Nutrient availability of different batches of wheat distiller's dried grains with solubles for turkeys

by Pirgozliev, V.R., Whiting, I.M., Mirza, M.W. and Rose, S.P.

Copyright, Publisher and Additional Information: This is the authors' accepted manuscript. The final published version (version of record) is available online via Taylor and Francis

Please refer to any applicable terms of use of the publisher.

DOI: https://doi.org/10.1080/1745039X.2018.1435479

Pirgozliev, V.R., Whiting, I.M., Mirza, M.W. and Rose, S.P. 2018. Nutrient availability of different batches of wheat distiller's dried grains with solubles for turkeys. *Archives of Animal Nutrition*, 72(2), pp.153-161.

1	Nutrient availability of different batches of wheat distiller's dried grains with solubles for
2	turkeys
3	
4	Vasil Radoslavov Pirgozliev, Isobel Margaret Whiting, Muhammad Waseem Mirza, and
5	Stephen Paul Rose
6	
7	National Institute of Poultry Husbandry, Harper Adams University, Newport, Shropshire, UK
8	
9	Corresponding author: V. Pirgozliev. E-mail: vpirgozliev@harper-adams.ac.uk
10	T: +44 (0) 1952 820280 F: +44 (0) 1952 814783
11	
12	ABSTRACT
13	Effects of five different batches of wheat distiller's dried grains with solubles (DDGS)
14	produced by a single production plant were used to investigate bioavailability of energy and
15	nutrients for turkeys. The laboratory analysis of the DDGS showed variation among the
16	different batches. Largest coefficients of variation were observed for soluble non-starch
17	polysaccharides, oil and ash (standard deviations 12.28, 5.64 and 4.66, respectively). Birds
18	were fed one of six mash diets. A basal diet was prepared that had major ingredients of 535
19	g/kg wheat and 300 g/kg soybean meal (SBM), and contained 247 g/kg CP and 12.57 MJ/kg
20	metabolisable energy. Another five diets containing 200 g/kg of each of five experimental
21	DDGS samples in replacement for basal diet were also mixed. Each diet was fed to eight pens
22	with two female Premium turkeys following randomisation. The N-corrected apparent
23	metabolisable energy (AMEn) and the nutrient retention coefficients of the pure DDGS
24	samples were obtained using the substitution method. The AMEn of the DDGS from batch A
25	was higher ($p = 0.048$) compared to those from batches B and C, but did not differ ($p > 0.05$)

26	from DDGS samples D and E. There were no differences ($p > 0.05$) in DMR, NR and FD
27	between the DDGS samples from different batches used in this study. The AMEn of the DDGS
28	samples correlated positively ($p < 0.05$) to the starch ($r = 0.895$), the red index of lighting (a)
29	(r = 0.916) and the NSPn contents $(r = 0.940)$, respectively. In general, findings from this study
30	indicate bioavailability of energy and most nutrients to be in the range of published data with
31	turkeys, and to vary between batches.
32	KEYWORDS
33	Wheat distillers dried grains with solubles (DDGS); turkeys; ME; digestibility
34	
35	1. Introduction

36 The increased use of wheat for bioethanol production resulted in more available wheat 37 distiller's dried grains with solubles (DDGS) for animal feed (Westreicher-Kristen et al. 2012). 38 Traditionally utilised as feed ingredient for ruminants, wheat DDGS is also used in poultry 39 diets formulations (Cozannet et al. 2010). As the price of ingredients for animal feed worldwide 40 increases, inclusion of locally produced wheat DDGS could be more routinely used in poultry 41 diets if there was more robust information on its nutrient availability and its variation. 42 Compared with corn-DDGS, there is insufficient information about the nutritive value of 43 wheat-DDGS for poultry (Opoku et al. 2015a).

