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Summary text 19 

Previous work has shown antitranspirant efficacy at protecting Brassica napus and other major 20 

food crops from drought damage in glasshouse conditions. Two experiments were carried out 21 

in the same field over consecutive years to evaluate the effectiveness of chemicals with 22 

antitranspirant activity applied over different growth stages and at different dose rates at 23 

sustaining canola yield under drought. The results showed yield protection when antitranspirant 24 

was applied at 1 L ha-1 just before flowering therefore encouraging further work in different 25 

environments and spraying conditions.  26 
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Abstract 39 

Crop management solutions that simulate plant water-saving strategies might help to mitigate 40 

drought damage in crops. Winter canola is significantly drought-sensitive from flowering to 41 

mid-pod development and drought periods lead to significant yield losses. In this work the 42 

drought-protection efficacy of different chemicals with antitranspirant activity applied just 43 

prior to key drought-sensitive phenological stages was tested on field-grown canola in two 44 

years. Drought was artificially imposed with rain-shelters. The results suggest that in-field 45 

application of 1 L ha-1 antitranspirant (Vapor Gard, a.i. di-1-p menthene, VG) at GS 6.0 46 

(initiation of flowering) mitigated drought-induced yield loss leading to a 22%seed yield 47 

benefit on average  over two years of experiments when compared to the un-sprayed un-48 

irrigated plots. No significant yield responses were found from application at GS 7.0, from 49 

increasing VG concentrations (i.e. 2 and 4 L ha-1), or from an antitranspirant with short-lasting 50 

effectiveness. The data suggest that in field conditions where drought occurs during the 51 

flowering stage, application of 1 L ha-1 VG just prior to the drought event can reduce yield loss. 52 

This result should encourage further work on water-saving management strategies during key 53 

drought-sensitive phenological stages as drought mitigation tools in canola and under different 54 

environments. 55 
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Introduction  61 

There is significant evidence that a major factor determining the yield of winter canola 62 

(Brassica napus L., BN) is the amount of soil water available over the reproductive stages 63 

(Jensen et al. 1996; Berry and Spink, 2006; Istanbulluoglu et al. 2010). The yield components 64 

of the crop (pod number, seed number, and seed weight) are determined over a crucial period 65 

between flowering and mid-pod development (Mendham et al. 1981). This period often occurs 66 

in a seasonal time-frame (i.e. spring) of high crop water use (Vadez et al. 2014), elevated soil 67 

evaporation (Vadez et al. 2014) and low precipitation (Berry and Spink, 2006) in turn lowering 68 

the yield potential of the main commercially-available varieties.  69 

It has been extensively hypothesized that by maintaining high soil water availability and/or 70 

plant water status over these key-periods, arable crops may exhibit a yield benefit (e.g. Salter 71 

and Goode, 1967). In Wang et al. (2009) and Wang et al. (2005), down-regulation of the 72 

farnesyltransferase subunit, a protein involved in stomatal sensitivity to ABA, gave a yield 73 

benefit in field-grown BN under drought due to a significant reduction in transpiration. 74 

Similarly, intracuticular and epicuticular wax accumulation under water-limited conditions 75 

reduces leaf transpiration leading to a sustained photosynthetic rate (Cossani and Reynolds, 76 

2012). Thus, further exploitation of water-saving strategies or wax-simulating tools may 77 

significantly reduce the drought damage to BN yield at sensitive growth stages. 78 

The ability of a film antitranspirant (AT) to reduce transpiration through stomatal occlusion for 79 

a temporary period is well documented (Solarova et al. 1981). Recently, the mechanisms of 80 

the yield benefit from AT under drought conditions on wheat and BN, in particular in relation 81 

to the reproductive development, have been explored (Weerasinghe et al. 2016; Faralli et al. 82 

2016; Faralli et al. 2017a). The main physiological factors involved in reduced yield loss from 83 

drought following AT application are i) a higher leaf water potential (Weerasinghe et al. 2016; 84 



Faralli et al. 2016), ii) a higher pollen fertility at pollen development stage and/or a lowered 85 

ABA signalling (Weerasinghe et al. 2016; Faralli et al. 2016; Faralli et al. 2017a) and iii) a 86 

sustained photosynthetic rate (Abdullah et al. 2015; Faralli et al. 2016) leading to more 87 

grains/seeds production when compared to the un-treated and stressed control (Abdullah et al. 88 

2015; Weerasinghe et al. 2016; Faralli et al. 2016; Faralli et al. 2017a). 89 

BN has been shown to be more drought sensitive than wheat (Hess et al. 2015) and AT 90 

application around flowering was beneficial for the yield of pot-grown BN subjected to water 91 

stress, although a substantial difference in efficacy between two AT was recorded (Faralli et 92 

al. 2016). Application of AT on field-grown Brassica campestris gave a grain yield increase 93 

following improved plant water status and water-use efficiency under dryland conditions (Patil 94 

and De, 1976 and 1978). However, no additional work has been published on field experiments 95 

so far and there is no work in the literature investigating the effectiveness of film 96 

antitranspirants at avoiding winter BN yield losses under drought conditions in the field. Thus, 97 

two field experiments under rain-shelters investigated the effectiveness of AT at sustaining the 98 

yield of droughted BN over different phenological stages: in 2015 (Experiment I) two 99 

chemicals with antitranspirant activity were applied at three different phenological stages, 100 

whereas in 2016 (Experiment II) the chemical (di-1-p menthene) which showed the best yield 101 

response in four glasshouse experiments and in the field in 2015, was used in a dose-response 102 

experiment and sprayed at two phenological stages. 103 

Materials and methods 104 

Site, soil analysis and crop sowing  105 

The two field experiments were carried out in Flat Nook field, a field site at Harper Adams 106 

