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2. Abstract 

Radish splitting reduces marketable yield and increases production costs. Minimising 

losses may be possible through identification of factors affecting splitting.  

Splitting occurs during growth (growth splits) and post-harvest (harvest splits). Growth 

splitting was shown to be affected by cultivar and periderm thickness, split radishes 

tended to have thicker periderms. Growth splitting was also affected by irrigation; greater 

volumetric water content resulted in more split radishes. This may have been due to 

increased turgor pressure from greater hypocotyl water uptake. Radishes were particularly 

sensitive to increased substrate VWC at Growth Stage 41, defined as the point when the 

periderm becomes the hypocotyl surface. Radish development stages were developed 

following the Biologische Bundesanstalt, Bundessortenamt and CHemical industry 

(BBCH) scale. This suggests irrigation management could reduce growth splits, however 

consistent control of soil moisture may be difficult in field-grown crops and manipulating 

post-harvest conditions may be more achievable. Radishes with different hypocotyl water 

content (WC) were tested for susceptibility to harvest splitting as a result of mechanical 

damage. Hypocotyl WC was negatively correlated with compression and puncture failure 

force and more radishes split as a result of impact at higher hypocotyl WC. Hypocotyl WC 

and relative WC were correlated with water pressure leading to the conclusion that greater 

turgor pressure within the hypocotyl resulted in the radishes being more susceptible to 

splitting. Radishes were also shown to be increasingly susceptible to splitting with 

decreasing temperature. Again, this was thought to be as a result of turgor pressure; the 

cytoplasm and cell wall may contract more than the vacuole at low temperatures resulting 

in increased pressure. The mode of failure was shown to be plasmoptysis, increasing 

turgor pressure increases susceptibility to plasmoptysis. 

In conclusion, susceptibility to splitting could be reduced by decreasing post-harvest 

hypocotyl turgor pressure. Therefore, using current commercial production methods it is 

more feasible to minimise harvest splitting than growth splitting. 
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1. Literature review 

1.1 Introduction 

This research project has been carried out in response to the losses of marketable yield 

and increases in processing and packing expenditure being experienced by UK radish 

growers and packers due to splitting. Supermarkets will usually reject batches of radishes 

which contain more than 10% of radishes which do not meet commercial standards. This 

includes radishes which are split. As radish splitting rates can exceed 30%, batches can 

be rejected purely for excessive splitting. To prevent this, split radishes have to be 

removed by hand prior to packaging, a time-consuming, costly and wasteful procedure. 

This project aims to minimise splitting in radishes by understanding the pre and post-

harvest factors which affect it.  

Little research has been carried out into splitting in radishes, in particular the small red 

summer radishes which are predominantly grown in the UK. However, splitting is also a 

problem for other vegetable crops such as carrot, potato and kohlrabi and it is also a 

problem for fruit crops such as cherry, tomato and pepper and a greater quantity of 

research has been carried out into the causes of splitting in these crops. Research into 

splitting in a variety of crops which is considered relevant to radishes will be discussed in 

this literature review. 

  

1.2 The radish crop  

Radish (Raphanus sativus) is an economically important herbaceous plant which is 

cultivated worldwide as a vegetable, for animal fodder and for production of radish seed 

oil. Radishes grown as vegetables will be the focus of this work. Annual global production 

of radishes as a vegetable crop is estimated at 7 million tonnes which is about 2% of the 

total world production of vegetables (Schippers 2004).  

Raphanus sativus is a cultigen which has been selectively bred since early civilization. 

There are inscriptions in the pyramids which suggest Raphanus sativus was used by the 

Egyptians around 2000 B.C., there is also evidence of its existence in Japan about 700 
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B.C. and in China roughly 500 B.C. (George & Evans 1981). It is believed there have 

been three separate domestication events of vegetable radishes, the black radish, Asian 

winter radishes and European summer radishes. European summer radishes are believed 

to have been bred either from a single wild species or through hybridization of wild 

species in the Mediterranean (Yamane et al. 2009). Salad varieties were developed in the 

18th century and were originally white. Later a greater variety in shape and colour were 

developed (George & Evans 1981). Radish has a pungent peppery flavour as, like many 

cruciferous vegetables, it contains glucosinolates (Depree et al. 1998; Holst & Williamson 

2004; Verkerk et al. 2009). 

In general, radishes which are grown to be eaten as vegetables are divided into two 

distinct types, small summer radishes (Figure 1-1) and large winter radishes (Figure 1-2). 

The smaller quick growing summer radishes are popular as salad vegetables in Europe 

and North America whereas, the larger winter radishes have particular prevalence in Asia 

in countries such as China, Japan, Korea and India (Zaki et al. 2012; Ullah et al. 2011). 

Summer radishes are annuals and they have a rapid growth cycle, typically taking 3 to 6 

weeks from planting to harvest (Van Andel 2009). Winter cultivars may be annual or 

biennial and require longer to mature, taking up to eight weeks to achieve harvest size 

(Abdel 2011). Winter radishes are often referred to as ‘daikon’ from the Japanese name or 

‘mooli’ from the Hindi name. This project concentrates on the smaller globular summer 

radishes which are grown commercially as a salad crop in the UK.  
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Figure 1-1 Summer radish (G’s Fresh Ltd 2012) 

Figure 1-2 Winter radish (JagsFresh 2014) 
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1.2.1 Taxonomy  

The common name radish derives from the Latin for root, radix. The name Raphanus 

derives from the Greek ra, meaning quickly, and phainomai, meaning to appear, this 

refers to the rapid germination of the seeds.  

Radishes belong to the class Equisetopside, subclass Magnoliidae, suborder Rosanae, 

order Brassicales, family Brassicaceae and genus Raphanus. Pistrick (1987) divided the 

cultivated forms of the Raphanus genus into three groups: Convar. oleifera which includes 

oilseed and fodder radishes, Convar. caudatus which is also known as var. mougri or rat 

tail radish and finally Convar. sativus which includes all forms of radish grown for the 

edible swollen hypocotyls including small and large varieties sometimes known as var. 

radicula, nigra, niger, sinensis, acanthiformis and longipinnatus (Pistrick, 1987 as cited in 

(Maroufi & Farahani 2011)). All varieties intercross freely and hybridise with wild 

Raphanus species. 

 

1.2.2 Morphology  

Although the entire radish plant is edible, typically, radish, like swede, celeriac, beetroot 

and turnip, is grown for the swollen hypocotyl and tap-root. Swollen radish hypocotyls and 

taproots can grow and develop into a variety of different shapes, sizes and colours 

(George & Evans 1981). The upper section of the fleshy part of the radish is usually 

devoid of lateral roots and consists of a swollen hypocotyl. Depending on the type of 

radish the lower section may be formed of an enlarged taproot and have lateral roots. The 

proportion of taproot is greater in long winter varieties as opposed to globular summer 

varieties which are the focus of this thesis (Figure 1-3). As may be expected differences in 

cell size and number at different locations in the radish hypocotyl and taproot have been 

shown to differ between long type and round type radishes (Zaki et al. 2012). More 

specifically the differences between long white and round red radishes have been shown 

to be due to differences in the growth of the upper part of the tap root (Ting & Wren 1980). 

It is thought the differences in shape have a genetic basis and 11 genes have been 

identified which are differentially expressed in two radish cultivars of different shape (Zaki 
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et al. 2012). For ease of reference the swollen hypocotyl and taproot will be referred to as 

the hypocotyl in this thesis.  

Radishes have lobed leaves arranged in a rosette. Each leaf has a large single terminal 

lobe and smaller paired lateral lobes which are irregularly toothed (Figure 1-3). Radish 

flowers have four petals alternately arranged with four sepals. The petals range in colour 

from white to pale violet. The inflorescence is borne on an elongated raceme. Radishes 

are usually self-incompatible and are categorized as allogamous (George & Evans 1981). 

Radish flowers are insect pollinated (George & Evans 1981) however, commercial 

radishes grown as a salad vegetable are harvested prior to anthesis.   

 

Figure 1-3 General radish morphology (Schippers et al. 2004). 1 = globular summer 

radish, 2 = long winter radish. 
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1.2.3 Growth and development  

Standard codes for describing growth stages enable accurate scientific descriptions and 

comparisons to be made between plants at the same physiological age. Specific 

descriptions of growth stages are available for many crops including cereal (Zadoks et al. 

1974), canola (Sylvester-Bradley 1985), potato (Jefferies & Lawson 1991) and peas (Knott 

1987). There is a growth code specific to wild radish (Raphanus raphanistrum) which 

includes ten primary growth stages (Madafiglio et al. 1999). The growth stages of 

Raphanus sativus have not been uniquely described but are included in the Biologische 

Bundesanstalt, Bundessortenamt and CHemical industry (BBHC) identification keys under 

root and stem vegetables, which includes nine principal growth stages (Meier 2001) 

(Table 1-1). This key has been useful in defining growth stages for peer reviewed work for 

example it was used by Schreiner et al. (2002) in their investigation into seasonal effects 

on radish quality (Schreiner et al. 2002). However, the scale lacks plant specific 

descriptions particularly during the development of the harvestable vegetative parts and 

gives no indication of the timings for each of the stages. 

 

Table 1-1 Biologische Bundesanstalt, Bundessortenamt and CHemical industry (BBHC) 

root and stem vegetable identification key (Meier 2001) 

Principal growth stage 0: Germination 

00 Dry seed 

01 Beginning of seed imbibition 

03 Seed imbibition complete 

05 Radicle emerged from seed 

07 Hypocotyl with cotyledons breaking through seed coat 

09 Emergence: cotyledons break through soil surface 

Principal growth stage 1: Leaf development (Main shoot) 

10 Cotyledons completely unfolded; growing point or true leaf initial visible 

11 First true leaf unfolded 

12 2nd true leaf unfolded 
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13 3rd true leaf unfolded 

1… Stages continuous until . . . 

19 9 or more true leaves unfolded 

Principal growth stage 4: Development of harvestable vegetative plant parts 

41 Roots beginning to expand (diameter > 0,5 cm) 

42 20% of the expected root diameter reached 

43 30% of the expected root diameter reached 

44 40% of the expected root diameter reached 

45 50% of the expected root diameter reached 

46 60% of the expected root diameter reached 

47 70% of the expected root diameter reached 

48 80% of the expected root diameter reached 

49 Expansion complete; typical form and size of roots reached 

Principal growth stage 5: Inflorescence emergence 

51 Main shoot begins to elongate 

53 30% of the expected height of the main shoot reached 

55 First individual flowers of main inflorescence visible (still closed) 

57 First individual flowers of secondary inflorescences visible (still closed) 

59 First flower petals visible; flowers still closed 

Principal growth stage 6: Flowering 

60 First flowers open (sporadically) 

61 Beginning of flowering: 10% of flowers open 

62 20% of flowers open 

63 30% of flowers open 

64 40% of flowers open 

65 Full flowering: 50% of flowers open 

67 Flowering finishing: majority of petals fallen or dry 

69 End of flowering 

Principal growth stage 7: Development of fruit 
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71 First fruits formed 

72 20% of fruits have reached typical size 

73 30% of fruits have reached typical size 

74 40% of fruits have reached typical size 

75 50% of fruits have reached typical size 

76 60% of fruits have reached typical size 

77 70% of fruits have reached typical size 

78 80% of fruits have reached typical size 

79 Fruits have reached typical size 

Principal growth stage 8: Ripening of fruit and seed 

81 Beginning of ripening: 10% of fruits ripe, or 10% of seeds of typical colour, dry and 

hard 

85 50% of the fruits ripe, or 50% of seeds of typical colour, dry and hard 

89 Fully ripe: seeds on the whole plant of typical colour and hard 

Principal growth stage 9: Senescence 

92 Leaves and shoots beginning to discolour 

95 50% of leaves yellow or dead 

97 Plants or above ground parts dead 

99 Harvested product (seeds) 

 

 

1.2.4 Commercial production  

Radish crops can be grown commercially both in the field and in the glasshouse; there are 

advantages and disadvantages to both methods, the primary deterrent being cost of 

glasshouse production and the primary benefit being environmental control (Stannard, T. 

2012. Pers. Comm. G’s Marketing). In the UK radish is available to buy all year around. 

The typical UK radish season runs from April to October being produced commercially 

predominantly in the East of England. From October to April, when UK produce is not 
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available, field grown radish is imported from areas such as Morocco and Senegal and 

from glasshouse production in Holland (Stannard, T., 2012 Pers. Comm. G’s Marketing) 

 

1.2.4.1 Soil type and irrigation 

Radishes grow well on a variety of soil types with the exception of those with a heavy 

texture and high clay content which are prone to waterlogging. Soils with a light sandy 

texture which are well drained provide easy lifting of the radishes and soils which have a 

high organic or peat content are thought to give a good periderm colour (Red Tractor 

Farm Assurance 2010). When radishes are grown on soil with a light texture, irrigation is 

often required to assist germination and may be necessary throughout growth. Irrigation is 

thought to be of particular importance when the hypocotyl begins to swell especially if 

scab is likely to be a problem (Red Tractor Farm Assurance 2010).  

 

1.2.4.2 Nutrition  

The soil should be sampled prior to drilling for major elements such as phosphate, 

potassium and magnesium. Typical nutrient requirements are given in Table 1-2, in 

addition to this, further top dressings of nitrogen may be required for following crops on 

the same land. The amount of nitrogen which should be applied will vary between 40 and 

75 kg/ha depending on the soil type and time of year. Excessive nitrogen application is a 

problem and only the minimum requirements should be applied, particularly to bunched 

radish. Unnecessary nitrogen may result in too much top growth and a greater 

susceptibility to certain diseases, such as downy mildew (Red Tractor Farm Assurance 

2010). Over application of lime is also a problem for radish production as it is thought to 

encourage scab (Red Tractor Farm Assurance 2010). 
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Table 1-2 Typical nutrient requirements for radishes (Red Tractor Farm Assurance 2010) 

 Soil index 

Nutrient (kg/ha) 0 1 2 3 4 4+ 

Nitrogen 110 60 20 a a a 

Phosphate (P2O5) 175 125 75 25 nil nil 

Potash (K2O) 250 200 100 to 150 50 nil nil 

Magnesium (MgO) 150 100 nil nil nil nil 

a = a small amount of nitrogen may be needed if levels are low in the top 10-30 cm of soil. 

 

1.2.4.3 Harvest and storage  

Radishes are harvested when they are of a commercial size; this is usually 18 to 32 mm in 

width for pre-packed radishes (Figure 1-4). Pre-packed radishes are harvested either by 

machine or by hand. Bunched radishes (Figure 1-5) are harvested purely by hand (Red 

Tractor Farm Assurance 2010). Both radishes harvested by hand and by machine benefit 

from rapid transport from the field with minimal dropping and should not be exposed to hot 

sun to avoid deterioration. Shelf life is thought to be optimised by harvesting early in the 

morning when conditions are cooler (Red Tractor Farm Assurance 2010).  

 

Figure 1-4 Commercially grown radishes which are ready for harvest 
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Figure 1-5 Commercially grown bunched Raphanus sativus ‘French Breakfast’ 

 

Pre-packed radishes have their leaves removed, a processed referred to as being 

‘topped’, shortly prior to harvest (Figure 1-6, Figure 1-7). They are then lifted (Figure 1-8) 

and dropped into a trailer (Figure 1-9) from heights of up to 1.4 m using a modified potato 

harvester. After harvest the radishes are washed (Figure 1-10) in potable water and the 

leaf petioles and roots are removed. Once trimmed the radishes are graded and sorted by 

hand for the first time removing non-marketable produce (Figure 1-11). They are then put 

into large containers and transported (Figure 1-12) to storage (Figure 1-13). Here the 

temperature is between 2 and 5°C and the radishes acclimatise to this naturally. Radishes 
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can be cooled more rapidly (roughly 1 hour) using vacuum cooling but this is not usually 

used as it is believed within the industry to increase harvest splitting. The radishes can be 

stored for several days prior to packing and usually for no less than 1 to 2 days as it is 

thought this is the period when the radishes are most likely to split. After storage the 

radishes are graded and sorted by hand for a second time (Figure 1-14), still under chilled 

conditions, removing split and unmarketable produce and packed ready for sale (Figure 

1-15). They are then transported to supermarkets remaining under climate controlled 

environments. 

 

Figure 1-6 Commercially grown radishes being topped 
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Figure 1-7 Commercially grown topped radishes 

Figure 1-8 Commercially grown radishes being lifted 
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Figure 1-9 Commercially grown lifted radishes in trailer 

Figure 1-10 Commercially grown radishes being washed out of trailer 
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Figure 1-11 Commercially grown radishes being graded and sorted by hand for the first 

time prior to storage 
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Figure 1-12 Commercially grown radishes being transported to storage in curtain sided 

trailers 
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Figure 1-13 Commercial radishes stored in Dolavs 



18 
 

Figure 1-14 Commercial radishes being sorted and graded for a second time prior to 

packing 
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Figure 1-15 Commercial packed radishes ready for transport to the supermarket 

 

1.2.4.4 Commercial standards  

There are standards which must be adhered to before many vegetables, including 

radishes, can be sold or exported for sale. Part A of Annex I to Commission Regulation 

1221/2008 sets a general marketing standard for all fresh fruits and vegetables which 
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specifies minimum quality, maturity and labelling requirements. In reality the European 

standards are arbitrary as they are further superseded by supermarkets that impose their 

own specific requirements for labelling, size, shape and condition of the radish. These 

requirements are typically far more stringent than the legal requirements. In The UK 

radishes are normally required by supermarkets to be between 18 and 32 mm in width, be 

uniform and round in shape, have less than 10% of the produce split, glassy, diseased or 

scuffed, and less than 5% of the produce should have pest damage, signs of disease or 

dehydration.  

 

1.2.4.5 Pests  

Radish crops in the UK will typically undergo 3 year crop rotation cycles to prevent the 

build-up of pests and disease in a particular field (Watson, S. 2012. Pers. Comm.).  

The worst pest of radishes in the UK is cabbage root fly (Delia brassicae). The larvae of 

the root fly burrow into the radish hypocotyl resulting in it being unsaleable, even light 

infestations can be seriously detrimental to the marketable yield. There can be several 

generations of cabbage root fly in a year typically starting in May and continuing into 

autumn. As the UK radish season typically starts in April and ends in October the cabbage 

root fly is a problem for the majority of the growing season. Treatment involves the use of 

traps for the adult flies used in conjunction with fine mesh netting and firm consolidation of 

the seedbed in an attempt to prevent eggs being laid. The timing of generations can be 

predicted using computer models to enable more accurate use of traps and nets (Red 

Tractor Farm Assurance 2010).  

Another occasional and local pest which affects radishes is cabbage stem weevil. The 

larvae of this pest tunnel into the leaf stalks and heavy infestations may reduce yield by 

causing deformation in the radish plants. The rise in incidence over recent years has been 

attributed to the increased area of oilseed rape which is being grown. One preventative 

measure which is suggested to growers is to avoid growing radishes adjacent to oilseed 

rape crops (Red Tractor Farm Assurance 2010).  
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Aphids and flea beetles are pests which are considered to be more serious for bunched 

radish than pre-packed radish crops as they affect the quality of the leaves. Flea beetles 

tend to infest radishes during very dry periods and cause small holes in the leaves which 

become more obvious as the leaves expand. Growers are advised to keep the crop moist 

and use fine mesh thrip netting to reduce the incidence of this pest. Although various 

species of aphids can infect radishes, they are only an occasional problem. Light 

infestations can usually be controlled using natural predators and parasites such as 

parasitic wasps (Red Tractor Farm Assurance 2010).  

 

1.2.4.6 Diseases  

There are several diseases which can affect radishes in the UK and unfortunately unlike 

many crops there is not a particularly good choice of disease resistant cultivars of radish 

(Red Tractor Farm Assurance 2010).  

Scab (Streptomyces scabies) causes circular white lesions 5 to 15 mm in diameter with 

raised edges and sunken centres which appear on the surface of hypocotyl close to the 

time of harvest (Levick et al. 1985). The spots expand and the radish can become soft 

and rotten. Scab is a soil borne fungus. Both radish and some types of potato 

streptomycetes are pathogenic to radishes (Levick et al. 1985). Scab is more prevalent in 

soils with a high pH therefore creating alkaline conditions by over liming the soil should be 

avoided, as should soils with a history of the disease. Irrigation and soil moisture is 

important in the management of scab. Radishes grown in a relatively wet un-drained plot 

(soil moisture above -0.15 MPa) had significantly (P=0.01) less scab (mean 4% radishes 

infected) than radish grown in a relatively dry (soil moisture below -0.3 MPa) soil (mean 

50% radishes infected). Incidence has been shown to be significantly reduced in plants 

which are irrigated regularly, 2 to 3 day irrigation intervals compared to ambient or no 

rainfall. Incidence has also shown to be significantly lower in plants irrigated for 2 to 3 

weeks after drilling when compared to plants irrigated for only 1 week (Levick et al. 1985). 

Downy Mildew (Peronospora parasitica) can be very prevalent during favourable cool 

humid conditions. This disease causes small yellow spots on the leaf surface and white 
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fluffy mould under the surface of the leaves. Spores wash down from infected leaves and 

infect the hypocotyl. The hypocotyl can then be disfigured by black spots which makes it 

unmarketable. There are no resistant varieties to this disease but some control can be 

achieved using cultural methods by avoiding watering during still, warm periods as this 

can encourage the disease.  

White blister (Albugo candida) is a disease which causes raised white blisters on the 

leaves of radish plants and in severe cases can result in distortion of all the leaves. It is 

therefore of particular relevance to bunched radishes. It is a disease which spreads 

rapidly, there are no cultural control methods available for treatment or prevention but 

good hygiene after harvest is thought to help control the spread of the disease (Red 

Tractor Farm Assurance 2010). 

Two diseases where there are resistant radish cultivars available are club root 

(Plasmodiophora brassicae) and fusarium (Fusarium oxysporum). Club root affects the 

root and base of the hypocotyl by infecting the root hairs of the developing root. Infection 

results in distorted swellings and knobs on the hypocotyl. Heavily infected plants may 

become stunted and wilted due to compromised root function. Disease transmission 

occurs through infected soil and fungus spores can remain viable in the soil for at least 

seven years. Therefore, if possible, it is best not to grow radishes in soil which has a 

history of the disease (Rowe 1980). Low pH and excessive moisture also favour infection 

(Rowe 1980). Fusarium is predominantly a problem for glasshouse grown radishes 

although it can affect field grown radishes in hot summers. It can survive in the soil for 

several years. The disease causes the lower leaves to yellow and the infected leaves drop 

off. In severe cases all the leaves may be lost (Red Tractor Farm Assurance 2010).  

 

1.2.4.7 Weeds 

Weeds are seldom a problem with radish production; it is a quick growing crop and usually 

outgrows the competition. In the UK there can be as many as 5 harvests per annum from 

a single field of radish (Watson, S. 2012. Pers. Comm.). Ensuring the seedbed is clean 

before drilling usually negates the requirement to use herbicides (Watson, S. 2012. Pers. 
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Comm. General Manager Feltwell Growers G’s). No contact post crop emergent or 

residual herbicides are approved for use in radish production but contact herbicides with 

the active ingredients; diquat, glufosinate ammonium and glyphosate are available to use 

pre-drilling (Red Tractor, 2010).  

 

1.3 Splitting  

Splitting in fruit and vegetables is an unsightly problem which reduces marketability and 

exposes internal tissue to the external environment and potential pathogens (Gracie 

2004). Radish growers can experience splitting rates up to 30% yet supermarket tolerance 

to hypocotyl splitting in radishes is typically less than 10% (pers comms Scott Watson G’s 

Growers). Excessive splitting not only reduces the marketable yield but it also results in 

batches of radishes having to be processed by hand to remove the split produce. This 

process is both time consuming and costly for the grower and packaging companies. 

Despite these problems, little is known about the environmental and physiological causes 

of splitting particularly in summer radishes. Previous research into splitting has tended to 

focus on fruit crops such as apple, cherry and tomato. Due to the differences between the 

physiology of fruit and vegetable tissue and the effects this has on mode of splitting this 

review will concentrate predominantly on splitting in vegetable crops as this is more 

relevant to radishes. Comparisons will be made with splitting in fruit where appropriate 

and when similarities are present. The majority of research into splitting in vegetables has 

been carried out into carrots. Splitting is a major problem for this crop as in excess of 10% 

of a carrot harvest can be lost due to splitting (McGarry 1995). There are some similarities 

between the physiology of radishes and carrots suggesting research into splitting in carrot 

may be relevant to radishes. The edible portion of both vegetables is produced by the 

expansion of the storage root and hypocotyl. Although radish is predominantly hypocotyl 

and carrot is chiefly storage root, resulting in a greater proportion of the carrot being under 

the soil surface during growth.  

Splitting occurs when mechanical stress exceeds the ability of the tissue to withstand it 

(Hole et al. 1999). There are two types of splitting, cellular debonding where the cells 
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remain intact but pull away from each other and plasmoptysis where the cells rupture. The 

mode of failure depends on the relative strengths of the intercellular bonds and cell walls 

(Lin & Pitt 1986). In many vegetable crops, root and tuber splitting is thought to occur 

predominantly due to plasmoptysis as opposed to cellular debonding. McGarry (1993) 

found splits occurred in carrots by cell wall breakage and Lippert (1999) investigated 

cracking in kohlrabi tubers and found ruptured cell walls indicating intracellular fractures. 

This is unlike cracking in some fruits which often show cracks along cell walls without 

damage to the cell and cell walls (Khan 1989 as cited in (Lippert 1999)). The difference is 

thought to be due to the limited amount of intercellular or apoplast volume in some 

vegetables, less than 5% v/v in kohlrabi (Lippert 1999) and ranging between 6 and 15% 

v/v in carrot decreasing with crop age (McGarry 1995), compared to 20-25% v/v in apples 

(Lippert 1999). Although not discussed in the paper the pictures of cross-sections by Skok 

(1941) of radishes which have split during growth (Figure 1-16) appear to show a similar 

trend with little observable intercellular space and splits propagating through the cells 

(Skok 1941). These results suggest splitting susceptibility in these vegetable crops must 

be determined to some extent by cell wall strength and composition.  

Figure 1-16 Split in the cambium region of radish (Skok 1941). Fracture appears to involve 

cellular rupture. 
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1.3.1 Differences in splitting susceptibility between cultivars  

Splitting susceptibility is likely to depend on genotype-environment interactions. Therefore, 

the choice of cultivar is thought to have an effect on the amount of splitting which occurs. 

Some investigations have found effects of cultivar selection on splitting susceptibility in 

different crops. In some papers physiological differences between the cultivars have been 

correlated with splitting susceptibility and have been proposed to explain the differences. 

These are summarised in Table 1-3. 

  

Table 1-3 Dissimilarities between cultivars of different crops which have shown 

differences in splitting susceptibility as reported in published scientific papers  

Factor Crop Correlation with 

splitting 

Reference 

Cuticle thickness Sweet 

cherry 

Negative Demirsoy 

(2004) 

Round irregularly shaped sub-

epidermal cells 

Sweet 

cherry 

Positive Demirsoy 

(2004) 

Epicarp thickness Tomato Not described Dorais et al. 

(2004) 

Rate of growth Kohlrabi Positive Lippert (1999) 

Cell area Carrot Positive Hole (1999) 

 

 

In fruit such as cherry (Demirsoy & Demirsoy 2004) and tomato (Dorais et al. 2004) and 

vegetables such as kohlrabi (Lippert 1999) and carrot (Hartz et al. 2005; Hole et al. 1999) 

cultivar has been shown to affect splitting susceptibility, it is likely this may also be true for 

radish although there is a lack of research in this area. In fruit cuticle thickness can 

explain some of the genotypic difference in splitting susceptibility. Demirsoy (2004) found 

a negative correlation between cuticle thickness and splitting in 8 cultivars of sweet 
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cherry. In tomato (Dorais et al. 2004) epicarp thickness has been shown to be an 

important factor related to splitting resistance. Dorais et al. (2004) state however, that as 

many genes are likely to be involved in splitting susceptibility, breeding for resistance is 

difficult.  

McGarry (1993, 1995) found although water status was an important factor in determining 

splitting susceptibility within cultivar it did not explain the differences in splitting 

susceptibility between carrot cultivars, this suggests other genetically determined factors 

must also be responsible for determining splitting susceptibility. Hole et al. (1999) also 

observed genetic variation in susceptibility to splitting in carrot. In this paper it was 

suggested anatomical structure was likely to be associated with susceptibility to splitting 

as the two cultivars which split the most readily also had the largest cross-sectional cell 

area. Another anatomical explanation for genetic differences in splitting susceptibility 

expressed by Khan (1989) as cited in Lippert (1999) is differences in the arrangement of 

cells and presence of air spaces may act to interrupt the progression of cracks. The 

pattern of cell organisation may have a genetic basis and hence vary between cultivar and 

some cultivars could have more irregularly arranged cells and more air spaces than others 

(Lippert 1999). In contrast to this theory Demisoy (2004) found there was more cracking in 

sweet cherry cultivars which had irregularly arranged round sub-epidermal cells compared 

to cultivars which had flatter and regularly ordered cells.  

The importance of the genetic basis of splitting compared to the effects of environment 

are questioned by Hole et al. (1999) because the variation in spitting between carrot 

cultivars was smaller in their investigation than the differences observed due to 

environment. In conclusions similar to those made by Dorais et al. (2004) for tomato, Hole 

et al. (1999) considered little control over splitting could be achieved by breeding for 

strength.  

 

1.3.2 Anisotropy  

Splitting in both carrot (McGarry 1993) and kohlrabi (Lippert 1999) is anisotropic, with 

splitting tending to follow a similar pattern. This would indicate the tissue is not equally 
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susceptible to splitting in all directions suggesting cells in the more susceptible areas are 

under more stress or have a lower resistance to failure. Similarly the tissue of a potato 

tuber is not uniform in splitting susceptibility with differences in the mechanical properties 

of the inner and outer cores being shown by Konstankiewicz and Zdunek (2000). In this 

investigation, inner core tissue had a greater compressive strength but lower resistance to 

micro-damage compared to outer core tissue. They proposed these differences may have 

been due to differences in cell size with inner core tissue having smaller cells which are 

more resistant to compression but more susceptible to micro-damage (Konstankiewicz & 

Zdunek 2001). Similar results have been found with carrots, Hole et al. (1999) found 

carrot cultivars which split most readily had cells with the largest cross-sectional area.  

Further explanations for differences in splitting susceptibility as a result of tissue 

heterogeneity are expressed by Wan and Kang (2005). They suggest splitting observed in 

winter radishes was due to differences in expansion rate between the internal tissues and 

the periderm. They propose the internal tissues expand more rapidly than the periderm 

putting pressure on it and causing it to split. In addition Sorenson (2000) found rings of 

tissue within carrot were under different strains and Hartz (2005) found carrots were less 

susceptible to splitting if the periderm was removed.  

It has been suggested splitting in apples may also be due to inequalities in pressure within 

tissues. Skene (1980) observed splitting in apples did not start until the apples reached a 

minimum size. It was suggested the apples needed to achieve this size before a sufficient 

imbalance in growth between inner and outer tissues was achieved and stress could 

develop. The hypodermal tissues of the apples were also observed to develop thicker cell 

walls at this point possibly affecting the elastic stress within the apples. Skene (1980) also 

provided evidence that the pattern of splitting susceptibility in apples changes during 

growth. During early growth, elastic strain was found to be greatest in the longitudinal 

direction with cuts made in a transverse direction gaping more than longitudinal cuts. 

