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ABSTRACT 

Bauxite residue is often physically degraded, which limits vegetation establishment on the disposal areas. 

Microaggregate stability is an important physical property due to its significant effect on erosion and surface 

runoff, however this is rarely reported for bauxite residue. Native plant encroachment on a bauxite residue disposal 

area in Central China has revealed that natural regeneration may ameliorate the residue and help to support plant 

growth. Residue samples from five different disposal ages were collected to determine microaggregate stability 

and identify their fractal features. Following natural regeneration, the aggregate fraction 250-50 µm increased 

significantly from 27.4% to 40.3%, whilst the silt+clay size aggregate fraction decreased from 58.4% to 30.7%. 

With increasing disposal age, the residue clay dispersion ratio (CDR) ranged from 7.7% to 22.5%, whilst 

aggregated silt and clay (ASC) ranged from 15.3% to 19.0% indicating a stable microaggregate structure. The 

single-fractal dimension (D) of the residues for different disposal ages varied from 2.2 to 2.4. The high pH and 

salinity of bauxite residue indicated a high value of single-fractal dimension. The multi-fractal parameters of 

residue microaggregates, including capacity dimension (D0), information dimension (D1) and information 

dimension/capacity dimension (D1/D0) decreased which resulted in homogeneity following natural regeneration. 

Correlation analysis revealed that both single- and multi-fractal dimensions had significant correlations with 

residue microaggregate stability. Our results suggested that natural regeneration may improve microaggregate 

stability of bauxite residue, and fractal parameters of residue microaggregates may be used to describe residue 

microaggregate stability and the physical condition of bauxite residue.  
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
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INTRODUCTION 

Residues from mineral ore processing are disposed on land in large residue disposal areas which 

may eventually create a series of ecological and environmental issues (Smart et al., 2016; Wu et al., 

2016). In the aluminum industry, bauxite residue is an alkaline solid by-product generated when 

alumina is extracted from bauxite ore by the Bayer process (Goloran et al., 2016; Kong et al., 2017a). 

The global inventory has reached 3.4 billion tons, with an annual increase of 120 million tons (Xue et 

al., 2016a; Kong et al., 2017b). Large volumes of bauxite residue are deposited in bauxite residue 

disposal areas which cause potential environmental risks, as these bare areas are sensitive to erosion by 

wind and water, and can be regarded as a potential source of contamination due to their high alkalinity 

and salinity (Gelencsér et al. 2011; Ruyters et al. 2011). In situ rehabilitation and revegetation may 

however stabilize the residue surface and minimize wind erosion (Courtney et al., 2009; Kaur et al., 

2016; Schmalenberger et al., 2013). Its poor physical structure is nevertheless a major limitation to 

support plant growth (Liu et al., 2013; Zhu et al., 2016a). Residue particle sizes range from 2 to 2000 

μm and 60-80 % exist as <20 μm (Xue et al., 2016b). Jones et al. (2011) reported that addition of 

organic waste may influence aggregate size distribution and increase the proportion of water-stable 

aggregates. Zhu et al. (2016b) found that natural regeneration may improve the physical condition and 

aggregate stability of bauxite residue.  

Soil aggregate stability is one of the most important properties in soils and affects water erosion, 

soil aeration, nutrient recycling and biological activity, as well as plant growth (Cerdà 2000; Le Guillou 

et al., 2012; Moncada et al., 2013). Physical forces, chemical bonds and biological agents may drive 

the aggregation processes of soil particles (Yagüe et al., 2016; Lehmann & Rillig, 2015). 

Microaggregate stability is an important soil property which is usually used to determine soil erosion 

resistance (Wang et al., 2016). A better understanding of microaggregate formation is essential to 

maintain structural stability in soils. Several major binding agents such as clay minerals, organic carbon 

and polyvalent ions have significant effects on colloid flocculation (Zhou et al., 2005). Barbosa et al. 

