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Summary The aim of the study was to determine the effect of feeding a low and high 

level of microalgae (MA, high in C22:6n−3) on the fatty acids (FA) composition and 

sensory attributes of beef. Thirty Charolais cross Limousin/Friesian heifers were fed one 

of three diets (n= 10 per treatment): Control (no MA), low MA (LMA; inclusion rate of 15 

g/kg) or high MA (HMA; inclusion rate of 30 g/kg) for 95 days before slaughter. Heifers 

fed HMA had a higher (P < 0.05) content of C20:5n−3: eicosapentaenoic acid (EPA), 

and C22:6n−3: docosahexaenoic acid (DHA) in the longissimus thoracis muscle than 

those receiving the Control (mean values for EPA of 0.5, 0.92, 1.20 and DHA of 0.31, 

0.89 and 1.05 g/100g FA for Control, LMA and HMA respectively), and a lower n-3 to n-

6 ratio (2.9, 1.9 and 1.6 in Control, LMA and HMA respectively; P < 0.001). Steaks from 

animals fed either of the MA diets had a marginally higher (P < 0.05) “seaweedy flavour” 

that was positively correlated to muscle C22:6n-3 concentration. Steaks from animals 

fed HMA were rated as being higher (P < 0.05) in tenderness, and had a lower (P < 0.05) 

shear force than those from Control fed animals. It is concluded that feeding microalgae 

at high levels can beneficially improve the health attributes of beef with only a few effects 

on sensory quality. 
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Introduction 

  

The very long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) eicosapentaenoic 

acid (EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3) have been shown to 

have benefits in the modulation and prevention of coronary heart disease, in the early 

development and maintenance of retinal and brain tissues, and in the prevention of 

certain cancers (Abedi & Sahari, 2014; Zárate et al., 2017).  Oil-rich fish and fish oil have 

traditionally been the main sources of LC n-3 PUFA in the human diet (Welch et al., 

2002). However, the consumption of fish varies regionally, and in many western 

countries such as the UK are in decline (Welch et al., 2002). The current intake of EPA 

+ DHA in the UK is approximately 100 mg/day, which is considerably lower than the 

recommended value of 250-450 mg/day (SACN & COT, 2004; EFSA, 2010). Alternative 

dietary sources of these fatty acids (FA) such as meat based foods is therefore of 

considerable interest.  

Beef has long been recognized as a valuable source of EPA and DHA in the 

human diet (Wood et al., 2008). It has been proposed that the levels of LC n-3 PUFA in 

beef can be increased further by feeding dietary sources rich in those FA (Gibbs et al., 

2010). Feeding microalgae (MA) has been proposed as a means to improve the EPA 

and DHA content of beef, mainly because it is a rich source of LC n-3 PUFA (Givens et 

al., 2006; Zárate et al., 2016), and the degree of ruminal biohydrogenation has been 

reported to be lower than in other sources such as fish oil (Sinclair et al., 2005). Previous 

studies have reported an increase in muscle deposition of LC n-3 PUFA following feeding 

of MA to lambs (Cooper et al., 2004; Hopkins et al., 2014; Meale et al., 2014). However, 

few studies have evaluated the effect of feeding MA to cattle, particularly at high rates of 

inclusion, in concentrate finishing systems or when slaughtered at a low body fat content 

(Phelps et al., 2016a,b).  

Modifying the FA composition of muscle may influence certain characteristics of 

meat quality, including flavour, texture and lipid stability (Wood et al., 2008). Highly 



unsaturated FA such as LC n-3 PUFA are more susceptible to oxidation during retail and 

cooking, and high concentrations of these FA in the muscle can contribute to the 

development of undesirable off-flavours in cooked meat (Nute et al., 2007). Lipid 

oxidation is recognised as one of the main causes of the deterioration of meat quality, 

therefore one of the main challenges to studies attempting to increase the concentration 

of LC n-3 PUFA in meat is to avoid oxidation and maintain the eating quality. However, 

few studies have been conducted to determine the effect of the dietary inclusion of MA 

on the sensory attributes of beef and the relationship with meat FA content, particularly 

when fed at high levels. The objectives of this study were to determine the effects of a 

low and high inclusion rate of MA (rich in DHA) in the diet of finishing heifers on the FA 

composition of intramuscular fat and subcutaneous adipose tissue, and the sensory 

attributes of beef. 