Later in the season, after mid-July, this pattern reverses and greater strain in the 

transverse direction was observed. As the direction of growth at the surface of the apples 

was always greatest in the longitudinal direction, this cannot explain the change in the 
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direction of stress. Skene (1980) suggested the difference may be due to changes in 

shape of the fruit or to changes in the mechanical properties of the tissues within the fruit.  

 

1.3.3 Growth splits  

Splitting in radishes and other crops can occur both during growth (growth splits) and 

post-harvest during the harvesting, storage and packaging procedures (harvest splits). As 

it is beneficial for growers to know the best practices to reduce splitting during both of 

these periods, research has been carried out into both the pre and post-harvest factors 

which affect splitting susceptibility. In this section factors affecting splitting during growth 

will be discussed.  

Much of the research into the causes of splitting during growth in other crops is of an 

empirical nature, investigating the environmental conditions and agronomic practices 

which correlate with levels of splitting. Several researchers have observed susceptibility to 

splitting varies during ontogeny and also diurnally. Previous research which has observed 

differences in the pattern of splitting throughout growth and the day is summarised in 

Table 1-4. 

 

Table 1-4 Effects of growth stage and rate on splitting in different crops as reported in 

published scientific papers  

Factor Crop Effect Reference 

Growth stage Carrot More splitting later in development Gracie (2004) 

Growth stage Apple Increased at a specific size Skene (1980) 

Time of day Carrot More splitting at end of day Gracie (2002) 

Time of day Tomato More splitting at end of day Dorais (2004) 

Growth rate Radish Faster growth more splitting Latimer (1991) 

 

There is evidence to suggest growth splitting is affected by growth stage. Splitting in 

carrots has been shown to be affected by crop maturity with splitting mainly occurring later 

in crop development (Gracie & Brown 2004). In apples, the pattern of stress within the fruit 
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changes during growth (Skene 1980). Throughout early growth, stress appears to be 

influenced by fruit size. Stress develops when the fruits reach a particular size in different 

years irrespective of differing weather conditions. During later growth, stress was found to 

be influenced to a greater extent by weather as large strains were often associated with 

periods of heavy rain. However, not every period of heavy rain was associated with a 

large strain during later growth, suggesting stress was not exclusively caused by rainfall 

(Skene 1980).  

Splitting susceptibility is thought to not only change over the lifetime of the crop but also 

over the course of the day. Diurnal fluctuations in splitting susceptibility have been 

observed in carrots (Gracie & Brown 2004). The highest rates of splitting occur at sunrise, 

splitting rates then decrease throughout the morning and early afternoon before 

increasing again later in the day. This matches the diurnal pattern of radial growth in the 

taproot. It has been suggested the reason for increased splitting susceptibility in carrots at 

the ends of the day is due to the increased rate of growth at these times (Gracie & Brown 

2004). Similar diurnal patterns in splitting have been observed in tomato but these have 

been attributed to changes in tissue water status throughout the day (Dorais et al. 2004). 

Growth rate has also been suggested to affect splitting in radishes. In an experiment, the 

leaves of radishes were brushed twice a day for 13 days during growth to impose 

mechanical stress and this was found to result in a significant (P=0.05) decrease in 

splitting, 25% of the radishes which were brushed split compared to 39% of the radishes 

which were not brushed. In this investigation the decrease in splitting was observed 

alongside a reduction in hypocotyl growth rate. At 24 days after sowing the radishes which 

were brushed were 9% smaller in diameter compared to the radishes which were not 

brushed (P<0.05). The reduction in growth rate was suggested as a possible cause of the 

reduction in splitting (Latimer 1991).  However, Dowker and Jackson (1977) found carrots 

which had the slowest growth rate, with the longest duration from drilling until harvest, split 

the most (Dowker & Jackson 1977). However, as these carrots had been planted in 

different months at different densities there are a number of confounding factors which 

may have resulted in the observed differences in splitting.  
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1.3.3.1  Water 

Water is thought to be one of the principal factors affecting growth splitting. Some of the 

research in this area is summarised in Table 1-5. 

 

Table 1-5 Effects of water on growth splitting in different crops as reported in published 

scientific papers  

Factor Crop Effect on splitting Reference 

Rainfall Sweet 

cherry 

Increase Sekse (1995) 

Increased crop 

water status 

Tomato and 

pepper 

Increase Dorais et al. 

(2004) 

Irrigation frequency Winter 

radish 

3 days optimal to minimise 

splitting 

Wan and Kang 

(2005) 

Soil water potentials Winter 

radish 

-0.035 MPa optimal to minimise 

splitting 

Kang and Wan 

(2005) 

Timing of water 

availability 

Carrot Increase if dry during mid-growth 

and then rain prior to harvest 

Salter (1967) 

Drought stress Carrot Increase if early drought stress 

Decrease if drought during mid-

growth 

Sorenson 

(1997) 

Increased tissue 

water potential 

Carrot Increase McGarry (1995) 

Soil moisture 

(maximum or mean) 

Carrot No effect Hartz (2005) 

Soil texture Carrot Soil sand content negatively 

correlated to splitting 

Hartz (2005) 
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The predominant environmental factor which is thought to affect growth splitting is water. 

This can be in the form of rainfall or irrigation. In sweet cherry fruit, rain induced growth 

splitting is thought to be caused by a combination of two mechanisms, firstly by rain water 

entering through the skin and degrading the dermal cell walls of the fruit and secondly by 

an increase in pressure on the skin from within the fruit as a result of water uptake by the 

vascular system (Sekse 1995). In carrot (Gracie & Brown 2004), tomato and pepper 

(Dorais et al. 2004) plants cracking has a diurnal pattern with higher incidence of cracking 

early in the morning and at the end of the afternoon. This is thought to be due to swelling 

and shrinking which occur as a result of changes in water status in the crop. Fruit 

shrinkage can be observed at times of increased water demand for instance at midday 

under conditions which cause high rates of transpiration such as high solar radiation and 

low relative humidity and after the night to day transition when there is a rapid increase in 

transpiration. It is thought fruit swelling and shrinkage are causes of cuticle cracking in 

these crops (Dorais et al. 2004). 

The effects of water availability during growth are also thought to affect splitting 

susceptibility in radishes and other vegetable crops. In the large winter varieties of 

radishes, fluctuations in soil water potential during growth have been shown to affect 

splitting (Wan & Kang 2005). It was found radishes irrigated once every three days had 

the lowest cracking rate and well developed hypocotyls when compared to radishes 

irrigated daily, once every two days, once every four days, once every six days and once 

every eight days. In this experiment soil matric potential increased with increasing 

irrigation frequency. Frequent irrigation during growth resulted in high levels of splitting as 

did large fluctuations in soil water potential. No difference was observed in the growth 

rates of the hypocotyls between treatments. Wan and Kang (2005) hypothesised high soil 

water potentials in the frequent irrigation treatments may have caused rapid rates of 

expansion in the parenchyma cells but not of the periderm causing tissue stress and 

splitting. They also suggest splitting in the infrequently irrigated treatments may have been 

due to cyclic water stresses on the hypocotyl similar to the swelling and shrinkage 

observed in tomato and pepper fruit. As the least splitting occurred between two other 
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frequencies which are close together results from this experiment might indicated how 

sensitive radishes are to differences in soil matric potential.  

In an additional experiment Kang and Wan (2005) also investigated the effects of soil 

water potential on the large winter type of radish. They grew radishes at five different soil 

water potentials, -0.015 MPa, -0.025 MPa, -0.035 MPa, -0.045 MPa and -0.055 MPa. The 

irrigation treatments had no effect on growth rate or yield of the radish crop but there was 

an effect on splitting (P<0.05). The highest level of splitting was observed under the 

wettest conditions, -0.015 MPa,  where 18.9% of the radishes split (n=72) and the lowest 

number of radishes, 1.4%,  split at -0.035 MPa (n=74) (Kang & Wan 2005). These results 

suggest it is not rate of growth which causes splitting in radishes but no explanation was 

proposed in the paper for potential causes of splitting as a result of soil water potential. As 

in the previous experiment, it was again a treatment in the middle of a series of similar 

treatments which resulted in the least amount of splitting. Again, this could be considered 

an indication of how sensitive radishes are to differences in water availability. However, it 

should be noted there are only small differences in the water potential between the 

treatments used in this experiment and none of the treatments were likely to have resulted 

in a water deficit for the plants. Possible inconsistency with the results from this 

experiment come from Hartz et al. (2005), who found no correlation between cracking 

susceptibility in carrot and soil moisture in terms of mean soil moisture potential or 

maximum soil moisture potential during growth. However, splitting susceptibility was found 

to correlate with turgor potential within the carrots and soil texture. The greatest amount of 

splitting occurred in soil with the least amount of sand and the least amount of splitting 

occurred in soil with the greatest sand content (Hartz et al. 2005). As water drains more 

freely in soil with a high sand content, this suggests available water content may have had 

an effect on splitting in this investigation but was not detected by the equipment used in 

the experiment. The available water content for the field was measured with three 

resistance sensors (Watermark blocks, Irrometer Co., Riverside, California) which may not 

have been adequate replication. There is considerable heterogeneity within soil and 

estimating soil water potential using just three sensors may not have been representative 
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of the field as a whole (Jones 2007). If water did drain from the soil with a higher sand 

content more rapidly the results from this experiment would suggest higher levels of 

splitting were associated with wetter growing conditions which is in keeping with results 

from other investigations.  

There is evidence that timing of suitable water availability during growth may affect 

splitting. Salter (1967) found dry conditions during mid-season carrot growth followed by 

rain prior to harvest resulted in an increased proportion of split carrots and significantly 

decreased marketable yield (Salter & Goode 1967). Similarly, Sørensen (1997) found the 

timing of water stress had an effect on splitting in carrot, with carrots grown under fully 

irrigated conditions, or with an early drought stress, splitting more than carrots grown with 

a period of drought stress mid-growth when rapid radial expansion is occurring. Sørensen 

(1997) attributed the differences in timing of water stress to differences in the type of 

growth occurring at each development stage (Sørensen et al. 1997). During the early 

period of drought stress which failed to reduce splitting, carrot growth is characterised by 

cell division whereas during mid-growth when a period of drought stress reduced splitting, 

carrot growth is created by rapid radial root expansion caused by cell enlargement. As 

splitting is thought be affected by cell wall strength and composition, factors which affect 

this may affect splitting susceptibility. Sørensen (1997) suggested the decrease in splitting 

may have been due to a decrease in the rate of expansion during this period. Similar 

results have been found in tomato with cracking rates being at their highest when fruit 

growth is at a maximum (Dorais et al. 2004).  

By using a texture analyser to drive a wedge into blocks of phloem parenchymal tissue 

from carrots at different stages during ontogeny, McGarry (1995) showed fracture 

toughness in carrot was broadly correlated with tissue water potential during growth. 

However, the correlation coefficients between water potential and fracture toughness were 

not high, the correlation gradients varied between treatments and there were two periods 

of tissue strengthening which occurred irrespective of water status indicating other factors 

were also affecting splitting susceptibility. Criticism of the method employed by McGarry 

(1995) was presented by Hole et al. (1999) who observed no relationship between 
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susceptibility to splitting damage and tissue fracture toughness on blocks of tissue 

suggesting this method may not be the most accurate method for measuring splitting 

susceptibility in carrot.  

 

1.3.3.2 Other factors affecting growth splitting  

Other factors are also thought to effect growth splitting. These have been summarised in 

Table 1-6. 

 

Table 1-6 Factors affecting growth splitting in different crops as reported in published 

scientific papers  

Factor Crop Effect on 

splitting 

Reference 

Autumn planting Kohlrabi Increase Lippert (1999) 

High air temperature 30 days prior to 

harvest 

Carrot Increase Hartz et al. (2005) 

Boron deficiency Radish Increase Skok (1941) 

Proctor (1987) 

Boron application Tomato Decrease Dorais et al. (2004) 

High nitrogen application Carrot Increase Hartz et al. (2005) 

 

Other environmental factors which have been suggested to affect splitting in vegetable 

crops are season and temperature although the results are less than conclusive. Lippert 

(1999) observed a higher rate of cracking in kohlrabi which was planted in the autumn 

compared to earlier in the year. This may have been as a result of many factors and 

interactions of factors which occur as the seasons change, for example, differences in 

light, rainfall or temperature, none of which were measured in this study. Hartz et al. 

(2005) found air temperature in the final 30 days prior to harvest was positively correlated 

with growth splitting in carrot suggesting cooler temperatures prior to harvest may result in 

less splitting. However, in contrast to this, McGarry (1995) observed an increase in field 
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grown carrot strength during the later period of growth as did Hole et al. in 1995. These 

differences were not observed in the following 1996 season or by decreasing temperature 

in a controlled environment experiment (Hole et al. 1999) suggesting differences in 

splitting were not in fact due to season or temperature but another factor not measured in 

these papers.  

Boron deficiency has been shown to affect splitting in radishes (Skok 1941; Shelp et al. 

1987) and the application of boron through spraying on radishes (Shelp et al. 1987) and 

other crops such as tomato (Dorais et al. 2004) has been shown to decrease splitting. As 

a dicotyledonous plant, their optimal leaf boron concentration is between 20 and 80 µg g-1 

of dry matter (Sedlacek 2001). Boron is required for the formation of cell walls and 

membranes therefore it may have an effect on splitting as a result of plasmoptysis by 

affecting cell wall strength. Plants absorb boron in its water-soluble form boric acid. The 

availability of boric acid can be affected by pH, temperature, soil texture and soil moisture 

(Sedlacek 2001). Both soil moisture which is too high and soil moisture which is too low 

can result in boron deficiency. If the soil moisture is too low plants tend to extract water 

from greater depths and boron content in the subsoil is lower than the topsoil. If the soil 

moisture is too high then boron may be leached leading to deficiency (Sedlacek 2001).   

Increased incidence of splitting has been linked to high nitrogen application in carrot 

(Hartz et al. 2005). In this study it was suggested over application of nitrogen fertiliser 

affected periderm strength and consequently splitting susceptibility. However, high levels 

of variability were observed in this study and no correlation was observed between 

nitrogen in the carrot tissue suggesting other factors may have also been affecting 

splitting susceptibility.  

 

1.3.4 Harvest splits 

Splitting can happen during the harvest, storage and packing processes as produce is 

exposed to changes in environmental conditions and mechanical stresses. The principle 

post-harvest changes to the crop which are thought to effect susceptibility to splitting as a 

result of mechanical damage are changes in tissue water status and temperature. 
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Previous research into the causes of harvest splitting has focused on these two areas. 

These have been summarised in Table 1-7 and Table 1-8.  

 

1.3.4.1 Tissue water status  

Table 1-7 Summary of the effects of tissue water status on harvest splitting in different 

crops as reported in published scientific papers  

Factor Crop Effect on splitting Reference 

Increased turgor Carrot Increased residual 

stress and strain 

Kokkoras (1995) 

Decreased turgor by 

partial lifting 

Carrot Decrease Gracie (2004) 

Increased turgor Potato Increase Konstankiewicz and 

Zdunek (2000) 

Bajema et al. (1998) 

Increased water 

potential and turgor 

Carrot Decrease in failure 

force 

McGarry (1993) 

Increased turgor Several 

(review paper) 

Reduction in 

resistance to damage 

Galindo et al. (2004) 

Increased water 

potential 

Carrot and 

radish 

Increase in cut force Herppich et al. (2004) 

 

Postharvest tissue water status is an important factor affecting splitting susceptibility. It is 

thought to affect tissue mechanics and splitting susceptibility through turgor pressure. At 

high turgidity plant cell walls are believed to already be stretched and as a consequence 

are more easily ruptured (Kokkoras 1995).  

An indication of water status having an effect on splitting comes from cherry varietal tests 

for splitting. These are performed by placing cherries into water and recording the 

percentage which split. Although this test does not fully replicate in situ splitting, 

correlations have been observed with results from the field (Measham 2011). Evidence of 
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a reduction in turgor reducing splitting susceptibility is provided by Gracie (2004). Gracie 

(2004) found a reduction in turgor pressure caused by partially-lifting carrots reduced 

splitting susceptibility. The carrots were partially-lifted to sever the fibrous root system 

then left in the soil over night before harvesting the following morning. These carrots with 

reduced turgor had a greatly diminished splitting susceptibility and could not be induced to 

split using a penetrometer. Further evidence to support turgor pressure affecting splitting 

susceptibility is provided by the investigation by Konstankiewicz and Zdunek (2001). In 

this investigation the turgor pressure of potato tuber tissue was manipulated by immersion 

in solutions of mannitol at different concentrations. They found the compressive strength 

of the tissue samples decreased with increasing turgor pressure suggesting potato tubers 

are less susceptible to splitting when they are more turgid (Konstankiewicz & Zdunek 

2001). However, the use of mannitol has been criticised as it can directly influence tissue 

mechanical properties, it has been suggested by Bajema et al. (1998) that the effects of 

water relations should be investigated using fresh samples at different turgor levels 

achieved by dehydration in air (Bajema et al. 1998). Despite this, the results obtained by 

Konstankiewicz and Zdunek (2001) are similar to those of Bajema et al. (1998) who found 

potatoes with lower turgor, as a result of dehydration in air, had higher compressive 

strength than more turgid potatoes. McGarry (1993) also found failure force was 

negatively correlated with both water potential and turgor pressure. McGarry (1993) 

measured the failure strain of phloem parenchyma tissue by driving a wedge into blocks of 

tissue with a texture analyser. However, turgor pressure was only negatively correlated 

with failure strain within cultivar. The turgor pressure of the splitting susceptible cultivar 

used in the experiment was lower than the split resistant cultivar suggesting differences in 

splitting susceptibility can only be partially attributed to turgor pressure. In their review 

paper into factors affecting the postharvest quality of vegetables, Galindo et al. (2004) 

concluded that although higher turgor had been shown to correlate with lower resistance 

to damage it did not explain all the variation. Galindo et al. (2004) considered other 

important factors in determining splitting susceptibility may be the strength of superficial 

tissues, cell packing, adhesion and cell wall composition (Galindo et al. 2004).  
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Further confusion into the effects of tissue water potential on tissue strength comes from 

Herppich et al. (2004), who showed water potential was positively correlated with cutting 

force in carrots and radishes. They acknowledged their results contradict those of 

previous researchers and suggested the discrepancy may be due to differences in the 

mode of failure induced by the different testing methods (Herppich et al. 2004). Herppich 

et al. (2004) used cutting force, whereas McGarry (1993) used a wedge to induce 

fractures. The effects of turgor are thought to depend on the type of splitting which is 

occurring. When the mode of failure is plasmoptysis higher turgor pressure has been 

shown to reduce tissue strength but if splitting occurs as a result of cell debonding the 

opposite is true (Lin & Pitt 1986). In support of this McGarry (1993) found failure force of 

phloem parenchyma occurred due to cell rupture (plasmoptysis), as would be expected 

from an increase in splitting susceptibility at higher turgor pressure. The mode of failure 

was not recorded by Herppich et al. (2004).  

 

1.3.4.2 Temperature  

Table 1-8 Summary of the effects of temperature on harvest splitting in different crops as 

reported in published scientific papers  

Factor Crop Effect Reference 

Decreased 

temperature 

Several (review 

paper) 

Increased firmness Bourne (1982) 

Decreased 

temperature 

Potato Increased splitting Bajema et al. (1998) 

Decreased 

temperature 

Carrot Increased stress Kokkoras (1995) 

Decreased 

temperature 

Carrot Decreased cut 

force 

Herppich et al. 

(2002) 

Decreased 

temperature 

Radish No effect Herppich et al. 

(2002) 
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There is evidence within the literature that temperature affects splitting susceptibility. In a 

review of the effects of temperature on a range of fruits and vegetables, Bourne (1982) 

showed for the majority of crops tested, increased temperature was associated with 

decreasing firmness, measured as failure force with a texture analyser. This relationship 

was represented by an approximately linear relationship. Bajema et al. (1998) also found 

a decrease in compressive failure strain and tissue toughness with increasing temperature 

in potatoes. In this investigation the effects of turgor were also investigated and a similar 

pattern was observed. The similarities between the effects of temperature and turgor led 

the investigators to conclude that the same mechanism must explain both the effects of 

temperature and turgor. Kokkoras (1995) also found an effect of temperature on tissue 

stress within carrots but found no effect of temperature on tissue strain. Tissue strain was 

established by cutting discs of carrot tissue and measuring the resulting deformation. The 

value for stress was then calculated from this. Stress was calculated by multiplying the 

values of strain by the modulus of elasticity. The modulus of elasticity was measured by 

tensile tests with a texture analyser. By affecting the modulus of elasticity, temperature 

affects the stress but not the strain within the carrot tissue. Kokkoras (1995) concluded 

low temperatures cause an increase in cellular turgidity by causing differences in 

contraction between the vacuole content, which is predominantly water, and the 

cytoplasm and cell wall. It is thought the cytoplasm and cell wall may contract to a greater 

extent than the vacuole at low temperatures causing an increase in turgor pressure. 

Therefore, low temperatures increase damageability because at low temperatures tissue 

becomes more turgid (Kokkoras 1995).   

Contradictory results were found by Herppich et al. (2002), who found the force required 

to cut a carrot was negatively correlated with temperature with the highest forces being 

required cut the carrots at 5°C. When testing the force required for cutting radishes no 

relationship was found between temperature and cutting force. In the same investigation 

Herppich et al. (2002) investigated the effects of water status on cutting force and found a 

relationship for both carrot and radish. This led Herppich et al. (2002) to conclude 

differences in the force required to cut carrot at different temperatures must not be turgor 
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specific but must be tissue or species specific. It was speculated that the differences may 

be due to the ability of carrots to undergo cold acclimation, changing their cell wall 

properties and tissue stiffness within hours of transfer to cold conditions. They concluded 

the differences in cutting force at different temperatures were due to changes in the cell 

walls of carrots (Herppich et al. 2002). The differing results of Herppich et al. (2002) may 

have been due to the method of texture analysis. Herppich et al. (2002) used cut force 

whereas Bajema et al. (1998) used compression failure force and Kokkoras (1995) used 

tissue deformation. This highlights the need to design experiments so they measure the 

correct type of tissue failure for splitting susceptibility.  

 

1.4 Water  

As discussed in pervious sections of this literature review, water is thought to be a key 

factor affecting growth and harvest splitting susceptibility in a variety of crops. The 

available water content of the soil during growth is thought to affect growth splitting and 

post-harvest, the tissue water content is thought to be a significant factor. In order to 

understand how to design, conduct and interpret experiments which investigate the effects 

of water on growth and harvests splitting it is important to have an understanding of the 

behaviour of water within the soil and the plant. This area of research has been 

investigated extensively and the relevant information has been summarised for this 

review.  

 

1.4.1 Soil water content  

The amount of water in the soil is constantly changing. Water is lost through 

evapotranspiration and replaced by irrigation or rainfall. The net amount of water which is 

lost due to evapotranspiration can be predicted using modifications of the Penman-

Monteith equation (Monteith 1965) such as the FAO Irrigation and Drainage Paper No. 56 

‘Crop evapotranspiration - Guidelines for computing crop water requirements’ (Allen et al. 

1998) which superseded the earlier FAO Irrigation and Drainage Paper No. 24 'Crop 
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Water Requirements' (Doorenbos & Pruitt 1977) which was found to either overestimate 

or give inconsistent results for levels of evapotranspiration.   

In the soil, water moves by bulk flow through interconnected pore spaces. Water is held in 

the soil in pores and films by adhesive and cohesive forces. It is classified as being 

gravitational, capillary or hygroscopic based on the tension with which it is held in the soil. 

Capillary pore spaces are small pores (30 – 60 µm or less) which retain water against 

gravity (Kramer 1983). As the rate of capillary movement is determined by pore size the 

size and distribution of capillary pore spaces within a soil will govern the movement of 

water within it. The texture of the soil, which is determined by the relative proportions of 

sand, silt and clay, will determine the pore size distribution within it (Kramer 1983), though 

organic matter content will modify this to some degree. The finer the particle size of the 

soil the smaller the pore size will be and the greater the capillary movement will be. Sandy 

soil has a large proportion of medium to large sized capillary pores and the capillary 

movement is rapid but the ultimate height to which water will be drawn is limited. Clay 

soils have a high proportion of fine capillary pores and the ultimate height of capillary 

movement is greater than that of sand but the rate of progress is slower due to frictional 

forces and the tortuous nature of the pore distribution. The rate and height of capillary 

movement in loam soils is intermediate of that of sand and clay (Iwata et al. 1988).  

Different soil types have different proportions of capillary and non-capillary pore space 

within the soil structure meaning soil type will affect the drainage and aeration of the soil. 

In the UK, soils are classified as sands, loams, or clays depending on the proportions of 

particles sizes they contain. It should be noted soil texture depends on the country and 

there will be notable differences in the classification and particle sizes in different 

countries. As this thesis is concentrating on radishes grown in the UK, this literature 

review has focused on UK soil types and classification. Particles sizes are defined as 

large (>2000 to 20 µm), intermediate (20 to 2 µm), and fine (<2 µm) (Kramer 1983). Soil 

pore size is an important factor in the amount of water available to the roots. A pore size 

of 30 µm or above has a water potential of >-0.01 MPa and contains water which is freely 

available under gravity to the plant. This pore size is important to allow expansion of the 
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roots. Generally speaking, plants can also absorb water from a pore size of 0.3 to 30 µm 

(-0.01 MPa to -1.0 MPa), this pore size is important in times of drought as water is 

retained in smaller pores more strongly (Kramer & Boyer 1995). The PWP for most plants 

is broadly considered to be -1.5 MPa as plants are able to extract water from soil colloids 

to this point.  

Organic matter can also affect the water holding capacity of soil. Soil organic matter is 

comprised of plant and animal residues at various stages of decomposition, cells and 

tissues of soil organisms, and substances synthesized by soil organisms. Arable topsoil 

typically contains between 1 and 6% organic matter. Soil from low-lying wet areas can 

contain up to 90% organic matter. Humus is soil organic matter which has long been 

decayed and therefore is stable and no longer recognisable as plant material. Humus can 

hold the equivalent of 80 to 90% of its weight in moisture. It is the combined effects of 

pore size and organic matter content which determine the field capacity of a soil (Kramer 

& Boyer 1995).   

 

1.4.1.1 Measuring soil water content  

Soil water content is defined as the water lost from the soil upon drying to a constant 

mass at 105°C. It can be both expressed gravimetrically as mass of water per unit of dry 

soil (kg/kg) or volumetrically and measured in units of volume (m3/m3). It should be 

remembered the total volume will consist of air, water and soil whereas total mass will 

consist of only soil and water. Bulk density is a measure of a soils mass per unit volume, a 

decrease in pore space increases bulk density. By multiplying the gravimetric water 

content (GWC) by the bulk density it can be used to convert the GWC into volumetric 

water content (VWC).  

Gravimetric and VWC measurements will only have meaning in combination with a 

moisture release curve as the percentage water content for different soil textures will 

represent different available water contents to the plant. The same water content may 

describe a fully saturated sandy soil with a large amount of available water or a dry clay 

with little available water (Jones 2007). The soil water retention curve shows the 
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relationship between water potential and the water content, the curve is therefore different 

for each soil. Alternatively the water content of the soil can be measured as pressure or 

tension, this has the benefit of enabling comparisons of the plant water availability 

between soils. Soil water potential determines the rate and direction of flow of water in soil 

and plants. Soil water potential is comprised of, solute potential, pressure potential, 

gravimetric potential, humidity potential and matric potential. Soil water potential which is 

optimal will meet the physiological needs of a plant and will allow both water and nutrition 

uptake. Soil water potential which is too low will negatively impact plant growth, as will a 

soil water potential which is too high. Low soil water potential can impede plant growth by 

resulting in increased soil strength with can impede root penetration, increase stomatal 

resistance and limit photosynthesis. Soil water potential which is excessively high may 

negatively impact plant growth by causing leaching of nutrients and limitation of oxygen 

diffusion through the soil to the roots (Kang & Wan 2005).  

The available water content in the soil to the plant is the range between the field capacity 

and the permanent wilting point (Kirkham 2005). Field capacity is the maximum amount of 

water the soil can retain against gravity. Capillary pore spaces are small pores (30 to 60 

µm or less) which retain water against gravity. It is these pores which determine the field 

capacity of a soil. Non-capillary pore space is the fraction of soil volume from which water 

drains by gravity and provides the air space essential for aeration of roots (Kirkham 2005). 

Field capacity is not a soil constant, but depends on the conditions under which it is 

measured. For simplification field capacity is usually determined as the amount of water in 

the soil at -0.005 to -0.010 MPa (White 2006). Permanent wilting point (PWP) is the soil 

content at which plants remain wilted overnight or in a humid chamber unless they are re-

watered. Briggs and Shantz (1912) (as cited in Kirkham (2005)) found plants of many 

species wilted at approximately the same water content in a given soil therefore, -1.5 MPa 

is commonly taken as the water potential at the point of permanent wilting. It should be 

remembered that although the value -1.5 MPa is used to conveniently define the 

permanent wilting point, it like field capacity is not a sharply defined value (White 2006), in 

addition for some plants the lower threshold can be much greater than -1.5 MPa, for 
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example some plants, mainly xerophytes, are able to extract water to -3.1 MPa. The water 

content at any given water potential is higher during drying or desorption than during 

wetting or sorption, this phenomenon is called hysteresis. This is due to the menisci, 

swelling and air entrapment in wetting soil and rate of filling and emptying of pore spaces 

(White 2006). It is important to take into consideration hysteresis when taking soil 

moisture measurements in research as it influences the readings and may lead to 

inappropriate conclusions.  

 

1.4.2 Plants and water  

1.4.2.1 Movement of water from the soil into and around the plant 

Plant water status is determined by the interrelationships of soil, plant and atmospheric 

factors; a simplified model of this is the soil-plant-atmosphere-continuum (SPAC) which 

describes the pathway of water as it travels from the soil, through the plant to the 

atmosphere (Kramer & Boyer 1995). Water can move by passive movement, mass flow, 

diffusion, osmosis and active uptake.  

To access water in the soil the roots must be in close proximity to it. Nye (1994) reported 

that main roots (1 mm diameter) will lose full contact with the soil due to root shrinkage at 

a soil matric tension of 0.02 MPa while finer roots (0.1 mm diameter) will lose full contact 

at about 0.07 MPa and root hairs (0.01 mm diameter) at about 0.23 MPa (Nye 1994). 

When roots are in contact with the soil Poiseuille’s law can be used to calculate the 

velocity of water uptake by the roots. Poiseuille’s law describes the velocity of flow of 

liquids through a cylindrical capillary tube (Kirkham 2005). The gradient in water potential 

between the soil and the root xylem is the force which drives water from the soil into the 

plant. When there is more negative water potential in the roots compared to the soil water 

moves by osmosis from the soil along the concentration gradient into the root. Roots 

typically have a water potential of about -1.0 MPa. The negative pressure in the xylem 

draws water from the soil to replace the water which is lost through transpiration, 

decreases in water potential in the roots increases their water extraction capacity from the 

soil (Kramer 1983).   
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Short distance transport of water initially into the roots and then between cells in the plant 

occurs via one of three alternative pathways, namely the; appoplastic, symplastic or 

transcellular pathways. When entering the plant through the apoplastic pathway water and 

solutes diffuse along permeable cells walls into the root cortex. Before water and solutes 

are able to pass into the stele they are forced to enter the symplastic pathway by the 

Casparian strip. The Casparian strip is a hydrophobic barrier comprised of suberin 

deposited in bands on the radial walls of cells (Kramer 1983). Water and solutes entering 

the root via the symplastic pathway immediately cross the cell membrane and move from 

cell to cell through plasmodesmata which are cytoplasmic tunnels. Apoplastic transport of 

water and solutes occurs freely by diffusion through the extracellular space. Symplastic 

transport of water and solutes across the plasma membrane occurs by active transport 

enabling movement and accumulation of solutes against a concentration gradient. 