(2015) observed a cementation effect by organic carbon from poultry manure applications and clay 

flocculation enhancing aggregation. Igwe et al. (2009) discovered that oxalate and pyrophosphate 

extractable iron-aluminum oxides may act as aggregation agents to colloidal stability; organic carbon 

had acted in association with the oxides as a linkage with clay particles and polyvalent cations to 

enhance aggregate stability. Virto et al. (2008) concluded that stable microaggregates were formed 

within the silt-size fraction and organic carbon was stored by adsorption and entrapment of fine organic 

residues.  

Soil structure is related to the size, shape and stability of soil aggregates (Aksakal et al., 2016; 

Ahmadi et al., 2011). Microaggregate stability depends on the size distribution of microaggregates and 

several procedures have been proposed for characterizing aggregate size distribution. Fractal theory is 

mainly used to analyze the relationship between local and overall irregular broken complex images and 

structural geometry under different scales. The concept of fractal dimension was proposed to provide a 

quantitative description for irregular shapes (Jing et al., 2016). Fractal theory has been widely applied 

in soil science to quantify and estimate aggregate size distribution of soils (Kolay & Kayabali, 2006). 

Fractal dimension reveals the difference between particle size distribution and related physical 

properties (Wei et al., 2016; Wang et al., 2015). Gao et al. (2014) suggested that fractal dimension 

could be regarded as a considerable and reliable parameter to reflect variations in soil properties. High 







values represent aggregates dominated by fine fragments, whilst low values represent large fragments. 

Many researchers have used fractal dimension to predict soil particle size distribution or the size 

distribution of water-stable aggregates (Peng et al., 2014).  

With the development of soil fractal theory, the limitation of single-fractal dimension has been 

stressed to describe soil particle size distribution. In order to obtain more detailed information of soil 

structure, multi-fractal theory was introduced to soil science (Li et al., 2016). Rodríguez-Lado & Lado 

(2016) found that particle size distribution behaved as multi-fractals, with scaling properties varying in 

different soil samples, whilst values of fractal dimension may be related to the degree of evolution of 

the soils. Peng et al. (2014) found that the single- and multi-fractal parameters could describe soil 

particle size distribution and the influences of soil structure effectively. There are, however, few studies 

focusing on multi-fractal parameters of microaggregate size distribution.  

This work focuses on an alumina refinery in Central China. The inventory of bauxite residue is an 

estimated 35 million tons, which is currently increasing by approximately 2.2 million tons per annum 

(Zhu et al., 2016b). Bauxite ore is discharged in hot NaOH by the Bayer processes and the residues are 

pumped to the disposal areas using the dry stacking method. Spontaneous vegetation colonization over 

the past 20 years at the study site may reveal that natural weathering processes ameliorate the residue 

substrate and support plant growth. Natural regeneration also enhances the proportion of water-stable 

aggregates and resistance to erosion (Zhu et al., 2016c). As microaggregate stability is used to predict 

soil surface erosion (Wang et al., 2016), this study focus on 1) the effect of natural weathering 

processes on microaggregate stability of bauxite residue; 2) to evaluate microaggregate size 

distribution in bauxite residue by fractal parameters; 3) to investigate whether fractal parameters may 

be used as an indicator to evaluate microaggregate stability of bauxite residue.  

MATERIALS AND METHODS 

Soil Sampling 

Residue samples were collected from a disposal area in Central China. The climate is temperate 

continental monsoon, with a mean annual daily temperature of 12.8oC-14.8oC and average precipitation 

ranging from 600 mm to 1200 mm per year.  

According to ecological field investigations, five different zones related to disposal age were 

selected during August to September 2014. These included (a) 1-year-old bauxite residue (R1), (b) 4- 

year-old bauxite residue (R2), (c) 6-year-old bauxite residue (R3), (d) 10-year-old bauxite residue (R4), 

and (e) 20-year-old bauxite residue (R5). Each zone was approximately 1500 m2. Within the zones, 

natural colonization only occurred in R5. For each zone, five random points, taken within 100 m x 100 

m, were designated as the replicates. For each sampling point, the residues were sampled with an auger 

to a depth of 20 cm. The samples were then stored in polyethylene bags, returned to the laboratory, air 

dried at room temperature for two weeks and then subsequently passed through a 2 mm sieve prior to 

analysis.  

