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1 

 

Automatic selection of weights for GIS-based multicriteria decision analysis: site selection 1 

of transmission towers as a case study  2 

 3 

 4 

Abstract 5 

Transmission line (TL) siting consists of finding suitable land to build transmission towers. This is just 6 

one of the numerous complex geographical problems often solved using GIS-based multicriteria 7 

decision analysis (MCDA), which is a set of techniques that weight several geographical features to 8 

identify suitable locations. This technique is mostly employed using expert knowledge to identify the 9 

correct set of weights; thus adding a certain amount of subjectivity to the analysis, meaning that for 10 

the same problem if we change the experts involved, we may reach different results.  11 

This research is a first attempt to try and solve this issue. We employed a statistical analysis to 12 

quantitatively calculate these weights and we tested our method on a case study about transmission 13 

line siting in Switzerland. We compared the distances between each sample in our dataset, in this 14 

case study these are location of transmission towers, with each geographical feature, e.g. distance 15 

from water features. Then we calculate the same distances but for random points, sampled throughout 16 

the study area. The reasoning behind this method is that if samples present a distance from a 17 

geographic feature statistically different from the random, it means that the feature played an 18 

important role in dictating the location of the sample. In this case for instance, high-voltage 19 

transmission towers are purposely built as far away as possible from urban areas. Random points are 20 

on the contrary by definition sampled without any constraint. Therefore, when comparing the two 21 

datasets, we should find that transmission towers have a larger average distance from urban areas 22 

than random points. This allows us to determine that this criterion (i.e. distance from urban centers) 23 

is important for planning new TL. 24 

The results indicate that this method can successfully weight and rank the most important criteria to 25 

be considered for an MCDA analysis, in line with weights proposed in the literature. The advantage 26 
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of the proposed technique is that it completely excludes human factors, thus potentially increasing 27 

the social acceptance of the MCDA results. 28 

 29 
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1. Introduction 35 

GIS-based multicriteria decision analysis (MCDA, Malczewski, 1999) is a set of techniques for solving 36 

spatial problems by considering and weighting different criteria (i.e. geographical features) in the 37 

decision making process (Dedemen, 2013). These techniques have been extensively used in the past 38 

for solving complex geographical problems. According to Malczewski (2006a) the majority of the 39 

literature on GIS-based MCDA deals with land suitability problems. One of the earliest tests was 40 

performed by Carver (1991), who employed MCDA to find suitable sites for nuclear waste disposal in 41 

the UK. Few other examples of land suitability assessments include Malczewski (2006b), Ligmann-42 

Zielinska and Jankowski (2014), Bojorquez-Tapia et al. (2001), Kwaku Kyem (2001), Mendoza and 43 

Martins (Mendoza and Martins, 2006), and Pereira and Duckstein (1993). GIS-based MCDA was also 44 

utilized in other fields: hydrology and water management (Tkach and Simonovic, 1997; Kwaku Kyem, 45 

2001; Mendoza and Martins, 2006), waste management ( MacDonald, 1996; Charnpratheep et al., 46 

1997), and agriculture (Ceballos-Silva and Lopez-Blanco, 2003; Mendas and Delali, 2012; Akıncı et 47 

al., 2013). Many examples are related to research in the energy sector. For example, in Van Haaren 48 

and Fthenakis (2011) and Höfer et al. (2014) MCDA was used to identify optimal locations to build 49 

wind farms; Omitaomu et al. (2012) adapted a GIS-based MCDA method for assessing the land 50 

suitability requirements to build additional power plants in the US. Moreover, Voropai and Ivanova 51 

(2002) used MCDA for power systems expansion planning, Charabi and Gastli (2011) used it for 52 

identifying sites suitable for large photovoltaic plants, and in Vučijak et al. (2013) MCDA was 53 

employed for locating best basins for additional hydropower. Since MCDA is a class of methods that 54 
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includes numerous alternatives, a literature review structured to present all these alternative 55 

techniques is presented below. 56 

 57 

1.1 Literature Review 58 

According to Malczewski and Rinner (2010) MCDA algorithms can be divided into two main 59 

categories: multi attributes decision analysis (MADA) and multiobjective decision analysis (MODA). 60 