Transcellular transport is a cell to cell transport mechanism that involves crossing both the 

apoplast and symplast and requires activity of transporters or channels to cross the 

plasma membrane (Robert & Friml 2009). Water in the plants is often described as 

existing in two pathways, apoplastic water is found in the cell walls, intercellular space and 

xylem vessels and symplastic water is found in the cell cytoplasm (Kramer 1983). 

Within the plant there are two vascular networks for long distance transport of water and 

solutes, the phloem and the xylem. These have opposite directions of flow. Xylem 

transports and stores water, nutrients and hormones (including ABA and cytokinins) from 

the roots to the above ground tissues. Phloem distributes the products of photosynthesis 

(mainly carbohydrates) and proteins, mRNAs and hormones (ABA, auxin, cytokinins) from 

source tissues to sink tissues. The water in the vascular tissue moves as a column due to 

the adhesive and cohesive properties of water; any break in this column discontinues 

water movement through the system (Kirkham 2005). Driven by evapotranspiration, which 

results in a pressure differential between the plant and atmosphere, this continuous 

column of water moves from the soil into the plant and out to the atmosphere. 
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1.4.2.2 Roles of water in the plant  

Water is very important to plants as most cellular processes depend on cell water status. 

Water potential influences many physiological aspects of the plant; ABA and solute 

accumulation increase under mild water stress, photosynthesis and stomatal conductance 

decrease in plants under dry conditions and protein synthesis, cell wall synthesis and cell 

expansion all decrease under mild water stress (Griffiths et al. 2002). Limited water can 

therefore limit or cause malfunction in numerous metabolic processes. 

Abundant water in the soil results in turgid plant cells as water moves by osmosis from the 

soil along the concentration gradient into the root. Turgor potential (positive) is the 

difference between water potential (negative) and osmotic potential (negative) (Kirkham et 

al. 1972) (Katerji et al. 1997). Cell enlargement is generated by water diffusing into cells, 

and turgor pressure is the result of the increasing volume of vacuolar sap (Kirkham 2005). 

Cell expansion and turgor are both caused by the inward diffusion of water resulting from 

a difference in water potential between the interior and exterior of cells. The turgor of a 

plant cell is determined by water potential, hydrostatic pressure and osmotic pressure. 

Höfler diagrams can be used to show the RWC or turgor at different water potentials, 

hydrostatic pressures and osmotic pressures (Kirkham 2005). It should be noted there is a 

much bigger decrease in pressure potential and water potential for a given change in cell 

volume and water content for cells with rigid walls than for cells with elastic walls (Kramer 

1983). The internal pressure of cells affects the mechanical properties of tissues. Lin & 

Pitt (1986) argue that turgid cells cause the cell wall to be stressed (Lin & Pitt 1986). 

Tissues containing turgid cells are crisper, stiffer and more easily fractured than flaccid 

tissues containing low turgor-pressure cells (Hiller, S. Bruce, D.M. Jeronimidis 1996). 

 

1.4.2.3 Water stress 

Water stress refers to situations where normal functioning is disturbed by reductions in 

water potential and turgor. Water stress can vary in intensity from small decreases in 

water potential, to temporary midday wilting, to permanent wilting and finally to death by 

desiccation. Decreasing water content causes loss of turgor and wilting, cessation of cell 
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division and enlargement, closure of stomata, reduction in photosynthesis and 

interference with many metabolic processes (Kramer 1983). 

Water stress should be considered in relation to ontogeny as the degree of damage will 

depend on the growth stage. Seeds are often tolerant to dehydration and can remain 

viable in dry conditions for years yet seedling germination and establishment are often 

inhibited by soil water deficits. Vegetative growth can be severely inhibited by moderate 

water stress due to the effects on cell division and enlargement. Reduction in vegetative 

growth due to water stress may result in loss of yield and be detrimental to growers. Abdel 

(2007) found irregular watering of radish plants decreased both the yield and yield quality. 

Kirkham (1972) found a positive turgor pressure above 0.5 MPa was found to produce the 

greatest cell division and a positive turgor pressure above 0.3 MPa was found to have the 

greatest increase in cell expansion in radish cotyledons. By measurement of DNA in 

radish cotyledons Gardner and Nieman (1964) found cell division reduced at -0.1 MPa but 

continued at low but measureable levels to a water potential of -1.6 MPa. Kirkham et al. 

(1962) found a disparity in the turgor which affected cell division and cell enlargement with 

cell division in radish cotyledons being inhibited at a higher turgor than cell enlargement. 

Joyce (1983) found although radish cellular expansion and division was reduced at times 

of water stress the effect was not permanent and after 9 days of a relief of the water 

stress expansion of the hypocotyl was at a rate comparable to that of plants which had not 

been stressed. However, plants with a history of water deficit were not able to recover to 

the same size as non-stressed radish in the same time period. Commercially this could 

result in growers either having a reduced yield or a longer duration to harvest which might 

reduce the quantity of harvests per growing season. 

If water stress develops slowly plants may be able to continue growth at lower water 

potentials by adjusting their osmotic potential sufficiently. Leaf enlargement is often very 

sensitive to water stress and is often reduced or stopped before photosynthesis is 

reduced (Boyer, 1970). When plants undergo water stress the rate of photosynthesis may 

be drastically reduced due to both a reduction in rate as a result of closure of stomata and 

a reduction in photosynthetic area. The photosynthetic area may be reduced due to old 
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leaves senescing more rapidly and new leaves developing more slowly. Under water 

stress root to shoot ratios are generally increased. Root weight usually decreases but not 

as much as shoot weight (Kramer 1983).  

 

1.4.2.4 Measuring plant water content 

Measuring plant water content can be done directly by measuring tissue water content or 

indirectly by measuring plant physiological responses to water status (Jones 2004).  

 

1.4.2.5 Measuring tissue water content  

Water content can be expressed as a percentage of fresh weight, dry weight or turgid 

weight. Water content as a percentage of fresh or dry weight after oven drying at 60 to 

85°C is commonly used to express water content. The method of using turgid weight is 

termed RWC in the literature. The method is similar to the fresh weight and dry weight 

methods but has an added step where the tissue is saturated to attain the turgid mass. It 

is expressed by: 

 

RWC (%) = [FM – DM)/(TM – DM)] * 100 

 

Where, FM, DM and TM are the fresh mass, dry mass and turgid mass respectively. 

Methods for achieving turgid weight vary and can cause complications. Achieving 

saturation of entire leaves or other plant parts can take a considerable amount of time so 

small discs of tissue are often used as an alternative. These are either floated on water or 

placed on a wet surface in a moist chamber. When saturating plant material it can be 

difficult to determine when the tissue is fully turgid and can take between 4 and 48 hours. 

Water uptake can be divided into two periods, the first being the elimination of the water 

deficit and the second being associated with growth. The first period is of interest when 

calculating RWC but the second period is not and would result in incorrect results. 

Unfortunately it is not always easy to differentiate between the two. As a result of these 

problems there is no standard protocol for saturation as the best method will vary with 



49 
 

each plant and tissue type therefore the method should be refined and determined for 

each tissue (Kramer 1983).  

An alternative method to measure water status is turgor pressure. Turgor pressure pushes 

the plasma membrane against the cell wall in plants. This pressure is caused by the 

osmotic flow of water from an area of low solute concentration outside the cell into the 

cell's vacuole, which has a higher solute concentration. Healthy plant cells are turgid and 

plants rely on turgidity to maintain rigidity. Turgor pressure is important with regards to cell 

enlargement, guard cell movements and other processes reliant on changes in cell 

volume and permeability to water and ions. Turgor pressure is usually described as the 

difference between the water potential and osmotic potential in a cell. In a flaccid cell the 

turgor pressure is zero and in a fully turgid cell the turgor pressure is equal to the osmotic 

potential. Water potential can be measured using thermocouple psychrometers or a 

Scholander pressure chamber. Osmotic potential of sap can be measured cryoscopically 

by extracting sap from frozen tissue, with an osmometer or by using liquid equilibrium (the 

Shardakov dye method is an adaptation of this method). All of these methods for 

measuring osmolarity measure sap from a mixture of both the symplastic and apoplastic 

pathways. Direct measurements of turgor pressure in large cells can also be made using 

a micromonometer attached to a capillary tube inserted into a cell (Kramer 1983).  

 

1.4.2.6 Measuring physiological responses  

Methods of measuring physiological responses include stomatal conductance (porometer, 

thermal sensing) and growth rate. Hsiao (1973) reported that cell growth is very sensitive 

to tissue water deficit responding to water deficits of less than 0.1 MPa. Stomatal 

conductance can be a useful measure of water stress in the short term but during long 

term water stress plants may adapt by decreasing leaf area with the consequence that 

stomatal conductance and photosynthesis may be comparatively constant per unit area as 

the soil dries (Jones 2004). Growth rate can be measured using dendrometers. Plants 

have diurnal fluctuations in diameter as a result of fluctuations in water content. The 



50 
 

magnitude of expansion or shrinkage over time can be used to indicate water status but it 

is important measurements are made at the same time of day (Kramer 1983).  
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1.5 Conclusions from the literature review 

Previous research into other crops has found splitting is caused by a complex interaction 

of both genotypic and environmental factors. It is thought a number of genes are likely to 

be involved in affecting splitting susceptibility hence breeding for resistance is expected to 

be too complex. Therefore, the majority of this thesis will concentrate on ways to 

manipulate the environment during growth and post-harvest to minimise splitting. 

However, a comparison between different cultivars of radishes will be made in an attempt 

to identify which cultivars have greater resistance to splitting and the potential 

physiological reasons for this will be investigated.  

An attempt will be made to understand the physiological mechanisms behind splitting. 

This has been identified as a gap in the existing research as previous research has 

tended to halt at the correlation of factors associated with lower levels of splitting rather 

than continuing the investigation to provide a potential explanation for the reduction. This 

has made interpretation of some of these investigations confusing especially when the 

results appear to be contradictory. To facilitate this, the growth stages of radishes will be 

categorised to enable treatments to be applied at defined physiological ages. Different 

environmental conditions may affect growth rate therefore it would be inappropriate to 

apply treatments at certain time points as the physiological age of the plant may differ. 

The type of splitting, cellular debonding or plasmoptysis, which occurs in radishes, will 

also be identified as this will assist with the interpretation of results. 

This literature review showed the majority of research into environmental causes of both 

growth and harvest splitting in other crops has focused on the effects of water. This has 

been in terms of rainfall and irrigation during growth and postharvest tissue water content. 

As part of this literature review the effects of water on splitting in radishes has been 

identified as an area where there is a gap in the current scientific knowledge. There is 

very limited research in this area and the investigations which have been performed were 

predominantly conducted on slower growing winter radishes with little difference between 

experimental treatments. Therefore, an investigation into the effects of water availability 
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during growth and post-harvest tissue water content on splitting susceptibility of radishes 

will form the bulk of this thesis. 

This literature review found some investigations have been carried out into the effects of 

temperature on post-harvest splitting in other crops suggesting this has an effect in 

splitting susceptibility. As during post-harvest processes radishes are kept in a controlled 

temperature environment manipulating this may be a way growers can reduce harvest 

splitting. The effects of post-harvest temperature on radish susceptibility to splitting will 

also be investigated as part of this thesis.  

 

1.5.1 Objectives of the research 

After conducting this literature review the following areas where further investigation is 

required were identified: 

 What are the growth stages of Raphanus sativus? 

 Are there differences in splitting susceptibility between different cultivars of 

Radish? If there are differences are there any physiological explanations for the 

differences? 

 What is the mode of failure during splitting in radishes?  

 Does growth rate correlate with susceptibility to growth splitting?  

 Does water availability during growth have an effect on growth rate?  

 Does water availability during growth have an effect on growth splitting in 

radishes? 

 Does water availability during growth affect the hypocotyl WC, RWC or water 

pressure? 

 Does hypocotyl WC, RWC or water pressure affect susceptibility to growth 

splitting? 

 Does hypocotyl WC, RWC or water pressure affect susceptibility to harvest 

splitting? 

 Does post-harvest temperature affect harvest splitting in radishes? 
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1.6 Thesis map 

 

 

Figure 1-17 Whole thesis map 
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Figure 1-19 Map for Chapter 4: Harvest splits  

Ch 4. Harvest Splits  

Ch 4.1 Commercial data 

Ch 4.4 Chapter 
discussion 

Ch 4.2 Water content  Ch 4.3 Temperature  



55 
 

2. General materials and methods 

2.1 Growing radishes   

Unless stated otherwise, for each experiment 1.75 L G18B half sized seed trays (Garland 

Products Ltd., Kingswinford, UK) were used to grow the radish plants in. The seed trays 

measured 230 mm in length, 170 mm in width and 60 mm in depth. All trays were filled 

level with the rim of the pot, to a weight of 1.5 kg, with John Innes No. 2 compost (Keith 

Singletons Horticultural products, Cumbria, UK). The compost in each pot was 

consolidated and levelled using a wooden pot tamper.  

The plant trays were arranged in a randomised block design on the glasshouse bench and 

twenty Raphanus sativus ‘Rudi’ seeds, provided by G’s Growers, were planted at a depth 

of approximately 7 mm (commercial practice) into them. The seeds were planted in pairs 

in two rows of five with a spacing of 40 mm between the pairs of seeds and the edge of 

the pot and 90 mm between the two rows of plants. The commercial planting distance 

between radish seeds in a row is 41 mm. The plant trays were irrigated using capillary 

irrigation. All trays were irrigated for the initial seven days after the seeds were planted for 

even establishment of seedlings. The bench irrigation was 17 mm day-1 dispensed over 

three periods of five minutes a day. 

After seven days the seedlings which had germinated from the initial 20 seeds were 

thinned to 10, leaving the most evenly sized plants. The final arrangement was the same 

as the initial planting of seeds, two parallel rows of five plants 90 mm apart, a spacing of 

40 mm between plants in each row and 40 mm between the rows and the edge of the pot 

(Figure 2-1), obviously these were the initial measurements and the distances decreased 

as the hypocotyls expanded. Following plant thinning, irrigation and drying-down 

treatments were imposed.  
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Figure 2-1 Plant pot containing 10 radish seedlings after radish plants had been thinned 

from 20 seedlings planted in pairs  

 

Glasshouse temperature was set to 20/5°C day/night, the relative humidity and 

temperature were logged in the glasshouse using TGP 4500 TinyTag logger (Gemini Data 

Loggers (UK) Ltd., Chichester, UK). The loggers were raised off the bench to a similar 

height as the radish plants and they were shaded from direct sunlight.  

From October to March supplementary lighting from 400W SON/T lamps (Thermoforce 

Ltd., Cumbria, UK) was provided in the glasshouse for 16 hours a day.  

 

2.2 Determining pot capacity 

The volumetric water content (VWC) of John Innes No. 2 compost at pot capacity was 

determined by the gravimetric method (Hall et al. 1977). Three 1.75 L G18B half sized 

seed trays (Garland Products Ltd., Kingswinford, UK) were filled level with the rim of the 

pot, to a weight of 1.5 kg, with John Innes No. 2 compost (Keith Singletons Horticultural 

products, Cumbria, UK). The compost in each pot was consolidated and levelled using a 

90 mm 

40 mm 

40 mm 
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wooden pot tamper. The pots of compost were then watered to saturation. The pots were 

considered to be saturated when water applied to the surface of the pot caused water to 

immediately flow out of the bottom of the pot. After saturation the pots were covered to 

prevent surface evaporation and raised up on small saucers to allow the gravimetric water 

to flow from the holes at the base of the plant pot.  

The pots were repeatedly weighed using a FKB 16K 0.1 balance (Kern and Sohn GmbH, 

Balingen, Germany) until there was little change in weight over a 48 hour period, this was 

determined as the weight at pot capacity (WW). The trays of compost were then dried to a 

constant weight at 105°C (DW).  

The gravimetric water content (GWC) on a dry weight basis was found to be 110.8 %, 

determined by the equation: 

 

Equation 1: GWC 

GWC =  
(WW − DW)

DW
 × 100 

 

To calculate the VWC, the GWC was multiplied by the bulk density (BD) (cm-3): 

  

Equation 2: VWC 

VWC =  GWC × BD 

 

Bulk density (BD) was calculated by dividing DW (1042 g) by the volume (V) of the tray 

(1750 cm3) and was found to be 0.6 g cm-3 giving the VWC at pot capacity of 65.9 %: 

 

Equation 3: BD 

BD =  
DW

V
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2.3 Imposing water availability treatments 

Two methods for manipulating water availability to the radish plants during growth were 

employed. These were, irrigating by hand to particular VWC or preventing irrigation 

resulting in a period of drying.  

 

2.3.1 Irrigating to particular water content 

It is possible to water to certain VWC by watering the pots to a particular weight. It is 

known the dry weight of the compost is approximately 1042 g and the bulk density (BD) is 

0.6 g cm-3. Therefore, by combining Equation 1, Equation 2 and Equation 3 the wet weight 

(WW) (g) for certain VWC can be determined: 

 

Equation 4: WW 

WW = (1042 (
VWC × 0.6

100
)) + 1042  

 

When using this method the weight of the plant tray (107 g) and the saucer (108 g) was 

taken into consideration as was the increasing weight of the radish plants. Destructive 

harvests were made, each time the plants were watered, of a minimum of three plants 

which had been exposed to the same treatments. A mean weight of the radish plants 

which were destructively harvested for each treatment was calculated, multiplied by 10 to 

give an approximate weight for all of the plants in the tray and added to the weight of the 

plant tray and the WW giving the weight which the tray should be watered to.  

The trays were watered by hand using a squeezable water bottle with a fine nozzle to 

ensure an even distribution of water over the surface without damaging seedlings. They 

were watered to the required weight on a FKB 16K 0.1 balance (Kern and Sohn GmbH, 

Balingen, Germany).  
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Figure 2-2 Pots containing radish plants were surface irrigated using a water bottle with a 

fine nozzle to ensure even distribution of water over the surface without damaging the 

seedlings 

 

2.3.2 Drying down 

Drying down was achieved by lifting the plant trays off the surface of the bench and 

placing them on upturned saucers so they were not in contact with the capillary matting 

and therefore did not receive any irrigation (Figure 2-3). All trays were lifted off the bench 

so any differences observed were as a result of the irrigation treatments and not from 

lifting and moving the trays around. Plant trays which were to continue receiving irrigation 

were placed immediately back onto the matting. 
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Figure 2-3 Plant trays containing radish plants were raised on upturned saucers to prevent 

irrigation from the capillary matting 

 

2.4 Measuring water content during experiments 

Changes in VWC were measured using a ML2x ThetaProbe (Delta T Devices, 

Cambridge, UK) connected to a HH2 moisture meter (Delta T Devices, Cambridge, UK). 

ThetaProbes measure volumetric soil water content by determination of the apparent 

dielectric constant. This is possible because there is a linear relationship between the 

square root of the dielectric constant √ε and volumetric water content (Miller & Gaskin 

1996). The ThetaProbe rods measured 60 mm long, the same as the depth of the pot 

(Figure 2-4).  
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Figure 2-4 The VWC of the compost in a plant pot was measured using a Theta Probe 

(Delta T Devices, Cambridge, UK). In this picture the prongs of the Theta Probe are fully 

inserted in the compost.  

 

The moisture content was measured in millivolts (mV), converted to volts (V) then 

converted to VWC using the equation:  

 

Equation 5: VWC 

VWC =  
(1.07 + 6.4 V − 6.4 V2 + 4.7 V3) − a0)

a1
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This is the equation provided by Delta T Devices for use with the ML2x when accurate soil 

specific moisture readings are required. The terms a0 and a1 depend on the soil properties 

and should be determined using the method described in the user manual for the 

equipment. For John Innes No. 2 a0 was found to be 1.3 and a1 was 7.1 giving the 

equation:  

 

Equation 6: VWC 

VWC =  
(1.07 + 6.4 V − 6.4 V2 + 4.7 V3) − 1.3)

7.1
 

 

Despite using the compost specific equation, when this equation was calibrated with 

compost at a range of water contents a slight discrepancy between the VWC calculated 

from the GWC (VWCG) and the VWC calculated from the Theta Probe (VWCTP) was 

observed (Figure 2-5). The difference between the two measurements being expressed 

by the equation: 

 

Equation 7: VWCG 

VWCG = 1.008 (VWCTP) − 0.642 
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Figure 2-5 Calibrating the Theta Probe by comparing VWC calculated from the GWC 

(VWCG) with VWC calculated form the compost specific equation for the Theta Probe 

(VWCTP). 

 

Therefore, the equation for converting the readings from the Theta Probe to VWC is: 

 

Equation 8: VWC 

VWC = 1.008 (
(1.07 + 6.4 V − 6.4 V2 + 4.7 V3) − 1.3)

7.1
) − 0.642 

 

It should be remembered that the Theta Probe display shows millivolts (mV) not volts (V) 

so the readings will need to be converted before using the equation above. 

 

2.5 Water retention (pF) curve  

The water retention curve of John Innes No. 2 (Keith Singletons Horticultural products, 

Cumbria, UK) was determined using pressure membrane apparatus (Soil Moisture 

Equipment Corp. Santa Barbara, USA). Five samples of compost were placed in rings on 

the ceramic plate supplied with the equipment. The rings of compost were saturated by 
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soaking in water for 48 hours whilst covered with tin foil to prevent surface evaporation. 

Once saturated the covered samples on the ceramic plate were placed inside the 

pressure chamber. The outflow pipe for the water was connected, the lid of the chamber 

was sealed and the pressure applied. Once water ceased to be released from the outflow 

tube at a particular pressure, sections of the compost were removed and immediately 

weighed using a PCB 2500-2 balance (Kern and Sohn GmbH, Balingen, Germany), this 

was the wet weight (WW). These sections were then dried at 105°C to a constant weight, 

this was the dry weight (DW). The GWC was calculated on a dry weight basis using the 

equation: 

 

Equation 9: GWC 

GWC =  
(WW − DW)

DW
× 100 

 

The GWC was then converted to VWC by multiplying by the bulk density (0.6 g cm-3). 

The remaining compost was returned to the chamber, recovered with tinfoil and the 

pressure inside the chamber was increased and the process repeated. The water content 

was determined at 0.04, 0.06, 0.08, 0.102, 0.151, 0.204, 0.253, 0.303, 0.351, 0.401 and 

0.429 MPa. To define the water retention curves for John Innes No. 2, the applied 

pressures (MPa) were plotted against the VWC (%) on a log scale producing a curve 

(Figure 2-6) with the equation: 

 

Equation 10: VWC (%) 

VWC (%) =  −8.28 ln(matric potential(MPa)) + 5.084 
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Figure 2-6 Moisture release (pF) curve for John Innes No. 2 produced using pressure 

membrane apparatus (Soil Moisture Equipment Corp. Santa Barbara, USA) 

 

The moisture content at field capacity (FC) 1.5 MPa is 48.9 % and permanent wilting point 

(PWP) 0.05 MPa is 1.7%. Available water is the water retained between field capacity 

(FC) (0.005 MPa) and permanent wilting point (PWP) (1.5 MPa) (Hall et al. 1977). Using 

the water retention curve, it can be determined the VWC of John Innes No. 2 at FC is 

48.9% and at PWP is 1.7%. 

 

2.6 Hypocotyl size 

Uniformity in radish diameter is desirable as supermarkets usually require radishes which 

are between 18 mm and 32 mm in width, anything outside of this range is too small or too 

large for commercial sale in the UK.  

During growth the widest part of the hypocotyl visible above the surface of the compost 

was measured (Figure 2-7). At harvest the maximum hypocotyl length and diameter were 

measured. All measurements were made using digital callipers (Draper Expert 46610, 

Draper Tools Ltd., Hampshire, UK). 
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Figure 2-7 The radish hypocotyl protruding from the compost surface was measured with 

digital callipers 

 

2.7 Leaf area 

Total plant leaf area (cm2) was measured using Li-3000A leaf area meter (Li-Cor Lincoln, 

NE, USA). This was done by removing the leaves from the hypocotyl with scissors. It was 

found, as a result of the close planting of the radish plants within a tray, the smaller radish 

leaves could not be measured without removing them from the hypocotyl.  

 

2.8 Leaf temperature 

Leaf temperature of the youngest fully opened non-shaded leaf was measured using a 66 

infrared thermometer (Fluke, WA, USA).  

 

2.9 Stomatal conductance 

Stomatal resistance (m2 s mol-1) of the youngest fully opened leaf was measured using an 

AP4 porometer (Delta-T Devices, Cambridge, UK). The porometer was calibrated using 

the calibration plate provided prior to use. Readings were taken in the morning between 8 

am and 12 pm.  
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2.10 Harvest 

At harvest the leaves from all plants in a tray were removed using scissors. These were 

immediately weighed for their fresh weight. The radish hypocotyls from the tray were then 

removed from the compost and briefly washed in tap water at ambient temperature to 

remove the compost. They were weighed using a FKB 16K0.1 balance (Kern and Sohn 

GmbH, Balingen, Germany) with the leaves for total plant fresh weight then the roots were 

removed with scissors and the hypocotyls were weighed alone for hypocotyl fresh weight. 

 

2.11 Dry matter content 

After the hypocotyls and leaves had been weighed to obtain the fresh weight (FW) they 

were separately put into a labelled perforated polypropylene bags (300 x 450 mm) (Abpac 

Ltd., Wincanton, UK) which had been already been weighed empty. The bags containing 

the leaves and the hypocotyls were then placed into a drying oven at 105°C until the 

contents had reached a constant weight using a FKB 16K0.1 balance (Kern and Sohn 

GmbH, Balingen, Germany). This minus the weight of the bag was determined as the dry 

weight (DW). The dry matter content (DM) (%) was calculated using the equation: 

 

Equation 11: DM 

DM =  
DW

FW
× 100 

 

2.12 Hypocotyl water pressure  

The water potential (bar) of radish hypocotyls was measured using a digital pressure 

bomb (SKPM-1400, Skye Instruments Ltd, Powys, UK) (Figure 2-8).  
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Figure 2-8 Digital pressure bomb (SKPM-1400, Skye Instruments Ltd, Powys, UK) 

 

The hypocotyl of the radish was placed inside the chamber with the severed petiole 

protruding (Figure 2-9).  

 

Figure 2-9 Diagram showing how the radish hypocotyl was positioned inside the digital 

pressure bomb (SKPM-1400, Skye Instruments Ltd, Powys, UK) 
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2.13 Hypocotyl relative water content (RWC) 

Hypocotyl relative water content (RWC) was measured by weighing the whole radish 

hypocotyl to ascertain the fresh weight (FW). The hypocotyl was then sliced into eight 

sections with a knife. The sections were placed into a container (100 mL polypropylene 

cup with cap, Sarstedt, Nümbrecht, Germany) with approximately 100 mL dH2O. The 

containers were closed with a lid and placed into cold storage at 4°C for 48 hours. The 

temperature in the cold storage was logged using TGP 4500 TinyTag logger (Gemini Data 

Loggers (UK) Ltd., Chichester, UK). After 48 hours the pieces of radish were removed 

from the water, patted dry using kitchen towel and weighed using a PBB 2500-2 balance 

(Kern and Sohn GmbH, Balingen, Germany), this was the turgid weight (TW). The 

sections were then placed in a drying oven at 105°C and dried to a constant weight, this 

was the dry weight (DW). The RWC could then be calculated using the equation (Smart & 

Bingham 1974): 

 

Equation 12: RWC 

RWC =  
(FW − DW)

(TW − DW)
 

 

The number of sections and time to saturation were decided after conducting a 

preliminary experiment. For this experiment radishes were left whole, cut into halves, 

quarters or eighths. They were then put into container of approximately 100 mL of dH2O at 

4°C. At intervals radishes were removed from the water, patted dry with kitchen towel and 

weighed. It was found radishes which were cut into sections of eight took up water more 

rapidly and more in total than whole radishes or radishes which were cut into halves of 

quarters. All radish weights had begun to plateau at 48 hours (Figure 2-10).  
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Figure 2-10 Rate of saturation of whole, halved, quartered and eighthed radishes at 4°C. 

 

2.14 Sectioning 

Radishes were placed into individual G3 grip seal bags measuring 75 x 80 mm (Weller 

Packaging, Lichfield, UK) and were sent for professional sectioning and staining (Finn 

Pathologists, Norfolk, UK). Non-split radishes were sectioned through the widest point of 

the hypocotyl and split radishes were sectioned through the splits. Sections were along 

the radial latitudinal axis.  

On arrival at Finn Pathologists a segment through the widest or split part of the radish was 

taken and placed into a cassette. They were then placed in 70% industrial methylated 

spirit (IMS) for 24 hours. The segments were cleared in a gradient of IMS, followed by 

xylene and embedded in wax (Table 2-1). 
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Table 2-1 Step-by-step procedures for clearing and embedding radish hypocotyl sections 

prior to sectioning  

Step Reagent Time (mins) Temperature (°C) 

1 70% IMS 90 RT 

2 95% IMS 30 RT 

3 95% IMS 45 RT 

4 100% IMS 30 RT 

5 100% IMS 60 RT 

6 100% IMS 120 RT 

7 Xylene 30 RT 

8 Xylene 60 RT 

9 Xylene 90 RT 

10 Wax 30 61 

11 Wax 60 61 

12 Wax 90 61 

13 Histowax - 61 

*RT = room temperature  

 

Once embedded in Histowax 10 µM sections were made which were stained with 1% w/v 

toluidine blue made up in 50% v/v isopropanol and dH2O (Table 2-2). 
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Table 2-2 Step-by-step procedure for staining radish hypocotyl sections with 1% Toluidine 

Blue prior to image analysis  

Step Reagent Time (mins) 

1 70% IMS  

2 1% Toluidine Blue 30 

3 Blot dry  

4 Isopropanol 1 

5 99% IMS 1 

6 Xylene  

7 Mount / coverslip  

 

The sections were returned from Finn Pathogists to HAU and then analysed using an 

Infinity 2 22C camera (Lumenera, Ottowa, Canada) with CX31 compound microscope 

(Olympus, Tokyo, Japan). Pictures were analysed using infinity capture software, release: 

6.0, 2011 (Lumenera, Ottawa, Canada), the image was calibrated using a 1 mm graticule 

slide. 

 

2.15 Texture analysis 

Radishes from a G’s Growers (Norfolk) were couriered on the day of harvest to arrive at 

HAU (Shropshire), the following morning. The radishes had been topped in the field and 

harvested into a trailer as per-usual commercial harvesting procedure but had not been 

washed, graded or trimmed.  

For transport the radishes were placed into a clear storage bag (Waitrose, Berkshire, UK) 

which was tied at the top then placed inside a 305 mm x 230 mm x 230 mm double wall 

cardboard removal box which was taped closed. 

Upon arrival at HAU, the commercially grown radishes were briefly washed in tap water to 

remove soil residue and trimmed using a knife to remove any remaining leaf petioles and 

fibrous roots.  
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Before texture analysis the maximum diameter of the radishes was measured using digital 

callipers (Draper Expert 46610, Draper Tools Ltd., Hampshire, UK) and they were 

weighed using a PCB 2500-2 balance (Kern and Sohn GmbH, Balingen, Germany). 

