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Abstract 

Widespread contamination of rice with arsenic (As) has revealed a major exposure 

pathway to humans.  The present study aimed to investigate the effects of oxygen in 

the rhizosphere on phosphate transporter (for arsenate transportation) expressions in 

four rice genotypes, on As and phosphate accumulation and As speciation. 

Oxygenation marginally increased root and shoot length. Total As concentrations in 

rice roots were dramatically reduced following oxygenation compared to stagnant 

treatments (p <0.001). Oxygenated treatments significantly increased arsenate whilst 

reducing arsenite concentrations in roots (p < 0.001).  Root arsenite concentrations 

were 1.5-2.5 times greater in stagnant than in oxygenated treatments. Total P 

concentrations in rice roots were dramatically increased following aeration  

compared to stagnant treatments. The relative abundance of phosphate transporter 

(inorganic phosphate transporter and phosphate:H+ symporter family protein) 

expressions showed down-regulation in stagnant treatments, particularly for 

SY-9586, XWX-17, XWX-12 in inorganic phosphate transporter expressions, and 

XWX-17 in phosphate:H+ symporter family protein expression (p <0.05). The 

relative abundance of phosphate carrier protein expressions were relatively higher 

than the other phosphate transporters, showing up-regulation in stagnant treatments. 
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1. Introduction 

Arsenic (As) is an environmental contaminant and well documented as a human 

carcinogen (Zhu et al., 2008E; Wu et al., 2015). Exposure from drinking 

As-contaminated groundwater has caused thousands of people to develop arsenicosis 

in parts of Southeast Asia (Meharg et al., 2003; Perry et al., 2011) whilst widespread 

As contamination of rice and other crops has provided a major exposure pathway to 

humans via the food chain (EFSA., 2009; Meharg et al., 2003, 2009 ). Elevated As 

concentrations in paddy soils has originated from both geological and anthropogenic 

activities, the latter being the major contributor due to smelting, mining and irrigation 

using As-contaminated groundwater (Liao et al., 2005; Jia et al., 2014). Due to its 

inherent physiological characteristics and preference to anaerobic conditions rice is 

particularly efficient at As uptake and accumulation compared to other crops (Su et al., 

2010; Wu et al., 2016). Rice is a staple food consumed by half the world’s population, 

and as an export commodity, rice consumption has posed an increasing threat to 

human health globally due to contamination by As (Stone et al., 2006; Seyfferth et al., 

2014).  

Arsenic in rice plants can exist both as inorganic and organic species. Inorganic 

species, As(V) and As(III), present greater toxicity and bioavailability than organic As 

(Qu et al., 2014; Wu et al., 2015). Therefore, total As concentration and As speciation 

should both be taken into consideration for health risk assessment (Novoa et al., 2007; 

Qu et al., 2014). Arsenic speciation will dictate the uptake pathway into rice (Zhao et 

al., 2010; Wu et al., 2016). For example, studies have shown that As(III) is taken up 

through silicic acid transport systems (Ma et al., 2008), whilst As(V), a chemical 

analog of phosphate, shares the same transporters with phosphate (Meharg and 

Hartley-Whitaker, 2002; Liu et al., 2004). Abedin et al (2002) revealed that phosphate 

strongly suppressed As(V) uptake in rice plants. Hu et al (2005) reported that P 

fertilizer significantly reduced As accumulation in rice roots whilst Wu et al (2015) 

showed that P addition increased As concentrations in rice shoots.  Arsenate is the 



predominant As species in aerobic soils and will compete with P for absorption sites 

and uptake transporters in rice roots (Jiang et al., 2014).  