 

Physical and chemical analysis 

Mechanical composition of residue samples were analyzed using a Malvern Mastersizer 2000 

(Malvern Instruments Ltd., UK) (Santini and Fey, 2013). pH and electrical conductivity (EC) of residue 

samples were determined in 1:5 solid/solution extracts. Exchangeable Ca2+, Mg2+, K+, and Na+ were 

extracted with 1 M ammonium acetate and analyzed by ICP-AES (Jones et al., 2011). Exchangeable 







sodium percentage (ESP) was calculated as the percentage of exchangeable Na+ in the total 

exchangeable cations. The total contents of Ca, Mg, K and Na in bauxite residue were determined after 

microwave digestion using HF, HCl and HNO3 and analysed by ICP-AES (Jones et al., 2011). Total 

organic carbon was measured by the low-temperature external-heat potassium dichromate oxidation 

colorimetric method (Zhu et al., 2016a). Chemical phases of residue samples were determined by 

X-ray powder diffraction (XRD) on a Bruker D8 discover 2500. XRD patterns were collected from 

10° to 80° at a step size of 0.04°2θ with a scan rate of 1°2θ per minute and analysed using 

PANalytical analysis package (Zhu et al., 2017). 

 

Microaggregate Stability Analysis 

Laser sizing (for the <0.25 mm fraction) was used to determine particle size distribution of residue 

microaggregates (Santini & Fey, 2013). In this method, 10 g of air-dried residue samples were placed 

in a 0.25 mm sieve. The residue samples were then immersed in distilled water and oscillated for 24 h 

using an end-over-end shaker with a rate of 200 cycles per minute. Particle size distribution of the 

<0.25 mm aggregates was determined using a Malvern Mastersizer 2000. In order to observe residue 

microaggregate distribution characterization under natural regeneration, micro-morphological studies 

of the residue microaggregates from R1 and R5 were examined using a FET Quanta-200 scanning 

electron microscope (SEM), equipped with energy dispersive X-ray spectroscopy. The specimen was 

sputter coated with a layer of gold prior to examination (Zhu et al., 2016b).  

Water-dispersible clay (WDC) and water-dispersible silt (WDSI) were determined as the 

proportion of clay and silt in suspension in the distilled water. Clay dispersion ratio (CDR) and 

aggregated silt+clay indices (ASC) were selected as the two indicators to measure microaggregate 

stability of bauxite residue. Clay dispersion ratio (CDR) was determined as the following equation 

(Cammeraat & Imeson, 1998): 

 
 

 

%clay %silt water dispersed
CDR % 100

%clay %silt calgon dispersed


 


                                 (1) 

This is defined as the percentage ratio of clay+silt (<0.02 mm) obtained from both distilled water 

and sodium hexametaphosphate (calgon) dispersed residue samples. The value of ASC was negatively 

correlated to aggregate stability (Mbagwu & Auerswald, 1999).  

Aggregated silt and clay (ASC) was calculated using the following equation: 

     ASC(%) %clay %silt calgon dispersed %clay %silt water dispersed             (2) 

A higher ASC value indicates greater microaggregate stability (Monreal et al., 1995). 

  

Calculation of Single-fractal Dimension (D)  

The power-law relationship between either number-diameter, mass-diameter or bulk 

density-diameter of soil aggregates are always used to determine the fractal dimension of soil 

aggregates. Here, according to Tyler & Wheatcarft (1989), mass-diameter of residue aggregates was 

selected to calculate the fractal dimension of microaggregates, designated as D, as follows:  

   i maxi o
D 3 lg W W lg d d   

where D is the mass fractal dimension; Wi is the cumulative mass of the <di residue aggregates; Wo is 

the total mass of the residue aggregates; id  is the mean diameter of aggregates in adjacent particles 







and maxd  is the mean diameter of the largest aggregates. 

