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Abstract 

This study was aimed to assess the effect of irradiation on the shelf-life of pseudo-dairy food 

product consisting of different concentration levels of the structural and energy-giving caloric 

component macronutrients (protein, fat and carbohydrate). Gamma irradiated products 

(1kGy, 3kGy, 5kGy and 10kGy) were compared to the current procedure used by the industry 

of non-irradiated dairy products. The study looked at the impact of different treatments on 

storage quality in respect to physicochemical (pH, acidity, macronutrients), and 

microbiological properties [total viable count (TVC)]. The products were aseptically 

packaged in plastic containers and analysed at regular weekly intervals up until 100 days 

during refrigerated storage at 4±1°C. The storage period did not bring about any significant 

change in physicochemical properties of the products throughout the period of study while 

the TVC displayed a linear regression for irradiated products stored at 4±1°C as well as the 

control (non-irradiated). At the end of the shelf-life trial (benchmarked at log 4.3 CFU/g), the 

total viable count did not exceed log 3.94CFU/g for samples treated at 10kGy after 100 days 

of analysis. These observations indicated that the product could be safely stored aerobically 

for >100days (10 and 5kGy), 56days at (3kGy), 42 days at (1kGy) for the irradiated samples 

`and 14 - 28 days for the non-irradiated samples without much change in physicochemical 

and microbiological properties using refrigerated storage. 

Keywords 

Irradiation, Gamma irradiation, Shelf-life, Food technology, Food preservation, Dairy 

products 
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1 Introduction 

The safety and security of consumable food constitute a global concern which requires urgent 

attention along the supply chain from governments, multinational companies, processors and 

producers. In addition, scientists need to play an active role in addressing the problems of 

growing populations and food shortages (WHO, 1992). At the same time, the demand for 

safe, shelf-stable and additive-free foods, with optimal organoleptic and nutritional attributes 

has driven the emergence of novel food processing technology (Zink, 1997). It is important 

when improving food safety and product shelf-life, to also preserve the nutritional and 

sensorial quality (McClements et al., 2001; Ortega-Rivas, 2007). Over the years, several food 

preservation techniques have been used, adopted and accepted by the industries and 

consumers including: curing, smoking, salting, drying, and pasteurisation. These techniques, 

aside from eliminating food spoilage microorganism, often have limitations associated with 

them, especially modification to the organoleptic properties of the food. Non-thermal 

technologies are being used in food processing environment as a viable alternative to thermal 

processing, due to their capability to preserve food quality attributes (Farag et al., 2008; 

Farag et al., 2011). Given these interests, the application of novel non-thermal preservation 

techniques e.g. high-pressure processing, cold plasma and radiation technology, were 

researched and adopted by the food industry for processing many food categories (San Martin 

et al., 2002). 

Irradiation as a food preservation technology is widely used in some countries such as the 

USA, France and South Africa, while in some countries like the UK and Germany, there is 

strong opposition (IFST, 2015). In those countries where there is resistance to the technology, 

the reasons given are varied and multi-dimensional hence, further research is needed. 
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In recent years, research into the future of food conservation has included studies into 

preservation techniques that will make food fresher, safer, healthy, and sustainable. There has 

also been a focus on technology, which will deliver environmental benefits such as the 

application of chemical-free processes, the reduction in the use of energy for cold 

transportation and storage, and reduction in the water consumption in the production line 

(Maherani, et al., 2016; Yun et al., 2012).  

Irradiation is a novel, non-thermal processing technology for food. Hence, radiation 

processing, is the use of ionising radiation (gamma rays, electron beams or x-rays), to cause 

changes in cells, destroy microorganisms, or to achieve chemical modifications in materials 

(Crawford and Ruff., 1996). The ionising radiations are obtained from either radioisotope 

(Cobalt-60 sources, Cesium-137), or machine enabled (x-rays or electron beam) (EFSA, 

2011; Huo et al., 2013). As documented by the EFSA, (2011), radiation processing has a 

wide-spectrum of activity proven to cause no toxicological or nutritional concerns in foods. 

In industrial processing, it induces desired chemical changes without the use of chemical 

catalysts, hence, it is environmentally-friendly in nature. As a technology, food irradiation, 

has been recommended by reputable international organisations such as Food and Agriculture 

Organisation (FAO), World Health Organisation (WHO) and the International Atomic 

Energy Agency (IAEA). The major areas of applications of radiation processing are 

irradiation of certain foods; medical sterilisation; industrial processing and environmental 

remediation (EFSA, 2011).  