  Recent studies have reported that water management has profound influences on 

As uptake and accumulation in rice plants (Xu et al., 2008; Li et al., 2009; 

Somenahally et al., 2011; Norton et al., 2013). Takahashi et al (2004) found that As 

was sequestered on Fe(hydr)oxides when soils were not flooded, but upon flooding, 

was released into the soil solution due to reductive dissolution of the Fe (hydr)oxides 

and reduction of As(V) to As(III). Xu et al (2008) reported that aerobic conditions 

greatly reduced As bioavailability, subsequently reducing As accumulation in rice 

plants; aerobic conditions reduced the concentration of inorganic As by 2.6-2.9 fold in 

rice grain compared to flooded treatments, which was in accordance with Norton et al 

(2013). Li et al (2009) also showed that growing rice aerobically reduced As in rice 

plants. A field-scale experiment conducted by Somenahally et al (2011) 

demonstrated that intermittent flooding significantly reduced total As concentrations 

in the rhizosphere and grain compared to continually flooded conditions. 

The objectives of the present work were to evaluate (1), the effects of root aeration 

on the acquisition of P and biomass production of rice, (2) investigate the changes of 

Pi transporters (OsPT2, 6 and 11) in rice plants, and (3) investigate the effects of root 

aeration on the accumulation and transformation of arsenate in rice plants. 

 

2. Materials and Methods  

2.1. Rice seedlings  

Two hybrid subspecies Xiangfengyou9 (‘XFY-9’), Shenyou9586 (‘SY-9586’) 

and two indica subspecies Xiangwanxian17 (‘XWX-17’) and Xiangwanxian12 

(‘XWX-12’), with radial oxygen losses of 9.55, 10.83, 19.7 and 27.0 μmol O2 g
-1 

root dry weight h-1 respectively, were chosen for the investigations (Wu et al., 

2015). Seeds were obtained from Hunan Agricultural University. The seeds were 



germinated in culture dishes on moist filter papers after first being surface sterilized 

with a 30% H2O2 for 15 min. Seeds were then subsequently thoroughly washed 

with deionized water three times. Germinated rice seedlings were then grown in 

Kimura B nutrient solution for 2 weeks (Ma et al., 2001). 

 

2.2. Aeration and Arsenate Treatments 

After 2 weeks growth in the nutrient solution, uniform seedlings (approximately 

20 cm) were selected and transplanted into 10-liter plastic vessels (four vessels, 

twelve plants per vessel) with Kimura B nutrient solution. Initially the nutrient 

solutions were bubbled with N2 gas for 24 h to deoxygenate them before use. The 

deoxygenated nutrient solution contained 0.1% w/v agar, which more closely 

resembles stagnant conditions of flooded paddy field soil than N2-flushed solutions 

alone; dilute agar prevents convective movement within the solution (Wu et al., 2012). 

The pH of the nutrient solution was maintained with KOH or HCl at approximately 

5.8, with the solution renewed once every 5 days. Vessels were placed randomly in a 

greenhouse (maintained at 25℃ during the day and 20℃ at night, with 70% relative 

humidity) and natural light was supplemented with sodium light (1200 Lux, a 

photoperiod of 12 h light/12 h dark). Seedlings were cultured for a further 60 days. 

Plants were then transplanted to 2-liter plastic vessels (four plants per vessel) 

containing Kimura B nutrient solution, with either no arsenic (control) or 4 μM 

arsenate (Na2HAsO4). Half the plants were aerated using an air pump for the entire 

growth period, while the other half were treated as stagnant as previously described. 

http://www.baidu.com/link?url=C-F581ozBZdBIRJftm-sJYZmiy-x9DbKnheUOnqLg7hY0JyYSmEkW6boy7nwha7Z3IV4mN8IPLjcuJty6hbgjLZ-pTUXHCoDIEhFHz_WFcy&wd=&eqid=8dfdda64000dc62c00000003569e4f75


Treatments were designated as Stagnant -As (stagnant with no As), Aeration -As 

(aerated with no As), Stagnant +As (stagnant with arsenate) and Aeration +As 

(aerated with arsenate). There were three replicates per treatment, with four plants per 

replicate (vessel). The nutrient solution was renewed every 2 days, and vessels were 

randomly arranged in the greenhouse and plants were cultured for 10 days. 