There are only relatively few studies of feeding wheat DDGS to turkeys (Opoku et al. 2015b), and there is evidence that any differences that have been detected in broiler chicken studies are not directly applicable to turkeys: Kluth and Rodehutscord (2006) found different energy digestibilities of diets containing different levels of two protein concentrates when fed to broiler chickens and turkeys. Adedokun et al. (2008) compared amino acid digestibility in two samples of corn DDGS at two ages in both broiler chickens and turkeys. There were differences in total amino acid digestibility due to age between the two DDGS samples but there was a large difference in response between the broilers and turkeys. It is therefore important to directly
examine the feeding value of wheat DDGS in turkeys rather than rely on data obtained with
chickens.

The nutrient availability has been shown to vary substantially between DDGS samples produced by different bioethanol plants (Bandegan et al. 2009; Cozannet et al. 2010). Batch variability in metabolizable energy content and nutrient digestibility for broilers and layers within wheat DDGS samples produced by a single production plant has been reported by Whiting et al. (2015, 2017), although information on turkeys is lacking.

59 The main objective of the current study was to determine the N-corrected apparent 60 metabolisable energy (AMEn) of five batches of wheat-DDGS produced at the same plant 61 when fed to turkeys. The total tract dry matter retention (DMR), nitrogen retention (NR) and 62 fat, measured as ether extract, digestibility (FD) coefficients were also determined. The 63 relationship between AMEn and chemical and physical measurements of DDGS was also 64 studied.

65 **2. Materials and methods**

66 **2.1. Experimental Samples**

67 This report is focused on the nutritional value for turkeys of five wheat DDGS samples. All 68 wheat DDGS samples were obtained from ENSUS Biorefinery, Wilton, UK. The sampling 69 interval was between 14 and 21 days during a period of 90 days from January to April 2013, 70 yielding 5 samples in total. All samples were stored in bags at ambient air temperatures in a 71 dry store. The stored DDGS samples did not experience any freezing temperatures during this 72 storage. A representative sample was taken from each of the five batches and the major 73 chemical components were measured. Although the manufacturer followed the same 74 procedures during the bioethanol, i.e. DDGS, production, different batches of wheat were used.

75 **2.2. Husbandry and sample collection**

All procedures were approved by The Animal Experimental Committee of Harper AdamsUniversity.

78 Nutrient availability were examined in a turkey poults experiment from 67 to 75 d age. Each 79 of the five DDGS samples were incorporated into a nutritionally complete diet in meal form at 80 200 g/kg (800 g of the basal feed +200 g of each DDGS sample) (Table 1). The nutrient 81 specification of the diets met the breeder's recommendation (Aviagen Ltd.). A sixth dietary 82 treatment was also fed that was the basal feed only. Female Premium turkeys were obtained 83 from a commercial hatchery (Faccenda Foods Ltd, Dalton, UK) at day old and were placed in 84 a single floor pen and fed on a proprietary wheat-soybean turkey feed until 67 d of age. During 85 the first two phases, from 0 to 28 and from 28 to 56 d age, diets contained 12.21 and 12.39 86 MJ/kg metabolisable energy, 285 and 270 g/kg crude protein, 18 and 16 g/kg available lysine, 87 13 and 12 g/kg methionine + cysteine, 15 and 13 g/kg Ca, 8 and 7 g/kg available P, respectively. 88 From 56 days onwards, birds were fed the basal diet. Two birds were randomly allocated to 89 one of 48 cages with 0.36 m² floor area and given the experimental diets. Each cage was 90 equipped with a trough feeder and nipple drinker. Access to the feed and the water was ad 91 libitum. There were 8 replicates for each diet. The experimental house was equipped with a 92 negative pressure ventilation system to meet commercial recommendations. A standard 93 temperature and lighting programs for turkeys were used (Aviagen, Turkeys ltd).

At 71 d of age, after 5 days given to adjust to the diets, the total droppings were collected for four days until the end of the study at 75 d age. Feed intake for the same period was recorded for the determination of dietary AMEn and total tract nutrient retention coefficients.