 

Materials and method 

 

Diets, animals and experimental procedure 

Thirty Charolais cross Limousin/Friesian heifers with an initial mean age of 24 ± 0.8 

months and live weight of 509 ± 40.0 kg were used. Prior to the study the animals were 

fed medium quality grass silage and were gradually adapted to a cereal based diet over 

a period of 17-d. After this period the animals were blocked according to live weight and 

randomly allocated within block to one of the three experimental diets, resulting in ten 

animals per diet. Three rates of MA (Schizochytrium limacinum; Alltech UK Ltd., Lincs, 

UK) were fed; Control (no MA), low MA (LMA; 15 g/kg dietary inclusion of MA) and high 

MA (HMA; 30 g/kg dietary inclusion of MA). The Control diet contained (g/kg) 750 barley, 

100 dried, molassed sugar beet pulp, 75 soyabean meal, 50 molasses and 25 minerals 

and vitamins, with the proportional replacement of barley with MA in diets LMA and HMA. 

The MA was in the form of a dried powder with a lipid content of 580 g/kg dry matter 

(DM), and contained an EPA and DHA content of 0.28 and 27.2 g/100g FA respectively. 



The diets were formulated to have a similar energy content and to be isonitrogenous, 

with vitamin E added as an antioxidant at 250 mg/kg.  

Treatment diets were offered ad libitum via hoppers for 95 days with free access 

to wheat straw. Animals were double weighed at the beginning and end of the study 

using electronic weigh cells (Tru-Test, Auckland, New Zealand). Following slaughter in 

a commercial abattoir (ABP, Shrewsbury, UK) using a captive bolt and severing the 

arteries, the carcasses were hung for 48 h at 4°C, weighed and scored for conformation 

and fat class using a 15-point scale based on RPA (2011), where 1 = lowest and 15 = 

highest. Samples from the longissimus thoracis muscle and the subcutaneous adipose 

tissue (at the 10-12th rib) were then dissected vacuum-packaged and stored at -20°C 

prior to FA analysis, or conditioned at 1°C for 10 d and then stored at -20°C prior to 

sensory analysis, as described by Vatansever et al. (2000) and Nute et al. (2007). 

 

Fatty acid analysis  

 

The FA content of muscle and subcutaneous adipose tissue of all animals (n = 10 per 

treatment) was conducted according to the method described by O’Fallon et al. (2007) 

using C13:0 as an internal standard. Following methylation the FA’s were analysed on a 

gas chromatograph (HP 6890, Germany) equipped with an auto sampler (Agilent 6890 

injector, UK), a split injector and a flame-ionization detector (Agilent Inc. Wilmington, DE). 

The separations were performed on a CP-SIL 88 for FAME capillary column, 100 m 

length x 0.25 mm internal diameter and 0.2 µm film thickness (Agilent J&W, GC columns, 

UK). Oven temperature was first held at 70 °C for 2 min, then increased by 8 °C/min to 

100 °C; 5 °C/min to 170 °C and finally 4 °C/min to 225 °C; this temperature was 

maintained until all peaks were analysed. The split ratio was 100:1. Hydrogen was used 

as the carrier gas and peaks were identified by comparison of retention times with a 

standard mixture (Supelco® 37 Component FAME Mix, Sigma-Aldrich, Dorset, UK). The 

area for each FA was adjusted using the recovery factors from a standard Supelco® 37 



mixture, and normalized to 100%. Total FA content was quantified by reference to the 

area of the internal standard. The fatty acids were expressed as % of total fatty acids in 

intramuscular fat and subcutaneous adipose tissue, or mg/100 g fresh tissue (Cooper et 

al., 2004; Nute et al., 2007; Wachira et al., 2004). Feed samples were bulked within 

month (resulting in n = 3 per treatment) and their FA composition determined by the 

method of Jenkins (2010; Table S1). Feed samples were also analysed according to 

AOAC (2012) for DM (method 934.01), ash (942.05), crude protein (CP; 990.03 using a 

Leco® FP-528 analyzer, LECO Corporation, USA), and neutral detergent fibre (NDF; 

Van Soest et al., 1991).  

 

Sensory assessment and shear force  

 

The steaks were thawed overnight at 4 °C and then cooked using an auto-controlled 

roasting/baking oven (Self-Cooking Center® SCC 101, Rational AG, Germany). The 

samples were cooked, turning over half way through, and the internal temperature 

verified with a thermocouple probe (Therma 20, ETL Ltd, UK) inserted into the centre of 

each steak to ensure that it reached at least 73°C.  