However, it is worth emphasising, that irradiated foods, are not radioactive due to the 

absorbed energy not being powerful enough to affect the neutrons in the nuclei of the food 

molecules (Mahapatra, 2005). Decades of research has documented food irradiation as a food 

safety technology with the capability to, eliminate food-borne pathogen and control spoilage 

by: inhibiting sprouting in crops such as onions and potatoes; delaying ripening of fresh fruits 
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and vegetables; as well as destroying insects and parasites in grains, dried fruits and 

vegetables, meat and seafood (Lacroix and Follett, 2015). Findings confirmed food 

irradiation as a technology with the capability of inactivating microorganisms without 

significantly affecting the sensory or other organoleptic characteristics of the food product 

(Khattak and Rahman, 2016). These reductions in the spoilage microorganisms account for 

the shelf-life extension in food, while, also potentially reducing the incidence of foodborne 

illness (Kume et al., 2009).  

Irradiation is also used for; feed decontamination and provision of neutropenic diets for 

immuno-compromised patients requiring sterile foods (Kilcast, 1994; Pryke and Taylor, 

1995). The efficiency of irradiation application on food commodities as a form of quarantine 

measure and post-harvest control has been reported (Burditt, 1994; Hallman, 2001; Lee, 

2004); these include insect infestation inhibition through disruption to the breeding cycle, 

delays in ripening of fruits and sprouting inhibition. However, despite the documented 

benefits of radiation technologies, its transfer from research and development institutions to 

industry, especially through commercialisation, remains a challenging task. There is still a 

negative perception attached to the use of ionising radiation for processing food, thus 

significantly slowing the growth of the technology (Maherani et al., 2016). 

1.1 Previous studies on food irradiation 

Research spanning over 100 years has been conducted and widely documented on the 

beneficial effect of radiation technology in the reduction of bacteria, insect disinfestation and 

the enhancement of food shelf-life (Komolprasert, 2007). According to Lacroix and Ouattara 

(2000), doses within the range of 0.25 and 2.25 kGy are sufficient for extending the shelf-life 

of fruit and vegetable without significant change in quality such as the sensorial properties, 

accelerated ripening, loss of firmness and physiological breakage. Studies by Adiel Pietranera 

et al., 2003 irradiated ice creams at different doses revealed that a dose of 3 kGy is sufficient 
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in achieving a 10
3
 reduction in total bacteria count and 10

2 
reduction in yeasts and moulds, 

while also inactivating Staphylococcus spp. and total coliforms thereby attaining an 

acceptable microbiological condition for diets of the immunocompromised. Studies on cheese 

also reported the potential use of irradiation for controlling food borne diseases and extending 

the shelf-life without any considerable effect on the nutritional and sensorial properties 

(Blank et al., 1992; Lalaguna, 2003; Bougle and Stahl, 1994; Tsiotsias et al., 2002). 

However, regardless of the reported studies, further research are required on the effect of 

gamma irradiation on dairy products due to scarce literature when compared to other product 

of animal origin. 

1.2 Study aim 

This study set out to investigate the use, ability and suitability of gamma radiation as a 

technological process, with emphasis on the microbial safety and quality of a pseudo-dairy 

product (Kemi block). This experiment, was design as a preliminary investigation which, will 

subsequently be used as a protocol for standardising future experiments on dairy products 

based on, the radiation source, dose, macronutrient and temperature while giving 

consideration to the practicality of the technology.  

2 Materials and method 

2.1 Production of Kemi block 

Kemi block is analogous to a dairy product. Six different compositions were created to mimic 

and simulate different groups of dairy-like products. These were high and low protein; high 

and low fat; and high and low carbohydrate denoting different food products in the dairy food 

groups with differing macronutrient status (Table 1). 

Placement of Table 1 
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To produce Kemi block type high carbohydrate (HC), starch (200g) was dissolved in water 

(1000ml) in a metal container and put to boil while stirring continuously to prevent the 

emergence of lumps. After heating to 150°C, fat (10g) was added to the homogenous mixture 

by dropping cubes a 2g cube a time until the cubes have liquefied and dissolved. Once all the 

fat had been added, casein (100g) was also added with ongoing stirring. The mixture was 

then left on heat for a further 10 minutes to bring everything to boil. The mixtures were 

transferred in to a Kenwood food processor and mixed at full speed for 1 minute. This 

process was repeated four times with scrapping of splashed product back into bulk to ensure a 

homogenous product. From this homogenous product, 80g portions were transferred into 

individual sterile plastic containers and stored at different temperatures -15, -5 and +5°C for 

10 hours prior to irradiation treatment. The same production process detailed above, the 

exception being differing quantities of starch, casein, fat and water were used in producing 

the remaining types of Kemi block namely; low carbohydrate (LC), high protein (HP), low 

protein (LP), high fat (HF) and low fat (LF). 

