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Abstract 

To demonstrate the feasibility and improve the implementation of laser weeding, a prototype robot 

was built and equipped with machine vision and gimbal mounted laser pointers. The robot consisted of 

a mobile platform modified from a small commercial quad bike, a camera to detect the crop and weeds 

and two steerable gimbals controlling the laser pointers. Visible class one laser pointers were used to 

simulate the power laser trajectories. A colour segmentation algorithm was utilised to extract plants from 

the soil background, size estimation was used to differentiate crop from weeds and an eroding and 

dilating algorithm was developed for objects that were touching. Conversely, another algorithm, which 

relied on shape descriptors, was able to distinguish plant species in non-touching status regardless of 

area difference. To reduce route length and run time, a new path-planning algorithm for static weeding 

was proposed and tested. It was demonstrated to be more temporally efficient especially when 

addressing higher density of weeds. A model to determine the optimal segmentation size based on time 

taken for treatment was established. It was found that the segmentation algorithm has the potential to be 

widely used in fast path-planning for the travelling-salesman problem. Finally, performance tests 

showed that the weeding mean error was 1.97 mm, with a 0.88 mm standard deviation. Another test 

indicated that with a laser traversal speed of 30 mm/s and a dwell time of 0.64 s per weed, it had a hit 

rate of 97%. 
Keywords: Laser weeding robot; Fast path-planning; Machine vision; Dual-gimbal; Static weeding 

1. Introduction	

Weeds affect crop yield due to competition with the crops to acquire plant nutrients and resources 

(Slaughter et al., 2008). Currently, chemical weeding (herbicide) is widely used as a traditional weeding 

solution (Bakker et al., 2010). However, herbicides are viewed critically about their negative 

environmental impacts (Marx et al., 2012). Moreover, people increasingly require and prefer natural, 

organic foods (Blasco et al., 2002). There are also an increasing number of herbicide resistant weed 

species being recognised. (251 by International Survey of Herbicide Resistant Weeds). Many non-

chemical weeding methods have been developed ranging from electrocuting [M.F. Diprose, F.A. Benson, 

Electrical methods of killing plants, Journal of Agricultural Engineering Research, Volume 30, 1984, 

Pages 197-209, ISSN 0021-8634, http://dx.doi.org/10.1016/S0021-8634(84)80021-9. 

(http://www.sciencedirect.com/science/article/pii/S0021863484800219)] through to using 

mechanical or physical methods [Euro Pannacci, Boris Lattanzi, Francesco Tei, Non-chemical weed 

management strategies in minor crops: A review, Crop Protection, Volume 96, June 2017, Pages 44-58, 

ISSN 0261-2194, http://doi.org/10.1016/j.cropro.2017.01.012. 

(http://www.sciencedirect.com/science/article/pii/S0261219417300212)]. Nørremark et al developed 
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cycloid weeding hoe for both inter and intra row weeds based in GPS position of the crop. [M. 

Nørremark, H.W. Griepentrog, J. Nielsen, H.T. Søgaard, The development and assessment of the 

accuracy of an autonomous GPS-based system for intra-row mechanical weed control in row crops, 

Biosystems Engineering, Volume 101, Issue 4, December 2008, Pages 396-410, ISSN 1537-5110, 

http://doi.org/10.1016/j.biosystemseng.2008.09.007. 

(http://www.sciencedirect.com/science/article/pii/S153751100800278X)]. Tillett et al. (2008) 

developed a vision based inter and intra-row mechanical weeding robot using rotating discs for 

transplanted crops that can remove 80% of weeds. Similarly, Ahmad (2012) presented a rotating tine 

weeding mechanism for intra-row weeding robot. Besides, O’Dogherty et al. (2007) proposed a 

mathematical model for inter and intra-row hoeing. Moreover, another kind of mechanical weeding 

robot equipped with a real-time kinematics GPS to detect crop planting geopositions has been developed 

by Pérez-Ruiz et al. (2012). They reported the system has a mean error of 0.8 cm and 1.75 cm standard 

deviation when travelling at a speed of 0.8 km/h.  

