Using seasonal stochastic dynamic programming to identify optimal management decisions that achieve maximum economic sustainable yields from grasslands under climate risk

by Behrendt, K., Cacho, O., Scott, J.M. and Jones, R.

Copyright, Publisher and Additional Information: This is the author accepted manuscript. The final published version (version of record) is available online via Csiro Publishing Please refer to any applicable terms of use of the publisher.

This version is made available under the CC-BY-ND-NC licence: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

DOI: https://doi.org/10.1016/j.agsy.2016.03.001

Behrendt, K., Cacho, O., Scott, J.M. and Jones, R.2016. Using Seasonal Stochastic Dynamic Programming to identify optimal management decisions that achieve maximum economic sustainable yields from grasslands under climate risk. *Agricultural Systems* 145 (June), pp. 13-23.

- 1 Using Seasonal Stochastic Dynamic Programming to identify optimal management decisions that
- 2 achieve maximum economic sustainable yields from grasslands under climate risk
- 3 Karl Behrendt^{A,D}, Oscar Cacho^B, James M. Scott^B, and Randall Jones^C
- 4 ^AGraham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt
- 5 University), Charles Sturt University, School of Agricultural and Wine Science, Orange, NSW 2800,
- 6 Australia.
- 7 ^BUniversity of New England, Armidale NSW 2351, Australia.
- 8 ^CNSW Department of Primary Industries, Forest Road, Orange NSW 2800, Australia.
- 9 ^DAuthor for correspondence: email: <u>kbehrendt@csu.edu.au</u>; Phone: +61 2 6365 7119
- 10 Abstract
- 11 There are significant challenges in managing the trade-offs between the production of pastures and
- 12 grazing livestock for profit in the short term, and the persistence of the pasture resource in the longer
- 13 term under stochastic climatic conditions. The profitability of using technologies such as grazing
- 14 management, fertiliser inputs and the renovation of pastures are all influenced by complex inter-
- 15 temporal relations that need to be considered to provide suitable information for managers to enhance
- 16 tactical and strategic decision making.
- 17 In this study pasture is viewed as an exploitable renewable resource with its state defined by total
- 18 pasture quantity and the proportion of desirable species in the sward. The decision problem was
- 19 formulated as a stochastic dynamic programming (SDP) model where the decision variables are
- 20 seasonal stocking rate and pasture re-sowing and the objective is to maximise the present value of
- 21 future economic returns. The solution defines the optimal seasonal decisions for all intervening states
- 22 of the system as uncertainty unfolds.
- 23 The model was applied to a representative farm in the high rainfall temperate pasture zone of Australia
- and the pasture states under which tactical grazing rest, low stocking rates and pasture re-sowing are
- 25 optimal were identified. Results provide useful general insights as well as specific prescriptions for the
- 26 case study farm. The framework developed in this paper provides a means of identifying optimal
- 27 tactical and strategic decisions that achieve maximum sustainable economic yields from grazing
- 28 systems.
- 29 Keywords
- 30 grazing system, stocking rate, pasture renovation

31 1. Introduction

- 32 Managing any grazing system effectively requires an understanding of the complex dynamic
- 33 interactions between the state of the pasture resource and the application of different technologies while
- 34 also considering the influences of a stochastic climate on decision making. Relevant technologies
- 35 include grazing management, fertiliser application and the renovation of pastures through the
- 36 introduction of new species. The decision maker needs to account for multiple and conflicting
- 37 objectives of pasture resource production, persistence of desirable pasture species, livestock
- 38 productivity and profit (Behrendt et al., 2013a).
- 39 The decisions for developing and managing a pasture resource occur at different stages over the
- 40 planning horizon. For example, in most grazing enterprises, the renovation of a pasture with sown
- 41 species is a long-term strategic decision, whereas the application of fertiliser tends to operate at a more
- 42 tactical level within production years. Grazing management includes both stocking rate and time
- 43 livestock spend grazing a paddock (and the corresponding rest periods from grazing) as decision
- 44 variables. This means that grazing management operates at a tactical level, over periods ranging from a
- 45 year in so-called 'set stocking' systems to days in intensive rotational grazing systems, but it also
- 46 operates at a strategic level regarding herd management to maintain the <u>a</u> required targeted stocking
- 47 rate-in self-replacing systems.
- 48 The benefits of each technology cannot be considered in isolation because of the presence of
- 49 interactions between the technologies and sources of exogenous risk to the grazing system, such as
- 50 climate and price variability (Antle, 1983; Hutchinson, 1992). These interactions occur over the short
- 51 term through the production of pasture, and over the longer term through changes in the botanical
- 52 composition of the pasture, which include both desirable and undesirable species groups (Dowling et
- 53 al., 2005; Hutchinson, 1992). Botanical composition change has frequently been considered in
- rangeland studies (Stafford Smith et al., 1995; Torell et al., 1991), but has largely been neglected in
- 55 temperate grasslands. Solutions to the complex problem of defining inter-temporal trade-offs between
- 56 the productivity of a grazing system and the persistence of both desirable and undesirable species
- 57 within pastures, can be obtained by modelling grasslands as exploitable renewable resources (Clark,
- 58 1990) using a bioeconomic approach.
- 59 In summary, the farm manager faces a complex, dynamic decision problem that involves multiple and
- 60 conflicting objectives of pasture resource production and persistence, livestock productivity, and profit.

- 61 The decision problem sits within a dynamic and risky environment, with investments in sowing
- 62 pastures, building (and depleting) soil fertility and grazing management being made whilst considering
- 63 the state of the pasture resource as it responds to uncertain climatic conditions. In essence, this is a
- 64 sequential decision problem (Behrendt et al., 2013a), where producers manage the grazing system by
- 65 making both tactical and strategic decisions at intervening states of the system as uncertainty unfolds
- 66 (Trebeck and Hardaker, 1972). Climate risk is embedded within the sequential decision problem
- 67 (Behrendt et al., 2013a; Hardaker et al., 1991), influencing the state of the system after decisions are
- 68 made and before income is received.
- 69 The state of the grassland resource at any time can be represented as a set of three state variables:
- 70 herbage mass, botanical composition, and soil fertility. The pasture state can be influenced by the
- 71 strategic decisions available to the producer, such as re-sowing of a pasture with desirable species and
- 72 choosing the most appropriate stocking rate, as well as tactical decisions, such as fertiliser application
- 73 and grazing management. In a multi-area grazing system, such as a farm with multiple paddocks, a
- 74 mosaic of pasture states and soil fertility conditions exist and the decision problem becomes more
- 75 complex.
- 76 The exclusion of seasonal variability and tactical responses embedded in a sequential decision process
- 77 has been shown to provide incorrect estimates of the economic benefits of a technology involved in
- 78 complex biological and dynamic systems (Marshall et al., 1997). Finding optimal development paths in
- 79 the pasture resource problem requires embedded risk to be considered. That is, any development plan
- 80 needs to be adjusted over time depending on uncertain events and states that influence economic
- 81 returns and occur as the farm plan evolves-. This process situation defines conditions whereby the
- pasture resource problem may be formulated as a stochastic dynamic programming problem (Kennedy,1986).
- 84 In this paper, we develop a bioeconomic framework to optimise pasture development and management
- 85 where both pasture quantity and quality are considered within a stochastic environment. The model is
- 86 used to derive optimal tactical and strategic decision rules that will result in maximum economic
- 87 sustainable yields from the pasture resource.
- 88 2. Methods
- 89 The framework developed takes into account the impact of embedded climate risk, technology
- application and management on the botanical composition of the pasture resource over time which, in

- 91 turn, impacts on optimal management strategies. This is achieved through the use of two simulation
- 92 models, AusFarm (CSIRO, 2007) and the dynamic pasture resource development (DPRD) simulation
- 93 model, described in Behrendt (2008), Behrendt et al. (2013a) and Behrendt et al. (2013b). The
- 94 AusFarm model, a complex biophysical simulation model, was calibrated to data from the Cicerone
- 95 Project farmlet experiment (Scott et al., 2013), and it was used to derive pasture production parameters
- 96 for the DPRD model. The DPRD model was then used to solve the decision problem using a seasonal
- 97 stochastic dynamic programming (SDP) framework This is achieved through the development of a
- 98 dynamic pasture resource development (DPRD) simulation model, described in Behrendt (2008),
- 99 Behrendt et al. (2013a) and Behrendt et al. (2013b), and which is integrated into a seasonal stochastic
- 100 dynamic programming (SDP) framework.

101 2.1. Seasonal stochastic dynamic programming model

- 102 The SDP solution process uses four seasonal transition probability matrices that are applied
- 103 sequentially to solve a recursive equation with the objective of maximising the expected net present
- 104 value of returns from sheep production systems over the long run. The SDP model finds seasonally
- 105 optimal tactical and strategic decision rules in terms of stocking rates and pasture sowing, as functions
- 106 of pasture mass and composition (proportion of desirables).
- 107 Two SDP recursive equations represent the four seasons. <u>This is required due to all four seasons being</u>
- 108 embedded within a year type, rather than each season remaining stochastically independent.
- 109 The SDP recursive equation for the first three seasons starting with autumn is:

110
$$V_t^s(\mathbf{z}_t^s) = \max_{\mathbf{u}_t^s} \left[E\left[\pi(\mathbf{z}_t^s, \mathbf{u}_t^s)\right] + \delta_s E\left[V_t^{s+1}\left(\theta^s(\mathbf{z}_t^s, \mathbf{u}_t^s)\right)\right] \right]; \text{ for } s=1,2,3$$
(1)

111 The SDP recursive equation for the final season, summer, in a year is:

112
$$V_t^s(\mathbf{z}_t^s) = \max_{\mathbf{u}_t^s} \left[E\left[\pi(\mathbf{z}_t^s, \mathbf{u}_t^s)\right] + \delta_s E\left[V_{t+1}^1\left(\theta^s(\mathbf{z}_t^s, \mathbf{u}_t^s)\right)\right] \right]; \text{ for } s=4$$
(2)