97 2.3. Chemical Analysis

98 Dry droppings samples were weighed and milled to pass through a 0.75-mm mesh. Gross 99 energy concentrations of the control feed, DDGS and droppings were measured using an 100 adiabatic bomb calorimeter (Model: 1261 Isoperibol Bomb Calorimeter, 100 Parr Instrument

Company, Moline, IL, USA). Nitrogen was determined using a Leco nitrogen analyser (Leco
FP-528, Leco Corporation, St Joseph, MI, USA) according to AOAC method 968.06 (AOAC,
2000). Ether extract was determined according to AOAC methods 920.39 and 942.05,
respectively (AOAC, 2000). The colour score of the stored DDGS samples was carried out
using a Chroma Meter CR-400 from Konica Minolta (Sunderland, UK) to determine luminance
and chromaticity scores using CIELAB scoring.

107 Non-starch polysaccharides (NSP) and total starch (TS) contents in the DDGS samples were 108 determined following the methods of Englyst (1994) and Englyst (2000), respectively. The GE, 109 DM, nitrogen and ether extract of each dried droppings sample and the experimental diets were 110 determined as described for the feed samples. The AMEn of the diets was calculated following 111 the method of Hill and Anderson (1958). The coefficients of total tract nutrient retention were 112 determined as the difference between intake and voiding of the nutrient, divided by their 113 respective intake.

114

115 **2.4. Statistical procedure**

116 The results of pure DDGS samples were statistically compared using a randomised block 117 analysis of variance. Duncan's multiple range test was used to determine significant differences 118 between diets. The observational unit was the cage with two birds. Statistical analyses were 119 performed using the GenStat statistical software package (GenStat 17 release 3.22 for 120 Windows; IACR, Rothamstead, Hertfordshire, UK). The AMEn and the nutrient retention 121 coefficients of all diets, including the basal diet and diets including DDGS samples were 122 determined. Then the AMEn and the nutrient retention coefficients of the pure DDGS samples 123 were obtained by the substitution method (Finney 1978) using the data from the basal only. 124 Correlation coefficients were obtained for all chemical and physical characteristics of the wheat 125 DDGS samples. In all instances, differences were reported as significant at $p \le 0.05$.

126

127 **3. Results**

128 The chemical composition and the colour measurements of the wheat-DDGS used in the 129 current study are presented in Table 2. The amount of oil was more variable than the protein 130 content and the GE concentration, and ranged from 41.9 to 55.0 g/kg DM. The ash content was 131 also variable, from 53.1 to 64.9 g/kg DM, and conversely related to the oil content of the DDGS 132 samples. The DM content was uniform and ranged from 892 to 900 g/kg DM. The variation in 133 the colour scores was relatively uniform although all readings were lower than 50. Variation in 134 all proximate analysis and the colour scores of the present study were in agreement with 135 Pedersen et al. (2014).

Xylose, glucose and arabinose were the main NSP constituent sugars in the wheat DDGS
samples. The mean starch content of the DDGS batches was 33.0 g/kg DM, as batch C had the
lowest starch content of 28.0 g/kg DM, and batch A had the highest starch content of 41.5 g/kg
DM, respectively.

140The AMEn of the DDGS from batch A was higher (p = 0.048) compared to those from batches141B and C, but did not differ (p > 0.05) from the rest of DDGS samples. There were no differences142(p > 0.05) in DMR, NR and FD between the DDGS samples from different batches used in this143study.

144 The AMEn of the DDGS samples was positively correlated (p < 0.05) to starch (r = 0.895), the

red light spectrum (a) (r = 0.916) and the NSPn (r = 0.940), respectively (data not presented in tables).

148 **4. Discussion**

The analysed dietary protein and ether extract contents differed from the calculated values for the basal diet, which could probably be due to the differences between the composition of the actual ingredients that were used in the present study and the values given by the data set in the spreadsheets used for dietary calculation.