Generally speaking, for environmental studies, where several geographical features need to be 61 

evaluated at once, the former is used. However, MADA is a general term that identifies a wide 62 

collection of algorithms. These may again be divided into four classes: weighted summation, 63 

aggregation, ideal point and outranking. Below we will provide an overview of the most common 64 

methods in each of these classes. 65 

The first class is occupied by the simplest methods of which the most commonly used is the simple 66 

additive weighting (SAW, Churchman and Ackoff, 1954). As the name suggests, this method is a very 67 

simple weighted sum of all the geographical features multiplied by their weights, which are derived 68 

from expert judgment. This method is widely used because it is simple to understand and apply, 69 

particularly in a GIS application with a simple map algebra operation (Tomlin, 1990). Moreover, it is 70 

easy to understand and interpret, thus inherently appealing for decision makers (Malczewski and 71 

Rinner, 2010). It is therefore not surprising that this method is implemented in the software IDRISI 72 

(Eastman, 1995) and still in use for solving GIS related decision problems, such as land allocation 73 

(Jankowski, 1995; Eastman et al., 1998), road siting (Geneletti, 2005), or land fill location identification 74 

(Gbanie et al., 2013). 75 

The second class of algorithms, i.e. aggregation, is occupied by AHP (Analytic Hierarchy Process; 76 

Saaty, 1990), which is again based on the additive weighting model (Argyriou et al., 2016). The main 77 

difference here is in the weights calculation, which is achieved using a preference matrix where each 78 

criterion is compared to all others in a pairwise comparison. This technique is more reliable than SAW, 79 

since it allows for checking the weights (again derived by expert judgment) assigned to the criteria in 80 

terms of consistency using the pairwise comparison, and calculating the consistency index (Dedemen, 81 
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2013). This technique is widely used in the literature to solve many different problems: for example, 82 

Argyriou et al. (2016) used AHP to map neotectonic landscape deformations in Crete. In Şener et al. 83 

(2006) AHP was used to identify suitable location for landfills, Zhu and Dale (2001) developed a web 84 

AHP tool to solve complex multicriteria environmental problems, and Akash et al. (1999) used it to 85 

identify suitable locations for power plants. 86 

Another technique belonging to the aggregation class is the ordered weighted averaging (OWA), 87 

developed by Yager (1988). This technique is similar in formulation to SAW, the main difference is in 88 

the treatment of each criterion. Basically, each weight is ordered based on the relative importance of 89 

each criterion. This method assumes that decision makers, who need to provide the weights, may be 90 

tempted to overweight or underweight certain criteria based on their own perception of risk. By 91 

including a dispersion index, e.g. standard deviation, this method can detect criteria that were 92 

differently evaluated by decision makers and decrease the impact of their personal judgment of on 93 

the analysis. This method is also included in IDRISI (Eastman, 1995), thus it was used for various 94 

environmental studies, such as watershed management strategies (Malczewski et al., 2003), or 95 

landslide susceptibility mapping (Feizizadeh and Blaschke, 2012). 96 

Ideal points methods evaluate criteria based on their distance to some ideal or reference point 97 

(Malczewski et al., 2003). The most famous is TOPSIS (Technique for Order Preference by Similarity 98 

to Ideal Solution), developed by Hwang and Yoon (1981). This technique chooses criteria that 99 

simultaneously have the shortest distance from the ideal solution and the largest distance from the 100 

worst solution. It is again based on a decision matrix, which is the starting point of a complex iterative 101 

approach that includes several phases in which each criterion is compared to the other based on its 102 

distance to the goal or solution. This method is also popular in the literature and has been used for 103 

problems ranging from personnel selection (Kelemenis and Askounis, 2010), to water resource 104 

systems (Afshar et al., 2011), to the selection of ideal turbine manufacturers (Adhikary et al., 2013), 105 

and land-suitability analysis (Ligmann-Zielinska and Jankowski, 2014). 106 

The final class is occupied by outranking methods, which are based on pairwise comparison between 107 

criteria (Malczewski et al., 2003). The most famous methods in this class are ELECTRE (ELimination 108 

