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Abstract 

Brassica napus L. (canola/oilseed rape) straw presents a suitable alternative combustion 

fuel due to its availability, relatively high calorific value and low moisture content.  

Pelletization enabled the bulk density of canola straw to be improved, enhancing its 

potential as an alternative combustion fuel.   The aim of the paper was to determine the 

effect of on-farm storage on the gross calorific value, ash content, volatile content and 

elemental composition of canola straw bales (stored for up to 20 months) and pellets 

(stored for up to 12 months).   Statistically significant changes occurred to the elemental 

composition of straw bales and pellets during on-farm storage, but these changes were 

not of practical significance in terms of the materials suitability as a combustion fuel.   
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1. Introduction 

The global harvested area of canola (Brassica napus L.) increased from 258 thousand 

km
2
 to 316 thousand km

2
 between 2000 and 2010.  This is as a consequence of a global 

increased demand for canola oil, which significantly increased from approximately 13 

million tonnes in 2000 to over 22 million tonnes in 2010.  In the United Kingdom, the 

total harvested area increased from 4,020 km
2
 to 6,420 km

2
 during this time[1].  There 
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is not a significant market for canola straw with the majority of it being chopped and 

incorporated into the soil through ploughing.  Canola yields a considerable volume of 

straw, but because it breaks down into small pieces when it is harvested, it is associated 

with a relatively low yield of 2.5 tonnes per hectare [2].  More pessimistic authors 

suggest a lower yield of 1.5 tonnes per hectare [3, 4].  Based on these figures, and 

taking 2010 as a reference year, the amount of recoverable canola straw produced in the 

UK was between 963 thousand tonnes and 1.6 million tonnes.  The gross calorific value 

(GCV) of canola straw is on average 17.4 MJ kg
-1

 [5], suggesting between 4.6 TWh and 

7.7 TWh of energy was contained in the canola straw produced in the UK in 2010.  

Furthermore, previous research has suggested that the use of agri-residues based pellets 

as a source of energy has the potential of reducing greenhouse gases (GHG) emissions 

by 50%, 250% and 350% compared to wood pellets, natural gas and coal, respectively 

[6].  As a consequence, it has been suggested canola straw presents a potential source of 

biomass for energy generation [7].  The main disadvantage with straw for combustion 

purposes is its relatively low density when baled.  Straw typically has a bulk density 

ranging from 50 kg m
-3

 for forage harvested straw to 240 kg m
-3

 for high density baled 

straw [8].  The relative low density of straw makes it more expensive to transport 

compared to wood chips (150 kg m
-3

 to 300 kg m
-3

), house coal (850 kg m
-3

) and 

anthracite (1,100 kg m
-3

).  This also means a larger storage area/volume is required for 

baled straw compared to other compressed material (e.g. straw pellets with a bulk 

density of 600 kg m
-3

 or briquettes with a bulk density of 320 kg m
-3

).  Densification 

increases the bulk density of biomass [9, 10] and as a result, the net calorific content per 

unit volume is increased [11] and the storage, transport and handling of the material is 

easier and cheaper [, 11, 12, 13].   
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The use of canola straw as a fuel could involve the storage of the biomass for variable 

periods of time, for example if year-round fuel supply is required.  One of the main 

advantages of using canola straw is that it is associated with a low moisture content 

(typically below than 16 %) that means the material does not need to be dried before it 

can be used as a combustion fuel or for the production of pellets [14].  Drying of 

biomass is considered a long process and it is associated with large storage areas of 

material and high transport and storage costs [15].   

However, research has shown that the storage of biomass can alter the properties of the 

material.  Variations in the carbon and hydrogen content were found during the storage 

of logging residues [16] as well as a decrease in the calorific value as a consequence of 

a carbon increase during the storage of pine woodchips [17].  Furthermore, the 

properties of the unprocessed raw material (i.e. canola straw bales) can be significantly 

different from those of pelletised biomass, which can consequently result in differences 

in the physical, chemical and biological characteristics of the biofuel [18].  Pellets have 

been shown to have higher ash content and lower heating value than the raw materials 

used to produce the pellets [18].  Thus, it is important to understand the effects of 

storage on the properties of canola straw if it is to be used for combustion.   