2.2 Gamma irradiation treatment 

The products were transported to Synergy Health – now part of Steris irradiation facility, 

Swindon, UK, in a Waeco Cool Freeze CF50 mobile refrigeration unit. At the irradiation 

facility, the six different compositions were randomly placed inside a polystyrene box (590 × 

365 × 155mm) (Figure 1), to minimise loss of temperature during the radiation treatment. 

Alanine pellets dosimeters by Aerial, France, were placed inside six of the containers at the 

top and the bottom as illustrated in Figure 2, to measure the received dose. Several 

considerations were reflected upon, for example the best location to position the dosimeters 

to determine the minimum and maximum area of received dose. The decision to position the 

dosimeters at the four corners/angles of the packaging (Figure 1), was taken based on the 

closeness to the radiation rays. In addition to these four dosimeters, a further two dosimeters 
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were placed at the centre of the packaging which was considered based on a suitable distance 

from the packaging wall. This positioning, is to justify and enumerate dose measurement at 

different angles. Samples were also randomly placed (Table 2a, b and c) in the box to 

maximise the dose received. Each box was then irradiated at different intended doses (1, 3, 5 

and 10kGy). After irradiation, the products were removed from the polystyrene boxes and 

placed inside the mobile refrigeration unit at 4±1°C before being transported to the Royal 

Agricultural University, Cirencester, UK for analysis. The dose acquired by the samples was 

also assessed by determining the absorbance of alanine pellets dosimeters to the different 

levels of radiation.  

For the purpose of the treatment, Kemi block was divided into five groups based on radiation 

intensity: Group 1 (control, 0kGy), Group 2 (1kGy), Group 3 (3kGy), Group 4 (5kGy) and 

Group 5 (10kGy) with 30 samples (6 compositions x 5 replicates) per group.  

Placement of Figure 1 

Placement of Table 2a, b and c 

Placement of Figure 2 

The products were irradiated with different target doses (1, 3, 5, 10 kGy) using an irradiator 

with 
60

Cobalt source and at a dose rate of 2kGyhr
-1

. After the irradiation treatment, samples 

were stored under refrigeration at 4±1°C, and subjected to periodic analysis at 7 days interval.  

During the irradiation treatment, effort were made to ensure samples held at 5°C pre-

irradiation do not suffer from excessive temperature increase which could affect the intended 

microbial and shelf-life analysis. This objective was achieved by putting the samples in a 

polystyrene boxes supported by ice parks to minimise temperature increase especially for the 

10kGy dose which was in the chamber for 5 hours.  
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2.3 Chemical Analysis 

The proximate analysis (protein, moisture and fat) of all types of Kemi block samples were 

determined according to the AOAC methods of analysis (AOAC, 2005). All samples were 

analysed in duplicate before and after irradiation. 

2.3.1 Moisture content 

Moisture contents were determined by placing 5g of sample in an oven at 100°C ±1 for 4 

hours or until a constant weight is achieved (IDF-ISO-AOAC method). 

 

2.3.2 Fat content 

The fat content was analysed according to the Babcock method of analysis. Kemi block 

sample was minced to small particles. From the minced particles, 9g was weighed into a 

Paley bottle and 10ml deionised water added at 60°C. To the mixture, 17.5ml of sulphuric 

acid was added in four increments. After the sulphuric acid addition, the entire content was 

mixed until it is of even brown colour and all kemi block particles dissolved. The Paley bottle 

was placed inside a centrifuge for 5 minutes. After 5minutes of centrifuging, the content was 

topped up with deionised water at 60°C enough to bring the content to within one-quarter 

inch of base of neck. The content was put back in a centrifuge for 2 minutes. At the lapse of 

the 2 minutes centrifugation period, deionised water at 60°C was added to help float fat into 

the neck of bottle. The bottle was then centrifuge for additional 1 minute. At the end of the 

centrifuge, the bottle was tempered in a water bath at 55°C for 5 minutes. Four drops of 

glymol was added to the fat column and measured. The length of the fat from the 

demarcation between fat and glymol to the bottom of the lower meniscus was measured. Fat 

which is described as the mass fraction of substances was expressed as a percentage by mass.  
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2.3.3 Protein content 

The crude protein content  of the sample was determined according to Kjeldahl 

method (IDF-ISO-AOAC method).The digestion of Kemi block sample was carried out using 

a block – digestion apparatus, with a mixture of concentrated sulfuric acid and potassium 

sulfate while adding copper (II) sulfate as a catalyst for the conversion of organic nitrogen 

present to ammonia. The resulting ammonia is then distilled using steam distillation with an 

excess of boric acid solution titrated with hydrochloric acid solution. The amount of nitrogen 

expressed as percentage by mass is then calculated from the amount of ammonia produced 

and multiplied by 6.38 which is the protein conversion factor for dairy products. 