Et Choix TRaduisant la REalité), developed by Benayoun et al. (1966), and PROMETHEE, developed 109 
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by Brans (1982). Here again the weights are compared in pairs, similarly to the previously described 110 

algorithms. The difference lies in the assumption that criteria selected by experts can be represented 111 

by outranking relations (Malczewski and Rinner, 2010), meaning that the method can quantitatively 112 

define that one set of weights that is clearly preferred compared to another. These methods are widely 113 

employed in the literature for various studies, among which energy related tasks: for example, Atici et 114 

al. (2015) used ELECTRE to select sites for wind farms, while Kabir and Sumi (2014) used 115 

PROMETHEE to locate power substations. 116 

 117 

1.2 Subjectivity 118 

By definition these techniques require several criteria that must be considered carefully in order to 119 

provide a solution to the problem at hand. For example, the distance between the planned line and 120 

urban centers is of major interest and can be considered an important criterion, since in some cases 121 

the population is opposed to high-voltage lines passing directly above their heads, and in general 122 

high-voltage lines cannot be built close to settlements for issues related to electromagnetic pollution. 123 

Other interesting geographical features to consider may include the bedrock composition or the 124 

presence of major aquifers. These factors are carefully considered and weighted by experts, based 125 

on their own experience. However, this way of decision making is highly subjective (Klosterman, 1997; 126 

Feizizadeh et al., 2014a) and therefore, depending on the weights selection, the results may change 127 

significantly. In fact, all the techniques described above, from the simplest to the most complex, are 128 

all dependent upon weights suggested by decision makers or experts in the field. Clearly, while SAW 129 

takes these weights and simply uses them without any modifications, the other methods were 130 

specifically developed to decrease the impact of these subjective decisions on the algorithms’ 131 

outcome. For example, AHP works with a complex pairwise heuristic approach that is based on a 132 

preliminary development of a general ranking of the criteria. This ranking has to be suggested by 133 

decision makers, and that is where the uncertainty of this method may originate (Feizizadeh et al., 134 

2014b). The same is true for all the other methods, in which the starting point is always provided 135 

subjectively by decision makers.  136 
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This is a major weak point of these methods. Even though they have a long history of successful 137 

application in various fields of research, the fact that they all depend upon subjective decisions may 138 

decrease their social acceptance, particularly when dealing with hotly debated topics or ideological 139 

decisions. If a project is highly opposed by the local community, having experts from the industry 140 

decide which parameters are the most important ones will certainly add fuel to the debate. On the 141 

contrary, involving environmental groups may not be the best solution, since their interests are often 142 

very different from the industry and they are sometimes unwilling to make concessions. In our opinion, 143 

the only plausible way to start solving these issues is developing techniques to quantitatively select 144 

the weights to apply for MCDA analyses. Only a weights selection based on robust mathematical and 145 

statistical analysis can increase the acceptance of these techniques, minimizing any intervention of 146 

parties (i.e. industry experts or environmental groups) that may create conflicts in the community. 147 

This research is a first attempt to address this issue. We focus on the quantitative selection of weights 148 

for MCDA, developing a technique based on statistical analysis to define the weights for the criteria.  149 

 150 

1.3 Case Study 151 

This case study is concerned with the need to integrate a growing percentage of renewable energy 152 

systems (RES) into the electric network. Such a new technology does not rely on large centralized 153 

power plants, but on a more distributed and intermittent production. For this reason, one of the 154 

necessities to successfully integrate RES in the existing electricity mix is updating and partly replacing 155 

the existing transmission network with smart grids. 156 

The construction of new transmission lines is an issue that needs to be tackled from various conflicting 157 

perspectives (Borlase, 2012). For example, distribution operators seek the minimization of the 158 

construction costs of the project, while other stakeholders may want to minimize different factors, such 159 

as the environmental impact of the line or its visual impact on the landscape. This creates serious 160 

conflicts of interest, which need to be solved with a technique capable of planning new infrastructures 161 

in a way that is acceptable by all parties involved. In particular, transmission line (TL) siting consists 162 

of finding suitable land to build transmission towers, using a process that excludes areas that cannot 163 
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be developed (Grassi et al., 2014), while aiming at minimizing the total economic cost of the project. 164 