 

2.15.1 Puncture 

Puncture tests were performed using a TA.HD.plus texture analyser (Stable Micro 

Systems, Surrey, England) (Figure 2-11). The texture analyser was fitted with a P/2 

cylindrical probe (Figure 2-12), the test speed was 2 mmS-1 and the test distance was 160 

mm. Radishes were positioned on their side and force was applied to the widest point of 

the hypocotyl. During the experiment a curve was plotted of the force (kg) as a factor of 

distance (mm). The point at which the periderm of the radish was punctured could be 

observed on the plotted curve as abrupt decrease in force. 
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Figure 2-11 Texture analysis of a radish using TA.HD.plus texture analyser (Stable Micro 

Systems, Surrey, England). 
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Figure 2-12 Puncture texture analysis of a radish using a P/2 (Stable Micro Systems, 

Surrey, England) cylindrical probe 

 

2.15.2 Compression 

Uniaxial compression tests were performed using a P/75 probe fitted to a TA.HD.plus 

texture analyser (Stable Micro Systems, Surrey, England) (Figure 2-13). Radishes were 

placed on their side and compression force was applied perpendicular to the lateral line. 

The test speed was 2 mmS-1 and the test distance was 250 mm. As with the puncture 

tests, a curve was again plotted of force (kg) as a factor of distance (mm), as the 

compression distance increased peaks were observed in the graph profile. Each peak 

indicates a compression failure in the radish. For the purposes of this experiment the force 

of the first peak was recorded as the split force. 
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Figure 2-13 Compression texture analysis of a radish hypocotyl with a P/75 probe fitted to 

a TA.HD.plus texture analyser (Stable Micro Systems, Surrey, England) 

 

2.15.3 Impact  

Impact tests were performed using the method described by (Hartz et al. 2005) with a 

slight modification, in this experiment the drop height was increased from 1 m to 1.4 m to 

ensure some splitting was observed. This height is at the upper limit of what would be 

observed commercially when the first radishes are harvested into the trailer. 
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Figure 2-14 Impact texture analysis of a radish hypocotyl from a height of 1.4 m onto a 

metal plate (a) resulting in a split radish (b) 

 

2.16 QA of commercial radishes 

In commercial production, after radishes have been harvested, washed and trimmed, they 

are placed into large containers called dolavs. Quality analysis (QA) of the produce is 

conducted at this point. One hundred radishes are taken from the dolav and assessed by 

trained employees for quality attributes including the number of split radishes. This 

information is recorded along with the unique batch number. From the batch number, the 

drilling date, harvest date and field where the radishes have been grown can be 

determined. There are approximately 10,000 batches of radishes harvested and quality 

a b 
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assessed each year providing an extensive database to search for correlations between 

weather conditions during growth and splitting.  

 

2.17 QA of commercially grown radishes at HAU 

Throughout the 2014 growing season field grown radishes were couriered from G’s 

Growers to HAU as described in section 2.15 with the addition that the batch number was 

written on the box and this was recorded upon arrival at HAU. This enabled the weather 

conditions during growth to be determined as the batch number can be used to find the 

drilling date and harvest dates.  

One hundred radishes were taken from the box and briefly washed in tap water to remove 

soil remaining from the field. The radishes were then trimmed to remove the petioles and 

roots.  

 

2.17.1 Split on arrival  

The 100 radishes were assessed for splitting and any split radishes were weighed and the 

diameter was measured. These were then dropped from a height of 1.4 m onto a metal 

plate as described in section 2.15.3. If the existing splits extended or if new splits were 

produced this was recorded. All of these radishes (or up to 25 if there were in excess of 

25) were then saturated and dried to calculate the RWC as described in Section 2.13. The 

RWC was correlated with the number of split radishes using linear regression.  

 

2.17.2 Impact texture analysis  

To determine splitting susceptibility 100 commercially viable radishes were tested for 

splitting susceptibility using impact texture analysis as described in Section 2.15.3. 

Commercially viable radishes were determined as radishes which were free from pest, 

disease and splitting damage and were between 18 and 32 mm in diameter.  

The 100 commercially viable radishes were briefly washed in tap water and trimmed. 

Each radish was weighed and the diameter was measured before dropping from a height 

of 1.4 m onto a metal plate. If the radish split or not was recorded. The first 25 radishes 
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which did not split and the first 25 radishes which did split were saturated and dried to 

calculate the RWC as described in Section 2.13. The RWC was correlated with the 

number of split radishes using linear regression.  

 

2.18 Weather data  

Weather data for RAF Marham, which is approximately 14 km from where the radishes 

were grown, was provided by British Atmospheric Data Centre (BADC) and the Met 

Office. Total daily rainfall and mean daily temperature were calculated from this data. As 

drilling and harvesting dates were known from the batch number the mean temperature 

during growth and the accumulated precipitation during growth could be calculated for 

each batch of radishes. This weather data could then be correlated with splitting using 

simple and multiple linear regression.  

 

2.19 Statistical analysis  

All data was analysed using GenStat for Windows 15th Edition (VSN International 2011). 

The tests used have been described in the materials and methods section for each 

experiment.  
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3. Growth Splits 

3.1 Chapter 3 Growth splits: Introduction  

Hypocotyl splitting in radish can occur during growth, harvest or post-harvest. Splits which 

happen prior to harvest are called ‘growth splits’ and splits which materialize during 

harvest and post-harvest are called ‘harvest splits’. Identification of the factors governing 

splitting susceptibility at each of these stages may allow the development of field 

production, harvesting and handling practices which can minimise damage.  Research is 

required to investigate the environmental conditions during commercial production which 

correlate with splitting in radishes as knowledge in this area is limited. 

This chapter begins with a glasshouse experiment designed to determine if there are 

differences in the susceptibility to growth splits among three different cultivars (Experiment 

3.1). Following this, the growth stages of Raphanus sativus ‘Rudi’ are defined (Experiment 

3.2) and the growth rates established for five different cultivars grown under glasshouse 

conditions (Experiment 3.3). This information was used to facilitate the planning of the 

subsequent glasshouse experiments conducted in this chapter. The chapter continues 

with an experiment correlating commercial splitting rates with rainfall, temperature and 

relative humidity during growth for the years 2012, 2013 and 2014 (Experiment 3.4). The 

chapter then concludes with a series of nine glasshouse experiments (Experiment 3.5 to 

3.12) into the effects of volumetric water content (VWC) during growth on splitting.  

The main objective of work carried out in this chapter is to identify some of the factors 

which affect susceptibility to growth splits in radish. 
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3.2 Experiment 3.1: The effects of radish cultivar on susceptibility to 

growth splits 

3.2.1 Experiment 3.1: Introduction 

Splitting susceptibility has been shown to vary for different cultivars of potato (Bajema et 

al. 1998), cherry (Demirsoy & Demirsoy 2004), tomato (Dorais et al. 2004) kohlrabi 

(Lippert 1999), and carrot (Hartz et al. 2005; Hole et al. 1999). In some papers 

physiological differences, for example skin thickness, which differ between types of 

cultivar have been correlated with splitting susceptibility and have been proposed to 

explain the differences (Demirsoy & Demirsoy 2004; Emmons & Scott 1998). The 

susceptibility of a radish to splitting during growth may also depend on genotype x 

environment interactions but there is a lack of research in this area to provide any 

evidence for this. This experiment aims to investigate if different cultivars of radishes have 

different susceptibility to splits and then to investigate possible physiological explanations 

for these differences.  

Effect of growth rate: Different cultivars of radish may have different growth rates and 

growth rate has been suggested to affect splitting in radishes. In an experiment conducted 

by Latimer (1991) the leaves of radishes were brushed during growth to impose 

mechanical stress and this was observed to decreased splitting. In this investigation the 

decrease in splitting was seen alongside a reduction in hypocotyl growth rate. The 

reduction in growth rate was suggested as a possible cause of the reduction in splitting 

(Latimer 1991). Dowker and Jackson (1977) also found a correlation between growth rate 

and splitting in carrots. They found carrots which had the slowest growth rate, with the 

longest duration from drilling until harvest, split the most (Dowker & Jackson 1977). 

However, as these carrots had been planted in different months at different densities there 

are a number of confounding factors which may have resulted in the observed differences 

in splitting.  

Differences in growth rate have also been proposed as an explanation for differences in 

splitting between cultivars of kohlrabi. Of the two cultivars of kohlrabi which were 

investigated by Lippert (1999) the crack resistant cultivar ‘Noriko’ was found to grow 



82 
 

slower than the crack susceptible cultivar ‘Express Forcer’, ‘Noriko’ had a tuber:leaf ratio 

of 2:1 compared to ‘Express Forcer’ which had a radio of 9:1. The paper is unclear as to 

the unit measurements for leaf and tuber. In the final year of the experiment it is reported 

‘Express Forcer’ cracked twice as often as ‘Noriko’. Unfortunately no statistical analysis 

was performed on the data, this is a comparison of percentage cracked kohlrabi of each 

cultivar, and therefore it is difficult to draw meaningful conclusions from this. From these 

results, Lippert (1999) determined genotypic differences in crack resistance were due to 

the expansion rate of the involved plant organ. These conclusions are based on limited 

information and require further investigation in addition to statistical analysis as there were 

no reported measurements of growth rate other than the ratio of leaf and tuber to enable 

quantification of the differences. The point at which the kohlrabi cracked was recorded 

and it would have been logical to see if points at which there were high rates of cracking 

coincided with periods of rapid growth.  

No investigations have yet been conducted to determine if different cultivars of radishes 

have different growth rates and if the growth rates correlate with splitting during growth.  

Radish roundness: Shape may also be a factor under some genetic control which affects 

susceptibility to splitting. Iwata et al (2004) showed Japanese radish shape was under 

both genetic and environmental control. In this experiment different soil types were used 

to vary environmental growing conditions. The results showed there were significant 

differences in shape for all varieties and for all soil types and there was no interaction 

between soil type and variety for most shape characteristics (Iwata et al. 2004) suggesting 

soil type had similar effects on all varieties tested and therefore neither genetics nor 

environment alone can explain shape. As stress is more uniformly spread in globes than 

shapes which deviate from this (Emmons & Scott 1998) shape is likely to be an important 

factor in determining splitting susceptibility. Shell theory can be applied to whole organs if 

their tissues are physically constrained by a membrane which is thinner than about one-

tenth of the tissue radius (Considine & Brown 1981) which is the case for radishes. Shell 

theory shows changes in the profile of stress distribution from equator to pole for shapes 

which are elongated or compressed globes (Considine & Brown 1981). Differences in 
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stress within the tissue may cause it to split depending on the degree of stress and the 

mechanical strength of the tissue. Splitting occurs when mechanical stress exceeds the 

ability of the tissue to withstand it (Hole et al. 1999).  

Mode of failure: Failure can occur by cellular debonding and plasmoptysis The mode of 

failure depends on the relative strengths of the intercellular bonds and cell walls (Lin & Pitt 

1986). In many vegetable crops, root and tuber splitting is thought to occur predominantly 

due to plasmoptysis as opposed to cellular debonding. McGarry (1993) found splits 

occurred in carrots by cell wall breakage and Lippert (1999) investigated cracking in 

kohlrabi tubers and found ruptured cell walls indicating intracellular fractures. These 

results suggest splitting susceptibility in these vegetable crops must be determined to 

some extent by cell wall strength and composition. The mode of splitting which occurs 

within radishes has not been recorded, it is likely to be by cellular fracture similar to other 

vegetables but this needs to be demonstrated.  

Periderm thickness: In fruit skin thickness has been correlated with splitting susceptibility 

and it is thought this may explain some of the genotypic differences which have been 

observed as different cultivars are thought to have different skin thicknesses. In tomato, 

cuticle and epidermal (epicarp) thickness has been shown to be negatively correlated with 

splitting susceptibility. Cultigens which were resistant to splitting had combined epicarp 

layers which were significantly thicker than susceptible cultigens (Emmons & Scott 1998). 

In a similarly study Demirsoy & Demirsoy (2004) showed cherry cuticle thickness of 

different cultivars was also negatively correlated with splitting susceptibility, the cultivars 

which had the thickest cuticle had the lowest cracking index. From the results of these 

studies it would appear, a thicker skin is correlated with an increased resistance to 

splitting. Research into the correlation between the splitting susceptibility of different 

cultivars and periderm thickness have not been conducted for radishes, it is not known if 

splitting susceptibility in radishes is correlated with a thicker periderm.   

Effect of tissue water content: Tissue water status is an important factor affecting 

splitting susceptibility. It is thought to affect tissue mechanics and splitting susceptibility 

through turgor pressure. At high turgidity plant cell walls are believed to already be 
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stretched and as a consequence are more easily ruptured (Kokkoras 1995). In sweet 

cherry fruit, rain induced growth splitting is thought in part to be caused by an increase in 

pressure on the skin from within the fruit as a result of water uptake by the vascular 

system (Sekse 1995).  

This chapter reports a series of experiments to determine if there are differences in 

splitting susceptibility between radish cultivars and study the relationship between 

periderm thickness and splitting. Measurements of roundness were made to identify if 

different cultivars differed in shape and if roundness was correlated with splitting 

susceptibility. Size at harvest was measured to determine if growth rate correlates with 

splitting, the larger the radishes were at harvest, the faster they grew. Furthermore, as 

part of this investigation, sections were taken of split tissue to determine the type of split 

which occurs in radishes, i.e. cellular debonding or plasmoptysis.  

Aims: The aims of this experiment were to determine: 

 If there are any differences in splitting susceptibility between three cultivars of 

commercially grown radishes  

 If growth rate correlates with splitting 

 If hypocotyl roundness correlates with splitting  

 The mode of hypocotyl tissue failure  

 If cultivar periderm thickness is correlated with splitting 

 If periderm thickness is different between the split and non-split radishes 

 If hypocotyl water content is correlated with splitting  

Null hypotheses:  

1. No difference will be observed between cultivars and their susceptibility to splitting 

2. No correlation will be observed between growth rate and splitting 

3. No correlation between hypocotyl roundness and growth splitting will be observed  

4. Cultivar periderm thickness will not be correlated with splitting 

5. There will be no difference in periderm thickness between the split and non-split 

radishes 

6. Hypocotyl water content (WC) will not be correlated with splitting   
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3.2.2 Experiment 3.1: Materials and Methods  

Cultivar selection: This experiment investigated the splitting susceptibility of three 

different radish cultivars, ‘Rudi’, ‘Celesta’ and ‘Topsi’. ‘Celesta’ is the variety grown most 

commercially and it is considered by growers to be more split resistant than other 

varieties, ‘Rudi’ is a cultivar which is grown commercially and was previously the 

predominant variety although is currently being phased out as it is thought to split more 

than ‘Celesta’ (Pers. Comm. Scott Watson, G’s Growers). ‘Topsi’ is described as having a 

thin periderm (Mr Fothergill’s Seeds Ltd., Suffolk, UK) which may affect its splitting rate.  

Replication: There were six plants per pot in a total of eight experiment pots and three 

destructive harvest pots for each treatment, giving 11 pots per treatment, 33 pots in total 

containing a total of 198 radish plants, 144 of which were plants used for analysis at the 

end of the experiment. Pots were arranged in a random block design generated by 

GenStat for Windows 15th Edition (VSN International 2011), destructive pots were in a 

block of their own on the same bench.  

Growth summary: Seeds were planted on 26.10.2012, seedlings were thinned on Day 7 

(02.11.2012), plants were harvested and moved to storage on Day 29 (23.11.2012), and 

radishes were removed from storage 10 days later (03.12.2012).  

Glasshouse conditions: In the glasshouse the mean temperature was 17.0°C with a 

range of 28.5°C to 5.3°C. The mean relative humidity was 52.8% with a range of 90.9% to 

22.1%. 

Growing conditions: Radishes were grown in 4.2 L pots (TEKU VCA 21, Pöppelmann 

GmbH & Co. KG, Lohne, Germany) arranged in a randomised block design on the 

glasshouse bench. The pots were filled with John Innes No. 2 growing medium (Keith 

Singletons Horticultural products, Cumbria, UK). The pots were filled to the rim of the pot. 

Once the pot was full, the compost was consolidated and smoothed level with the rim of 

the pot using a wooded pot tamper.  

Pot preparation: In each pot 12 seeds were planted in six evenly spaced pairs 25 mm 

from the rim of the plant pot at a depth of approximately 7 mm, this is the planting depth 

which is used commercially. On Day 7 the cotyledons were showing on the majority of 



86 
 

seedlings. At this point seedlings were thinned to leave the six most uniform evenly 

spaced seedlings remaining; the experimental unit was one pot containing six radish 

plants (Figure 3-1).  

 

 

Figure 3-1 The experimental unit was one pot of six evenly spaced radish seedlings, 

positioned 25 mm from the edge of the pot 

 

Irrigation: All pots were given the same irrigation regime for the duration of the 

experiment. They were watered three times a week by hand to the weight at 103% pot 

capacity. For this experiment radishes were grown under wet conditions as these are the 

conditions considered most likely to cause splitting. Split radishes were required for this 

experiment so that comparisons could be made between the splitting susceptibility of 

different cultivars. The weight at pot capacity was calculated by saturating pots, covering 

the surface and allowing water to drain freely from the bottom of the pot.  

25 mm 
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Pots were then weighed until a constant weight was reached; this was the weight at pot 

capacity. Pots were watered just over pot capacity to ensure they had the greatest water 

content for as long as possible. As a result of the pots being saturated a small amount of 

water flowed from the base of the pots. This water was caught in the saucer and had 

always been absorbed and/or had evaporated when the pots were checked after 6 hours 

and before they were next weighed. Pots were irrigated using a water bottle with a fine 

nozzle to ensure even distribution of water over the surface without damaging the 

seedlings (Figure 2-2). As irrigation was based on weight, compensation was made for the 

increasing weight of the radish in the pots by performing destructive harvests prior to 

irrigation three times a week.  

Measuring substrate VWC: VWC was measured using two methods. Firstly using a 

Theta Probe ML2x (Delta T Devices, Cambridge, UK) connected to a HH2 moisture meter 

(Delta T Devices, Cambridge, UK). The measuring probes of the Theta Probe were 60 

mm long and were inserted into the surface of the compost. Therefore the Theta Probe 

only measured the VWC for the surface 60 mm.  

The second method was pot VWC. This was calculated from the gravimetric water content 

(GWC) of the pot by multiplying the GWC by the bulk density of the compost in the pot. 

The bulk density is the dry mass of the compost divided by the volume; this was 

calculated in a preliminary experiment and found to be 0.49 g cm-3 (this is different to the 

bulk density which was used for the shallower trays in other experiments).  

Harvest: The mean temperature in the glasshouse during harvest was 21.6°C.  

Roundness: At harvest, the maximum diameter and length of the hypocotyl to the first 

root hair was measured to enable a rough calculation of how spherical the radishes were 

to be made. This was done by dividing length by width, the closer the result was to 1 the 

more spherical the radish was considered to be.  

Storage: The radishes were stored for 10 days after harvest. For this, the radish were put 

into a labelled cryovac bag to simulate commercial packaging and moved to a MLR-351H 

Versatile Environmental Test Chamber (SANYO Electric Co. Ltd., Japan) again to mimic 

commercial storage conditions which are typically 4°C and 95% relative humidity.  
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The environmental test chamber achieved an average temperature of 3.1°C with a range 

between 5.9°C and 3.0°C. The mean relative humidity was 98.3% with a range between 

99.3% and 92.6%. 

Sectioning: On Day 10 of storage the radish were weighed again and the number of 

splits counted. Six non-split radishes from each cultivar type were sealed in separate 

plastic G3 grip seal bags measuring 75 x 80 mm (Weller Packaging, Lichfield, UK). Six 

‘Rudi’ radishes with splits and four ‘Topsi’ with splits were also sealed in separate grip 

seal bags. There were only four split ‘Topsi’ and no ‘Celesta’ with splits which were 

suitable for sectioning. All the radishes which had been placed into bags were then sent 

for professional sectioning and staining (Finn Pathologists, Norfolk, UK). The non-split 

radishes were sectioned through the widest point of the hypocotyl and the split radishes 

were sectioned through the splits. Sections were along the radial latitudinal axis. Initially a 

segment through the widest or split part of the radish was taken and placed in a cassette. 

They were then placed in 70% industrial methylated spirit (IMS) for 24 hours. The 

segments were cleared in a gradient of IMS, followed by xylene and embedded in 

Histowax. Once embedded in Histowax 10 µM sections were made which were stained 

with 1% w/v toluidine blue made up in 50% v/v isopropanol and de-ionised water (dH2O). 

The sections were then photographed and the pictures were analysed. The image was 

calibrated using a 1 mm graticule slide (Figure 3-2).  
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Figure 3-2 Measuring periderm thickness of Raphanus sativus ‘Celesta’ using infinity 

capture software. The section is 10 µM thick and stained with 10% w/v toluidine blue. 

 

Hypocotyl water content: As an indicator of tissue water status the hypocotyl water 

content of the remaining radishes which were not sent for sectioning was calculated on a 

wet weight basis post-storage by drying all radishes at 105°C to a constant weight. 

Statistical analysis: All data was analysed using GenStat for Windows 15th Edition (VSN 

International 2011).  

The mean water content of split and non-split Rudi hypocotyls after 10 days of storage 

was analysed using an unpaired 2 tailed t-test.  

All other data was analysed using analysis of variance (ANOVA). When a P value of less 

than 0.05 was observed a Tukey test was used to determine which results were different 

from each other. VWC during growth, measurements of growth rate, roundness, growth 

splitting and number of growth splits were analysed using cultivar and block as factors. 

Periderm thickness was analysed with cultivar as a factor and also as a multi-factorial 

ANOVA with cultivar and split/not split as factors. Hypocotyl water content after storage 
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was analysed with cultivar and block as factors. There were fewer blocks for water 

hypocotyl water content after storage than for measurements taken at harvest as some 

radishes had been removed for sectioning. 

  

Table 3-1 Skeleton ANOVA for VWC during growth, radish growth rate, hypocotyl 

roundness and growth splits 

Source of variation d.f. 

Block 7 

Cultivar 2 

Residual 14 

Total 23 

 

 

Table 3-2 Skeleton ANOVA for periderm thickness between radish cultivars 

Source of variation d.f. 

Cultivar 2 

Residual 26 

Total 28 

 

 

Table 3-3 Skeleton ANOVA for periderm thickness of split and non-split radishes for each 

cultivar 

Source of variation d.f. 

Split or non-split 4 

Residual 24 

Total 28 
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Table 3-4 Skeleton ANOVA for radish hypocotyl water content after storage 

Source of variation d.f. 

Block 6 

Cultivar 2 

Residual 12 

Total 20 
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3.2.3 Experiment 3.1: Results  

VWC: Each cultivar group was exposed to similar ranges in VWC (Table 3-5); there were 

no significant differences between the mean water content at the surface (P=0.883) or for 

the whole pot (P=0.994) for the different cultivar types.  

 

Table 3-5 Maximum, minimum and mean VWC at the surface and for the whole pot during 

growth for each of the three cultivars of radishes grown (n=8).  

Cultivar Maximum VWC (%) Minimum VWC (%) Mean VWC (%) 

Surface Pot Surface Pot Surface Pot 

Rudi 24.77 25.13 22.56 25.02 23.70 25.07 

Celesta 24.86 25.20 23.01 24.98 23.93 25.07 

Topsi 24.81 25.27 22.84 24.99 23.85 25.10 

P 0.984 0.843 0.640 0.989 0.883 0.994 

LSD (5%) 1.038 0.474 0.947 0.586 0.935 0.541 

 

 

As would be expected due to gravity and surface evaporation, the compost at the surface 

had a lower VWC than the pot as a whole for the duration of the experiment. 

Growth splitting: There was a significant difference (P<0.001) in the number of split 

radish between cultivars at harvest. At harvest ‘Rudi’ had significantly more split radish 

(43.8%) on average per pot than ‘Topsi’ (8.3%) or ‘Celesta’ (2.1%) which did not have 

significantly different numbers of splits from each other (Table 3-6).  
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Table 3-6 The mean percentage of split hypocotyls per pot for three different cultivars of 

radish. Each pot contained 6 radish plants (n=8). 

Cultivar Split (%) 

Topsi 8.33a1 

Celesta 2.08a 

Rudi 43.75b 

P <0.001 

LSD (5%) 12.56 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values.  

 

Split healing: A proportion of the split radishes observed had healed at the time of 

harvest (Figure 3-3) and these were recorded separately as healed splits, the number of 

fresh splits was significantly different between cultivars (P=0.006) as were the number of 

healed splits (P=0.002). The healed radish hypocotyls appeared to have split and then 

subsequently a red scar had formed over the split (Figure 3-3).  
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Figure 3-3 Radish hypocotyl with healed split 

 

Some of the splits which were observed appeared to have begun the healing process and 

were partially healed over, these radish were recorded as ‘fresh’ splits as the white tissue 

below the red epidermis was still visible at the point of harvest (Figure 3-4). 
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Figure 3-4 Mean number of fresh (P=0.006), healed (P=0.002) and total (P=0.001) split 

radish per pot of six plants at harvest (n=8). Bars represent standard error for each 

treatment 

 

Growth rate: It was observed that ‘Celesta’ grew significantly faster than ‘Rudi’ for all 

factors measured and grew significantly faster than ‘Topsi’ for all factors measured except 

leaf weight (Table 3-7). ‘Rudi’ and ‘Topsi’ did not have any significant differences in 

growth rate for any of the factors measured.  
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Table 3-7 Significant cultivar effects on radish size at harvest (Day 29 for all cultivars) 

(n=8). 

Cultivar No. 

Leaves 

Plant 

weight 

(g) 

Hypocotyl 

weight (g) 

Leaf 

weight 

(g) 

Hypocotyl 

length (mm) 

Hypocotyl 

width (mm) 

‘Topsi’ 4.44a1 20.10a 12.07a 8.03ab 42.92a 27.46a 

‘Celesta’ 5.10b 24.26b 15.07b 9.19b 47.74b 29.34b 

‘Rudi’ 4.58a 19.91a 12.29a 7.63a 41.98a 27.51a 

P <0.001 <0.001 <0.001 0.015 <0.001 <0.001 

LSD 

(5%) 

0.292 1.648 1.040 1.028 2.499 0.909 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values.  

 

Roundness: There was no difference (P=0.213) in hypocotyl roundness, measured by 

dividing hypocotyl length (L) by width (W), between the cultivars (Table 3-8). 

 

Table 3-8 Mean roundness, calculated by dividing length between poles (mm) by 

equatorial width (mm) for three radish cultivars (n=8) 

Cultivar Roundness (L/W) 

Topsi 1.58 

Celesta 1.64 

Rudi 1.56 

P 0.21 

LSD (5%) 0.102 

 

 

Harvest splitting: No additional splits formed during storage for any cultivar.  
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Mode of tissue failure: The sections which were taken of the split radishes showed 

broken cells therefore, it appears the radish splits are propagated by cell wall breakage as 

opposed to tissue separation along the middle lamella (Figure 3-5, Figure 3-6, Figure 3-7 

and Figure 3-8). 

Figure 3-5 Microscope image, x40 magnification of split surface of Raphanus sativus 

‘Rudi’ hypocotyls. Sections are 10 µM thick and stained with 10 % w/v toluidine blue. 

Broken cells can be observed suggesting the mode of failure was plasmoptysis 
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Figure 3-6 Microscope image, x40 magnification of split surface of Raphanus sativus 

‘Rudi’ hypocotyls. Sections are 10 µM thick and stained with 10 % w/v toluidine blue. 

Broken cells can be observed suggesting the mode of failure was plasmoptysis 
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Figure 3-7 Microscope image, x100 magnification of split surface of Raphanus sativus 

‘Topsi’ hypocotyl. Section is 10 µM thick and stained with 10 % w/v toluidine blue. Broken 

cells can be observed suggesting the mode of failure was plasmoptysis 
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Figure 3-8 Microscope image, x400 magnification of split surface of radish, Raphanus 

sativus ‘Rudi’ hypocotyl. Section is 10 µM thick and stained with 1% w/v toluidine blue. 

Broken cells can be observed suggesting the mode of failure was plasmoptysis 

 

Periderm thickness: After 10 days of storage there was no significant difference 

(P=0.674) in the mean thickness of the periderm between cultivars (Figure 3-9).  
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Figure 3-9 The mean periderm thickness of radish of different cultivars. For ‘Topsi’: n=10, 

for ‘Rudi’: n=12, for ‘Celesta’: n=6. Bars represent ± the standard error of the mean for 

each cultivar, P=0.674 

 

In general, it was observed the thickness of the periderm tended (P=0.045) to be greater 

for the split radishes than the non-split radishes of the ‘Topsi’ and ‘Rudi’ cultivars (Figure 

3-10), there were not enough split radishes of the cultivar ‘Celesta’ to measure. However, 

despite an overall trend for a greater periderm thickness for split radishes, significant 

differences between the periderm of split and non-split radish was only observed for the 

cultivar ‘Rudi’ (Figure 3-10).  
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Figure 3-10 The average periderm thickness for fresh split and non-split radish of different 

cultivars. For non-split ‘Topsi’: n=6, for non-split ‘Rudi’: n=6, for non-split ‘Celesta’: n=6. 

For split ‘Topsi’: n= 4 for split ‘Rudi’ n=6. Max. rep. LSD = 2.193, min. rep. LSD = 

2.901.There were not enough split ‘Celesta’ radishes for analysis. Bars represent ±the 

standard error of the mean. P=0.045.1Denotes difference at the 5% level, where letters 

are shared no significant difference is present between values.  

 

Water content after storage: After storage ‘Celesta’ had the greatest wet weight, water 

content and dry biomass with an average of 95.41%, 14.30 g and 0.66 g respectively 

(Table 3-9).  
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Table 3-9 Effects of cultivar on radish size and composition after 10 days of cold storage 

(n=8). 

Cultivar Water content (%) Wet weight (g) Dry weight (g) 

‘Topsi’ 95.33b 11.46a 0.51a 

‘Celesta’ 95.41b 14.30b 0.66b 

‘Rudi’ 95.10a1 11.61a 0.56a 

P 0.006 <0.001 <0.001 

LSD (5%) 0.174 0.916 0.047 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values.  

 

There was no significant difference (P=0.49) between the hypocotyl water content of the 

split and non-split radishes of the cultivar ‘Rudi’ (Figure 3-11). There were not enough split 

radishes of the cultivars ‘Celesta’ or ‘Topsi’ to compare the hypocotyl water content of the 

split and non- split radishes.  
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Figure 3-11 Mean water content of split and non-split Rudi hypocotyls after 10 days of 

storage. For non-split n=17 for split n=18. Bars represent the standard error for each 

group P=0.49.  
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3.2.4 Experiment 3.1: Discussion 

Splits: The first null hypothesis was rejected as choice of cultivar was shown to have a 

significant effect on splitting susceptibility. A significant difference in splitting between 

cultivars was observed. Raphanus sativus ‘Rudi’ was found to have significantly more 

(P=0.001) splits at harvest than ‘Celesta’ or ‘Topsi’.  

At harvest the cultivar ‘Celesta’ had the lowest number of splits (not statistically different 

from ‘Topsi’), the greatest yield in terms of trimmed weight, the greatest number of leaves, 

the greatest leaf mass (not statistically different from ‘Topsi’), the greatest hypocotyl 

length and the greatest hypocotyl width.  

Split healing: Many of the splits observed during this experiment had healed leaving a 

red scar as a remnant of the wound. When discussing splitting in kohlrabi Lippert (1999) 

stated how splitting in vegetative organs, such as roots, stems and tubers, is different to 

splitting in fruit because the cracks in vegetative organs grow wider as growth continues. 