2.3.4 Ash content 

Ash is defined as the residue remaining after ignition at 550°C to constant weight 

(approximately 5 hours). The ignition at 550°C aids the elimination of all organic matter 

available, with the remaining material being predominantly minerals. 

 

2.3.5 Carbohydrate 

The total carbohydrate content was estimated by subtracting the addition of moisture, protein, 

fat and ash content from a value of 100.  

Total carbohydrates  

2.3.6 pH measurement 

The pH content of Kemi block sample was determined by aseptically transferring 5g of Kemi 

block into a sterile stomacher bag and homogenised with 20ml deionised water in a 

stomacher lab blender – 80 (Seward, UK). The pH of the homogenate was measured using a 

digital pH meter (PHB-213 microprocessor pH meter, Omega). 
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2.4 Microbial analysis 

After the irradiation treatment, the samples were transported back to the laboratory for further 

analysis to check the sterility. Before every analysis, each of the sample containers was 

disinfected with 70% ethanol. After disinfecting the containers, to reduce the incidence of 

cross-contamination, 5g of Kemi block were taken aseptically and transferred into a sterile 

stomacher bag with 45ml of sterilised maximum recovery diluent (MRD) and homogenised 

for 120s in a stomacher lab blender – 80 (Seward Medical, London, UK). Dilutions (10ˉ
1
 to 

10ˉ
4
) of the sample homogenate were prepared in MRD diluents and spread on duplicate 

growth plates to estimate microbial counts.  

2.4.1 Total viable counts  

The colony forming units (CFU) for total viable counts (TVC), were enumerated by plating 

on Plate Count Agar medium (PCA) (Oxoid), and incubated aerobically at 32±2°C for 

48±3hours (AOAC, 2005). Subsequently, plates exhibiting 30-300 colonies were counted 

after the incubation period. The TVC is deduced by multiplying the counted colonies with the 

dilution factor and expressed as the number of CFU per grams of samples according to ISO 

(1995). The means and standard deviation were subsequently calculated. 

2.5 Statistical analysis 

In order to determine the radiation effect, on the shelf-life of the six varieties of Kemi block 

samples, all the analysis were carried out in duplicate. The data, were subjected to an analysis 

of variance (ANOVA), using the IBM SPSS statistics 22 software, to determine any 

significance and the differences among means (p≤0.05) were compared using Tukey multiple 

comparison treatment means. Mean values and the standard deviations (SD) were reported. 
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2.6 Dosimetry 

Alanine pellets dosimeter, is an alanine substrate pressed into pellet shape with wax for 

binding material. The pellets, are placed into a film package with a barcode for identification. 

Upon completion of the irradiation treatment, the alanine pellets dosimeters which were 

irradiated together with Kemi block samples to measure the absorbed dose, were removed 

from the samples and inserted into an Electron paramagnetic resonance (EPR) spectrometer. 

The spectrometer, automatically transfers the barcode and takes the readings to calculate the 

reproducible measurable response to radiation as the absorbed dose. Dose mapping, which is 

important in radiation technology, is performed by determining the most efficient means of 

placing product in a carrier or tote and placing numerous dosimeters throughout the product 

load to establish the minimum and maximum areas of received dose. In the context of this 

research, Table 3, shows the result for the anticipated dose, the averaged absorbed dose, and 

the respective time taken to attain the dose. 

Placement of Table 3 

3 Results and discussion 

In the discussion, we will review the physicochemical and microbiological properties with 

reference to shelf-life while evaluating the impact of the radiation treatment on each 

parameters. 

3.1 Effect of processing time on the product temperature 

The samples held at 5°C prior to irradiation were closely monitored to ensure products were 

not thermally abused due to the increase in temperature while in the irradiation chamber, it is 

worth noting that the temperature inside the irradiation chamber was around 18°C. To 

minimise the impact of the chamber temperature,  samples were placed inside a polystyrene 

boxes and irradiated alongside some ice packs, 85% of the 5°C samples maintained their 

initial temperature with exceptions of few which recorded a temperature increase of 7°C and 
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8°C. On the other hand, the frozen samples (-5°C and -15°C) did not exceed the post-

treatment storing temperature of +4 °C. 