For transmission line siting, MCDA is used to weight several geographical parameters into a single 165 

cost surface (here cost is not referred to economic cost; it is a broad term that indicates the suitability 166 

of an area to be crossed by a TL), which determines the geographical cost of building a TL, i.e. its 167 

impact on the landscape. Once this cost surface has been created, the least cost path is used to 168 

connect two points (e.g. two transmission towers or two transformation points) by the line that 169 

minimizes this cost (Grassi et al., 2014). For example, TL cannot be built on nature reserves, hence 170 

in these areas and their surroundings (a buffer around protected areas is often included) the 171 

geographical cost of building additional lines would be very high so that the least cost path algorithm 172 

is less likely to choose them.   173 

Such a case study provides the perfect framework to test our quantitative technique to calculate 174 

weights of the MCDA. Since TL siting is an issue that needs to be tackled from a wide range of 175 

perspectives, in this research we included numerous geographical features from which to determine 176 

the most important for TL siting. In particular, we compared the distance between observed samples, 177 

in this case transmission towers already built, and several important geographical features; in parallel 178 

we also compute the distance between the same features and randomly selected points. The idea is 179 

that random points will have distances to the geographical features that by definition are independent 180 

of anything in particular, while transmission towers will have distances that depend on the importance 181 

of the selected feature during the planning phase. For this reason, when comparing the two datasets 182 

we will find differences that are proportional to the importance of each geographical feature for the 183 

planning of new transmission lines. Performing a robust statistical analysis we will be able to 184 

determine quantitatively these differences and assess the relative importance of each geographical 185 

feature in the MCDA.  186 
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 187 

2. Materials and Methods 188 

2.1 Datasets 189 

For this research, we worked at the national scale, considering the entire country of Switzerland. 190 

The most important dataset we used are the locations of the 220 kV transmission towers (n = 5 044) 191 

built by Swissgrid (Swisstopo, 2015), which is the national high-voltage power grid operator (these 192 

are presented in Figure 1 as red dots). This dataset is provided digitized from the 1:25 000 scale 193 

topographic map. Most of the data regarding infrastructures were collected from the VECTOR25 194 

dataset (Swisstopo, 2015), which is a collection of GIS data of natural and man-made features, also 195 

digitized from the 1:25 000 topographic map. From the VECTOR25 collection we used data regarding 196 

the following parameters: rivers, lakes, rock outcrops, screes, woods, buildings, highways and other 197 

types of roads, railways and tram lines. An updated version of this dataset is also available, digitized 198 

from orthophotos (Swisstopo, 2013), where additional features are present. From this we used the 199 

location of landfills, historic sites, mines, quarries, and wastewater treatment plants. Finally, we 200 

gathered data from the geological map of Switzerland (Swisstopo, 2005), scale 1:50 000, that covers 201 

the entire country, and the ESA land-cover map (Bontemps et al., 2011).  202 
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 203 

Figure 1: Map of Switzerland with the location of the transmission towers (red) and the stratified 204 

random points used for comparison. These two datasets have the same distribution in elevation, 205 

meaning that the high peaks in the alpine regions of Switzerland are not covered by the analysis. 206 

 207 

2.2 Random Control Points 208 

The statistical analysis is based upon the comparison of locations of transmission towers with the 209 

location of points randomly selected across the country. By comparing transmission towers already 210 

built with random points we can determine which parameters were the most important ones in 211 

determining their locations. Whereas random points have equal probabilities of being close or far 212 

away from important geographical features, such as urban areas or natural reserves, transmission 213 

towers are located at distances from these features determined during the planning phase. However, 214 

we may not be aware of the rules used during planning (since they may change over time and 215 

depends on regional/local law and regulation), therefore by comparing random points with the 216 
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locations of the towers we may determine these rules experimentally. If the two datasets are 217 

statistically different when investigating a particular criterion, it means that this criterion was 218 

considered important during the planning process. 219 

 220 

2.3 Statistical Analysis 221 

To determine whether the distance differences between the two datasets and various important 222 

features are significant we employed a basic two-sample t-test (Urdan, 2010). In essence, we 223 

calculated the distances between transmission towers and all the features described in section 2.1, 224 

and then repeated the process for the random points. Subsequently, we used the t-test to determine 225 

if the two distance distributions presented significantly different mean values. If the two means were 226 

not significantly different we concluded that the transmission towers had the same probability of being 227 

at a certain distance from a particular feature as random points, therefore this feature was not 228 

accounted for in the decision-making process. Alternatively, a significant difference means that 229 

planners purposely placed towers closer or farther away from this feature, and for this reason this 230 

needs to be taken into account as an important criterion for the MCDA. 231 

The t-test is based on the t statistic, which can be easily computed as follows (Urdan, 2010): 232 

