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Abstract 26 

Methane (CH4) emissions have increased by more than 150% since 1750, with 27 

agriculture being the major source. Further increases are predicted as permafrost 28 

regions start thawing, and rice and ruminant animal production expand. Biochar is 29 

posited to increase crop productivity while mitigating climate change by sequestering 30 

carbon in soils and by influencing greenhouse gas fluxes. There is a growing 31 

understanding of biochar effects on carbon dioxide and nitrous oxide fluxes from soil. 32 

However, little is known regarding the effects on net methane exchange, with single 33 

studies often reporting contradictory results. Here we aim to reconcile the disparate 34 

effects of biochar application to soil in agricultural systems on CH4 fluxes into a single 35 

interpretive framework by quantitative meta-analysis. 36 

This study shows that biochar has the potential to mitigate CH4 emissions from 37 

soils, particularly from flooded (i.e. paddy) fields (Hedge’s d = -0.87) and/or acidic 38 

soils (Hedge’s d = -1.56) where periods of flooding are part of the management regime. 39 

Conversely, addition of biochar to soils that do not have periods of flooding (Hedge’s 40 

d = 0.65), in particular when neutral or alkaline (Hedge’s d = 1.17 and 0.44, 41 

respectively), may have the potential to decrease the CH4 sink strength of those soils. 42 

Global methane fluxes are net positive as rice cultivation is a much larger source of 43 

CH4 than the sink contribution of upland soils. Therefore, this meta-study reveals that 44 

biochar use may have the potential to reduce atmospheric CH4 emissions from 45 

agricultural flooded soils on a global scale. 46 

47 
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1. Introduction  48 

Agriculture accounts for 10–12% of total global anthropogenic emissions of 49 

greenhouse gases (GHGs), which includes 50% of global methane (CH4) emissions 50 

(Smith et al., 2007). Methane emissions have increased by 151% since 1750 (IPCC, 51 

2007), and are currently increasing at a rate of 0.003 µmol mol-1 year-1 (Butenhoff and 52 

Khalil, 2007; Bloom et al., 2010). Further increases are projected due to the growing 53 

demand for food, particularly animal protein, which could require ca. 70 million ha of 54 

additional land to fall under agricultural production (Alexandratos and Bruinsma, 55 

2012).  56 

Methane is primarily produced in water-logged anoxic soils by methanogenic 57 

archaea via methanogenesis (Conrad, 2007). Conversely, well-aerated upland soils are 58 

biological sinks for atmospheric CH4 (Boone et al., 1993; Dunfield, 2007). Soil CH4 59 

uptake is driven by microbial oxidation of CH4 by methanotrophs from groups 60 

including α- and γ-proteobacteria, a group of obligate aerobic bacteria some of which 61 

feed solely on CH4 and others, along with genera such as Methylocella and 62 

Methylocapsa, that are facultive methanotrophs (Pratscher et al., 2011; Knief, 2015). 63 

Generally, both processes – methanogenesis and methanotropy – can occur 64 

simultaneously in micro-sites within the soil, or can be stratified with CH4 production 65 

occurring in more highly anoxic depths, and CH4 consumption occurring in overlaying 66 

oxic soil horizons. Here, the soil acts as a net source or sink depending on which is the 67 

overriding process (Hiltbrunner et al., 2012). However, these two processes can 68 

dynamically interact (Kammann et al., 2009) with CH4 consumption functioning as a 69 

"biofilter" process that can ameliorate CH4 emissions in various ecosystems, including 70 

rice paddies and landfill cover soils.  71 
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One of the main attractions underlying the biochar concept is the combination 72 

of soil carbon (C) sequestration with soil fertility (crop yield) increases (Glaser et al., 73 

2001; Lehmann, 2007). Initial research efforts have focused on biochar’s recalcitrance 74 

as a potential means to sequester C in soils (Lehmann et al., 2006; Nguyen and 75 

Lehmann, 2009; Gurwick et al., 2013) while concurrently increasing crop yields 76 

(Jeffery et al., 2011). It has also been shown to mitigate nitrous oxide (N2O) emissions 77 

from agricultural soils (meta-analysis: Cayuela et al., 2014). The interactions between 78 

biochar and GHG fluxes such as carbon dioxide (CO2) and N2O, and the associated 79 

mechanisms, are becoming better understood (Cayuela et al., 2013; Maestrini et al., 80 

