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Abstract  10 

There are significant challenges in managing the trade-offs between the production of pastures and 11 

grazing livestock for profit in the short term, and the persistence of the pasture resource in the longer 12 

term under stochastic climatic conditions. The profitability of using technologies such as grazing 13 

management, fertiliser inputs and the renovation of pastures are all influenced by complex inter-14 

temporal relations that need to be considered to provide suitable information for managers to enhance 15 

tactical and strategic decision making.  16 

In this study pasture is viewed as an exploitable renewable resource with its state defined by total 17 

pasture quantity and the proportion of desirable species in the sward.  The decision problem was 18 

formulated as a stochastic dynamic programming (SDP) model where the decision variables are 19 

seasonal stocking rate and pasture re-sowing and the objective is to maximise the present value of 20 

future economic returns. The solution defines the optimal seasonal decisions for all intervening states 21 

of the system as uncertainty unfolds.  22 

The model was applied to a representative farm in the high rainfall temperate pasture zone of Australia 23 

and the pasture states under which tactical grazing rest, low stocking rates and pasture re-sowing are 24 

optimal were identified.  Results provide useful general insights as well as specific prescriptions for the 25 

case study farm. The framework developed in this paper provides a means of identifying optimal 26 

tactical and strategic decisions that achieve maximum sustainable economic yields from grazing 27 

systems. 28 
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1. Introduction 31 

Managing any grazing system effectively requires an understanding of the complex dynamic 32 

interactions between the state of the pasture resource and the application of different technologies while 33 

also considering the influences of a stochastic climate on decision making.  Relevant technologies 34 

include grazing management, fertiliser application and the renovation of pastures through the 35 

introduction of new species. The decision maker needs to account for multiple and conflicting 36 

objectives of pasture resource production, persistence of desirable pasture species, livestock 37 

productivity and profit (Behrendt et al., 2013a). 38 

The decisions for developing and managing a pasture resource occur at different stages over the 39 

planning horizon.  For example, in most grazing enterprises, the renovation of a pasture with sown 40 

species is a long-term strategic decision, whereas the application of fertiliser tends to operate at a more 41 

tactical level within production years. Grazing management includes both stocking rate and time 42 

livestock spend grazing a paddock (and the corresponding rest periods from grazing) as decision 43 

variables. This means that grazing management operates at a tactical level, over periods ranging from a 44 

year in so-called ‘set stocking’ systems to days in intensive rotational grazing systems, but it also 45 

operates at a strategic level regarding herd management to maintain the a required targeted stocking 46 

rate in self-replacing systems.  47 

The benefits of each technology cannot be considered in isolation because of the presence of 48 

interactions between the technologies and sources of exogenous risk to the grazing system, such as 49 

climate and price variability (Antle, 1983; Hutchinson, 1992). These interactions occur over the short 50 

term through the production of pasture, and over the longer term through changes in the botanical 51 

composition of the pasture, which include both desirable and undesirable species groups (Dowling et 52 

al., 2005; Hutchinson, 1992). Botanical composition change has frequently been considered in 53 

rangeland studies (Stafford Smith et al., 1995; Torell et al., 1991), but has largely been neglected in 54 

temperate grasslands. Solutions to the complex problem of defining inter-temporal trade-offs between 55 

the productivity of a grazing system and the persistence of both desirable and undesirable species 56 

within pastures, can be obtained by modelling grasslands as exploitable renewable resources (Clark, 57 

1990) using a bioeconomic approach. 58 

In summary, the farm manager faces a complex, dynamic decision problem that involves multiple and 59 

conflicting objectives of pasture resource production and persistence, livestock productivity, and profit. 60 



The decision problem sits within a dynamic and risky environment, with investments in sowing 61 

pastures, building (and depleting) soil fertility and grazing management being made whilst considering 62 

the state of the pasture resource as it responds to uncertain climatic conditions. In essence, this is a 63 

sequential decision problem (Behrendt et al., 2013a), where producers manage the grazing system by 64 

making both tactical and strategic decisions at intervening states of the system as uncertainty unfolds 65 

(Trebeck and Hardaker, 1972). Climate risk is embedded within the sequential decision problem 66 

(Behrendt et al., 2013a; Hardaker et al., 1991), influencing the state of the system after decisions are 67 

made and before income is received. 68 

The state of the grassland resource at any time can be represented as a set of three state variables: 69 

herbage mass, botanical composition, and soil fertility. The pasture state can be influenced by the 70 

strategic decisions available to the producer, such as re-sowing of a pasture with desirable species and 71 

choosing the most appropriate stocking rate, as well as tactical decisions, such as fertiliser application 72 

and grazing management. In a multi-area grazing system, such as a farm with multiple paddocks, a 73 

mosaic of pasture states and soil fertility conditions exist and the decision problem becomes more 74 

complex.  75 

The exclusion of seasonal variability and tactical responses embedded in a sequential decision process 76 

has been shown to provide incorrect estimates of the economic benefits of a technology involved in 77 

complex biological and dynamic systems (Marshall et al., 1997). Finding optimal development paths in 78 

the pasture resource problem requires embedded risk to be considered. That is, any development plan 79 

needs to be adjusted over time depending on uncertain events and states that influence economic 80 

returns and occur as the farm plan evolves . This process situation defines conditions whereby the 81 

pasture resource problem may be formulated as a stochastic dynamic programming problem (Kennedy, 82 

1986). 83 

In this paper, we develop a bioeconomic framework to optimise pasture development and management 84 

where both pasture quantity and quality are considered within a stochastic environment. The model is 85 

used to derive optimal tactical and strategic decision rules that will result in maximum economic 86 

sustainable yields from the pasture resource.  87 

2. Methods 88 

The framework developed takes into account the impact of embedded climate risk, technology 89 

application and management on the botanical composition of the pasture resource over time which, in 90 



turn, impacts on optimal management strategies. This is achieved through the use of two simulation 91 

models, AusFarm (CSIRO, 2007) and the dynamic pasture resource development (DPRD) simulation 92 

model, described in Behrendt (2008), Behrendt et al. (2013a) and Behrendt et al. (2013b). The 93 

AusFarm model, a complex biophysical simulation model, was calibrated to data from the Cicerone 94 

Project farmlet experiment (Scott et al., 2013), and it was used to derive pasture production parameters 95 

for the DPRD model. The DPRD model was then used to solve the decision problem using a seasonal 96 

stochastic dynamic programming (SDP) frameworkThis is achieved through the development of a 97 

dynamic pasture resource development (DPRD) simulation model, described in Behrendt (2008), 98 

Behrendt et al. (2013a) and Behrendt et al. (2013b), and which is integrated into a seasonal stochastic 99 

dynamic programming (SDP) framework.  100 

2.1. Seasonal stochastic dynamic programming model 101 

The SDP solution process uses four seasonal transition probability matrices that are applied 102 

sequentially to solve a recursive equation with the objective of maximising the expected net present 103 

value of returns from sheep production systems over the long run. The SDP model finds seasonally 104 

optimal tactical and strategic decision rules in terms of stocking rates and pasture sowing, as functions 105 

of pasture mass and composition (proportion of desirables). 106 

Two SDP recursive equations represent the four seasons.  This is required due to all four seasons being 107 

embedded within a year type, rather than each season remaining stochastically independent. 108 

The SDP recursive equation for the first three seasons starting with autumn is: 109 