ݐ ൌ
ଵݔ̅ െ ଶݔ̅

ඨݏଵ
ଶ

݊ଵ
൅
ଶݏ
ଶ

݊ଶ

 
1 

 233 

where ̅ݔଵ and ̅ݔଶ are the mean values of the distances of the two datasets, ݏଵ
ଶ and ݏଶ

ଶ are the 234 

standard deviations of the two distance distributions, and ݊ଵ and ݊ଶ are the numbers of points in each 235 

dataset. The two terms in the denominator, namely the ratios between the standard deviations and 236 

the number of points, are the standard errors of the two datasets. After calculating the t statistic we 237 

can calculate the probability that the two means are equal by computing the p value. If this is lower 238 

than 0.05, the two means are significantly different.  239 

A problem with this work flow is that the t statistic relies on the standard error, which in turn is 240 

calculated as the ratio between the standard deviation and the number of samples in the dataset (in 241 
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this case the number of points). This implies that for large samples the standard error is very low, and 242 

the t-test would return significant values even if the two means are very similar. This is referred to as 243 

effect size (Urdan, 2010) and can be simply taken into account by calculating the Cohen’s d (Cohen, 244 

1977): 245 

݀ ൌ
ଵݔ̅ െ ଶݔ̅

ඨሺ݊ଵ െ 1ሻݏଵ
ଶ ൅ ሺ݊ଶ െ 1ሻݏଶ

ଶ

݊ଵ ൅ ݊ଶ െ 2

 
2 

 246 

Equation 2 represents the difference between the two means, divided by what Cohen refers to as 247 

the pooled standard deviation, which is the weighted sum of the number of values of each sample, 248 

minus 1, multiplied by the variance of each sample, divided by the sum of the number of samples, 249 

minus 2. This value is generally between 0 and 1 and can be interpreted in different ways: typically, 250 

a d value of around 0.2 indicates a weak difference, 0.5 a moderate difference and a 0.8, or more, a 251 

strong difference. This index indicates quantitatively how important each feature was considered 252 

during the planning phase, since it allows us to determine how strong the differences in distance are; 253 

thus we can use its value as a weight for the MCDA analysis. 254 

 255 

2.4 Multi-Criteria Decision Analysis 256 

Several methods have been developed to perform MCDA on geographical data, most of them are 257 

based on some form of weighted averages, such as the simple additive weighting (SAW) [2]: 258 

ܹܣܵ ൌ෍ݓ௝ݔ௜௝

௠

௝ୀଵ

 3 

where the final value of a cell is computed by the sum of all the features xj, with j varying between 1 259 

and m (the number of important criteria), multiplied by the weight w individually assigned to them. In 260 

order to use this method the user would need to have access to the weight for each criteria a priori, 261 

and this is generally achieved by consulting experts in the field or guidelines [33], which allow to rank 262 

geographical features based on their relative importance. This process is highly subjective and may 263 

lead to different results depending on who provides the weights. With other methods, such as the one 264 
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described in section 1.1, it is possible to decrease the impact of the initial subjectivity on the final 265 

result. However, as long as the initial weights are proposed by experts, who may have different 266 

opinions, the results of the MCDA will be biased.  267 

In this research, we developed the statistical process described in section 2.3 to calculate the weights 268 

based on a statistical analysis. The weights we used are the one calculated from Equation 2, which 269 

returns a value between 0 and 1 depending on the relative importance of the geographical feature. In 270 

practice, we selected all the features with a d value equal or higher than 0.3, meaning that we 271 

considered also features that are only slightly important for the siting of transmission towers. After 272 

collecting all the d values we normalized them so that their sum is equal to 1, in order to comply with 273 

the condition of application of Equation 3 [21], using the following: 274 

ݓ ൌ
݀௜

∑ ݀௜
௡
௜ୀଵ

 4 

where w is the weight that needs to be plugged into Equation 3, and di is the d value of the ith criterion; 275 

while at the denominator we calculated the sum of all the d values for all the criteria with d equal or 276 

higher than 0.3. 277 

In order to apply Equation 3 we first needed to standardize the distance rasters, creating cost rasters. 278 