153 The objective of the current experiment was to determine the AMEn contents and nutrient 154 retention coefficients of five different wheat-DDGS batches for turkeys. A single production 155 plant produced the DDGS batches over a relatively short period. The variation in chemical 156 composition between batches (for example ranges of 8.5 g/kg CP, 13.1 g/kg in oil, 20.4 g/kg 157 in total NSP, and 13.5 g/kg in starch) were either due to small differences in processing 158 conditions or differences in wheat grain used in the production process. The results confirm 159 the importance of research on batch variability of wheat DDGS to better understand the source 160 of variation that influence its feeding quality for turkeys.

The approximate nutrient, polysaccharide and GE contents of the experimental wheat DDGS samples were in a range similar to published reports (Bolarinwa and Adeola 2012; Adebiyi and Olukosi 2015). As expected (Świątkiewicz and Koreleski 2008), the studied wheat DDGS contained between two and three times more NSP, ether extract, protein and ash and about 20 times less starch compared to average wheat starch contents, in line with fermentation process during DDGS production.

The AMEn of the studied wheat-DDGS samples was relatively high, 13.42 MJ kg/DM, compared to the values reported by Cozannet et al. (2010), 9.60 MJ kg/DM, but slightly lower than those reported by Adebiyi and Olukosi (2015), 14.04 MJ kg/DM, respectively. When applying the substitution method on the data reported by Opoku et al. (2015c) a value of 14.66 MJ kg/DM was obtained for the wheat DDGS sample used. Much higher AMEn values would be obtained if the substitution method is applied to another report by Opoku et al. (2015b). 173 However, it can be speculated that the difference in AMEn values in wheat-DDGS between 174 the current study and other reports is due to differences in experimental conditions, techniques 175 used, birds age, dietary composition, and also chemical composition of DDGS and bioethanol 176 plant where the samples were produced. For example, Adebiyi and Olukosi (2015) used 20 d 177 old BUT10 male turkeys, Cozannet et al. (2010) used 70 d old male BUT9 turkeys, Opoku et 178 al. (2015c) used 21 d old Hybrid Converter female turkeys, and 70 d old female BUT Premium 179 turkeys were used in the present report. In addition, Adebiyi and Olukosi (2015) had DDGS 180 inclusion at 0, 300 and 600 g/kg diet, and used titanium dioxide as indigestible marker to enable 181 determination of AMEn content by the index method. Opoku et al. (2015c) included DDGS at 182 0, 100, 200 and 300 g/kg diet, and used acid insoluble ash as indigestible marker. Cozannet et 183 al. (2010) included DDGS at 0 and 250 g/kg and used total collection technique for AMEn 184 determination. In the present report, DDGS was included at 0 and 200 g/kg and total collection 185 technique was used. Dietary composition between studies also differ. In addition, storage of 186 wheat DDGS may be a reason for differences in metablisable energy (Whiting et al. 2016). 187 The differences in aforementioned metabolisable energy values of wheat- DDGS suggest that 188 more uniform methodology for determining energy value of wheat-DDGS for turkeys is 189 needed. Although variation in chemical and physical characteristics of wheat-DDGS samples 190 is one of the reasons for differences in available energy, employed methodology, dietary 191 composition, age, and hybrids used should be given also consideration. 192 It is now well documented that bioethanol plants have significant impact on nutritive value of 193 wheat and maize DDGS (Bandegan et al. 2009; Cozannet et al. 2010; Nuez Ortin and Yu 2009).

- 194 Batch variation in composition of maize DDGS produced by a single production plant has been
- 195 observed (Belyea et al. 2004; Bottger and Sudekum 2017). Batch-to-batch variations in AMEn
- 196 in wheat DDGS from the same bioethanol processing plant have been also reported in broiler
- 197 and layer studies (Whiting et al. 2016, 2017). The chemical composition of wheat, e.g., NSP

and resistant starch varies, thus the polysaccharide content of DDGS produced will also be
variable. The main factors affecting the variability of wheat include, crop nutrition, location,
seasonal factors, and genetics (Pirgozliev et al. 2003). Since wheat is the raw material for
DDGS production, the observed variability is not a surprise.