- 113 where s denotes the season (s = 1,...,4); t denotes the year; V_t^s is the optimal value function for the
- 114 given season and year; E is the expectation operator; π is the stage return function for a given season;
- 115 \mathbf{z}_t^s is a state vector consisting of three state variables (defined below) for the given season and year;
- 116 \mathbf{u}_{t}^{s} is a decision vector consisting of two decision variables (defined below) for the given season and
- 117 year; θ^s is the transformation function for the given season; and δ_s is the discount factor ($\delta_s = 1/(1 + \delta_s)$

118 $+\rho_s$). The seasonal discount rate, ρ_s , is pro-rated from the annual discount rate, ρ_s based on the length of the season in days ($\rho_s = \rho \cdot D_s/365$). The difference between equations 1 and 2 is in the season and 119 year indexes of the future value of the system, V_t^{s+1} , which refers to the next season in the current 120 year, and V_{t+1}^1 refers to the first season in the next year. 121 122 The state vector \mathbf{z}_{t}^{s} contains three state variables: $\mathbf{z}_{t}^{s} = (x_{t}^{s}, yd_{t}^{s}, yud_{t}^{s})$ 123 (3) 124 where x is the proportion of desirable species in the sward and represents their basal area within the 125 paddock; yd is the herbage mass of desirable species in the sward (kg Dry Matter/ha) and yud is the 126 herbage mass of undesirable species (kg DM/ha). All state variables are measured at the start of season 127 s in year t. 128 The decision vector \mathbf{u}_{t}^{s} contains two decision variables: $\mathbf{u}_{t}^{s} = (sr_{t}^{s}, rs_{t}^{s})$ 129 (4) 130 where sr is the stocking rate (hd/ha) and rs is the decision to re-sow the pasture, with both decisions 131 taken at the start of season s in year t. 132 The transformation functions, θ^s , are represented by transition probability matrices derived through 133 Monte Carlo simulation with the biological model described in Behrendt et al. (2013a) and Behrendt et 134 al. (2013b) as described below, and using stochastic multipliers derived from climatic data as explained 135 in Behrendt (2008). The biological model defines the expected levels of production and the impact of 136 disturbance as determined by stocking rate and re-sowing decisions. 137 To solve the problem we define the Markovian transition probability matrices Ps and rewrite the 138 expectation operators in discrete terms. The elements P_{ij}^s of matrix \mathbf{P}^s represent the probability of 139 moving from state i in season s to state j in season s+1. The elements of the transition matrices given 140 the decision **u**^s are: $P_{ij}^{s}\left(\mathbf{u}^{s}\right) = P\left(\mathbf{z}_{j}^{s+1} \mid \mathbf{z}_{i}^{s}, \mathbf{u}^{s}, r^{s}\right) \underbrace{P_{ij}^{s}\left(\mathbf{u}^{s}\right) = P\left(\mathbf{z}_{j}^{s+1} \mid \mathbf{z}_{i}^{s}, \mathbf{u}^{w}, r^{s}\right)}_{i}$ 141 (5)

Field Code Changed

142 where rs is an index of rainfall and other climatic variables that affect pasture growth. We can now

143 write the expectations for the recursive equations as:

Formatted: Lowered by 7 pt

144
$$E\left[\pi\left(\mathbf{z}_{i}^{s},\mathbf{u}^{s}\right)\right]=\sum_{i}P\left(r_{i}\right)\pi\left(\mathbf{z}_{i}^{s},\mathbf{u}^{s},r_{j}\right)$$

(6)

145
$$E\left[V\left(\theta^{s}\left(\mathbf{z}_{i}^{s},\mathbf{u}^{s}\right)\right)\right] = \sum_{j} P_{ij}^{s}\left(\mathbf{u}^{s}\right)V\left(\mathbf{z}_{j}^{s+1}\right)$$
(7)

146 subject to:

147
$$\sum_{j} P(r_j) = 1$$
(8)

148
$$\sum_{i} P_{ij}^{s} \left(\mathbf{u}^{s} \right) = 1; \text{ for all } i$$
(9)

149 Since there are only four seasons, the season counter s+1 is set back to 1 when s=4 in the equations

150 above. The rainfall index (r^{s}) is not explicitly represented as a functional form, but it is introduced

- 151 through stochastic multipliers (Cacho et al., 1999) for pasture growth parameters as explained in
- 152 Behrendt (2008).

153 The SDP model is solved by value iteration (Kennedy, 1986) until policy convergence is obtained, with 154 the resulting $\mathbf{u}^{s*}(\mathbf{z}^{s})$ representing the optimal decision rule contingent on the state of the sward for each 155 season. This is an autonomous problem and hence the solution applies to an infinite planning horizon. 156 To solve this problem requires the state and decision variables that make up the vectors \mathbf{z}_t^s and \mathbf{u}_t^s to 157 be expressed as finite sets. Table 1 presents the state variables and their boundaries used to generate the 158 Transition Probability Matrices (TPM). The number of states, n_z , defines the size of the TPM ($\mathbf{P}^{s}(\mathbf{u}^{s})$) 159 for a season and decision, and represents the total number of possible combinations of the initial states 160 that define \mathbf{z}_t^s (equation 3). In this case, 10 states of yd by 10 states of yud by 10 states of x make a total of 1000 possible combinations and initial states (Table 2). Therefore $n_z = 1000$ and each TPM has 161 162 dimensions of 1000 x 1000. 163 Insert Table 1 Table 1 near here 164 Insert Table 2 Table 2 near here 165 Of the two decision variables that make up the decision vector \mathbf{u}_t^s , one is tactical, defining grazing

- 166 management and the other is strategic, defining capital investment in the pasture resource. The stocking
- 167 rate decision, *sr*, is made at the start of each season and provides the opportunity for the
- 168 implementation of a range of grazing pressures or tactical grazing rests to benefit production, economic

169	returns and future botanical composition. The values of sr used are 0, 2, 4, 8, 10, 15, 20, 30, 40, and 50	
170	dry sheep equivalent (DSE) per ha, where a DSE is a standard unit of livestock feed requirements	
171	(Davies, 2005) and equivalent to a standard reference weight of 50 kg in the DPRD model (Behrendt,	
172	2008; Freer et al., 2007). The decision to renovate a pasture with sown species, rs, provides an	
173	opportunity for future production to be adjusted through a strategic capital investment. The decision to	
174	replace a pasture ($rs = 1$) is always accompanied by a stocking rate of 0 hd/ha.	
175	In total there are 11 sets of decisions that make up the decision vector u (Table 3). The decision vector	
176	is applied to each season and initial state. This makes a total combination of 44,000 initial states,	
177	seasons and decision variables simulated to populate the TPMs required to solve the SDP model.	
178	Insert <u>Table 3</u> near here	
179	Soil fertility is an important variable that influences the decision to apply fertiliser, but its inclusion as	
180	an additional state variable would have made the dimensionality of the problem too large to be solved	
181	within a practical length of time, given the need to ensure the TPM was sensitive enough to reflect	
182	changes between pasture states. As a compromise the impact of different soil fertility regimes was	
183	investigated based on earlier studies into optimal fertiliser decisions (Behrendt et al., 2013b; Godden	
184	and Helyar, 1980; Woodward, 1996). Three sets of TPMs were generated to represent three different	
185	soil fertility regimes:	
186	a. High input system: high initial level of soil phosphorus (35 ppm Colwell P (Colwell,	
187	1963)) and high application rates of single superphosphate fertiliser (150 kg/ha/year)	
188	to maintain the required level of soil phosphorus.	
189	b. Moderate input system: moderate initial level of soil phosphorus (20 ppm Colwell P)	
190	and moderate application rates of single superphosphate fertiliser (100 kg/ha/year).	
101	c Low input system: low initial level of soil phosphorus (10 ppm Colwell P) and low	
197	application rates of single superphosphate fertiliser (42 kg/ba/year)	
172	appreation rates of single superpriosphate fertiliser (+2 kg/na/year).	
193	2.2. Dynamic pasture resource development model	
194	The components of the DPRD simulation model are derived from a range of previous studies into	

195 pasture and population dynamics, including competition within the sward structure and growth, sheep

196 production and economics. The calibration and validation of the model has been presented through its

197 application to a case study region in the high rainfall temperate perennial pasture zone of south eastern

198 Australia (Behrendt et al., 2013a).

199 The method applied in the DPRD model operates at the paddock level and incorporates two stages of 200 modelling the change in pasture biomass: within a season and between seasons. In a single production 201 year, four representative seasons have been defined that relate to tactical and strategic decision points 202 within a grazing system, the biophysical characteristics of plant and functional group phenology and 203 growth, and known periods associated with botanical composition change within pastures. In each 204 season, modelling of pasture growth and consumption by grazing livestock operates on a daily time 205 step (Figure 1). The empirical pasture composition sub model within the DPRD model adapts the 206 method proposed by Loewer (1998) on the use of 'partial' paddocks, with the space occupied by 207 species assumed to be temporally variable and respond to climate, and management and inputs. 208 Between seasons the relative areas occupied by desirable and undesirable species groups within the 209 whole sward are modelled using exploited population growth modelling (Clark, 1990). This method 210 uses differential equations to describe the change in the population of desirable species measured as the 211 change in their basal area within the paddock. The model combines a logistic growth function in the 212 absence of grazing with the impact of grazing on the desirable component of the sward (Behrendt et al., 213 2013b). This method uses differential equations describing desirable species population growth, 214 measured as the change in the area of the paddock they occupy (using a logistic growth function) and 215 the impact of harvesting by livestock (Behrendt et al., 2013b). This approach encapsulates adapts the 216 concepts of state and transition models of rangelands (Westoby et al., 1989), with the benefit of an 217 indefinite number of pasture states and responses to climate, grazing and input factors. The approach is 218 analogous to in-field measures of basal areas of pasture species and is similar to the methods of basal 219 area adjustments applied in some rangeland models (Stafford Smith et al., 1995). Separation of pasture 220 yield and basal area of different species groups is justified as basal area provides a more meaningful 221 and stable indicator of ecological or botanical composition change than pasture yield (Cook et al., 222 1978b), and allows the desirable components within the sward to increase their basal area over time, 223 even when no re-sowing occurs. This assumption is supported by field evidence, where degraded sown 224 pastures increase their basal areas under conditions of high soil fertility and in response to grazing 225 rests, with a consequent increase in the proportion of the sward that is occupied by desirable native or 226 introduced species (Cook et al., 1978a; Garden et al., 2000). Within the DPRD model, parameters for

227 net pasture production, quality and botanical composition are varied between seasons but remain

228 constant within a season, with four sequential seasons in a year type.