We did that by scaling them from 0 to 255. The assignment of the minimum value was determined by 279 

the statistical analysis. As an example we can use again the distance from urban areas. We 280 

determined that transmission towers are located as far away as possible from these geographical 281 

features. For this reason a lower cost is assigned to the maximum distance, which will take the value 282 

0.  283 

 284 

 285 

3. Results and Discussion 286 

3.1 Random Dataset 287 

We started this experiment by comparing the towers’ locations with the locations of completely 288 

random points. However, the statistical tests performed on this dataset offered some results that 289 
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seemed erroneous. For example, the random dataset had an average distance from urban areas 290 

higher than the towers. This would suggest that transmission towers are purposely placed closer to 291 

urban areas, and this is not what happens in reality. For this reason, we realized that we were 292 

comparing datasets that were not comparable, since the random points were distributed all across 293 

the country even in high elevation areas, which are unsuitable for transmission line siting.  294 

As a consequence, we decided to use a stratified random dataset instead, with elevation as a 295 

constraining parameter. We divided the digital terrain model (DTM) of Switzerland into discrete 296 

elevation intervals, and randomly sampled the same number of points as the towers in each interval. 297 

For example, if between an elevation of 100 and 200 m there are 40 towers, 40 points were randomly 298 

sampled only in areas within this range of elevation. The results are presented in Figure 1. Even 299 

though the two datasets seem very different they have the same distribution in elevation, and in fact 300 

the highest peaks in the alpine region of Switzerland are not sampled, since transmission towers are 301 

located at a maximum elevation of around 2 700 m. 302 

 303 

3.2 Statistical Analysis 304 

We compared the average distance of transmission towers and the stratified random dataset to a 305 

series of 41 features (the categories are listed in section 2.1). In some cases, the distance between 306 

the two datasets resulted in a non-significant difference, meaning that the p value was above 0.05. 307 

This happened, for example, for minor highways without guardrails (Autostrasse). This result means 308 

that in the planning phase this feature was not considered important for transmission line siting. In 309 

other words, a tract of a transmission line can either be close, cut through, or be far away from the 310 

feature “Autostrasse” and it would not make any difference. For other features the differences in 311 

distance resulted to be statistically significant, meaning with a p value below 0.05, but the d value, 312 

which takes into account the effect size, was extremely low. This happened for highways (Autobahn), 313 

which presented a p value of 3 x 10-5 but a d value of 0.01. For this feature the same reasoning 314 

applies, meaning they were simply not considered during planning. 315 
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The most important feature appeared to be the geological nature of the bedrock, in particular the 316 

presence of magmatic or metamorphic terrains resulted to be extremely important. These two features 317 

presented d values of 0.57 and 0.59 respectively, with the distance of the transmission towers that is 318 

on average 10 km lower than random data. This means that these two features are important for TL 319 

siting. This makes sense since in Switzerland there are areas with shallow soils and in which 320 

foundations need to be built directly on rock, for which magmatic and metamorphic are good choices. 321 

For similar reasons the presence of rock outcrops resulted to be important. A complete list of all 322 

important features is presented in Table 1. 323 

 324 

Table 1. List of the most important features for transmission lines siting and their 325 

corresponding d values. 326 

Features d 

value 

d 

Value 

50% 

d 

Value 

25% 

Metamorph

ic rocks 

0.5

9 
0.57 0.54 

Magmatic 

rocks 

0.5

7 
0.57 0.53 

Permanent 

Ice 
0.5 0.49 0.47 

Glaciers 
0.4

9 
0.48 0.46 

Aquifers 
0.4

2 
0.43 0.39 

Buildings 
0.3

8 
0.39 0.39 
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Screes 
0.3

5 
0.32 0.37 

Urban 

areas 

0.3

5 
0.33 0.34 

Minor 

roads 

0.3

4 
0.33 0.34 

Rock 

outcrops 

0.3

1 
0.29 0.34 

 327 

In order to provide context to our results, we compared our ranking to other studies on TL siting from 328 