3.2 Physicochemical analysis 

Physicochemical parameters (moisture, fat, protein, pH, and ash) of Kemi block both 

irradiated and non-irradiated, were measured immediately following irradiation, and over 

storage period at 4±1°C, at 7 day interval subsequently. According to the analysis of the 

irradiated and non-irradiated samples, moisture content ranged between 54.4 and 85.1%, 

protein ranged between 1.7 and 29.8%, fat ranged between1.7 and 29.7%, while pH ranged 

between 5.69 and 7.44. An overall analysis of these parameters showed no significant 

difference (P ≥ 0.05), between both the irradiated and non-irradiated samples for all the 

characteristics measured. The findings concurred with the findings of earlier studies on actual 

dairy products - soft whey cheese (Tsiotsias et al., 2002), Feta cheese (Konteles et al., 2009), 

and Ras cheese (Shalaby et al., 2016), whereby no difference was observed in the 

physicochemical parameters of these cheeses at different irradiated doses. 

3.2.1 Radiation effects on the Physicochemical Properties 

The physicochemical measures of both the control and irradiated samples of Kemi block 

exhibited no significant difference (P ≥ 0.05) on the first day of analysis. However, over the 

storage period, Kemi block irradiated at a higher doses showed significant reduction in the 

moisture content (P ≤ 0.05) of some of the varieties. Furthermore, the observed reduction was 

found to be proportional to both the irradiation dose and the storage time. The recorded loss 

in the moisture content, could be due to the decrease in the water-holding capacity of casein 

as reported by Shalaby et al., (2016). This reduction is also proportional to both the 

irradiation dose and the length of the storage time. Considering the applied methodology, the 

obtained results might, at best, indicate that the nitrogen content had not changed. However, 
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any consideration regarding the maintenance of protein content and quality is purely 

speculative. This shows that neither the irradiation process nor the storage time affect the 

protein content of the products. Previous studies by Ham et al., (2009), on the quality of plain 

yogurt irradiated at 1, 3, 5 and 10kGy found no difference in the protein content and total 

solids of the yogurt evaluated further aligning with our findings.  

The ability of the samples displaying no significant differences in most measures justifies the 

practicability of irradiation in the production of wholesome food without causing undesirable 

changes to the chemical properties of food products. It would seem that the effectiveness of a 

radiation dose depends both on the external factors like presence or absence of oxygen, 

moisture content, density, temperature in combination with the food composition (Odueke et 

al., 2016). Irradiation and heat, are the only two identified methods of obviating 

microorganisms in food, while other methods may inhibit their growth. Irradiation and heat 

utilises the energy absorption effects leading to cell membrane or DNA damages. The above 

points demonstrate the importance of wet conditions in the efficacy of thermos radiation. 

Also, irradiation used in combination with other treatment presents a synergistic effect in 

decreasing the microbial load and the dose required to inhibit pathogenic bacteria. This 

synergistic effect also encompasses reducing the rate of unsaturated fatty acid oxidation 

(Lacroix and Quattara, 2000; Kumar et al., 2013).   

3.3 Microbiological analysis 

The microbial count of the control and irradiated samples of Kemi block at irradiated doses 

of 1, 3, 5 and 10 kGy stored at 4±1°C are shown in Table 4a and 4b. While samples irradiated 

at a 1kGy dose exhibit some reduction in the TVC readings compared to the control, 

however, these reduction were found to be statistically insignificant. But statistical evaluation 

of the samples irradiated at 3, 5 and 10 kGy dose displayed significant reduction in the total 

viable count. The reduction percentage in the TVC of Kemi block (HC) on the first day of 
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analysis was about 33% at a 1kGy dose and 100% at higher doses within the irradiated 

samples. 

Placement of Table 4a 

Placement of Table 4b 

3.3.1 Radiation effects on the microbial load / shelf-life 

The present study took a different approach to what was available in the literature by not 

carrying out sensory evaluation and also not inoculating microorganisms. Instead, the study 

was designed to investigate the irradiation effects on the natural microbiota of Kemi block, 

hence, there was no inoculation of microorganisms into the samples to simulate the natural 

food chain. The justification to avoid inoculation of microorganisms was due to, available 

literatures reporting on the success of radiation technology in reducing inoculated 

microorganisms significantly (Tsiotsias et al., 2002; Konteles et al., 2009; Kim et al., 2010). 

The study also omits any sensory study based on available literature evidence supporting 

sensory acceptability (Shalaby et al., 2016) when carried out under the right conditions, and 

with the right dose. 

