twenty µL of resuspended spermatozoa was mixed 194 

with 4 µL fluorescent isothiocyanate-conjugated lectin from Arachis hypogaea (working 195 

concentration 40 µg/mL; FITC-PNA; Sigma) and incubated at 37 °C for 15 min, then pipetted onto 196 

a glass slide and covered with a 22 x 50 mm coverslip. A minimum of 200 spermatozoa were 197 

observed under phase contrast at X 400 magnification using the Olympus BX51 fluorescence 198 

microscope with the U-MWIB filter (excitation filter 460-495nm, emission filter 510-550 nm, 505 199 

nm dichromatic mirror). Acrosomes were considered not intact if the acrosome stained green, 200 

and considered intact if there was no staining or if the equatorial segment was stained green. 201 

202 

Acrosome integrity of spermatozoa, experiment 2 203 

Acrosome integrity was assessed based on previously described methods (Leahy et al. 2010). 204 

Semen was diluted in 1mL 0.02 M PBS to a final concentration of 1 x 10
6 

spermatozoa/mL then 205 

incubated with 10µl FITC-PNA (working concentration 40 µg/mL) at 37°C for 15 min,. The samples 206 

were fixed with 10µl 10% neutral buffered formalin (final concentration 0.1%). Fluorescence was 207 
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detected using a FACScan flow cytometer (Becton Dickinson, San Jose, CA), equipped with an 208 

argon ion laser (488 nm, 15 mW) for excitation and acquisitions were made using CellQuest 3.3 209 

software (Becton Dickinson, San Jose, CA). A minimum of 5,000 gated events were recorded. 210 

Acrosomes were considered not intact if the acrosome stained green, and considered intact if 211 

there was no staining. 212 

213 

Viability of spermatozoa, experiment 2 214 

Viability, measured as spermatozoa with non-impaired membranes, was assessed as described 215 

previously (Kershaw-Young and Maxwell, 2011). Briefly, samples were fixed in 1 mL 0.1% neutral 216 

buffered formalin in 0.02M PBS at a final concentration of 1 x 10
6 

spermatozoa/mL and stored at 217 

4°C overnight. Next day, samples were incubated with 10µl Syto-16 (Molecular Probes, Eugene, 218 

OR, USA; working concentration 10 µM) at room temperature for 20 min, then 10 µL Propidium 219 

iodide (PI, Molecular Probes, Eugene, OR, USA, working concentration 240 µM) at room 220 

temperature for a further 10 min. Viability of spermatozoa was determined using a FACScan flow 221 

cytometer as described above. Spermatozoa that stained positive for Syto-16 and negative for PI 222 

were deemed viable, and those that stained negative for Syto-16 and positive for PI were deemed 223 

non-viable. 224 

225 

DNA Integrity of spermatozoa 226 

The integrity of sperm DNA was assessed as described previously (Kershaw-Young and Maxwell, 227 

2011). Briefly, samples were snap frozen in liquid nitrogen and stored at -20°C until analysis. 228 

Samples were resuspended to a concentration of 10 x 10
6
 spermatozoa/mL, smeared onto a glass 229 

slide and fixed in 100% ice cold methanol. Next, slides were incubated with Terminal 230 

deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) reaction mixture (Roche Applied 231 

Science, Mannheim, Germany) in a humidified chamber at 37°C for 1 h, then counterstained with 232 

DAPI (Vector Laboratories, CA, USA).  A minimum of 200 spermatozoa was assessed with the BX51 233 
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fluorescence microscope, as described for acrosome integrity. Sperm DNA was considered non-234 

fragmented if there was no fluorescence, and fragmented if the sperm head stained green. 235 

236 

Statistical Analysis 237 

Data were analysed using Genstat version 16 (VSN International, Hemel Hempstead, UK). 238 

For experiment 1, viscosity of semen, and total motility and acrosome integrity of spermatozoa 239 

were analysed using a REML linear mixed model where papain concentration, incubation time and 240 

their interaction were specified as the fixed effect in the model. 241 

In experiment 2, viscosity of semen, and total motility, acrosome integrity, viability and DNA 242 

integrity of spermatozoa were analysed using a REML linear mixed model. Male, replicate and 243 

papain treatment were used as random effects while the individual treatment was used as the 244 

fixed effect in the model. Observations with residuals more than three standard deviations from 245 

the mean were considered statistical outliers and were removed prior to analysis. In all cases 246 

statistical significance was defined as P < 0.05. 247 

In experiment 3, viscosity of sample and total motility of sperm were analysed using a REML linear 248 

mixed model where treatment, time and their interaction were specified as the fixed effects and 249 

male, replicate and treatment were used as the random effects. 250 

251 

Results 252 

Experiment 1: Optimisation of Papain Concentration and Time 253 

Papain treatment significantly reduced the viscosity of alpaca seminal plasma (P < 0.001; Fig. 1). 254 