the literature. Despite the fact that many articles are dedicated to TL siting using MCDA algorithms, 329 

only a small fraction of these present the weights that were used in the research. This may be caused 330 

by the fact that sometimes these projects are considered strategically important and thus utility 331 

companies are not willing to share detailed data. However, we found two articles in which the weights 332 

are presented and therefore allow a comparison of our results. The first is the paper by Monteiro et 333 

al. (2005), who used MCDA for TL siting in Spain. In this article the authors suggest that distance to 334 

urban areas is one of the crucial geographical features to consider when placing TL, and also that TL 335 

are often built along roads to “concentrate the impact of roads and power lines in the same 336 

geographical areas” (Monteiro et al., 2005). This article however did not consider the other factors we 337 

included in our analysis so these two conclusions are the only ones that we can use for comparison. 338 

A more thorough research in terms of weights description is the one carried out by Eroglu and Aydin 339 

(2015). Here the authors used several features to help with TL siting in the Black Sea region of Turkey. 340 

Their results suggest once again that distance from urban areas is a major factor in TL siting, which 341 

stands in line with our findings. However, as in this research, the results from Eroglu and Aydin (2015) 342 

do not rank urban areas as the most important factor. By looking at the tables of weights they present, 343 

it is clear that the most influential factors are magmatic and metamorphic rocks, major roads (two or 344 

more lanes roads), historic places and ice zones. These results are partially in line with what we found 345 

in this research. The type of bedrock is clearly of primary importance for building solid foundations for 346 
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the towers, hence its high ranking. We also found a significant correlation between transmission 347 

towers and distance to roads, in line with the results from Eroglu and Aydin (2015), even though in 348 

our case not with major roads, therefore not with highways, but only with minor roads. This may be 349 

related to differences in the road network between Switzerland and Turkey, but also to the fact that 350 

we focused on the entire country, while Eroglu and Aydin (2015) focused on a single region. Historic 351 

places were also considered in our research but not found of significant importance for TL siting. 352 

Finally, areas under permanent ice were found important in both studies and this makes sense, since 353 

it is very difficult to build new infrastructures on these terrains. 354 

 355 

 356 

Figure 2: Results of the MCDA analysis. This maps depicts the results obtained by applying Equation 357 

3 to the features and the weights calculated by the statistical analysis. 358 

 359 

 360 
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3.3 MCDA 361 

Using the d values obtained from the statistical analysis, we calculated the weights to solve Equation 362 

3 and complete the MCDA. The results are presented in Figure 2.  This image is color coded in a way 363 

that green means the area is suitable for building transmission towers, while a red color signifies 364 

unsuitability. From this image it is clear that Switzerland is basically divided into two main regions, the 365 

Alpine area toward the south of the country where there are mainly buildable areas along the valleys, 366 

and a flatter region to the North with mostly unsuitable areas. The reasons for this are simple, in the 367 

Alpine region the number of urban areas, classified by the ESA land cover dataset, are very few and 368 

sparsely located. Even though the distance to urban areas is not the feature with the highest d value, 369 

it resulted to be the most important in the large majority of the country, meaning that is the one that 370 

drives most of the MCDA. In the North part of the country there are numerous relatively large cities 371 

and this decreases the availability of land for transmission line siting, even though in the area around 372 

Zürich this does not seem to be the case.  373 

From this map it is also clear that the North-West part of Switzerland (in Canton Jura, to the North of 374 

the city of Neuchâtel) resulted to be particularly unsuitable for TL siting. This is related to the presence 375 

of very soft terrain, and in fact the most important features here are the distances from magmatic and 376 

metamorphic terrains. This area is characterized by a hilly karstic landscape with shallow soils and 377 

exposed bedrock, similar to the Alpine region, and therefore the bedrock is not feasible, from the 378 

geotechnical point of view, particularly to build high-voltage lines that require deeper foundations. 379 