229	Insert Figure 1 Figure 1 near here	Formatted: Font: Bold
230	The integration of the DPRD model into the SDP model occurs at seasonal decision stages. As grazing	
231	management can operate over periods ranging from days under intensive rotational grazing systems to	
232	a whole year under set stocked systems, it is desirable to simulate short decision intervals (Cacho et al.,	
233	1995). However, allowing too short a decision interval increases complexity and computationally	
234	constrains the ability to solve the SDP model. The compromise of four seasonal stages is still able to	
235	replicate the tactical decisions of stocking rate or complete grazing rests, and maintains the broad	
236	assumption that the seasonal adjustment of stocking rate represents tactical adjustments to grazing	
237	management.	
238	The optimisation of the pasture resource problem at the paddock level and with four seasonal stages	
239	under flexible stocking rate conditions requires flock structure to be flexible. A representative Merino	
240	wether enterprise was modelled as the base case to represent the impact of different technologies and	
241	management on the production of a particular sheep enterprise. The purpose was to replicate the	
242	harvesting of pasture for the production of wool and sheep meat. To adequately represent the	
243	production of wool and meat, the livestock sub-model responds to changes in the available herbage	
244	mass and changes in botanical composition with its inherent effect on feed quality. The economic sub-	
245	model assumes no changes in the capital value of livestock between the start and end of the season,	
246	with the economic return being the net gross margin return calculated using net weight gain or loss, and	
247	the quantity and quality of wool produced within that season. This process allows for sufficient	
248	flexibility with respect to stocking rate and pasture utilisation, as it is unconstrained by flock structure.	
249	This is analogous to the common approach of tactically managing a single land area within a larger	
250	mosaic of paddocks or land management areas that provide the total feed base for the entire flock. The	
251	area modelled in this paper would be used optimally to supply feed through a seasonally based	
252	rotational grazing system embedded within a whole farm system.	
253	The DPRD model was parameterised using experimental simulation output from a complex	
254	mechanistic grazing systems model, AusFarm (CSIRO, 2007). Complex biophysical models, such as	
255	AusFarm, that attempt to model biological systems as closely as possible, are not well suited to run as	

256 part of an economic optimisation model, because of the time required to solve each simulation run

- 257 (Cacho, 1998). Hence there was a need to achieve a balance between complexity in the biophysical
- 258 model and adequacy of information for improved decision making. Achieving this compromise was the
- 259 driving factor behind the design of the DPRD model and its parameterisation with AusFarm.
- 260 Supplementary feeding decision rules were also not incorporated for similar reasons to those previously
- 261 explained for fertiliser. However, supplementary feeding was also excluded as an endogenous decision
- 262 to ensure dynamic optimisation of the pasture resource was not skewed by implicit supplementary
- 263 feeding policies. This is because the quantity of supplements offered to grazing animals in the DPRD
- 264 model influences the economics of fertiliser application, the grazing system, animal performance,
- 265 pasture production and botanical composition.
- 266 To generate the Transition Probability Matrices, the minimal supplementary feeding rules described by
- 267 Behrendt et al. (2013a) were applied. That is, supplements were offered to grazing animals when
- 268 necessary, to ensure they do not fall below a condition score of 2.0, or when total sward herbage mass
- is less than 100 kg DM/ha.
- 270 2.3. Case study application
- 271 In order to understand changes in botanical composition of pastures, long term grazing trials are
- 272 required due to the dynamic and often slow changes in this variable (Dowling et al., 2005; Jones et al.,
- 273 1995). However, data from short term grazing trials may be used to derive empirical models to answer
- 274 'what if' questions, as long as the models adjust composition in response to sporadic events, such as the
- 275 effect of droughts on soil moisture (Jones et al., 1995). In this study the AusFarm program was
- 276 calibrated to field experimental data accessed from the Cicerone Project's farming systems experiment
- 277 (Scott et al., 2013). This experiment was set up as whole farmlet management systems to study the long
- 278 term profitability of three different input and grazing systems in New South Wales, Australia, over the
- 279 period from July 2000 to December 2006. Further details of the calibration process have been described
- 280 by Behrendt et al. (2013a) with the initial state of soil and pasture resources reported at the start of the
- 281 Cicerone Project experiment (Guppy et al., 2013; Shakhane et al., 2013a) forming the basis for the
- application of the bioeconomic simulation framework.
- 283 Results from the Cicerone farmlet experiment indicated that botanical composition in all of the farmlets
- 284 changed in response to the level of system inputs and the imposed management (Shakhane et al.,
- 285 2013b). Over the period of the experiment, there was a general decline in the proportion of sown
- 286 perennial grasses in the sward with a corresponding increase in the proportion of warm season grasses.

287	The data available from the Cicerone Project farmlets, which includes biophysical, managerial and
288	economic data, provided a sound basis for the calibration and demonstration of the AusFarm and
289	DPRD models.
290	The Cicerone Project operated in climate that is representative of the summer dominant, temperate high
291	rainfall region found in south eastern Australia, 17 km south of Armidale. The mean annual rainfall
292	over the years of 1968 to 2006 was 745mm per annum with approximately 66% of it falling between
293	October and March (Behrendt et al., 2013c). To parameterise the DRPD model daily climate data for
294	Armidale was used over the 30 year period from 1976 to 2006. This is inclusive of the period over
295	which the Cicerone Project experiment ran (February 2001 to April 2006). A default duplex soil profile
296	with a depth of 700mm and 5 layers was used to define the soil type for the Cicerone Project site (A
297	horizon 0-300mm, B horizon 301-700mm) based on earlier research in the experimental area by
298	<u>McLeod et al. (1998).</u>
299	The species identified within the paddocks of the Cicerone Project experiment (Shakhane et al., 2013b)
300	were allocated between desirable and undesirable species groups and 6 functional sub-groups
301	(Behrendt, 2008). One minor functional group, being broadleaf plants and weeds, was not modelled as
302	part of the desirable or undesirable species groups. Vulpia spp. and Bothriochloa macra were modelled
303	as the indicative species for the undesirable group, whereas the desirable group was modelled using
304	Austrodanthonia spp., Phalaris aquatica and Trifolium repens. These species were used as they either
305	best represented the dominant species within the functional groups or were the most appropriate species
306	within the limited number of species parameter sets available in AusFarm. To calibrate the Ausfarm
307	model to the experimental data, stocking rates (on a dry sheep equivalent (DSE) basis, which
308	corresponds to a 50kg standard reference weight, mature and thermo-neutral merino wether) were
309	calculated from the Cicerone Project experiment database and applied on a daily basis within the
310	AusFarm simulation (Behrendt et al., 2013a). Seasonal sigmoidal pasture growth curves (Cacho, 1993)
311	in the DPRD model were defined based on rate of regrowth as a function of residual dry matter
312	(established using a cut height script) In addition, long term daily quality dry matter distributions
313	within 6 digestibility pools and biomass decay rates were derived from the 30 year Ausfarm simulations
314	for both desirable and non-desirable groups. This was done only for moderate stocking rates of 10
315	DSE/ha.
316	2.4. Numerical Solution

- 317 The linkage between the SDP model and the DPRD model occurs through the estimation of transition
- 318 probability matrices (TPM) and biophysical matrices for each season. The model was implemented in
- 319 Matlab (Mathworks_Inc, 2013) and solved by the following steps:
- 320 1. Read parameters, set number of states (n_z) and number of decisions (n_u) .
- 321 2. Run the DPRD model in stochastic mode to derive transition probability matrices and
- 322 biophysical matrices for each season.
- 323 3. Save matrices from step 2 for future use.
- 324 4. Set desired prices, costs and discount rate.
- 325 5. Read matrices from step 2 into memory.
- 326 6. Solve the recursive equation until policy convergence is achieved.
- 327 7. Calculate optimal transition matrices.
- 328 8. Retrieve optimal solutions for any initial state.
- 329 The biophysical matrices created in step 2 have dimensions $(n_z \times n_u)$, and they record the expected
- 330 outcome for each starting state and decision combination for the given season. The biophysical
- 331 predictions recorded are body weight gain, wool grown, wool mean fibre diameter, and quantity of
- 332 supplements fed. These matrices are then used to calculate the stage or seasonal returns in step 6 using
- 333 the DPRD economic sub-model. This approach allows prices to be changed without requiring the
- 334 transition probability matrices to be re-calculated, as this step is expensive in terms of time (taking
- 335 approximately 72 hours to solve).
- 336 The process for deriving the TPMs for each season in step 2 is as follows:
- 337 <u>i. Select a set of *n* stochastic multipliers to represent a random sequence of years to be used in</u>
- 338 all simulations to capture the effect of weather on pasture growth.
- 339 <u>ii.</u> For each <u>Set the initial state z_i of the pasture (pasture mass, desirables, undesirables) for row *i*</u>
- 340 of the state matrix (Table 1), and decision option, μ_i :
- 341 <u>a. Run *m* Monte Carlo simulations for the given initial state *z_i* and for row *j* in the
 342 decision vector **u**^s, using the sequence of stochastic multipliers selected in step i.
 </u>
- Formatted: Font: Italic
 Formatted: Font: Italic, Subscript
 Formatted
 Formatted
- 343 Use the simulation results from iii to calculate state transition probabilities for state z_{i_2} and decision u_i^s ,
- 344 represented as a row in the TPM for each decision (see equation xx5).