To date no research has been conducted that investigates (i) the effect of on-farm 

storage of canola straw bales and pellets on the properties of the material that are 

relevant to its use as a combustion fuel or (ii) the effect of storage of canola straw bales 

prior to pelletisation on the properties of the pelletised straw. 

The aim of this paper was to determine the effect of on-farm storage on the physical and 

chemical properties of canola straw bales (stored for up to 20 months) and pellets 
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(stored for up to 12 months).  The effect of storage time on the fuel’s gross calorific 

value (GCV), ash content, volatile content and chemical analysis was studied.  The 

moisture content, ambient temperature and the internal temperature of the bales were 

monitored and presented in previous work [14] and related to the properties presented in 

the current paper.  Possible relationships between the variations in the baled straw 

properties and those of the resultant pellets were also examined.  

2. Materials and methods 

2.1. Canola straw, pellets and storage conditions 

Canola straw bales and pellets were supplied and/or produced as described previously 

[14]. Bales of canola straw, harvested in 2008 and 2009, were stored under cover in a 

shed (with roof and three open sides) at Harper Adams University College (HAUC) 

Farm at ambient temperature and for varying lengths of time, as shown in Table 1a.  At 

each storage period, samples were taken from three bales in triplicate.  Samples were 

taken from the centre and two outer points within the bale [14], and analysed for GCV, 

ash content, volatile content and elemental composition.  Canola straw pellets were 

stored as 10.0 kg ± 0.5 kg lots in plastic airtight zip bags (305 mm x 405 mm) (Harrison 

Packaging, Lancashire, UK) in an enclosed shed at HAUC for varying lengths of time, 

as shown in Table 1b.  Samples were taken from three bags of canola straw pellets and 

analysed in triplicate for GCV, ash content, volatile content, and elemental composition.   

Calcium lignosulfonate (Borregard-Lignotech, Sarpsborg, Norway) was added to milled 

straw prior to pelletisation at a concentration of 5 % (w/w) as a lubricant/binder.  The 

composition of the binder was analysed by TES Bretby Laboratory (Burton-upon-Trent, 

UK) and is shown in Table 2. 
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2.2. Elemental composition 

Samples from canola straw bales and pellets were milled to 1 mm and analysed to 

determine the content of carbon (C), sulphur (S), nitrogen (N), hydrogen (H), oxygen 

(O), sodium (Na), magnesium (Mg), aluminium (Al), phosphorus (P), chlorine (Cl), 

potassium (K), calcium (Ca) and iron (Fe).   

The content of C and S (% weight d.b.) were determined using a LECO automatic 

analyzer (LECO SC-144 DR, LECO Corp., St. Joseph, USA);  Hydrogen content (% 

weight d.b.) was determined by TES Bretby Laboratory (Burton-upon-Trent, UK) using 

an Exeter Analytical CE 440 Analyzer.  Samples of H were analyzed once (and not in 

triplicate).  The oxygen content was calculated by subtracting from 100 % the sum of 

(C, H, N, S and ash) contents in percentage.  Hydrogen and oxygen concentrations were 

used as indicative values to ease the discussion.  

The total N (% weight d.b.) of straw and pellets was determined using a LECO 

automatic analyzer (LECO FP-528, LECO Corp., St. Joseph, USA).  The concentrations 

of the remaining elements (i.e. Na, Mg, Al, P, Cl, K, Ca and Fe) were determined using 

a DigiPREP digestion system (Qmx Laboratories, Thaxted, Essex, UK).  0.25 g ± 0.02 g 

of dried and milled sample was weighed with a Precisa XT220A balance (Precisa 

Instruments Ltd, Dietikon, Switzerland) in a DigiTUBE (Qmx Laboratories, Thaxted, 

Essex, UK)  and 7.5 mL of HNO3 (69 %; BDH Laboratory Supplies, Dorset, UK) was 

added to each tube.  The tubes were placed in the DigiPREP and heated in three steps: 

 From ambient temperature to 40 °C (Ramp over 40 minutes and hold for 30 

minutes). 

 From 40 °C to 65 °C (Ramp over 35 minutes and hold for 5 minutes). 
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 From 65 °C to 95 °C (Ramp over 15 minutes and hold for 60 minutes). 

The samples were diluted to 50 mL with purile water in the calibrated DigiPREP tube.  