Lippert (1999) concluded the splits in fruits such as apples, cherries and tomato are 

related to rapid expansion rates of the parenchymatous tissue which can occur during a 

wet period which follows a dry period.  Lippert (1999) said the fractures in vegetative 

organs such as kohlrabi, carrots and swede differ from these and enlarge due to 

continuing growth processes. The paper concluded that genotypic differences in cracking 

susceptibility are due to expansion rates of the involved plant organ. The healed cracks in 

this experiment would appear to dispute the conclusions of Lippert (1999) about 

vegetative organs and would suggest splitting in radish is more complicated than being 

simply as a result of growth.  

VWC: As the VWC of the compost in the pots was similar for all cultivars the differences 

observed in splitting susceptibility between cultivars were not likely to have been as a 

result of differences in available water content to the plants.  

Rate of growth: Based on the comparison of cracking rates in two cultivars of kohlrabi, 

Lippert (1999) stated that cracking in vegetative organs was due to rapid growth. Lippert 

(1999) found the rapidly growing cultivar ‘Express Forcer’ was twice more likely to crack 

than the slower growing cultivar ‘Noriko’ although no evidence was given to quantify the 
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differing growth rates. However, results from this experiment provide evidence to the 

contrary as ‘Celesta’ split the least (P=0.001) of the three cultivars examined but grew the 

most rapidly. At harvest ‘Celesta’ had significantly larger whole weight (P<0.001), trimmed 

weight (P<0.001), plant biomass (P<0.001), number of leaves (P<0.001) and length 

(P<0.001) and width of the hypocotyl (P=0.008). As seedling emergence was comparable 

for all cultivars and all the cultivars were grown for the same amount of time ‘Celesta’ 

must have grown the most rapidly to reach this larger size. The larger leaf area of 

‘Celesta’ would have resulted in a greater area for photosynthesis; this in turn may explain 

the greater size, wet weight and dry biomass of the ‘Celesta’ hypocotyls, as leaf area is 

responsible for dry matter production. 

Despite ‘Celesta’ growing the most rapidly and splitting the least, the second null 

hypothesis was supported as no correlation was found between rate of growth and 

splitting in this experiment where all cultivars were harvested by date as opposed to size 

of the radish hypocotyl. ‘Celesta’ grew faster than ‘Topsi’ yet there were no significant 

differences in splitting between ‘Celesta’ and ‘Topsi’. There were no significant differences 

in the size at harvest of ‘Topsi’ and ‘Rudi’ but ‘Rudi’ split significantly more than ‘Topsi’.  

These results suggest there could be a cultivar relationship between the rate of growth of 

a cultivar and how much that cultivar splits during growth suggesting that individual 

cultivars differ in their ability for cell expansion as opposed to cell rupture. If there was not 

a relationship between cultivar, growth rate and splitting it would be expected the cultivars 

which grew at the same rate would split at the same rate. These results are in 

contradiction to the conclusions drawn by Latimer (1991) who postulated the low splitting 

rate observed in radishes which were exposed to mechanical leaf damage was a result of 

slow growth and also in contradiction to the results of Dowker and Jackson (1977) who 

found a slower growth rate in carrot was correlated with higher levels of splitting.  Results 

from this cultivar experiment demonstrate overall growth rate is not an explanation for the 

differences in splitting between cultivars.  

Cultivars ‘Topsi’ and ‘Rudi’ were significantly smaller than ‘Celesta’ at harvest.  Under 

commercial conditions ‘Topsi’ and ‘Rudi’ would have been grown for longer than ‘Celesta’, 
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as commercially grown radishes are harvested by size rather than a period of growing 

time. This would have given the ‘Topsi’ and ‘Rudi’ cultivar radishes a longer duration to 

develop splits. At harvest in this experiment there were no significant differences in growth 

rate for any of the factors measured for ‘Topsi’ and ‘Rudi’ but significant differences were 

observed in the number of growth splits. It is not known if the differences in the number of 

split radishes would have remained if the radishes had been grown to the same size as 

‘Celesta’ before harvesting. It is not known if splitting occurs evenly throughout growth for 

all cultivars or if particular cultivars are more susceptible to splitting at particular points 

during growth. Had the radishes been harvested by size, the resultant differences in 

splitting may have been different. Further research is required to examine this effect. 

Roundness: The third null hypothesis was supported as there was no significant (P=0.21) 

difference between cultivars in hypocotyl roundness, as calculated by ratio between 

hypocotyl length and width, suggesting there is no relationship between roundness 

measured as such and growth splitting. Emmons and Scott (1998) stated shape is an 

important factor in splitting susceptibility and the work by Considine and Brown (1981) 

suggests deviations from a globe shape result in increased differences in stress within 

tissue. Differences in the roundness of cultivars may have been missed if some radish 

cultivars were flatter or more irregularly shaped in general but had a similar maximum 

width and length ratio.  

Mode of tissue failure: The mode of failure within the radish tissue which was sectioned 

was shown to be plasmoptysis which is similar to other vegetables such as kohlrabi 

(Lippert 1999) and carrot (McGarry 1993). It is likely this is due to the limited amount of 

intercellular space within the radish hypocotyl tissue, similar to other vegetable tissue. 

Therefore, the cell wall strength and composition and the pressure exerted within cells are 

likely to be important factors in determining splitting susceptibility.  

Periderm thickness: An explanation for the differences in splitting susceptibility between 

cultivars is periderm thickness. Research into splitting in carrots has shown that removing 

the periderm makes them more resistant to splitting (Hartz et al. 2005). Similarly a thinner 

periderm in radishes may be more resistant to splitting possibly as a result of greater 
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elasticity. The fourth null hypothesis was supported as no significant difference was found 

in periderm thickness between cultivars although the periderm thickness followed the 

pattern of splitting susceptibility with ‘Rudi’, which split the most readily, having the 

thickest periderm and ‘Celesta’, which split the least, having the thinnest periderm. These 

results support the hypothesis that periderm thickness has an effect on splitting 

susceptibility. If periderm thickness is under genetic control then splitting resistance in 

radishes has the potential to be improved through breeding.  

Periderm thickness was not significantly different between cultivars (P=0.674) but the 

thickness of the radish periderm (P=0.045) was greater for the split radishes than the non-

split radishes, it should be noted the only cultivar which had significant differences in 

periderm thickness was ‘Rudi’. There were not enough split radishes from the cultivar 

‘Celesta’ to measure and although the mean periderm thickness of the ‘Topsi’ radishes 

was thicker for the split radishes there was no significant difference observed. These 

results reject the fifth null hypothesis. However, significant differences between the 

periderm of split and non-split radish were only observed for the cultivar ‘Rudi’. These 

results are in accordance with research into splitting in carrots where it has been shown 

that removing the periderm makes them more resistant to splitting. In contradiction to the 

results from this investigation, tomato cuticle and epidermal (epicarp) thickness has been 

shown to be negatively correlated with splitting susceptibility (Emmons 1998), as has 

cherry cuticle thickness (Demirsoy & Demirsoy 2004). In both cases a thicker skin was 

associated with a greater resistance to splitting. The differences in the results from this 

investigation, where a thinner skin was associated with a greater resistance to splitting, 

and the research on splitting in fruit may be due to the differences in cellular density within 

tissue between fruit and vegetables. Fruit tissue tends to have a greater proportion of 

intercellular space than vegetable tissue. Possibly the cells within fruit are able to squash 

together more when they are under stress and a rigid thick skin makes the fruit more 

resistant to splitting by causing the cells squash more before it ruptures. In vegetables 

there is less intercellular space for the cells to expand into when they are under pressure 
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so a thinner more elastic skin may absorb some of the pressure and allow cells to expand 

before rupturnig.  

Hypocotyl water content: The results from this experiment showed ‘Rudi’, the cultivar 

which split significantly more than the other two cultivars, had a significantly lower 

hypocotyl water content thus rejecting the sixth null hypothesis. These results could 

suggest radishes with high hypocotyl water content are less likely to split, or another 

explanation for the lower mean water content of the cultivar ‘Rudi’ may be more rapid 

water loss from the radishes with split surfaces than through the periderm of the non-split 

radishes. If this was the case a difference in water content between split and non-split 

‘Rudi’ would be expected which was not observed. However, it should be noted the 

residual degree of freedom for the analysis of hypocotyl water content was just 12; usually 

a value of 15 or greater is required for robust experimental work. This was due to a low 

number of replicates (n=17 non-split, n=18 split) and the trend was observed with mean 

water content for split radishes at 95.05% was slightly, but not significantly smaller than 

the non-split radishes at 95.13%.  

If radishes which split less have a higher water content this may be as a result of greater 

tissue elasticity. Herppich et al. (2004) found radish tissue elasticity was positively 

correlated with water potential. Hypocotyls with increased tissue elasticity may be 

expected to split less. This theory requires further investigation to see if the moisture 

content crudely calculated by comparing the wet weight and the dry biomass of the 

hypocotyl is correlated to the water potential which would give a more accurate measure 

of the water status of the radish hypocotyl.  
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3.3 Experiments 3.2-3.3: Determining the growth stages of radishes  

3.3.1 Experiments 3.2-3.3: Introduction  

Two experiments (Experiment 3.2 and 3.3) were conducted to define the growth stages of 

radishes. The first experiment used the cultivar ‘Rudi’ to build on the Biologische 

Bundesanstalt, Bundessortenamt und CHemische Industrie (BBHC) identification key for 

root and stem vegetables (Table 1-1) and gave timings for growth rate under glasshouse 

conditions to be used for future experiments. The second experiment investigated if these 

growth stages were common to different cultivars of radishes and correlated a range of 

physiological factors with splitting rates for the different cultivars.   
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3.3.2 Experiment 3.2: Determining the growth stages of Raphanus sativus 

‘Rudi’ 

3.3.2.1 Experiment 3.2: Introduction 

Standardised codes which describe physiological growth stages enable accurate scientific 

descriptions and comparisons to be made between plants at specific ages. The general 

growth stages of radish are included in the BBHC-identification keys under root and stem 

vegetables (Table 1-1) (Meier 2001). However, the growth stages specific to radish have 

not been individually described. The scale lacks plant specific descriptions particularly 

during the development of the harvestable vegetative parts and gives no indication of the 

timings for each of the stages. Timings are essential when planning experiments, 

therefore the growth stages and growth rate of Raphanus sativus ‘Rudi’ grown under 

glasshouse conditions will be defined in this chapter.  

Aim: To determine the specific growth stages for Raphanus sativus ‘Rudi’. 
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3.3.2.2 Experiment 3.2: Materials and Methods  

In this experiment two methods of growing radishes were used. Radishes were grown in 

rhizotrons to allow study of the root length, hypocotyl diameter and number of leave and 

radishes were grown in trays to allow study of hypocotyl diameter and number of leaves 

under conditions which were more similar to those used in the majority of other 

experiments in this thesis.  

Twenty nine radishes were planted over three days: 17th April 2013 (11 radishes in 

rhizotron), 29th April 2013 (8 radishes in rhizotron) and 1st May 2013 (10 radishes in seed 

tray). Nineteen Raphanus sativus ‘Rudi’) plants were grown under glasshouse conditions 

in 7.5 L rhizotrons measuring 50 x 300 x 500 mm (Figure 3-12) and 10 radish were sown 

in 1.75 L plant trays (G18B half sized seed trays, Garland Products Ltd., Kingswinford, 

UK). Both the trays and rhizotrons were filled with John Innes No. 2 compost (Keith 

Singletons Horticultural products, Cumbria, UK). The radishes in rhizotrons were watered 

regularly and the radishes in the plant trays were placed on capillary matting with irrigation 

tubing. The bench irrigation was delivered over three periods a day each with the duration 

of five minutes totalling 17 mm day-1.  
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Figure 3-12 Radish plants (Day 9) growing in a rhizotron allowing measurement of roots 

The glasshouse was set to 20/5°C day/night temperature and achieved a mean 

temperature of 18.2°C. The mean relative humidity was 57.9%.  

 

Hypocotyl diameter and leaf number were recorded regularly for all plants and the root 

length of the plants grown in rhizotrons was measured. Destructive samples were taken to 

enable free-hand cross-sections of the hypocotyl to be made. 
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3.3.2.3 Experiment 3.2: Results  

The proposed scale for the growth stages of radishes was derived from the Biologische 

Bundesanstalt, Bundessortenamt und CHemische Industrie (BBCH) Monograph for root 

and stem vegetables (Meier 2001) and uses three of the eight principle growth stages 

identified for root and stem vegetables. Commercially grown radishes are harvested prior 

to physiological maturity and this scale only includes the growth stages which are relevant 

to commercial growers. It should be noted that principal Growth Stages 1 and 4 occur 

simultaneously and progress concurrently. In the UK radishes are required by 

supermarkets to be between 18 and 32 mm in diameter giving a median size of 25 mm. 

This enables the median diameter for the hypocotyl during Growth Stage 4 to be 

calculated and has been included in the scale (Table 3-10). 

 

Table 3-10 Proposed growth stages for radishes during the commercial growing period 

including median hypocotyl diameters for principle Growth Stage 4 

Principal Growth Stage 0: Germination 

 00 Dry seed 

 01 Radicle emerged from seed 

 09 Emergence: cotyledons break through soil surface 

Principal Growth Stage 1: Leaf development 

 10 Cotyledons completely unfolded; true leaf initial visible 

 11 1st true leaf or pair of true leaves unfolded 

 12 2nd true leaf or pair of true leaves unfolded 

 1. Stages continue until… 

 19 9 or more true leaves or pairs of true leaves unfolded 

Principal Growth Stage 4: Development of harvestable vegetative plant parts 

 41 The exodermis and outer cortex rupture and slough away exposing the periderm. 

The hypocotyl begins to expand (~ 2.5 mm) 

 42 20 % of the final hypocotyl diameter reached (5 mm) 
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 43 30 % of the final hypocotyl diameter reached (7.5 mm) 

 44 40 % of the final hypocotyl diameter reached (10 mm) 

 45 50 % of the final hypocotyl diameter reached (12.5 mm) 

 46 60 % of the final hypocotyl diameter reached (15 mm) 

 47 70 % of the final hypocotyl diameter reached (17.5 mm) 

 48 80 % of the final hypocotyl diameter reached (20 mm) 

 49 Expansion complete; typical form and size of hypocotyl reached (25 mm) 

  

The BBCH growth stages adequately described growth of radish until Principal Growth 

Stage 4. At this stage in this investigation, the exodermis and outer cortex were observed 

to rupture and slough away exposing the periderm. The hypocotyl then began to expand 

(> 2.5 mm).  The description of the BBCH Growth Stage 41 (Roots beginning to expand 

(diameter > 5 mm) was found to be inadequate therefore this description has been altered 

in the proposed growth standard for a number or reasons. Firstly, the portion of the radish 

which is sold commercially is predominantly a swollen hypocotyl not a root. Secondly, as 

radishes are harvested when they are between 18 and 32 mm in diameter, less than 20% 

of this would be the range 3.6 mm to 6.4 mm. Therefore, they are not exclusively > 5 mm 

in diameter when they are less than 20% of the harvest size. Finally the BBCH description 

does not describe the change in physiology which occurs at this point, namely how the 

periderm becomes the outer layer of the radish. This growth stage is of significance to 

radish splitting because splitting is observed as ruptures of the periderm. The periderm is 

only fully formed and exposed after Growth Stage 41 (Table 3-11) therefore all splitting 

must happen after this point. 
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Table 3-11 Example pictures of whole radish and free-hand cross-sections of radishes at 

key growth stages. Principle Growth Stages 1 and 4 occur simultaneously 

Day Growth Stage Whole 

plant 

Hypocotyl 

cross section 

2 01: Radicle emerged from seed 

 

 

5 10: Cotyledons completely unfolded; true leaf initial 

visible (diameter 1.2 mm) 

 

 

13 11: 1st true leaf or pair of true leaves unfolded 

(diameter 1.9 mm) 

 

 

15 11/41 (start): 1st true leaf or pair of true leaves 

unfolded / The exodermis and outer cortex rupture 

and slough away exposing the periderm. The 

hypocotyl begins to expand (diameter 2.4 mm) 
 

 

17 12/41 (end): 2nd true leaf or pair of true leaves 

unfolded / The exodermis and outer cortex rupture 

and slough away exposing the periderm. The 

hypocotyl begins to expand (diameter 3.5 mm) 

 

 

 

Growth Stage 41 can be identified non-destructively during growth as the radish hypocotyl 

is visible above the surface of the growing medium (Figure 3-13). 
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Figure 3-13 Growth Stage 41 can be identified non-destructively as in this photograph. 

Growth stage 41 is when the exodermis and outer cortex rupture and slough away 

exposing the periderm and the hypocotyl begins to expand more rapidly  
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3.3.2.4 Experiment 3.2: Discussion  

In this investigation a clear pattern of growth for Raphanus sativus ‘Rudi’ was observed 

and described enabling a key to be developed for the growth stages of this cultivar. 

Timings for the growth stages of ‘Rudi’ were also established although further work is 

required to determine how available water content and other environmental factors affect 

growth rate and how variable these timings can be for different cultivars. It also needs to 

be established if all cultivars of radish follow the same pattern of growth and if they all 

pass through Growth Stage 41.  

It should be noted the proposed key only represents the growth stages which have 

commercial relevance. Rates of growth had not plateaued at harvest and there had been 

no flowering showing radishes are not physiologically mature at commercial harvest.  

It was concluded, radish phenology is well represented by the BBCH root and stem scale 

with the exception of Principle Growth Stage 4. The proposed scale with the suggested 

modifications is essential for research into splitting as Growth Stage 41 is an important 

phenological stage prior to which no splitting can occur. Further investigations will 

investigate if this growth stage is common to other cultivars of radish.  
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3.3.3 Experiment 3.3: Determining the growth stages and growth rate of five 

cultivars of radishes  

3.3.3.1 Experiment 3.3: Introduction  

In Experiment 3.1 all plants were grown for the same number of days which made it 

impossible to determine if growth rate was correlated with splitting as some radishes were 

harvested at an earlier growth stage than others. In this experiment plants were harvested 

when the radishes reached Growth Stage 49 i.e. commercial harvest size, rather than on 

a particular day to enable a comparison between growth rate and splitting.  

Growth stages were established for the cultivar ‘Rudi’ in Experiment 3.2. This experiment 

aims to establish if these are valid for other radish cultivars of by growing a range of 

cultivars. Key growth stages were also recorded for each cultivar to allow comparison. 

Water content was measured in Experiment 3.1 and found to be negatively correlated with 

splitting. However, due to the water content only being measured after 10 days of storage 

it was unclear if the differences were due to more rapid water loss from radishes with split 

surfaces. In this experiment the hypocotyl relative water content (RWC) was measured at 

harvest.  

Aims: To determine if: 

 The growth stages proposed in Experiment 3.2 are correct for other radish 

cultivars 

 There is any difference in rates of splitting between cultivars 

 The growth rate of different cultivars is correlated with growth splitting 

 If hypocotyl roundness is correlated with splitting  

 If radish hypocotyl water content at harvest is correlated with growth splitting 

Null hypotheses:  

1. There will be no difference in growth rate between cultivars 

2. There will be no correlation between growth rate and splitting susceptibility of 

different radish cultivars  

3.  There will be no difference in susceptibility to splitting between cultivars  

4. There will be no difference in roundness between cultivars  
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5. There will be no correlation between roundness and splitting susceptibility between 

cultivars  

6. There will be no difference in total plant weight or hypocotyl weight between 

cultivars  

7. There will be no difference in the number of leaves between cultivars  

8. There will be no difference in hypocotyl RWC between cultivars  

9. There will be no correlation between splitting and hypocotyl RWC 
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3.3.3.2 Experiment 3.3: Materials and Methods  

Cultivar selection: This experiment investigated the splitting susceptibility of five different 

radish cultivars. The five cultivars which were chosen for this experiment were, ‘Rudi’, 

‘Celesta’, ‘Rougette’, ‘Kaspar’ and ‘Saxa 2’. The cultivars ‘Celesta’ and ‘Rudi’ were used in 

the previous cultivar experiment and split the least and most respectively, these varieties 

were also used in this experiment to ensure some differences in splitting were observed. 

The varieties ‘Saxa 2’ and ‘Kaspar’ were included as cultivars with different growth rates. 

‘Saxa 2’ is described as cropping over a long period which may mean it has an 

inconsistent growth rate and ‘Kaspar’ is described as being ready to harvest after just 

three weeks which suggests a relatively rapid growth rate. The cultivar ‘Rougette’ was 

chosen because it is described as having a thick skin and results from the previous 

cultivar experiment suggest this may make it less resistant to splitting.  

Replication: Each tray contained plants of all 5 cultivars. 10 plants were grown in each 

tray, two plants of each cultivar, one in each row, randomly arranged. Each pot was a 

block and the cultivars were randomised within the pot (block). Randomisation was 

generated by GenStat for Windows 15th Edition (VSN International 2011). Each plant was 

an experimental unit. There were 15 trays in total, containing 150 plants, 30 of each 

cultivar. Cultivars were identified with coloured stickers on the side of the pot (Figure 

3-14).  
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Figure 3-14 Plant tray containing 10 plants of five different cultivars. There are two plants 

of each cultivar per tray, one in each row in the tray. The cultivars are identified by 

different coloured electrical tape on the rim of the tray.  

 

Growth summary: Radish seeds were planted on 12.11.2013 (Day 1). Seedlings were 

thinned on Day 7 (18.11.2013). Each cultivar was harvested when mean diameter was 

greater than 25 mm. ‘Rudi’, ‘Kaspar’ and ‘Saxa 2’ were harvested on Day 28 (9.12.2013), 

‘Celesta’ was harvested on Day 29 (10.12.2013) and ‘Rougette’ was harvested on Day 31 

(12.12.2013).  

Glasshouse conditions: The glasshouse was set to 20/5°C day/night temperature and 

achieved a mean temperature of 19.0°C with a range from 2.9°C to 33.0°C. The mean 

relative humidity was 63.7% with a range from 21.8% to 93.0%.  

Growing conditions: Radishes were grown as described in general materials and 

methods.  

Measuring substrate VWC: After the seedlings had been thinned on Day 7, the VWC of 

each pot was measured twice a week on Tuesday and Thursday. 
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Measurements during growth: Growth stage was recorded by measuring hypocotyl 

width and leaf number three times a week on Monday, Wednesday and Friday. The timing 

of Growth Stage 41 was also recorded.  

Harvest: At harvest the radish hypocotyls were washed in tap water at ambient 

temperature and examined for splits. The mean temperature in the glasshouse on Day 28 

during the harvest of ‘Rudi’, ‘Kaspar’ and ‘Saxa 2’ was 23.5°C, on Day 29 during the 

harvest of ‘Celesta’ it was 23.1°C and on Day 31 during the harvest of ‘Rougette’ the 

mean temperature was 22.4°C. To determine the rate of growth of the leaves and 

hypocotyl and their size at harvest, the radishes were weighed then defoliated, the white 

roots removed and the remaining hypocotyl was reweighed. The number of leaves on 

each plant was counted. The diameter and length of the hypocotyl to the first root hair was 

measured to enable a rough calculation of how spherical the radishes were to be made. 

This was done by dividing length by width, the closer the result was to 1 the more 

spherical the radish was considered to be. 

RWC: Fifteen plants of each cultivar, one plant from each block, was weighed, saturated 

in deionised water and dried to calculate the RWC at harvest (see general materials and 

methods for more detail).  

Statistical analysis: All data was analysed using GenStat for Windows 15th Edition (VSN 

International 2011). 

Measurements of size during growth and at harvest, growth splits and hypocotyl RWC 

were all analysed using ANOVA. When a P value of less than 0.05 was observed a Tukey 

test was used to determine which results were different from each other.  

Measurements of growth rate, number of growth splits, size and roundness at harvest 

were analysed using cultivar and block as factors (Table 3-12). Both radishes for each 

cultivar in each tray were measured and used for analysis.  
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Table 3-12 Skeleton ANOVA for measurements taken during growth and at harvest 

Source of variation df 

Block 14 

Cultivar 4 

Residual 131 

Total 149 

 

 

RWC at harvest of one radish of each cultivar per tray was measured and analysed by 

ANOVA using block and cultivar as factors (Table 3-13). 

 

Table 3-13 Skeleton ANOVA for hypocotyl RWC at harvest 

Source of variation df 

Block 14 

Cultivar 4 

Residual 56 

Total 76 

 

 

The mean number of growth splits was correlated with RWC using general linear 

regression to perform the statistical analysis (Table 3-14). 

 

Table 3-14 Summary of analysis for correlation between RWC and growth splits  

Source df 

Regression 1 

Residual 3 

Total 4 
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3.3.3.3 Experiment 3.3: Results  

VWC: The mean VWC was 64.1% ranging from a maximum of 67.5% to a minimum of 

62.8 % (Figure 3-15).  

 

Figure 3-15 Mean VWC of compost in trays during growth (n=15)  

 

Measurements during growth: There was no significant difference in the mean number 

of days it took for the different cultivars to form the first leaf bud (P=0.207) (Table 3-15), 

the mean was 7.9 days, or reach Growth Stage 41 (P=0.270) (Table 3-16) the mean was 

14.6 days. There was no correlation between growth splits and days to first leaf bud 

(P=0.169), days to Growth Stage 41 (P=0.665) or days to harvest (P=0.615).  
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Table 3-15 Mean number of days for each cultivar to reach first leaf bud  

Cultivar Days to first leaf bud 

Rudi 7.9 

Celesta 8.1 

Rougette 7.9 

Kaspar 7.9 

Saxa 2 7.6 

P 0.207 

LSD (5%) 0.395 

 

Table 3-16 Mean number of days for each cultivar to reach Growth Stage 41 

Cultivar Days to Growth Stage 41 

Rudi 14.4 

Celesta 14.6 

Rougette 14.9 

Kaspar 14.5 

Saxa 2 14.5 

P 0.270 

LSD (5%) 0.487 

 

The pattern of hypocotyl expansion was very similar for all cultivars, expansion began 

slowly with an increase shortly after Day 15 (Figure 3-16). The rate of expansion up to 

Day 15, which was roughly the time of Growth Stage 41 was more variable between 

cultivars (Figure 3-17) than after Day 15 (roughly Growth Stage 41) when expansion rates 

were almost identical for all cultivars (Figure 3-18).  
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Figure 3-16 Hypocotyl expansion rate for different cultivars (n=30) 

 

 

Figure 3-17 Hypocotyl expansion rate for 'Rudi' one of the fastest growing cultivars and 

'Rougette' the slowest growing cultivar up to Day 15 (roughly Growth Stage 41). Only two 

cultivars are shown for clarity (n=30) 
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Figure 3-18 Hypocotyl expansion rate for 'Rudi' one of the fastest growing cultivars and 

'Rougette' the slowest growing cultivar after Day 15 (roughly Growth Stage 41). Only two 

cultivars are shown for clarity (n=30) 

 

The number of leaves increased at a similar rate and followed a similar pattern for all 

cultivars (Figure 3-19). 
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Figure 3-19 Mean number of leaves during growth for five different cultivars of radishes 

(n=30) 

Growth splits: A significant difference in growth splitting was observed (P=0.031). The 

cultivar ‘Celesta’ split the least but not significantly less than ‘Rudi’, ‘Rougette’ or ‘Saxa 2’. 

The cultivar ‘Kaspar’ split the most but not significantly more than ‘Rudi’, ‘Rougette’ or 

‘Saxa 2’.  
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Table 3-17 Differences in the number of growth splits for different cultivars of radishes 

(n=30) 

Cultivar Split (%) 

Rudi 53.3ab1 

Celesta 20.0a 

Rougette 46.7ab 

Kaspar 56.7b 

Saxa 2 53.3ab 

P 0.031 

LSD (5%) 25.25 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values.  

 

Measurements at harvest: Plants in this experiment were harvested according to 

hypocotyl width rather than on a specific day, as a result there was no significant 

difference in hypocotyl width at harvest (P=0.951). There was a significant difference in 

hypocotyl length at harvest between the cultivars (P<0.001). ‘Rougette’ was significantly 

shorter than all the other cultivars. ‘Celesta’ was the longest cultivar but not significantly 

longer than ‘Rudi’, ‘Kaspar’ or ‘Saxa 2’ (Table 3-18). Significant differences (P<0.001) in 

roundness, as measured by dividing hypocotyl length by width, were observed. ‘Rougette’ 

had a roundness number significantly smaller than ‘Rudi’, ‘Celesta’ and ‘Saxa 2’ indicating 

the hypocotyl was significantly shorter. It also had the closest score to 1 indicating it had 

the most spherical hypocotyl. The cultivar ‘Kaspar’ was not significantly different in 

roundness to any of the other cultivars. There was no correlation between roundness and 

growth splits (P=0.53), length and growth splits (P=0.44) or width and growth splits 

(P=0.72). 
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Table 3-18 Mean hypocotyl length (L), width (W) and roundness for different cultivars of 

radish at harvest (radishes were harvested according to size when >50% of each cultivar 

was >25mm in diameter) (n=30) 

Cultivar Length (mm) Width (mm) Roundness (L/W) 

Rudi 29.67bc1 26.23 1.210b 

Celesta 34.34c 25.63 1.396b 

Rougette 23.94a 26.72 0.908a 

Kaspar 29.07b 25.86 1.161ab 

Saxa 2 32.70bc 25.49 1.365b 

P <0.001 0.951 <0.001 

LSD (5%) 3.488 3.312 0.1859 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values.    

 

No significant differences were observed for total weight (P=0.954) or hypocotyl weight 

(P=0.857) at harvest. There were slight but significantly (P=0.002) different numbers of 

leaves on plants of different cultivars at harvest. ‘Rudi’ had the fewest leaves, although not 

significantly fewer than ‘Celesta’ or ‘Saxa 2’.’Kaspar’ had the greatest number of leaves 

but not significantly greater than ‘Rougette’ (Table 3-19). 
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Table 3-19 Mean number of leaves, total plant weight and hypocotyl weight at harvest 

(cultivars were harvested individually when >50% of each cultivar was >25mm in 

diameter) for different radish cultivars (n=30) 

Cultivar Number of leaves Total weight (g) Hypocotyl weight (g) 

Rudi 4.767a1 19.30 12.39 

Celesta 5.367ab 20.64 12.97 

Rougette 5.500bc 19.47 12.40 

Kaspar 5.567c 19.06 11.03 

Saxa 2 4.833ab 19.61 12.25 

P 0.002 0.954 0.857 

LSD (5%) 0.5078 4.169 3.473 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values.   

 

RWC: Significant differences were observed in the RWC for different cultivars (Table 

3-20). ‘Rougette’ had the lowest RWC although it was not significantly different from the 

RWC of ‘Celesta’, ‘Rudi’ or ‘Saxa 2’. ‘Kaspar’ had the greatest RWC but not significantly 

different from ‘Saxa 2’ or ‘Rudi’. 
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Table 3-20 Hypocotyl RWC at harvest for different radish cultivars. Cultivars were 

harvested individually when >50% of each cultivar was >25mm in diameter (n=30) 

Cultivar RWC (%) 

Rudi 87.50ab1 

Celesta 84.79a 

Rougette 85.57a 

Kaspar 89.49b 

Saxa 2 88.22ab 

P 0.007 

LSD (5%) 2.731 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values.   

A non-significant linear trend was observed (P=0.082) positively correlating the mean 

RWC for each cultivar with the mean number of growth splits for each cultivar (Figure 

3-20).  The quadratic polynomial relationship between RWC and number of growth splits 

was not significant (P=0.105).  
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Figure 3-20 Non-significant correlation trend (P=0.082) between radish growth splits and 

hypocotyl RWC at harvest. Cultivars were harvested individually when >50% of each 

cultivar was >25mm in diameter. Standard error = 0.0965 (n = 15)  
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3.3.3.4 Experiment 3.3: Discussion 

Rate of growth: The first null hypothesis was partially rejected because the rate of 

hypocotyl expansion varied between cultivars prior to Day 15, which is when Growth 

Stage 41 occurred in this experiment. After this however, the growth rates were very 

similar for the hypocotyls of all cultivars. Therefore, the rate of expansion prior to Day 15, 

or Growth Stage 41, appears to determine time to harvest and could be used by growers 

to predict harvest date for different cultivars.  