The issue of food safety is a crucial subject in achieving food sustainability. However, the 

shelf-life of food products are often compromised by the presence of wide diversity of 

spoilage and pathogenic bacteria. The results of the microbial analysis of the irradiated Kemi 

block samples, exhibited a lower (P ≤ 0.05) bacteria load over the refrigerated storage days 

than the non-irradiated samples (control). This finding broadly correlates with the results of 

earlier studies relating to the efficacy of radiation technology in reducing microbial loads 

(Tsiotsias et al., 2002; Jo et al., 2007; Kim et al., 2007a; Kim et al., 2008; Konteles et al., 

2009 and Kim et al., 2010). The graph representing the effects of different radiation dose and 

refrigerated storage on the TVC of the six varieties of Kemi block were presented in Figure 3 

– 8 below.  
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Placement of Figure 3 

Placement of Figure 4 

Placement of Figure 5 

Placement of Figure 6 

Placement of Figure 7 

Placement of Figure 8 

The benchmark for the shelf-life analysis was established at 20000 CFU/g (Wehr and Frank, 

2004) which was the legal standard for pasteurised milk. Hence, this study only enumerates 

the total microbial load without identifying the type of microorganisms present. This is 

because the aim of the study was to investigate the viability of radiation in enhancing food 

safety. Therefore, identification is beyond the scope of the study.  

According to our result, the TVC count presented in Table 4a and 4b, the shelf-life estimation 

of the non-irradiated Kemi block was deduced to be in region of between 14 and 35 days as 

presented in Figure 3 - 8. This difference observed in the estimated shelf-life is based on the 

composition and pre-treatment storage condition. The trend in the compositional and storage 

effects on the shelf-life of the sample could also be seen in the table presented.  

On the first day of analysis, the average initial TVC analysis on Kemi block stored at -15°C 

and +5°C pre-irradiation, showed the following log value readings; HC (2.67 and 2.60), LC 

(2.62 and 2.85), HF (2.70 and 2.80), LF (2.70 and 2.71), HP (2.78 and 2.93), and LP (2.79 

and 2.90) respectively. However, results on day 14 showed the product irradiated at higher 

doses (5 and 10) exhibiting no growth, while some of the control samples were already at the 

end of shelf-life. This result demonstrated the sterilising effect of gamma irradiation. 

Corresponding with our results, were the earlier studies by Tsiotsias et al., (2002), on soft 

whey cheese (Anthotyros). They reported the success of gamma irradiation at 2 and 4kGy in 

reducing the microbial load by approximately 1 – 2 log cycles. Furthermore, they concluded 
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that irradiation dose of up to 4kGy could be employed in the control of Listeria 

monocytogenes. 

These reports substantiate our results of 1kGy dose being observed to extend the shelf-life of 

the Kemi block by a further 7 to 14 days in some samples when compared with the control 

sample. Several investigations into the enhancement of microbial quality of dairy products by 

gamma irradiation without compromising the nutrition and organoleptic properties have been 

reported by; Hashishaka et al., (1989); Bougle and Stahl, (1994); Ennahar et al., (1994); 

Bandekar et al., (1998); Kamat et al., (2000); Aly et al., (2012); Badr (2012). 

Kim et al., (2007b) reported the absence of viable cells at 5kGy dose demonstrating that 

irradiating up to 5kGy may substantially improve the safety of chocolate ice cream. This 

investigation correlates with our result of no viable cells in samples treated at 5kGy until 

analysis day 35.  

Based on the microflora of the irradiated samples, it can be concluded that low dose 

irradiation has a selective effect on the natural microflora of Kemi block judging by the 

behaviour of the surviving microflora which varies as described by Farkas (1989), on the 

food nature and associated microorganisms. The observed difference in the TVC of the 

samples may be due to the compositional attributes (i.e. fat, protein and carbohydrate content) 

of the products since the radio-sensitivity of bacteria varies with the medium in which 

irradiation occurs which according to Urbain (1989), the optimum conditions occurred in 

medium of high water activity (Aw >0.95), including lack of competitive radiochemical or 

chemical activity from solid particles. 

4 Conclusion 

From our findings, it is now possible to report based on the results of investigations into the 

safety of dairy-like product treated with gamma irradiation, this study confirmed that gamma 
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irradiation treatment extends the shelf-life of pseudo-dairy products stored at 4±1°C. Our 

findings do not include identifying the specific species of the microorganism group present. 