University, Shropshire (52°46′ N, 2°25′ W). Soil profile, bulk density and soil texture were 107 

analysed on 20 January 2015. A 1 m3 soil profile pit was excavated inside the experimental 108 



area. Four bulk density samples, at 20, 30, 60, 80 cm depths, were collected inside the pit with 109 

a 300 cm3 tin, adapted from Rowell (1994). Texture samples were collected at the same depths 110 

as bulk density samples. The soil profile was used to determine soil depth (~90 cm). Texture 111 

samples were analysed according to Toogood (1958).  112 

Previous crops at the site were fallow (no crops) for the 2014/2015 experiment area and 113 

potatoes for the 2015/2016 experiment area. Winter canola seeds (cv. Excalibur, Dekalb, UK) 114 

were sown on 29 August 2014, 15 cm row spacing and 80 seeds m-2 (Experiment I) and on the 115 

04 September 2015 with row spacing at 15 cm and a seed rate of 50 seeds m-2 (Experiment II). 116 

Soil preparation for sowing and crop management followed the standard UK agronomic 117 

practices including insecticide, fungicide, herbicide and fertilizer application.  118 

Design and treatments in 2014/2015 (Experiment I) 119 

The experiment was a factorial randomized block design composed of three blocks with each 120 

block in a separate rain-shelter. There were eight plots per block and the plots were ~5 m length 121 

and ~3 m width. The treatments consisted of two antitranspirant products each sprayed at three 122 

growth stages according to the BBCH growth scale: bud emerging (23 March 2015; flower 123 

buds visible from e above, GS 5.1), flowering (17 April 2015; 50% of plants have the first 124 

flower open, GS 6.0), pod development (15 May 2015; 10% of pods on the main stem reached 125 

the final size, GS 7.0). There were two additional control treatments in each block: irrigated 126 

with no AT (WW) and unirrigated with no AT (WS). Rain-shelters were moved into position 127 

on the 26 February 2015 when plants were still at rosette stage and from this stage until harvest 128 

water was applied only on the WW plots. The two antitranspirants chosen for the experiments 129 

(Nu-Film P, a.i. poly-1-p menthene 96%, NFP; Vapor Gard, a.i. di-1-p menthene 96%, VG. 130 

Miller Chemicals and Fertilizer, Hanover, USA) were sprayed in a volume of 200 L ha-1 of 131 

water using a hand-held knapsack sprayer (Flat Fan 110/03, 0.3 MPa, 1 m s-1). For each spray 132 



treatment the boom was maintained ~0.5 m above the leaf (GS 5.0 and 6.0) and pod (GS 7.0) 133 

canopy. 134 

Design and treatments in 2015/2016 (Experiment II) 135 

The experiment was a factorial randomized block design composed of six blocks with eight 136 

treatments per block and the plots were ~6 m length and ~1 m width. Each rain-shelter 137 

contained two blocks and in each block the treatments were three VG dose rates (1, 2 and 4 L 138 

ha-1) sprayed at two growth stages (08 April 2016, GS 6.0; 19 May 2016, GS 7.0) using the 139 

spray conditions of the 2015 experiment and two control treatments in each block: irrigated 140 

with no AT (WW) and the unirrigated with no AT (WS). Rain-shelters were moved into 141 

position the 1st of February 2016 until harvest and water was applied only to the WW plots.  142 

Soil moisture measurements, irrigation and environmental conditions 143 

In Experiment I, 80-90cm aluminium alloy neutron probe access tubes for soil moisture data 144 

collection were placed in each plot. Soil moisture measurements were taken with a neutron 145 

probe (Institute of Hydrology Neutron Probe System, Wallingford, UK) of 80 cm length. Soil 146 

moisture readings were taken from all plots (one reading per tube per plot) at 20, 30, 50 and 80 147 

cm depth in both the experiments. Volumetric water content (VWC) was calculated for all the 148 

experiment according to the Neutron Probe handbook (Bell 1987) for sandy soil as: 149 

VWC (%) = [0.79 x 
counts per second

neutron probe reading
− 0.024] x 100 150 

Field capacity for the different soil depths was determined by taking readings on the 15 151 

December 2014 and the 14 January 2015, whilst the soil was at field capacity. Soil moisture 152 

data were taken on the 16 December 2014, 14 January 2015, 02 March 2015, 16 March 2015, 153 

26 March 2015, 07 April 2015, 17 April 2015, 24 April 2015, 01 May 2015, 13 May 2015, and 154 



04 June 2015. Irrigation was applied only to WW plots over the whole experimental period 155 

through a pipe installed in the WW plots. Water was applied from the installation of the rain-156 

shelter until complete maturity (i.e. before harvest) every two days to avoid soil moisture deficit 157 

to the WW plots (Fig. 1A).  158 

In Experiment II, one aluminium alloy tube was placed in a WW and one in a plot subjected to 159 

drought stress (regardless of antitranspirant application) randomly selected for each rain-shelter 160 