; for s=1,2,3 (1) 110 

The SDP recursive equation for the final season, summer, in a year is: 111 

; for s=4 (2) 112 

where s denotes the season (s = 1,...,4); t denotes the year;  is the optimal value function for the 113 

given season and year; E is the expectation operator;   is the stage return function for a given season; 114 

is a state vector consisting of three state variables (defined below) for the given season and year; 115 

is a decision vector consisting of two decision variables (defined below) for the given season and 116 

year;  s is the transformation function for the given season; and s is the discount factor (s = 1/(1 117 
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+s)).The seasonal discount rate, s, is pro-rated from the annual discount rate, ρ, based on the length 118 

of the season in days (s = ρ ∙ Ds/365). The difference between equations 1 and 2 is in the season and 119 

year indexes of the future value of the system, , which refers to the next season in the current 120 

year, and  refers to the first season in the next year. 121 

The state vector contains three state variables: 122 

  (3) 123 

where x is the proportion of desirable species in the sward and represents their basal area within the 124 

paddock; yd is the herbage mass of desirable species in the sward (kg Dry Matter/ha) and yud is the 125 

herbage mass of undesirable species (kg DM/ha). All state variables are measured at the start of season 126 

s in year t.  127 

The decision vector contains two decision variables: 128 

  (4) 129 

where sr is the stocking rate (hd/ha) and rs is the decision to re-sow the pasture, with both decisions 130 

taken at the start of season s in year t.  131 

The transformation functions,  s, are represented by transition probability matrices derived through 132 

Monte Carlo simulation with the biological model described in Behrendt et al. (2013a) and Behrendt et 133 

al. (2013b) as described below, and using stochastic multipliers derived from climatic data as explained 134 

in Behrendt (2008). The biological model defines the expected levels of production and the impact of 135 

disturbance as determined by stocking rate and re-sowing decisions.  136 

To solve the problem we define the Markovian transition probability matrices Ps and rewrite the 137 

expectation operators in discrete terms. The elements of matrix Ps represent the probability of 138 

moving from state i in season s to state j in season s+1. The elements of the transition matrices given 139 

the decision us are: 140 
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where rs is an index of rainfall and other climatic variables that affect pasture growth. We can now 142 

write the expectations for the recursive equations as: 143 
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  (6) 144 

  (7) 145 

subject to: 146 

  (8) 147 

; for all i  (9) 148 

Since there are only four seasons, the season counter s+1 is set back to 1 when s=4 in the equations 149 

above. The rainfall index (rs) is not explicitly represented as a functional form, but it is introduced 150 

through stochastic multipliers (Cacho et al., 1999) for pasture growth parameters as explained in 151 

Behrendt (2008).  152 

The SDP model is solved by value iteration (Kennedy, 1986) until policy convergence is obtained, with 153 

the resulting us*(zs) representing the optimal decision rule contingent on the state of the sward for each 154 

season. This is an autonomous problem and hence the solution applies to an infinite planning horizon. 155 

To solve this problem requires the state and decision variables that make up the vectors  and  to 156 

be expressed as finite sets. Table 1 presents the state variables and their boundaries used to generate the 157 

Transition Probability Matrices (TPM).  The number of states, nz, defines the size of the TPM (Ps(us)) 158 

for a season and decision, and represents the total number of possible combinations of the initial states 159 

that define (equation 3). In this case, 10 states of yd by 10 states of yud by 10 states of x make a 160 

total of 1000 possible combinations and initial states (Table 2). Therefore nz = 1000 and each TPM has 161 

dimensions of 1000 x 1000.   162 

Insert Table 1Table 1 near here 163 

Insert Table 2Table 2 near here 164 

Of the two decision variables that make up the decision vector , one is tactical, defining grazing 165 

management and the other is strategic, defining capital investment in the pasture resource. The stocking 166 

rate decision, sr, is made at the start of each season and provides the opportunity for the 167 

implementation of a range of grazing pressures or tactical grazing rests to benefit production, economic 168 
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returns and future botanical composition. The values of sr used are 0, 2, 4, 8, 10, 15, 20, 30, 40, and 50 169 

dry sheep equivalent (DSE) per ha, where a DSE is a standard unit of livestock feed requirements 170 

(Davies, 2005) and equivalent to a standard reference weight of 50 kg in the DPRD model (Behrendt, 171 

2008; Freer et al., 2007). The decision to renovate a pasture with sown species, rs, provides an 172 

opportunity for future production to be adjusted through a strategic capital investment. The decision to 173 

replace a pasture (rs = 1) is always accompanied by a stocking rate of 0 hd/ha. 174 

In total there are 11 sets of decisions that make up the decision vector u (Table 3). The decision vector 175 

is applied to each season and initial state. This makes a total combination of 44,000 initial states, 176 

seasons and decision variables simulated to populate the TPMs required to solve the SDP model. 177 

Insert Table 3Table 3 near here 178 

Soil fertility is an important variable that influences the decision to apply fertiliser, but its inclusion as 179 

an additional state variable would have made the dimensionality of the problem too large to be solved 180 

within a practical length of time, given the need to ensure the TPM was sensitive enough to reflect 181 

changes between pasture states. As a compromise the impact of different soil fertility regimes was 182 

investigated based on earlier studies into optimal fertiliser decisions (Behrendt et al., 2013b; Godden 183 

and Helyar, 1980; Woodward, 1996). Three sets of TPMs were generated to represent three different 184 

soil fertility regimes: 185 

a. High input system: high initial level of soil phosphorus (35 ppm Colwell P (Colwell, 186 

1963)) and high application rates of single superphosphate fertiliser (150 kg/ha/year) 187 

to maintain the required level of soil phosphorus. 188 

b. Moderate input system: moderate initial level of soil phosphorus (20 ppm Colwell P) 189 

and moderate application rates of single superphosphate fertiliser (100 kg/ha/year). 190 

c. Low input system: low initial level of soil phosphorus (10 ppm Colwell P) and low 191 

application rates of single superphosphate fertiliser (42 kg/ha/year). 192 

2.2. Dynamic pasture resource development model 193 

The components of the DPRD simulation model are derived from a range of previous studies into 194 

pasture and population dynamics, including competition within the sward structure and growth, sheep 195 

production and economics. The calibration and validation of the model has been presented through its 196 



application to a case study region in the high rainfall temperate perennial pasture zone of south eastern 197 

Australia (Behrendt et al., 2013a).  198 

The method applied in the DPRD model operates at the paddock level and incorporates two stages of 199 

modelling the change in pasture biomass: within a season and between seasons. In a single production 200 

year, four representative seasons have been defined that relate to tactical and strategic decision points 201 

within a grazing system, the biophysical characteristics of plant and functional group phenology and 202 

growth, and known periods associated with botanical composition change within pastures. In each 203 

season, modelling of pasture growth and consumption by grazing livestock operates on a daily time 204 

step (Figure 1). The empirical pasture composition sub model within the DPRD model adapts the 205 

method proposed by Loewer (1998) on the use of ‘partial’ paddocks, with the space occupied by 206 

species assumed to be temporally variable and respond to climate,  and management and inputs.  207 

Between seasons the relative areas occupied by desirable and undesirable species groups within the 208 

whole sward are modelled using exploited population growth modelling (Clark, 1990). This method 209 

uses differential equations to describe the change in the population of desirable species measured as the 210 

change in their basal area within the paddock. The model combines a logistic growth function in the 211 

absence of grazing with the impact of grazing on the desirable component of the sward (Behrendt et al., 212 