A descriptive sensory analysis was performed by 10 trained panellists. Following 

recruitment, the assessors were screened on the basis of their sensitivity to five basic 

tastes, ability to detect specific odours, numerical competence with respect to scaling 

and descriptive ability (BSI, 2014). The panellists were trained and calibrated for beef 

profiling in accordance with the guidelines of BS EN ISO 8586:2014 (BSI, 2014) and 

Gomes et al. (2014). During the training stage the panellists followed seven training 

sessions of two hours each with an open discussion to generate the lexicon to describe 

the beef steaks in terms of odour, taste, texture and after taste. The standard references 

for key sensory attributes were provided (adapted from Adhikari et al., 2011, and 

Maughan et al., 2012). There were also ballot training sessions conducted on the 

consensus lexicon, rating scale used (unstructured 15 cm line scale with two anchor 



words) and intensity calibration using standard references with an interactive feedback 

screen using Compusense® five (Compusense., Guelph, Ontario, Canada). The 

performances of individual panellists and the panel were tested for their reliability and 

validity in order to retain, adjust and calibrate the measurements. The sensory profiles 

of all treatments (3) and replicates of treatments (10) were evaluated on the consensus 

ballot based on 2 test replications, resulting in the profiling of 60 meat samples. The 

sensory evaluation took place over 5 consecutive days, with the first three sessions 

allocated for the first test replication and the last three for the second. A Williams cross-

over design was applied within each test replication to randomly balance first-order and 

carry-over effects. The evaluation sessions took place in individual booths equipped with 

Compusense computerised software. Five 1.5 cm steak cubes of each sample were 

served at room temperature and presented in a random order. 

Shear force of the cooked steaks was measured based on the method described 

by Peachey et al. (2002), using a TA.HD Plus Texture Analyzer (Stable Micro Systems 

Ltd., Surrey, UK), fitted with a Warner Bratzler blade with a rectangular slot and 30 kg 

load cell. Five 10 mm cubes from each sample were assessed. The cubes were sheared 

perpendicular to the fibre orientation with 2.0 mm/s crosshead speed. The resistance of 

the meat to shearing was recorded every 0.005 s and a curve (time vs. force) plotted. 

The parameters recorded were “Maximum shear force” (N), indicating the maximum 

force required to cut through the sample and “Work of shear” (N.s), which relates to the 

total work done to cut the sample, also referred as “toughness”.  

 

Statistical analysis  

 

The FA content of tissues, sensory analysis, texture of cooked steaks and animal 

performance were analyzed using ANOVA as a randomized complete block design. The 

statistical model was yij = bi + tj + eij, where b = blocks and t = treatments. Daily live 

weight gain was calculated as the final weight minus the initial weight divided by the 



number of days on study. The results are presented as means for the treatments with 

s.e.d., and post-hoc analysis using Tukey’s test at a 5% significance level. Pearson 

correlation coefficients were generated to describe the association between sensory 

scores and the percentage of n-3 PUFA in muscle, along with linear regression to obtain 

the significance values for the model. All analysis was conducted using Genstat (16th 

edition; VSN International Ltd., Oxford, UK). 

 

Results and discussion 

 

Fatty acid content of the longissimus thoracis muscle  

The proportion of C22:6n-3 in the longissimus thoracis muscle was highest (P < 

0.05) in cattle receiving the HMA diet and lowest in those receiving the Control diet, with 

those receiving LMA being intermediate (Table 1), with values comparable to other 

studies that have fed MA to sheep or cattle (Hopkins et al., 2004; Phelps et al., 2016a). 

The muscle from heifers fed the HMA diet also had the highest (P < 0.05) proportion of 

C20:5n-3, followed by LMA, with those receiving the Control diet the lowest. By contrast, 

the proportion of C22:5n-3 decreased (P < 0.05) with the inclusion of MA in the diet. The 

highest (P < 0.05) proportion of eicosatrienoic (C20:3n-6) and docosatetraenoic acid 

(C22:4n-6) was observed in the longissimus thoracis muscle from animals fed the 

Control diet, while that from animals fed the HMA diet contained the lowest (P < 0.05) 

proportion. Other authors have also reported that the dietary inclusion of LC n-3 PUFA 

is an effective means to increase their content in muscle in ruminants. In a similar study 

in finishing lambs, Cooper et al. (2004) reported an increase in the proportion of EPA 

and DHA in muscle when fish oil and MA were included in the diet, but the proportions 

of EPA and DHA were considerably higher than those obtained in the current study, 

reflecting the different dietary inclusion level in both studies. The increase in muscle 

content of EPA in the current study was achieved despite negligible amounts of this FA 

being present in the MA. This finding is similar to that reported by others (Phelps et al., 



2016a, Díaz et al., 2017) and may be explained by the retro-conversion of DHA to EPA 

as suggested by Cooper et al. (2004). Alternatively, the activity of the FADS1 gene which 

encodes the ∆5 desaturase enzyme responsible for the conversion of 20:4n-3 to 20:5n-

3 has been shown to be upregulated in liver and muscle following supplementation with 

MA in lambs, although the response in muscle is less predictable (Alvarenga et al., 

2016).  