(n=3 for WS and WW). Soil moisture readings and calculations for VWC were done as for 161 

Experiment I and for each tube on the 19 January 2016, 21 January 2016, 26 February 2016, 162 

24 March 2016, 26 April 2016, 23 May 2016, and 21 June 2016. Irrigation was applied to the 163 

WW-rain-shelter plots by installing irrigation tapes to each WW plot (Fig. 1C). Tapes had 1 164 

mm diameter emitters (two for each set) positioned 10 cm apart from each other and ensuring 165 

~200 mm H2O m-2 h-1. 166 

Stomatal conductance and gas-exchange 167 

In both the experiments, leaf stomatal conductance to water vapour (gs) was collected AT GS 168 

6.0 and GS 7.0 using a transient state diffusion porometer (AP4, Delta-T Devices, Cambridge, 169 

UK). The device was calibrated before every use with the calibration plate provided. 170 

Measurements of the abaxial gs and adaxial gs were collected from three randomly selected 171 

fully expanded leaves at the top of the canopy per plant and then averaged (n=4 of averaged 172 

measures for Experiment I and n=6 of averaged measures for Experiment II). Total gs was then 173 

calculated as adaxial gs + abaxial gs. Data were collected between 09:30 and noon. Pod gs was 174 

analysed with the same porometer on main stem pods positioned at mid-distance between the 175 

first internode and the plant tip (n=4 for Experiment I and n=6 for Experiment II). 176 

In Experiment I, the light-saturated CO2 assimilation (Amax, µmol CO2 m
-2 s-1) and the leaf 177 

transpiration rate (E, mmol H2O m-2 s-1) were measured on the first fully expanded leaf of the 178 



top canopy of randomly selected plants for each treatment/plot (n=4) using a CIRAS portable 179 

photosynthesis system (PP system, MA, USA) with a 2.5 cm2 cuvette ensuring a saturating 180 

1200 µmol m−2 s−1 PAR; all the data were recorded after 3–4 min at 400 ppm CO2 level, when 181 

steady-state photosynthesis was achieved. The data were recorded after GS 6.0. The leaf water-182 

use efficiency (WUE) was then calculated as Amax/E (n=6). 183 

Chlorophyll fluorescence 184 

A FluorPen 100 MAX (PSI, Czech Republic) was used to evaluate dark-adapted chlorophyll 185 

fluorescence parameters. From 09:00 to 16:00, the tagged first fully expanded leaf of the top 186 

canopy was used for a 30 min dark-adaptation provided by leaf clips in Experiment I and 187 

Experiment II (n=6). The maximum quantum efficiency of photosystem II photochemistry 188 

(Fv/Fm = [Fm – Fo / Fm])  was recorded according to Murchie and Lawson (2013). 189 

Leaf and pod water potential 190 

Plants were used for leaf water potential (LWP, over GS 6.0) and flower/pod water potential 191 

(PWP, over GS 7.0) analysis in Experiment I. Between 11:00 and 14:00, leaves or pods were 192 

excised with a scalpel from five plants for each treatment (n=5) and water potential was 193 

immediately analysed by a Scholander pressure chamber (SKPM 1405/50, Skye Instruments 194 

Ltd, UK). The tissues were analysed on the cut end of the petiole 1 cm from the base (leaf or 195 

flower/pod). The water potential value (MPa) was collected when water was exuding from the 196 

cut surface, seen by using a magnifying lens. 197 

Yield assessments  198 

At maturity (the 1 July 2015 for Experiment I and the 19 July 2016 for Experiment II), plots 199 

were harvested with a plot-combine harvester (Wintersteiger Nursery Master, Germany) (in 200 

total 7.5 m2 area harvested for each plot in Experiment I and 6 m2 in Experiment II) and the 201 



seeds for each plot were collected and stored in a drying room (~35 °C temperature). Seed 202 

moisture was collected daily with a moisture meter and seed were weighed by balance. The 203 

values were considered correct when all the seed samples reached the 9% moisture (~3-4 days 204 

after drying). Yield (t ha-1) was then calculated by adjusting the area of the harvested plot to a 205 

hectare. Then, 1000-seed weight (TSW) was determined by taking the mean weight of three 206 

100 seed lots per replicate and extrapolated TSW. Seed per m2 was then calculated as the total 207 

plot seed number (calculated from TSW and yield) divided by the area of the plots. 208 

Statistical analyses and data presentation   209 

Temperature and rainfall for Experiment I and II are presented as daily data collected at a 210 

weather station approximately 650 metres from the field site. The volumetric water content 211 

(VWC) of each experiment is shown as plot means. Since in Experiment I no statistically 212 

significant differences were recorded between droughted antitranspirant sprayed and un-213 

sprayed plots, all the data from droughted plots (+ or - antitranspirant) were pooled and 214 

presented as “un-irrigated” means. Stomatal conductance, gas-exchange and water potential 215 

data were subjected to one-way ANOVA for each day of data collection and means were 216 

separated by using a Tukey’s test (P=0.05). Yield data were subjected to one-way ANOVA 217 

and means were separated by using a Tukey’s test (P=0.05). Yield data were then subject to 218 

contrast analysis to evaluate additional statistical differences between treatment combinations. 219 