 

Calculation of Multi-fractal Parameters 

In this study, the measurement interval of the laser particle size analyzer (I=[0.01 μm, 250 μm]) 

was considered as the residue microaggregate size volume percentages obtained from the previous 

results. The miacroaggregate size interval is divided into 74 subintervals Ii=[φi, φi+1], i=1, 2,…, 74. 

Based on standard microaggregate-size division methods, log(φi+1/φi) is the constant following the 

measurement interval of I=[0.01, 250]. In order to build a new measurement of the multi-fractal 

method, ψi=log(φi/φ1) (i=1, 2, …, 74) was created to form a new dimensionless interval of J=[0, 4.40], 

which had 74 subintervals of equal length, Ji=[ψi,ψi+1] (i=1, 2, …, 74). In the interval J,  was defined 

as 2k same size subintervals, =4.4×2−k. The value of k ranged from 1 to 6 to make sure that every 

subinterval contained at least one measured value (Peng et al., 2014). Thus, the multi-fractal 

parameters including capacity dimension (D0), information dimension (D1), correlation dimension (D2) 

and information dimension/capacity dimension (D1/D0) were calculated as the following equations 

(Ahmadi et al., 2011):  

 
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The value of q varied between −10 and 10 with a step size of 1. The multi-fractal spectrum of the 

residue microaggregate size distribution were determined by D(q). D0 indicated the span of the residue 

microaggregate size distribution and the larger D0 value representing a wider range; D1 indicated the 

irregular degree of the residue microaggregate size distribution and the higher D1 representing a higher 

level of dispersion in microaggregate size distribution; D1/D0 can measure the degree of heterogeneity 

of microaggregate size distribution (Peng et al., 2014).  

 

Data Analysis 

All analyses were performed in quintuplicate. The data were statistically treated with Microsoft 

Excel 2003, SPSS version 19.0 and Origin 8.0. A two-way ANOVA, followed by Tukey’s post hoc test 

was used to determine the interaction between fragment size range and residue disposal ages. Chemical 

properties of bauxite residue samples with different chronosequences were individually determined 

using one-way ANOVA followed by Tukey’s post hoc tests. In the case of no homogeneity, Dunnett’s 

T3 test was performed. Bivariate correlation analyses were used to determine the relationships between 

fractal parameters and residue microaggregate size distribution. All figures were constructed using 

Origin 8.0.  

RESULTS AND DISCUSSION 

Particle Size Distribution of Residue Microaggregates 

The particle size distribution of microaggregates is shown in Table Ⅰ. The main fraction, <0.02 

mm aggregates, accounted for more than 55% of the total microaggregate weight in newly stacked 







residue (R1). Microaggregate fractions in the fresh residue (R1) decreased in the following order, 

250-50 µm > 10-5 µm > 20-10 µm > 5-2 µm > 50-20 µm > <2 µm. With increasing disposal age, the 

aggregate fraction 250-50 µm, increased significantly from 27.4% to 40.3%, whilst the clay-size 

aggregate fraction decreased gradually. Microaggregate fractions which had been disposed for 20 years 

(R5) decreased in the following order, 250-50 µm > 50-20 µm > 20-10 µm > 10-5 µm > 5-2 µm > <2 

µm. With increasing disposal age, the fine particles of bauxite residue became coarser and the silt+clay 

size (<0.02 mm) aggregate fraction effectively decreased.  

SEM images of residue microaggregates from R1 and R5 are shown in Fig. 1. The residue 

microaggregate in R1 contained numerous amorphous substances and fine particles. Compared to R1, 

the microaggregate in R5 consisted of a great number of larger aggregates. With increasing disposal 

age, the residue microaggregates had a denser structure and the particles were distributed uniformly. 