 

2.3. Plant Analysis for Total As and P 

Plants were harvested after 10 days, carefully washed using deionized water, 

and then divided into roots and shoots. Root length, shoot length and fresh root 

weight were measured. Then 0.5 g fresh root was collected for RNA extraction. The 

remaining root and shoot samples were divided equally, and either oven-dried at 

70℃ to a constant weight for total As determination, or freeze-dried and stored at 

-20℃ prior to total P and As species determination. 

For total As determination, 0.5 g sample was weighed into a conical flask (100 

ml), and 5 ml concentrated nitric acid added. The samples were left to digest 

overnight at room temperature (25℃), then placed on an electric hot plate (120℃), 

until the solution became clear. After digestion, samples were filtered and diluted to 

20 ml with deionized water into colorimetric tubes (Wu et al., 2015, 2016). The 

total As concentration (root and shoot) was determined using HG-AFS (AFS-8230, 

Beijing Jitian Instruments Co., China) (Shi et al., 2013; Wu et al., 2015). A certified 

reference material (bush branches and leaves, GBW07603) was used and As 

recovery ranged from 85.5% to 93.5% (n = 3). 



To determine the P concentration, freeze-dried root and shoot samples were 

mixed and ground using a mill. 0.1 g and 0.5 g sub-samples of roots and shoots 

were weighed respectively, and digested using 5 ml concentrated sulfuric acid in a 

50 ml glass tube on a heating block at 100 ℃ for 20 min. Tubes were then 

subsequently placed on a heating block at 380 ℃ for 2 h. Each digest was diluted, 

filtered and made to volume (25 ml) with deionized water. Total P in digests was 

determined using molybdenum blue method (Chen et al., 2013) using a 

spectrophotometer (UV-1601, Shimadzu, Japan) at a wavelength of 882 nm. A 

certified reference material (bush branches and leaves, GBW07603) was used and P 

recovery ranged from 93% to 98% (n = 3). 

 

2.4. Plant Analysis for As Speciation 

For determination of As species, samples were ground with liquid N2 to ensure 

stabilization (Shi et al., 2013; Wu et al., 2015). Milled rice grain (1.0 g) was added 

to centrifuge tubes (50 ml), and 20 ml nitric acid (1%) added. The samples were 

then heated to 95℃ for 1.5 h. After the samples had cooled to room temperature 

(25℃), the extracting solution was centrifuged at 5000r/min for 10 min and the 

supernatant filtered (0.22 μm). Arsenic speciation was determined using 

HPLC-HG-AFS (HPLC, Shimadzu LC-15C Suzhou Instruments Co., China; 

HG-AFS, AFS-8230, Beijing Jitian Instruments Co., China) (Shi et al., 2013; Wu et 

al., 2016). 

 



 

2.5. RNA Isolation and RT-PCR 

The total RNA was extracted from roots using an RNA extraction kit (RNeasy Plant 

Mini Kit, Qiagen, Germany). Total RNA (500 ng) was used for first-strand cDNA 

synthesis using SuperScript III Reverse Transcriptase (Invitrogen, USA). One-tenth 

of the reaction volume was used as the template for phosphate transporters 

(inorganic phosphate transporter, phosphate carrier protein and phosphate:H+ 

symporter family protein) (Li et al., 2010) and actin (internal control) amplification 

using PowerUp SYBR Green Master Mix (Life Technologies, USA) for real-time 

polymerase chain reaction. The three phosphate transporters were selected as they 

were reported for potential phosphate transportation in indica rice genotypes (Li et 

al., 2010).  