2013b). This method uses differential equations describing desirable species population growth, 213 

measured as the change in the area of the paddock they occupy (using a logistic growth function) and 214 

the impact of harvesting by livestock (Behrendt et al., 2013b). This approach encapsulates adapts the 215 

concepts of state and transition models of rangelands (Westoby et al., 1989), with the benefit of an 216 

indefinite number of pasture states and responses to climate, grazing and input factors. The approach is 217 

analogous to in-field measures of basal areas of pasture species and is similar to the methods of basal 218 

area adjustments applied in some rangeland models (Stafford Smith et al., 1995). Separation of pasture 219 

yield and basal area of different species groups is justified as basal area provides a more meaningful 220 

and stable indicator of ecological or botanical composition change than pasture yield (Cook et al., 221 

1978b), and allows the desirable components within the sward to increase their basal area over time, 222 

even when no re-sowing occurs. This assumption is supported by field evidence, where degraded sown 223 

pastures increase their basal areas under conditions of high soil fertility and in response to grazing 224 

rests, with a consequent increase in the proportion of the sward that is occupied by desirable native or 225 

introduced species (Cook et al., 1978a; Garden et al., 2000). Within the DPRD model, parameters for 226 



net pasture production, quality and botanical composition are varied between seasons but remain 227 

constant within a season, with four sequential seasons in a year type. 228 

Insert Figure 1Figure 1 near here 229 

The integration of the DPRD model into the SDP model occurs at seasonal decision stages. As grazing 230 

management can operate over periods ranging from days under intensive rotational grazing systems to 231 

a whole year under set stocked systems, it is desirable to simulate short decision intervals (Cacho et al., 232 

1995). However, allowing too short a decision interval increases complexity and computationally 233 

constrains the ability to solve the SDP model. The compromise of four seasonal stages is still able to 234 

replicate the tactical decisions of stocking rate or complete grazing rests, and maintains the broad 235 

assumption that the seasonal adjustment of stocking rate represents tactical adjustments to grazing 236 

management.  237 

The optimisation of the pasture resource problem at the paddock level and with four seasonal stages 238 

under flexible stocking rate conditions requires flock structure to be flexible. A representative Merino 239 

wether enterprise was modelled as the base case to represent the impact of different technologies and 240 

management on the production of a particular sheep enterprise. The purpose was to replicate the 241 

harvesting of pasture for the production of wool and sheep meat. To adequately represent the 242 

production of wool and meat, the livestock sub-model responds to changes in the available herbage 243 

mass and changes in botanical composition with its inherent effect on feed quality. The economic sub-244 

model assumes no changes in the capital value of livestock between the start and end of the season, 245 

with the economic return being the net gross margin return calculated using net weight gain or loss, and 246 

the quantity and quality of wool produced within that season. This process allows for sufficient 247 

flexibility with respect to stocking rate and pasture utilisation, as it is unconstrained by flock structure. 248 

This is analogous to the common approach of tactically managing a single land area within a larger 249 

mosaic of paddocks or land management areas that provide the total feed base for the entire flock. The 250 

area modelled in this paper would be used optimally to supply feed through a seasonally based 251 

rotational grazing system embedded within a whole farm system. 252 

The DPRD model was parameterised using experimental simulation output from a complex 253 

mechanistic grazing systems model, AusFarm (CSIRO, 2007). Complex biophysical models, such as 254 

AusFarm, that attempt to model biological systems as closely as possible, are not well suited to run as 255 

part of an economic optimisation model, because of the time required to solve each simulation run 256 
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(Cacho, 1998). Hence there was a need to achieve a balance between complexity in the biophysical 257 

model and adequacy of information for improved decision making. Achieving this compromise was the 258 

driving factor behind the design of the DPRD model and its parameterisation with AusFarm.  259 

Supplementary feeding decision rules were also not incorporated for similar reasons to those previously 260 

explained for fertiliser. However, supplementary feeding was also excluded as an endogenous decision 261 

to ensure dynamic optimisation of the pasture resource was not skewed by implicit supplementary 262 

feeding policies. This is because the quantity of supplements offered to grazing animals in the DPRD 263 

model influences the economics of fertiliser application, the grazing system, animal performance, 264 

pasture production and botanical composition.  265 

To generate the Transition Probability Matrices, the minimal supplementary feeding rules described by 266 

Behrendt et al. (2013a) were applied. That is, supplements were offered to grazing animals when 267 

necessary, to ensure they do not fall below a condition score of 2.0, or when total sward herbage mass 268 

is less than 100 kg DM/ha.  269 

2.3. Case study application 270 

In order to understand changes in botanical composition of pastures, long term grazing trials are 271 

required due to the dynamic and often slow changes in this variable (Dowling et al., 2005; Jones et al., 272 

1995). However, data from short term grazing trials may be used to derive empirical models to answer 273 

‘what if’ questions, as long as the models adjust composition in response to sporadic events, such as the 274 

effect of droughts on soil moisture (Jones et al., 1995). In this study the AusFarm program was 275 

calibrated to field experimental data accessed from the Cicerone Project’s farming systems experiment 276 

(Scott et al., 2013). This experiment was set up as whole farmlet management systems to study the long 277 

term profitability of three different input and grazing systems in New South Wales, Australia, over the 278 

period from July 2000 to December 2006. Further details of the calibration process have been described 279 

by Behrendt et al. (2013a) with the initial state of soil and pasture resources reported at the start of the 280 

Cicerone Project experiment (Guppy et al., 2013; Shakhane et al., 2013a) forming the basis for the 281 

application of the bioeconomic simulation framework. 282 

Results from the Cicerone farmlet experiment indicated that botanical composition in all of the farmlets 283 

changed in response to the level of system inputs and the imposed management (Shakhane et al., 284 

2013b). Over the period of the experiment, there was a general decline in the proportion of sown 285 

perennial grasses in the sward with a corresponding increase in the proportion of warm season grasses. 286 



The data available from the Cicerone Project farmlets, which includes biophysical, managerial and 287 

economic data, provided a sound basis for the calibration and demonstration of the AusFarm and 288 

DPRD models.  289 

The Cicerone Project operated in climate that is representative of the summer dominant, temperate high 290 

rainfall region found in south eastern Australia, 17 km south of Armidale. The mean annual rainfall 291 

over the years of 1968 to 2006 was 745mm per annum with approximately 66% of it falling between 292 

October and March (Behrendt et al., 2013c). To parameterise the DRPD model daily climate data for 293 

Armidale was used over the 30 year period from 1976 to 2006. This is inclusive of the period over 294 

which the Cicerone Project experiment ran (February 2001 to April 2006). A default duplex soil profile 295 

with a depth of 700mm and 5 layers was used to define the soil type for the Cicerone Project site (A 296 

horizon 0-300mm, B horizon 301-700mm) based on earlier research in the experimental area by 297 

McLeod et al. (1998).  298 

The species identified within the paddocks of the Cicerone Project experiment (Shakhane et al., 2013b) 299 

were allocated between desirable and undesirable species groups and 6 functional sub-groups 300 

(Behrendt, 2008). One minor functional group, being broadleaf plants and weeds, was not modelled as 301 

part of the desirable or undesirable species groups. Vulpia spp. and Bothriochloa macra were modelled 302 

as the indicative species for the undesirable group, whereas the desirable group was modelled using 303 