345	<u>b.</u>
346	<u>— Increase the decision counter <i>j</i> and return to step iii until the process has been</u>
347	completed for all decision options.
348	
349	initial states.
350	This is a simplified representation of a complex process that involves seasonal changes in pasture
351	quantity and quality. The design of the model ensures the Markov property is satisfied: the state
352	transition probabilities depend only on the initial state and a random weather variable. This design
353	implicitly assumes that any effects of weather events that occurred before time t on the outcomes at $t+1$
354	are captured by the values of the state variables at t.
355	This process (steps 1 to 8) has been applied in other studies to investigate how changing emphasis on
356	the value of production outputs for different sheep production systems (wool and meat) and input costs
357	(pasture sowing) changes the optimal decision vector (Behrendt et al., 2013a). In this study we
358	conducted sensitivity testing of the effect of the discount rate on optimal decision rules and long-run
359	probabilities under optimal management. The base discount rate used in this analysis was 4.94% and
360	represented the real discount rate calculated from inflation and nominal interest rate data (plus a margin
361	of 1.5%), over the period of 1976 to 2006 (ABARE, 2006). To investigate the sensitivity of the optimal
362	decision to changes in the discount rate, values of 3%, 7%, 10%, 20% and 50% were also applied.
363	The appropriate number of Monte Carlo iterations for the creation of the TPMs and the biophysical
364	matrices were determined from the sum of squared deviations of an arbitrary selection of rows from the
365	p ^s matrices as the number of iterations increased. The process was as follows:
200	$\sum_{i=1}^{n} \frac{p_i(-s)}{s}$
366	<u>1. A given row</u> P_{j} (u ⁺) was selected (see equation 5), call this vector p ₁ ;
367	ii. The row was populated by running the DPRD for a given number (m) of iterations starting
368	with state <i>i</i> :
369	iii The results were allocated to the corresponding states of \mathbf{n}_1 and converted to probabilities:
505	
370	iv. An additional iteration was run (as in step 2) and the probabilities resulting from $m+1$ iteration
371	were allocated to vector \mathbf{p}_2 ;
372	v. The sum of squared deviations between \mathbf{p}_1 and \mathbf{p}_2 was calculated, this value was saved as $d_{\underline{K}}$;
I	

373	vi. The values were updated as $\mathbf{p}_1 = \mathbf{p}_2$, $m = m + 1$;	
374	vii. Steps iv to vi were repeated until the value of $d_{\mathcal{K}}$ was sufficiently close to zero.	
375	The convergence in the value of probabilities occurred with about 200 iterations of the Monte Carlo	
376	simulation of the DPRD model, and this was the number of iterations (<i>m</i>) used to generate the TPMs.	
377	The optimal transition matrices (step 7) are created based on the optimal solution $\mathbf{u}^{s*}(\mathbf{z}^{s})$, by selecting	
378	the appropriate rows from the transition probability matrices $P^s(u^{s*}(z^s))$. The resulting matrices P^{s*}	
379	have dimensions $(n_z \times n_z)$ and represent the state transition probabilities when the optimal decision rule	
380	is applied for the given season <i>s</i> .	
381	The stationary (long-run) state distributions under optimal management were calculated numerically by	
382	setting an arbitrary initial state w_0 and repeating the operation	
383	$w_{t+1}^{s+1} = w_t^s \mathbf{P}s * $ (10)	
384	until the value of w_{2}^{s} converges for all seasons. This vector (w_{2}^{s*}) represents the optimal stationary	
385	joint distribution for season s. These joint distributions are then used to derive univariate distributions	
386	of pasture mass and proportion of desirables, which then allow us to define approximate targets for	
387	management. The optimal expected path for any initial state (step 8) is calculated by defining an initial	
388	state vector \mathbf{z}_0 of dimensions (1× n_z). This vector contains a 1 in the position representing the initial	
389	state and 0 everywhere else. A time sequence of optimal states (in a probabilistic sense) is obtained by	
390	matrix multiplication:	
391		
392		
393		
394		
395		
396		
397		
398	(12)	
399	Continuing this process will eventually result in convergence in the seasonal values of . These values	
400	represent the long-term state probabilities when the system is managed according to the optimal	
401	decision rule. Its The expected values of these distributions can be interpreted as approximate	

402	<u>benchmarks for</u> the optimal target level of pasture mass (yd^* and yud^*) and desirable coverage (x^*) for
403	each season.
404	In presenting the SDP results, the level of pasture mass is reported as the combined area-weighted
405	average pasture mass available in the whole sward, y_c , and is calculated as follows:
406	$y_C = yd \cdot x + yud \cdot (1 - x) \tag{11}$
407	The appropriate number of Monte Carlo iterations for the creation of the TPMs and the biophysical
408	matrices were determined from the sum of squared deviations of an arbitrary selection of rows from the
409	p*-matrices as the number of iterations increased. The process was as follows:
410	1. A given row-was selected (see equation 5), call this vector \mathbf{p}_i ;
411	2. The row was populated by running the DPRD for a given number (m) of iterations starting
412	with state <i>i</i> ;
413	3. The results were allocated to the corresponding states of p_1 -and converted to probabilities;
414	4. An additional iteration was run (as in step 2) and the probabilities resulting from $m+1$ iteration
415	were allocated to vector p ₂ ;
416	5. The sum of squared deviations between \mathbf{p}_1 and \mathbf{p}_2 was calculated, this value was saved as d_K ;
417	6. The values were updated as $\mathbf{p}_1 = \mathbf{p}_2$, $m = m + 1$;
418	7. Steps 4 to 6 were repeated until the value of d_k was sufficiently close to zero.
419	A selection of the results from this process is presented in Figure 2. It is evident that The convergence
420	in the value of probabilities occurs occurred with about 200 iterations of the Monte Carlo simulation of
421	the DPRD model, and this was the number of iterations used to generate the TPMs.
422	Insert Figure 2 near here
423	3. Results
424	The optimal solutions, $\mathbf{u}^{s*}(\mathbf{z}^{s})$, for any initial state of the pasture resource were identified by solving the
425	SDP model. For any given fertiliser input level, a total of 4000 optimal solutions decisions exist that
426	describe the optimal stocking rate and pasture renovation policy for each of the 1000 initial states and 4
427	seasons. Due to the size of the output dataset, the majority of results are presented through the
428	calculation of <u>long-run probabilities and</u> expected optimal target levelsvalues for the states that

429 describe <u>quantity and quality of</u> the pasture resource, and by summarising the states that induce certain

430 decisions, such as tactical grazing rests and pasture renovation.

431 **3.1 Optimal decision variables**

432 The optimal stocking rate or pasture re-sow decision varies with season and the state of the pasture.

433 The distribution of optimal decisions for each initialall combinations of pasture state, within each

434 season and soil fertility input system is are presented in Figure 2. The initial state of the pasture is

435 defined as pasture mass at the start of the season (Yc) on the y-axis and the proportion of desirables (x)

436 that occupy the sward at the start of the season on the x-axis. Given the dimensions of the SDP outputs,

437 these smoothed decision variable contour plots allow identification of trends in the optimal decision

vector and provide a quick means of locating optimal decisions by finding corresponding initial pasturestate coordinates.

440

Insert Figure 2 near here

441 Figure 2 simplifies the presentation of the 4000 optimal solutionsdecisions. The white areas within 442 each chart indicate the states of pasture condition when the optimal decision was to re-sow the pasture 443 at the start of a season. The optimal stocking rate decisions were aggregated into 6 groups, ranging 444 from a tactical seasonal grazing rest (0 DSE/ha) to very high stocking rates (40 DSE/ha) over a season, 445 and are represented by other colours. Figure 2 illustrates that the highest stocking rates across all 446 proportions of desirables are maintained in spring, whereas the lowest stocking rates are maintained in 447 winter and summer. 448 Within each season the pattern of distribution of optimal decisions tend to be consistent across different 449 soil fertility input systems. However, as soil fertility increases, so does the optimal stocking rate. The 450 pasture states where complete seasonal grazing rest is optimal (a stocking rate of 0 hd/ha) occur 451 predominately during summer, especially under low soil fertility conditions (Figure 2 d). This decision 452 tends to become optimal when very low pasture mass conditions of less than 500kg DM/ha exist at the 453 start of summer. Very low seasonal stocking rates (a stocking rate of 2 hd/ha) tend to be optimal during 454 summer and winter, and to a lesser extent in autumn, when pasture mass is low (less than 1000kg 455 DM/ha). During winter, as the proportion of desirables in the pasture decline, the pasture mass under 456 which low seasonal stocking rates are optimal increases. This especially occurs under moderate and 457 high soil fertility systems (Figure 2 f and j), which clearly indicates the optimal use of lower seasonal 458 stocking rates at lower proportions of desirables (from 0.1 to 0.4), rather than the re-sowing of pasture.