However, all of the above inter and intra-row mechanical weeding robots needed the crops to be well 

distributed. Selective weeding could provide solutions for crops regardless of distribution, which is more 

close to how human kill weed. In addition, it was reported that a selective weeding strategy could 

decrease the energy input even more by 10 to 90 % (Griepentrog et al., 2006). Midtiby et al. (2011) 

developed a real-time machine vision based micro-spraying weed control system, but only 37% of the 

smaller scentless mayweed were effectively controlled. After that, Underwood et al. (2015) presented a 

micro-dot targeted and steerable spraying robot for weeding control. However, selective spraying still 

relies on herbicides application, which is not allowed for organic farming. Due to the unsatisfactory 

aspects, other weeding techniques such as laser weeding seems to offer a potential alternative (Marx et 

al., 2012). Some researchers, such as Heisel et al. (2001), used a laser beam to cut weed stems for weed 

control. Another laser weeding application is to use laser irradiation. Marx et al. (2012) proposed a weed 

damage model for laser irradiation based weed control. Mathiassen et al. (2006) investigated the effects 

of laser treatment towards weeding. The results indicated that laser exposure time and laser spot size 

could be optimised to kill the weeds. Nadimi et al. (2009) designed a laser weeding test setup for 

simulate dynamic targeting weeding. However, none of the above researcher have successfully designed 

a whole mobile robot for the purpose of laser weeding.  

Therefore, the aim of this study was to design and test in the laboratory a novel prototype laser 

weeding robot and explore its possibility and feasibility.  

2. Materials	and	methods	

2.1 System overview 

The prototype laser weeding robot comprised of three subsystems, a robotic platform, machine vision 

and a laser pointing system. Fig. 1 shows the whole hardware assembly of the laser weeding robot. A 

centrally mounted, downward facing camera gave the field of view, two gimbals with a laser pointer 

each were mounted on the top of the frame. A frame to hold the camera and gimbals was fixed on the 

front of the robotic platform.  
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Fig. 1. The laser weeding robot. 

The system architecture is shown in Fig. 2. The three subsystems were coordinated by a central 

program written in MATLAB (2015a). The architecture used a distributed control strategy in such a way 

that each subsystem had an independent controller, which made the system easily integrated. The image 

acquisition grabbed the image and passed it to the weed recognition program. The weed centroids and 

path planning methods were then used to control the gimbals. Feedback loops were built into all levels 

of the Platform and Gimbal controllers. 

 

Fig. 2. System architecture. 

2.2 Platform controller 

2.2.1 Robot	hardware	

As shown in Fig. 1, the robotic platform had been modified from a small all-terrain vehicle (ATV) 

which was robotised by automating the steering and speed. 

In terms of driving system control, the ATV itself had a motor driver that used a three-wire hall-effect 
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speed control throttle to change the motor speed. The throttle was removed and it was found that it 

utilised 1-4 V analogue voltage to control vehicle speed, which could be provided by a PWM output of 

a microcontroller. Hence, an Arduino Mega 2560 was selected as the platform controller.  

To achieve accurate and automatic steering control, as shown in Fig. 3, a Linak LA12.1P-100-12-01 

linear actuator was used to rotate the steering mechanism. When the linear motor extended or retracted, 

the vehicle turned right or left accordingly and gave positional feedback to the controller. Both the 

maximum thrust and holding force of this actuator were 500 N, and therefore it could keep the steering 

angle stable regardless of normal moving resistance.  

     

Fig. 3. Steering system: (a) extending-retracting linkage mechanism; (b) diagram of steering system; (c) linear actuator mounting. 

2.2.2 Circuit	design	and	control	

Two relays were used for the linear actuator control that provided three different states; extend, retract 

and hold. The relays were also controlled by the same Arduino as the driving system. The linear motor 

itself had a slide potentiometer so that it could send the stroke length as feedback. 