2014; Cayuela et al., 2015; Obia et al., 2015; Sagrilo et al., 2015). However, there is 81 

still a paucity of information on CH4 flux effects beyond the single study scale, which 82 

often report contradictory results. 83 

 Biochar has been shown to increase (Zhang et al., 2010; Spokas et al., 2011), 84 

decrease (Feng et al., 2012; Dong et al., 2013; Reddy et al., 2014), or have no significant 85 

effect (Kammann et al., 2012) on CH4 emissions from soils. Mechanisms are usually 86 

only assumed or hypothesised and remain unclear. Meta-analysis is a useful tool for 87 

comparing results across studies to reveal common response patterns. It facilitates 88 

extrapolation of results and formulation of mechanistic hypotheses (e.g. within the 89 

same soil conditions; or with the same biochar types) and thus increases the robustness 90 

of extrapolations and predictions across systems. 91 

 The mechanisms by which biochar may affect soil CH4 fluxes include sorption 92 

of CH4 to biochar’s surfaces (Yaghoubio et al., 2014), and soil aeration by biochar 93 

addition, which may increase diffusive CH4 uptake (van Zwieten et al., 2010; Karhu et 94 

al., 2011), as microbial CH4 oxidation in upland soils is mostly substrate-limited (Castro 95 

et al., 1994). However, in anoxic environments, the labile C pool of biochar may 96 
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function as methanogenic substrate, promoting CH4 production (Wang et al., 2012). 97 

Biochar has also been shown to promote methanotrophic CH4 consumption at 98 

oxic/anoxic interfaces in anoxic environments, lowering CH4 emissions via the 99 

“biofilter” function of CH4 consumption (Feng et al., 2012; Reddy et al., 2014). 100 

 A recent work has also included meta-analysis of CH4 emissions in response to 101 

biochar application as part of a wider analysis (Song et al., 2016). However, the method 102 

applied in their analysis does not allow the inclusion of negative fluxes (i.e. all CH4 103 

sinks) and thus was restricted in the conclusions that could be drawn. Here, we present 104 

the first comprehensive meta-analytical investigation of the effects of biochar 105 

application to soil in agricultural systems on CH4 emissions drawing on studies with a 106 

global distribution.  107 

 108 

2. Material and Methods 109 

2.1. Data collection and categorisation 110 

The keywords “biochar” AND “methane” OR “CH4
” were entered into the search 111 

engines of Scopus, Web of Science and Google Scholar to identify relevant studies for 112 

inclusion in the meta-analysis. This led to identification of 62 studies, to a cut-off date 113 

of 31st December 2014. Studies were vetted using inclusion criteria consisting of 114 

studies: (i) using a randomised design; (ii) using replicated samples per treatment; and 115 

(iii) containing a “treatment” and “control” such that the treatment was the same as the 116 

control in all aspects apart from the inclusion of biochar. Only cumulative net CH4 117 

fluxes were included. Where only daily or seasonal fluxes were reported, corresponding 118 

authors were contacted to ask for data on cumulative fluxes and means. When these 119 

data were provided the studies where included; otherwise they were excluded. Of the 120 
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total studies, 42 met the inclusion criteria (Table S1), from which 189 pairwise 121 

comparisons were extracted.  122 

Data were collected from tables presented in manuscripts where possible, or 123 

from figures using Plot Digitizer 2.6.6 (Huwaldt, 2015) or Web Plot Digitizer (Rohatgi, 124 

2016), or from authors directly. Error bars were usually present in the form of standard 125 

errors; standard deviations were back calculated from these when necessary. When no 126 

measure of variance was available, corresponding authors were contacted to obtain such 127 

information. Categorical information concerning biochar, soil and environmental 128 

properties was also collected from manuscripts and recorded as auxiliary variables. 129 

These can be found in the full database which is available in supplementary 130 

information.  131 

Auxiliary variables were grouped to facilitate cross-comparisons between 132 

studies using the same groupings as Cayuela et al. (2014). These variables related to 133 

soil pH grouped to <6 and 6-8 and >8 representing the optimum pH range for 134 

methanogenesis and methanotrophy;  biochar feedstock, grouped as Manure - manures 135 

or manure-based materials from poultry, pig or cattle), Wood - oak, pine, willow, 136 

sycamore and unidentified wood mixtures, Herbaceous - greenwaste, bamboo, maize 137 

stover, straws; Biosolids – sewage sludge from water treatment plants and 138 

lignocellulosic wastes - including rice husk, nuts shells, paper mill waste; pyrolysis 139 

temperature, grouped as <450°C 450 – 600 and >600°C, H:Corg, grouped as <0.3 0.3-140 

0.5 >0.5;, Brunauer, Emmett and Teller (BET) surface area (m2 g-1), grouped as <100, 141 

100-500 and >500;  water regime, water regime, grouped as Flooded (paddy soils and 142 

studies conducted under continuous waterlogged conditions), Cycles (paddy soils 143 

involving flooding-drying in which CH4 emissions were measured during both the wet 144 

and dry periods) and Non-Flooded (studies were flooding was not part of the 145 
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experimental setting); and N and Phosphorus (P) fertilization, grouped by rate for N, 146 