In Experiment I, plots were subjected to significant lodging in two of the rain-shelters, and this 220 

was scored as % of the total plot area. For Experiment I, data from GS 5.0 are not presented 221 

since the soil moisture deficit applied at the time of the antitranspirants application was very 222 

similar to the irrigated one (no soil moisture deficit) and therefore, a valid test of the effect of 223 

AT on droughted BN was not conducted. Yield data from Experiment I and II of un-irrigated 224 

un-sprayed, 1 L ha-1 VG GS 6.0 and 1 L ha-1 VG GS 7.0 were pooled and a Tukey’s test was 225 



used to test the differences over two years in seed yield. Since in Experiment II block 1 was 226 

significantly damaged by pigeons and block 6 was subjected to edge effects, only block 2, 3, 4 227 

and 5 were used for the Tukey’s test (therefore, n=7). All the statistical analyses were 228 

performed by using GenStat (17th edition, VSN International Ltd, UK) 229 

Results  230 

Weather, soil and VWC  231 

The monthly weather data for Experiment I (2014-2015) and Experiment II (2015-2016) are 232 

shown in Figure 1. In Experiment II, the winter and the spring were warmer (~8 °C on average) 233 

than that of Experiment I (~7 °C on average) following by higher total precipitations (~2.32 234 

mm day-2 in Experiment II and 1.77 mm day-2 in Experiment I on average). Analysis of the soil 235 

texture showed that Flat Nook soil is typically a sandy loam soil according to Toogood (1958). 236 

At a soil depth of 20 cm the percentage of sand was 75.8% with 20.8% silt and 3.4% clay and 237 

a bulk density of 1.74 g/cm3. At 40 cm depth the percentage of sand increased compared to the 238 

20 cm depth to 78.9% and decreasing to 71.2% and 72.1% for 60 and 80 cm depth respectively. 239 

Silt percentage remained relatively stable at ~20% whereas clay concentration increased to 6.4 240 

and 5.4% at 60 and 80 cm depth respectively. Bulk density steadily increased to 1.76, 1.78 and 241 

1.84 g/cm3 at 40, 60 and 80 cm depth respectively. 242 

In both Experiment I and II, well-watered plots grown under rain-shelters exhibited similar 243 

VWC values that fluctuated between 40-45% for 20 and 40 cm depth and 30-35% for 60 and 244 

80 cm depth (Figure 2). Rain-shelter and un-irrigated plots exhibited a steep decrease in VWC 245 

during both Experiments I and II. When compared to the irrigated plots, un-irrigated plots 246 

showed an average (20, 40, 60 and 80 cm depth) decrease in VWC from an initial 40% to 38%, 247 

28% and 21% at GS 5.0, 6.0 and 7.0 respectively in Experiment I. In Experiment II it was from 248 

an initial 43% to 30% and 24% on average at GS 6.0 and 7.0. 249 



Stomatal conductance, gas-exchange and chlorophyll fluorescence over GS 6.0  250 

In both the experiments, total gs of WW plots over GS 6.0 fluctuated from ~1200 to 500 mmol 251 

m-2 s-1. Over GS 6.0 WS plots exhibited a decrease in total gs at all the DAS when compare to 252 

the WW plots (Figure 3). Compared to the WW un-sprayed plots, the WS un-sprayed exhibited 253 

a lower total gs by ~50% in Experiment I and by ~25% in Experiment II. Indeed at all the DAS, 254 

WS significantly decreased abaxial and adaxial gs with the latter showing a smaller reduction. 255 

At the same time, gas-exchange analysis in Experiment I showed that WS plots exhibited a 256 

lower capacity at assimilating CO2 compared to the WW plots leading to higher leaf WUE 257 

values when compared to the WW plots. 258 

In Experiment I, application of NFP significantly reduced adaxial gs on DAS 3 and DAS 6 259 

without affecting abaxial gs compared to the WS un-sprayed. However, no significant 260 

differences were found in total gs and CO2 assimilation rate when compared to the WS plots. 261 

Application of NFP decreased the transpiration rate compared to the droughted un-sprayed 262 

plots by 13% leading to slightly higher leaf WUE values. 263 

In both the Experiments, VG (1 L ha-1 dose rate) significantly reduced adaxial gs throughout 264 

GS 6.0 compared to the WS un-sprayed plots. However, a small increase, although not 265 

significant, was found in the abaxial surface values compared to the WS un-sprayed on DAS 6 266 

and DAS 16. Total gs was significantly reduced by VG treatment on most of the DAS. When 267 

the experiments showed low conductance values (i.e. DAS 10 and 12 of Experiment I and DAS 268 

6 of Experiment II) the effect was not significant. Steady lower total gs values compared to the 269 

WS un-sprayed were recorded even at DAS 18 and DAS 20.  In Experiment II, higher VG dose 270 

rate (2 and 4 L ha-1) did not show any additional gs reduction when compared to the 1 L ha-1. 271 