Total sodium content decreased from 9.27% to 1.07%, whilst total calcium content increased from 

13.89% to 27.88% (Fig. 1), which suggested that natural weathering processes decreased sodium but 

increased calcium content. The result from Fig. 1 was consistent with the variation trend of calcium and 

sodium content in Table Ⅱ.  

Natural weathering processes may have a positive effect on particle aggregation; the finer particles 

aggregating to form larger particles (Santini & Fey, 2013). Climate affects soil aggregation through 

alterations in temperature and moisture regimes and wet-dry and freeze-thaw cycles, which can 

re-orientate particles and improve aggregation (Singer et al., 1992). Weathering alters materials, which 

are translocated within the soil through leaching, eluviation, and illuviation resulting in horizonation 

(Garcia-Franco et al., 2015; Zhou et al., 2017). Plant roots and their rhizospheres have positive effects 

on soil aggregation. Roots realign soil particles and release exudates, which result in physical, chemical 

and biological alterations that influence aggregation (Rillig et al., 2001). Courtney et al. (2009) 

revealed that gypsum and spent mushroom compost application may decrease microaggregate 

breakdown and hence the dominance of less erodible aggregates. Courtney et al. (2013) found that 

addition of gypsum and compost produced a significant decrease in clay- and silt-size particles, whilst 

mean particle size (<53 μm) was lowest in the unamended residues. Natural weathering processes 

may ameliorate physical and chemical properties of bauxite residue, which lead to clay-size particles 

flocculating and the formation of more stable aggregates.  

 

Microaggregate Stability of the Residues 

Colloidal stability indices of the residues are presented in Fig. 2. Water-dispersible clay (WDC) 

which was used to estimate microaggregate instability, ranged from 0.64% to 2.04%, whilst 

water-dispersible silt (WDSI), also used to estimate instability, ranged from 30.72% to 58.39%. A 

combination of WDC and WDSI gave values of between 31.4% and 58.4%. Clay dispersion ratio 

(CDR) of the residues ranged from 7.7% to 22.5%, and aggregated silt and clay (ASC) ranged from 

15.3% to 19%. Following natural disposal processes, WDC, WDSI, CDR and ASC of the residues 

stacked for 20 years (R5) increased by 218.75%, 90.07%, 192.21% and 24.18%, respectively.  

The WDC, WDSI, CDR and ASC may be used to estimate the rate of soil dispersibility. A high 

WDC and dispersion indices have negative implications for the soil environment in terms of water and 

wind erosion (Virto et al., 2008). With increasing disposal age, WDC, WDSI and CDR significantly 

decreased, whilst ASC increased indicating that natural stacking processes may improve 

microaggregate stability; the finer particles may combine together to form larger particles due to 

binding agents related to physical and chemical properties of the residues (Zhu et al., 2016c). Plant 







growth and root penetration may also have positive effects on particle aggregation and stability as the 

residues stacked for 20 years (R5) had improved colloidal stability compared to the other locations.  

Stability of microaggregates, as opposed to its dispersion, is a very important soil property that 

regulates soil degradation. Several major binding agents including clay content, organic carbon and 

electrolytes had significant effects on microaggregate stability. Clay content, organic carbon, pH and 

exchangeable cations were selected to identify correlational relationships with colloidal stability 

indices. The selected physical and chemical properties were determined in a previous study (Zhu et al., 

2016c). Silt and clay contents ranged from 48.8%-23.8% and 5.9%-1.5% respectively. With increasing 

disposal age, pH and EC were significantly reduced. Total organic carbon (TOC) content ranged from 

5.7-10.8 g/kg. Exchangeable Ca and Na varied regularly but with opposite trends (Table Ⅱ).  