The second null hypothesis was supported as no correlation was found between rate of 

growth and splitting. In this experiment all cultivars were harvested by hypocotyl width, as 

they would be commercially, rather than on a particular date as in Experiment 3.1. These 

results are in contradiction to the conclusions drawn by Latimer (1991) who postulated the 

low splitting rate observed in radishes which were exposed to mechanical leaf damage 

was a result of slow growth and also in contradiction to the results of Dowker and Jackson 

(1977) who found a slower growth rate in carrot was correlated with higher levels of 

splitting.  Results from this cultivar experiment demonstrate overall growth rate is not an 

explanation for the differences in splitting between cultivars in radishes.  

Effect of cultivars on splitting: A significant difference in splitting between cultivars was 

observed (P=0.031) and the third null hypothesis was rejected. The cultivar ‘Celesta’ split 

the least but not significantly less than ‘Rudi’, ‘Rougette’ or ‘Saxa 2’. The cultivar ‘Kaspar’ 

split the most but not significantly more than ‘Rudi’, ‘Rougette’ or ‘Saxa 2’.  

As was found in Experiment 3.1, the cultivar ‘Celesta’ had the lowest number of splits and 

the greatest yield in terms of total and hypocotyl weight.  

Roundness: The fourth null hypothesis was rejected as significant differences in 

hypocotyl roundness as calculated by dividing the length of the hypocotyl by the width 

were observed between cultivars. However, the fifth null hypothesis was supported as 

mean cultivar roundness was not found to be correlated with mean cultivar growth splits. 

This contradicts the work of Emmons and Scott (1998) who stated shape is an important 

factor in splitting susceptibility and the work by Considine and Brown (1981) which 

suggests deviations from a globe shape result in increased differences in stress within 
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tissue. However, in this experiment it appears relative roundness is not the main factor in 

determining growth splitting and other factors have a greater influence.  

RWC: The eighth null hypothesis was rejected as significant differences were observed in 

the RWC for different cultivars. The ninth null hypothesis was also rejected as a non-

significant trend (P=0.082) with a strong linear relationship (R2=0.69) was observed 

positively correlating the mean RWC for each cultivar with the mean number of growth 

splits for each cultivar. These results suggest radishes with a higher RWC are more likely 

to split which contradicts the findings from the previous cultivar experiment where growth 

splitting was found to be negatively correlated with WC. In this experiment RWC was 

measured on the day of harvest whereas in Experiment 3.1 the WC was measured after 

10 days of storage. Potentially, radish hypocotyls in Experiment 3.1 lost water more 

rapidly from the split surfaces than through the non-split periderm during storage and 

resulted in them having a lower WC. A high RWC being correlated with splitting 

susceptibility is in accordance with work carried out on carrots and potatoes where 

increased water potential and turgor have been shown to be related to increases in 

splitting (Konstankiewicz & Zdunek 2001; McGarry 1993; McGarry 1995). In these 

experiments it was concluded that an increase in tissue turgor pressure results in an 

increase in the tension of the cell walls, this may also be true for radishes although further 

work is required to investigate this. 
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3.3.4 Experiments 3.2-3.3: Conclusion 

In conclusion, Experiment 3.2 successfully established the growth stages for Raphanus 

sativus ‘Rudi’ and Experiment 3.3 showed these were applicable to a range of other 

cultivars of radishes. This result suggests the proposed growth stages are likely to be 

applicable to radishes generally.  

Both experiments gave an indication of the growth rates of radishes under glasshouse 

conditions. These results will be used in the planning of future experiments.  

Experiment 3.3 investigated a number of physiological traits with splitting. A non-

significant trend was observed linking a high RWC of the hypocotyl with splitting. This will 

be investigated further in future experiments.  
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3.4 Experiment 3.4: Analysis of commercial QA radish split data 

3.4.1 Experiment 3.4: Introduction 

Growth and harvest splitting is likely to be determined by both the physiological 

predisposition to splitting and on the environmental conditions which the radish hypocotyl 

is exposed to. These are not separate factors and environment will affect the way the 

radish grows and therefore its physiology. Rainfall, relative humidity and temperature 

during growth are likely to be important factors in determining growth splitting as they may 

affect the available water content of the soil, transpiration rates of the radish plants, rate of 

growth and turgor pressure within the hypocotyls. Temperature at harvest and relative 

humidity at harvest may also affect the amount of harvest splitting which is observed.  

Radishes are harvested, washed, trimmed, placed into Dolavs (large storage bins) and 

quality assessed at ambient temperature and are not kept under managed humidity 

conditions prior to washing.  Hence, by correlating commercial quality assessment data 

throughout the radish season with weather data during growth and at harvest it is possible 

to study the interaction between rainfall, temperature and relative humidity with splitting.  

Weather conditions during growth may affect splitting susceptibility by changing turgor 

pressure within the radish hypocotyl. High turgor pressure has been shown to be related 

to increased splitting susceptibility in other crops (McGarry 1993; McGarry 1995). The 

theory is that less force is required to rupture cells which are already under stress. Turgor 

pressure could be increased through large amounts of rainfall during growth which may 

increase the hypocotyl water content or through high relative humidity during growth 

decreasing rates of evapotranspiration. Low temperature may also increase turgor 

pressure within the hypocotyl and increase splitting. Kokkoras (1995) suggested the 

cytoplasm and cell wall may contract to a greater extent than the vacuole at low 

temperatures causing an increase in turgor pressure. Low temperature and high RH at 

harvest and post-harvest could also affect splitting susceptibility again by affecting turgor 

pressure.  

Experiment 3.4 analysed splitting data from G’s Growers QA collected over three years for 

one growing site and one cultivar (‘Celesta’). The main objective of the analysis was to 
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investigate commercial splitting trends and correlate these with the weather during growth 

and the weather conditions on the day of harvest to determine if environmental conditions 

during growth or at harvest appear to be related to splitting.     

Aims: To determine:  

 The magnitude of variation in splitting between years 

 If rainfall, temperature and relative humidity during growth are correlated with splitting 

 If temperature and relative humidity at harvest are correlated with splitting 

 If there are differences in the extent or direction of effects between weather during 

growth or at harvest on splitting 

Null hypotheses:  

1. There will be no difference in the amount of splitting each year 

2. There will be no correlation between the environmental parameters precipitation, 

temperature and relative humidity during growth and splitting 

3. There will be no correlation between temperature and relative humidity on the day of 

harvest and splitting 
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3.4.2 Experiment 3.4: Materials and methods 

Data from G’s Growers for the years 2012, 2013 and 2014 was analysed for correlations 

between the amount of splitting, which was recorded by the quality analysis (QA) team, 

and weather data at harvest and during the growth of the radishes. The QA data which 

was used has been summarised in (Table 3-21). Weather data for RAF Marham, which is 

approximately 14 km from the site where the radishes were grown, was provided by 

BADC and the Met Office. 

 

Table 3-21 Summary of commercial QA data provided by G’s Growers which was used for 

analysis of correlations between weather conditions during growth and radish splitting 

Year No. 

Dolavs 

No. 

batches 

First drill First 

harvest 

Final drill Final 

harvest 

All 34228 646 01.02.2012 10.04.2012 11.09.2014 23.10.2014 

2012 9168 152 01.02.2012 10.04.2012 18.09.2012 31.10.2012 

2013 12189 213 05.02.2013 26.04.2013 06.09.2013 19.10.2013 

2014 12871 281 05.02.2014 08.04.2014 11.09.2014 23.10.2014 

 

Before statistical analysis was performed the accumulated precipitation from drilling to 

harvest, the mean temperature from drilling to one day before harvest, the mean relative 

humidity from drilling to one day before harvest, the mean temperature on the day of 

harvest and the mean relative humidity on the day of harvest were calculated (Table 

3-22). Irrigation data was not included as this was not known for each batch of radishes, 

the lack of robust irrigation data is unfortunate and results should be remembered when 

interpreting results. It is imperative that any conclusions relating to soil moisture are tested 

using robust experimental design where VWC is measured accurately. To avoid 

duplication of data and to ensure the variables were as independent as possible, mean 

temperature and mean relative humidity during growth did not include the data for 

temperature and relative humidity on the day of harvest.  
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As the size of the batches and therefore the number of Dolavs harvested on any one day 

varied, the mean data for radishes with the same batch number, i.e. radishes which were 

drilled and harvested on the same day was used for statistical analysis rather than 

individual Dolavs.  

 

Table 3-22 Summary of variables analysed for correlations between commercial splitting 

as recorded by G’s Growers QA team and weather conditions during growth as recorded 

by BADC and the Met Office 

Symbol Variable 

S Mean number of split radishes (%) 

R Total accumulated rainfall during growth (mm) 

Tg Mean temperature during growth excluding harvest day (°C) 

RHg Mean relative humidity during growth excluding harvest day (%) 

Th Mean temperature on the day of harvest (°C) 

RHh Mean relative humidity on the day of harvest (%) 

 

Statistical analysis: All data was analysed using GenStat for Windows 15th Edition (VSN 

International 2011). 

Multiple linear regression with step-wise deletion was used to analyse the correlations 

between the weather variables and splitting and to determine a model to describe the 

relationship between the weather variables for 2012, 2013, 2014 and all three years 

together. The contributions of each variable towards the model were estimated as the total 

proportion sum of squares accounted for by the accumulated sum of squares. 

Multiple regression was appropriate for the analysis because the response variable (mean 

percentage splitting) and explanatory variables (accumulated rainfall, mean temperature 

during growth, mean relative humidity during growth, mean temperature on the day of 

harvest and mean relative humidity on the day of harvest) were measured on a 

continuous scale. Initially, a correlation matrix was performed in MS-Excel to identify 

which parameters were correlated using Pearson product-moment correlation coefficients 
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to determine the critical values. Due to the nature of weather data, it was found the 

explanatory variables were often correlated. In GenStat for Windows 15th Edition (VSN 

International 2011) a full model containing main effects and interaction terms was fitted 

and the significance of terms tested by stepwise deletion. ANOVA was used to test for 

differences in the amount of splitting observed each year. Significant differences in annual 

splitting at the 5 % confidence limit were identified by Tukey pair wise comparison.  

For the additional analysis which was conducted throughout the season in 2014 simple 

linear regression was used to compare, the mean number of split radishes which G’s 

recorded for each lot to the number of split radishes upon arrival at HAU. The number of 

radishes which were split on arrival at HAU was compared to the number of radishes 

which split as a result of dropping and the number of radishes which split as a result of 

dropping was compared to the RWC of the radishes. Using ANOVA the RWC of the 

radishes which were split on arrival at HAU, which split due to dropping, which had 

suffered mechanical damage and were intact were compared.  

Skeleton ANOVA:  

Table 3-23 Skeleton ANOVA for the mean number of split radishes recorded by G’s 

Growers QA team in 2012, 2013 and 2014 

Source of variation df 

Year 2 

Residual 643 

Total 645 
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Table 3-24 Skeleton ANOVA for the multiple regressions comparing the number of split 

radishes recorded by G’s Growers QA team with several weather parameters recorded by 

BADC and the Met Office over the years 2012, 2013 and 2014 

Source of variation df 

Regression 5 

Residual 640 

Total 645 

 

Table 3-25 Skeleton ANOVA for the multiple regressions comparing the number of split 

radishes recorded by G’s Growers QA team with several weather parameters recorded by 

BADC and the Met Office in 2012 

Source of variation df 

Regression 5 

Residual 146 

Total 151 

 

Table 3-26 Skeleton ANOVA for the multiple regressions comparing the number of split 

radishes recorded by G’s Growers QA team with several weather parameters recorded by 

BADC and the Met Office in 2013 

Source of variation df 

Regression 4 

Residual 208 

Total 212 
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Table 3-27 Skeleton ANOVA for the multiple regressions comparing the number of split 

radishes recorded by G’s Growers QA team with several weather parameters recorded by 

BADC and the Met Office in 2014 

Source of variation df 

Regression 5 

Residual 275 

Total 280 
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3.4.3 Experiment 3.4: Results 

There was significantly less splitting in 2014, 2.14%, compared to 2012, 2.76% and 2013, 

2.73%, but the difference was not large (Table 3-28). 

  

Table 3-28 Mean number of splits (%) observed in the years 2012, 2013 and 2014 by G’s 

Growers QA team  

Year Mean Splits (%) 

2012 2.76b1 

2013 2.73b 

2014 2.14a 

P <0.001 

SEM 0.154 

1Denotes significant differences at the 5% confidence limit.  

 

The accumulated precipitation during the commercial growing season, determined as the 

time from the first drilling of the season to the final harvest, was least for 2014 and 

greatest for 2013. The mean temperature was the greatest for 2014 and least for 2012 

and 2013. The mean relative humidity was greatest for 2012 and least for 2013 (Table 

3-29). 
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Table 3-29 Accumulated precipitation, mean temperature and mean relative humidity 

during the commercial growing season at RAF Marham for the years 2013, 2013 and 

2014 

Year Accumulated precipitation 

(mm) 

Mean temperature 

(°C) 

Mean relative humidity 

(%) 

2012 301.9 11.1 81.0 

2013 313.3 11.1 77.7 

2014 227.9 12.8 78.5 

 

Despite the limitations of using commercial data, significant correlations between the 

amount of splitting observed and the weather variables tested were found for all years 

(Table 3-30). 

 

Table 3-30 Correlation matrices between commercial splitting rates observed by G’s 

Growers QA team and weather data measured by BADC and the Met Office at RAF 

Marham for 2012, 2013, 2014 and all three of these years together (numbers in bold are 

significantly correlated at the 5% level). 

Year 

 

S1 R Tg RHg Th RHh 

All years 

n = 646 

ρ = 0.088 

 

S 1 

     R 0.251 1 

    Tg -0.138 -0.178 1 

   RHg 0.301 0.222 -0.301 1 

  Th -0.272 -0.283 0.620 -0.265 1 

 RHh 0.247 0.193 -0.052 0.297 -0.214 1 

2012 

n = 152 

ρ = 0.139 

 

S 1      

R 0.226 1     

Tg -0.008 0.082 1    

RHg 0.002 -0.166 -0.862 1   
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Th -0.216 -0.236 0.305 0.086 1  

RHh 0.240 -0.113 -0.134 0.152 -0.010 1 

2013 

n = 213 

ρ = 0.139 

 

S 1      

R 0.389 1     

Tg 0.104 -0.479 1    

RHg 0.577 0.442 -0.020 1   

Th -0.168 -0.644 0.728 -0.279 1  

RHh 0.288 0.275 0.050 0.374 -0.263 1 

2014 

n = 281 

ρ = 0.113 

 

S 1      

R 0.113 1     

Tg -0.431 0.189 1    

RHg 0.216 0.004 -0.046 1   

Th -0.419 0.016 0.654 -0.145 1  

RHh 0.225 0.146 -0.054 0.217 -0.184 1 

1S = Mean number of split radishes (%), R = Mean accumulated precipitation during 

growth (mm), Tg = Mean temperature during growth excluding harvest day (°C), RHg = 

Mean relative humidity during growth excluding harvest day (%), Th = Mean temperature 

on the day of harvest (°C), RHh = Mean relative humidity on the day of harvest (%). 2 ρ = 

critical value for Pearson product-moment correlation coefficient (5%) 

 

Fitted models: The parameters which were correlated with splitting varied between years 

and the amount of variation the weather data was able to explain varied between a 

maximum of 39.6% in 2013 and a minimum of 12.3% in 2012. The variance in splitting 

explained by the weather variables for all three years combined was 16.6%. In 2014, 2012 

and all years, all of the variables were included in the final model whereas in 2013, the 

mean relative humidity on the day of harvest, was not included (Table 3-31). 
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Table 3-31 Model relating weather conditions during growth, measured by BADC and the 

Met Office and splitting rates, recorded by G’s Growers, as determined by multiple linear 

regression and stepwise deletion for 2012, 2013, 2014 individually and all years together  

Year Model fitted P Variance accounted for SE 

All years Tg+RHh+R+Th+RHg <0.001 16.4% 1.75 

2012 Th+Tg+RHg+RHh+R <0.001 12.9% 1.64 

2013 RHg+P+Tg+Th <0.001 39.6% 1.67 

2014 Tg+R+RHg+RHh+Th <0.001 27.9% 1.49 

 

All of the weather variables which were analysed had some correlation with splitting 

suggesting weather during growth and at harvest may have an effect on splitting (Table 

3-32).  

There did not appear to be a pattern of weather during growth or weather at harvest 

affecting the amount of splitting to a greater extent than the other. Temperature during 

growth did account for a greater proportion of the total sum of squares when compared to 

temperature at harvest for 2012, 2013 and 2014 but temperature at harvest accounted for 

the greatest proportion of the total sum of squares for all years combined. In 2012 relative 

humidity on the day of harvest accounted for the greatest proportion of the total sum of 

squares, in 2013 relative humidity during growth accounted for the greatest proportion of 

the total sum of squares, in 2014 temperature during growth accounted for the greatest 

proportion of the total sum of squares and over all the years relative humidity during 

growth accounted for the greatest proportion of the total sum of squares. Relative humidity 

at harvest was the only variable which was not included in all of the final models after 

stepwise deletion had been performed and was not included in the model for 2013 (Table 

3-32). 

Temperature both during growth and at harvest tended to have a negative parameter 

estimate when correlated with splitting. This suggests radishes are increasingly likely to 

split as the temperature decreases. Relative humidity and rainfall both had exclusively 
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positive parameter estimates when correlated with splitting suggesting radishes are more 

likely to split with increasing rainfall and relative humidity (Table 3-32). 
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Table 3-32 The significance of variation for splitting (measured by G’s Growers QA team), 

parameter estimate, mean, standard error of the mean (SEM) and proportion of total sum 

of squares (TSS) accounted for by the accumulated sum of squares for each weather 

variable (measured by BADC and the Met Office) in 2012, 2013, 2014 and all years 

together  

Variable Year P Parameter 

estimate 

Mean SEM Proportion of 

TSS (%) 

Accumulated 

precipitation (mm) 

 

All <0.001 0.013 37.88 0.003 3.55 

2012 0.052 0.021 43.46 0.011 2.22 

2013 <0.001 0.167 38.87 0.007 2.25 

2014 0.002 0.012 34.14 0.004 3.93 

Mean temperature during 

growth excluding harvest 

day (°C) 

All 0.093 0.045 13.11 0.027 1.91 

2012 0.013 0.917 10.61 0.363 0.36 

2013 <0.001 0.029 13.68 0.042 5.51 

2014 <0.001 -0.213 14.04 0.042 18.59 

Mean relative humidity 

during growth excluding 

harvest day (%) 

All <0.001 0.095 78.69 0.018 3.44 

2012 0.017 0.739 83.64 0.306 4.83 

2013 <0.001 -0.053 76.35 0.033 33.24 

2014 0.004 0.095 77.80 0.033 3.75 

Mean temperature on the 

day of harvest (°C) 

All <0.001 -0.103 14.05 0.025 2.37 

2012 0.002 -0.162 12.62 0.050 4.65 

2013 0.297 0.224 14.58 0.051 0.31 

2014 0.035 -0.081 14.42 0.038 1.16 

Mean relative humidity 

on the day of harvest (%) 

All 0.002 0.027 78.76 0.009 5.74 

2012 0.023 0.043 80.62 0.019 3.06 

2013 -1 - 77.26 - - 

2014 0.022 0.027 78.89 0.012 1.81 

1- = variable not included in model 
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3.4.4 Experiment 3.4: Discussion 

The first null hypothesis was rejected as a difference in the amount of splitting each year 

was observed. There was significantly less splitting in 2014 (2.14%) compared to 2012 

(2.76%) and 2013 (2.73%). The magnitude of differences in splitting between years was 

not great but the difference in the weather parameters which were measured was also 

limited in these years. The difference in accumulated precipitation between the year with 

the heaviest rainfall (2013) and the lightest rainfall (2014) was 85.4 mm, the difference in 

mean temperature between the warmest (2014) and coolest (2012 and 2013) years was 

1.7°C and the difference in RH between the most (2012) and least (2013) years was 

3.3%. To investigate the effects of weather on splitting more conclusively years with a 

greater variation in weather would be required.  

In support of the theory that weather conditions during growth and at harvest affect 

splitting, correlations were observed between splitting in commercially grown radishes and 

the weather recorded 14 km away. As this was an observational study, there are 

limitations to this investigation as many factors which may have had an effect on the 

results were not controlled. In addition due to the nature of weather data all of the 

parameters were highly correlated therefore, it is impossible to determine exactly which 

factors were affecting splitting without conducting controlled experiments where each 

factor can be tested individually. An additional limitation of the data is that splitting of 

batch samples was only recorded post washing and radishes split during growth versus 

those that split during the harvest process cannot be distinguished. Nevertheless, the 

results are encouraging and support further investigation into the effects of environment 

during growth and post-harvest during handling. 

The second and third null hypotheses were rejected as results show that weather 

conditions during growth and at harvest affect splitting in commercial production. Relative 

humidity and rainfall both had exclusively positive parameter estimates when correlated 

with splitting indicating soil-plant water interactions have an important role in splitting. It 

was hypothesised increased rainfall during growth would lead to increased hypocotyl 

water content and turgor pressure. Similarly increased relative humidity may lower the 
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transpiration rates which could also increase turgor pressure. Higher turgor pressure has 

been shown in other crops (McGarry 1993, 1995) to result in increased splitting 

susceptibility.  

Similarly, low temperatures are also thought to increase splitting susceptibility by 

increasing turgor pressure. Low temperatures have been shown to decrease failure force 

in other crops (Bourne 1982). Temperature both during growth and at harvest tended to 

have a negative parameter estimate when correlated with splitting suggesting radishes 

are more likely to split with decreasing temperatures. Controlled experiments should be 

carried out to confirm the validity of the correlations observed.   

A limitation of using rainfall to indicate soil moisture is that it fails to include water added to 

the soil in the form of irrigation. Radishes are usually irrigated when they are drilled in an 

attempt to prevent scab. Following this the crop tends not to be routinely irrigated, with 

water only being applied when absolutely necessary. However, for a more accurate 

indication of soil moisture this information should be included. Rather than attempting to 

predict soil moisture from the amount of water added, it would be preferable to measure 

soil moisture directly. The amount of water in the soil is affected by many variables. The 

amount of water added to the soil will be determined by rainfall and irrigation, but many 

other factors, such as the maturity and density of plants, will affect how rapidly the soil 

dries. 

The exact time of harvest for each lot of radishes was unknown therefore the mean 

temperature and relative humidity on the day of harvest were used to indicate what the 

conditions were. It would have been more accurate to measure the temperature of the 

radishes directly during harvest and handling. The relative humidity while the radishes 

were being harvested and handled could have been logged to give more accurate results.  

In conclusion rainfall, temperature and relative humidity during growth are correlated with 

splitting as are temperature and relative humidity at harvest. Temperature both during 

growth and at harvest tended to have a negative parameter estimate when correlated with 

splitting suggesting radishes are increasingly likely to split as the temperature decreases. 

Relative humidity and rainfall both had exclusively positive parameter estimates when 
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correlated with splitting suggesting radishes are more likely to split with increasing rainfall 

and relative humidity. 
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3.5 Experiments 3.5-3.12: Investigating the effects of VWC during growth 

on the susceptibility to growth splits of radishes   

3.5.1 Experiments 3.5-3.12: Introduction 

At present, it is not known if VWC during growth, the magnitude of fluctuations in VWC 

during growth or the timing of water availability during growth have an effect on hypocotyl 

splitting in radishes. Therefore research is required to answer these gaps in knowledge.  

In Experiment 3.4, the volume of rain which fell during growth was positively correlated 

with splitting in commercially grown radishes, linking greater available water content 

during growth with increased rates of splitting. These results are in keeping with those 

from other crops where one of the predominant environmental factors thought to affect 

growth splitting is water availability during growth. For instance, in sweet cherry fruit, 

rainfall has been linked to splitting. Rain induced growth splitting in cherries is thought to 

be caused by a combination of two mechanisms, firstly by rain water entering through the 

skin and degrading the dermal cell walls of the fruit and secondly by an increase in 

pressure on the skin from within the fruit as a result of water uptake by the vascular 

system (Sekse 1995). Similarly, water content during growth has been shown to affect 

splitting in winter radishes (Kang & Wan 2005) as has irrigation frequency (Wan & Kang 

2005). Fluctuations in available water content have also been shown to effect splitting in 

carrot (Salter & Goode 1967) as has the timing of water availability (Sørensen et al. 1997). 

Eight experiments were conducted to investigate the relationships between VWC during 

growth and splitting. Initial investigations began by looking at the effect of VWC on 

splitting; three experiments (Experiments 3.5 to 3.7) were conducted into the effects of 

VWC on splitting. Experiment 3.8 investigated the effect of irrigation frequency on splitting. 

The section concludes with a series of four experiments (Experiments 3.9 to 3.12) which 

investigated the effects of timing of water availability on splitting. In the final experiment, 

water availability was linked to the growth stages which were developed in Experiment 

3.2.  
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3.5.2 Experiments 3.5-3.7: The effects of VWC during growth on the 

susceptibility of radishes to growth splits  

3.5.2.1 Experiments 3.5-3.7: Introduction 

Three experiments were conducted to investigate the effects of VWC on splitting in 

radishes. The aim of these experiments was to determine firstly if water availability during 

growth has an effect on splitting and then to determine if these effects are similar for 

different cultivars. Kang and Wan (2005) investigated the effects of soil water potential on 

the large winter type of radish by attempting to maintain constant soil water content during 

growth. They grew radishes at five different soil water potentials, -0.015 MPa, -0.025 MPa, 

-0.035 MPa, -0.045 MPa and -0.055 MPa. In this investigation, the irrigation treatments 

had no effect on growth rate and yield of the radish crop but there was an effect on 

splitting with the highest levels being observed in the wettest treatment and the lowest 

level being observed at -0.035 MPa (Kang & Wan 2005), however, no explanation was 

proposed in the paper for potential causes of splitting as a result of soil water potential. In 

other crops the increase in splitting which is associated with greater water availability is 

thought to be due to an increase in pressure on the skin from within as a result of water 

uptake by the vascular system into the tissue (Sekse 1995). Higher pressure within the 

organ results in the tissue being more susceptible to splitting as less additional force is 

required to rupture tissue which is already under tension. To investigate this, the 

relationship between hypocotyl water pressure, irrigation treatment and splitting was 

explored.   
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3.5.2.1.1 Experiment 3.5: Preliminary experiment into the effects of VWC during 

growth on the susceptibility of Raphanus sativus ‘Rudi’ to growth splits 

3.5.2.1.1.1 EXPERIMENT 3.5: INTRODUCTION  

The aim of this experiment was to determine a method for manipulating and measuring 

the available water content and the conditions the radish plants are exposed to. 

Manipulating and measuring the VWC enabled trends in the relationship between VWC 

and splitting to be investigated. The results from this experiment were used to refine later 

experiments.  

Aim: To investigate:  

 The relationship between substrate available water content during growth and splitting 

at harvest and after storage; 

 The relationship between substrate available water content during growth and rate of 

growth and physiology of radishes.  

Null hypotheses:  

1. There is no relationship between VWC and growth splitting or harvest splitting after 7 

days of cold storage 

2. There is no relationship between VWC during growth and the rate of growth and 

physiology of radishes  
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3.5.2.2.1.1 EXPERIMENT 3.5: MATERIALS AND METHODS  

The cultivar ‘Rudi’ was chosen for this experiment as it had been shown in Experiments 

3.1 and 3.3 to be highly susceptible to splitting.  

Seedling establishment: Radish seeds were initially planted in 362 x 227 mm seed tray 

inserts (C24, LBS Horticulture Ltd., Lancashire) containing John Innes No. 2 growing 

medium, at a rate of 1 seed per cell. Like commercial seeds, the seeds were planted at a 

depth of 7 mm. They remained in seed trays for seven days to enable seedling 

establishment.  

Start of treatments: After 1 week the most uniform seedlings were transferred to 4.2 L 

pots containing a 1:1 mix of horticultural sand and John Innes No. 2 growing medium. In 

each pot 6 uniform seedlings were transplanted and planted with equal spacing in a ring 

25 mm from the rim of the plant pot.  

The seedlings were transplanted to pots which had been uniformly filled two weeks 

previously. After the pots had been prepared they were left to dry in the glasshouse for 

two weeks, at this point the pots contained on average 20 % VWC, this was used as the 

driest treatment.  

Treatments: The four treatments were: G1 24% VWC, G2 23% VWC, G3 21% VWC and 

G4 20% VWC. There were eight experimental and three destructive harvest pots for each 

treatment (Table 3-33), giving 11 pots per treatment, 44 pots in total containing a total of 

264 radish plants, 192 of which were experimental plants. 

  

Table 3-33 Summary of treatments used in Experiment 3.5 

Treatment Number VWC (%) Replication 

G1 24 8 pots containing 6 plants each 

G2 23 8 pots containing 6 plants each 

G3 21 8 pots containing 6 plants each 

G4 20 8 pots containing 6 plants each 
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Randomisation: Experimental pots were arranged in a random block design (Figure 

3-21) which was generated using GenStat for Windows 15th Edition (VSN International 

2011). 

  

Block     

1 G1 G4 G3 G2 

2 G4 G1 G2 G3 

3 G2 G4 G1 G3 

4 G4 G2 G1 G3 

5 G4 G2 G3 G1 

6 G3 G4 G1 G2 

7 G1 G4 G2 G3 

8 G1 G4 G2 G3 

 

Figure 3-21 Layout of pots on glasshouse bench. Blue lines represent the irrigation tape. 

G1=24 % VWC, G2=23 % VWC, G3=21 % VWC and G4=20 % VWC (n=8) 

 

Irrigation: Pots were weighed and surface irrigated twice a week on Tuesday and Friday 

to maintain the water content of the treatments. During irrigation pots were surface 

watered to the weight at the VWC for their treatment. Pots were irrigated using a 

squeezable water bottle with a fine nozzle to ensure an even distribution of water over the 

surface without damaging the seedlings. Compensation was made for the increasing 

weight of the radish in the pots by performing destructive harvests twice a week on 

Tuesday and Friday. Additional plants were grown for the purpose of destructive harvests 

and these did not affect the number of replicates in the experiment.  

Measurements during growth: The mean temperature was 18.2°C with a range of 

42.4°C to 9.1°C. The mean relative humidity in the glasshouse was 69.2% ranging 

between 99.6% and 14.2%.  
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The width of the exposed hypocotyls was measured twice a week before irrigation. Radish 

plants were grown until more than 50% of radish in that treatment were 30 mm in diameter 

or greater, at which point they were harvested. This is in keeping with supermarket size 

requirements.  

Harvest: As per Section 2.10. 

Storage: The radishes were stored after harvest to replicate commercial practice. The 

radishes were placed into a labelled cryovac bag to simulate commercial packaging and 

moved to a Sanyo Versatile Environmental Test Chamber Model: MLR-351H for 14 days. 

Relative humidity and temperature were logged in the growth cabinet using TGP 4500 

TinyTag logger. The growth cabinet achieved an average temperature of 2.1°C with a 

range between 8.4°C and -3.0°C. It achieved an average relative humidity of 77.6% with a 

range between 100% and 14.9%. 