Austrodanthonia spp., Phalaris aquatica and Trifolium repens. These species were used as they either 304 

best represented the dominant species within the functional groups or were the most appropriate species 305 

within the limited number of species parameter sets available in AusFarm. To calibrate the Ausfarm 306 

model to the experimental data, stocking rates (on a dry sheep equivalent (DSE) basis, which 307 

corresponds to a 50kg standard reference weight, mature and thermo-neutral merino wether) were 308 

calculated from the Cicerone Project experiment database and applied on a daily basis within the 309 

AusFarm simulation (Behrendt et al., 2013a). Seasonal sigmoidal pasture growth curves (Cacho, 1993) 310 

in the DPRD model were defined based on rate of regrowth as a function of residual dry matter 311 

(established using a cut height script) In addition, long term daily quality dry matter distributions 312 

within 6 digestibility pools and biomass decay rates were derived from the 30 year Ausfarm simulations 313 

for both desirable and non-desirable groups. This was done only for moderate stocking rates of 10 314 

DSE/ha.    315 

2.4. Numerical Solution   316 



The linkage between the SDP model and the DPRD model occurs through the estimation of transition 317 

probability matrices (TPM) and biophysical matrices for each season. The model was implemented in 318 

Matlab (Mathworks_Inc, 2013) and solved by the following steps: 319 

1. Read parameters, set number of states (nz) and number of decisions (nu). 320 

2. Run the DPRD model in stochastic mode to derive transition probability matrices and 321 

biophysical matrices for each season. 322 

3. Save matrices from step 2 for future use. 323 

4. Set desired prices, costs and discount rate. 324 

5. Read matrices from step 2 into memory. 325 

6. Solve the recursive equation until policy convergence is achieved. 326 

7. Calculate optimal transition matrices. 327 

8. Retrieve optimal solutions for any initial state. 328 

The biophysical matrices created in step 2 have dimensions (nznu), and they record the expected 329 

outcome for each starting state and decision combination for the given season. The biophysical 330 

predictions recorded are body weight gain, wool grown, wool mean fibre diameter, and quantity of 331 

supplements fed. These matrices are then used to calculate the stage or seasonal returns in step 6 using 332 

the DPRD economic sub-model. This approach allows prices to be changed without requiring the 333 

transition probability matrices to be re-calculated, as this step is expensive in terms of time (taking 334 

approximately 72 hours to solve).  335 

The process for deriving the TPMs for each season in step 2 is as follows: 336 

i. Select a set of n stochastic multipliers to represent a random sequence of years to be used in 337 

all simulations to capture the effect of weather on pasture growth. 338 

ii. For each Set the initial state zi of the pasture (pasture mass, desirables, undesirables) for row i 339 

of the state matrix (Table 1), .and decision option, uj: 340 

a. Run m Monte Carlo simulations for the given initial state zi and for row j in the 341 

decision vector uS, using the sequence of stochastic multipliers selected in step i.  342 

Use the simulation results from iii to calculate state transition probabilities for state zi, and decision uj
s, 343 

represented as a row in the TPM for each decision (see equation xx5). 344 
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b.  345 

 Increase the decision counter j and return to step iii until the process has been 346 

completed for all decision options. 347 

 Increase the state counter i and return to step ii until the process has been completed for all 348 

initial states. 349 

This is a simplified representation of a complex process that involves seasonal changes in pasture 350 

quantity and quality. The design of the model ensures the Markov property is satisfied: the state 351 

transition probabilities depend only on the initial state and a random weather variable. This design 352 

implicitly assumes that any effects of weather events that occurred before time t on the outcomes at t+1 353 

are captured by the values of the state variables at t.  354 

This process (steps 1 to 8) has been applied in other studies to investigate how changing emphasis on 355 

the value of production outputs for different sheep production systems (wool and meat) and input costs 356 

(pasture sowing) changes the optimal decision vector (Behrendt et al., 2013a). In this study we 357 

conducted sensitivity testing of the effect of the discount rate on optimal decision rules and long-run 358 

probabilities under optimal management. The base discount rate used in this analysis was 4.94% and 359 

represented the real discount rate calculated from inflation and nominal interest rate data (plus a margin 360 

of 1.5%), over the period of 1976 to 2006 (ABARE, 2006). To investigate the sensitivity of the optimal 361 

decision to changes in the discount rate, values of 3%, 7%, 10%, 20% and 50% were also applied. 362 

The appropriate number of Monte Carlo iterations for the creation of the TPMs and the biophysical 363 

matrices were determined from the sum of squared deviations of an arbitrary selection of rows from the 364 

ps matrices as the number of iterations increased. The process was as follows: 365 

i. A given row  was selected (see equation 5), call this vector p1; 366 

ii. The row was populated by running the DPRD for a given number (m) of iterations starting 367 

with state i ; 368 

iii. The results were allocated to the corresponding states of p1 and converted to probabilities; 369 

iv. An additional iteration was run (as in step 2) and the probabilities resulting from m+1 iteration 370 

were allocated to vector p2 ; 371 

v. The sum of squared deviations between p1 and p2 was calculated, this value was saved as dK ; 372 
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vi. The values were updated as p1=p2, m=m+1; 373 

vii. Steps iv to vi were repeated until the value of dK was sufficiently close to zero. 374 

The convergence in the value of probabilities occurred with about 200 iterations of the Monte Carlo 375 

simulation of the DPRD model, and this was the number of iterations (m) used to generate the TPMs. 376 

The optimal transition matrices (step 7) are created based on the optimal solution us*(zs), by selecting 377 

the appropriate rows from the transition probability matrices Ps(us*(zs)). The resulting matrices Ps* 378 

have dimensions (nznz) and represent the state transition probabilities when the optimal decision rule 379 

is applied for the given season s.  380 

The stationary (long-run) state distributions under optimal management were calculated numerically by 381 

setting an arbitrary initial state w0 and repeating the operation  382 

௧ାଵݓ
௦ାଵ ൌ ݏ۾௧௦ݓ ∗ (10) 383 

until the value of ws
t converges for all seasons. This vector (wt

 s* ) represents the optimal stationary 384 

joint distribution for season s. These joint distributions are then used to derive univariate distributions 385 

of pasture mass and proportion of desirables, which then allow us to define approximate targets for 386 

management. The optimal expected path for any initial state (step 8) is calculated by defining an initial 387 

state vector z0 of dimensions (1nz). This vector contains a 1 in the position representing the initial 388 

state and 0 everywhere else. A time sequence of optimal states (in a probabilistic sense) is obtained by 389 

matrix multiplication: 390 

 391 

  392 

  393 

  394 

  395 

 396 

…   397 

 (12) 398 

Continuing this process will eventually result in convergence in the seasonal values of . These values 399 

represent the long-term state probabilities when the system is managed according to the optimal 400 

decision rule. ItsThe expected values of these distributions can be interpreted as approximate 401 



benchmarks for the optimal target level of pasture mass (yd* and yud*) and desirable coverage (x*) for 402 

each season.  403 

In presenting the SDP results, the level of pasture mass is reported as the combined area-weighted 404 

average pasture mass available in the whole sward, yC, and is calculated as follows: 405 

  (11) 406 

The appropriate number of Monte Carlo iterations for the creation of the TPMs and the biophysical 407 

matrices were determined from the sum of squared deviations of an arbitrary selection of rows from the 408 

ps matrices as the number of iterations increased. The process was as follows: 409 