Calibration graphs were produced for the elements Na, Mg, Al, P, Cl, K, Ca and Fe 

(Romil Ltd, Cambridge, UK) by analyzing ‘calibration elements’ diluted to four 

concentrations.  All standards and samples include 10 μg kg
-1

 of Ga, Rh and Ir as 

internal standards.  Samples were analyzed using Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS; Thermo Fisher Scientific Inc, Hemel Hempstead, UK) to 

determine the level of Na, Mg, Al, P, Cl, K, Ca and Fe in the straw and pellets. 

2.3. Gross calorific value 

The GCV at constant volume on a dry basis was determined according to CEN 14918 

[19].  A 0.50 g ± 0.02 g sample of dried milled straw and pellet sample was weighed 

with a Precisa XT220A balance and burnt in the presence of high-pressure oxygen in a 

Parr bomb calorimeter (Parr Instrument Company, Moline, Illinois, U.S.A.).  There 

were three replications for each sample. 

2.4. Ash content 

The ash content of samples was determined according to CEN 14775 [20]. 1.0 g ± 0.1 g 

of oven-dried sample was heated in a furnace (Gallenkamp muffle furnace, size 3, 

GAFSE 620, Gallekamp, Loughborough, UK) to 550 °C ± 10 °C for 60 minutes.  There 

were three replications for each sample. 

2.5. Volatile content 

The volatile content of biomass was measured according to the standard CEN 15148 

[21].  1.0 g ± 0.1 g of milled straw or pellet sample were burnt in a Gallenkamp muffle 

furnace (size 3, GAFSE 620, Gallekamp, Loughborough, UK).  The furnace 
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temperature was maintained at 900 °C ± 10 °C for 7 minutes.  Samples were analysed in 

triplicate. 

2.6. Statistical analysis 

Statistical analysis was completed using GenStat Release 13.1 [22].  Three different 

statistical analyses were carried out for the canola straw:  

(i) For the straw harvested in 2008, a 2 x 5 analysis of variance (ANOVA) was 

completed with a level of probability of 5 % (P < 0.05) to identify the possible 

effect of canola straw bale storage time and bale sample point (i.e. inner and 

outer points) on the GCV, ash content, volatile content and elemental 

composition of the straw.  Thus, the two factors used in the factorial experiment 

were: (a) storage of the straw which is defined by the experimental treatments 1, 

3, 4, 7, 10 and 20 months and (b) the point within the bale with inside and 

outside as experimental treatments.  

(ii) For the straw harvested in 2009, a 2 x 3 ANOVA was used for the same purpose 

as described in (i) above.  However, the factor storage of the straw was defined 

for the experimental treatments 1, 3 and 7 months. 

(iii) A simple linear regression with groups where the response variables were GCV, 

ash content, volatile content and elemental composition.  Two explanatory 

variables were described, the variate which was the storage period and the 

factor, which was the year.  Thus, the difference between years 2008 and 2009 

was estimated to determine if the relationship between the response variables 

and the storage period was different in the two years.  The results were analyzed 

based on the P values.  
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In the case of canola straw pellets, two different ANOVA analyses were completed:  

(i) The effect of canola straw pellet storage time and bale storage time prior to 

pelletization on GCV, ash content, volatile content and elemental composition 

was conducted with a 3 x 5 ANOVA analysis.  The ‘pellet storage’ factor had 

five experimental treatments: 2, 4, 12, 24 and 48 weeks.  The factor ‘bale storage 

time prior pelletization’ had three experimental treatments: 3, 7 and 10 months. 

(ii) The effect that the year of harvest of the canola straw could produce in the 

pellets was analyzed with a 2 x 4 factorial analysis.  The factor year is defined 

by the experimental treatments year 2008 and year 2009, while the factor pellet 

storage was defined by the experimental treatments 2, 4, 12 and 24 weeks.  

3. Results and discussion 

3.1. Elemental composition 

The variation in the elemental composition (i.e. carbon, hydrogen, oxygen, nitrogen, 

sulphur, chlorine, sodium, magnesium, aluminium, phosphorous, potassium, calcium 

and iron) of canola straw bales with the storage is shown in Table 3.  The elemental 

composition of canola straw pellets stored for different periods and produced from 

straw harvested in different years and stored for different periods is shown in Tables 4 

and 5.  Table 6 shows the statistical significance of (i) bale storage time, the sample 

position and the year of harvest on the elemental composition of canola straw and (ii) 

the pellet storage time, bale storage time and year of harvest on the elemental 

composition of canola straw pellet. 