After storage the radish were again weighed and measured and the number of splits 

counted. They were then put in an oven at 105°C for at least 48 hours to calculate the dry 

biomass post-storage.  

Growth summary: Seeds were planted on 21.05.2012 (Day 1) plants were transplanted 

and treatments commenced on 28.05.2012 (Day 8). G1 plants were harvested and moved 

to storage on 02.07.2012 (Day 47), G2 plants were harvested and moved to storage on 

06.07.2012 (Day 51) and G3 and G4 plants were harvested and moved to storage on 

09.07.2012 (Day 54). For G1 plants storage was terminated after 14 days on 16.07.2012, 

for G2 it was terminated after 14 days on 20.07.2012 and for G3 and G4 plants storage 

was terminated after 14 days on 23.07.2012.  

G1 were harvested after 39 treatment days, G2 were harvested after 43 treatment days, 

G3 and G4 were both harvested after 46 treatment days. Growth time was longer than 

commercially grown radishes which usually takes four weeks. This was thought to be, in 

part due to the irrigation treatments which were imposed, but also possibly due to 

transplanting the radish at the start of the experiment.  

Statistical analysis: All data was analysed using GenStat for Windows 15th Edition (VSN 

International 2011). 
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If data was parametric as confirmed by Shapiro-Wilk test for normal distribution it was 

analysed using ANOVA (Table 3-34). Where data was not normally distributed with or 

without transformation the non-parametric Friedman’s test was used. When a P value of 

less than 0.05 was observed a Tukey test was used for parametric data and Mann-U 

Whitney test was used for non-parametric data to determine which results were different 

from each other.  

 

Table 3-34 Method of analysis for different factors measured in Experiment 3.5. Method of 

analysis (parametric or non-parametric) was decided according to normal distribution as 

determined by the Shapiro-Wilk test 

Measurement Shapiro-Wilk Analysis used 

Split data at harvest P=0.184 ANOVA 

Split data after storage P=0.219 ANOVA 

Number of leaves at harvest P=0.618 ANOVA and Tukey Test 

Hypocotyl width at harvest P=0.971 ANOVA 

Hypocotyl width after storage P=0.153 ANOVA 

Hypocotyl length at harvest P=0.952 ANOVA 

Hypocotyl length after storage P=0.480 ANOVA 

 

Skeleton AVOVA: 

Table 3-35 Skeleton ANOVA for number of split radishes, number of leaves, hypocotyl 

width, hypocotyl length and hypocotyl weight at harvest (G1=Day 39, G2=Day 43, G3 and 

G4 = Day 46) 

Source of variation df 

Treatment 3 

Blocks 7 

Residual 21 

Total 31 
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Table 3-36 Skeleton ANOVA for number of split radishes, hypocotyl length, width and 

weight after 14 days of cold storage 

Source of variation df 

Treatment 3 

Blocks 7 

Residual 21 

Total 31 
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3.5.2.2.1.2 EXPERIMENT 3.5: RESULTS  

VWC: Treatments successfully created a difference in VWC between groups (Table 3-37). 

However, the VWC overlapped between treatments (Table 3-37). 

  

Table 3-37 Range of compost VWC, as calculated from the GWC, for each treatment 

group, up to Day 39 when G1 was harvested (n=8)  

Treatment Mean VWC (%) Maximum VWC (%) Minimum VWC (%) 

G1 19.7 24 13.0 

G2 18.7 23 13.3 

G3 17.4 21 10.5 

G4 16.1 20 10.3 

 

 

Splitting: There was no significant difference between treatments in the number of split 

radishes at harvest (P=0.755) or after storage (P=0.940) (Table 3-38).  

 

Table 3-38 The mean number (max = 6) of split radishes per pot for each treatment 

(G1=19.7% VWC, G2=18.7% VWC, G3 = 17.4% VWC and G4 = 16.1% VWC) at harvest 

(G1=Day 39, G2=Day 43, G3 and G4 = Day 46) and after 14 days of cold storage (n=8) 

Treatment Harvest Storage 

G1 2.13 2.50 

G2 2.50 2.75 

G3 3.00 3.00 

G4 2.63 2.75 

SEM (21 df) 0.808 0.794 

CV (%) 63.1 57.8 

P 0.755 0.940 
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Growth rate: Treatments had an effect on the growth rate of the radish plants; treatment 

group G1 grew the fastest and reached harvest size after 43 days, G2 was next at 47 

days. G3 and G4 both took the longest to reach harvest size, 50 days. All treatments took 

longer than the usual growth time but this is thought to be due to disruptions from 

transplanting the radish seedlings at the beginning of the experiment.  

There was a significant difference (P=0.004) in the number of leaves at harvest between 

treatment groups. G1 had the least leaves at harvest, G4 had the second least number of 

leaves, G3 had the second most number of leaves and G2 had the most number of leaves 

at harvest.  

There was no difference in the size or weight of the radish at harvest or after storage 

between treatment groups (Table 3-39, Table 3-40). 

  

Table 3-39 Measurements taken from the radish plants at harvest (G1=Day 39, G2=Day 

43, G3 and G4 = Day 46) for each treatment group (G1=19.7% VWC, G2=18.7% VWC, 

G3 = 17.4% VWC and G4 = 16.1% VWC). 

Treatment Number of 

leaves 

Hypocotyl 

width (mm) 

Hypocotyl 

length (mm) 

Hypocotyl 

weight (g) 

G1 9.08a1 30.34 25.51 14.05 

G2 10.38b 30.95 26.12 14.18 

G3 10.21b 30.63 26.07 12.92 

G4 9.98ab 29.37 25.84 13.12 

SEM (21 df) 0.235 0.631 0.797 0.712 

CV (%) 1.5 4.6 4.6 10.6 

P 0.004 0.346 0.945 0.508 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values.  
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Table 3-40 Measurements taken from the radishes after 14 days of cold storage for each 

treatment group (G1=19.7% VWC, G2=18.7% VWC, G3 = 17.4% VWC and G4 = 16.1% 

VWC). 

Treatment Hypocotyl width 

(mm) 

Hypocotyl length 

(mm) 

Hypocotyl weight 

(g) 

G1 29.03 23.95 12.05 

G2 29.00 24.22 12.61 

G3 29.25 25.34 10.27 

G4 28.85 25.74 11.45 

SEM (21 df) 0.773 0.705 0.616 

CV (%) 5.8 5.0 10.1 

P 0.987 0.245 0.076 
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3.5.2.2.1.3 EXPERIMENT 3.5: DISCUSSION    

The first null hypothesis was supported as here was no evidence for a relationship 

between VWC and splitting at harvest or after seven days of cold storage. Watering the 

radish plants at the same frequency but to different VWC did not result in any significant 

differences in growth splitting (P=0.755) or in any significant differences (P=0.940) in the 

amount of additional splitting which occurred post-harvest.  

The second null hypothesis was rejected as a relationship between VWC during growth 

and the rate of growth of radishes was observed. As the radishes were harvested at the 

same hypocotyl growth stage there was no difference in hypocotyl width at harvest 

(P=0.346) or after storage (P=0.987) but there were differences in growth rate as it took 

the treatments different lengths of time to be of this harvest size. G1 was ready to harvest 

after 43 days, G2 after 47 days and G3 and G4 took 50 days. This finding is supported by 

previous research in which drought conditions were found to reduce or stop cellular 

division and cellular expansion in radishes which would reduce growth rate (Joyce et al. 

1983). The shape of the hypocotyl appears to have remained similar for different 

treatments as there were no differences between treatments in hypocotyl length at harvest 

(P=0.945) or after storage (P=0.245) or hypocotyl weight at harvest (P=0.508) or after 

storage (P=0.076).  

The effects of VWC on plant physiology and source to sink ratios were more difficult to 

interpret as the results did not follow a consistent pattern. Treatments appeared to affect 

leaf growth as differences in number of leaves at harvest were observed (P=0.004). G1 

had significantly fewer leaves than G2 and G3 at harvest. The number of leaves on G4 

plants was not significantly different to any other treatment group. However, no 

differences were observed in the size of the hypocotyls at harvest or after storage. These 

results suggest the treatments had different effects on leaves and hypocotyls and altered 

the source to sink ratios. However, the results are not easy to interpret as they do not 

follow a consistent pattern. The hypocotyls of the G1 plants, which received the most 

water grew the fastest as they were same size and weight as hypocotyls from the other 

treatments in less time, however the number of leaves was significantly fewer than the 
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plants grown in the mid-levels of water, G2 and G3.  Suggesting the leaves from the G1 

treatment grew more slowly than the hypocotyls. However, no differences were observed 

in the number of leaves of hypocotyl size of treatment G2 which received more water and 

grew faster than treatment G3 which received less water and grew more slowly.  G2 and 

G3 were harvested after different periods of time but there was no difference in hypocotyl 

size or leaf number between the two treatments suggesting both their leaves and 

hypocotyls grew at a similar rate as the ratios were not altered.  Treatment G4 was not 

different from any of the other treatments in terms of hypocotyl size or number of leaves at 

harvest.  

The difference in the VWC between treatments was not large in this experiment and 

although differences in growth rate were observed showing the plants were responding to 

differences in VWC it would be interesting to investigate if larger differences have an 

effect on splitting. It was also noted during the experiment that the depth of the pots meant 

it was difficult to determine exactly the VWC the radishes were exposed to. Although 

weighing the pots gave an accurate indication of the water content of the whole pot, when 

the radishes were small they would not have had access to the water at the bottom of the 

pot.  

In conclusion, VWC during growth did affect the rate of growth and physiology of radishes 

but the differences in VWC achieved in this experiment did not affect growth or harvest 

splitting.  
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3.5.2.2.2 Experiment 3.6: The effects of VWC during growth on the susceptibility of 

Raphanus sativus ‘Rudi’ to growth splits  

3.5.2.2.2.1 EXPERIMENT 3.6: INTRODUCTION  

In Experiment 3.5 no relationship between VWC and splitting was observed, however a 

very narrow and overlapping range of VWCs was used which made the results 

inconclusive. In this experiment a greater range in VWCs was used to determine more 

conclusively if water content during growth has an effect on growth splitting. To achieve 

this, shallower pots were used which allowed the compost to dry more rapidly. Shallower 

pots which were the same depth as the device used to measure water content were used 

to allow more accurate measurements of the conditions the radishes are exposed to, to be 

made.  

For simplification compared to Experiment 3.5, only two treatments were used but these 

had a much greater difference. In Experiment 3.5, post-harvest splitting was measured by 

placing the radishes in storage this did not result in many additional splits. Under 

commercial conditions radishes are handled post-harvest therefore, in this experiment 

post-harvest splitting susceptibility was tested using a drop test which is quicker and more 

representative of commercial post-harvest handing than simply placing the radishes in 

storage and results in a greater number of radishes splitting.  

The radishes were harvested at the same hypocotyl growth stage to enable differences in 

growth rate to be determined.  However, in Experiment 3.5 it appeared that VWC during 

growth had an effect on leaf growth and the ratio of leaves to hypocotyl at harvest 

although the results were difficult to interpret as they did not follow a clear pattern. 

Therefore, in this experiment, more measurements of leaf size at harvest were taken to 

enable a greater understanding of the effects of VWC on leaf growth and how this 

compares to hypocotyl development.  

Aim:  

 To determine if VWC during growth has an effect on splitting of the radish hypocotyl at 

harvest and during post-harvest handling 
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 To determine if VWC during growth has an effect on growth rate and physiology of 

radish plants 

Null hypotheses:  

1. VWC during growth has no effect on splitting of the radish hypocotyl during growth or 

post-harvest handing 

2. VWC during growth has no effect on the growth rate and physiology of radish plants 
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3.5.2.2.2.2 EXPERIMENT 3.6: MATERIALS AND METHODS  

Seedling establishment: Radish seeds were initially planted and grown for seven days in 

seed trays measuring 350 mm in length by 210 mm in diameter and 55 mm in depth. 

These trays were watered by bench capillary matting for two minutes three times a day 

giving a total of 17 mm day -1.  

Transplanting and start of treatments: After seven days the majority of seedlings had 

germinated and the most evenly sized plants were transplanted, using the spacing 

described previously, into trays which had been prepared as previously described but with 

the exception that half the trays had been placed on the bench for watering and half of the 

trays had been placed in saucers to allow them to dry down. The trays which the plants 

were transplanted into were at the correct VWC for the treatments to begin. Transplanting 

was used to ensure even germination of seedlings and to allow treatments to begin 

immediately without the trays requiring a period of drying down.  

Treatments: Two treatments were used, Wet and Dry. For the Wet treatment the compost 

in trays was maintained at high water content close to pot capacity using capillary 

irrigation. The Dry treatment was maintained at low water content by hand watering three 

times a week to a low water content which was above permanent wilting point. During 

irrigation dry pots were watered to the weight at the VWC for their treatment. 

Compensation was made for the increasing weight of the radish in the pots by performing 

destructive harvests three times a week. Additional plants were grown for the purpose of 

destructive harvests and these did not affect the number of replicates in the experiment.  

The VWC of each pot was measured three times a week. 

Replication: 20 plus five extra dry pots for destructive harvests. Pots were arranged in a 

randomised block design (Figure 3-22) which was generated by GenStat for Windows 

15th Edition (VSN International 2011).  

  



170 
 

 

Block     Block 

1 Dry Wet Dry Wet 11 

2 Dry Wet Wet Dry 12 

3 Wet Dry Dry Wet 13 

4 Dry Wet Wet Dry 14 

5 Dry Wet Wet Dry 15 

6 Wet Dry Wet Dry 16 

7 Wet Dry Dry Wet 17 

8 Dry Wet Dry Wet 18 

8 Dry Wet Wet Dry 19 

10 Wet Dry Wet Dry 20 

Figure 3-22 Randomised block design of pots on glasshouse bench. Blue lines represent 

irrigation tape 

 

Planting date: The seeds were planted on 5th February 2014. The seedlings were 

transplanted and treatments started on Day 7, 11th February 2014.  

Experiment duration: Plants were harvested from each treatment when more than 50% 

of the plants were a minimum of 25 mm in diameter. This is the median commercial size. 

Plants from the Wet treatment were harvested on Day 26 and the plants from the Dry 

treatment were harvested on Day 31.  

Glasshouse conditions: In the glasshouse the mean temperature was 18.2°C with a 

range of 3.9°C to 35.0°C. The mean relative humidity was 63.9% ranging between a 

minimum of 31.3% and a maximum of 98.8%. 

Drop test: During harvest, postharvest splitting susceptibility was tested using impact 

texture analysis. The number of radishes which split as a result of dropping was recorded 

for each tray.  

Statistical analysis: All data was analysed using GenStat for Windows 15th Edition (VSN 

International 2011). 
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If data was parametric as confirmed by Shapiro-Wilk test for normal distribution it was 

analysed using ANOVA. Where data was not normally distributed with or without 

transformation the non-parametric Friedman’s test was used. When a P value of less than 

0.05 was observed a Tukey test was used for parametric data and Mann-U Whitney test 

was used for non-parametric data to determine which results were different from each 

other.  

Skeleton ANOVA:  

Table 3-41 Skeleton ANOVA for growth splits, drop splits, hypocotyl width, hypocotyl 

length, fresh hypocotyl weight, hypocotyl water content, number of leaves, leaf area, fresh 

leaf weight and leaf water content 

Source of variation df 

Block 18 

Treatment 1 

Residual 18 

Total 37 
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3.5.2.2.2.3 EXPERIMENT 3.6: RESULTS 

VWC: The different irrigation methods successfully created a difference in VWC between 

the two treatment groups. The Wet treatment had an average VWC of 61.2% with a 

maximum of 65.5% and a minimum of 57.2%. The Dry treatment, which was watered by 

hand, had a greater range with an average VWC of 15.8%, a maximum of 24.8% and a 

minimum of 8% (Table 3-42). 

 

Table 3-42 Mean substrate VWC of the trays from the two treatments (Wet and Dry) 

during Experiment 3.6 

Treatment Mean VWC (%) Maximum VWC (%) Minimum VWC (%) 

Wet 61.2 65.5 57.2 

Dry 15.8 24.8 8.0 

 

 

Splitting: VWC during growth had a significant effect both on the number of radishes 

which split during growth (P<0.001) but also on splitting susceptibility of radishes 

postharvest (P<0.001). Both the number of radishes which split during growth and post-

harvest were significantly greater for radishes grown with the Wet Treatment (Table 3-43). 

 

Table 3-43 Mean percentage of split radishes per tray (10 radishes) at harvest (growth 

split) and as a result of dropping from 1.4 m (drop split) 

Irrigation Growth split (%) Drop split (%) 

Wet 63.7 8.9 

Dry 1.6 0.5 

P <0.001 <0.001 

LSD (5%) 8.44 4.33 
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Harvest size: There was no significant differences in the hypocotyl width of radishes from 

the two treatments (Table 3-44), as radishes were harvested when the hypocotyls 

reached a commercial hypocotyl size rather than on a specific day this result was 

expected. The radishes grown with the Dry treatment were harvested five days later than 

the radishes which were grown with the Wet treatment. Having radishes of the same size 

for both treatments gives the advantage that any differences observed were not due to 

differences in the hypocotyl diameter of radishes.  

The radishes grown with the Wet treatment were significantly (P<0.001) longer than the 

radishes grown with the Dry treatment and were less round as a result. The diameter to 

length ratio for radishes grown with the Wet treatment was 0.77 compared to 0.90 for the 

radishes grown with the Dry treatment. There was no significant difference (P=0.359) in 

hypocotyl fresh weight between the two treatments but the radishes grown with the Wet 

treatment had a greater hypocotyl water content at harvest (P<0.001) (Table 3-44).  

 

Table 3-44 The mean hypocotyl diameter, length, fresh weight and water content for 

radishes grown under different irrigation treatments (Mean VWC Wet = 61.2%, Dry = 

15.8%). Weight and water content are per tray containing 10 radishes (n=10). 

Irrigation Hypocotyl 

diameter (W) 

(mm) (n=1) 

Hypocotyl 

length (L) 

(mm) (n=1) 

Hypocotyl 

fresh weight 

(g) (n=10) 

Hypocotyl 

water 

content (%) 

(n=10) 

Wet 23.99 31.26 90.0 95.09 

Dry 25.42 28.40 84.7 94.17 

P 0.258 <0.001 0.359 <0.001 

LSD (5%) 2.572 1.380 11.97 0.2727 

 

Volumetric water content during growth had a significant effect on radish leaf growth. 

Despite being harvested five days earlier, the radishes which were grown with the Wet 

treatment had a greater leaf area (P<0.001), number of leaves (P=0.009), leaf fresh 
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weight (P<0.001) and leaf water content (P<0.001) at harvest when compared to radishes 

grown with the Dry treatment (Table 3-45).  

 

Table 3-45 The mean leaf area, number, fresh weight and water content for radishes 

grown under different irrigation treatments. Weight and water content are per tray (n=10). 

Irrigation Leaf 

area 

(n=1) 

No. 

leaves 

(n=1) 

Leaf fresh 

weight (g) 

(n=10) 

Leaf water 

content (%) 

(n=10) 

Wet 147.3 5.74 78.55 91.92 

Dry 81.0 4.89 41.53 91.19 

P <0.001 0.009 <0.001 <0.001 

LSD (5%) 23.07 0.61 3.44 0.27 
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3.5.2.2.2.4 EXPERIMENT 3.6: DISCUSSION  

The first null hypothesis was rejected as growth rate was affected by VWC during growth. 

The radishes which were grown with the Dry treatment took five days longer to achieve 

commercial diameter size than radishes grown with the Wet treatment. This finding is 

supported by previous research in which drought conditions were found to reduce or stop 

cellular division and cellular expansion in radishes (Joyce et al. 1983).  

In Experiment 3.5, leaf number was affected by VWC but the results were confusing. In 

this Experiment 3.6, leaf growth was reduced in the radishes grown with the Dry 

treatment. At harvest when the radishes grown with the Dry treatment had been grown for 

an additional five days, the leaf area, number and fresh weight were all significantly less 

than the results for the radishes grown with the Wet treatment. This results means the 

source to sink ratio of leaves to hypocotyl was affected by VWC during growth. Smaller 

leaves would have resulted in a reduced photosynthetic area and may explain in part the 

reduced growth rate of the radish hypocotyls. As leaves are removed from the majority of 

radishes prior to sale in the UK, it is not thought leaf size would be of great importance to 

the consumer.  

The second null hypothesis was rejected as VWC during growth had a significant effect on 

splitting both during growth and post-harvest. The amount of splitting observed at harvest 

and postharvest splitting susceptibility were both lower in radishes grown with the Dry 

treatment despite the radishes being grown for an additional five days allowing a greater 

amount of time for splitting to occur. The reduction in splitting may have been due to a 

reduction in pressure within the hypocotyl. The radishes grown under the Dry treatment 

had lower water content at harvest (P<0.001) suggesting they may have had a lower 

turgor pressure and the cells were under less pressure making them less susceptible to 

splitting. However, turgor pressure would need to be measured determine if this theory is 

correct. Differences in splitting susceptibility may have also been a result of difference in 

growth rate where a slower growth rate may have resulted in less stress within the 

hypocotyl. However this would not explain the difference in postharvest splitting 

susceptibility. Difference in splitting during growth and in postharvest splitting susceptibility 
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could be due to differences in cellular composition. Joyce et al. (1983) suggested lignin 

synthesis may be reduced to a lesser extent by water deficit than cell division and 

expansion resulting in a build-up of cell wall material. Changes in the structure and 

strength of cell walls may also affect splitting susceptibility both during growth and 

postharvest as splits have been shown to propagate through cells rupturing the cell walls.  

Marketable yield was greater for radishes grown with the Dry treatment as there was no 

significant difference in fresh weight between the two treatment groups but there was 

significantly less splitting observed in radishes grown with the Dry treatment. In addition, 

the radishes grown with the Dry treatment were rounder and potentially more attractive to 

the consumer. The mean width to length ratio for the radishes grown with the Dry 

treatment was 0.90 compared to 0.77 for the radishes grown with the Wet treatment.  

In conclusion, VWC during growth has an effect growth rate and physiology of radish 

plants and also on growth and harvest spits.  
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3.5.2.2.3 Experiment 3.7: The effects of VWC on the susceptibility to growth splits 

of three cultivars of radish  

3.5.2.2.3.1 EXPERIMENT 3.7: INTRODUCTION  

In Experiment 3.6, VWC was shown to have a significant effect on growth splits and post-

harvest splitting susceptibility in the cultivar ‘Rudi’. In this experiment, the responses of 

three cultivars were studied to determine if the effects of VWC are dependent on cultivar. 

If there is a genotype x environment interaction for the effects of VWC on splitting it may 

not be possible to make recommendations for the agronomy of radishes as a whole. If the 

effects are similar for several different cultivars recommendations for radishes in general 

may be made. 

In Experiment 3.6 the radishes grown with a higher VWC split more and had a greater 

hypocotyl water content. It was postulated the greater susceptibility to splitting may have 

been as a result of greater turgor pressure. In this experiment this was investigated further 

by measuring the hypocotyl water pressure at Day 21 and at harvest.  

Radishes were harvested at the same hypocotyl width to enable comparisons to be made 

at the same growth stage. In Experiment 3.6 it was observed VWC affected the rate of 

leaf growth, altering the source to sink ratio at harvest. The effects of VWC on the growth 

rate of leaves in comparison to the hypocotyls for different cultivars were further 

investigated in this experiment.  

Aim:  

 To determine if radish cultivars differ in splitting response to VWC 

 To determine if growth rate and physiology of radish cultivars differ in response to 

VWC 

Null hypotheses:  

1. The effect of VWC on radish hypocotyl splitting is not consistent between different 

radish cultivars 

2. No conclusions can be made about the effects of VWC as changes in growth rate and 

physiology in response to VWC during growth differ significantly between cultivars 
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3.5.2.2.3.2 EXPERIMENT 3.7: MATERIALS AND METHODS  

Seedling establishment: Radish seeds were initially planted and grown for seven days in 

seed trays measuring 350 mm in length by 210 mm in diameter and 55 mm in depth. 

These trays were watered by bench capillary matting for five minutes three times a day 

giving a total of 17 mm day -1. The seeds were planted on Day 1 (15th July 2014). The 

seedlings were transplanted and treatments started on Day 7 (21st July 2014). 

Transplanting and start of treatments: After seven days the majority of seedlings had 

germinated and the most evenly sized plants were transplanted, using the spacing 

described previously, into trays which had been prepared as previously described. The 

trays which the plants were transplanted into were at the correct VWC for the treatments 

to begin. Transplanting was used to ensure even germination of seedlings and to allow 

treatments to begin immediately without the trays requiring a period of drying down.  

Treatments: Six treatments were studied (Table 3-46). Cultivar and irrigation were 

factors. Irrigation had two levels, Wet and Dry. Cultivar had three levels ‘Rudi’, ‘Celesta’ 

and ‘Saxa 2’.  

 

Table 3-46 Six treatment groups used for Experiment 3.7 

 Irrigation 

Wet Dry 

C
u

lt
iv

a
r 

Rudi Rudi Wet Rudi Dry 

Celesta Celesta Wet Celesta Dry 

 Saxa 2 Saxa 2 Wet Saxa 2 Dry 

 

Replication: Ten plus three extra dry pots for each cultivar for destructive harvests. Pots 

were arranged in a randomised block design (Figure 3-22) which was generated by 

GenStat for Windows 15th Edition (VSN International 2011).  
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Block       

1 CD RD SW CW SD RW 

2 SD SW RW RD CW CD 

3 CD SD RW CW RD SW 

4 RW RD SD SW CW CD 

5 SD SW RW CW CD RD 

6 RD CD RW SW CW SD 

7 RW RD CD CW SW SD 

8 SW CW CD RD RW SD 

8 RD RW CD CW SW SD 

10 RW SD CD CW RD SW 

Figure 3-23 Randomised block design of pots on glasshouse bench. Blue lines represent 

irrigation tape. 

 

Experiment duration: Treatments were harvested when more than 50% of plants were 

25 mm in diameter or greater as this is the median commercial hypocotyl diameter. There 

were differences in rate of growth between cultivars and treatments therefore they were 

harvested on different days. ‘Celesta’ and ‘Saxa 2’ which were grown with the Wet 

treatment were harvested first on Day 27, followed by the Wet treatment for ‘Rudi’ on Day 

29. The three Dry treatments were harvested last, ‘Saxa 2’ was harvested on Day 34 then 

‘Rudi’ and ‘Celesta’ were both harvested on Day 36 (Table 3-47). 
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Table 3-47 Days to harvest, the number of days taken from drilling for 50% of the radish 

plants of each cultivar grown with Wet or Dry treatment to reach 25 mm in diameter 

Cultivar Treatment Days to harvest 

Saxa 2 Wet 27 

 Dry 34 

Celesta Wet 27 

 Dry 34 

Rudi Wet 29 

 Dry 34 

 

Glasshouse conditions: The mean temperature during the experiment was 23.7°C with 

a range of 41.9°C to 10.7°C. The mean relative humidity was 68.9% ranging between 

100% and 28.5%. 

VWC: For the Wet treatment for all cultivars, the compost in trays was maintained at high 

water content close to pot capacity using capillary irrigation. The Dry treatment for all 

cultivars was maintained by hand watering three times a week. Compensation was made 

for the increasing weight of the radishes by performing destructive harvests of each 

cultivar three times a week. The weight of each cultivar was measured separately to 

account for any difference in growth rate of cultivars.  

The VWC of each pot was measured three times a week. 

Hypocotyl pressure: On Day 21 and at harvest, the water potential (bar) of 1 radish 

hypocotyl per tray was measured. 

Harvest: Plants were harvested when >50% of the plants were 25 mm (median 

commercial size).  

Statistical analysis: All data was analysed using GenStat for Windows 15th Edition (VSN 

International 2011). 

As the experimental design consisted of two factors each with more than one level a two-

way ANOVA was used for statistical analysis. 
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Skeleton ANOVA: 

Table 3-48 Skeleton ANOVA for number of splits, hypocotyl pressure, hypocotyl water 

content, hypocotyl width, hypocotyl fresh weight, hypocotyl dry weight, leaf fresh weight 

and leaf dry weight at harvest 

Source of variation df 

Block 9 

Cultivar 2 

Irrigation 1 

Cultivar x Irrigation 2 

Residual 45 

Total 59 
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3.5.2.2.3.3 EXPERIMENT 3.7: RESULTS 

VWC: The different irrigation methods created a difference in VWC between the Wet and 

Dry treatments and there was not a large difference in VWC between the three cultivars in 

each treatment. The Dry treatments, which were watered by hand, had a greater range in 

water contents than the Wet treatments which were watered by capillary irrigation. The 

‘Rudi’ Wet treatment had an average VWC of 65.0% with a maximum of 70.5% and a 

minimum of 58.6%. The ‘Rudi’ Dry treatment had an average VWC of 17.2%, a maximum 

of 23.3% and a minimum of 7.8%. The ‘Saxa 2’ Wet treatment had an average VWC of 

64.9% with a maximum of 69.5% and a minimum of 55.2%. The ‘Saxa’ 2 Dry treatment 

had an average VWC of 16.0%, a maximum of 23.0% and a minimum of 8.5%. The 

‘Celesta’ Wet treatment had an average VWC of 64.6% with a maximum of 69.9% and a 

minimum of 58.5%. The ‘Celesta’ Dry treatment had and average VWC of 16.3%, a 

maximum of 22.9% and a minimum of 7.9% (Table 3-49). 

  

Table 3-49 Mean VWC of the trays from the two irrigation treatments (Wet and Dry) and 

the three cultivars (‘Rudi’, ‘Saxa 2’ and ‘Celesta’) during the experiment 

Cultivar Treatment Mean VWC (%) Max VWC (%) Min VWC (%) 

Rudi Wet 65.0 70.5 58.6 

Saxa 2 Wet 64.9 69.5 55.2 

Celesta Wet 64.6 69.9 58.5 

Rudi Dry 17.2 23.3 7.8 

Saxa 2 Dry 16.0 23.0 8.5 

Celesta Dry 16.3 22.9 7.9 

 

Splitting: VWC during growth had a significant effect on the number of radishes which 

split during growth (P<0.001). The number of splits was greater for radishes grown under 

wet conditions. Cultivar had no effect on splitting (P=0.746) and there was no interaction 

between cultivar and irrigation treatment (P=0.118) (Table 3-50).  
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Table 3-50 Mean number of split radishes (%) per tray of 10 plants at harvest for the two 

irrigation treatments (Wet and Dry) and the three cultivars (‘Rudi’, ‘Saxa 2’ and ‘Celesta’) 

Treatment Rudi Saxa 2 Celesta Mean  P LSD 

Wet 37.94 35.56 33.33 35.61 Cultivar 0.746 5.59 

Dry 1.00 6.56 10.78 6.11 Irrigation <0.001 6.85 

Mean 19.47 21.06 22.60 20.86 Cultivar x Irigation 0.118 9.68 

 

Hypocotyl: There was no difference in hypocotyl pressure between cultivars, irrigation 

treatments or interaction between the two during growth on Day 21 (Table 3-51) or at 

harvest (Table 3-52). 