≤120 kg N ha-1 and >120 kg N ha-1, and as P or No P if P fertilizer was applied or not 147 

for P respectively. 148 

 149 

2.2. Meta-analytical metric 150 

Soils can function as both CH4 sinks (negative values, uptake, consumption) and 151 

sources (positive values, emissions). The notation of the flux direction follows the 152 

convention by biogeochemists and takes the view from the atmosphere that gains or 153 

loses the gas in question. Since it is not possible to take a logarithm of a negative 154 

number, this precludes the use of the response ratio (calculated as the natural log of the 155 

experimental mean over the control mean) as a metric for comparison between studies, 156 

which is considered the preferred metric for ecological studies (Hedges et al., 1999). 157 

Here we utilise the standardised mean difference metric “Hedge’s d” for analysis 158 

(Equation 1; Hedges and Olkin, 1985). This is a less biased indicator than “Hedge’s g” 159 

(Equation 2; Hedges, 1981; Hedges and Olkin, 1985). Note that this is a different 160 

standardised mean difference metric to “Cohen’s d” which was developed for 161 

behavioural science (Cohen, 1988); Hedge’s d is less biased by small sample sizes 162 

(Hedges and Olkin, 1985) and was used as this was the case for most studies included 163 

in this meta-analysis. 164 

 165 

Equation 1 166 

d=(1−
3

4(n− 2)−1
) g

 167 

Where n is the total sample size on which g is based, and g is Hedge’s g as calculated 168 

by Equation 2 169 
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 170 

Equation 2 171 

g=
x̄1− x̄2

s
 172 

Where x̄1 and x̄2 are the experimental and control means and s is the pooled standard 173 

deviation. 174 

  Here, experimental treatment refers to the treatment with biochar – controls are 175 

samples that are the same in all aspects, including any other amendment, without 176 

addition of biochar. A categorical random effects model was applied to d, with means 177 

weighted by the inverse of the variance. Confidence intervals (95%; CIs) were 178 

generated by bootstrapping (9999 iterations). To obtain a standardised mean effect size, 179 

the effect size was then divided by an estimate of the standard deviation of the effect 180 

sizes (Hedges and Olkin, 1985). Input data were arranged in Microsoft Excel 2010. 181 

Calculations were performed using Metawin Version 2 statistical software (Rosenberg 182 

et al., 2000). 183 

The interpretation of the standardised mean effect size differs from the response 184 

ratio as it cannot be expressed as a percent change in response of an experimental 185 

treatment compared to a control. Rather, it is equivalent to a Z-score and as such 186 

represents the number of standard deviations that the standardised mean of the 187 

experimental treatment is from the standardised mean of the control. The effect of a 188 

response variable can be considered significant if the 95% CI does not intersect the 189 

standardised control mean (i.e. Z-value = 0). Groupings of auxiliary variables are 190 

considered significantly different if their 95% CIs do not overlap.  191 

 192 
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2.3. Interpretation of standardised mean effect size 193 

There is no rigorously applied framework for interpretation of standardised 194 

means in terms of “effect sizes” because, unlike response ratios, they are probabilistic. 195 

That is, they describe the probability that a sample drawn from the control treatments 196 

would fall between the experimental mean and the control mean, assuming a normal 197 

distribution. By convention, a large effect is indicated by d > 0.8, a moderate effect by 198 

d = 0.2 - 0.8, and a small effect by d = 0 - 0.2 (Cohen, 1988; Gurevitch et al., 1992). 199 

However, it is generally acknowledged that these terms are relative and likely 200 

dependent on research area and methods (Hedges, 1981). A key point is that, using this 201 

metric, an effect size of (for example) 0.2 for a category does not equate to an effect 202 

size of 0.2 for categories in independent analyses presented in this paper, in absolute 203 

terms. Only categories within individual analyses, as differentiated by the horizontal 204 

dotted bars in Fig. 1 and 2, can be compared relatively (i.e. only within each category 205 

does an effect size of 0.4 equate to twice the size of 0.2; comparisons between figures 206 

are qualitative only). Further, small effect sizes (~0.2) may indicate significant changes 207 

in cumulative GHG fluxes, in absolute terms, particularly if effects persist over the long 208 

lifetime of biochar. Data are presented in two figures to allow use of different scale x-209 

axis only and does not represent any fundamental difference in analyses. 210 

Interpretation of effect sizes here is further confounded by the CH4 sink/source 211 

flux direction in soils. A positive effect size implies a shift to the right on a scale going 212 

from strong net sink (i.e. negative flux values) to strong net source (i.e. positive flux 213 

values). However, it does not necessarily mean a change has occurred in the net 214 

sink/source status of the soil. Rather, it signifies that either the net sink strength has 215 

decreased, the soil has switched from sink to source, or that the net source strength has 216 

increased – and vice versa for negative effect sizes.  217 
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 218 

2.4. Control of biases 219 

We tested the effects of publication bias using the Fail-safe N technique (Orwin, 220 