Phelps et al. (2016a) fed 50, 100 or 150 g per day of MA to finishing heifers and 

reported a quadratic response in muscle EPA and DHA concentration, reaching a 

maximum of 19 mg/100 g tissue. In the current study the two dietary treatments of MA 

equated to feeding approximately 150 and 300g MA/animal/d, with muscle DHA 

concentration increasing with MA inclusion level to 33 mg/100g tissue in animals fed 

HMA.  Differences between the current study and Phelps et al. (2016a) may partly be 

explained by the basal diet, with high levels of barley being fed in the current study. High 

levels of starch rich ingredients such as barley is associated with a lower ruminal pH and 

a reduction in the biohydrogenation of PUFA in the rumen (Sinclair et al., 2007). This 

may have increased the duodenal flow and subsequent muscle supply of EPA and DHA. 

Despite the absence of LC n-3 PUFA in the Control diet, the meat from cattle fed this 

diet was found to contain small amounts of EPA and DHA. These FA would have been 

synthesised by the animal via elongation and desaturation of its precursor C18:3n-3, but 

as discussed by Sinclair (2007), this process is relatively inefficient in ruminants 

compared to the dietary supply and muscle uptake of pre-formed LC n-3 PUFA. 

The decrease in the proportion of C20:3n-6 and C22:4n-6 in the muscle from 

cattle fed either of the MA diets in the current study is consistent with previous studies, 

which also reported a decline in the proportion of n-6 PUFA when dietary sources of LC 

n-3 PUFA were fed to beef cattle (Dunne et al., 2011; Phelps et al., 2016a,b). In the 

current study, the FA composition of the intramuscular fat was analysed without 

separating polar and neutral lipids. However, the increase in the proportions of EPA and 

DHA in muscle from animals fed MA can most likely be attributed to changes in the 



composition of the phospholipid (PL) fraction, as several studies have reported that the 

largest deposition of LC n-3 PUFA occurs in the PL fraction of the intramuscular fat. The 

content of PL in muscle is relatively constant and therefore any increase in the deposition 

of LC n-3 PUFA is probably due to the substitution for other similar FA, mainly the n-6 

PUFA (Sinclair 2007; Wood et al., 2008).  

Muscle content of C18:3n-3 averaged 0.14 g/100 g FA and was not affected (P > 

0.05) by treatment, reflecting the similarity in content of this FA across all three diets. 

Despite the replacement of LC n-6 PUFA in muscle with the inclusion of MA, there was 

no effect of diet (P > 0.05) on the proportion of C18:2n-6 or arachidonic acid (20:4n-6). 

The highest (P < 0.05) proportion of C16:0 and C18:0 was observed in muscle from cattle 

fed HMA, and reflects the greater dietary concentration. In contrast, dietary C18:1n-9 

concentration was similar between the three treatments but its content was lower (P < 

0.05) in muscle from cattle fed either of the MA diets. Wachira et al. (2002) reported that 

muscle concentrations of C18:1n-9 can be reduced due to the substitution by other 

unsaturated FA in the PL fraction of the intramuscular fat. Similarly Cooper et al. (2004) 

found that C18:1n−9 was replaced by EPA and DHA in the muscle lipid of lambs when 

fed LC n-3 PUFA, although Phelps et al. (2016a) found no effect of the inclusion of MA 

in the diet on muscle C18:1n-9. 

 

Intramuscular fat indices and human health:  

 

In the European Union the reference intake values of EPA plus DHA for humans is 250 

mg/day (EFSA, 2010). A 100 g serving of beef meat from the animals receiving the LMA 

treatment would supply approximately 62.2 mg of these LC n-3 PUFA, while a 100 g 

serving of meat from the HMA fed animals would supply approximately 71.2 mg. These 

values represent a supply of approximately 25 to 28% of the recommended daily 

requirement. A food product can be marketed within Europe as being a “source of 

omega-3 fatty acids” when it contains at least 40 mg/100g of EPA plus DHA, and as 



being “high in omega-3 fatty acids” when it contains at least 80 mg/100g (Commission 

Regulation of the European Union, 2010). Meat from animals fed the Control treatment 

contained 25.4 mg of EPA plus DHA/100g, and therefore does not meet the minimum 

content. In contrast, meat from cattle fed either of the diets containing MA meet the 

required levels of EPA plus DHA to be labelled as a food product that is a “source of 

omega-3 fatty acids”, but not to be “high in omega-3” fatty acids.  