1. A given row  was selected (see equation 5), call this vector p1; 410 

2. The row was populated by running the DPRD for a given number (m) of iterations starting 411 

with state i ; 412 

3. The results were allocated to the corresponding states of p1 and converted to probabilities; 413 

4. An additional iteration was run (as in step 2) and the probabilities resulting from m+1 iteration 414 

were allocated to vector p2 ; 415 

5. The sum of squared deviations between p1 and p2 was calculated, this value was saved as dK ; 416 

6. The values were updated as p1=p2, m=m+1; 417 

7. Steps 4 to 6 were repeated until the value of dK was sufficiently close to zero. 418 

A selection of the results from this process is presented in Figure 2. It is evident thatThe convergence 419 

in the value of probabilities occurs occurred with about 200 iterations of the Monte Carlo simulation of 420 

the DPRD model, and this was the number of iterations used to generate the TPMs. 421 

Insert Figure 2 near here 422 

3. Results 423 

The optimal solutions, us*(zs), for any initial state of the pasture resource were identified by solving the 424 

SDP model. For any given fertiliser input level, a total of 4000 optimal solutions decisions exist that 425 

describe the optimal stocking rate and pasture renovation policy for each of the 1000 initial states and 4 426 

seasons. Due to the size of the output dataset, the majority of results are presented through the 427 

calculation of long-run probabilities and expected optimal target levelsvalues for the states that 428 

 xyudxydyC  1



describe quantity and quality of the pasture resource, and by summarising the states that induce certain 429 

decisions, such as tactical grazing rests and pasture renovation.  430 

3.1 Optimal decision variables 431 

The optimal stocking rate or pasture re-sow decision varies with season and the state of the pasture. 432 

The distribution of optimal decisions for each initialall combinations of pasture state,  within each 433 

season and soil fertility input system is are presented in Figure 2. The initial state of the pasture is 434 

defined as pasture mass at the start of the season (Yc) on the y-axis and the proportion of desirables (x) 435 

that occupy the sward at the start of the season on the x-axis. Given the dimensions of the SDP outputs, 436 

these smoothed decision variable contour plots allow identification of trends in the optimal decision 437 

vector and provide a quick means of locating optimal decisions by finding corresponding initial pasture 438 

state coordinates. 439 

Insert Figure 2 near here 440 

Figure 2 simplifies the presentation of the 4000 optimal solutionsdecisions. The white areas within 441 

each chart indicate the states of pasture condition when the optimal decision was to re-sow the pasture 442 

at the start of a season. The optimal stocking rate decisions were aggregated into 6 groups, ranging 443 

from a tactical seasonal grazing rest (0 DSE/ha) to very high stocking rates (40 DSE/ha) over a season, 444 

and are represented by other colours. Figure 2 illustrates that the highest stocking rates across all 445 

proportions of desirables are maintained in spring, whereas the lowest stocking rates are maintained in 446 

winter and summer.  447 

Within each season the pattern of distribution of optimal decisions tend to be consistent across different 448 

soil fertility input systems. However, as soil fertility increases, so does the optimal stocking rate. The 449 

pasture states where complete seasonal grazing rest is optimal (a stocking rate of 0 hd/ha) occur 450 

predominately during summer, especially under low soil fertility conditions (Figure 2 d). This decision 451 

tends to become optimal when very low pasture mass conditions of less than 500kg DM/ha exist at the 452 

start of summer. Very low seasonal stocking rates (a stocking rate of 2 hd/ha) tend to be optimal during 453 

summer and winter, and to a lesser extent in autumn, when pasture mass is low (less than 1000kg 454 

DM/ha). During winter, as the proportion of desirables in the pasture decline, the pasture mass under 455 

which low seasonal stocking rates are optimal increases. This especially occurs under moderate and 456 

high soil fertility systems (Figure 2 f and j), which clearly indicates the optimal use of lower seasonal 457 

stocking rates at lower proportions of desirables (from 0.1 to 0.4), rather than the re-sowing of pasture.   458 



The decision to invest in pasture renovation tends to become the most profitable decision during winter 459 

and autumn. It occurs under all soil fertility input systems, however, as soil fertility increases during 460 

winter (Figure 2 f and j), a clearer delineation occurs at around 0.15 desirables, where less than this 461 

proportion of desirables triggers the optimal re-sow decision regardless of pasture mass.  462 

3.2 Optimal trajectoriesLong-run distributions under optimal management for different input 463 

systems 464 

The optimal decisions identified through the SDP process were used to derive long-run (stationary) 465 

probabilities as explained in the Methods section. Univariate cumulative distributions for both pasture 466 

biomass and the proportion of desirables are shown in Figure 3Figure 3 for all seasons under the three 467 

soil fertility input systems. The joint probability distributions corresponding to these results are 468 

presented in the online supplementary materials.  469 

The optimal solutions for any initial state of the pasture resource are used to demonstrate a time 470 

sequence of optimal states, based on the state transition probabilities and expected state values (see 471 

equation 12). The sequences of optimal states have been calculated and plotted for four diverse initial 472 

pasture states under each input system from the start of autumn (Figure 4). These values represent the 473 

expected values that result from the long-term state probabilities when the system is managed 474 

according to the optimal decision rule. The convergence of seasonal values that define the pasture 475 

resource () are the expected optimal target levels of pasture mass and proportion of desirables for each 476 

season.  477 

Insert Figure 3 near here 478 

As would be expected in the case study region (Behrendt et al., 2013c), winter pasture biomass at the 479 

start of winter exhibited consistently the lowest range of values amongst all four seasonal distributions, 480 

and across all soil fertility input systems. Autumn and spring were found to be similar, with sSummer 481 

maintaininged the highestlargest distribution of pasture biomass in the long run, whereas autumn and 482 

spring were found to be similar. Figure 3 indicates that with increasing soil fertility inputs, the expected 483 

value for pasture mass in each season increases. Although it is noticeable that winter experiences only a 484 

small increase in the mean pasture mass, whereas autumn, spring and in particular summer, experience 485 

much larger increases in this variable.  486 

Under a low soil fertility input system (Figure 3 b) the long run distributions for the proportion of 487 

desirables indicate that it is the lowest during summer and the highest during spring. Autumn and 488 



winter maintain similar distributions to those for moderate and high soil fertility input systems, albeit 489 

with noticeably lower expected values. As soil fertility input increases, the distribution of desirables 490 

between seasons becomes more balanced (Figure 3 d and f), although still maintaining similar patterns 491 

to those of low soil fertility systems.The trajectories of the proportion of desirables in both the low and 492 

moderate input systems (Figure 4 a and b) show that, at a pasture state of 900 kg DM/ha and 0.15 493 

desirables, the optimal decision was to re-sow the pasture, hence its increase to 0.95 desirables in the 494 

second season. For this initial state, under the high input system, the expected optimal decisions were a 495 

combination of tactical seasonal grazing rests (0 hd/ha) and reduced grazing pressure to allow both the 496 

amount of pasture mass and proportion of desirables to increase towards optimal target levels.   497 

For the two pasture states with 2500 kg DM/ha and either 0.15 or 0.75 desirables, the optimal decisions 498 

were to keep utilising the pastures, albeit at different stocking rates. For the state with 0.15 desirables 499 

under all input systems, stocking rates were adjusted to reduce the pasture mass to optimal target levels 500 

whilst concurrently increasing the proportion of desirables up to optimal target levels. For the initial 501 

state with 0.75 desirables and 2500 kg DM/ha, the highest expected stocking rates were maintained 502 

during the period of convergence as the condition of the pasture resource moved downward towards the 503 

optimal target state.  504 

Convergence of botanical composition indicated that, under a low soil fertility system, the identified 505 

optimal decision would direct the state of the pasture resource towards maintaining around 40% 506 

desirables in the sward. This increased to 50% and 60% for the moderate and high soil fertility systems 507 

respectively.   508 

Figure 4 also illustrates the optimal stocking rate decisions that were implemented to maximise the 509 

expected present value and direct the state of the system towards its optimal state. The optimal 510 

trajectories followed a seasonal pattern for pasture mass and stocking rate. Table 4 details the state of 511 

the pasture resource at policy convergence, which defines the expected optimal target levels for 512 

management to maximise the economically sustainable yields from the pasture resource. 513 