The objective of the speed control was to achieve automatic speed adjustment, that matched the weed 

density. An optical encoder was mounted on the rear wheel for sensing platform displacement and speed. 

The platform was tested and the average time for moving the length of the tray (214 mm) was 1.56 s 

giving a maximum speed of 0.14 m/s. 

The vehicle controller interface was divided into three modules, power management, steering, and 

speed, as shown in Fig. 4.  

  

 

Fig. 4. Main circuit of platform subsystem: (a) main circuit board schematic; (b) main circuit board. 

Power management 

Driving module

Steering module

(a) (b) (c)

(a) (b)
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2.3 Machine vision 

2.3.1 Image	acquisition	and	coordinate	transformation	

Burgos-Artizzu et al. (2011) proposed a one camera system for weed detection with pre-set height 

and camera angle. Similarly, this study used one camera with two preconditions, a fixed distance, and 

parallel to the ground, so that the coordinates of objects could be calculated. This method has some 

limitations such as it can only be used on a flat ground. However, the high image processing speed and 

simplicity of the system are also important aspects of this real-time weeding robotic system.  

The camera model used was a GIGE DMK 23G618 from Sony, resolution 640x480, capturing speed 

120 f/s. Images were imported to the weed recognition module via an Ethernet bus and processed. 

(“Computer Vision System Toolbox” from MATLAB). The camera was calibrated at first so that pixel 

coordinates of centroids could be transformed to real world coordinates. Based on classic Zhengyou 

Zhang calibration theory (Zhang, 2000), the camera was fixed while a chessboard had different poses 

for getting 15 calibration photos, which was used for obtaining camera intrinsic parameters and 

distortion coefficients.  

2.3.2 Image	processing	and	weed	recognition	

Image processing was divided into two steps. The first step was extraction of crops and weeds from 

the background, which was intent on obtaining a binary image that the crops and weeds were set as 

white pixels (1) while background was black (0). Based on the colour difference, this paper employed 

an algorithm that compared HSV (Hue, Saturation, and Value) of every pixel with pre-set colour 

thresholds to distinguish plants and background. However, because of changes in environment and light 

intensity, fixed HSV thresholds were not robust enough, so a colour-training algorithm was adopted. 

This method selected five different points on the plants and saved their HSV values. Then it set the 

tolerances (±0.1 in this paper) to all of the HSV values and therefore, it was employed to detect plants 

and background in other acquired images. Fig. 5(b) shows the extraction result of this method, in which 

big green leaves (regarded as crop) and clover (weeds) were extracted from grey soil and black tray. 

Since there were a lot of visual noise in the soil, the image was filtered by a medium filter afterwards. 

Then due to light influence, some holes could be found on plants, which influenced centroids calculation. 

Therefore, holes were filled by using “imfill” statement. The result, after using the above two processes, 

is demonstrated in Fig. 5(c). Additionally, the processing time of this method for Fig. 5(a) was 0.12 s. 

      

     

(a) (b) (c)

(d) (e) (f)
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Fig. 5. Image processing protocol: (a) original photo; (b) using colour training to extract green plants from the background and get the binary 

image; (c) then filtering noise and filling holes of (b); (d) eroding of (c) until weeds disappeared; (e) dilating of (d) with a bigger value of 

erosion; (f) image (e) multiplied with (c) so that original shapes of crops were restored excluding small touching pars; (g) image (c) 

subtracted (f) to remove crops; (h) removed small objects and calculated centroids of weeds. 