At 5, 10 and 20 min after treatment viscosity was less in 0.1mg/mL papain-treated samples 255 

compared to other treatment groups. Viscosity was completely eliminated in samples containing 256 

0.1mg/mL papain within 20min of treatment, and with 0.01mg/mL papain within 30min. Viscosity 257 

was not completely eliminated within 30min in 0.001mg/mL and 0 mg/mL (control) papain-258 
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treated samples. However, after 30 min incubation, all papain-treated samples had less viscosity 259 

than control samples. Viscosity reduced significantly over time in all treatment groups, although 260 

the reduction was most rapid for samples treated with 0.1mg/mL papain (p < 0.001; Fig. 1). 261 

Motility of spermatozoa differed between treatments at each time point (P = 0.01; Table 1). A 262 

decrease in motility of spermatozoa was observed from 0 to 30 min post treatment in all groups 263 

(P = 0.01; Table 1).In samples treated with 0.1mg/mL papain, the decline in total motility was 264 

slower than other treatment groups and consequently at 10 and 20 min after treatment, motility 265 

was higher in samples treated with 0.1mg/mL papain than control samples, and at 30 min motility 266 

was higher in samples treated with 0.1mg/mL papain than in all other treatment groups. 267 

The percentage of spermatozoa with intact acrosomes differed between concentrations of papain 268 

(p < 0.001) and between time points (p = 0.007) although there was no interaction. Due to lack of 269 

interaction, comparisons of concentration were made using data pooled across all time points, 270 

and comparisons of time were made using data pooled across all concentrations of papain. The 271 

percentage of spermatozoa with intact acrosomes (mean ± sem) was higher in samples treated 272 

with 0.1mg/mL papain (53.9 ± 0.50) compared to those containing 0 (51.7 ± 0.58), 0.001 (51.9 ± 273 

0.59) and 0.01 mg/mL papain (52.3 ± 0.59). Acrosome integrity decreased significantly over time 274 

and was greater at 0 (52.7 ± 0.51), 5 (53.48 ± 0.60) and 10min (52.6 ± 0.71) compared to 30min 275 

(51.4 ± 0.71 %) after treatment. Acrosome integrity at 20min post-treatment (52.1 ± 0.63 %) did 276 

not differ from the other time points. 277 

278 

Experiment 2: Inhibition of Papain with E-64 279 

As observed in experiment 1, the viscosity of seminal plasma was completely eliminated within 20 280 

min of treatment with 0.1mg/mL papain. Viscosity (mean mm ± sem) was significantly lower in 281 

papain-treated samples compared with the control (P < 0.001) at both 20min (pre-E64; papain-282 
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treated 0.0 ± 0.0 vs. control 78.7 ± 5.41) and 25min (post-E64; papain-treated 0.0 ± 0.0  vs. control 283 

66.5 ± 3.29) of treatment. The papain inhibitor E64 did not affect viscosity (P = 0.734).  284 

The total motility of spermatozoa did not differ between treatments (p = 0.505), nor was there 285 

any treatment x time interaction. Total motility (mean % ± sem) was not different between the 286 

control (50.7 ± 1.16), E64 only (46.7 ± 2.05), papain only (49.2 ± 1.40), and papain with E64 (47.3 ± 287 

2.12) treatment groups. Total motility declined significantly (p < 0.001) over time (% mean ± sem) 288 

from 0 (54.7 ± 1.50), 20 (50.3 ± 1.92) and 25 min (46.8 ± 1.47), although this was similar for all 289 

treatments.  290 

The percentage of spermatozoa with intact acrosomes was higher in papain-treated samples (43.8 291 

±  2.71) compared to samples that were not treated with papain (36.1 ± 2.28 %; p < 0.01) but was 292 

not affected by E64 treatment or time (P > 0.05). 293 

The percentage of viable spermatozoa was not affected by papain or E64 treatment (p > 0.05) and 294 

did not differ over time (P > 0.05). Viability (mean ± sem) was similar in the control (76.0 ± 2.36), 295 

E64 only (76.4 ± 3.68), papain only (76.6 ± 2.72) and papain with E64 (77.7 ± 3.75) treatment 296 

groups.  297 

The percentage of spermatozoa with intact DNA (mean ± sem) was not different between control 298 