VG application in Experiment I did not affect CO2 assimilation showing similar trends to the 272 

WS un-sprayed plots but it was accompanied by an overall 15% reduction in transpiration rate 273 



leading to significantly higher WUE values (Figure 3H) when compared to the WS plots. For 274 

both the Experiments and all the treatments, no differences were found between chlorophyll 275 

fluorescence traits (data not presented). 276 

Stomatal conductance over GS 7.0  277 

In WW plots and over the two Experiments, the pod gs was between ~120 and ~150 mmol m-278 

2 s-1 on average whereas adaxial gs fluctuated between ~150 mmol m-2 s-1 and ~200 mmol m-2 279 

s-1 in Experiment I and II respectively (Figure 4). In WS plots, the average pod gs was ~70 and 280 

100 mmol m-2 s-1 in Experiment I and II respectively, that was ~40% less of the WW plots. 281 

Similarly, the adaxial gs of the WS plots was ~45% lower than that of the WW plots.  282 

In Experiment I, NFP application did not have a significant effect on pod gs. In contrast a slight 283 

reduction of adaxial gs was recorded on DAS 1 that however was not statistically significant.  284 

Application of VG at 1 L ha-1 had a strong and significant effect at reducing pod gs in 285 

Experiment I, whereas no significant differences were recorded in Experiment II. Similarly, 1 286 

L ha-1 VG decreased adaxial gs on DAS 1, 4 and 6 in Experiment I whereas in Experiment II 287 

no statistical significant differences were recorded. Increasing dose rate (i.e. 2 and 4 L ha-1) 288 

had a negligible effect at reducing both adaxial and pod gs in Experiment II, despite pod gs 289 

being significantly lower than that of the WS un-sprayed plots on DAS 1, 4 and 6. 290 

Leaf and pod water potential 291 

LWP of WW plots was between -1 and -1.2 MPa whereas the PWP in WW plants was slightly 292 

less negative (~ -0.9 on average) (Figure 5). Drought had an effect on both LWP and PWP 293 

leading to lower values by ca. 2-fold on average respectively. While no differences in LWP 294 

and PWP were found between NFP sprayed and un-sprayed plots, statistically significant less 295 



negative values were found in VG-sprayed plots by 33% and 25% respectively averaged over 296 

all the dates when compared to WS plots. 297 

Yield and yield components analysis  298 

In Experiment I watered un-sprayed plots showed an average seed yield of 3.56 t ha-1 (Figure 299 

6). Water deprivation decreased the seed yield and seed m2 yield component by 43% compared 300 

to the watered plots leading to an average seed yield of 2.01 t ha-1. NFP sprayed at GS 6.0 and 301 

GS 7.0 onto droughted canola increased the seed yield compared to the droughted un-sprayed 302 

plots leading to 2.87 and 2.42 t ha-1 seed yield respectively. In particular, NFP application at 303 

GS 6.0 increased seed m2 yield component by 27% when compared to the droughted un-304 

sprayed plots. With respect to the droughted un-sprayed plots, VG-treated plots at GS 6.0 and 305 

GS 7.0, showed an increase in seed yield leading to 2.49 and 2.26 t ha-1 respectively, 306 

accompanied at GS 6.0 by a 25% seed m2 yield component increase.  307 

In Experiment II watered un-sprayed plots showed an average seed yield of 4.22 t ha-1 and a 308 

seed m2 of 85,000 (Figure 6). Water deprivation decreased the seed yield and seed m2 yield 309 

component by 33% compared to the watered plots leading to an average seed yield of 2.85 t 310 

ha-1. TSW was not affected by water deprivation leading to similar values (~4.92 g). VG 311 

applied over GS 6.0, despite not being significant, appeared to increase seed yield by 14%, 312 

14% and 23% at 1, 2 and 4 L ha-1 respectively when compared to the un-irrigated un-sprayed 313 

plots. In contrast and when compared to the un-irrigated un-sprayed plots, the VG application 314 

over GS 7.0, although not significant, increased seed yield by 12% and 14% when sprayed at 315 

1 and 2 L ha-1 whereas a 7% decrease was recorded at 4 L ha-1 application. Since TSW was 316 

never affected by both watering regimes and VG, the seed yield variation was governed only 317 

by a similar reduction/increase in seed m2. 318 



On average the two field experiments showed that un-irrigated plots have an average decrease 319 

in seed yield by 40% (Figure 7). Application of 1 L ha-1 VG just prior to GS 6.0 did have a 320 

significant effect at sustaining the yield of un-irrigated BN plots by 0.71 t ha-1 on average when 321 

compared to un-sprayed plots. In contrast, the effect of 1 L ha-1 VG application just prior to GS 322 

7.0 was not significant. 323 

Discussion  324 

The effect of water deficit on field-grown canola at GS 6.0 and GS 7.0 325 

The VWC recorded in this work is high for a sandy loam soil. Indeed the VWC for a sandy 326 

loam top-soil would be expected to be in the range of 31% ± 8.6 (SD) (Hall et al. 1977). 327 