1983; Rosenthal and Rosnow, 1991). A weakness with meta-analyses of experimental 221 

studies is that several experimental treatments are often compared to a single (identical) 222 

control in a published study. This artificially increases the number of replicate pairs and 223 

violates the assumption of independence that the effect size metric is based upon; the 224 

controls are necessarily counted repeatedly in pairwise control versus experimental 225 

treatment comparisons. Means of controlling for this bias (Borenstein et al., 2009; 226 

Aguilera et al., 2013) often show little effect (van Groenigen et al., 2006; Gattinger et 227 

al., 2012; Abalos et al., 2014; Skinner et al., 2014). Therefore, we here report results 228 

from the analysis on the level of single comparisons.  229 

 230 

231 
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3. Results 232 

 Figure 1 shows the effect of biochar application to soils under different 233 

irrigation regimes. Biochar addition to Flooded soils (as part of their management 234 

practice) significantly increased in CH4 sink strength / reduced source strength 235 

compared to Flooded soils without biochar application (Hedge’s d = -0.87). Studies 236 

reporting biochar additions to Non-Flooded soils showed an overall moderate but 237 

significant decrease in the CH4 sink strength / increase in source strength (Hedge’s d = 238 

0.65). Experiments in which irrigation was applied as Cycles of flooding and draining 239 

did not show a significant response to biochar application.  240 

Biochar application to acidic soils (i.e. with a pH <6) resulted in the strongest 241 

effect size, causing a statistically significant increase in CH4 sink strength / decrease in 242 

source strength following biochar application (Hedge’s d = -1.56; Fig. 1). Conversely, 243 

addition of biochar to soils within the neutral pH range (i.e. 6-8) showed a statistically 244 

significant decrease in CH4 sink strength / increase in source strength (Hedge’s d = 245 

1.17).  Application of biochar to soils with a pH greater than 8 did not show a 246 

statistically significant response to biochar application. 247 

Biochar effects on CH4 flux interact with N fertilizer rate (Fig. 1). Application 248 

of N fertilizers at rates less than 120 kg ha-1 caused a strong and statistically significant 249 

increase in CH4 sink strength / decrease in source strength in the presence of biochar 250 

(Hedge’s d = -3.1). Applications of N fertilizer at higher rates showed no interaction 251 

with biochar on soil CH4 fluxes. 252 

Biochars produced at high temperatures caused a statistically significant 253 

increase in CH4 sink strength / reduction in source strength following application to 254 

soils (Hedge’s d = -1.3; Fig. 1). Mid-temperature biochars (450-600°C) led to 255 
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significant reductions in CH4 sink strength / increased source strength when applied to 256 

soil (Hedge’s d = 0.67).  257 

In terms of interactions with feedstock source, biochar produced from biosolids 258 

led to a statistically significant increase in sink strength / reduction in source strength 259 

(Hedge’s d = -6.03; Fig. 2). When produced from Lignocellulosic waste, biochar 260 

significantly decreased the CH4 sink strength / increased the source strength (Hedge’s 261 

d = 0.74). No other feedstock showed statistically significant effects on CH4 fluxes.  262 

No significant effects or differences between sub-groups were found for the 263 

category BET Surface Area; however, there was an apparent trend whereby increased 264 

BET surface area resulted in increasing sink strength / decreased source strength (Fig. 265 

2). 266 

 267 

4. Discussion 268 

Using standardised mean differences as the meta-analysis metric precludes making 269 

firm conclusions in terms of changes in CH4 sink/source functioning. A statistical 270 

approach based on measurements of net CH4 fluxes alone does not enable 271 

differentiation between changes in methanogenesis or methanotrophy. However, it can 272 

identify the effect of biochar on the direction of net CH4 fluxes (i.e. changes in overall 273 

sink/source strength). It also allows identification of the key management practices and 274 

soil and biochar properties which likely underlie the observed effects, and since the 275 

“usual” CH4 flux direction in flooded wetland or aerated upland soils is known in 276 

general, the results provide first general insights into associated factors that need further 277 

investigation. 278 

Application of biochar to soil produced a range of effects on CH4 fluxes across 279 

studies, as expected. In most instances the “Grand Mean” (i.e. the mean response of all 280 
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studies combined) was not significantly different to the control. This result is most 281 

likely due to contrasting responses (i.e. positive and negative effects on net CH4 fluxes) 282 

cancelling each other out when studies assigned to all functional categories were 283 

combined. The data are unlikely to be significantly affected by publication bias, as 284 

studies finding either a positive or negative result are equally publishable, and most 285 

studies also investigated other factors such as N2O fluxes and/or yield response. These 286 

have been shown to have a positive response to biochar application (Cayuela et al., 287 

2014; Jeffery et al., 2011). As such, studies also investigating these metrics would have 288 

an increased chance of publication of the “associated” CH4 flux results. 289 

 290 

4.1. Irrigation management 291 

Biochar addition to soils that were flooded as part of their management practice 292 

significantly increased CH4 sink strength / reduced source strength compared to their 293 

controls. Methanogenesis is an exclusively anaerobic process (Thauer, 1998). Here 294 