The second step was segmentation of weeds and crops so that weeds can be identified. Three 

segmentation methods were proposed, tested and compared. The first two segmentation algorithms 

assumed that weeds and crops had obvious area difference. The first one was based on area difference 

directly. The area was calculated in MATLAB by “regionprops” function and compared with a threshold 

to define if it was a weed or crop. However, there were always such situations that the weeds and crops 

were connected. Commonly used segmentation methods for touching objects, for example of 

“watershed”, are easy to split leaves of some species of weeds or crops, such as clover and dicotyledon, 

because their leaves are non-compact distributed, which are in a similar situation of touching between 

different plants. Therefore, the second method based on eroding and dilating had been implemented. In 

this method, Fig. 5(c) was eroded until all of the weeds disappeared, as shown in Fig. 5(d). Then dilating 

on Fig. 5(d) with a bigger value of erosion obtained Fig. 5(e), so the dilated figure contained entire crops. 

Next, Fig. 5(e) multiplied with Fig. 5(c), so that original shapes of crops were restored excluding some 

small touching parts, as seen in Fig. 5(f). After that, an important operation of subtracting Fig. 5(f) from 

Fig. 5(c) was performed to remove crops, as demonstrated in Fig. 5(g). Finally, Fig. 5(h) indicated the 

segmentation results after removing small objects and plotting centroids of weeds.  

The processing time of the two algorithms for Fig. 5 by our equipment were 0.0958 s (based on area) 

and 0.0251 s (based on eroding and dilating), respectively. Therefore, “eroding and dilating” was much 

quicker and more effective.  

Another segmentation method was based on shape features. Iivarinen et al. (1997) indicated that a 

combination of different shape descriptors was effective in object detection and needed less computation 

time, which is suitable for real-time system requirements. This team applied this method to plant 

detection. A combination of two shape descriptors, solidity, and compactness, was adopted. Solidity is 

object area divided by its convex area (implemented from the “regionprops” function in MATLAB). 

Compactness is a parameter to show how circular a shape is. It was defined as: 

ݏݏ݁݊݁ݐܿܽ݉ܥ ൌ ߨଶ/ሺ4ݎ݁ݐ݁݉݅ݎ݁ܲ ∗  ሻܽ݁ݎܽ
Fig. 6 shows the processing results of classification based on shape descriptors. As shown in Fig. 6(a), 

there were two types of plants with similar area, a dicotyledon and a clover, respectively. Based on the 

above formula, Fig. 6(b) shows the comparison results of solidity and compactness between dicotyledon 

and clover. It is clear that both compactness and solidity of dicotyledons and clovers were obviously 

different, especially for compactness that clover was 0.394 bigger than dicotyledon in average. The final 

segmentation result can be seen in Fig. 6(c) where centroids of clovers were labelled. Also, the 

processing time of Fig. 6(a) was 0.063 s. In general, shape descriptors were easy and fast to distinguish 

plants regardless of area difference. However, it did not work in situation that plants were connected, 

(g) (h)
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which is still a problem that needs to be solved.  

 

Fig. 6. Processing results of the algorithm based on shape descriptors: (a) original picture; (b) solidity and compactness results of dicotyledon 

and clover; it is clear that compactness of clovers was bigger than dicotyledons while solidity of dicotyledons was higher than clover. (c) 

Segmentation results, centroids of clovers were labelled. 

2.4 Dual-gimbal laser pointers 

2.4.1 Gimbal	specification	and	laser	ground	resolution	calculation	

Blasco et al. (2002) designed a 6 DOFs (degrees of freedom) parallel robotic arm for mechanical 

weeding. Similarly, Underwood et al. (2015) used a Universal Robot 6 DOFs robotic arm for selective 

precision spraying and mechanical hoe weeding. These arms were utilized for contact weeding robot, 

which is complex and expensive. As for non-contact laser weeding robot, a 2 DOFs arm is enough. Two 

main requirements for gimbals are high speed and high precision. To increase weeding speed, as shown 

in Fig. 7(a), two gimbals were adopted, and they could work in parallel.  

          

Fig. 7. Dual-gimbal and assembly schematic: (a) dual-gimbal; (b) assembly schematic of designed 2 DOFs arm. 