The primer sequences of the different genes were as follows:  

inorganic phosphate transporter, 5’-GTACCACCACTGGACGAC-3’ (forward) and 

5’-AAGTTGGCGAAGAAGAAGG-3’ (reverse) (Li et al., 2010);  

phosphate carrier protein, 5’-GCGTCAGATTCCTTATACTATG-3’ (forward) and 

5’-GGATGAGATGCTTGTATGC-3’ (reverse); 

phosphate:H+ symporter family protein, 5’-ACCACTGGACAACGAAAG-3’ 

(forward) and 5’-CGAAGTTGGCGAAGAAGA-3’ (reverse) (Li et al., 2010);  

Actin, 5’- GACTCTGGTGATGGTGTCAGC-3’ (forward) and 

5’-GGCTGGAAGAGGACCTCAGG-3’ (reverse).  

qRT-PCR was carried out in a StepOnePlus instrument (Applied Biosystems, 

USA) and relative expression normalized against Actin using the comparative CT 

method recommended by the instrument manufacturer. Experiments were repeated 



at least three times for statistical analysis of each individual experimental set. All 

values in the experiments were expressed as mean ± SD. 

 

2.6. Data Analysis 

All data was analyzed in SPSS 23.0. Figures were created in Origin 9.0. 

 

3. Results and Discussion 

3.1. Plant growth  

Plant growth parameters root length, root weight and shoot length were measured 

(Figure 1). There were significant genotypic effects on root length (P <0.001), root 

weight (P <0.001) and shoot length (P <0.001) of rice plants. The longest root length, 

28.5 cm, was from genotype XFY-9 in Stagnant+As treatments, whilst the shortest, 

19.8 cm, was from genotype XWX-17 with Stagnant+As treatments. With the 

exception of genotype XWX-17 in +As treatments (p < 0.05), root length was not 

significantly affected by different aeration treatments. In addition, aeration had 

significant effects on root length in genotype XWX-12 (p < 0.05) in both control and 

As treatments. Root weight was greatest for genotype XFY-9 in Stagnant+As 

treatments and lowest in genotype XWX-17 in Aeration-As treatments respectively 

(Figure 1). Additionally, there were no significant differences between control and 

+As treatments on root and shoot length and root weight (p > 0.05). Root and shoot 

length and fresh root weight were significantly different between different genotypes, 

which is in agreement with previous studies (Wu et al., 2015, 2016). However, +As 



treatments did not exert any significant difference in root and shoot length and root 

weight, which was different to other studies (Marin et al., 1993; Abedin et al., 

2002b). In other investigations, addition of arsenate had not revealed any significant 

reductions (Marin et al., 1993; Carbonell et al., 1998; Wu et al., 2015), possibly due 

to different growing conditions and genotypes. In addition, root length was slightly 

enhanced by aerated treatments compared with stagnant treatments, which is in 

agreement with other studies (Comis, 1997; Wu et al., 2012). 

 

3.2. Arsenic accumulation and speciation  

Arsenic was undetectable in plants grown in As-free treatments (Figure 2). There 

were significant genotypic effects on total As concentrations in rice roots (P <0.001) 

and shoots (P <0.001) with the same treatments. The hybrid genotypes (SY-9586 and 

XFY-9), with lower ROL, accumulated slightly greater As concentrations in roots 

than indica genotypes (XWX-12 and XWX-17). Total As concentrations in rice roots 

were dramatically reduced following aeration, (82.4 to 230.9 mg/kg), compared to 

stagnant treatments (198.4 to 265.9 mg/kg) (P <0.001). In addition, there were no 

significant differences in total As concentrations of rice shoots between aeration and 

stagnant treatments, although aeration slightly reduced total As concentrations in 

shoots compared to stagnant treatments. 

Methylated As species (MMA and DMA) were not detectable in rice roots or shoots 

in different treatments (Table 1 and 2). Arsenite was the predominant As species in 

roots, accounting for 39% to 88% of extractable As (the sum of all As species), 



except for genotype XWX-12 grown with aeration +As. Arsenate concentrations 

were undetectable in shoots, with only arsenite detected, even in arsenate treatments. 

Results indicated that there were genotypic differences in arsenite accumulation in 

roots and shoots, with hybrid genotypes (SY-9586 and XFY-9) accumulating greater 

arsenite concentrations in shoots than indica genotypes (XWX-12 and XWX-17). 