(Flooded; Fig. 1), the change in CH4 flux would likely equate to reduced net CH4 295 

emissions from flooded paddy soils, indicating that either the production decreased or 296 

methanotrophy in the rhizosphere increased through influencing the 297 

methanogenic/methanotrophic ratio of soils. Feng et al. (2012) reported that biochar 298 

decreased the ratio of methanogenic archaea to methanotrophic bacteria. In flooded 299 

soils, CH4 consumption occurs at the aerated root interface where most CH4 produced 300 

in the surrounding anoxic sediment usually enters the aerenchymatic root-shoot rice 301 

tissue, leaving the soil via this plant ‘chimney’. Thus, increased CH4 oxidation at the 302 

“biofilter” anoxic/oxic interface may explain the apparent CH4 efflux mitigation 303 

potential of biochar application to flooded soils observed in our meta-analysis. Other 304 

studies in paddy soils (Liu et al., 2011; Singla et al., 2014) found no significant effects 305 
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on methanogenic archaeal diversity between biochar treated and non-treated soils (but 306 

did not investigate CH4 oxidizer communities).  307 

Non-flooded (i.e. predominantly oxic) upland soils are an important sink for 308 

CH4 and are considered to contribute to approximately 15% of global CH4 oxidation 309 

(Powlson et al., 1997). Figure 1 suggests that biochar application may decrease net CH4 310 

oxidation by such soils. As intensively managed agricultural soils are relatively poor 311 

sinks of CH4, it is likely that the decrease in net CH4 efflux from Flooded soils more 312 

than counteracts any decrease in the net uptake from Non-flooded soils. Therefore, 313 

biochar use in rice agriculture may contribute to reducing the C footprint of rice 314 

production, which is usually worse than for example that of wheat production due to 315 

the CH4 emission burden. 316 

Experiments in which irrigation was applied as Cycles of flooding and draining 317 

did not show a significant response to biochar application. However, considerably 318 

fewer pairwise comparisons contributed to this category: 14 compared to 56 for 319 

Flooded and 85 for Non-Flooded. As such, there is reduced confidence in this result 320 

evidenced by the relatively large error bars (Fig. 1).  321 

All studies included in this analysis were conducted in managed systems: either 322 

in the field or in controlled laboratory or greenhouse experiments. Currently, there is 323 

no work in the published literature that has investigated biochar effects when applied 324 

to natural wetlands, such as marshes, bogs and swamps, which can be significant 325 

sources of CH4 emission (Bubier and Moore, 1994). This represents an unknown area 326 

of biochar research that may grow in importance as novel biochar applications are 327 

sought and potentially the biochar load of these systems increases due to biochar 328 

transport over time through waterways following erosion events (Jaffé et al., 2013).  329 

 330 
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4.2. Soil pH 331 

Soil pH is one of the main environmental parameters that affects both 332 

methanogenesis and methanotrophy (Hanson and Hanson, 1996; Semrau et al., 2010). 333 

The optimum pH range of most methanogens ranges from 6 to 8 (Garcia et al., 2000), 334 

thereby overlapping with the optimum pH range for methanotrophy, which also extends 335 

to more acidic conditions (Le Mer and Roger, 2001; Semrau et al., 2010). Biochar 336 

generally has a higher pH than the soil to which it is applied, thereby providing a liming 337 

effect (Chidumayo, 1994; Yamato et al., 2006; Jeffery et al., 2011); the pairwise 338 

comparisons of this meta-analysis have an average pH of 6.2 for soil and 9.6 for biochar. 339 

As the optimum pH range for both methanogenesis and methanotrophy is similar, it 340 

may be expected that raising the soil pH to within the optimum range would affect both 341 

processes equally. However, we observed a significant increase in CH4 sink strength / 342 

decrease in source strength for acidic soils (Fig. 1). A potential explanation is that the 343 

size and/or structure of methanotrophic communities may be more sensitive to rising 344 

soil pH than that of methanogens. Experiments quantifying, for example, the 345 

mcrA/pmoA ratios of soils are required to identify the cause underlying this observed 346 

effect.  347 

Another possible explanation for the large CH4 mitigating effect of biochar in 348 

acidic soils is related to Al3+ toxicity. Soils with a low pH are associated with increased 349 

Al3+ solubility, which is highly toxic for methanotrophic bacteria (Tamai et al., 2007). 350 

By increasing soil pH, biochar may reduce Al3+ release from cation exchange sites in 351 

the soil, thereby reducing toxicity levels for methanotrophs. A further analysis of initial 352 

soil pH effects on CH4 fluxes, utilising a cut off at a pH of 5, the threshold above which 353 

Al3+ availability strongly decreases, provides further evidence for this explanation (Fig. 354 

S1). Biochar applied to soils with a pH <5 showed a significant increase in sink strength 355 
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/ reduction in source strength compared to soils with a pH >5. When biochar was 356 

applied to soils already above this threshold, no significant effect on CH4 flux was 357 

observed. This hypothesis is in line with the literature on this topic (reviewed in 358 