Each gimbal assembly was made up of two Dynamixel servos, model MX-64. The rated resolution 

(∆) and no-load rotation speed were 0.088° and 378°/s, respectively. For security concerns, this 

prototype robot used two 5 V class 1 laser pointers to simulate the class 4 lasers needed to kill weeds. 

As shown in Fig. 7(b), two servos were mounted together by a 90° 3d-printed frame. The first servo (ߙ) 

was connected to the base and became the waist, while the second servo (ߠ), mounted in line with the 

 .rotational axis, became the shoulder. The laser pointer was mounted on the end of the second servo (ߙ)

Hence, the y coordinate (to the left) and the x coordinate (forwards) were determined by rotation angle 

of (ߙ) and (ߠ) respectively. In addition, the laser pointed on the ground, had a spatial uncertainty that 

was generated by both servos. The ground uncertainty area was non-uniformly distributed, and it varied 

from position to position. Assuming the target position of the laser point on the ground is ሺݔ, ,ݕ 0ሻ : 
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ቐ
ݔ ∈ ቂ݄tan ∆ ቂ

ఏ

∆
ቃ , ݄tan ቀ∆ሺቂ

ఏ

∆
ቃ  1ሻቁቃ

ݕ ∈ ቂ݄tan ∆ ቂఈ
∆
ቃ , ݄tan ቀ∆ሺቂఈ

∆
ቃ  1ሻቁቃ

    eqn1. 

Where “h” is the height of laser rotation centre above the ground. (320 mm for this test). The machine 

vision subsystem sent the real-world coordinates of weed centroids to the gimbal controller. Based on 

the above formulae, centroids could be converted into servo angles. As for laser ground resolution, it 

can be seen that the bigger the θ or α, the bigger the uncertainty range of x and y. Therefore, it was better 

to place the laser rotation centre on the top of the coverage area. In this paper, the coverage area for 

single gimbal was 200 mm (x direction) × 300 mm (y direction), so laser ground resolution (∆x, ∆y) 

varied from (0.49 mm, 0.49 mm) to (0.54 mm, 0.60 mm).  

2.4.2 Control	strategy	

The control diagram for the gimbals is shown in figure 8. Four servos and two lasers were directly 

controlled by an Arduino. MATLAB sent the target coordinates to the gimbal controller which then 

converted them into instruction packets and sent them to the servos. Each servo used its own built-in 

controller to give positional output. The servos also returned their positional status to the gimbal 

controller to compare the target position and the current position in real-time. The laser would be 

switched on when current position was approaching target position. Once the exposure time was reached, 

the laser would be turned off, and the gimbal controller sent back this information to MATLAB so that 

it could release the next position to gimbal subsystem for a new cycle. 

 

Fig. 8. Schematic of gimbal control. 

3. Weeding	strategies	and	testing	

Two weeding methods were evaluated: static weeding and dynamic weeding. Static weeding meant 

that the platform stopped and carried out the laser operation and then moved on, while dynamic weeding, 

the robot kept moving and carried out weeding simultaneously. This paper reports the work on static 

weeding. 

2.1 Path-planning algorithms 

In static weeding, the robot firstly obtained all of the target locations in a single image frame, 640 × 

480 pixels. Then the locations were sorted for weeding sequence. Sorting methods affected gimbal 

travelling route and processing speed. This is a TSP (travelling sales man) path-planning problem. 

Applegate et al. (2006) reported they used Concorde TSP Solver (try all trajectories) to process 85,900 

points taking over 136 CPU years. This method could find out the best trajectory, but it was too 
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computation intensive. Akshatha et al. (2013) used an advanced Genetic Algorithm to process 100 

targets using proximately 1 minute. However, it was still time consuming for real-time weeding robot. 

Therefore, it was essential to find an appropriate sorting method so that path length could be reduced 

and weeding speed could be increased.  