However, bulk density and organic matter variations could explain some of this variation as 328 

they are both known to influence VWC (Hall et al. 1977) and relative readings should be 329 

reliable, allowing legitimate comparisons between treatments. In our experiments the crop was 330 

grown under rain-shelters (built at the end of the winter) to decrease the soil moisture and 331 

therefore artificially induce water stress to the crop. As in Weerasinghe et al. (2016), an average 332 

of 2-3 °C differences in temperature between the inside and the outside of the rain-shelter were 333 

recorded on days with high temperatures and elevated light irradiance. However, since in this 334 

work only plots grown under rain-shelters are compared, the temperature differences are 335 

unlikely to affect this comparison.  336 

 337 

Data of gs from Experiment I and II and water potential analysis from Experiment I showed 338 

that, at the dates of AT application, the un-irrigated plots were significantly stressed. In 339 

addition, soil moisture data showed significant decreases in VWC in both top and sub-soil that 340 

match with the gs reduction of un-irrigated plots. Since the rain-shelters were built at the end 341 



of winter for both the years, the VWC reduction was much larger at GS 7.0 antitranspirant 342 

application than GS 6.0. In Experiment II, the VWC of the un-irrigated plots was higher than 343 

that of Experiment II at GS 6.0 and GS 7.0. This was due to the significantly lower temperatures 344 

of March and April 2016 (Figure 1) that led to lower evaporative demand and thus a possible 345 

lower total evapotranspiration. At the same time and in both the experiments, the irrigated plots 346 

showed constant VWC at all the soil depths that were very similar to the winter values. This 347 

suggests that on irrigated plots, plants had access to high water availability throughout the 348 

experimental period.  349 

In both the experiments, total gs of un-irrigated plots was significantly lower than that of the 350 

irrigated plots. Despite that, in Experiment II the reduction was less evident throughout the GS 351 

6.0 stage. Our data showed that stomatal closure occurred at field scale when water availability 352 

decreased, but the reduction was much lower than for an artificial drought stress imposed in 353 

pots (Faralli et al. 2016). Similarly, lower CO2 assimilation capacity was found in un-irrigated 354 

plots when compared to the irrigated one and this may be accompanied by lower assimilate 355 

production over flowering stage. However, the non-significant differences in chlorophyll 356 

fluorescence traits between un-irrigated and irrigated plots suggests that photosynthetic down-357 

regulation is only stomatal-driven (at least at the soil moisture deficit applied in this work) and 358 

drought does not directly affect photochemistry efficiency (as already reported by Muller et al. 359 

2010). To confirm this, leaf WUE was increased in un-irrigated plots with respect to the 360 

irrigated one (Figure 3H) therefore showing a water-stress induced water-saving strategy 361 

triggered by stomatal closure. Similarly, in Jensen et al. (1996), canola plots grown in a sandy 362 

soil and stressed over reproductive stages showed gas-exchange and water potential reductions 363 

that match with our data. Indeed, in our experiments drought affected water potential data, and 364 

led to more negative values in un-irrigated plots. Altogether, the data showed overall significant 365 

detrimental effects on field-grown BN at a physiological level, that were clearly less prominent 366 



when compared to glasshouse work (e.g. Faralli et al. 2016; Champoliver and Merrien, 1996), 367 

but consistent with other field reports (e.g Jensen et al. 1996; Morgensen et al. 1997; 368 

Istanbulloglu et al. 2010).  369 

In both the Experiments, un-irrigated plots showed a significant decrease in seed yield when 370 

compared to the irrigated ones. The reduction was due mainly to a significant decrease in seed 371 

m-2, in accordance with many other reports (Berry and Spink, 2006; Berry and Spink, 2009) 372 

where seed m-2 is a main target to increase BN yield. In contrast, no significant differences 373 

were found in TSW in contradiction with other reports that show significant TSW 374 

compensation under drought (e.g. Champolivier and Merrien, 1996). However, since in our 375 

experiments un-irrigated plots did not received supplementary watering until harvest, it is 376 

possible that the TSW compensation was significantly reduced due to the prolonged stress 377 

conditions. In this work, we confirm that soil moisture deficit during the BN reproductive 378 

period is a key factor for seed number determination and therefore further efforts should focus 379 

at improving BN resilience to drought focusing on reproductive physiology, a field that has not 380 

been particularly studied in BN.  381 

The effect of film antitranspirant on canola at GS 6.0 and GS 7.0 382 

Our data on BN physiology show that AT application at 1 L ha-1 decreased gs and did not affect 383 

CO2 assimilation. One major problem related to the use of AT is that often the reduction in 384 

water loss was accompanied by a reduction in CO2 assimilation (Solarova et al. 1981). 385 

However, it has been shown that the increase in atmospheric CO2 may counteract the reduction 386 

in CO2 uptake (del Amor et al. 2010). Moreover, the recent literature shows an increasing 387 

amount of successful work using biotechnological approaches that focus on triggering water-388 

saving strategies in crops leading to ameliorative physiological responses under drought 389 