The elemental composition of baled canola straw harvested in 2008 and 2009 did not 

vary significantly with the point from which samples were taken suggesting the 
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elemental composition of canola straw was uniform throughout the bale, with the 

exception of S (%) in 2009.  Whilst there was a statistically significant variation in the S 

content of straw sampled from the inner and outer points of straw bales, this variance 

was not considered of practical significance. In all instances the S content of straw bales 

was above concentrations that are expected to result in operational issues during 

combustion.   Concentrations of S higher than 0.1 % are believed to cause corrosion and 

those higher than 0.2 % can cause problems of SOx emissions [23].  However, no 

problems were found in the combustion of canola straw pellets regarding SO2 emissions 

[24] or ash deposition [25].   

The carbon content (C) (%) of a fuel is important because it positively affects the 

heating value of the material [9].  Whilst there was a statistical variation in the C (%) 

with the year of harvest (i.e. 2008 and 2009) and length of storage, this is not considered 

important from a practical point of view because the variations were minimal and the 

GCV did not vary greatly with the carbon content.  For example, there was a significant 

increase in the C (%) content from 42.07 % ± 0.05 % after 4 months storage to 44.54 % 

± 0.14 % after 20 months storage.  This result is in agreement with Nurmi [16] who 

found a significant increase in the C (%) during 10 months storage of hammermilled 

logging residue.  An equation was developed to calculate the GCV based on the C, H, S, 

O, N and ash content of biomass [26].  The equation assumes the GCV of a fuel is 

directly related to the carbon content.  In the current study, the GCV decreased slightly 

with a slight increase in carbon content.  There was no clear evidence that the variations 

in the C (%) affected the GCV (MJ kg
-1

) of the canola straw.   

In contrast to the current study, a decrease in the C (%) was found by other researchers 

when woodchips were stored for up to 12 months [17].  They attributed these changes to 
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an increase in the O content, indicating the biomass underwent oxidation or degradation 

during storage.  However, in the present work the O content of canola straw bales did 

not vary greatly, and no trend was observed in the O content during storage.  

Furthermore, the current study found no relationships occurred during the storage of 

canola straw bales between the C (%), H (%), O (%) or GCV (MJ kg
-1

).  

The C (%) of the canola straw pellets was affected by the straw used to produce them.  

The general tendency was the C (%) in the pellets was approximately 1 % lower than in 

the straw used to produce them.  Although there is no clear evidence to explain why the 

C (%) was slightly lower in the pellets compared with the straw used to produce them, 

the results do demonstrate that  the addition of calcium lignosulfonate as a binder did 

not increase the C content (%) of the pellets.    The C (%) in canola straw pellets was 

also affected by the length of storage and the year of harvest of the straw.  However, the 

variations in the C (%) of the pellets with storage were minimal (See Table 4) and the 

variations between years were due to the C (%) of the canola straw used to produce the 

pellets(Table 3).  

The hydrogen content (H) (%) did not seem to follow any particular trend for straw 

bales harvested in 2008 and showed a decrease during storage in 2009.  Previous 

research showed that the hydrogen content of logging residues decreased during storage 

and was likely to be caused by a loss of volatile matter [16].  No relationship between 

the variations of volatile content and hydrogen were found in the present work. 

The nitrogen content (N) (%) of canola straw bales (%) was slightly higher in straw 

harvested in 2008 compared to 2009.  Although, the farm practice was the same in both 

years, a seasonal variation in the uptake of nitrogen by the crop can be expected.  The N 

(%) of canola straw bales harvested in 2008 and 2009 varied significantly during 
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storage.The N (%) of canola straw was lowest when it was taken directly from the swath 

(i.e. 0.49 %  0.02 %).  There was no evidence to explain why the N (%) was higher 

once the straw was baled.  Similar result was found previously in the spruce needles of 

logging residue [16].   A nitrogen content of 9.8 mg g
-1

 was measured in the live trees, 

whilst a nitrogen content of 11.65 mg g
-1

 was measured after 9 months storage of the 

residue.  No clear explanation of this fact was given [16].   