Dunfield 2007; e.g. Sitaula & Bakken 2001) but more empirical studies are required to 359 

confirm or reject this hypothesised mechanism. 360 

 361 

4.3. N Fertilizer 362 

Figure 1 suggests that when biochar is applied with <120 t ha-1 N fertilizer, it 363 

can reduce CH4 fluxes, while it has no effect when applied with >120 t ha-1 N. However, 364 

the effect of N fertilizer type and application rate on CH4 flux is, in general, highly 365 

controversial. In soils where methanotroph N supply is not limiting to growth and 366 

activity, it is generally expected that the addition of NH4
+-containing or delivering 367 

fertilizers will lead to decreased CH4 oxidation due to competitive exclusion of CH4 at 368 

binding sites by NH4
+ (Bédard and Knowles, 1989; Sylvia et al., 2005). However, this 369 

effect is rate dependent; smaller amounts of N tend to stimulate CH4 uptake while larger 370 

amounts tend to inhibit uptake into the soil (Aronson and Helilker, 2010). Despite this 371 

general rule, in severely N-limiting environments, the addition of an N source, even 372 

NH4
+ which may also competitively inhibit CH4 oxidation (Bedard and Knowles 1989; 373 

Gulledge et al., 1997), can lead to an increase in CH4 oxidation due to an increase in 374 

methanotrophic biomass (Bodelier et al., 2000; Nazaries et al., 2013). The switch 375 

between stimulation and inhibition of CH4 uptake has been reported to occur at between 376 

100 kg N ha−1 (Aronson and Helilker, 2010) and 140 kg N ha-1 (Banger et al., 2012). 377 

As such, we set the threshold for our analysis to the mid-point between these studies -378 

120 kg N ha-1 (Fig. 1). This analysis shows that when N is applied above this threshold 379 

there is no significant difference between the experimental treatments (with biochar) 380 
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and the controls (without biochar). When biochar is applied with levels of N below the 381 

threshold a significant difference is observed between the experimental treatments 382 

(with biochar) and the controls (without biochar) with increased sink strength/ reduced 383 

source strength being observed following biochar application with N fertilization rates 384 

below 120 k N ha-1. The mechanism for this response pattern when biochar is applied 385 

with low N rates remains unclear and warrants further investigation 386 

 387 

 388 

 389 

4.4. Pyrolysis temperature 390 

Biochars produced at high temperatures caused a statistically significant 391 

increase in CH4 sink strength / reduction in source strength following application to 392 

soils (Fig. 1). High temperature biochars are characterised by fewer labile compounds 393 

remaining on the surface of biochar particles, and so introduce less microbial substrate 394 

than lower temperature biochars when applied to soil (Brunn et al., 2011). 395 

Reduced H:Corg ratios in high temperature biochars indicate increased 396 

aromaticity, which is associated with the reducing effect of biochar on N2O emissions 397 

(Cayuela et al., 2015). However, we did not find any relationship between H:Corg and 398 

CH4 fluxes from soil (Fig. S2).  399 

Mid-temperature biochars (450-600°C) led to significant reductions in CH4 sink 400 

strength / increased source strength when applied to soil (Fig. 1). The majority (73%) 401 

of the studies that used mid-temperature biochar were performed on non-flooded soils. 402 

This means that there is a confounding effect: it may be that the effect observed here is 403 

due to either biochar properties or soil water management - it is not possible to 404 

distinguish between the two with the analysis used for this study.  405 
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 406 

4.5. Feedstocks 407 

In general, the feedstock from which biochar was produced did not lead to 408 

significantly different effect on CH4 flux, with the exception of biosolids (Fig. 2). The 409 

effect size for biochar produced from biosolids is remarkably large (Hedges, 1981), as 410 

are the associated confidence intervals. This may be exacerbated by the low number of 411 

pairwise comparisons on which the statistic is based; all of the four pairwise 412 

comparisons were drawn from one study (Khan et al., 2013). The biochar used for this 413 

study was produced from sewage sludge (here grouped as Biosolids; according to 414 

Cayuela et al., 2014) and was applied to very acidic soil (i.e. pH = 4.02). Possible 415 

mechanisms, as discussed above, include potential changes in the size and/or structure 416 

of methanotrophic communities, or potentially reduced Al3+ toxicity effects. In 417 

addition, the effect may also be partly due to the high sulphur content of this feedstock 418 

(5.3% dry weight). This hypothesis is consistent with previous results that showed 419 

decreased CH4 emissions when ammonium sulphate was used as a fertilizer compared 420 

to urea (Bufogle et al., 1998).  421 

Biochar produced from Lignocellulosic waste led to a significantly decreased 422 

CH4 sink strength / increased source strength. The mechanism underlying this effect 423 

remains unclear and warrants further research. 424 

 425 

4.6. BET Surface Area 426 

Biochar production temperature and the Brunauer, Emmett and Teller (BET) 427 

surface area of biochars have been shown to be positively correlated (Ronsse et al., 428 