459	The decision to invest in pasture renovation tends to become the most profitable decision during winter
460	and autumn. It occurs under all soil fertility input systems, however, as soil fertility increases during
461	winter (Figure 2 f and j), a clearer delineation occurs at around 0.15 desirables, where less than this
462	proportion of desirables triggers the optimal re-sow decision regardless of pasture mass.
463	3.2 Optimal trajectoriesLong-run distributions under optimal management for different input
464	systems
465	The optimal decisions identified through the SDP process were used to derive long-run (stationary)
466	probabilities as explained in the Methods section. Univariate cumulative distributions for both pasture
467	biomass and the proportion of desirables are shown in Figure 3 Figure 3 for all seasons under the three
468	soil fertility input systems. The joint probability distributions corresponding to these results are
469	presented in the online supplementary materials.
470	The optimal solutions for any initial state of the pasture resource are used to demonstrate a time
471	sequence of optimal states, based on the state transition probabilities and expected state values (see
472	equation 12). The sequences of optimal states have been calculated and plotted for four diverse initial
473	pasture states under each input system from the start of autumn (Figure 4). These values represent the
474	expected values that result from the long-term state probabilities when the system is managed
475	according to the optimal decision rule. The convergence of seasonal values that define the pasture
476	resource () are the expected optimal target levels of pasture mass and proportion of desirables for each
477	season.
470	
4/8	Insert Figure 3 near here
478	Insert Figure 3 near here As would be expected in the case study region (Behrendt et al., 2013c), winter pasture biomass at the
478 479 480	Insert Figure 3 near here As would be expected in the case study region (Behrendt et al., 2013c), winter pasture biomass at the start of winter exhibited consistently the lowest range of values amongst all four seasonal distributions,
478 479 480 481	Insert Figure 3 near here As would be expected in the case study region (Behrendt et al., 2013c), winter-pasture biomass at the start of winter exhibited consistently the lowest range of values amongst all four seasonal distributions, and across all soil fertility input systems. Autumn and spring were found to be similar, with sSummer
478 479 480 481 482	Insert Figure 3 near here As would be expected in the case study region (Behrendt et al., 2013c), winter-pasture biomass at the start of winter exhibited consistently the lowest range of values amongst all four seasonal distributions, and across all soil fertility input systems. Autumn and spring were found to be similar, with sSummer maintaininged the highest argest distribution of pasture biomass in the long run, whereas autumn and
478 479 480 481 482 483	Insert Figure 3 near here As would be expected in the case study region (Behrendt et al., 2013c), winter-pasture biomass at the start of winter exhibited consistently the lowest range of values amongst all four seasonal distributions, and across all soil fertility input systems. Autumn and spring were found to be similar, with sSummer maintaininged the highestlargest distribution of pasture biomass in the long run, whereas autumn and spring were found to be similar. Figure 3 indicates that with increasing soil fertility inputs, the expected
478 479 480 481 482 483 484	Insert Figure 3 near here As would be expected in the case study region (Behrendt et al., 2013c), winter-pasture biomass at the start of winter exhibited consistently the lowest range of values amongst all four seasonal distributions, and across all soil fertility input systems. Autumn and spring were found to be similar, with sSummer maintaininged the highestlargest distribution of pasture biomass in the long run, whereas autumn and spring were found to be similar. Figure 3 indicates that with increasing soil fertility inputs, the expected value for pasture mass in each season increases. Although it is noticeable that winter experiences only a
478 479 480 481 482 483 484 485	Insert Figure 3 near here As would be expected in the case study region (Behrendt et al., 2013c), winter pasture biomass at the start of winter exhibited consistently the lowest range of values amongst all four seasonal distributions, and across all soil fertility input systems. Autumn and spring were found to be similar, with sSummer maintaininged the highestlargest distribution of pasture biomass in the long run, whereas autumn and spring were found to be similar. Figure 3 indicates that with increasing soil fertility inputs, the expected value for pasture mass in each season increases. Although it is noticeable that winter experiences only a small increase in the mean pasture mass, whereas autumn, spring and in particular summer, experience
478 479 480 481 482 483 484 485 486	Insert Figure 3 near here As would be expected in the case study region (Behrendt et al., 2013c), winter-pasture biomass at the start of winter exhibited consistently the lowest range of values amongst all four seasonal distributions, and across all soil fertility input systems. Autumn and spring were found to be similar, with sSummer maintaininged the highestlargest distribution of pasture biomass in the long run, whereas autumn and spring were found to be similar. Figure 3 indicates that with increasing soil fertility inputs, the expected value for pasture mass in each season increases. Although it is noticeable that winter experiences only a small increase in the mean pasture mass, whereas autumn, spring and in particular summer, experience much larger increases in this variable.
478 479 480 481 482 483 484 485 486 487	Insert Figure 3 near here As would be expected in the case study region (Behrendt et al., 2013c), winter-pasture biomass at the start of winter exhibited consistently the lowest range of values amongst all four seasonal distributions, and across all soil fertility input systems. Autumn and spring were found to be similar, with sSummer maintaininged the highestlargest distribution of pasture biomass in the long run, whereas autumn and spring were found to be similar. Figure 3 indicates that with increasing soil fertility inputs, the expected value for pasture mass in each season increases. Although it is noticeable that winter experiences only a much larger increases in this variable. Under a low soil fertility input system (Figure 3 b) the long run distributions for the proportion of
478 479 480 481 482 483 484 485 486 487 488	Insert Figure 3 near here Insert Figure 3 near here As would be expected in the case study region (Behrendt et al., 2013c), winter-pasture biomass at the Image: Start of winter exhibited consistently the lowest range of values amongst all four seasonal distributions, I ad across all soil fertility input systems. Autumn and spring were found to be similar, with sSummer Image: Start of winter exhibited consistently the lowest range of values amongst all four seasonal distributions, I ad across all soil fertility input systems. Autumn and spring were found to be similar, with sSummer Image: Start of winter exhibited consistently the lowest the with increasing soil fertility inputs, the expected I pring were found to be similar. Figure 3 indicates that with increasing soil fertility inputs, the expected is mall increase in the mean pasture mass, whereas autumn, spring and in particular summer, experiences only a I much larger increases in this variable. Image: Start of winter experience of the proportion of the start of the start of the start of the proportion of the start of the start of the start of the start of the proportion of the start of the st

489	winter maintain similar distributions to those for moderate and high soil fertility input systems, albeit
490	with noticeably lower expected values. As soil fertility input increases, the distribution of desirables
491	between seasons becomes more balanced (Figure 3 d and f), although still maintaining similar patterns
492	to those of low soil fertility systems. The trajectories of the proportion of desirables in both the low and
493	moderate input systems (Figure 4 a and b) show that, at a pasture state of 900 kg DM/ha and 0.15
494	desirables, the optimal decision was to re-sow the pasture, hence its increase to 0.95 desirables in the
495	second season. For this initial state, under the high input system, the expected optimal decisions were a
496	combination of tactical seasonal grazing rests (0 hd/ha) and reduced grazing pressure to allow both the
497	amount of pasture mass and proportion of desirables to increase towards optimal target levels.
498	For the two pasture states with 2500 kg DM/ha and either 0.15 or 0.75 desirables, the optimal decisions
499	were to keep utilising the pastures, albeit at different stocking rates. For the state with 0.15 desirables
500	under all input systems, stocking rates were adjusted to reduce the pasture mass to optimal target levels
501	whilst concurrently increasing the proportion of desirables up to optimal target levels. For the initial
502	state with 0.75 desirables and 2500 kg DM/ha, the highest expected stocking rates were maintained
503	during the period of convergence as the condition of the pasture resource moved downward towards the
504	optimal target state.
505	Convergence of botanical composition indicated that, under a low soil fertility system, the identified
506	optimal decision would direct the state of the pasture resource towards maintaining around 40%
507	desirables in the sward. This increased to 50% and 60% for the moderate and high soil fertility systems
508	respectively.
509	Figure 4 also illustrates the optimal stocking rate decisions that were implemented to maximise the
510	expected present value and direct the state of the system towards its optimal state. The optimal
511	trajectories followed a seasonal pattern for pasture mass and stocking rate. Table 4 details the state of
512	the pasture resource at policy convergence, which defines the expected optimal target levels for
513	management to maximise the economically sustainable yields from the pasture resource.
514	Insert Table 4 near here
515	Optimal target levels for pasture mass ranged from 906 kg DM/ha during winter in the low input
516	system, to 2231 kg DM/ha during summer in the moderate input system. On average, the highest target
517	pasture mass was maintained in summer, closely followed by spring, autumn and winter. These end-of-
518	season optimal pasture mass targets tended to increase with increasing soil fertility in autumn, winter
1	

536	4. Discussion
535	Insert <u>Table 4</u> near here
534	decision was optimal increased in winter and autumn.
533	presented in Table 4. In addition, with lower discount rates, the states of pasture where the re-sow
532	stocking rates were optimal at lower proportions of desirables, which is consistent with the data
531	policies at lower levels of desirables in the sward. This indicated that, with higher discount rates, higher
530	each season and discount rate (not shown), there were subtle differences in the optimal stocking rate
529	negligible. However, when examining optimal stocking rate and re-sow decisions via contour plots for
528	desirables and stocking rates in response to changes in discount rates between 3% and 10%, were
527	expected to increase during spring. The changes in optimal target levels of pasture mass, proportion of
526	mean amount of pasture biomass across all seasons, with the proportion of desirables in the long-run
525	discount rate, to well above what would be typically used in industry, leads to a slight reduction in the
524	species in the sward by a small amount (Figure 5)(Table 4). There is some indication that increasing the
523	either pasture mass or the proportion of desirables reduction in the optimal target level of desirable
522	Increasing discount rates resulted in minimal changes in the long run distributions and mean values of
521	
520	at a lower proportion of desirables than under the high input system (0.47 versus 0.57).
519	and spring. For summer, the optimal expected pasture mass peaked under a moderate input system, but

537 The results of the seasonal SDP model presented illustrate how the bioeconomic framework developed can be used to identify optimal tactical and strategic decisions in the management of livestock within a 538 dynamic pasture resource under stochastic climatic conditions. The decision variables applied in this 539 540 research are the strategic maintenance of soil fertility through the regular application of fertiliser, the 541 strategic sowing of introduced species, and the tactical use of grazing management to utilise the pasture 542 resource and manipulate botanical composition. The optimal decisions identified balance the economic 543 returns from the present utilisation of the pasture with the long-term inter-temporal dynamic benefits 544 and costs of maintaining a desirable botanical composition. 545 The relationship reported between botanical composition, pasture biomass and profit over an infinite 546 planning horizon, which is embedded within the identified optimal decisions (Figure 2), is a reflection 547 of sustainable exploitation of the pasture resource that can occur over the long term. When a pasture 548 state exists which represents a high proportion of desirables in the sward, exploitation or increased