(especially BN and Arabidopsis; e.g. Wang et al. 2005 and 2009 and Yang et al. 2016) thus 390 



confirming the importance of water-saving strategies and their success to improve crops 391 

resilience to water deficit especially in conditions (e.g. the present atmospheric CO2 392 

concentration ~404 ppm) where Rubisco is less limited when compared to the past (e.g. 1960 393 

with an atmospheric CO2 concentration of ~300 ppm) (Faralli et al. 2017b).  394 

Collectively, the data over GS 6.0 suggests that VG had a major effect on seed m2 and therefore 395 

it is possible to hypothesize that the higher plant water status during GS 6.0 following AT 396 

application significantly sustained seed set (as already reported on wheat by Weerasinghe et 397 

al. 2016). In Experiment I, lodging was present in the last part of the season with higher 398 

intensity on irrigated plants and to the GS6.0 sprayed plants potentially because of the higher 399 

water available that allowed plant growth and therefore plant with higher possibility of lodging 400 

effects.  At the same time, contrast analysis showed no significant effect of the dose rate 401 

(P=0.12), suggesting that no yield benefit can be achieved by increasing VG rate at the 402 

magnitude of stress applied in this work. In addition, since the yield gain at GS 6.0 of this work 403 

exceeds the cost of most of the chemicals with antitranspirant activity available (e.g. ~20-30£ 404 

per L for VG), the 1 L ha-1 may be relatively inexpensive if the application is done prior to the 405 

onset of terminal drought conditions (therefore enhancing the water-saving effect of VG during 406 

flowering). The potential integration with the standard crop protection treatments (e.g. 407 

Sclerotinia, pollen beetle and plant growth regulator treatment applications) can be an 408 

additional value that might significantly eliminate the cost of the spray application. In contrast, 409 

no statistically significant effects were recorded when antitranspirants were applied at GS 7.0. 410 

One reason of this could be the fact that at GS 7.0 the artificial soil moisture deficit applied 411 

with the rain-shelter was much stronger than that applied at GS 6.0 and therefore it is possible 412 

to speculate that VG is not efficient when a strong drought-induced stomatal closure is 413 

triggered (as shown in Faralli et al. 2017a). In addition the dose response experiment, showed 414 

slight (not significant) decreases in seed yield at 4 L ha-1 when compared to the un-treated un-415 



irrigated plots. Since previous work showed that application of VG on both stressed and un-416 

stressed plants significantly reduced ABA concentrations in both leaf and reproductive organs 417 

(Iriti et al. 2009; Faralli et al. 2016; Faralli et al. 2017a), it is possible that the different yield 418 

response to VG over GS 6.0 and GS 7.0 could be due to the sensitivity to ABA of the two 419 

phenological stages. Indeed, while ABA has been reported to be involved in early reproductive 420 

failure on wheat (Westgate et al. 1996) and soybean (Liu et al. 2004) the accumulation of ABA 421 

in wheat spikelets during the grain filling stage is considered a desirable trait (Foulkes et al. 422 

2001). This is because ABA counteracted the detrimental effect of ACC (thus ethylene) on 423 

grain filling thus leading to higher seed weight and lower seed abortion under stress. Despite 424 

the fact that no work has been done on the effect of ABA/ACC ratio during pod 425 

development/seed filling stage in BN, we can speculate that VG application over GS 7.0 426 

mitigated the ABA accumulation on pods and seeds and therefore reduced the beneficial effects 427 

of ABA during the seed filling stage. Indeed, in de Bouille et al. (1986), ABA accumulated in 428 

BN seeds during the late stage of pod development/ initiation of seed filling, suggesting that, 429 

as for other crops, ABA may possibly modulate assimilate flux to seeds and thus induce seed 430 

maturation. 431 

Application of film antitranspirant has been previously used in a broad range of crops to 432 

mitigate drought induced yield losses (e.g on sorghum in Fuehring, 1975) and recently in field-433 

grown wheat (Weerasinghe et al. 2016) and pot-grown oilseed rape (Faralli et al. 2016; Faralli 434 

et al. 2017a). There is only one publication available testing the efficacy of different AT to 435 

avoid yield losses on a crop belonging to the same BN family (Brassica campestris) (Patil and 436 

De, 1978). Mobileaf (the film forming chemical), increased seed yield irrespective of the N 437 

supply in both years with an average of 0.41 t ha-1 following an ameliorative effect on plant 438 

water status. In these experiments the control un-irrigated and un-treated showed a lower seed 439 

yield than in our work on average (1.60 t ha-1). The lower seed yield found by Patil and De 440 



(1978) when compared to our work may be for two reasons. First, the crop was a spring variety, 441 

and it is well known that spring varieties generally exhibit lower yield than the winter crop. 442 

Second, the crop was grown under dry-land conditions with high temperature (~25 °C whilst 443 

in the present work the average spring temperature was ~12 °C) in both years and low 444 

precipitation.  445 

Conclusions  446 

Consistent with previous work, the efficacy of an antitranspirant treatment is confined to the 447 

most drought-sensitive stages where maintaining high plant water status can sustain the 448 

reproductive capacity under reduced water availability. In addition, our work has been carried 449 

out under relatively cool springs where the loss of evaporative cooling following the reduction 450 

in stomatal conductance did not have a detrimental effect on the physiological traits analysed.  451 

Therefore, further investigations on the efficacy of AT should be done under different 452 

environmental conditions and on a broader range of crops to better define their use and 453 

potential. To conclude, our work suggests a potential use of the antitranspirant VG to reduce 454 

yield losses when applied at 1 L ha-1 just prior to GS 6.0 on BN subjected to water stress. 455 
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 562 