3.1.1 Three	fast	path-planning	algorithms	

Three fast path-planning algorithms were proposed, as shown in Fig. 9: “Random”, “follow x-axis” 

and “segmentation”, respectively. For “follow x-axis” method, the laser shot targets according to their x 

coordinates (ascend or descend). “Segmentation” algorithm means the targets were segmented equally 

based on their x coordinates at first. If the targets could not be divided equally, then the remainder would 

be added to the final segmentation block. After that, in each block, the weeds were re-sorted (neither 

ascend nor descend) by their y coordinates, so the path appeared like a “Z” shape.  

   

Fig. 9. Three path-planning algorithms: (a) “random”; (b) “follow x-axis”, targets were sorted according to their x coordinate (ascend or 

descend); (c) “segmentation”, targets were segmented equally based on their x coordinate firstly then they were resorted by y coordinates 

3.1.2 Testing	and	comparison	

To identify the differences between the three methods, a simulation experiment was conducted. In 

each test, a number of target coordinates were randomly created and uniformly distributed. The gimbal’s 

running time was determined by the servo which had a greater traveling angle. In this experiment, all of 

the sub-angles were accumulated to obtain the total route angle. “Random” algorithm was tested for 100 

times and used the shortest route, while “follow x-axis” algorithm just had one route. As for 

“segmentation” algorithm, it changed the segmentation size (the quantity of targets in each block) and 

found out the minimum value. Fig. 10 shows the test results. It is obvious that “segmentation” algorithm 

could produce the shortest route, especially when the target quantity was larger. In addition, for all of 

the algorithms, the shortest route length had a significant linear relationship with target quantity. Hence, 

they were fitted by linear models afterwards. Based on the models, if there are 40 targets, compared to 

“random” and “follow x-axis”, “segmentation” could reduce total route angles by approximately 65.1% 

and 54.2%, respectively. Moreover, when the target quantity is 140, “segmentation” could reduce total 

decrease angles by about 81.4% and 73.8% accordingly. The excellent performance of “segmentation” 

could reduce battery power consumption by the similar percentages as servo route angles, which is 

meaningful for a battery-powered robot.  

(a) (b) (c)
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Fig. 10. Comparative testing results of three path-planning algorithms: it is clear that the “segmentation” method produced the smallest route 

angle and consequentially the fastest of the three.  

For the “segmentation” algorithm, it can be seen from Fig. 11(a) that the segmentation size (quantity 

of targets in one block) influenced route length significantly. When target quantities were 18, 28, 38 and 

48, the best segmentation size (circled) were 3, 4, 4, and 5, respectively. Therefore, it seems that the best 

segmentation size did have a relationship with targets quantity.  

 

Fig. 11. Relationships of total route angle, targets quantity and segmentation size: (a) explorative experiment of segmentation size; (b) it is 

obvious the best segmentation size increased gradually when target quantity grew.  

To identify the exact relationship, numerous simulation experiments were conducted. The results are 

shown in Fig. 11(b). It indicated that the best segmentation size had a linear relationship with target 

quantity. The model was fitted as follow: 

ݕ ൌ ݔ0.0545  2.1499，Rଶ ൌ 0.9388 

This model could be applied conveniently in applications, which meant that the best segmentation 

size could be determined quickly when the target quantity is given.  

However, the “segmentation” algorithm needed a longer time to compute. Therefore, it was necessary 

to identify the net time that the “segmentation” algorithm could be reduced by. Assuming the load on 

the servo was 0.9 Nm, based on the servos’ specification, the speed, and power of servo were 330°/s 

and 12 W, respectively. Without considering the servo acceleration and deceleration, converting route 
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angle into time, based on speed and also including computer computation time, a comparison of total 

processing time for the three methods is shown in Fig. 12. “Random” needed to calculate 100 different 

paths, so it had the longest computation time. From the figure, it is clear that the total processing times 

of “segmentation” and “follow x-axis” were much shorter than “random”. The three methods were 

linearly modelled and produced high correlation coefficients, although some points of random method 

had fluctuated. A population of 140 randomly generated weed positions were generated and the three 

methods were compared, as seen if Fig.12.. The “follow x-axis” reduced time significantly, whereas 

“segmentation” reduced the time taken even more. 