202 Dietary metabolisable energy is widely used to describe the available energy concentration in 203 poultry feedstuffs. The availability of dietary energy depends on the availability of starch, 204 protein and fat, all of which may be impaired by anti-nutritive factors. However, the starch 205 content in the wheat-DDGS samples in this study was reduced approximately 20 times 206 compared to average wheat starch content; thus, the overall metabolisable energy contribution 207 of starch is not significant. In addition, because of processing, some of the residual starch will 208 be in the form of resistant starch and will therefore, essentially act as a NSP (Sharma et al., 209 2010).

210 In agreement with Cozannet et al. (2010), the colour score, in particular the red index was 211 highly correlated to the AMEn in the DDGS samples. All samples were dark (L < 50) in 212 connection with probable overheating during the DDGS drying process and a possible Maillard 213 reaction. The Maillard reaction is regarded as being primarily responsible for causing chemical 214 heat damage to protein within DDGS (Cromwell et al. 1993; Waldroup et al. 2007). A number 215 of publications have associated damaged protein with darker samples of DDGS and conversely 216 better quality protein in lighter samples (Cromwell et al. 1993; Fastinger and Mahan 2006). 217 Sharma et al. (2010) reported that differences in temperature during the liquefaction stage may 218 be a reason for differences in resistant starch content, thus suggesting that a variation in the 219 temperature during the process in the same plant may exist. In addition, Classen et al. (2014) 220 found that all stages of heat application during wheat DDGS production negatively affected 221 the content and digestibility of amino acids. Lysine is particularly susceptible to heat damage 222 initiated during this process (Smith et al. 2006). Diets containing wheat DDGS may need more lysine supplementation to meet the requirements of the birds (Cozannet et al. 2010; Bolarinwaand Adeola 2012).

DeGroote (1974) reported that the efficiency of energy utilization from dietary protein, carbohydrates, and fats is 0.6, 0.7, and 0.9, respectively. In addition, fats contains higher amount of energy compared to carbohydrates and protein, thus variation in ether extract content can explain variation in available energy content of DDGS.

229

230 5. Conclusions

The results showed that the feeding value of different wheat DDGS batches produced by a single production plant might vary when fed to turkeys. The relatively low colour scores of the samples indicates the need to consider the level and control of heat application in wheat ethanol production. When formulating poultry diets containing DDGS, information on energy and nutrient contents and availability is important to ensure diets are balanced. In general, findings from this study indicate bioavailability of energy and most nutrients to in the range of published data with turkeys, and to vary between batches.