The N (%) of canola straw pellets was significantly affected by the straw used to 

produce the pellets, the year that the straw was harvested and the storage period which 

is similar to the trend observed for the C (%).  The N (%) of the pellets was lower than 

that of the straw used to produce the pellets suggesting the addition of calcium 

lignosulfonate (i.e. 0.2 %) did not increase the N (%) of the pellets. 

The N (%) of canola straw pellets was significantly different in the pellets produced 

with the straw harvested in 2008 and 2009.  This was due to differences in the N (%) of 

the straw harvested in 2008 and 2009 that was used to produce the pellets.  The 

variations in N (%) during storage were minimal for the pellets produced with canola 

straw harvested in 2008 and stored for 3 and 7 months prior to pelletisation and with 

canola straw harvested in 2009 and stored for 3 months prior to pelletisation.  However, 

the N (%) in the pellets increased during storage for the pellets produced with straw 

harvested in 2008 and stored for 10 months prior to pelletisation.  The N content (N) 

(%) of a combustion fuel is important because of NOx emissions.  It is recommended 

that values of N should be less than 0.6 wt % (d.b.) to reduce these emissions [27].  

Whilst the N (%) was lower in pellets of canola straw than in bales, the content 

remained higher than 0.6 %, suggesting NOx emissions during combustion may be 
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problematic. However, no problems were found in the combustion of canola straw 

pellets regarding NO or NO2 emissions [24].      

The content of S (%) in canola straw bales harvested in 2008 increased significantly 

during storage.  However, these variations did not follow a continuous incremental 

trend over the period of storage.   

The S (%) of the canola straw pellets was affected by the straw used to produce the 

pellets, the storage period and the year of harvest.  However, no trends were found in 

the S (%) during storage.  In 2008, the canola straw had a lower S (%) than in 2009, 

resulting in a lower S (%) content in the pellets produced from this straw.  The S (%) of 

canola straw pellets was significantly higher (P < 0.001) than the S (%) of the canola 

straw used to produce the pellets.  The highly significant increase in S (%) in the pellets 

can be attributed partly to the addition of lignosulfonate at a concentration by weight of 

5 %, which mathematically would give a 0.15 % increment in the S (%).  However, the 

increment of S (%) was higher than this mathematical value in all cases, except for the 

pellets that were stored for 2 weeks and produced from canola straw bales harvested in 

2008 and stored for 10 months prior to pelletisation.  This may be due to an uneven 

distribution of binder within the pellets, or due to the inaccurate application of binder to 

the milled straw prior to pelletisation.  These levels of sulphur could be a potential 

problem, as together with Cl, high S concentrations in the canola straw could result in 

corrosion and SOx emissions. 

The content of Cl (%), in the canola straw fluctuated significantly during storage, but it 

did not follow any particular trend.  It is noted the Cl (%) was lower in the swath  than 

once it was baled and the Cl (%) continued to decrease during storage.   
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The straw, the length of storage and the year of harvest affected the Cl (%) in the 

pellets.  The variations during the storage of the pellets did not follow any clear trends, 

so they might be attributed to natural variations.  The Cl (%) in the canola straw pellets 

is of importance because it could cause corrosion and HCl emission problems during 

combustion because the concentration of Cl in the fuel is above 0.1 wt % (d.b.) [27].  

However, no problems were found in the combustion of canola straw pellets regarding 

HCl emissions [24] or ash deposition [25].   

The storage of canola straw bales had a significant effect on the rest of the elemental 

composition, [Na (mg kg
-1

), Mg (mg kg
-1

), Al (mg kg
-1

), P (mg kg
-1

), K (%), Ca (%) and 

Fe (mg kg
-1

)] in 2008 and 2009, except for the Mg in 2009 and the P in 2008.  There 

was no clear tendency in the variation of any of these elements with storage (i.e. an 

increase or a decrease in the concentrations with storage), except for the concentration 

of Na in the straw harvested in 2009, which decreased from 1740.91 mg kg
-1

  246.69 

mg kg
-1

 to 1076.13 mg kg
-1

  106.75 mg kg
-1

.  There was no evidence that any 

contamination from the farm environment affected the bales, as no differences were 

found between the inside and outside points of the bales, suggesting the changes during 

storage were caused by natural variation.  It has been demonstrated previously that 

although elemental variations during the storage of spruce needles were statistically 

significant, they were considered only unimportant minor changes in the concentration 

[16]. 