Insert Table 4 near here 514 

Optimal target levels for pasture mass ranged from 906 kg DM/ha during winter in the low input 515 

system, to 2231 kg DM/ha during summer in the moderate input system. On average, the highest target 516 

pasture mass was maintained in summer, closely followed by spring, autumn and winter. These end-of-517 

season optimal pasture mass targets tended to increase with increasing soil fertility in autumn, winter 518 



and spring. For summer, the optimal expected pasture mass peaked under a moderate input system, but 519 

at a lower proportion of desirables than under the high input system (0.47 versus 0.57). 520 

 521 

Increasing discount rates resulted in minimal changes in the long run distributions and mean values of 522 

either pasture mass or the proportion of desirables reduction in the optimal target level of desirable 523 

species in the sward by a small amount (Figure 5)(Table 4). There is some indication that increasing the 524 

discount rate, to well above what would be typically used in industry, leads to a slight reduction in the 525 

mean amount of pasture biomass across all seasons, with the proportion of desirables in the long-run 526 

expected to increase during spring. The changes in optimal target levels of pasture mass, proportion of 527 

desirables and stocking rates in response to changes in discount rates between 3% and 10%, were 528 

negligible. However, when examining optimal stocking rate and re-sow decisions via contour plots for 529 

each season and discount rate (not shown), there were subtle differences in the optimal stocking rate 530 

policies at lower levels of desirables in the sward. This indicated that, with higher discount rates, higher 531 

stocking rates were optimal at lower proportions of desirables, which is consistent with the data 532 

presented in Table 4. In addition, with lower discount rates, the states of pasture where the re-sow 533 

decision was optimal increased in winter and autumn. 534 

Insert Table 4 near here 535 

4. Discussion 536 

The results of the seasonal SDP model presented illustrate how the bioeconomic framework developed 537 

can be used to identify optimal tactical and strategic decisions in the management of livestock within a 538 

dynamic pasture resource under stochastic climatic conditions. The decision variables applied in this 539 

research are the strategic maintenance of soil fertility through the regular application of fertiliser, the 540 

strategic sowing of introduced species, and the tactical use of grazing management to utilise the pasture 541 

resource and manipulate botanical composition. The optimal decisions identified balance the economic 542 

returns from the present utilisation of the pasture with the long-term inter-temporal dynamic benefits 543 

and costs of maintaining a desirable botanical composition.  544 

The relationship reported between botanical composition, pasture biomass and profit over an infinite 545 

planning horizon, which is embedded within the identified optimal decisions (Figure 2), is a reflection 546 

of sustainable exploitation of the pasture resource that can occur over the long term. When a pasture 547 

state exists which represents a high proportion of desirables in the sward, exploitation or increased 548 



utilisation of the pasture resource and the desirable population through the application of high stocking 549 

rates would be expected to increase profits in the short run and cause the system to transition towards a 550 

state with a lower proportion of desirables and reduced levels of available pasture biomass over the 551 

long run. However, when sub-optimal levels of desirables exist in the sward, the optimal decision rules, 552 

through either reduced stocking rates or capital investment in re-sowing of the pasture, would be 553 

expected to transition the pasture towards a state with a higher proportion of desirables and increased 554 

amounts of available pasture biomass in the long run, but with reduced profitability in the short run.  555 

The use of tactical grazing rests has been recommended as a means of maintaining a higher proportion 556 

of desirable species (Michalk et al., 2003). Our framework allows guidelines for triggering seasonal 557 

grazing rests to be identified. An alternative to complete grazing rest is the application of low stocking 558 

rates (less than 5hd/ha), which was frequently optimal at states with low levels of pasture mass and 559 

desirables. This especially occurred in winter when there were less than 30% desirables in the sward.  560 

Autumn and winter were the seasons in which re-sowing of pastures occurred the most, which 561 

corresponds to predicted optimum times of sowing pastures in the New England Tablelands (Dowling 562 

and Smith, 1976). However, the re-sowing of pastures in summer and spring was also considered 563 

optimal under very degraded pasture states (5-15% desirables and less than 1000 kg DM/ha pasture 564 

mass). On agronomic principles this may not be optimal and reveals a limitation of the model, as the 565 

strategic decision of re-sowing is available at each seasonal decision stage.  566 

Significant differences existed in the digestibility of the pasture on offer due to changes in the 567 

proportion of desirables in the sward. This in turn influenced the levels of livestock production the 568 

pasture is capable of sustaining. This can be seen in the relationship between different states of pasture 569 

mass and the proportion of desirables, and the optimal stocking rate decision. The results suggest that, 570 

although different input systems would optimally maintain similar levels of pasture mass within 571 

seasons, the critical difference in determining livestock production and profit is the proportion of 572 

desirables in the sward. This is in part due to the high amount of summer production from the modelled 573 

undesirable species, that is, Bothriochloa macra (red grass), which is known to produce feed of low 574 

quality. This is supported by data from the Northern Tablelands which showed the total production of 575 

Bothriochloa macra to be similar to that of phalaris but with significantly different growth patterns as 576 

well as greater stem to leaf ratios and lower dry matter digestibilities (Robinson and Archer, 1988). 577 



Interacting with this relationship is the sequence of utilisation of the pasture resource by animals. For 578 

the case study, lower stocking rates were optimal in winter and summer, which allowed higher stocking 579 

rates during autumn and spring (Figure 2). These are periods where the desirable species within the 580 

sward maintain highly digestible pasture dry matter and enable higher levels of production. This 581 

reinforces the importance of considering the differences in pasture quality between the desirable and 582 

undesirable components of the sward in determining livestock production and the optimal development 583 

and management of the pasture resource. 584 

4.1 Optimal Long-run botanical composition under optimal management 585 

Results suggest that the expected long-run proportion of desirables in the sward varies with soil fertility 586 

and season, with overall annual mean values ranging between 0.43 and 0.49. These are significantly 587 

higher levels than those of the average producer in the high rainfall temperate pasture zone of Australia 588 

(Dellow et al., 2002). This potentially indicates that sub-optimal grazing management and pasture 589 

renovation practices are being applied in industry.  590 

Increasing soil fertility was found to lead to long-run distributions where there is a greater proportion of 591 

desirables in the summer, and all year round, as higher soil fertility input systems are known to be 592 

capable of maintaining a higher level of desirables in pasture swards (Cook et al., 1978a; Hill et al., 593 

2004). As soil fertility increases, the expected mean proportion of desirables in the long run increases 594 

by around 10% under the moderate and high input systems relative to the low-input system. These 595 

levels of desirables in the sward correspond to those found by Jones et al. (2006). In this case study, 596 

Bothriochloa macra and annual grasses such as Vulpia spp., which define the undesirable species, 597 

contributed significantly to the feed base for the wool-dominated livestock production system. The fact 598 

that they are labelled ‘undesirables’ does not detract from their value as a feed source and they are as 599 

important as desirables in determining the distribution of long-run pasture states (Behrendt, 2008; 600 