549	utilisation of the pasture resource and the desirable population through the application of high stocking
550	rates would be expected to increase profits in the short run and cause the system to transition towards a
551	state with a lower proportion of desirables and reduced levels of available pasture biomass over the
552	long run. However, when sub-optimal levels of desirables exist in the sward, the optimal decision rules,
553	through either reduced stocking rates or capital investment in re-sowing of the pasture, would be
554	expected to transition the pasture towards a state with a higher proportion of desirables and increased
555	amounts of available pasture biomass in the long run, but with reduced profitability in the short run.
556	The use of tactical grazing rests has been recommended as a means of maintaining a higher proportion
557	of desirable species (Michalk et al., 2003). Our framework allows guidelines for triggering seasonal
558	grazing rests to be identified. An alternative to complete grazing rest is the application of low stocking
559	rates (less than 5hd/ha), which was frequently optimal at states with low levels of pasture mass and
560	desirables. This especially occurred in winter when there were less than 30% desirables in the sward.
561	Autumn and winter were the seasons in which re-sowing of pastures occurred the most, which
562	corresponds to predicted optimum times of sowing pastures in the New England Tablelands (Dowling
563	and Smith, 1976). However, the re-sowing of pastures in summer and spring was also considered
564	optimal under very degraded pasture states (5-15% desirables and less than 1000 kg DM/ha pasture
565	mass). On agronomic principles this may not be optimal and reveals a limitation of the model, as the
566	strategic decision of re-sowing is available at each seasonal decision stage.
567	Significant differences existed in the digestibility of the pasture on offer due to changes in the
568	proportion of desirables in the sward. This in turn influenced the levels of livestock production the
569	pasture is capable of sustaining. This can be seen in the relationship between different states of pasture
570	mass and the proportion of desirables, and the optimal stocking rate decision. The results suggest that,
571	although different input systems would optimally maintain similar levels of pasture mass within
572	seasons, the critical difference in determining livestock production and profit is the proportion of
573	desirables in the sward. This is in part due to the high amount of summer production from the modelled
574	undesirable species, that is, Bothriochloa macra (red grass), which is known to produce feed of low
575	quality. This is supported by data from the Northern Tablelands which showed the total production of
576	Bothriochloa macra to be similar to that of phalaris but with significantly different growth patterns as
577	well as greater stem to leaf ratios and lower dry matter digestibilities (Robinson and Archer, 1988).
1	

- 578 Interacting with this relationship is the sequence of utilisation of the pasture resource by animals. For
- 579 the case study, lower stocking rates were optimal in winter and summer, which allowed higher stocking
- 580 rates during autumn and spring (Figure 2). These are periods where the desirable species within the
- 581 sward maintain highly digestible pasture dry matter and enable higher levels of production. This
- 582 reinforces the importance of considering the differences in pasture quality between the desirable and
- 583 undesirable components of the sward in determining livestock production and the optimal development
- 584 and management of the pasture resource.
- 585 4.1 Optimal-Long-run botanical composition under optimal management
- 586 Results suggest that the expected long-run proportion of desirables in the sward varies with soil fertility
- 587 and season, with overall annual mean values ranging between 0.43 and 0.49. These are significantly
- 588 <u>higher levels than those of the average producer in the high rainfall temperate pasture zone of Australia</u>
- 589 (Dellow et al., 2002). This potentially indicates that sub-optimal grazing management and pasture
- 590 renovation practices are being applied in industry.
- 591 Increasing soil fertility was found to lead to long-run distributions where there is a greater proportion of
- 592 desirables in the summer, and all year round, as higher soil fertility input systems are known to be
- 593 capable of maintaining a higher level of desirables in pasture swards (Cook et al., 1978a; Hill et al.,
- 594 2004). As soil fertility increases, the expected mean proportion of desirables in the long run increases
- 595 by around 10% under the moderate and high input systems relative to the low-input system. These
- 596 levels of desirables in the sward correspond to those found by Jones et al. (2006). In this case study,
- 597 Bothriochloa macra and annual grasses such as Vulpia spp., which define the undesirable species,
- 598 contributed significantly to the feed base for the wool-dominated livestock production system. The fact
- that they are labelled 'undesirables' does not detract from their value as a feed source and they are as
- 600 important as desirables in determining the distribution of long-run pasture states (Behrendt, 2008;
- 601 Behrendt et al., 2013a).Results suggest that the optimal pasture state depends on the level of soil
- 602 fertility. The optimal target proportion of desirables in the sward varied with soil fertility between 0.40
- 603 and 0.60. These levels were significantly higher than the average for producers in the high rainfall
- 604 temperate pasture zone of Australia (Dellow et al., 2002; Kemp and Dowling, 1991) and potentially
- 605 indicates sub-optimal grazing management and pasture renovation practices are being applied in
- 606 industry.

607	The lower optimal proportions of desirables occur under the low soil fertility system, with the ability of
608	this low input system to maintain a higher level of desirables limited by the lack of fertiliser inputs
609	(Cook et al., 1978a; Hill et al., 2004). As soil fertility increases, the optimal proportion of desirable
610	species increases by 10% and 20% under the moderate and high input systems. These levels of
611	desirables in the sward correspond to those found by Jones et al. (2006). In this case study,
612	Bothriochloa macra and annual grasses such as Vulpia spp., which define the undesirable species,
613	contributed significantly to the feed base for the wool-dominated livestock production system. The
614	value of undesirable species is equally important in determining optimal pasture states, which has also
615	been shown to be influenced by the type of livestock production system and its emphasis on meat or
616	wool production (Behrendt, 2008; Behrendt et al., 2013a).
617	The relationship reported between botanical composition and profit is a reflection of sustainable
618	exploitation of the pasture resource that can occur and the time that it takes for the system to reach
619	optimal states of pasture mass and botanical composition. When the initial pasture state represents a
620	high proportion of desirables in the sward, exploitation of the pasture resource and the desirable
621	population caused the system to move towards its lower optimal state. When sub-optimal levels of
622	desirables existed in the sward, the pasture resource was improved through either reduced stocking
623	rates or capital investment in re-sowing of the pasture.
624	The use of tactical grazing rests has been recommended as a means of maintaining a higher proportion
625	of desirable species (Michalk et al., 2003). Our framework allows guidelines for triggering seasonal
626	grazing rests to be identified. An alternative to complete grazing rest is the application of low stocking
627	rates (less than 5hd/ha), which was frequently optimal at pasture states with low levels of pasture mass
628	and desirables. This especially occurred in winter when there were less than 30% desirables in the
629	sward.
630	Autumn and winter were the seasons in which re-sowing of pastures occurred the most, which
631	corresponds to predicted optimum times of sowing pastures in the New England Tablelands (Dowling
632	and Smith, 1976). However, the re-sowing of pastures in summer and spring was also considered
633	optimal under very degraded pasture states (5-15% desirables and less than 1000 kg DM/ha pasture
634	mass). On agronomic principles this may not be optimal and reveals a limitation of the model, as the

- 635 strategic decision of re-sowing is available at each seasonal decision stage.
- 636 **4.2 Optimal Long-run pasture mass <u>under optimal management</u>**

637	The results indicate that optimal target the long-run distributions of pasture mass under optimal
638	management vary to achieve maximum sustainable economic yields vary-with season and soil fertility.
639	In this case study their expected values levels were noticeably higher for autumn, spring and summer
640	than those suggested by field research as being required for the persistence of sown species (Avery et
641	al., 2000; Dowling et al., 1996), for the persistence of desirable grasses on the Central Tablelands of
642	NSW (Michalk et al., 2003), and to maintain groundcover targets of 80% (Lilley and Moore, 2009), but
643	are similar to those required for the persistence of desirable grasses on the Central Tablelands of NSW
644	(Michalk et al., 2003). This indicates that producers in the case study region should maintain
645	higher pasture masses, if abiding by the optimal decision rules, than those typically recommended as
646	minimum pasture benchmarks for livestock production (Bell and Blackwood, 1993). In contrast the
647	long run distribution of pasture biomass during winter is relatively low and more typical of industry
648	practice (Scott et al., 2013). If a minimum of 500kg DM/ha of high quality pasture is required to
649	maintain a dry sheep during winter (Bell and Blackwood, 1993), in the long run, low fertility systems
650	are expected to be below this state 74% of the time. Whereas increasing soil fertility reduces the
651	expected long run occurrence of this state to 53% and 43% of the time under moderate and high
652	fertility input systems. This aligns with the typical feeding requirements and practices of sheep
653	producers in the case study region (Scott et al., 2013).
654	4.3 Sensitivity to discount rate
655	Significant differences existed in the digestibility of the pasture on offer due to changes in the
656	proportion of desirables in the sward. This in turn influenced the levels of livestock production the
657	pasture is capable of sustaining. This can be seen in the relationship between pasture mass, the
658	proportion of desirables and stocking rate. The results suggest that, although different input systems
659	would optimally maintain similar levels of pasture mass within seasons, the critical difference in
660	determining livestock production and profit is the proportion of desirables in the sward. This is in part
661	due to the high amount of summer production from the modelled undesirable species, that is,
662	Bothriochloa macra (red grass), which is known to produce feed of low quality. This is supported by
663	data from the Northern Tablelands which showed the total production of Bothriochloa macra to be
664	similar to that of phalaris but with significantly different growth patterns as well as greater stem to leaf
665	ratios and lower dry matter digestibilities (Robinson and Archer, 1988).
1	

- Interacting with this relationship is the sequence of how the pasture resource is utilised. For the case
 study, lower stocking rates were optimal in winter and summer, which allowed higher stocking rates
 during autumn and spring. These are periods where the desirable species within the sward maintain
 highly digestible pasture dry matter and enable higher levels of production. This reinforces the
- 670 importance of the differences in pasture quality between the desirable and undesirable components of
- 671 the sward in determining livestock production and the optimal development and management of the
- 672 pasture resource.
- 673 The sensitivity analysis of optimal decisions to the discount rate suggested optimal stocking rate and
- 674 re-sowing polices were robust across a broad range of discount rates. The reason for this was that
- 675 increased stocking rates and the re-sow decision were antagonistic policies in terms of maximising
- 676 present value. Under high discount rates, there was an increasing emphasis on higher stocking rates to
- 677 lift pasture resource utilisation and maximise returns in the short term. This was, however, limited by
- 678 the cost of sowing and the opportunity cost of not grazing during the establishment period under high
- 679 discount rates.
- 680 5. Conclusions
- 681 The SDP model identified the optimal seasonal stocking rate and pasture sowing polices for each type
- 682 of soil fertility input system under the assumption that the objective of the decision maker is to
- 683 maximise the expected present value of future returns. These optimal policies were derived within a
- 684 framework where the risks from a stochastic climate are embedded into the decision-making process.
- 685 From the application of these optimal decisions the expected optimal state of the pasture resource was
- 686 defined in terms of pasture mass and botanical composition. Long-run probabilities of total pasture
- 687 mass and the proportion of desirables under optimal management were examined to construct expected
- 688 outcomes over an infinite planning horizon.
- 689 The extrapolation of the results from this research to other regions with confidence is difficult due to a
- 690 significant number of interrelating variables and parameters. Differences in climate, soil type,
- 691 topography and the species that make up the pasture would influence the optimal decision vector. The
- 692 relative differences in quality and seasonal growth patterns of the different species groups would
- 693 influence the optimal target levels of desirable species and the optimal stocking rates to achieve these
- 694 levels. Differences in the rate of botanical change responses of the desirable species population to
- 695 tactical grazing rests, soil fertility and livestock harvesting also affects the long term dynamics of the