As natural weathering processes had a significant effect on bauxite residue mineral chemistry, the 

residue samples, including R1 and R5, were selected to investigate the variation in chemical phases 

(Figure 3). Slaked lime addition by the Bayer process resulted in the formation of calcium minerals 

including calcite (CaCO3), hydrogarnet (Ca3Al2(SiO4)x(OH)12-4x), and tri-calcium aluminate 

(Ca3Al2(OH)12). Other alkaline minerals in the residue included sodalite (Na6Al6Si6O24·[2NaOH or 

Na2CO3]) and cancrinite (Na6Al6Si6O24·2CaCO3). Following natural processes, sodalite, hydrogarnet 

and calcite decreased, as did pH. Reduction of pH resulted in the precipitation of Ca(OH)2 but also 

leaching of NaOH by exchange reactions as the charged colloid (such as Al(OH)6
3-) was a regulator for 

cation exchange (Kong et al., 2017). As a result, exchangeable sodium percentage decreased. In 

addition, sodium ions could not be coordinated with negatively charged surfaces which led to the 

formation of alkaline dust, reduction on erosion resistance and a poor physical structure (Zhu et al., 

2016d).  

Linear regression analysis showed that the value of clay dispersion ratio (CDR) was positively 

correlated to clay content, pH and exchangeable Na+ content (r=0.898, 0.943, and 0.826 respectively; 

P<0.01), but negatively correlated to exchangeable Ca2+ and total organic carbon content (r = -0.972 

and -0.936, P<0.01) (Fig. 4). The value of aggregated silt and clay (ASC) was negatively correlated to 

clay content, pH and exchangeable Na+ content (r = -0.903, -0.927, and -0.865, respectively; P<0.01), 

and positively correlated to exchangeable Ca2+ and total organic carbon content (r = 0.948 and 0.932 

respectively, P<0.01) (Fig. 5). This indicated that high exchangeable Ca2+ content and low 

exchangeable Na+ stimulated microaggregate flocculation, whilst the decrease in pH and the 

accumulation of organic carbon may have improved microaggregate stability. Courtney et al. (2009) 

established a field scale investigation to promote vegetation cover on bauxite residue, and found that 

spent mushroom compost and gypsum amendments decreased pH and ESP which positively impacted 

on microaggregate stability. Addition of Ca had a positive effect on flocculating clay particles, reducing 

mechanical dispersion and lowering exchangeable Na+ content, thereby stabilizing microaggregates 

(Harris & Rengasamy, 2004). Pojasok & Kay (1990) reported that increasing organic carbon content 

stimulated particle aggregation.  

 

Single-fractal Features of Residue Microaggregates 

The fractal dimension of soil microaggregates may reflect the geometry parameters of soil 

aggregate structure, with higher clay content indicating the higher value of the fractal dimension 

(D). Under natural weathering processes, residue fractal dimension (D) was significantly affected 

(Fig. 6). The single-fractal dimension ranged from 2.2 to 2.4 and with increasing disposal age, 

microaggregate fractal dimension (D) decreased. R1 had a low proportion of 250-20 µm size 







aggregates and a high proportion of 10-2 µm aggregates, which resulted in a high fractal 

dimension value. Under natural soil forming processes, fine particle aggregation led to the 

decrease in single-fractal dimensions. Certainly, single-fractal dimension (D) was positively 

correlated with the proportion of 10-5 µm, 5-2 µm, and <2 µm sized microaggregates (r=0.859, 

0.977, 0.991 respectively, P<0.01), but negatively correlated with the proportion of 250-50 µm 

and 50-20 µm sized microaggregates (r=0.876 and 0.761 respectively, P<0.01). There was no 

significant correlation between single-fractal dimension and the proportion of 20-10 µm sized 

microaggregates. Single-fractal dimension may be regarded as an important indicator to reflect 

aggregate structure of bauxite residue.  