238

239 Acknowledgements

240 We thank Richard James and Rose Crocker for their technical support.

241

242 **Disclosure statement**

243 No potential conflict of interest was reported by the authors.

244

245 References

247	Adebiyi AO, Olukosi OA. 2015. Metabolizable energy content of wheat distillers' dried grains
248	with solubles supplemented with or without a mixture of carbohydrases and protease for
249	broilers and turkeys. Poult Sci. 94:1270–1276.
250	
251	Adedokun SA, Adeola O, Parsons CM, Lilburn MS, Applegate TJ. 2008. Standardized ileal
252	amino acid digestibility of plant feedstuffs in broiler chickens and turkey poults using a
253	nitrogen-free or casein diet. Poult Sci. 87:2535–2548.
254	
255	[AOAC] Association of Official Analytical Chemists. 2000. Official methods of analysis of
256	AOAC. 17th ed. Vol. II. Gaithersburg (MD): Association of Official Analytical Chemists.
257	
258	Böttger C, Südekum K-H. 2017. Within plant variation of distillers dried grains with solubles
259	(DDGS) produced from multiple raw materials in varying proportions: Chemical composition
260	and in vitro evaluation of feeding value for ruminants. Anim Feed Sci Technol. 229:79–90.
261	
262	Cozannet P, Lessire M, Gady C, Metayer JP, Primot Y, Skiba F, Noblet J. 2010. Energy value
263	of wheat dried distillers grains with solubles in roosters, broilers, layers, and turkeys. Poult Sci.
264	89:2230–2241.
265	
266	Bandegan A, Guenter W, Hoehler D, Crow GH, Nyachoti CM. 2009. Standardized ileal amino
267	acid digestibility in wheat distillers dried grains with solubles for broilers. Poult Sci. 88:2592-
268	2599.
269	
270	Belyea RL, Rausch KD, Tumbleson ME. 2004. Composition of corn and distillers dried grains

with solubles from dry grind ethanol processing. Biores Technol. 94:293–298.

273	Bolarinwa OA, Adeola O. 2012. Energy value of wheat, barley and wheat distillers dried grains
274	with solubles for broilers chickens using the regression method. Poult Sci. 91:1928–1935.
275	
276	Classen HL, Abbott D, Nickerson M. 2014. Effect of hightemperature ethanol fuel processing
277	on the digestibility of wheat protein derived from various stages of ethanol production in broiler
278	chickens. Poult Sci. 93(Suppl.1):51.
279	
280	Cromwell GL, Herkelman KL, Stahly TS. 1993. Physical, chemical, and nutritional
281	characteristics of distillers dried grains with solubles for chicks and pigs. J Anim Sci. 71:679-
282	686.
283	
284	De Groote G. 1974. A comparison of a new net energy system with the metabolisable energy
285	system in broiler diet formulation, performance and profitability. Br Poult Sci. 15:75–95.
286	
287	Fastinger ND, Mahan DC. 2006. Determination of the ileal amino acid and energy
288	digestibilities of corn distillers dried grains with solubles using grower-finisher pigs. J Anim
289	Sci. 84:1722 -1728.
290	
291	Kluth H, Rodehutscord M. 2006. Comparison of amino acid digestibility in broiler chickens,
292	turkeys, and pekin ducks. Poul Sci. 85:1953–1960.

294	Nuez Ortin W., Yu P. 2009. Nutrient variability of wheat DDGS, corn DDGS and blend DDGS
295	from bioethanol plants. J Sci Food Agric. 89:1754-1761.

297 Finney DJ. 1978. Statistical Method in Biological Assay. 3rd ed. Buckinghamshire. Charles

298 Griffin & Company Limited.

299

300 Opoku EY, Classen HL, Scott TA. 2015a. Evaluation of inclusion level of wheat distillers dried

301 grains with solubles with and without protease or β -mannanase on performance and water

302 intake of turkey hens. Poult Sci. 94:1600–1610.

303

Opoku EY, Classen HL, Scott TA. 2015b. The effects of extrusion of wheat distillers dried
grains with solubles with or without an enzyme cocktail on performance of turkey hen poults.
Poult Sci. 94:185–194.

307

308 Opoku EY, Classen HL, Scott TA. 2015c. Effects of wheat distillers dried grains with solubles
309 with or without protease and β-mannanase on the performance of turkey hen poults. Poult Sci.
310 94:207–214.

311

Pirgozliev V, Birch CL, Rose SP, Kettlewell PS, Bedford MR. 2003. Chemical composition
and the nutritive quality of different wheat cultivars for broiler chickens. Br Poult Sci. 44:464–
475.