Behrendt et al., 2013a).Results suggest that the optimal pasture state depends on the level of soil 601 

fertility. The optimal target proportion of desirables in the sward varied with soil fertility between 0.40 602 

and 0.60. These levels were significantly higher than the average for producers in the high rainfall 603 

temperate pasture zone of Australia (Dellow et al., 2002; Kemp and Dowling, 1991) and potentially 604 

indicates sub-optimal grazing management and pasture renovation practices are being applied in 605 

industry.  606 



The lower optimal proportions of desirables occur under the low soil fertility system, with the ability of 607 

this low input system to maintain a higher level of desirables limited by the lack of fertiliser inputs 608 

(Cook et al., 1978a; Hill et al., 2004). As soil fertility increases, the optimal proportion of desirable 609 

species increases by 10% and 20% under the moderate and high input systems. These levels of 610 

desirables in the sward correspond to those found by Jones et al. (2006). In this case study, 611 

Bothriochloa macra and annual grasses such as Vulpia spp., which define the undesirable species, 612 

contributed significantly to the feed base for the wool-dominated livestock production system. The 613 

value of undesirable species is equally important in determining optimal pasture states, which has also 614 

been shown to be influenced by the type of livestock production system and its emphasis on meat or 615 

wool production (Behrendt, 2008; Behrendt et al., 2013a).  616 

The relationship reported between botanical composition and profit is a reflection of sustainable 617 

exploitation of the pasture resource that can occur and the time that it takes for the system to reach 618 

optimal states of pasture mass and botanical composition. When the initial pasture state represents a 619 

high proportion of desirables in the sward, exploitation of the pasture resource and the desirable 620 

population caused the system to move towards its lower optimal state. When sub-optimal levels of 621 

desirables existed in the sward, the pasture resource was improved through either reduced stocking 622 

rates or capital investment in re-sowing of the pasture.  623 

The use of tactical grazing rests has been recommended as a means of maintaining a higher proportion 624 

of desirable species (Michalk et al., 2003). Our framework allows guidelines for triggering seasonal 625 

grazing rests to be identified. An alternative to complete grazing rest is the application of low stocking 626 

rates (less than 5hd/ha), which was frequently optimal at pasture states with low levels of pasture mass 627 

and desirables. This especially occurred in winter when there were less than 30% desirables in the 628 

sward.  629 

Autumn and winter were the seasons in which re-sowing of pastures occurred the most, which 630 

corresponds to predicted optimum times of sowing pastures in the New England Tablelands (Dowling 631 

and Smith, 1976). However, the re-sowing of pastures in summer and spring was also considered 632 

optimal under very degraded pasture states (5-15% desirables and less than 1000 kg DM/ha pasture 633 

mass). On agronomic principles this may not be optimal and reveals a limitation of the model, as the 634 

strategic decision of re-sowing is available at each seasonal decision stage.  635 

4.2 Optimal Long-run pasture mass under optimal management 636 



The results indicate that optimal targetthe long-run distributions of pasture mass under optimal 637 

management vary to achieve maximum sustainable economic yields vary with season and soil fertility. 638 

In this case study their expected values levels were noticeably higher for autumn, spring and summer 639 

than those suggested by field research as being required for the persistence of sown species (Avery et 640 

al., 2000; Dowling et al., 1996), for the persistence of desirable grasses on the Central Tablelands of 641 

NSW (Michalk et al., 2003), and to maintain groundcover targets of 80% (Lilley and Moore, 2009). but 642 

are similar to those required for the persistence of desirable grasses on the Central Tablelands of NSW 643 

(Michalk et al., 2003). This indicates that producers in the case study region should would maintain 644 

higher pasture masses, if abiding by the optimal decision rules, than those typically recommended as 645 

minimum pasture benchmarks for livestock production (Bell and Blackwood, 1993).  In contrast the 646 

long run distribution of pasture biomass during winter is relatively low and more typical of industry 647 

practice (Scott et al., 2013). If a minimum of 500kg DM/ha of high quality pasture is required to 648 

maintain a dry sheep during winter (Bell and Blackwood, 1993), in the long run, low fertility systems 649 

are expected to be below this state 74% of the time. Whereas increasing soil fertility reduces the 650 

expected long run occurrence of this state to 53% and 43% of the time under moderate and high 651 

fertility input systems. This aligns with the typical feeding requirements and practices of sheep 652 

producers in the case study region (Scott et al., 2013). 653 

4.3 Sensitivity to discount rate 654 

Significant differences existed in the digestibility of the pasture on offer due to changes in the 655 

proportion of desirables in the sward. This in turn influenced the levels of livestock production the 656 

pasture is capable of sustaining. This can be seen in the relationship between pasture mass, the 657 

proportion of desirables and stocking rate. The results suggest that, although different input systems 658 

would optimally maintain similar levels of pasture mass within seasons, the critical difference in 659 

determining livestock production and profit is the proportion of desirables in the sward. This is in part 660 

due to the high amount of summer production from the modelled undesirable species, that is, 661 

Bothriochloa macra (red grass), which is known to produce feed of low quality. This is supported by 662 

data from the Northern Tablelands which showed the total production of Bothriochloa macra to be 663 

similar to that of phalaris but with significantly different growth patterns as well as greater stem to leaf 664 

ratios and lower dry matter digestibilities (Robinson and Archer, 1988). 665 



Interacting with this relationship is the sequence of how the pasture resource is utilised. For the case 666 

study, lower stocking rates were optimal in winter and summer, which allowed higher stocking rates 667 

during autumn and spring. These are periods where the desirable species within the sward maintain 668 

highly digestible pasture dry matter and enable higher levels of production. This reinforces the 669 

importance of the differences in pasture quality between the desirable and undesirable components of 670 

the sward in determining livestock production and the optimal development and management of the 671 

pasture resource. 672 

The sensitivity analysis of optimal decisions to the discount rate suggested optimal stocking rate and 673 

re-sowing polices were robust across a broad range of discount rates. The reason for this was that 674 

increased stocking rates and the re-sow decision were antagonistic policies in terms of maximising 675 

present value. Under high discount rates, there was an increasing emphasis on higher stocking rates to 676 

lift pasture resource utilisation and maximise returns in the short term. This was, however, limited by 677 

the cost of sowing and the opportunity cost of not grazing during the establishment period under high 678 

discount rates.  679 

5. Conclusions 680 

The SDP model identified the optimal seasonal stocking rate and pasture sowing polices for each type 681 

of soil fertility input system under the assumption that the objective of the decision maker is to 682 

maximise the expected present value of future returns. These optimal policies were derived within a 683 

framework where the risks from a stochastic climate are embedded into the decision-making process. 684 