Compared to stagnant treatments, aerated treatments significantly increased arsenate 

concentrations, but reduced arsenite concentrations in roots (p < 0.001). In As 

treatments, root arsenite concentrations in stagnant treatments were 1.5-2.5-fold 

greater than that in aerated treatments (Table 1).  Genotype XFY-9 in Stagnant+As 

treatments contained greater arsenite concentrations (165 mg/kg), whilst genotype 

XWX-12 in Aeration+As treatments contained the lowest arsenite concentrations 

(30.1 mg/kg). In addition, arsenite concentrations in shoots from stagnant treatments 

were greater than that from aerated treatments (Table 2).  Arsenite concentrations 

ranged from 7.03 to 36.7 mg/kg in shoots, with the lowest value found in genotype 

XWX-12 (Aeration +As) and the greatest in genotype XWX-17 (Stagnant +As). 

Root and shoot total As were significantly different between different genotypes, 

with hybrid genotypes, with lower ROL, accumulating greater As than indica 

genotypes, which is in agreement with previous pot studies (Wu et al., 2015). 

However, the differences were not significant, which may due to the increased iron 

plaque formation in pot experiments sequestering more As on the plaque, and 

reducing As transportation to rice roots (Wu et al., 2016). Root As concentrations in 

aerated treatments were significantly lower than stagnant treatments (Figure 2). Arao 



et al. (2009) revealed that flooding increased As in rice straw and grains compared 

with aerobic conditions. Norton et al. (2013) also showed that aerobic conditions 

may decrease grain As content compared with flooded conditions. Furthermore, Hu 

et al. (2015) showed that rice growing in aerobic conditions resulted in 3–16 times 

lower As accumulations than in flooded conditions.  

The dynamics of As speciation under both flooded and aerobic conditions, as 

well as As accumulation in rice shoots and grains were investigated by Xu et al., 

(2008); it was observed that As concentrations in the soil solution were 4-16 times 

greater under flooded conditions, while grain As was 10-15 times greater than the 

aerobically grown rice. Flooding may reduce redox potential, causing As desorption 

from soil particles, which greatly increases As bioavailability in both greenhouse (Xu 

et al., 2008; Hartley et al., 2010) and field studies (Takahashi et al., 2004). In the 

present hydroponic experiments, decreased As accumulation in aerated treatments 

may be due to less As transported into rice roots. 

The present study demonstrated that arsenite and arsenate were both lower in rice 

roots and shoots from aerated compared to stagnant conditions (Table 1, 2), 

especially for root iAs in genotypes XFY-9, XWX-17 and XWX-12, and shoot iAs in 

SY-9586. Arao et al. (2009) also found that the concentration of inorganic As was 

2.6-2.9 times greater in grain from flooded treatments than in those from aerobic 

treatments. In addition, organic As species were undetectable in both roots and 

shoots, which is in agreement with other studies (Chen et al., 2012; Wu et al., 2012). 

 



 

3.3. Phosphate accumulation and transporter expression  

Phosphate concentrations in rice roots (a) and shoots (b) are shown in Figure 3. The 

hybrid genotypes (SY-9586 and XFY-9), with lower ROL, accumulated slightly 

lower P concentrations in roots and shoots than indica genotypes (XWX-12 and 

XWX-17). Total P concentrations in rice roots were dramatically increased following 

aeration, (960 to 1616 mg/kg), compared to stagnant treatments (834 to 1188 mg/kg), 

especially in control and As treatments of genotype SY-9586, in +As of genotype 

XWX-17 and in controls of genotype XWX-12. In addition, total P concentrations of 

rice shoots were slightly higher in aerated treatments, especially in +As of genotype 

SY-9586 and genotype XWX-12 in controls. 