There was no effect (P > 0.05) of dietary treatment on the content of SFA, MUFA 

or PUFA in the longissimus thoracis muscle (Table 2). Similarly, the dietary inclusion of 

MA did not alter (P > 0.05) the polyunsaturated to saturated (P:S) ratio of muscle, with a 

value of approximately 0.2 for all treatments. This ratio is similar to that reported by 

Hopkins et al. (2014) and Phelps et al. (2016a), but lower than that of Cooper et al. 

(2004), who reported a P:S ratio of 0.46 in muscle from lambs when fed rumen protected 

linseed and MA. However, the dietary addition of MA in the current study did lead to a 

large improvement (P < 0.05) in the n-6:n-3 ratio, being 2.9, 1.9 and 1.6 in the muscle 

from animals fed the Control, LMA or HMA diet respectively. A recommended value for 

the n-6:n-3 ratio in the human diet is approximately 2, and therefore the meat from cattle 

fed either diet containing MA comply with this, while those fed the Control diet in the 

current study, or cattle fed similar concentrate based diets (Dunne et al., 2011; Phelps 

et al., 2016a), do not. This improvement in the n-6:n-3 ratio is consistent with other 

studies where sources of LC n-3 PUFA have been included in the diet of ruminants (e.g. 

Wachira et al., 2002; Phelps et al., 2016a). 

 

Fatty acid content of the subcutaneous adipose tissue 

 

The FA content of the subcutaneous adipose tissue was analysed in the current 

study as some consumers, when given the choice, may choose to consume the fat on a 

portion of meat, whilst others may prefer to cook in tallow rather than vegetable oil. The 

total FA content in the subcutaneous adipose tissue was similar in animals receiving any 



of the three diets, with an average value of 79753 mg/100 g of tissue (P > 0.05; Table 

3). The subcutaneous adipose tissue from heifers fed the Control diet had the highest (P 

< 0.05) content of C18:2n-6, C20:3n-6 and total n-6 FA, while those fed the HMA diet 

had the lowest. In contrast, the content of C22:5n-3 was highest (P < 0.05) in the 

subcutaneous adipose tissue from animals fed the LMA or HMA diet, and lowest in those 

fed the Control diet. The highest (P < 0.05) content of C14:0, C16:0 and C18:1 trans-9 

was observed in the subcutaneous adipose tissue from cattle fed the HMA diet, whereas 

the levels of C18:1 trans-11, C18:1n-9 and C18:2 cis-9, trans-11 were highest (P < 0.05) 

in animals fed the Control diet. The minor effect of the inclusion of MA in the diet on the 

proportion of EPA and DHA in the subcutaneous adipose tissue in the current study 

reflects the low incorporation of these FA in the triacylglycerol fraction and the low 

proportion of PL found in the adipose tissue (Cooper et al., 2004). Contrary to this, Meale 

et al. (2014) reported a large increase of LC n-3 PUFA in subcutaneous adipose tissue 

and perirenal adipose tissue of lambs when MA was fed.  

 

Sensory quality and shear force  

 

Steaks from cattle fed HMA were scored as having the highest (P < 0.05) intensity of the 

attribute “seaweedy flavour”, followed by the steaks from cattle fed the LMA diet and the 

Control animals the lowest (Table 4 and Figure 1). The attribute “seaweedy flavour” was 

defined by the sensory panel as “the mixture of grassy, seaweedy and/or fishy flavours”. 

This finding is consistent, although less pronounced than that reported by Vatansever et 

al. (2000), where steaks from cattle fed fish oil were described as containing a higher 

“fishy flavour” than those from animals fed a control diet. Similarly, Phelps et al. (2016a,b) 

reported an increase in off-flavour intensity in beef from animals fed higher levels of MA, 

whilst Nute et al. (2007) reported that meat from lambs fed dietary sources of LC n-3 

PUFA had higher scores for a number of attributes including “fishy flavour”, “rancid 

flavour” and “abnormal lamb flavour”. Vatansever et al. (2000) also reported a decrease 



in “beef flavour” and increase in “livery flavour” in steaks from cattle fed fish oil, although 

no differences were detected in the current study. There was also no effect (P > 0.05) of 

dietary treatment in the current study on any of the other sensory attributes, except for 

“tenderness”, with meat from animals fed the HMA diet having the highest score (i.e. 

most tender), while those from animals fed LMA had the lowest score (P < 0.001). Similar 

to the sensory evaluation, steaks from animals fed LMA had the highest (P < 0.05) shear 

force and toughness, while those from cattle fed the HMA diet had the lowest. Other 

authors have found little effect of LC n-3 PUFA content on toughness (Nute et al., 2007; 

Phelps et al., 2016a) and reasons for the differences in the current study are unclear. 