(97.5 ± 0.22), E64 only (97.7 ± 0.39), papain only (97.6 ± 0.25) and papain with E64 (97.9 ± 0.38) 299 

treated samples, and did not change over time (P > 0.05). 300 

 301 

Experiment 3: Cryopreservation of papain-treated semen 302 

Papain treatment significantly reduced seminal plasma viscosity (P < 0.001).  Viscosity (mean mm 303 

± sem) did not differ between treatments prior to dilution (56.3 ± 9.11) and following dilution (33. 304 

4 ± 3.02) but was significantly lower in samples treated with fructose-papain (0 ± 0.0) and lactose-305 

papain (0 ± 0.0) compared to the fructose control post-treatment (24.9 ± 5.81) and post-chill (16.6 306 

± 3.72) and the lactose control post-treatment (26.5 ± 6.13) and post-chill (15.1 ± 3.63).   307 

The total motility of spermatozoa differed between treatment groups at each time point (p = 308 
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0.03; Table 2). Prior to, and following dilution, there were no differences between treatments. 309 

However, total motility was significantly lower in lactose control samples, both post-treatment 310 

and post-chill, compared to all other treatment groups. Additionally immediately post-thaw (0 h) 311 

total motility was significantly lower in lactose control samples than fructose-papain and lactose-312 

papain treated samples whereas fructose control spermatozoa exhibited intermediate total 313 

motility. At 1h post-thaw, total motility of fructose-papain treated spermatozoa was significantly 314 

higher than fructose-control samples and lactose control samples contained significantly less 315 

motile spermatozoa than all other treatments. At 3h post-thaw there were no significant 316 

differences in the motility of spermatozoa between treatment groups. Total motility also differed 317 

between time points in each treatment group (Table 2). Generally, total motility of spermatozoa 318 

increased after dilution compared to pre-dilution, remained high post-treatment (except in 319 

lactose-control samples) then declined post-chill to intermediate levels, and declined further at 0h 320 

and 1h post-thaw. Motility was significantly less at 3h post-thaw in all treatment groups 321 

compared to all other time points (P < 0.001). 322 

323 

Discussion 324 

This study investigated: the effect of papain concentration and time, and the inhibitor E-64, on 325 

alpaca seminal plasma viscosity and sperm function, and the effect of papain treatment of semen 326 

on the success of cryopreservation in alpaca spermatozoa. 327 

Alpaca seminal plasma viscosity was completely eliminated within 20 min of treatment using 328 

0.1mg/mL papain and within 30 min of treatment using 0.01mg/mL papain. The reduction of 329 

seminal plasma viscosity for use within the Camelid industry must be rapid, reliable, effective and 330 

have no detrimental effect on sperm function and integrity. Previously studies have suggested 331 

that generic proteases including trypsin, fibrinolysin, and collagenase and papain are were 332 

detrimental to sperm motility, viability and acrosome integrity in alpacas and llamas (Bravo et al. 333 

2000
a
; Morton et al. 2008). In the present study, papain concentrations of 0.1 to 0.001mg/ml 334 
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papain were was not detrimental to sperm motility and acrosome integrity within 30 min of 335 

treatment, suggesting indicating that the lower concentrations of papain used were low enough 336 

to effective in reducinge viscosity without causing sperm damage. Furthermore all seminal 337 

plasmasemen samples exhibited 0 mm viscosity within 20 min of treatment when treated with 0.1 338 

mg/mL papain indicating that this protocol is reliable and effective in 100% of samples tested. It is 339 

also worth noting that ejaculates used through the study ranged from 49.5 to 272 x 10
6
 340 

spermatozoa/mL (average 84.9 x 10
6
/mL), and therefore this protocol did not appear to impair 341 

sperm function irrespective of sperm concentration. 342 

A reduction in theThe acrosome integrity of alpaca spermatozoa is observeddeclines when 343 

following 10 to 60 min exposure exposed to 0.5 - 0 4 mg/mL papain for 10 to 60 min, and whilst 344 

despite attempts were made to remove the papain using PureSperm gradient, this was ineffective 345 

in preventing damage to the acrosome damage was observed (Morton et al. 2008). As the 346 

cryopreservation of semen often involves chilling over a 2 h period prior to freezing, it is 347 

necessary to inhibit the papain following liquefaction in order to overcome any negative effects of 348 

prolonged papain exposure. Treatment with E-64 did not affect sperm motility, acrosome 349 