2013; Kambo and Dutta, 2015). This suggests that adsorption of CH4 to the surface of 429 

biochars (Sadasivam and Reddy, 2014) may also be responsible for the reduced flux in 430 
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the high temperature biochars (Fig. 1). However, this characteristic is often not reported 431 

in biochar studies, which hinders investigation of this potential mechanism. It appears 432 

that there is a trend whereby increased BET surface area results in decreased CH4 flux 433 

(Fig. 2). However, the data are highly variable in the highest category (>500) with little 434 

confidence in the mean value owing to the low number of pairwise comparisons on 435 

which this statistic is based (n = 3). More studies using high surface area biochars, or 436 

systematically varying BET, are needed to investigate the importance of CH4 or 437 

inhibitory N adsorption onto biochar as a mechanism underlying observed reductions 438 

in CH4 fluxes.  439 

 440 

5. Conclusions 441 

Evidence presented in this study shows that biochar does have the potential to 442 

mitigate CH4 emissions from soil, particularly from paddy fields and/or acidic soils that 443 

use periods of flooding as part of their management regime. However, addition of 444 

biochar to neutral or alkaline soils that do not have periods of flooding, may have the 445 

potential to decrease the CH4 sink strength of those soils. These results indicate that soil 446 

and biochar properties, as well as management conditions, must be considered to 447 

maximise biochar’s potential to mitigate CH4 emissions and minimise trade-offs. 448 

This meta-analysis highlights the importance of reporting key functional 449 

characteristics of biochar properties. Biochar pH has been shown to be highly pertinent 450 

for predicting response of some ecosystem functions to biochar application, in both this 451 

current study and previous studies (Jeffery et al., 2011; Sagrilo et al., 2015). Other 452 

functional characteristics (or proxies thereof) such as the molar H:Corg ratio are 453 

becoming more recognised as effective predictors (Cayuela et al., 2015). Here we show 454 

that BET surface area may be an important functional characteristic in terms or 455 
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predicting CH4 flux mitigation potential of biochar. However, insufficient numbers of 456 

experiments have reported the characteristic to draw firm conclusions. It is vital that 457 

biochar researchers characterise and report functional characteristics of their biochars 458 

wherever possible.  459 

Finally, it is apparent that trade-offs are inevitable and clear goals are necessary 460 

before effective advice can be offered to land managers and policy makers (Jeffery et 461 

al., 2015). For example, low temperature, slow pyrolysis maximises biochar production 462 

(Sohi et al., 2010) and thereby also C sequestration potential. However, evidence 463 

presented in this study shows that high temperature biochars are more effective at 464 

mitigating CH4 emissions (the same applies for N2O, Cayuela et al., 2015). Which one 465 

has the greatest potential to mitigate climate change thus remains to be determined and 466 

will require life cycle assessment approaches. However, market forces are likely to 467 

make the former more attractive until the full environmental costs of production are 468 

included as part of agricultural products.  469 

470 
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Figure 1. A forest plot of Hedge’s d calculated from published literature grouped by 

experimental water regime, soil pH pre-biochar amendment, N fertilizer application rate and 

biochar pyrolysis temperature. Points show means, bars show 95% confidence intervals. The 

numbers in parentheses indicate the number of pairwise comparisons on which the statistic is 

based. (For an explanation of the Hedge’s d metric see text). 

Figure 2. A forest plot of Hedge’s d calculated from published literature grouped by biochar 

feedstock type and BET (Brunauer, Emmett and Teller) surface area. Points show means, bars 

show 95% confidence intervals. The numbers in parentheses indicate the number of pairwise 

comparisons on which the statistic is based. (For an explanation of the Hedge’s d metric see 

text). 
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Figure S1. A forest plot of Hedge’s d calculated from published literature grouped by pre-

biochar amendment soil pH. The pH 5 threshold is applied to investigate the potential effects 

of aluminium bioavailability/toxicity. Points show means, bars show 95% confidence 

intervals. The numbers in parentheses indicate the number of pairwise comparisons on which 

the statistic is based. (For an explanation of the Hedge’s d metric see text). 

Figure S2. A forest plot of Hedge’s d calculated from published literature grouped by H:Corg. 

Points show means, bars show 95% confidence intervals. The numbers in parentheses indicate 

the number of pairwise comparisons on which the statistic is based. (For an explanation of the 

Hedge’s d metric see text). 

 

 



Table S1. A list of the studies included in the meta-analysis database.   