There was a positive correlation (P < 0.05) between the proportion of EPA and 

DHA in the intramuscular fat and “seaweedy flavour” scores in steaks, with DHA having 

the strongest positive correlation coefficient of 0.6 followed by EPA at 0.48 

(Supplementary Table S2). This is the first study to report this finding in cattle fed MA, 

but is consistent with the results of Nute et al. (2007) who reported a positive correlation 

between the “fishy flavour” in lamb meat and the proportion of EPA and DHA in the 

intramuscular fat. The volatile compounds formed in cooked meat are mainly derived 

from thermal degradation of lipids and the Maillard reaction (Calkins & Hodgen, 2007). 

Thermal oxidation of lipids produces volatile compounds such as aliphatic aldehydes, 

ketones, and alcohols, which contribute to the flavour of meat (Mottram, 1994). Elmore 

et al. (1999), reported that cooked beef meat with high amounts of LC n-3 PUFA 

produced higher concentrations of lipid oxidation products, an effect that was also 

demonstrated in cooked lamb meat (Elmore et al., 2005). Elmore et al. (1999) also 

discussed that high contents of LC n-3 PUFA in meat could catalyse the degradation of 

other FA. Therefore, due to the low oxidative stability of LC n-3 PUFA, modifying its 

concentration in meat would result in alterations to the composition of the aroma volatiles 

produced during cooking, with lipid oxidation being related to the generation of off-odours 

and off-flavours such as “fishy”, “greasy”, “rancid” and “abnormal” (Wood et al., 2008). 

However, none of these attributes were detected in the current study. 



Few studies have documented the impact of MA on carcase quality or 

performance of beef animals. The lack of an effect of treatment in the current study 

(Table 5) is in agreement with studies that have fed MA to lambs (Cooper et al., 2004; 

Hopkins et al., 2014) or fish oil to cattle (Scollan et al., 2001). In contrast, Díaz et al. 

(2017) reported a decrease in daily weight gain in growing lambs when MA was included 

at 2% of the diet. Additionally, Stokes et al. (2015) reported a linear decrease in whole 

tract dry matter digestibility when partially deoiled MA was fed to lambs. Demirel et al. 

(2004) also reported an increase in carcase fat score when fish oil plus linseed was fed 

to sheep, which was attributed to an increase in the total FA content of the neutral lipid 

fraction of the muscle fat. Feeding levels of MA above those used in the current study 

should therefore take into account the potential decrease in diet digestibility and increase 

in carcase fat content. 

 

Conclusions  

The present study demonstrated that feeding microalgae is an effective means to 

increase the content of LC n-3 PUFA in beef meat, particularly the nutritionally beneficial 

EPA and DHA. The increase in EPA and DHA in meat was proportional to the inclusion 

rate of microalgae in the diet, and could permit the meat to be labelled as a source of 

omega-3 fatty acids, providing consumers with the choice of a meat containing healthier 

characteristics. However, the inclusion of microalgae was associated with the 

development of some undesirable flavours in meat. Future research should focus on 

evaluating different inclusion rates of microalgae in the diet in combination with additional 

antioxidants on lipid oxidation and sensory attributes. 
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Table 1 Fatty acid composition (% of total fatty acids), and total fatty acid content (mg/100 g 
of fresh tissue) of the longissimus thoracis muscle of beef heifers  fed a concentrate based 
diet that contained no microalgae (Control), a low inclusion of microalgae (LMA) or a high 
inclusion of microalgae (HMA) 

Fatty acid Control LMA HMA s.e.d. P-value 

  C14:0  2.12 2.15 2.30 0.155 0.497 
  C16:0  22.97b 24.24ab 25.05a 0.630 0.013 
  C16:1n-7  3.35a 3.24ab 2.96b 0.155 0.053 
  C18:0  12.25ab 11.61b 12.54a 0.322 0.029 
  C18:1trans-11 1.99a 1.91ab 1.79b 0.069 0.031 
  C18:1n-9 36.45a 35.40a 33.24b 0.677 <0.001 
  C18:1trans-9 0.45b 0.91a 1.15a 0.151 <0.001 
  C18:2n-6  2.99 2.66 2.60 0.273 0.319 
  C18:2cis-9, trans-11 0.30 0.24 0.23 0.031 0.081 
  C18:2trans-10,cis-12 0.03 0.03 0.03 0.003 0.669 
  C18:3n-3  0.15 0.14 0.12 0.010 0.083 
  C20:3n-6  0.27a 0.19b 0.20b 0.027 0.014 
  C20:4n-6  1.16 0.95 1.04 0.095 0.103 
  C20:5n-3  0.50c 0.92b 1.20a 0.080 <0.001 
  C22:4n-6  1.25a 1.17a 1.07b 0.038 0.001 
  C22:5n-3  0.77a 0.53b 0.49b 0.068 0.001 
  C22:6n-3  0.31c 0.89b 1.05a 0.053 <0.001 
  Σ n-6 fatty acids1 5.68 4.96 4.92 0.388 0.117 
  Σ n-3 fatty acids2 1.73b 2.47a 2.86a 0.154 <0.001 
Total FA, mg/100g  fresh tissue 3359 3683 3241 302.9 0.341 
1Σ n-6 fatty acids= C18:2n-6 + C20:3n-6 + C20:4n-6 + C22:4n-6.  
2Σ n-3 fatty acids= C18:3n-3 + C20:5n-3 + C22:5n-3 + C22:6n-3.  
a,b,c Means in a row with different superscripts letters differ (P < 0.05). 
 