High alkalinity and salinity resulted in poor aggregate structure of the residue and clearly 

affected revegetation on disposal areas (Jones et al., 2011). Zhu et al. (2016d) found that natural 

vegetation encroachment ameliorated residue physicochemical properties and stimulated 

aggregate stability. Courtney et al. (2013) investigated the physical condition of revegetated 

residue and found that gypsum and organic carbon decreased pH and ESP, which enhanced the 

proportion of water-stable aggregates, which supported plant growth. The related relationships 

between single-fractal dimension and pH, EC, and ESP are displayed in Fig. 7. The single-fractal 

dimension was positively correlated with pH, ESP, exchangeable Na+ content and EC (r=0.935, 

0.984, 0.859 and 0.912 respectively, P<0.01), but negatively correlated with exchangeable Ca2+ 

content (r=-0.968, P<0.01). It indicated that the single-fractal dimension of residue 

microaggregates may reflect the related physical and chemical properties of bauxite residue.  

 

Multi-fractal Dimension of Residue Microaggregates 

Multi-fractal spectrums of residue microaggregate size distributions between -10 and 10 at 1.0 lag 

increments for different disposal ages are presented in Fig. 8. The multi-fractal spectrums show a 

typical anti-S-decreasing function. The information entropy (D(q)) of residue microaggregates 

decreased with increasing disposal age. Furthermore, in each residue sample, D0>D1 always existed, 

meaning that microaggregate size distribution with different disposal ages were not homogeneous or 

monofractal. Therefore, multi-fractal dimension analysis was essential.  

The value of D0, D1 and D1/D0 decreased with increasing disposal age (Table Ⅲ). In residues 

which had been stacked for 20 years (R5), these values were nearly the lowest (D0, D1 and D1/D0 

values of 0.942, 0.853 and 0.906, respectively), whilst for R1, these values were the highest (D0, D1 

and D1/D0 values of 0.968, 0.891 and 0.920, respectively). Analysis of variance in the different residues 

showed that the multi-fractal parameters of R1 and R2 were significantly different (P<0.05).  

The larger D0 means a wider range of microaggregate size distributions. Nevertheless, the 

calculation of D0 is based on the assumption that particle size distribution was homogeneous. The 

value of D1/D0 may make a quantitative description of the heterogeneous degree of soil particle 

size distribution. Miranda et al. (2006) pointed out that if the value of D1/D0 was closer to 1 this 

specified that the particle size distribution was more concentrated. The value of D1/D0 in the 

residue microaggregates ranged from 0.896 to 0.920. With increasing disposal age, the value of 

D1/D0 decreased indicating that natural weathering processes decreased the concentration of 

microaggregate distribution. Natural processes accumulate organic carbon over time and this may 

have ameliorated the high alkalinity and salinity in the residue, stimulating fine particle 

aggregation. A significant increase in the proportion of 250-50 µm residue microaggregates resulted 

in homogeneity with increasing disposal age.  







Bivariate correlation analysis between multi-fractal parameters and residue microaggregate 

distribution showed that the value of D0, D1, D1/D0 was significantly correlated with the 

proportion of <2 µm microaggregates (r=0.915, 0.786 and 0.523 respectively, P<0.05). In addition, the 

value of D1 was positively correlated with the proportion of 10-5 µm and 5-2 µm microaggregates 

(r=0.912 and 0.671 respectively, P<0.05). According to correlation analysis between multi-fractal 

parameters, D1 was positively correlated with D0 and D1/D0 (r=0.933 and 0.917 respectively, P<0.05). 

Multi-fractal parameters of residue microaggregate size distribution were mainly affected by the 

proportion of <10 µm microaggregates, especially the silt-sized (<2 µm) microaggregates.  

Multi-fractal dimension of residue microaggregates was closely linked with related 

physicochemical properties. Residues which had been stacked for 20 years had a low pH and EC which 

led to a low multi-fractal dimension, whilst the newly stacked residue had a high pH and EC and a high 

multi-fractal dimension. This suggested that the multi-fractal parameters of microaggregates may 

reflect physical and chemical properties and may be used as an effective indicator to characterize 

alkalinity and salinity of bauxite residue. According to multiple linear models between multi-fractal 

parameters and the related properties of bauxite residue, the following equations were obtained:  

4

0 1 2 3 4D =1.01926+0.0018x -0.0079x -0.00376x +2.06 10 x 

-4 4

1 1 2 3 4D =0.91468+0.00325x -0.00476x +1.9669 10 x -3.91826 10 x  

5

1 0 1 2 3 4D D =0.88054+0.00498x -0.0019x +0.00231x +6.58484 10 x 

where x1 is the content of TOC, x2 is the value of pH, x3 is the value of EC, and x4 is the value of ESP. 