The content of Na, Mg and Al were significantly lower in the swath and the values 

increased after baling for straw harvested in 2009.   
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It was noticeable that for some of the elements, such as Mg, Al, Ca or Fe, the 

concentration was higher in the pellets than in the baled straw, which can be explained 

by the addition of the binder. 

The fluctuations of the elemental composition in the canola straw pellets did not follow 

any particular trend, as was the case with the canola straw bales, and the small changes 

are believed to be caused by natural variations.  Also, the variability of the elements in 

the canola straw bales were much higher (as shown in the standard error) than for the 

pellets, suggesting that the pellets are more uniform than the straw. 

3.2. Gross calorific value 

The variations in the Gross Calorific Value (GCV) of canola straw bales and pellets 

during storage are shown in Figure 1.  The point within the bale from which straw 

samples were taken (i.e. inner or outer points) did not significantly affect the GCV of 

straw harvested in 2008 and 2009 (P = 0.822 and P = 0.234, for 2008 and 2009 

respectively).  Linear regression suggested the GCV (MJ kg
-1

) of canola straw bales did 

not change significantly with the year of harvest (P = 0.162) suggesting that the GCV 

was uniform within the bale and harvest season. 

The GCV of canola straw bales varied significantly during storage from straw harvested 

in 2008 (P < 0.001), but did not change significantly in 2009 (P = 0.85), suggesting that 

the GCV of canola straw was uniform during storage in 2009.  Although the GCV 

varied significantly during storage in 2008, it is not considered important from a 

practical point of view because the variation was relatively small; the GCV ranged 

between 16.91 MJ kg
-1

 ± 0.06 MJ kg
-1

 and 17.89 MJ kg
-1

 ± 0.06 MJ kg
-1

after 7 months 

storage.  The variations did not follow any particular trend.  A slight decrease in the 

GCV of willow chips during storage was found in previous research, but these were 
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considered marginal [28].  Similarly, other authors [17] found a decrease in the lower 

heating value.  However, the variations were attributed to the changes in C during 

storage.  In the results presented here, the changes in the GCV did not follow any trend 

with the chemical composition as discussed in section 3.1.  Thus, the changes in the 

GCV of the canola straw were attributed to natural variations within the straw bales.   

The GCV of canola straw pellets was significantly affected by the straw used to produce 

the pellets (P = 0.01) and the length of storage (P < 0.001).  The year of harvest of the 

canola straw had a significant effect on the GCV of the canola straw pellets (P < 0.001) 

(Fig. 1c).  The GCV of the canola straw pellets was slightly higher than that of the 

straw, contrary to the results found by Lehtikangas [18].  Lehtikangas suggested the 

reduction in the CV in the pellets was due to the loss of volatile extractive compounds 

during drying [18].  However, no drying was required in the canola straw.  This fact, 

together with the addition of the binder may be the reason for a higher GCV in the 

pellets. 

3.3. Ash content 

The point within the bale from which straw samples were taken (i.e. inner or outer 

points) did not significantly affect the ash content of straw harvested in 2008 (P = 

0.995) or 2009 (P = 0.55).  Simple linear regression analysis suggested the ash content 

(%) did not change significantly with year of harvest (P = 0.864), demonstrating the 

uniformity of the canola straw bales because there were no significant variations in the 

ash content within the bale and harvest season. 

The ash content of canola straw bales harvested in 2008 and 2009 varied significantly 

with the length of storage (P < 0.001 and P = 0.003 for 2008 and 2009, respectively).  

The variations in the ash content did not seem to follow any particular trend and no 
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relationship between the volatile and ash content was found.  The ash variations during 

storage were attributed to natural variations [29].  Previous research has shown the ash 

content of willow chips stored in piles marginally increased with storage but the 

changes were considered not to be significant [28].  Significant changes in the ash 

composition with the storage were found by [17], and it was postulated these changes 

were due to the exposure of the woodchip pile to the weather conditions (e.g. rain).  