 
 

 

 

 

 

 

 

 



 

 

Table 2 Fatty acid classes (mg/100 g of fresh tissue) and ratios of the longissimus thoracis 
muscle of beef heifers fed a concentrate based diet that contained no microalgae (Control), a 
low inclusion of microalgae (LMA) or a high inclusion of microalgae (HMA)  

Item Control LMA HMA s.e.d. P-value 

 SFA1 1270 1399 1295 129.2 0.580 
 MUFA2 1464 1575 1307 136.7 0.172 
 PUFA3 242 272 254 11.7 0.063 
 P:S ratio4 0.21 0.20 0.20 0.017 0.898 
 n-6:n-3 ratio5 2.88a 1.91b 1.61c 0.082 <0.001 
1Saturated fatty acids.  
2Monounsaturated fatty acids.  
3Polyunsaturated fatty acids.  
4P:S= total polyunsaturated to total saturated fatty acids ratio. 
5n-6:n-3= total n-6 (C18:2n-6 + C20:3n-6 + C20:4n-6 + C22:4n-6) to n-3 fatty acids (C18:3n-
3 + C20:5n-3 + C22:5n-3 + C22:6n-3).  
a,b,c Means in a row with different superscripts letters differ (P < 0.05). 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3 Fatty acid composition (% of total fatty acids) and fatty acid content (mg/100 g of 
tissue) of the subcutaneous adipose tissue of beef heifers fed a concentrate based diet that 
contained no microalgae (Control), a low inclusion of microalgae (LMA) or a high inclusion of 
microalgae (HMA)  

Fatty acid Control LMA HMA s.e.d. P-value 

C14:0 2.93b 3.07ab 3.55a 0.211 0.022 
C16:0  25.40c 27.38b 29.43a 0.612 <0.001 
C16:1n-7  4.18 4.18 4.05 0.389 0.932 
C18:0  11.38 11.34 11.74 0.677 0.816 
C18:1 trans-11 1.82a 1.73a 1.56b 0.067 0.003 
C18:1n-9 38.20a 35.46b 31.81c 0.847 <0.001 
C18:1 trans-9  0.70c 1.78b 3.10a 0.398 <0.001 
C18:2n-6 1.04a 0.92ab 0.85b 0.066 0.026 
C18:2 cis-9, trans-11 0.24a 0.19ab 0.16b 0.024 0.013 
C18:2 trans-10,cis-12 0.02b 0.04a 0.05a 0.008 0.005 
C18:3n-3 0.11 0.09 0.09 0.007 0.057 
C20:3n-6  0.04a 0.03b 0.03b 0.005 0.017 
C20:4n-6  0.04 0.03 0.04 0.005 0.077 
C20:5n-3 0.09 0.06 0.07 0.013 0.148 
C22:4n-6  1.27 1.23 1.22 0.041 0.326 
C22:5n-3  0.04b 0.06a 0.06a 0.007 0.023 
C22:6n-3  0.14 0.10 0.13 0.021 0.350 
Σ n-6 fatty acids1 2.40a 2.21ab 2.14b 0.075 0.008 
Σ n-3 fatty acids2 0.37 0.32 0.34 0.034 0.323 
Total fatty acids (mg/100 g of 
tissue) 

82221 79438 77601 2121.8 0.119 

1Σ n-6 fatty acids= C18:2n-6 + C20:3n-6 + C20:4n-6 + C22:4n-6,  
2Σ n-3 fatty acids= C18:3n-3 + C20:5n-3 + C22:5n-3 + C22:6n-3.  
a,b,c Means in a row with different superscripts letters differ, (P < 0.05). 
 