315

316 Sharma V, Rausch KD, Graeber JV, Schmidt SJ, Buriak P, Tumbleson ME, SinghV. 2010.

317 Effect of resistant starch on hydrolysis and fermentation of corn starch for ethanol. Appl

318 Biochem Biotechnol. 160:800–811.

320	Smith TC, Kindred DR, Brosnan JM, Weightman RM, Shepherd M, Sylvester-Bradley R.
321	2006. Wheat as a Feedstock for Alcohol Production. UK: HGCA.
322	
323	Świątkiewicz S, Koreleski J. 2008. The use of distillers dried grains with solubles (DDGS) in
324	poultry nutrition. W Poult Sci J. 64:257-264.
325	
326	Waldroup PW, Wana Z, Coto C, Cerrate S, Yan F. 2007. Development of standardized nutrient
327	matrix for corn distillers dried grains with solubles. Int J Poult Sci. 6:478-483.
328	
329	Westreicher-Kristen E, Steingass H, Rodehutscord M. 2012. Variations in chemical
330	composition and in vitro and in situ ruminal degradation characteristics of dried distillers'
331	grains with solubles from European ethanol plants. Arch Anim Nutr. 66:458-472.
332	
333	Whiting IM, Pirgozliev V, Rose SP, Wilson J, Amerah AM, Ivanova SG, Staykova GP,
334	Oluwatosin OO, Oso AO. 2016. Nutrient availability of different batches of wheat distillers
335	dried grains with solubles with and without exogenous enzymes for broiler chickens. Poult Sci.
336	96:574-580.
337	
338	Whiting I, Pirgozliev V, Rose SP, Karadas F, Mirza MW, Sharpe A. 2017. The temperature of
339	storage of a batch of wheat distillers dried grains with solubles samples on their nutritive value
340	for broilers, Brit Poult Sci – in press (https://doi.org/10.1080/00071668.2017.1380297)
341	
342	

344 Table 1. Experimental basal diet*

345

Ingredients [%]	
Wheat	53.5
Prairie meal	2.5
Wheatfeed	5.0
Soybean meal	30.0
L-Lysine HCl	0.4
DL-methionine	0.3
L-threonine	0.1
Soya oil	4.0
Limestone	1.0
Dicalcium phosphate	2.5
Salt	0.3
Turkey premix [†]	0.4
Calculated provisions	
AME [MJ/kg]	12.6
CP [g/kg]	235
Ether extract [g/kg]	56
Av Lysine [g/kg]	13.8
Meth + Cysteine [g/kg]	9.9
Ca [g/kg]	12.1
Av P [g/kg]	6.1
Analysed values	
DM [g/kg]	879
GE [MJ/kg]	17.3
CP [g/kg]	233
Ether extract [g/kg]	54

346

- ^{*}DDGS containing diets were fed as a part of complete diet comprised 200 g/kg of each
- 348 experimental wheat DDGS sample and 800 g/kg of the basal.
- [†]Provided per kg feed: retinol, 2160 μg; cholecalciferol, 75 μg; α-tocopherol, 25 mg;
- 350 menadione, 1.5 mg; riboflavin, 5 mg; pantotenic acid, 8 mg; cyanocobalamin, 0.01 mg;
- 351 pyridoxine, 1.5 mg; thiamine, 1.5 mg; folic acid, 0.5 mg; niacin, 30 mg; biotin, 0.06 mg; iodine,
- 352 0.8 mg; copper, 10 mg; iron, 80 mg; selenium, 0.3 mg; manganese, 80 mg; and zinc, 80 mg.

353

355

356	Table 2. Proximate composition and colour measurements of the experimental wheat DDGS
357	samples [g/kg DM [*]]

DDGS	DM [g/kg]	Ash [g/kg]	Ether extract [g/kg]	Crude protein [g/kg]	Gross energy [MJ/kg]	Colour measurements [†]		nts†
						L	а	b
А	896	54.9	49.8	318.5	21.78	38.6	10.2	19.7
В	898	64.9	42.8	326.2	20.29	37.7	9.3	18.0
С	900	58.2	41.9	327.0	21.42	36.4	9.3	17.1
D	892	55.1	51.3	322.4	21.77	35.6	9.8	17.7
Е	895	53.1	55	325.3	21.68	36.8	9.5	18.1
SD^{\ddagger}	3.03	4.66	5.64	3.87	0.63	1.16	0.38	0.97

358 *DM: dry matter; [†]Colour measurements as follows: L [luminance]; a [red index]; b [yellow

359 index]; [‡]SD: standard deviation.