Rain water may have dissolved soluble compounds (e.g. soluble salts) [30, 31].  The ash 

content of switchgrass bales increased during 26 weeks outside, unprotected storage 

[32].  However, it was found that it could be a systematic error in the determination of 

the ash content [32].  In the current study canola straw bales were stored under cover 

(i.e. protected from rain water). Variations in the ash content during storage of the 

canola straw bales are considered to be due to natural variations.   

The ash content of canola straw pellets was significantly affected by the straw used to 

produce the pellets (P < 0.001) and the length of storage (P < 0.001) (Figure 2b).  The 

year of harvest of the canola straw had a significant effect on the ash content of the 

canola straw pellets (P < 0.001) (Figure 2c).  The ash content of the pellets was 

significantly higher than the ash content of the straw, which was also found by other 

researcher [18] who attributed this increment to the thermal treatment in the process that 

could have caused a reduction in the extractives, leading indirectly to an increase in ash 

content of the material.  Also, in the present work, the increase in the ash content could 

be due to the addition of binder.   

The ash content of canola straw pellets ranged from 6.74 ± 0.08 % to 9.75 ± 0.03 % 

overall.  The ash content of a fuel is important because high ash content could affect the 

carbon monoxide (CO) emissions and efficiency requirements when the pellets are 
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burnt.  Previous research, has shown that the combustion of pelletised herbaceous (i.e. 

Brassica) pellets resulted in CO emissions and efficiency requirements that were within 

the European requirements.  However, the CO emissions and efficiency of Brassica 

pellets were worse than for poplar pellets, which was attributed to the higher ash content 

of the Brassica (10.7 %) compared to poplar [33]).  Further work could be completed to 

investigate how the ash content of canola straw pellets could be reduced.  Previous 

research has shown the ash content of grape pomace was as significantly reduced when 

it was mixed with Pyrenean oak pellets [34]. 

3.4. Volatile content 

The point within the bale from which straw samples were taken (i.e. inner or outer 

points) did not significantly affect the volatile content of straw harvested in 2008 (P = 

0.535) or in 2009 (P = 0.462) and did not change significantly with the year (P = 0.729) 

according to the simple linear regression analysis.  This suggests the canola straw bales 

were uniform, as mentioned for previous properties (Figure 3).   

The volatile content of canola straw bales varied significantly with the length of storage 

for straw harvested 2008 and 2009 (P < 0.001 for both cases) (Figure 3b).  Although, 

the changes in volatile content were statistically significant the volatile content appears 

to be stable over the storage period.   

The volatile content of canola straw pellets was significantly affected by the straw used 

to produce the pellets (P < 0.001) and the length of storage (P < 0.001).  There was a 

statistical interaction between the raw material used to produce the pellets and the 

length of storage post-pelletisation (P < 0.001).  The year of harvest of the canola straw 

had a significant effect on the volatile content of the canola straw pellets (P < 0.001) 

(Figure 3c).   
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3.5. Conclusion 

 No variations between inside and outside points within the canola straw bale were 

found and hence they can be considered uniform throughout the bale.  Thus, it can 

be concluded that the canola straw bales did not suffer any contamination from the 

farm environment.  

 Generally, the storage of canola straw bales and pellets significantly affected the 

elemental composition, gross calorific value, ash and volatile content of the straw 

and pellets (p < 0.05).  However, the variations are considered minimal and are 

believed to be caused by natural variations, as no correlations between properties 

were found 

 The concentrations of nitrogen, sulphur and chlorine of the canola straw taken from 

the swath were significantly lower than the composition of the straw after baling.   

 The content of sulphur, magnesium, aluminium, calcium, and iron increased when 

the straw was pelletised.  In contrast the carbon, sulphur and chlorine content were 

lower in the pellets. 

 The concentration of sulphur, magnesium, aluminium, calcium, and iron increased 

when the straw was pelletised, potentially attributable to the addition of the binder.  

In contrast the carbon, sulphur and chlorine content were lower in the pellets 

compared to the baledstraw which may be due to volatilisation during the 

pelletisation process. 
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 The variations in the GCV of canola straw bales and pellets with storage were 

minimal, and no correlations between the GCV and the chemical composition were 

found. 

 The ash and volatile content of canola straw bales and pellets were stable during 

storage.  However, the ash content was higher in the pellets, hence consideration 

should be given to a reduction in the amount of binder used to keep the ash content 

to a minimum. 
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