- 696 pasture resource. However, the ability of the framework to adjust the optimal decision vector in
- 697 response to these variables and parameters enables its application in a broad range of situations. Given
- 698 all grasslands are subject to botanical composition change, whether grazed by transient herbivores or
- 699 domesticated livestock, the bioeconomic framework described is broadly applicable. The most
- 700 significant challenge in applying the model to systems in other geographical areas is the calibration of
- 701 pasture production and botanical composition change parameters, which ideally should be based on
- 702 <u>experimental data</u>.
- 703 The identified optimal decisions are broadly applicable to other paddocks within a farming system that
- 704 maintain similar species within its-their desirable and undesirable groups. The seasonal stocking rate
- 705 contour plots provided a visual guide to a large range of optimal decisions for different states of the
- 706 pasture resource in each season. Conceptually, the application of this tool could be used to help guide a
- 707 producer or advisor in deciding the optimal management of a paddock at the start of a season.
- 708 The time frame for decision making regarding pasture development has been suggested to be 10-15
- 709 years for profit maximisation and 20-30 years for the sustainability and persistence of the pasture
- 710 system (Lodge et al., 1998; Scott and Lovett, 1997). A key feature of the optimal decision rules that
- 711 were derived using this bioeconomic framework is that they remain optimal regardless of the time
- 712 frame being considered, as they represent an infinite planning horizon. An interesting outcome is that
- 713 the discount rate only had a small effect on optimal decision rules, because of the antagonism between
- 714 the benefits of higher stocking rates and the costs of replacing overgrazed pastures.
- 715 The optimal target levels optimal long-run distributions and their expected values indicate a the states
- 716 of the pasture resource which corresponds to that of the maximum economic sustainable yield, whereby
- 717 the pasture is viewed as an exploited renewable resource (Clark, 1990). This sustainable state is based
- 718 on the objective of profit maximisation, but is constrained by the impact of livestock harvesting on the
- 719 desirable <u>plant</u> population, the concurrent impacts on the productivity of the grazing system, and the
- 720 capital cost of resource renewal.
- 721 A key feature of this study was the embedding of production risk into the pasture development
- 722 decision-making problem with the incorporation of a dynamic botanical composition model. The
- 723 benefit of this approach is that it considers the inter-temporal trade-offs between investments in pasture
- 724 development and the utilisation of the pasture resource under climatic uncertainty. The study has

- shown how we can more realistically model the complex decision process which faces livestock
- 726 producers and thereby provide readily transferable information to improve decision making.
- 727 Acknowledgments
- 728 The authors wish to thank the members, team and board of The Cicerone Project for making data
- 729 available, in particular the contribution of Libuseng Shakhane, Caroline Gaden, Justin Hoad, Colin
- 730 Lord and Dion Gallagher. Support received from the CSIRO Plant Industry group, in particular Andrew
- 731 Moore and Libby Salmon, is also gratefully acknowledged.
- 732 References
- 733 ABARE, 2006. Australian Commodity Statistics 2006. Australian Bureau of Agricultural and Resource
- 734 Economics, Canberra.
- 735 Antle, J.M., 1983. Incorporating Risk in Production Analysis. American Journal of Agricultural
- 736 Economics 65, 1099-1106.
- 737 Avery, A.L., Michalk, D.L., Thompson, R.P., Ball, P., Prance, T., Harris, C.A., FitzGerald, D.W.,
- 738 Ayres, J.F., Orchard, B.A., 2000. Effects of sheep grazing management on cocksfoot herbage mass and
- 739 persistence in temperate environments. Australian Journal of Experimental Agriculture 40, 185-206.
- 740 Behrendt, K., 2008. Bioeconomics of pasture resource development in sheep production systems. The
- 741 University of New England, Armidale, p. 215.
- 742 Behrendt, K., Cacho, O., Scott, J.M., Jones, R., 2013a. Optimising pasture and grazing management
- 743 decisions on the Cicerone Project farmlets over variable time horizons. Animal Production Science 53,
- 744 796-805.
- 745 Behrendt, K., Scott, J.M., Cacho, O., Jones, R.E., 2013b. Simulating the impact of fertiliser strategies
- and prices on the economics of developing and managing the Cicerone Project farmlets under climatic
- 747 uncertainty. Animal Production Science 53, 806-816.
- 748 Behrendt, K., Scott, J.M., Mackay, D.F., Murison, R., 2013c. Comparing the climate experienced
- 749 during the Cicerone farmlet experiment against the climatic record. Animal Production Science 53,
- 750 658-669.
- 751 Bell, A., Blackwood, I., 1993. Pasture Benchmarks for sheep and cattle production, in: Michalk, D.L.
- 752 (Ed.), Proceedings of the Eighth Annual Conference of the Grassland Society of NSW, Orange, pp. 25-
- 753 28.

- 754 Cacho, O., 1998. Solving bioeconomic optimal control models numerically, in: Gooday, J. (Ed.),
- 755 Proceedings of the bioeconomics workshop. Post-Australian Agricultural and Resource Economics
- 756 Society conference, University of New England, Armidale, New South Wales. Australian Bureau of
- 757 Agricultural and Resource Economics (ABARE), Canberra, Canberra Australia, pp. 13-26.
- 758 Cacho, O., Finlayson, J.D., Bywater, A.C., 1995. A simulation model of grazing sheep: I. Whole farm
- 759 model. Agricultural Systems 48, 27-50.
- Cacho, O.J., 1993. A practical equation for pasture growth under grazing. Grass and Forage Science 48,
 387-394.
- 762 Cacho, O.J., Bywater, A.C., Dillon, J.L., 1999. Assessment of production risk in grazing models.
- 763 Agricultural Systems 60, 87-98.
- 764 Clark, C.W., 1990. Mathematical bioeconomics: the optimal management of renewable resources, 2nd
- 765 Edition ed. John Wiley and Sons Inc., New York USA.
- 766 Colwell, J.D., 1963. The estimation of the phosphorus fertilizer requirements of wheat in southern New
- 767 South Wales by soil analysis. Australian Journal of Experimental Agriculture and Animal Husbandry 3,
- 768 190-197.
- 769 Cook, S., Blair, G., Lazenby, A., 1978a. Pasture degeneration. II. The importance of superphosphate,
- nitrogen and grazing management. Australian Journal of Agricultural Research 29, 19-29.
- 771 Cook, S., Lazenby, A., Blair, G., 1978b. Pasture degeneration. I. Effect on total and seasonal pasture
- 772 production. Australian Journal of Agricultural Research 29, 9-18.
- 773 CSIRO, 2007. AusFarm, in: CSIRO (Ed.), Version 1.3.2 ed. CSIRO Plant Industry, Canberra.
- 774 Davies, L., 2005. Using DSEs and carrying capacities. NSW Department of Primary Industries,
- 775 Orange.
- 776 Dellow, J.J., Wilson, G.C., King, W.M., Auld, B.A., 2002. Occurrence of weeds in the perennial
- pasture zone of New South Wales. Plant Protection Quarterly 17, 12-16.
- 778 Dowling, P.M., Kemp, D.R., Ball, P.D., Langford, C.M., Michalk, D.L., Millar, G.D., Simpson, P.C.,
- 779 Thompson, R.P., 2005. Effect of continuous and time-control grazing on grassland components in
- 780 south-eastern Australia. Australian Journal of Experimental Agriculture 45, 369-381.
- 781 Dowling, P.M., Kemp, D.R., Michalk, D.L., Klein, T.A., Millar, G.D., 1996. Perennial Grass Response
- 782 to Seasonal Rests in Naturalised Pastures of Central New South Wales. The Rangeland Journal 18,
- 783 309-326.

- 784 Dowling, P.M., Smith, R.C.G., 1976. Use of a soil moisture model and risk analysis to predict the
- 785 optimum time for the aerial sowing of pastures on the Northern Tablelands of New South Wales.
- 786 Australian Journal of Experimental Agriculture and Animal Husbandry 16, 871-874.
- 787 Freer, M., Dove, H., Nolan, J.V., 2007. Nutrient Requirements of Domesticated Ruminants, in: Freer,
- 788 M., Dove, H., Nolan, J.V. (Eds.), Feeding Standards for Australian Livestock: Ruminants. CSIRO
- 789 Publishing, Collingwood, p. 270.
- 790 Garden, D.L., Lodge, G.M., Friend, D.A., Dowling, P.M., Orchard, B.A., 2000. Effects of grazing
- 791 management on botanical composition of native grass-based pastures in temperate south-east Australia.
- 792 Australian Journal of Experimental Agriculture 40, 225-245.
- 793 Godden, D.P., Helyar, K.R., 1980. An alternative method for deriving optimal fertilizer rates. Review
- 794 of Marketing and Agricultural Economics 48, 83-97.
- 795 Guppy, C.N., Edwards, C., Blair, G.J., Scott, J.M., 2013. Whole-farm management of soil nutrients
- 796 drives productive grazing systems: the Cicerone farmlet experiment confirms earlier research. Animal
- 797 Production Science 53, 649-657.
- 798 Hardaker, J.B., Pandey, S., Patten, L.H., 1991. Farm Planning under uncertainty: A review of
- 799 Alternative Programming Models. Review of Marketing and Agricultural Economics 59, 9-22.
- 800 Hill, J.O., Simpson, R.J., Moore, A.D., Graham, P., Chapman, D.F., 2004. Impact of phosphorus
- 801 application and sheep grazing on the botanical composition of sown pasture and naturalised, native
- 802 grass pasture, Australian Journal of Agricultural Research, pp. 1213-1225
- 803 Hutchinson, K.J., 1992. The Grazing Resource, in: Hutchinson, K.J., Vickery, P. (Eds.), Proceedings
- 804 6th Australian Society of Agronomy Conference, UNE, Armidale, pp. 54-60.
- 805 Jones, R.E., Dowling, P.M., Michalk, D.L., King, W.M., 2006. Sustainable grazing systems for the
- 806 Central Tablelands of New South Wales. 5. A bioeconomic framework for assessing the long-term
- 807 economic benefits of grazing management tactics and implications for sustainability. Australian Journal
- 808 of Experimental Agriculture 46, 495-502.
- 809 Jones, R.M., Jones, R.J., McDonald, C.K., 1995. Some advantages of long-term grazing trials, with
- 810 particular reference to changes in botanical composition. Australian Journal of Experimental
- 811 Agriculture 35, 1029-1038.
- 812 Kemp, D., Dowling, P., 1991. Species distribution within improved pastures over central N.S.W. in
- 813 relation to rainfall and altitude. Australian Journal of Agricultural Research 42, 647-659.