However, in evaluating the dose range examined in this study, we can propose that the higher 

the irradiation dose, the lower the microbial load resulting in the production of high quality, 

shelf-stable food products. Likewise, irradiated Kemi block showed a bacteriological quality 

corresponding to a high quality product thereby validating the effectiveness of these radiation 

doses in this particular product from the bacteriological perspective. Hence, our findings 

further add to the growing body of research that indicates, irradiation together with good 

manufacturing practices is crucial in ensuring food safety. Future studies, will be focusing on 

the practicality of radiation technology in the provision of, wholesome dairy products with an 

enhanced shelf-life.  
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Figures  

 

 

 

 

Figure 1: Kemi block positioning with arrows showing dosimeters position during irradiation 

treatment 
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Figure 2: Graphic representation of Kemi block dimensions and position of dosimeter 
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Figure 3: Counts (mean ± SD, n=3) of total viable count in the high protein (HP) composition 

of Kemi block as affected by different radiation dose, pre- irradiation temperature (5, -5 and -

15°C), and refrigeration storage at 4 ± 1°C 
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Figure 4: Counts (mean ± SD, n=3) of total viable count in the low protein (LP) composition 

of Kemi block as affected by different radiation dose, pre- irradiation temperature (5, -5 and -

15°C), and refrigeration storage at 4 ± 1°C
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Figure 5: Counts (mean ± SD, n=3) of total viable count in the high fat (HF) composition of 

Kemi block as affected by different radiation dose, pre- irradiation temperature (5, -5 and -

15°C), and refrigeration storage at 4 ± 1°C 
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Figure 6: Counts (mean ± SD, n=3) of total viable count in the low fat (LF) composition of 

Kemi block as affected by different radiation dose, pre- irradiation temperature (5, -5 and -

15°C), and refrigeration storage at 4 ± 1°C 
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Figure 7: Counts (mean ± SD, n=3) of total viable count in the high carbohydrate (HC) 

composition of Kemi block as affected by different radiation dose, pre- irradiation 

temperature (5, -5 and -15°C), and refrigeration storage at 4 ± 1°C 
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Figure 8: Counts (mean ± SD, n=3) of total viable count in the low carbohydrate (LC) 

composition of Kemi block as affected by different radiation dose, pre- irradiation 

temperature (5, -5 and -15°C), and refrigeration storage at 4 ± 1°C 
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Tables 

Table 1: Composition of the Kemi blocks  

Kemi Block Type Protein (%) Fat (%) Carbohydrate (%) Moisture (%)   Simulated food 

High Protein (HP)     21.8 2.7       2.7 72.7                   Cheddar Cheese 

Low Protein (LP)     2.9 12.9       12.9 71.4                   Clotted cream 

High Carbohydrate (HC)     1.7 1.7       13.3 83.3                   Mozzarella cheese      

Low Carbohydrate (LC)     15.0 15.0       3.3 66.7                   Greek yogurt              

High Fat (HF)     7.4 29.6       7.4 55.6                   Hard cheese 

Low Fat (FT)    11.3 2.5      11.3 75.0                   Cottage cheese 
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Table2 a, b, c: Tabular representation of randomly placed Kemi block and dosimeter position 

at 5°C, -5°C and -15°C 

               a                                                          b                                                          c 

D1 HF HC HP LC D2  D1 LP HF HC LF D2  D1 HC LC LP HP D2 

LP LF HF HC HP LC LC HP LP HF HC LF LF HF HC LC LP HP 

LF LP LC HF HC HP HP LC LF LP HF HC HF LF HP HC LC LP 

LC LF D3 D4 LP HC LF HP D3 D4 LC HF HP HF D3 D4 LF LC 

LP LC LF HP HC HF LC LF HP HC HF LP LF HP HF LP LC HC 

D5 LF HP LP HF D6 D5 HP HC LC LP D6 D5 HF LP LF HC D6 
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Table 3: Predicted and average actual received radiation dose at 5°C, -5°C and -15°C 

 

Anticipated dose 

(kGy) 

     5                                -5                               -15  

    Duration 

     (mins) 
Absorbed dose          Absorbed dose         Absorbed dose 

 (kGy)                             (kGy)                       (kGy) 

1 

3 

5 

10 

0.94±0.02 

2.36±0.07 

3.70±0.10 

7.81±0.58 

0.95±0.04 

2.42±0.14 

3.74±0.18 

7.90±0.38 

0.90±0.57 

2.44±0.12 

3.77±0.24 

8.00±0.91 

   30 

   90 

   150 

   300 
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Table 4a: TVC (log cfu/g) of Kemi block as affected by gamma irradiation dose and storage 

periods at -15°C 

 

Composition 

 

Storage  

Days 

 

                 Irradiation dose (kGy) at -15°C 

0                             1                          3                        5                       10 