 

Fig. 12. Comparison of total processing time: all of the methods were linearly modelled. It is clear that the “segmentation” algorithm was the 

fastest.  

2.2 Control strategy of continuous static weeding 

In static weeding, the platform moved to an untreated area and stopped during treatment before 

moving on to the next untreated area. This method has the advantage of being more accurate as the 

targets were not moving between machine vision analysis and laser treatment.  

Fig. 13 indicates the whole control strategy of continuous static weeding.  

After initialisation, the system used image processing to obtain weed centroids. Next, the centroid 

targets were allocated to each gimbal and sorted by the path planning algorithm. After that the real-world 

targets of both gimbals were converted into servo angles and sent to the gimbal controller by serial 

communication and waited for feedback that it had reached the target angles. Once one of the lasers had 

been pointed on a target and exposure time had been reached, the gimbal controller sent feedback 

information with this specific gimbal number so that the next target position of this gimbal was released 

accordingly. This method could enable two gimbals to work in parallel. An image frame was completed 

when all of the weeds had been treated. After that, a “move” command was sent to the platform controller 

and waited for feedback that it had reached the destination. The platform controlled itself to move a 

specific distance (214 mm). The weeding task was executed on the next image area until no weeds were 

detected. This strategy could control the robot to weed the whole row and stop automatically.  
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Fig. 13. Flowchart of continuous static weeding control strategy. 

3. Results	[Something	wrong	with	the	numbering	system]	

4.1 Weeding error test 

Since it is important to accurately identify the weed target and ensure accurate positioning of the laser, 

it was necessary to test and evaluate the positional errors. The error analysis was determined by many 

of factors, such as camera calibration, image processing, platform vibration and installation error, etc. 

Most importantly, as lasers were directly positioned by the gimbals, their resolution affected the weeding 

error significantly. In this paper, a simple weeding error experiment was performed as shown in Fig. 

14(a). Several papers with some regular green circles, regarded as weeding targets, were placed on the 

tray. When the robot was weeding along the tray, laser spots on the papers were marked, so the distance 

between laser spots and circles centres were regarded as weeding errors. As shown in Fig. 14(b), the 

weeding error had a near normal distribution, so the results seem reliable. The mean of the weeding 

error was 1.97 mm, with a 0.88 mm standard deviation.  
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Fig. 14. Weeding error test and result: (a) weeding error test setup; (b) weeding error distribution 

4.2 Weeding efficiency and successful rate 

To evaluate the robot performance, a set of weeding experiments were performed. A laser treatment 

experiment presented by Mathiassen et al. (2006) showed that 90 W, 810 nm laser exposure 640 ms on 

weeds could control weeds effectively. Therefore, in this paper, the laser was positioned and delayed for 

a 0.64 s exposure duration. In addition, “eroding and dilating” algorithm was used in this experiment 

for the segmentation of weeds and crops. As seen in Table 1, the robot was tested on single tray (120 cm 

length 36 weeds) and double trays (240 cm length 72 weeds), respectively. To ensure high reliability, 

the weeds were randomly relocated of each test. The results showed that average weeding times for one 

tray and two trays were 41.31 s and 80.93 s, so the forward weeding speeds were 29 mm/s and 30 mm/s, 

respectively. The reason of the speed difference was mainly because the platform moved 6 times on one 

tray while 11 times for two trays. Besides, the robot was demonstrated to have a high average weeding 

successful rate of 97%.  

Table 1  

Weeding performance test result. 