From the map it is clear that numerous valleys in the southern part of Switzerland present the right 380 

combination of factors to make them suitable for transmission line siting. For example Ticino (with 381 

capital city Bellinzona) and the South-East part of Canton Graubünden (with capital city Chur) present 382 

mostly greenish colors and can be developed to connect Switzerland to neighboring countries, such 383 

as Italy and Austria. The problem in these areas are natural parks and protected areas that makes 384 

them completely unsuitable for planning, and this is the reason why they were not developed in the 385 

past. In this work we did not considered protected areas, since building over them is prohibited and 386 

therefore can just be masked out from the cost raster. However, we think it is important to look at the 387 
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full picture of results and to also identify areas that would be suitable if there is a political will to remove 388 

some of the environmental restrictions that are currently in place. Clearly we are not suggesting this 389 

should be done, we are just considering all the alternatives.  390 

 391 

3.4 Cross Validation 392 

The d values in the second column of Table 1 were calculated using the full dataset of transmission 393 

towers, comprising 5 044 locations. The problem is that in certain areas access to this amount of data 394 

may not be possible. For this reason, we created a validation experiment to verify what would be the 395 

changes if we had a much smaller starting dataset. We randomly divided the dataset into subsets 396 

keeping 50% of the towers (n = 2 522) for the first experiment, and 25% (n = 1 350) for the second. 397 

For each of these two subsets we resampled the random points according to the new elevation 398 

distributions. Subsequently we repeated the statistical analysis for comparison.  399 

The results of the statistical analysis indicate close similarities between the features considered 400 

important using the subsets, compared to the important features in the complete experiment. All the 401 

features that resulted as unimportant in the complete experiment resulted unimportant also when 402 

considering subsets. These results are presented again in Table 1 in columns three and four. 403 

This validation allowed us to determine that such a method is very robust against the number of 404 

locations we have in our starting dataset. Clearly this method can be used only if users have the 405 

location of at least some of the transmission towers already built. However, with this validation we 406 

demonstrated that the number of these locations can be limited in size so that the method can be 407 

used also for small countries or in locations where accessing power data is difficult. 408 

 409 

4. Conclusion 410 

In this paper we proposed a method to quantitatively and robustly calculate the weights for a multi 411 

criteria decision analysis. This method requires a relatively small number of locations with 412 

transmission towers and from them it can calculate the most important criteria to consider in the 413 

planning phase. The weights calculated from the effect size (i.e. parameter d) can readily be used for 414 
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relatively simple algorithms such as SAW, and their ranking can also provide the basis for more 415 

complex methods such as AHP, which still relies on expert judgments in their first step. 416 

Since this method is based on a statistical analysis it is not affected by the same amount of subjectivity 417 

typical of traditional MCDA analyses. By relying on statistics and not on expert knowledge we can 418 

identify important criteria for transmission line siting in a reproducible and consistent way. This may 419 

well decrease the conflict between proponents and opponents of projects that are politically sensitive. 420 

Avoiding expert judgment from the industry side, a controversial project may be better digested by 421 

the local community, because its results are reproducible and based on a strong statistical 422 

background. 423 

As mentioned, the criteria selected for building transmission towers may change over time, with 424 

updates in the national policies, or in line with regional/local laws and regulation. In this experiment 425 

we considered the full dataset of transmission towers, without taking into account possible changes 426 

in policies, since this is not possible with our data. The available dataset consists of transmission lines 427 

older than 40 years. Then not only the regulations but also the spatial distribution of the settlements 428 

and infrastructures was clearly different compared to today. This may lead to erroneous estimations 429 

of important criteria, but in no way affects the validity of the methodology. In fact, as demonstrated 430 

with the cross-validation, this method is only slightly affected by changes in the starting dataset, 431 

including a decrease in the number of towers used for comparison. This means that to take into 432 

account local laws or changes in policies over time, one should only subset the initial dataset to 433 

maintain a consistency in the criteria used during the planning phase, and the method should work 434 

just as well.  435 

A major limitation of this work is that we considered only level 1 transmission lines, meaning high-436 

voltage. We only had access to these data because lower voltage lines are managed by cantonal 437 

energy distributors, who are not willing to share their data. For this reason, the results we obtained 438 

can only be used to plan high-voltage lines. More data are needed to identify which features are 439 

important for medium to low-voltage line siting. Moreover, this first test focused on estimating weights 440 

considering all of Switzerland. However, local or regional conditions may highly affect the way in which 441 

infrastructures were built in the past, hence may impact the results of the statistical analysis.  442 
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