HC 1 

35 

42 

56 

91 

2.67 
4.28 

4.21 

4.05 

3.41 

2.00 

4.22 

4.27 

4.34 

3.92 

1.70 

3.80 

4.08 

4.26 

4.31 

NC 

2.90 

3.36 

3.59 

4.24 

NC 

NC 

2.30 

3.11 

3.77 

LC 1 

21 

42 

70 

91 

2.63 

4.31 

4.35 

3.54 

3.46 

1.95 

4.11 

4.27 

4.37 

3.88 

1.48 

3.38 

4.01 

4.27 

4.32 

NC 

NC 

3.38 

3.70 

4.22 

NC 

NC 

2.48 

3.36 

3.79 

HF 1 

21 

49 

56 

91 

2.70 

4.30 

4.24 

4.19 

3.04 

2.36 

4.14 

4.29 

4.33 

3.92 

1.48 

3.32 

4.14 

4.25 

4.33 

NC 

NC 

3.54 

3.63 

4.24 

NC 

NC 

2.85 

3.08 

3.74 

LF 1 

21 

42 

56 

91 

2.70 

4.29 

4.30 

4.22 

3.00 

2.08 

4.13 

4.29 

4.34 

3.93 

1.48 

3.36 

4.09 

4.26 

4.31 

NC 

NC 

3.32 

3.69 

4.21 

NC 

NC 

2.30 

2.95 

3.77 

HP 1 

28 

42 

70 

91 

2.78 

4.27 

4.21 

3.85 

3.85 

2.34 

4.14 

4.25 

4.35 

3.89 

1.00 

3.41 

4.01 

4.24 

4.30 

NC 

NC 

3.32 

3.75 

4.22 

NC 

NC 

2.00 

3.28 

3.67 

LP 1 

28 

42 

70 

91 

2.79 

4.25 

4.21 

3.64 

3.64 

2.30 

4.14 

4.27 

4.36 

3.93 

1.70 

3.52 

4.05 

4.29 

4.29 

NC 

NC 

3.32 

3.69 

4.20 

NC 

NC 

2.30 

3.34 

3.75 
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Table 4b: TVC (log cfu/g) of Kemi block as affected by gamma irradiation dose and storage 

periods at 5°C 

 

Composition 

 

Storage  

Days 

 

                 Irradiation dose (kGy) at 5°C 

0                             1                          3                        5                       10 

HC 1 

14 

42 

56 

91 

2.60 
4.26 

4.22 

4.08 

3.88 

2.00 

3.90 

4.28 

4.32 

4.01 

1.70 

3.11 

4.08 

4.25 

4.31 

NC 

NC 

3.52 

3.81 

4.20 

NC 

NC 

2.78 

3.23 

3.89 

LC 1 

14 

42 

56 

91 

2.85 

4.28 

4.31 

4.26 

3.43 

1.85 

3.95 

4.25 

4.33 

3.92 

1.48 

3.20 

4.13 

4.26 

4.31 

NC 

NC 

3.51 

3.79 

4.23 

NC 

NC 

2.90 

3.28 

3.86 

HF 1 

21 

42 

56 

91 

2.80 

4.29 

4.29 

4.21 

3.46 

2.32 

4.12 

4.26 

4.34 

3.86 

1.48 

3.40 

4.11 

4.27 

4.31 

NC 

NC 

3.55 

3.83 

4.21 

NC 

NC 

2.95 

3.32 

3.88 

LF 1 

21 

42 

56 

91 

2.71 

4.26 

4.26 

4.08 

3.34 

2.08 

3.86 

4.28 

4.34 

3.93 

1.70 

3.20 

4.13 

4.28 

4.33 

NC 

NC 

3.59 

3.78 

4.19 

NC 

NC 

2.78 

3.30 

3.90 

HP 1 

21 

42 

56 

91 

2.93 

4.28 

4.30 

4.08 

3.99 

2.49 

4.10 

4.29 

4.33 

3.92 

1.00 

3.53 

4.08 

4.26 

4.30 

NC 

NC 

3.49 

3.77 

4.20 

NC 

NC 

2.70 

3.28 

3.85 

LP 1 

21 

42 

56 

91 

2.90 

4.26 

4.26 

4.01 

3.40 

2.46 

4.12 

4.29 

4.33 

3.91 

1.00 

3.46 

4.09 

4.27 

4.32 

NC 

NC 

3.48 

3.79 

4.23 

NC 

NC 

2.85 

3.28 

3.86 

 

Highlights 

 The efficacy of radiation treatment was investigated. 

 Gamma irradiation treatment increases the shelf-life of food product. 

 Gamma irradiation did not induce any significant change in the physicochemical 

properties of the product. 
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