The relative abundance of phosphate transporter (inorganic phosphate transporter 

and phosphate:H+ symporter family protein) expressions presented a 

down-regulation trend in stagnant treatments compared to those that were aerated; 

being significantly different for SY-9586, XWX-17, XWX-12 in inorganic 

phosphate transporter expressions, and XWX-17 in phosphate:H+ symporter family 

protein expression (P <0.05) (Figure 4). However, The relative abundance of 

phosphate carrier protein expressions were relatively higher than the other two 

phosphate transporters, and presented an up-regulated trend in stagnant treatments, 

especially in XFY-9 (p <0.05). Furthermore, there were no significant genotypic 

differences with phosphate transporter expressions, regardless of hybrid or 

conventional indica genotypes. 



Arsenate and phosphate (P) share the same transporters in plants (Chen et al., 2013). 

The inorganic phosphate transporter, phosphate carrier protein and phosphate:H+ 

symporter family protein were selected in this investigation as their expressions were 

up-regulated with low P stress in indica rice roots, which show potential for P 

transportation in indica rice (Li et al., 20010). In the present study, the inorganic 

phosphate transporter and phosphate:H+ symporter family protein expressions were 

significantly reduced by aeration, leading to a reduction in As accumulation in roots 

(Figure 4). However, phosphate carrier protein expressions were significantly 

increased by aeration, stimulating improved root length (Figure 1) and significantly 

enhancing P accumulation in roots and shoots (Figure 3). The reduced accumulation 

of total As and arsenite may be due to reduced inorganic phosphate transporter and 

phosphate:H+ symporter family protein expressions, or as a result of competition from 

P and As for the phosphate carrier protein transporter. Chen et al. (2013) also found 

that the reduced expression of Pi transporters led to reduced arsenate concentrations in 

plant tissues. Chen et al. (2013) found that with the colonization of arbuscular 

mycorrhizal fungi (AMF), Phosphate transporter OsPT11 increased whereas OsPT2 

decreased significantly. The increased expression of OsPT11 was one of the most 

important factors that led to the significantly higher P concentration in rice tissues, 

which compensated for the down-regulation of OsPT2. What is more, Rausch et al. 

(2001) found that StPT1 and StPT2 mRNA levels in potato were reduced and StPT3 

was significantly induced in cells containing arbuscules.  In barley (Hordeum 

vulgare) under AMF colonization, HvPht1;1 and HvPht1;2 genes were 



down-regulated while HvPht1;8 was up-regulated and led to lower As uptake and 

higher P/As molar ratio (Christophersen et al., 2009).  

 

4. Conclusion 

The present study aimed to investigate the effects of rhizosphere aeration on 

phosphate transporter (for arsenate transportation) expressions, and on arsenic 

accumulation and speciation in two hybrid rice genotypes and two conventional 

indica genotypes. Aeration marginally increased root length, particularly in 

genotypes XWX-17 and XWX-12 from both control and As treatments. Total As 

concentrations in roots were dramatically reduced following aeration compared to 

stagnant treatments. In addition, there were no significant differences in total As 

concentrations in shoots between aerated and stagnant treatments, although aeration 

slightly reduced total As concentrations in shoots. Aerated treatments significantly 

increased arsenate, whilst reducing arsenite concentrations in roots. Root arsenite 

concentrations in stagnant treatments were 1.5-2.5-fold greater than in aerated 

treatments. Total P concentrations in roots were dramatically increased following 

aeration compared to stagnant treatments, especially in genotype SY-9586 from both 

control and As treatments, in genotype XWX-17 with +As and in genotype XWX-12 

in control treatments. In addition, total P concentrations of shoots were slightly 

greater in aerated treatments, especially in genotype SY-9586 grown in +As 

treatments, and in genotype XWX-12 in control treatments. The relative abundance 

of phosphate transporter expressions also presented a down-regulation trend in 



stagnant treatments, especially for SY-9586, XWX-17 and XWX-12 in inorganic 

phosphate transporter expressions, and XWX-17 in phosphate:H+ symporter family 

protein expression. However, the relative abundance of phosphate carrier protein 

expressions were relatively higher than the other two phosphate transporters, and 

presented an up-regulated trend in stagnant treatments. There were also no 

significant genotypic differences with phosphate transporter expressions, regardless 

of hybrid or conventional indica genotypes. 
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