Reference Country Soil pH Water regime 
BET surface 

area 

Pyrolysis 

temperature 
H:Corg 

Biochar 

feedstock 

Castaldi et al., 2011 Italy <6 Non-flooded - 450-600 - Wood 

Dong et al., 2013 China <6 Flooded <100 >600 0.3-0.5, >0.5 Herbaceous 

Feng et al., 2012 China 6-8 Flooded - <450, 450-600 - Herbaceous 

Fungo et al., 2014 Kenya 6-8 Non-flooded - <450, 450-600 0.3-0.5, >0.5 Herbaceous 

Khan et al., 2013 China <6 Flooded <100 450-600 - Biosolids 

Liu et al., 2011 China <6 Flooded - >600 0.3-0.5, >0.5 Herbaceous 

Scheer et al., 2011 Australia <6 Non-flooded - 450-600 >0.5 Herbaceous 

Singla and Inubushi, 2014 Japan <6 Flooded - <450 - Manure 

Spokas et al., 2009 USA 6-8 Flooded <100 450-600 0.3-0.5 Lignocellulosic 

Wang et al., 2012 China 6-8 Flooded - 450-600 - Lignocellulosic 

Wu et al., 2013 Canada <6 Non-flooded - 450-600 0.3-0.5 Herbaceous 

Xie et al., 2013 China 6-8 Cycles - <450 - Herbaceous 

Zhang et al., 2012 China 6-8 Cycles <100 450-600 - Herbaceous 

Zhang et al., 2012 China >8 Non-flooded <100 450-600 - Herbaceous 

Zhang et al., 2010 China 6-8 Flooded <100 450-600 - Herbaceous 

Zheng et al., 2012 USA 6-8, >8 Non-flooded 100-500 450-600 <0.3 Lignocellulosic 

Liu et al., 2014 China <6 Flooded - 450-600 - Herbaceous 

Pandey et al., 2014 Vietnam - Cycles - - - Herbaceous 

Schimmelpfennig et al., 

2014 
Germany <6 Non-flooded >500 >600 <0.3 Herbaceous 

Shen et al., 2014 China <6 Flooded - - - Herbaceous 

Singla et al., 2014 Japan 6-8 Flooded - <450 >0.5 Manure 

Zhao et al., 2014 China 6-8 Flooded - 450-600 - Herbaceous 

Zhang et al., 2014 Canada 6-8 Non-flooded - >600 - Lignocellulosic 



Zhang et al., 2013 China 6-8 Cycles <100 450-600 - Herbaceous 

Jia et al., 2012 China <6 Non-flooded - <450 - Herbaceous 

Ali et al., 2013 Bangladesh 6-8 Cycles - 450-600 - Lignocellulosic 

Spokas et al., 2013 USA 6-8 Non-flooded <100 450-600 <0.3, 0.3-0.5 Lignocellulosic 

Angst et al., 2014 USA 6-8 Non-flooded <100 450-600 >0.5 Lignocellulosic 

Case et al., 2014 UK 6-8 Non-flooded - <450 - Lignocellulosic 

Li et al., 2013 China <6, >8  - <100 <450, 450-600 - Herbaceous 

Ly et al., 2014 Cambodia <6 Flooded - 450-600 - Herbaceous 

Stewart et al., 2013 USA >8 Non-flooded 100-500 450-600 <0.3 Lignocellulosic 

Watanabe et al., 2014 Japan - Non-flooded - >600 - Herbaceous 

Karhu et al., 2011 Finland - Non-flooded <100 <450 - Lignocellulosic 

Troy et al., 2013 Ireland 6-8 Non-flooded - >600 - Manure 

Mukherjee et al., 2014 USA 6-8 Non-flooded 100-500 >600 - Wood 

Thomazini et al., 2015 USA <6, 6-8 Non-flooded <100 450-600 - Wood 

Vu et al., 2015 Vietnam <6 Cycles - - - Herbaceous 

Zhang et al., 2015 China 6-8 Cycles <100 450-600 - Herbaceous 

Li et al., 2015 China <6 Non-flooded <100 <450 - Herbaceous 

Lin et al., 2015 China >8 Non-flooded - <450 - Herbaceous 

Yoo et al., 2015 Korea <6, 6-8 Flooded - <450, >600 0.3-0.5, >0.5 Herbaceous 

Yu et al., 2013 China <6 
Non-flooded, 

Flooded 
- - >0.5 Manure 

  



Supplementary Table S2. Between-group heterogeneity (Qb), within-group heterogeneity (Qw) 

and total heterogeneity (Qt). 

 Qb Qw Qt 

Water regime 16.55***             342.32***             358.88***             

Soil pH  40.92***             324.99***             365.92***             

N application rate 27.76***            117.67**             145.44***             

Pyrolysis temperature 17.98***             349.95***             367.93***             

Feedstock 41.46***             348.31***             389.77***             

BET Surface Area 5.41             148.12***             153.54***             

Soil pH - cut off at pH 5 6.45*             350.41***             356.86***             

H:Corg molar ratio 0.31             180.76***             181.07***             

Soil texture 7.76*             238.73***             246.49***             

*p<0.05; **p<0.01; ***p<0.001 

 