From the application of these optimal decisions the expected optimal state of the pasture resource was 685 

defined in terms of pasture mass and botanical composition. Long-run probabilities of total pasture 686 

mass and the proportion of desirables under optimal management were examined to construct expected 687 

outcomes over an infinite planning horizon.  688 

The extrapolation of the results from this research to other regions with confidence is difficult due to a 689 

significant number of interrelating variables and parameters. Differences in climate, soil type, 690 

topography and the species that make up the pasture would influence the optimal decision vector. The 691 

relative differences in quality and seasonal growth patterns of the different species groups would 692 

influence the optimal target levels of desirable species and the optimal stocking rates to achieve these 693 

levels. Differences in the rate of botanical change responses of the desirable species population to 694 

tactical grazing rests, soil fertility and livestock harvesting also affects the long term dynamics of the 695 



pasture resource. However, the ability of the framework to adjust the optimal decision vector in 696 

response to these variables and parameters enables its application in a broad range of situations. Given 697 

all grasslands are subject to botanical composition change, whether grazed by transient herbivores or 698 

domesticated livestock, the bioeconomic framework described is broadly applicable. The most 699 

significant challenge in applying the model to systems in other geographical areas is the calibration of 700 

pasture production and botanical composition change parameters, which ideally should be based on 701 

experimental data.  702 

The identified optimal decisions are broadly applicable to other paddocks within a farming system that 703 

maintain similar species within its their desirable and undesirable groups. The seasonal stocking rate 704 

contour plots provided a visual guide to a large range of optimal decisions for different states of the 705 

pasture resource in each season. Conceptually, the application of this tool could be used to help guide a 706 

producer or advisor in deciding the optimal management of a paddock at the start of a season.  707 

The time frame for decision making regarding pasture development has been suggested to be 10-15 708 

years for profit maximisation and 20-30 years for the sustainability and persistence of the pasture 709 

system (Lodge et al., 1998; Scott and Lovett, 1997). A key feature of the optimal decision rules that 710 

were derived using this bioeconomic framework is that they remain optimal regardless of the time 711 

frame being considered, as they represent an infinite planning horizon. An interesting outcome is that 712 

the discount rate only had a small effect on optimal decision rules, because of the antagonism between 713 

the benefits of higher stocking rates and the costs of replacing overgrazed pastures.  714 

The optimal target levels optimal long-run distributions and their expected values indicate a the states 715 

of the pasture resource which corresponds to that of the maximum economic sustainable yield, whereby 716 

the pasture is viewed as an exploited renewable resource (Clark, 1990). This sustainable state is based 717 

on the objective of profit maximisation, but is constrained by the impact of livestock harvesting on the 718 

desirable plant population, the concurrent impacts on the productivity of the grazing system, and the 719 

capital cost of resource renewal.  720 

A key feature of this study was the embedding of production risk into the pasture development 721 

decision-making problem with the incorporation of a dynamic botanical composition model. The 722 

benefit of this approach is that it considers the inter-temporal trade-offs between investments in pasture 723 

development and the utilisation of the pasture resource under climatic uncertainty. The study has 724 



shown how we can more realistically model the complex decision process which faces livestock 725 

producers and thereby provide readily transferable information to improve decision making. 726 
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Figure 1: A diagrammatic outline of the Dynamic Pasture Resource Development simulation 883 

model at the paddock level  (Behrendt et al., 2013b). 884 
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Figure 2: Relationship between the sum of squared deviations (dK) of probabilities and iterations 887 

for a given initial state. 888 

 889 

 890 

Figure 2: Smoothed optimal stocking rate and re-sow contour plots showing the relationship 891 

between the state of the pasture resource (in terms of season, pasture mass and proportion of 892 

desirables at the beginning of the season) on the mean optimal decision, being either the season-893 

long stocking rate decision or re-sow decision, for a paddock with different fertiliser input 894 

systems (SF). The mean optimal decision contours represent the decision variables of pasture re-895 

sowing ( █ ), grazing rest ( █ ), mean sr of 2 ( █ ), 8 ( █ ), 15 ( █ ), 25 ( █ ) and 40 DSE/ha ( █ ). 896 
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Figure 3: Long-run (sMean trajectories demonstrating policy convergence and expected optimal 900 

target levelstationary) probabilities for pasture mass and the proportion of desirables for each 901 

season (- - - Autumn, െWinter, - - - Spring, െSummer) under optimal management in low, 902 

moderate and high soil fertility input systems (SF), for the initial states of 0.15 desirable/900kg 903 

DM/ha (─); 0.75 desirable/900kg DM/ha (─); 0.15 desirable/2500kg DM/ha (─); and 0.75 904 

desirable/2500kg DM/ha (─). Stocking rate trajectory indicates optimal sr decision for the 905 

corresponding pasture state with expected values shown for each seasonal distribution (circle).   906 
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Figure 4: Effect of discount rate on the optimal proportion of desirables for each season under a 909 

moderate input wool production system. Discount rates are 3% (x), 4.94% (▲), 7% (♦) and 910 

10%(■). 911 

 912 
 913 
Tables 914 

Table 1: State variables and their boundaries 915 

Pasture Biomass for Desirable (yd) and 

Undesirable (yud) swards (kg DM/ha) 
Proportion of Desirables (x) 

State Minimum Maximum State Minimum Maximum 

100 0 200 0.05 0.00 0.10 

300 200 400 0.15 0.10 0.20 

500 400 600 0.25 0.20 0.30 

700 600 800 0.35 0.30 0.40 

900 800 1000 0.45 0.40 0.50 

1250 1000 1500 0.55 0.50 0.60 

1750 1500 2000 0.65 0.60 0.70 

2500 2000 3000 0.75 0.70 0.80 

3500 3000 4000 0.85 0.80 0.90 

5000 4000 ∞ 0.95 0.90 1.00 

 916 

 917 

Table 2: Summary of state vector, z. 918 

 Elements of state vector z 

State yud yd x 



1 100 100 0.05 

2 100 100 0.15 

3 100 100 0.25 

...    

499 900 5000 0.85 

500 900 5000 0.95 

501 1250 100 0.05 

....    

998 5000 5000 0.75 

999 5000 5000 0.85 

1000 5000 5000 0.95 

 919 

 920 

Table 3: Decision variables that make up the decision vector . 921 

 922 

 Elements of decision vector u 

Decision sr rs 

1 0 0 

2 2 0 

3 4 0 

4 8 0 

5 10 0 

6 15 0 

7 20 0 

8 30 0 

9 40 0 

s
tu



10 50 0 

11 0 1 

 923 

 924 

Table 4: Effect of discount rate on expected values of long-run (stationary) probabilities for 925 

pasture biomass and the proportion of desirables under optimal management. 926 

Discount Rate 
Season starting 

Autumn  Winter  Spring  Summer 

Pasture Biomass (kg DM/ha) 
   

3%  2213  611  2312  2899 

5%  2213  611  2310  2905 

7%  2213  611  2229  2905 

10%  2212  610  2229  2905 

20%  2201  610  2171  2870 
50%  2162  604  1941  2877 

Proportion desirables (XD) 

3%  0.51  0.47  0.68  0.29 

5%  0.51  0.47  0.68  0.28 

7%  0.51  0.47  0.70  0.28 

10%  0.51  0.47  0.70  0.28 

20%   0.50    0.47    0.72    0.30  

50%   0.49    0.46    0.79    0.30  
 927 

Table 4: Optimal mean target levels for the proportion of desirables and pasture mass at policy 928 

convergence under alternative fertiliser input systems.  929 

Pasture state 

variable 

Fertiliser 

Input 

System 

Season ending  

Summer Autumn Winter Spring Mean 

Proportion Desirables  

 Low 0.38 0.42 0.45 0.41 0.41 

 Moderate 0.47 0.51 0.52 0.50 0.50 

 High 0.57 0.62 0.61 0.61 0.60 

 Mean 0.47 0.52 0.53 0.50 0.51 



Pasture Mass (kg DM/ha)  

 Low 2092 1550 906 1850 1602 

 Moderate 2231 1742 1141 1975 1772 

 High 2034 1772 1123 2030 1740 

 Mean 2121 1689 1056 1952 1705 

 930 
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