Weeding 

length 

Number of 

weeds 

Weeding 

time (s) 

Average weeding 

time (s) 

Missed 

weeds 

Weeding 

successful rate (%) 

Average weeding 

successful rate (%) 

 

 

 

1 tray 

36 44.4  

 

 

41.31 

0  

 

 

96.30 

 

 

 

 

97.02 

 

36 40.9 2 

36 42.6 2 

36 36.28 1 

36 43.3 2 

36 40.35 1 

 

 

2 trays 

72 82.2  

 

80.93 

2  

 

97.57 

72 78.5 0 

72 79.8 2 

72 83.2 3 

4. Discussions	and	Conclusions	

A novel laser weeding prototype robot equipped with a dual-gimbal that can work in parallel was 

designed and tested. The robot was able to detect weeds in the indoor environments, carry lasers to target 

at weeds and also control the platform in real-time realising weeding continuously.  

Three subsystems of the prototype robot were developed, including a platform subsystem, machine 

vision subsystem, and dual-gimbal subsystem. They were integrated with both hardware and software. 

The three subsystems with independent controllers were connected and controlled in MATLAB. The 

platform subsystem was modified based on an ATV vehicle. The modification allowed automatic driving 

and steering. As for machine vision subsystem, the colour-training algorithm was implemented to extract 

crops and weeds from the background. After that, to segment weeds and crops, an “eroding and dilating” 

algorithm was demonstrated to be effective when weeds and crops had obvious area differences, even 

when the objects are touching. Conversely, another algorithm that relied on shape descriptors was 

indicated to be suitable to distinguish plant species in non-touching status regardless of area difference. 

However, the segmentation of weeds and crops with close areas and in touching situations still needs to 



14 
Y. Xiong et al. / Development of a prototype robot and fast path-planning algorithm for static laser weeding 

  

be studied further. In terms of time efficiency, all of the colour training, “eroding and dilating” and 

“shape descriptors” were very fast, with single frame processing times of 0.12 s, 0.0251 s and 0.063 s, 

respectively, which was meaningful for real-time weeding. Two 2 DOFs gimbals that consisted of four 

servos and two laser points were developed. They were controlled by a Gimbal controller and could 

work in parallel. Considering the servo resolution, laser ground resolution (∆x, ∆y) varied from (0.49 

mm, 0.49 mm) to (0.54 mm, 0.60 mm).  

A new “segmentation” path-planning algorithm for static weeding was proposed and compared. It 

was demonstrated to be efficient especially when the weed’s quantity was large. The relationships 

between total shortest route angle and target quantity for “random”, “follow x-axis” and “segmentation” 

were all fitted by linear models. Based on the models, if there are 40 and 140 targets, compared to 

“random” and “follow x-axis”, “segmentation” could reduce route angle by approximately 65.1%, 54.2% 

and 81.4%, 73.8%, respectively. Furthermore, for “segmentation” algorithm, the experiment indicated 

that the best segmentation size had a linear relationship with target quantity. Therefore, the best 

segmentation size could be easily and quickly determined based on target quantity. Also, considering 

computation time, in contrast to “random” and “follow x-axis”, “segmentation” could decrease by 14.3 

s and 0.897 s of total processing time with a single gimbal for 40 weeds and 51.3 s and 4.15 s for 140 

weeds. Therefore, it was thought that the developed “segmentation” algorithm has the potential to be 

widely used in fast path-planning for the travelling sales man problem.  

Finally, two performance tests were conducted. The weeding error test showed that the mean of the 

weeding error was 1.97 mm, with a 0.88 mm standard deviation. Another whole process experiment 

indicated that the weeding speed was 29.66 mm/s for two trays (240 cm length, 72 weeds and 0.64 s 

laser exposure/weed), with a weeding success rate of 97%.  

However, the robot still has some limitations. First, the low-cost platform could not be controlled 

precisely and did not have a complete navigation system. Secondly, the machine vision subsystem could 

not distinguish plants if they were touching and also had similar areas at the same time. Finally, static 

weeding speed was still not potentially as fast as continuous weeding.  
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