This demonstrated that organic carbon content and pH were the main properties influencing the values 

of multi-fractal dimension of residue microaggregates.  

 

Relationship between Microaggregate Stability and Fractal Parameters  

Microaggregate stability is usually used to estimate or predict soil erosion and surface runoff 

(Wang et al., 2016). Bauxite residue has poor physical structure to resist water erosion and support 

revegetation. Zhu et al. (2016d) discovered that following natural weathering processes, the erodibility 

factor of the residue decreased indicating improved resistance to erosion. Correlation analysis showed 

that single- and multi-fractal parameters were significantly correlated to microaggregate stability 

indicating that fractal parameters of residue microaggregate distribution may reflect microaggregate 

stability. The fractal dimension of microaggregate size distribution may exhibit variation in 

microaggregate size distribution. The high value fractal parameters indicated a dense physical structure 

and poor erosion resistance.  

Tang et al. (2013) revealed a significant negative relationship between fractal dimension and soil 

microaggregate content (<0.25 mm) in karst rocky desertification areas and suggested that fractal 

dimension could be used as a reliable indicator of soil quality. A small fractal dimension value for 

granular structure indicated a stable soil structure. Ahmadi et al. (2011) found that both number- and 

mass-based fragmentation fractal dimension may describe the aggregate size distribution and estimate 

splash and inter-rill soil erosion. In our study, the single-fractal dimension (D) of microaggregate 

distribution was negatively correlated with ASC (r=-0.977, P<0.01), whilst positively correlated with 

CDR (r=0.995, P<0.01). The value of D0 and D1 showed a significant correlation with ASC (r=-0.823 

and -0.739 respectively, P<0.01) and CDR (r=0.822 and 0.709 respectively, P<0.01), whilst D0/D1 had 







little significant difference with ASC and CDR (Table Ⅳ). With increasing disposal age, aggregation 

of fine particles resulted in a lower value of fractal dimension and a more stable aggregated structure. 

This suggests that fractal dimension may be useful to characterize microaggregate stability. Compared 

to multi-fractal parameters, single-fractal dimension (D) was more significantly correlated with 

microaggregate stability in bauxite residue.  

CONCLUSIONS 

Microaggregate stability, an important physical indicator, is required to sustain a stable physical 

structure. This study has clearly demonstrated that natural weathering processes significantly affect 

particle size distribution of residue microaggregates. With increasing disposal age, the proportion of 

silt- and clay-sized microaggregates significantly decreased. Clay dispersion ratio (CDR) decreased 

from 22.5% to 7.7%, and aggregated silt and clay (ASC) increased from 15.3% to 19% indicating that 

natural weathering processes enhanced microaggregate stability. Clay content, organic carbon, 

exchangeable bases and pH were significantly correlated with ASC and CDR which indicated that 

organic carbon and exchangeable cations had significant effects on microaggregate stability. The value 

for single-fractal dimension (D) varied from 2.2 to 2.4. With increasing disposal age, both single-fractal 

dimension (D) and multi-fractal parameters (D0, D1 and D1/D0) decreased, revealing that natural 

weathering process promoted aggregation of microaggregates. Correlation analyses demonstrated that 

fractal parameters were significantly correlated with microaggregate stability and physicochemical 

properties, indicating that fractal parameters may be used to characterize residue physical structure and 

related properties. This study may help to provide an improved understanding of physical 

microstructures, appropriate indicators to use when evaluating microaggregate stability, and a scientific 

basis for the revegetation of bauxite residue disposal areas.  
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