Figure 1. Daily average temperature (°C), daily rainfall (mm), daily solar radiation (MJ) and 563 
relative humidity (RH, %) for Experiment I (2014-2015, A and C) and for Experiment II 564 

(2015-2016, B and D). The data are shown as sowing date as 0. Black arrows represent the 565 
date for rain shelter application for Experiment I (A) and Experiment II (B). Grey arrows 566 

represent the harvest for Experiment I (A) and Experiment II (B). 567 

 568 



 569 

Figure 2. Volumetric water content (VWC, %) for Experiment I (A, irrigated plots, B un-570 
irrigated plots) and Experiment II (C, irrigated plots, D un-irrigated plots) collected with the 571 
neutron probe at 20, 40, 60 and 80 cm depth. Arrows represent the growth stages at which 572 

chemicals were applied. Data are means (n=3 for A and D and n=21 for B; in C, all the means 573 
are n=3 except for 80 cm depth where n=2) 574 

 575 

 576 

 577 

 578 

 579 

 580 



 581 

Figure 3. Total, adaxial and abaxial stomatal conductance (gs) for canola plots over GS 6.0 of 582 
Experiment I (A, B and C) and Experiment II (E, F and G). For Experiment I data are means 583 
(n=4) ± SE collected in irrigated (WW), un-irrigated (WS), un-irrigated treated with 1 L ha-1 584 

Nu Film P (WS+NFP) and un-irrigated treated with 1 L ha-1 Vapor Gard (WS+VG). In 585 
Experiment II data are means (n=6) ± SE collected in irrigated (WW), un-irrigated (WS), un-586 
irrigated treated with 1 L ha-1 Vapor Gard (WS+ 1L/ha VG), un-irrigated treated with 2 L ha-1 587 
Vapor Gard (WS+ 2L/ha VG) and un-irrigated treated with 4 L ha-1 Vapor Gard (WS+ 4L/ha 588 

VG). CO2 assimilation rate (D) and leaf water-use efficiency (H, WUE) calculated as the 589 
ratio between CO2 assimilation rate and transpiration for canola plots over GS 6.0. Data are 590 

means (n=4) ± SE and collected in Experiment I.  591 
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 594 

Figure 4. Pod and adaxial stomatal conductance (gs) for canola plots over GS 7.0 of 595 
Experiment I (A and C) and Experiment II (B and D). For Experiment I data are means (n=4) 596 

± SE collected in irrigated (WW), un-irrigated (WS), un-irrigated treated with 1 L ha-1 Nu 597 
Film P (WS+NFP) and un-irrigated treated with 1 L ha-1 Vapor Gard (WS+VG). In 598 

Experiment II data are means (n=6) ± SE collected in irrigated (WW), un-irrigated (WS), un-599 
irrigated treated with 1 L ha-1 Vapor Gard (WS+ 1L/ha VG), un-irrigated treated with 2 L ha-1 600 
Vapor Gard (WS+ 2L/ha VG) and un-irrigated treated with 4 L ha-1 Vapor Gard (WS+ 4L/ha 601 

VG). 602 
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 611 

Figure 5. Leaf water potential (LWP, A) and pod water potential (PWP, B) for canola plots 612 
over GS 6.0 and GS 7.0 respectively. Data are means (n=5) ± SE collected in irrigated (WW), 613 
un-irrigated (WS), un-irrigated treated with 1 L ha-1 Nu Film P (WS+NFP) and un-irrigated 614 
treated with 1 L ha-1 Vapor Gard (WS+VG). DAS represents days after spray application. 615 

Data from Experiment I. 616 
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 624 

Figure 6. Seed yield (t ha-1, A and B), seed per m2 (C and D) and thousand-seed weight 625 
(TSW, E and F) of canola plots grown under irrigated and un-irrigated (droughted) conditions 626 

and sprayed at flowering (GS 6.0) or pod development (GS 7.0) stages with 1 L ha-1 of Nu-627 
Film P (NFP) or Vapor Gard (VG) for Experiment I (A, C and E). On B, D and F 628 

(Experiment II), canola plots were grown under irrigated and un-irrigated (droughted) 629 
conditions and sprayed at flowering (GS 6.0) or pod development (GS 7.0) stages with 1 L 630 
ha-1, 2 L ha-1 and 4 L ha-1 of Vapor Gard (VG). Data were analysed with ANOVA. Data are 631 
means (n=3) ± standard error of the differences of the means (SED) for Experiment I and 632 

means (n=5) ± SED for Experiment II. 633 
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 636 

Figure 7. Pooled seed yield (t ha-1) data for Experiment I and Experiment II of canola plots 637 
subjected to irrigation, reduced water availability through rain-shelters and treated with 1 L 638 

ha-1 Vapor Gard (+VG) or not (-VG) just prior to flowering (GS 6.0) or pod development (GS 639 
7.0). Data are means (n=7) and error bars represent standard error of the differences of the 640 

means according to the ANOVA (P<0.001). Different letters represent significant differences 641 
according to the Tukey’s test (P<0.05).  642 
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