 

 

 

 

 

 

 

 

 

 



 

Table 4 Sensory attributes shear force and toughness of cooked steaks from beef 
heifers fed a concentrate based diet that contained no microalgae (Control), a low 
inclusion of microalgae (LMA) or a high inclusion of microalgae (HMA) 

1 scale 1-15; 0 = weak, 15 = strong 
2 scale 1-15; 0 = hard to chew, 15 = melt in the mouth 
3scale 1-15; 0 = dry, 15 = juicy 
a,b,c Means in a row with different superscripts letters differ, (P < 0.05). 
 

 

 

 

 

 

 

 

 

Attribute Control LMA HMA s.e.d. P-value 

Odours1  

  Dairy 2.9 2.6 2.9 0.34 0.664 
  Beefy 6.3 5.9 5.9 0.33 0.309 
  Roast 4.8 4.4 4.5 0.37 0.519 
Flavours1      
  Beefy 7.4 7.1 6.9 0.29 0.258 
  Roast 5.7 5.1 5.2 0.38 0.216 
  Sweet 2.6 2.4 2.4 0.28 0.812 
  Salty 1.8 1.9 1.9 0.23 0.877 
  Livery 2.4 2.6 2.8 0.22 0.214 
  Seaweedy 0.7c 1.3b 1.8a 0.21 <0.001 
  Overall richness of flavour 7.2 6.9 7.1 0.27 0.539 
Aftertastes1  
  Metallic 3.4 3.4 3.3 0.34 0.972 
  Umami 5.4 5.2 5.0 0.39 0.475 
  Fat coating 2.7 2.9 2.7 0.29 0.694 
  Livery 2.4 2.5 2.6 0.24 0.728 
  Unusual 0.9 1.1 1.3 0.23 0.138 
Texture  
  Tenderness2 6.6ab 6.0b 7.2a 0.31 <0.001 
  Juiciness3 6.5 6.0 6.3 0.33 0.363 
  Fat mouth feel1 2.5 2.4 2.4 0.28 0.879 
Shear force (N) 40.7b 46.3a 35.2c 2.13 <0.001 
Toughness (N.s) 129.9ab 140.5a 111.1b 8.52 0.010 



 

 
 
 

Table 5 Carcase characteristics and performance of beef heifers fed a concentrate 
based diet that contained no microalgae (Control), low inclusion of microalgae (LMA) 
or a high inclusion of microalgae (HMA) 

Item Control LMA HMA s.e.d. Significance 
Initial live weight (kg) 509 509 509 6.87 1.000 
Slaughter weight (kg) 659 661 660 10.16 0.970 
DLWG1 (kg/d) 1.57 1.59 1.58 0.087 0.968 
Carcase weight (kg) 349 351 351 8.48 0.968 
Carcase conformation2  8.0 8.4 8.0 0.41 0.537 
Carcase fat class3 11.3 11.7 11.1 0.62 0.625 

1Daily live weight gain. 
2Conformation, 1= poor to 15 = excellent. 
3Fat Class, 1 = lean to 15 = fat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S1 Fatty acid and chemical composition of diets fed to beef heifers 
that contained no microalgae (Control), a low inclusion of microalgae 
(LMA) or a high inclusion of microalgae (HMA)  

 Control LMA HMA 
Fatty acid composition (g/kg DM)    
  C14:0  0.17 0.62 1.01 
  C16:0  2.89 7.66 12.08 
  C18:0  0.23 0.33 0.43 
  C18:1n-9  1.70 1.69 1.65 
  C18:2n-6  7.33 7.14 7.05 
  C18:3n-3  0.84 0.84 0.81 
  C20:5n-3  ND2 0.03 0.05 
  C22:5n-3  ND2 0.48 0.95 
  C22:6n-3  ND2 2.04 4.08 
  Total FA content 13.3 21.2 29.2 
Chemical composition (g/kg DM)    
  Dry matter (g/kg) 873 867 870 
  Organic matter 965 959 953 
  Crude protein (N x 6.25) 139 126 126 
  Neutral detergent fibre 259 241 244 
1Not detected 
  
 
 



 

 

 

Table S2 Correlation coefficients (P-value) between "seaweedy flavour” in 
steaks and the proportion of n-3 PUFA in the muscle from beef heifers fed 
diets varying in their inclusion of microalgae 

 
C18:3n-3 

α-linolenic 
C20:5n-3 

EPA1 
C22:5n-3 

DPA2 
C22:6n-3 

DHA3 
Seaweedy 
flavour 

-0.43 (0.019) 0.48 (0.007) -0.38 (0.037) 0.60 (0.000) 

            1Eicosapentaenoic acid. 2Docosapentaenoic acid. 3Docosahexaenoic acid. 
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