integrity, viability and DNA integrity suggesting that this inhibitor is not toxic to alpaca sperm. The 350 

specific nature and low toxicity of E-64 make it a suitable option for inhibiting papain in order to 351 

reduce any potential impacts of long term exposure on sperm, in particular the effect of 352 

prolonged papain exposure on acrosome integrity. 353 

This study compared the effect of viscosity reduction on the motility of alpaca sperm following 354 

cryopreservation. The total motility of papain-E-64 treated alpaca spermatozoa was significantly 355 

greater after chilling to 4°C and at 0 and 1 h post-thaw implying that a reduction in seminal 356 

plasma viscosity prior to sperm cryopreservation is advantageous to the sperm. During 357 

cryopreservation it is essential that cryoprotectants such as egg yolk and glycerol are able to 358 

interact with or permeate the sperm membrane in order to enhance their protective capacity and 359 

reduce sperm damage. It is likely that, in the present study, the reduction in viscosity enabled the 360 
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cryoprotectants to act accordingly as opposed to viscous semen in which the seminal plasma traps 361 

the sperm preventing contact of the sperm membrane with the cryoprotectants. 362 

Sperm motility rates after chilling (32% to 51%) and immediately post thaw (13% to 25%) were 363 

similar to those reported previously for epididymal alpaca sperm of 5-25% (Morton et al. 2007; 364 

Morton et al. 2010
b
) and ejaculated alpaca sperm: 4 - 40% (Bravo et al. 2000

b
; Santiani et al. 2005) 365 

Recently, our protocol using papain and E-64 to reduce seminal plasma viscosity has been utilised 366 

to aid the cryopreservation of dromedary spermatozoa (Crichton et al. 2015). Papain treatment 367 

successfully reduced viscosity enabling removal of the seminal plasma and subsequent 368 

cryopreservation of cholesterol-supplemented spermatozoa obtained post-thaw motility rates of 369 

44% (Crichton et al. 2015). This suggests that the viscosity reduction protocol developed in this 370 

study has application in the development of camelid assisted reproductive technologies. 371 

Although there was no significant difference in motility between treatments at 3h post-thaw, 372 

fructose-papain treated samples tended to have higher motility at 9%. Furthermore, this is 373 

superior to epididymal alpaca sperm which exhibit motility rates of 0-3% at 3h post-thaw (Morton 374 

et al. 2007). Consequently the cryopreservation of viscosity-reduced ejaculated alpaca semen may 375 

be a more suitable method for sperm storage than using epididymal sperm from castrated or 376 

deceased males. Another advantage to using ejaculated sperm is that males of high genetic merit 377 

can be used for sperm collection and natural matings over prolonged periods as opposed to 378 

requiring castration which is unfavourable for breeders. Additionally, cryopreservation of 379 

ejaculated sperm will enable a larger number of ejaculates to be preserved from one individual, 380 

this increasing the potential for the spread of genetics within the industry as more females can be 381 

inseminated. 382 

In the present study, the motility of ejaculated alpaca sperm was often significantly lower in 383 

lactose-control samples than fructose-control or fructose-papain treated spermatozoa. Whilst 384 

11% lactose has been reported to be the optimal extender for liquid or frozen storage of camelid 385 

sperm (Morton et al. 2007; Wani et al. 2008) other studies report that tris-based extenders 386 
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containing fructose or glucose are superior (Deen et al. 2003; Niasari-Naslaji et al. 2006; Vaughan 387 

et al. 2003; Vyas et al. 1998). Numerous extenders have been used for the cryopreservation of 388 

camelid sperm, and the results are conflicting and difficult to interpret as successful 389 

cryopreservation of sperm requires many factors to be optimised, including the most suitable 390 

cryodiluent reagents (i.e. energy source, glycerol concentration, egg yolk concentration), the 391 

optimal cooling, freezing and thawing and dilution rates of the sperm, and the optimal storage 392 

method (pellet or straws). In the present study, the final egg yolk concentration was 10% as is 393 

used routinely for ram sperm (Evans and Maxwell, 1987) and has been used for alpaca sperm 394 

(Morton et al. 2010
b
; Santiani et al. 2005).The final glycerol concentration was 6% as this was 395 

found to be superior to 4% and 8% for cryopreservation of camel sperm (Niasari-Naslaji et al. 396 