814 Kennedy, J.O.S., 1986. Dynamic Programming - Applications to Agriculture and Natural Resources.

815 Elsevier, Amsterdam.

- 816 Lilley, J.M., Moore, A.D., 2009. Trade-offs between productivity and ground cover in mixed farming
- 817 systems in the Murrumbidgee catchment of New South Wales. Animal Production Science 49, 837-
- 818 851.
- 819 Lodge, G., Scott, J.M., King, K.L., Hutchinson, K.J., 1998. A review of sustainable pasture production
- 820 issues in temperate native and improved pastures, Animal Production in Australia. Proceedings of the
- 821 Australian Society of Animal Production. Australian Society of Animal Production, pp. 79-89.
- 822 Loewer, O.J., 1998. GRAZE: A Beef-Forage Model of Selective Grazing, in: Peart, R.M., Curry, B.R.
- 823 (Eds.), Agricultural Systems Modeling and Simulation. Marcel Dekker, Inc., New York, pp. 301-418.
- 824 Marshall, G.R., Randall, E.J., Wall, L.M., 1997. Tactical opportunities, risk attitude and choice of
- 825 farming strategy: an application of the distribution method. The Australian Journal of Agricultural and
- 826 Resource Economics 41, 499-519.
- 827 Mathworks_Inc, 2013. R2013b (Version 8.2). The Mathworks Inc., Massachusetts.
- 828 McLeod, M.K., Cresswell, H.P., MacLeod, D.A., R.D., F., H., D., 1998. Measurement of
- 829 Evapotranspiration from Different Pasture Types Using the Rapid Chamber Method, in: Michalk, D.L.
- 830 (Ed.), Proceedings of the 9th Australian Agronomy Conference. Australian Society of Agronomy,
- 831 Wagga Wagga.
- 832 Michalk, D.L., Dowling, P.M., Kemp, D.R., King, W.M., Packer, I.J., Holst, P.J., Jones, R.E., Priest,
- 833 S.M., Millar, G.D., Brisbane, S., Stanley, D.F., 2003. Sustainable grazing systems for the Central
- 834 Tablelands, New South Wales. Australian Journal of Experimental Agriculture 43, 861-874.
- 835 Robinson, G.G., Archer, K.A., 1988. Agronomic potential of native grass species on the Northern
- 836 Tablelands of New South Wales. I. Growth and herbage production. Australian Journal of Agricultural
- 837 Research 39, 415-423.
- 838 Scott, J.M., Gaden, C.A., Edwards, C., Paull, D.R., Marchant, R., Hoad, J., Sutherland, H., Coventry,
- 839 T., Dutton, P., 2013. Selection of experimental treatments, methods used and evolution of management
- 840 guidelines for comparing and measuring three grazed farmlet systems. Animal Production Science 53,
- 628-642.
- 842 Scott, J.M., Lovett, J.V., 1997. Pastures in sustainable systems, in: Scott, J.M., Lovett, J.V. (Eds.),
- 843 Pasture Production and Management. Elsevier Australia, Marrickville, pp. 269-276.

- 844 Shakhane, L.M., Mulcahy, C., Scott, J.M., Hinch, G.N., Donald, G.E., Mackay, D.F., 2013a. Pasture
- 845 herbage mass, quality and growth in response to three whole-farmlet management systems. Animal
- 846 Production Science 53, 685-698.
- 847 Shakhane, L.M., Scott, J.M., Murison, R., Mulcahy, C., Hinch, G.N., Morrow, A., Mackay, D.F.,
- 848 2013b. Changes in botanical composition on three farmlets subjected to different pasture and grazing
- 849 management strategies. Animal Production Science 53, 670-684.
- Stafford Smith, D.M., Milham, N., Douglas, R., Tapp, N., Breen, J., Buxton, R., McKeon, G., 1995.
- 851 Whole Farm Modelling and Ecological Sustainability: a Practical Application in the NSW Rangelands,
- 852 Ecological Economics Conference, Coffs Harbour, NSW, November 19 to 23, 1995 : Conference
- 853 Papers. Australia & New Zealand Society for Ecological Economics in Association with the Centre for
- 854 Agricultural and Resource Economics, Coffs Harbour, pp. 243-249.
- 855 Torell, L.A., Lyon, K.S., Godfrey, E.B., 1991. Long-Run versus Short-Run Planning Horizons and the
- 856 Rangeland Stocking Rate Decision. American Journal of Agricultural Economics 73, 795-807.
- 857 Trebeck, D.B., Hardaker, J.B., 1972. The integrated use of simulation and stochastic programming for
- 858 whole farm planning under risk. Australian Journal of Agricultural Economics 16, 115-126.
- 859 Westoby, M., Walker, B., Noy-Meir, I., 1989. Opportunistic management for rangelands not at
- 860 equilibrium. Journal of Range Management 42, 266-274.
- 861 Woodward, S.J.R., 1996. A Dynamic Nutrient Carryover Model for Pastoral Soils and Its Application
- 862 to Optimising Fertiliser Allocation to Several Blocks with a Cost Constraint. Review of Marketing and
- 863 Agricultural Economics 64, 75-85.

883 Figure 1: A diagrammatic outline of the Dynamic Pasture Resource Development simulation

884 model at the paddock level (Behrendt et al., 2013b).

885

887 Figure 2: Relationship between the sum of squared deviations (*d_x*) of probabilities and iterations

888 for a given initial state.

889

890

909 Figure 4: Effect of discount rate on the optimal proportion of desirables for each season under a

910 moderate input wool production system. Discount rates are 3% (x), 4.94% (±), 7% (*) and

911 10%(=).

912

913

914 Tables

915 Table 1: State variables and their boundaries

Pasture B Undesira	Pasture Biomass for Desirable (yd) and Undesirable (yud) swards (kg DM/ha)			Proportion of Desirables (x)			
State	Minimum	Maximum	State	Minimum	Maximum		
100	0	200	0.05	0.00	0.10		
300	200	400	0.15	0.10	0.20		
500	400	600	0.25	0.20	0.30		
700	600	800	0.35	0.30	0.40		
900	800	1000	0.45	0.40	0.50		
1250	1000	1500	0.55	0.50	0.60		
1750	1500	2000	0.65	0.60	0.70		
2500	2000	3000	0.75	0.70	0.80		
3500	3000	4000	0.85	0.80	0.90		
5000	4000	ø	0.95	0.90	1.00		

916

917

918 Table 2: Summary of state vector, z.

State

yd

yud

x

1	100	100	0.05
2	100	100	0.15
3	100	100	0.25
499	900	5000	0.85
500	900	5000	0.95
501	1250	100	0.05
998	5000	5000	0.75
999	5000	5000	0.85
1000	5000	5000	0.95

921 Table 3: Decision variables that make up the decision vector \mathbf{u}_t^s .

	Elements of decision vector u			
Decision	Sr	rs		
1	0	0		
2	2	0		
3	4	0		
4	8	0		
5	10	0		
6	15	0		
7	20	0		
8	30	0		
9	40	0		

 10
 50
 0

 11
 0
 1

923

924

925 <u>Table 4: Effect of discount rate on expected values of long-run (stationary) probabilities for</u>

926 pasture biomass and the proportion of desirables under optimal management.

Discount Pata	Season starting								
Discount Rate	Autumn	Winter	Spring	Summer					
Pasture Biomass (kg DM/ha)									
3%	2213	611	2312	2899					
5%	2213	611	2310	2905					
7%	2213	611	2229	2905					
10%	2212	610	2229	2905					
20%	2201	610	2171	2870					
50%	2162	604	1941	2877					
	Proportion desire	ables (X₀)							
3%	0.51	0.47	0.68	0.29					
5%	0.51	0.47	0.68	0.28					
7%	0.51	0.47	0.70	0.28					
10%	0.51	0.47	0.70	0.28					
20%	0.50	0.47	0.72	0.30					
50%	0.49	0.46	0.79	0.30					

927

928 Table 4: Optimal mean target levels for the proportion of desirables and pasture mass at policy

929 convergence under alternative fertiliser input systems.

Pasture state	Fertiliser		Season ending				
variable	Input System	Summer	Autumn	Winter	Spring	Mean	
Proportion Desirables							
	Low	0.38	0.42	0.45	0.41	0.41	
	Moderate	0.47	0.51	0.52	0.50	0.50	
	High	0.57	0.62	0.61	0.61	0.60	
	Mean	0.47	0.52	0.53	0.50	0.51	

Pasture Mass (kg DM/ha)								
	Low	2092	1550	906	1850	1602		
	Moderate	2231	1742	1141	1975	1772		
	High	203 4	1772	1123	2030	1740		
	Mean	2121	1689	1056	1952	1705		
930								