Batch	Fraction	Arabinose	Xylose	Mannose	Galactose	Glucose	Galacturonic acid	NSP [†]	Starch
А	NSPs [‡]	11.2	15.6	5.6	2.2	6.7	4.5	45.8	
	NSPn [#]	43.5	67.0	6.7	8.9	63.6	0.0	189.7	
	NSPt §	54.7	82.6	12.3	11.2	70.3	4.5	235.5	41.5
В	NSPs	13.4	24.5	6.7	5.6	14.5	5.6	70.2	
	NSPn	40.1	56.8	6.7	5.6	57.9	0.0	167.0	
	NSPt	53.5	81.3	13.4	11.1	72.4	5.6	237.2	28.5
С	NSPs	13.3	23.3	4.4	4.4	10.0	5.6	61.1	
	NSPn	38.9	61.1	6.7	6.7	62.2	0.0	175.6	
	NSPt	52.2	84.4	10.0	11.1	72.2	5.6	235.6	28.0
D	NSPs	13.5	19.1	4.5	4.5	7.8	3.4	52.7	
	NSPn	41.5	62.8	7.8	6.7	61.7	0.0	180.5	
	NSPt	54.9	81.8	11.2	11.2	70.6	3.4	233.2	31.9
E	NSPs	11.2	14.5	4.5	3.4	5.6	0.0	39.1	
	NSPn	40.2	63.7	6.7	7.8	60.3	0.0	178.8	
	NSPt	51.4	78.2	10.1	11.2	65.9	0.0	216.8	35.0
SD^*	NSPs	1.21	4.47	1.00	1.28	3.52	2.32	12.28	
SD	NSPn	1.75	3.74	0.49	1.25	2.16	0.00	8.22	
SD	NSPt	1.53	2.26	1.46	0.05	2.62	2.32	8.43	5.54

361 Table 3. Polysaccharide composition of the experimental wheat DDGS samples [g/kg dry matter]362

363 [†]NSP: non-starch polysaccharides; [‡]s: soluble; [#]n: non-soluble; [§]t: total; ^{*}SD: standard deviation.

364

366
367 Table 4. Metabolisable energy and nutrient availability of the experimental wheat DDGS
368 samples determined from 71 to 75 days of age.^{*,≠}

DDGS	AMEn [‡]	DMR§	NR^{\dagger}	FD*
	[MJ/kg DM [#]]	[g/kg]	[g/kg]	[g/kg]
А	13.64 ^b	0.666	0.695	0.851
В	13.19 ^a	0.642	0.678	0.874
С	13.26 ^a	0.649	0.682	0.884
D	13.52 ^{ab}	0.640	0.676	0.876
E	13.48 ^{ab}	0.671	0.707	0.889
CV% [¥]	2.4	5.5	5.3	5.5
SEM₽	0.112	0.0126	0.0129	0.0143
Р	0.048	0.317	0.396	0.415

^{*}Each mean represents values from eight replicate pens of two turkeys each; [‡]AMEn: apparent

370 metabolisable energy, N-corrected; [#]DM: dry matter; [§]DMR: dry matter retention; [†]NR:

nitrogen retention; *FD: fat digestibility; *CV%: coefficient of variation; *SEM: standard error
 of the mean.

^{a,b} Within AMEn values in a column not sharing a common superscript are significantly
 different.

^{*}The determined values for AMEn, DMR, NR and FD of the basal diet were 13.90 MJ/kg DM,

376 0.663, 0.706 and 0.900, respectively.