2007). In order toTo fully benefit from the optimised method for seminal plasma viscosity 397 

reduction protocol using papain and E-64 it is necessary to systematically and thoroughly 398 

investigate the effect of all semen extender components on the integrity and function of alpaca 399 

sperm during and after cryopreservation. Furthermore, it is integral that fertilising ability of 400 

viscosity-reduced camelid semen is investigated to determine the effect of treatment on 401 

pregnancy. 402 

In conclusion, the treatment of alpaca semen with 0.1mg/mL papain for 20 min at 37°C followed 403 

by 10µm E-64 for 5 min at 37°C does not affect impair sperm function and integrity in alpacas.. 404 

Furthermore, the treatment of alpaca semen with papain and E64 is beneficial to spermatozoa 405 

motility after chilling and at 0h and 1h post-thaw. This is most likely due to the ability of 406 

cryoprotectants to interact with or permeate the sperm cell membrane in samples with reduced 407 

viscosity compared to those with high viscosity. 408 

The success of papain and E-64 in reducing semen viscosity and improving post-thaw motility 409 

rates without negatively impacting sperm function and integrity make this a promising solution to 410 

semen viscosity and could significantly aid the development of assisted reproductive technologies 411 

in camelids. 412 
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Table 1.  

Percentage motility (mean ± SEM) of alpaca sperm treated with 0, 0.001, 0.01 and 0.1 mg/mL papain 

at 0, 5, 10, 20 and 30 min of treatment. 

Time 

(min) 

0.0 

(mg/mL) 

0.001 

(mg/mL) 

0.01 

(mg/mL) 

0.1 

(mg/mL) 

0 56.0 ± 2.30
a

x 56.0 ± 2.30
a

w 56.0 ± 2.30
a

x 56.0 ± 2.30
a

x 

5 54.0 ± 2.59
a

x 54.3 ± 2.33
a

wx 56.5 ± 2.85
a

x 55.7 ± 2.12
a

x 

10 51.3 ± 2.60
a

y 53.0 ± 2.53
ab

xy 53.1 ± 3.18
ab

y 54.33 ± 2.53
b

xy 

20 48.7 ± 2.56
a

z 51.7 ± 2.57
bc

y 51.5 ± 3.02
b

yz
  

53.7 ± 2.41
c
y 

30 47.1 ± 2.61
a

z 47.7 ± 2.88
a

z 50.4 ± 3.37
b

z 51.3 ± 4.27
c
y 

a,b,c
 Within a row, means without a common superscript differed (P < 0.05) 

w,x,y,z Within a column, means without a common subscript differed (P < 0.05) 
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Table 2.  

Percentage motility (mean ± SEM) of ejaculated alpaca sperm pre-dilution (Pre-D), post-dilution 

(PD), post-treatment (PT), post-chill (PC), and 0 (0h), 1 (1h) and 3 (3h) hours post-thaw when diluted 

then cryopreserved using fructose, fructose with papain, lactose, and lactose with papain extenders. 

Time 

(min) 

Fructose Fructose with 

papain 

Lactose Lactose with 

papain 

Pre-D 54.5 ± 2.41
a

u,v 54.5 ± 2.41
a

x 54.5 ± 2.41
a

v 54.5 ± 2.41
a

w,x 

PD 65.5 ± 3.29
a

w,x 65.5 ± 3.29
a

w 61.0 ± 2.67
a

v 61.0 ± 2.67
a

x 

PT 61.5 ± 2.89
a,b

v,x 63.5 ± 3.25
a

w 42.5 ± 5.69
c
w 54.5 ± 2.41

b
w,x 

PC 47.0 ± 4.29
a

u 51.5 ± 2.69
a

x 32.5 ± 6.75
b

x 48.1 ± 5.08
a

w 

0h 19.0 ± 2.69
a,b

y 25.5 ± 2.63
a

y 13.0 ± 4.16
b

y 24.0 ± 4.00
a

y 

1h 16.5 ± 3.25
a

y 26.0 ± 3.06
b

y 7.2 ± 2.86
c
yz 21.0 ± 3.40

a,b
y 

3h 1.1 ± 0.66
a

z 9.0 ± 2.08
a

z 0.7 ± 8.52
a

z 4.0 ± 1.80
a

z 

a,b,c
 Within a row, means without a common superscript differed (P < 0.05) 

u,v,w,x,y,z Within a column, means without a common subscript differed (P < 0.05) 
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Fig. 1 Percentage viscosity (mean ± SEM) of alpaca semen treated with 0 (control, �), 0.001 (�), 

0.01 (�) and 0.1 (�) mg/mL papain at 0, 5, 10, 20 and 30 min after treatment. 
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