 

Table 3-51 Mean hypocotyl pressure (bar) on Day 21 for the two irrigation treatments (Wet 

and Dry) and the three cultivars (‘Rudi’, ‘Saxa 2’ and ‘Celesta’) 

Treatment Rudi Saxa 2 Celesta Mean  P LSD 

Wet 1.78 2.42 2.58 2.26 Cultivar 0.958 0.987 

Dry 2.46 1.99 1.94 2.13 Irrigation 0.742 0.806 

Mean 2.12 2.21 2.26 2.19 Cultivar x Irigation 0.353 1.396 

 

Table 3-52 Mean hypocotyl pressure (bar) at harvest for the two irrigation treatments (Wet 

and Dry) and the three cultivars (‘Rudi’, ‘Saxa 2’ and ‘Celesta’) 

Treatment Rudi Saxa 2 Celesta Mean  P LSD 

Wet 1.373 1.758 1.396 1.509 Cultivar 0.611 0.3543 

Dry 1.667 1.623 1.741 1.677 Irrigation 0.248 0.2893 

Mean 1.520 1.691 1.569 1.593 Cultivar x Irigation 0.334 0.5011 

 

There was no significant difference in diameter between cultivars, treatments or 

interaction between the two (Table 3-53). As radishes were harvested when the treatment 

reached a commercial hypocotyl harvest size rather than on a specific day this result was 

expected.  



184 
 

Table 3-53 Mean hypocotyl width (mm) at harvest for the two irrigation treatments (Wet 

and Dry) and the three cultivars (‘Rudi’, ‘Saxa 2’ and ‘Celesta’) 

Treatment Rudi Saxa 2 Celesta Mean  P LSD 

Wet 27.19 30.18 23.93 27.10 Cultivar 0.487 18.75 

Dry 28.08 24.36 24.71 25.72 Irrigation 0.163 15.31 

Mean 27.63 27.27 24.32 26.50 Cultivar x Irigation 0.417 26.52 

 

The Wet treatment radishes of the cultivar ‘Rudi’ were harvested five days before the Dry 

treatment radishes of the same cultivar. For the cultivars ‘Saxa 2’ and ‘Celesta’, the period 

between the harvest of the radishes grown with the Wet and Dry treatments was seven 

days for both cultivars. As in previous experiments, the radishes in the Wet treatment 

grew the most rapidly and were harvested first.  

Hypocotyl fresh weight was significantly (P<0.001) affected by irrigation treatment with the 

radishes which received more water having a greater weight. This result was consistent 

for all cultivars. There was no effect of cultivar on hypocotyl fresh weight (P=0.189) (Table 

3-54). 

 

Table 3-54 Mean hypocotyl fresh weight (g) per tray of 10 plants for the two irrigation 

treatments (Wet and Dry) and the three cultivars (‘Rudi’, ‘Saxa 2’ and ‘Celesta’). 

Treatment Rudi Saxa 2 Celesta Mean  P LSD 

Wet 100.9 119.7 86.6 12.4 Cultivar 0.189 17.9 

Dry 66.8 72.1 75.3 71.4 Irrigation <0.001 14.3 

Mean 83.9 95.9 80.9 86.9 Cultivar x Irigation 0.111 24.3 

 

Hypocotyl dry weight was significantly (P=0.042) affected by irrigation treatment with the 

radishes which received more water generally having a greater dry weight. This result was 

not consistent for all cultivars. There was a significant interaction between cultivar and 

irrigation treatment. Dry treatment ‘Celesta’ had a greater dry weight compared to Wet 
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treatment ‘Celesta’ unlike the other two cultivars. Overall, there was no effect of cultivar on 

hypocotyl fresh weight (P=0.095) (Table 3-55). 

 

Table 3-55 Mean hypocotyl dry weight (g) per tray of 10 plants for the two irrigation 

treatments (Wet and Dry) and the three cultivars (‘Rudi’, ‘Saxa 2’ and ‘Celesta’) 

Treatment Rudi Saxa 2 Celesta Mean  P LSD 

Wet 9.44 10.30 8.62 9.45 Cultivar 0.095 0.681 

Dry 8.63 8.88 9.12 8.88 Irrigation 0.042 0.556 

Mean 9.04 9.59 8.87 9.17 Cultivar x Irigation 0.012 0.963 

 

Hypocotyl water content was significantly (P<0.001) affected by irrigation treatment with 

the radishes which received more water having a greater water content at harvest. This 

result was consistent for all cultivars. There was no effect of cultivar on hypocotyl water 

content (P=0.594) (Table 3-56). 

 

Table 3-56 Hypocotyl water content (%) for the two irrigation treatments (Wet and Dry) 

and the three cultivars (‘Rudi’, ‘Saxa 2’ and ‘Celesta’) 

Treatment Rudi Saxa 2 Celesta Mean  P LSD 

Wet 89.86 90.57 89.80 90.08 Cultivar 0.594 0.660 

Dry 86.84 87.40 87.68 87.31 Irrigation <0.001 1.02 

Mean 88.35 88.98 88.74 88.69 Cultivar x Irigation 0.660 1.76 

 

Leaves: Number of leaves was not affected by irrigation treatment or cultivar (Table 

3-57). 
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Table 3-57 Mean number of leaves for the two irrigation treatments (Wet and Dry) and the 

three cultivars (‘Rudi’, ‘Saxa 2’ and ‘Celesta’) 

Treatment Rudi Saxa 2 Celesta Mean  P LSD 

Wet 4.70 5.40 5.40 5.17 Cultivar 0.150 0.456 

Dry 5.20 5.00 5.40 5.20 Irrigation 0.858 0.373 

Mean 4.95 5.20 5.40 5.18 Cultivar x Irigation 0.150 0.645 

 

Leaf area was significantly (P<0.001) affected by irrigation treatment with the radishes 

which received more water having a greater leaf area at harvest. This result was 

consistent for all cultivars. There was no effect of cultivar on leaf area at harvest 

(P=0.982) (Table 3-58). 

 

Table 3-58 Leaf area (cm2) per plant for the two irrigation treatments (Wet and Dry) and 

the three cultivars (‘Rudi’, ‘Saxa 2’ and ‘Celesta’) 

Treatment Rudi Saxa 2 Celesta Mean  P LSD 

Wet 199.2 211.1 204.4 204.9 Cultivar 0.982 34.37 

Dry 147.0 136.6 148.0 143.9 Irrigation <0.001 28.06 

Mean 173.1 173.9 176.2 174.4 Cultivar x Irigation 0.788 48.60 

 

Leaf fresh weight was significantly (P<0.001) affected by irrigation treatment with the 

radishes which received more water having a greater leaf fresh weight at harvest. This 

result was consistent for all cultivars. There was no effect of cultivar on leaf fresh weight at 

harvest (P=0.396) (Table 3-59). 
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Table 3-59 Plant leaf fresh weight (g) for the two irrigation treatments (Wet and Dry) and 

the three cultivars (‘Rudi’, ‘Saxa 2’ and ‘Celesta’) 

Treatment Rudi Saxa 2 Celesta Mean  P LSD 

Wet 88.7 93.2 97.0 93.0 Cultivar 0.396 5.26 

Dry 65.5 66.3 64.0 65.2 Irrigation <0.001 4.30 

Mean 77.1 79.7 80.5 79.1 Cultivar x Irigation 0.181 7.44 

 

Leaf dry weight was significantly (P<0.001) affected by irrigation treatment with the 

radishes which received more water having a greater leaf dry weight. This result was 

consistent for all cultivars. There was no effect of cultivar on leaf fresh weight at harvest 

(P=0.379) (Table 3-60). 

 

Table 3-60 Leaf dry weight (g) per plant for the two irrigation treatments (Wet and Dry) 

and the three cultivars (‘Rudi’, ‘Saxa 2’ and ‘Celesta’) 

Treatment Rudi Saxa 2 Celesta Mean  P LSD 

Wet 9.88 10.07 9.92 9.96 Cultivar 0.918 0.357 

Dry 9.39 9.16 9.45 9.33 Irrigation <0.001 0.291 

Mean 9.64 9.62 9.69 9.65 Cultivar x Irigation 0.379 0.504 

 

  



188 
 

3.5.2.2.3.4 EXPERIMENT 3.7: DISCUSSION  

The first null hypothesis was rejected as VWC affected splitting with radishes which were 

grown under dryer conditions splitting less. As the size of the radish hypocotyls was the 

same at harvest there was a greater marketable yield for radishes grown under dry 

conditions for all cultivars.  

Less rapid growth rates were observed for all three cultivars of radishes grown under 

dryer conditions and the second null hypothesis was rejected. This is in keeping with 

previous research where it has been shown the usual response of plants to drought is to 

limit growth (Wilson 1988). As in Experiment 3.6 the cultivar ‘Rudi’ had a five day 

difference in harvest time for the two irrigation treatments. ‘Celesta’ and ‘Saxa 2’ were 

affected to a greater extent by the VWC treatments and had a seven day difference in 

harvest time between Wet and Dry treatments. Growth rate did not correlate with the 

differences in splitting as there were no differences in splitting between cultivars but there 

were differences in growth rate.  

No significant differences were observed for hypocotyl pressure during growth or at 

harvest. This may have been because the equipment used was not sensitive enough to 

detect any differences. Due to the small and delicate nature of the radish petioles it was 

difficult to maintain a seal and it was also difficult to observe when the xylem sap began to 

be extruded. Therefore, these results are inconclusive.  

No significant effect of cultivar was found for any of the variables measured other than 

hypocotyl dry weight. This knowledge is of use to growers because it suggests results 

from irrigation studies for one cultivar can be extrapolated to other cultivars without the 

requirement for additional experiments.  

As in Experiment 3.6, leaf growth rate was shown to be affected by irrigation treatment. 

Leaf area, fresh weight and dry weight were all consistently greater for cultivars grown 

with a greater VWC compared to lower VWC despite these radishes being harvested after 

less time. Again, this shows the source to sink ratios are affected by VWC during growth. 

This is in keeping with other research where source to sink ratios have been shown to 

decrease under drought conditions (Wilson 1988).  
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In contradiction to results from Experiments 3.1 and 3.3, splitting rates for ‘Celesta’ were 

not significantly lower than the other two cultivars. In addition, ‘Celesta’ did not have as 

great a reduction in splitting when grown under dry conditions as the other two cultivars. 

‘Celesta’ also had a greater dry biomass when grown with lower VWC whereas ‘Rudi’ and 

‘Saxa 2’ had a greater dry biomass when grown with a greater VWC. These results would 

suggest factors other than VWC are having an effect on the physiology and rates of 

splitting in this cultivar. 
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3.5.2.3 Experiments 3.5-3.7: Discussion  

In the three experiments exploring the effects of VWC on radish hypocotyl splitting in this 

section, VWC was shown to have an effect on splitting in two out of three of the 

investigations. In Experiment 3.6 and 3.7 which showed an effect of VWC on splitting, 

greater VWC was associated with a greater amount of splitting and this was consistent for 

all cultivars tested. In Experiment 3.5 the failure to find a relationship between VWC and 

splitting is thought to have been due to the small and over lapping differences in VWC. In 

the two experiments where differences were observed, these results are supported by 

previous research into splitting in the larger winter radishes where VWC was also shown 

to have a significant effect on splitting (Kang and Wan 2005). However, in the experiment 

by Kang and Wan, the differences in VWC had no significant effect on growth rate or 

yield. In Experiment 3.6 and 3.7, VWC was shown to have both an effect on growth rate 

and marketable yield. Radishes grown under drier conditions had a slower growth rate but 

had a greater marketable yield due to decreased numbers of split radishes at the same 

hypocotyl weight and size. The decreased growth rate observed in radishes is in common 

with usual plant responses to drought which are to limit growth (Wilson 1988). In cherries, 

the reduction in growth rate in response to drought has been shown to be as a result of 

cessation in cell division and elongation (Sekse 1995).  

Differences in growth rate of leaves (source) and hypocotyls (sink) were observed under 

the different irrigation regimes in both Experiment 3.6 and 3.7. The usual response to 

limited water availability is for assimilates to be directed more towards the root than the 

leaves thus reducing the shoot to root ratio (Wilson 1988). Results from Experiments 3.6 

and 3.7 conducted in this section suggest in the case of radishes, which have a swollen 

hypocotyl and tap root, it appears assimilates are directed to this organ under conditions 

of drought in a similar way to which they would be towards the taproots and roots in other 

plants.  

No evidence for a relationship between hypocotyl pressure and splitting was observed in 

Experiment 3.7, no differences were observed between any of the cultivar or treatments 



191 
 

and there was no interaction between the two. However, the equipment was difficult to 

use with radish hypocotyls therefore the results are not conclusive.   



192 
 

3.5.2.4 Experiment 3.8: Investigating the effects of irrigation frequency on 

the susceptibility of radishes to growth splits 

3.5.2.4.1 Experiment 3.8: Introduction  

Another aspect of water availability which has been linked to splitting is irrigation 

frequency.  

In the large winter varieties of radishes, fluctuations in soil water potential during growth 

has been shown to affect splitting (Wan & Kang 2005). Radishes irrigated once every 

three days had the lowest cracking rate and well developed hypocotyls when compared to 

radishes irrigated daily, once every two days, once every four days, once every six days 

and once every eight days. Frequent irrigation during growth resulted in high levels of 

splitting as did large fluctuations in soil water potential. Wan and Kang (2005) suggested 

splitting in the infrequently irrigated treatments may have been due to cyclic water 

stresses on the hypocotyl due to swelling and shrinking. Similarly, splitting in carrots 

(Gracie & Brown 2004) tomatoes and pepper (Dorais et al. 2004) has been shown to have 

a diurnal pattern with higher incidences of splitting early in the morning and at the end of 

the afternoon. This is thought to be due to swelling and shrinking which occur as a result 

of changes in water status in the crop at these times.  

The aim of this experiment into the effects of irrigation frequency on splitting in the cultivar 

‘Rudi’ was to determine if there are any trends in the relationship between irrigation 

frequency and splitting. If any trends were observed this experiment would form the basis 

of further investigation.  

Aim:  

 To investigate if different irrigation frequencies have an effect on radish hypocotyl 

splitting during growth or after storage  

 To investigate if different irrigation frequencies have an effect on the physiology of 

radishes during growth or after storage 

Null hypothesis:  

1. Irrigation frequency will have no effect on radish hypocotyl splitting during growth 

or after storage.   
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2. Irrigation frequency will have no effect on radish growth or physiology 
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3.5.2.4.2 Experiment 3.8: Materials and Methods  

Environmental conditions during growth and storage: In the glasshouse the mean 

temperature during the experiment was 18°C with a range of 35°C to 4°C. The mean 

relative humidity was 54% ranging between 93% and 15%. Temperature loggers were 

inserted in the growing substrate to the same depth in the 1st, 3rd and 5th pots for each 

treatment; 12 loggers in total. The mean temperature for G1 pots was 17.14°C, for G2 

was 17.03°C, for G3 was 17.17°C and for G4 was 17.66°C.  

The controlled environment cabinet achieved an average temperature of 2.8°C with a 

range between 5.2°C and -0.8 °C. The average relative humidity was 70.3% with a range 

between 100% and 12.6%. 

Treatments and Replication: The four treatments were: G1 irrigated daily, G2 irrigated 

every two days, G3 irrigated every four days and G4 irrigated every eight days (Table 

3-61). At irrigation the pots were watered by hand to the weight at pot capacity as 

calculated in a preliminary experiment.  

 

Table 3-61 Summary of treatments used in Experiment 3.8 

Treatment Number Irrigation Frequency Replication 

G1 1 day 6 pots containing 6 plants each 

G2 2 day 6 pots containing 6 plants each 

G3 4 day 6 pots containing 6 plants each 

G4 8 day 6 pots containing 6 plants each 

 

Figure 3-24 Pots were surface irrigated on the weighing scales to the correct GWC  

All pots were irrigated on the day of harvest (Table 3-62). 
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Table 3-62 Irrigation schedule for the different irrigation treatments used in Experiment 

3.8. G1 was irrigated daily, G2 was irrigated every 2 days, G3 was irrigated every 4 days 

and G4 was irrigated every 8 days (n=6).  

Date 13/03/12 14/03/12 15/03/12 16/03/12 17/03/12 18/03/12 19/03/12 

Day - - - - - - - 

G1: 1 day Yes Yes Yes Yes Yes Yes Yes 

G2: 2 days Yes Yes Yes Yes Yes Yes Yes 

G3: 4 days Yes Yes Yes Yes Yes Yes Yes 

G4: 8 days Yes Yes Yes Yes Yes Yes Yes 

Date 20/03/12 21/03/12 22/03/12 23/03/12 24/03/12 25/03/12 26/03/12 

Day Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

G1: 1 day Yes Yes Yes Yes Yes Yes Yes 

G2: 2 days Yes No Yes No Yes No Yes 

G3: 4 days Yes No No No No Yes Yes 

G4: 8 days Yes No No No No No No 

Date 27/03/12 28/03/12 29/03/12 30/03/12 31/03/12 01/04/12 02/04/12 

Day Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14 

G1: 1 day Yes Yes Yes Yes Yes Yes Yes 

G2: 2 days No Yes No Yes No Yes No 

G3: 4 days No No No No Yes Yes No 

G4: 8 days No Yes No No No No No 

Date 03/04/12 04/04/12 05/04/12 06/04/12 07/04/12 08/04/12 09/04/12 

Day Day 15 Day 16 Day 17 Day 18 Day 19 Day 20 Day 21 

G1: 1 day Yes Yes Yes Yes Yes Yes Yes 

G2: 2 days Yes No Yes No Yes No Yes 

G3: 4 days No No No Yes Yes No No 

G4: 8 days No No Yes No No No No 

Date 10/04/12 11/04/12 12/04/12 13/04/12 
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Day Day 22 Day 23 Day 24 Day 25 

   G1: 1 day Yes Yes Yes Yes 

   G2: 2 days No Yes No Yes 

   G3: 4 days No No Yes Yes 

   G4: 8 days No No No Yes 

    

There were six experimental and three destructive harvest pots for each treatment, giving 

nine pots per treatment, 36 pots in total containing a total of 216 radish plants, 144 of 

which were experimental plants. Pots were arranged in a randomised block design (Figure 

3-25) which was generated by GenStat for Windows 15th Edition (VSN International 

2011). 

 

Block     

1 G3 G2 G1 G4 

2 G1 G4 G2 G3 

3 G2 G1 G3 G4 

4 G4 G2 G1 G3 

5 G4 G3 G2 G1 

6 G3 G4 G2 G1 

7 G2 G4 G3 G1 

8 G4 G2 G3 G1 

9 G2 G4 G3 G1 

10 G3 G2 G1 G4 

 

Figure 3-25 Randomised block design of pots on glasshouse bench. Blue lines represent 

irrigation tape. G1 was irrigated daily, G2 was irrigated every 2 days, G3 was irrigated 

every 4 days and G4 was irrigated every 8 days. 
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Harvest: Stomatal conductance was measured on the oldest leaf of each plant with an 

AP4 porometer (Delta-T Devices Ltd., Cambridge, UK) before harvest. Preliminary 

experiments showed taking porometer readings from the oldest leaf gave the most 

consistent results.  

All plant pots were watered to field capacity at least two hours prior to harvest. The 

median (i.e. third lightest) radish from each pot was dried at 105°C for 48 hours to 

calculate the dry biomass at harvest and the remaining five radishes from each pot were 

put into a labelled cryovac bag to simulate commercial packaging and moved to a 

controlled environment cabinet for seven days. The median radish was chosen to be dried 

because it was considered this would be representative of the pot; choosing the largest or 

the smallest radish would have risked selecting non-representative outliers. After seven 

days of storage the radish were weighed again and the number of splits counted. The 

water content was calculated post-storage by drying all radishes at 105°C for 48 hours. 

Growth summary: Seeds were planted on 13.03.2012, treatments commenced on 

20.03.2012 (Day 1), plants were harvested and moved to storage on 13.04.12 (Day 25) as 

this was a day when all treatments were watered. After harvest, the radish hypocotyls 

were placed in storage. Storage was terminated on 20.04.2012. Plants were grown for 31 

days.  

Statistical analysis: All data was analysed using GenStat for Windows 15th Edition (VSN 

International 2011). 

Using a two-tailed, unpaired Student’s T-test assuming equal variance, a comparison was 

made between the VWC of the split and non-split radishes. Pot temperature data was not 

normally distributed (Shapiro-Wilk P<0.001) and there was an unequal number of 

readings for all pots as three of the loggers (G1P2, G3P3 and G4P2) stopped logging 

shortly before the end of the experiment. Therefore, the non-parametric Kruskal-Wallis 

One Way ANOVA test was used. For all other data, if it was parametric as confirmed by 

Shapiro-Wilk test for normal distribution it was analysed using ANOVA (Table 3-63). 

Where data was not normally distributed the non-parametric Friedman’s test was used. 

When a P value of less than 0.05 was observed a Tukey test was used for parametric 
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data and Mann-U Whitney test was used for non-parametric data to determine which 

results were different from each other. If a significant difference was found for a 

measurement between treatments the relationship between irrigation frequency and the 

measurement was investigated to see if a linear or quadratic curve best described the 

association. 
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Table 3-63 Method of analysis for different factors measured in Experiment 3.8. Method of 

analysis (parametric or non-parametric) was decided according to normal distribution as 

determined by the Shapiro-Wilk test 

Measurement Shapiro-

Wilk 

Analysis used 

Substrate temperature  <0.001 Kruskal-Wallis One Way ANOVA 

Splits at harvest <0.001 Friedman’s test 

Splits after storage <0.001 Friedman’s test 

Stomatal conductance at harvest 0.005 Friedman’s test and Mann-U Whitney 

test 

Number of leaves at harvest 0.032 Friedman’s test and Mann-U Whitney 

test 

Hypocotyl width at harvest 0.052 ANOVA 

Hypocotyl width after storage 0.285 ANOVA 

Hypocotyl length at harvest 0.066 ANOVA 

Hypocotyl length after storage 0.907 ANOVA 

Plant weight at harvest 0.634 ANOVA and Tukey test 

Hypocotyl weight at harvest 0.840 ANOVA and Tukey test 

Hypocotyl weight after storage 0.773 ANOVA and Tukey test 

Hypocotyl dry weight at harvest 0.525 ANOVA 

Hypocotyl dry weight after storage 0.020 Friedman’s test 

Hypocotyl water content at harvest 0.964 ANOVA and Tukey test 

Hypocotyl water content after 

storage 

0.027 Friedman’s test and Mann-U Whitney 

test 
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Skeleton AVOVA: 

Table 3-64 Skeleton ANOVA for the number of split radishes at harvest and after storage, 

stomatal conductance, number of leaves at harvest, hypocotyl width, hypocotyl length, 

plant fresh weight, hypocotyl fresh weight, hypocotyl weight after storage, hypocotyl dry 

weight and hypocotyl water content  

Source of variation df 

Treatment 3 

Blocks 5 

Residual 15 

Total 23 
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3.5.2.4.3 Experiment 3.8: Results 

Substrate temperature: Kruskal-Wallis One Way ANOVA gave a chi-squared value of 

0.033. There were 3 degrees of freedom and the critical value at 5% level was 7.82 

showing there was no significant difference in temperature at the 5% level between 

treatments. As differences in irrigation frequency in this experiment did not result in any 

statistically significant differences in substrate temperature any differences observed in 

the radish plants were not due to a difference in the temperature of the growing medium.  

VWC: Fluctuations in substrate moisture of different magnitudes were created by different 

irrigation frequencies. Figure 3-26 shows the average daily VWC calculated from the 

GWC for each treatment group. It should be noted that VWC is impossible to determine 

exactly in a non-destructive way with current technology and therefore, this graph is only a 

representation of the soil water content for the whole pot. The exact values will be a range 

around each point and will not be homogenous throughout the pot. As a result of water 

being added to the surface during irrigation one would expect the fluctuations in VWC to 

be greatest at the surface of the compost mix around the radish hypocotyl. Despite this a 

clear pattern can be seen; G1 which was irrigated daily shows steady water content only 

fluctuating slightly around field capacity whereas G4 which was irrigated every eight days 

shows large changes in water content. The peaks and troughs for G2, G3 and G4 

increase as the experiment progresses due to increasing plant size within the pots and 

increased transpiration and water consumption.  
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Figure 3-26 Mean substrate VWC for pots irrigated at different frequencies (n=6) 

calculated from the GWC using bulk density. Reading on Day 25 taken prior to irrigation to 

pot capacity.  

 

Table 3-65 Substrate VWC calculated from the GWC for pots in each treatment group. 

Each treatment group was irrigated at a different frequency, G1 was irrigated daily, G2 

was irrigated every other day, G3 was irrigated every 4 days and G4 was irrigated every 8 

days.  

Irrigation frequency Max VWC (%) Min VWC (%) Mean VWC (%) 

G1: 1 day 21.6 19.6 20.7 

G2: 2 day 21.5 17.9 19.9 

G3: 4 day 21.6 13.4 18.1 

G4: 8 day 21.5 6.5 15.2 

 

As would be predicted, a strong linear relationship between mean VWC and irrigation 

frequency was observed (R2=0.96) (Figure 3-27). 
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Figure 3-27 Negative correlation between mean substrate VWC, calculated from GWC 

and irrigation frequency. There were 4 treatment groups, G1 was irrigated daily, G2 was 

irrigated every other day, G3 was irrigated every 4 days and G4 was irrigated every 8 

days. 

 

Effect of treatments on splitting: There was no significant difference in the number of 

split radishes between treatment groups at harvest (P=0.912) (Figure 3-28). 

y = -0.3099x + 92.982 
R² = 0.96 

90.0

90.5

91.0

91.5

92.0

92.5

93.0

0 2 4 6 8 10

M
e

a
n

 V
W

C
 (

%
) 

Irrigation frequency (days) 



204 
 

 

Figure 3-28 The mean percentage of split radishes per pot of 6 radishes at harvest (n=6) 

for different irrigation frequencies. G1 was irrigated daily, G2 was irrigated every other 

day, G3 was irrigated every 4 days and G4 was irrigated every 8 days. Bars represent 

standard error for each treatment. 

 

There was only one additional split radish after storage which was in G2. There was no 

significant difference in the number of split radishes post-harvest (P=0.764) (Figure 3-29). 

The mean numbers of split radish post storage were slightly lower after storage than at 

harvest because one radish was removed from each pot at harvest to calculate the bulk 

density at harvest and not put into controlled environment storage.  
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Figure 3-29 The mean percentage of split radishes per pot of 6 radishes for each irrigation 

treatment after seven days of cold storage (n=6). G1 was irrigated daily, G2 was irrigated 

every other day, G3 was irrigated every 4 days and G4 was irrigated every 8 days. Bars 

represent standard error for each treatment 

 

Although the results for splitting were not significantly different for the different treatment 

groups, there was a trend in the data both at harvest and after storage; greater 

fluctuations in soil moisture content were associated with a greater number of splits. G1, 

which was watered the most frequently and therefore experienced the smallest fluctuation 

in soil moisture, had the least number of splits whereas G4, which experienced the largest 

fluctuation in soil moisture, had the largest number of splits. In G2 and G3, which had 

smaller fluctuations in soil moisture than G4 but larger fluctuations than G1, the average 

number of split radish per pot was between the average G1 and G4 values. Not all 

treatments fit this pattern, G3 had larger fluctuations in soil moisture than G2 yet there 

were fewer split radishes in G3 than G2 both at harvest and after storage.  

Stomatal conductance: Irrigating radish plants more frequently significantly (P=0.008) 

increased stomatal conductance by 450.89% when comparing plants irrigated daily with 

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

M
e

a
n

 n
u

m
b

e
r 

o
f 

s
p

li
t 

ra
d

is
h

e
s
 p

e
r 

p
o

t 
(%

) 

G1 - 1 day G2 - 2 days G3 - 4 days G4 - 8 days



206 
 

plants irrigated every eight days (Table 3-66). Stomatal conductance for daily irrigation 

was significantly different to stomatal conductance in plants irrigated every eight days. 

 

Table 3-66 The effect of irrigation frequency on stomatal conductance in radish leaves. G1 

was irrigated daily, G2 was irrigated every other day, G3 was irrigated every 4 days and 

G4 was irrigated every 8 days. 

Treatment Mean stomatal conductance 

(mmol m-2 s-1) 

  G1: 1 day 124.67a1 

G2: 2 days 75.83ab 

G3: 4 days 57.00ab 

G4: 8 days 27.65b 

P 0.008 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values.   

 

Number of leaves at harvest: Irrigating radish plants at different frequencies had a 

significant effect (P=0.032) on leaf number. Plants irrigated daily had 10.75% more leaves 

than plants irrigated every eight days.  
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Table 3-67 Effect of irrigation frequency on the number of leaves a radish plant has at 

harvest. G1 was irrigated daily, G2 was irrigated every other day, G3 was irrigated every 4 

days and G4 was irrigated every 8 days. 

Treatment Mean number of leaves 

G1: 1 day 6.58 

G2: 2 days 5.99 

G3: 4 days 5.98 

G4: 8 days 5.94 

SEM (15 df) 0.157 

CV (%) 6.3 

P 0.032 

 

Hypocotyl width: Irrigation frequency did not significantly (P=0.509) effect radish 

hypocotyl width at harvest (Table 3-68).  

 

Table 3-68 Effect of irrigation frequency on maximum hypocotyl width at harvest. G1 was 

irrigated daily, G2 was irrigated every other day, G3 was irrigated every 4 days and G4 

was irrigated every 8 days. 

Treatment Hypocotyl width (mm) 

G1: 1 day 28.89 

G2: 2 days 28.80 

G3: 4 days 26.14 

G4: 8 days 27.78 

SEM (15 df) 1.423 

CV (%) 12.5 

P 0.509 

 

Irrigation frequency did not significantly (P=0.185) effect maximum hypocotyl width after 

seven days of cold storage (Table 3-69).  
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Table 3-69 Effect of irrigation frequency on maximum hypocotyl width after seven days of 

cold storage. G1 was irrigated daily, G2 was irrigated every other day, G3 was irrigated 

every 4 days and G4 was irrigated every 8 days. 

Treatment Hypocotyl width (mm) 

G1: 1 day 28.08 

G2: 2 days 28.09 

G3: 4 days 25.67 

G4: 8 days 26.37 

SEM (15 df) 0.907 

CV (%) 8.2 

P 0.185 

 

Hypocotyl length: Irrigation frequency did not significantly affect radish hypocotyl length 

at harvest (P=0.867) or after seven days of cold storage (P=0.579) (Table 3-70).  

 

Table 3-70 Effect of irrigation frequency on hypocotyl length of radishes grown for 32 days 

at harvest and after seven days of cold storage. G1 was irrigated daily, G2 was irrigated 

every other day, G3 was irrigated every 4 days and G4 was irrigated every 8 days. 

Treatment Harvest hypocotyl length (mm) Storage hypocotyl length (mm) 

G1: 1 day 24.39 22.34 

G2: 2 days 23.08 22.64 

G3: 4 days 23.30 22.37 

G4: 8 days 23.85 21.35 

SEM (15 DF) 1.201 1.078 

CV (%) 12.4 8.4 

P 0.867 0.653 

 

Hypocotyl fresh weight: Irrigating radish plants more frequently significantly (P=0.004) 

increased whole harvest weight by 13.05% when comparing plants irrigated daily with 
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plants irrigated every eight days. The linear trend between irrigation frequency and whole 

harvest weight was significant (P<0.001) but the quadratic trend was not (P=0.700) (Table 

3-72) indicating a linear relationship between irrigation frequency and total harvest weight 

(Figure 3-30). 

 

Table 3-71 Effect of irrigation frequency on trimmed (leaves and roots removed) harvest 

weight of radish plants. G1 was irrigated daily, G2 was irrigated every other day, G3 was 

irrigated every 4 days and G4 was irrigated every 8 days. 

Irrigation frequency Total weight (g) Hypocotyl weight (g) 

G1: 1 day 21.96b1 14.81b 

G2: 2 day 19.91ab 14.15ab 

G3: 4 day 16.71a 11.74ab 

G4: 8 day 15.54a 10.47a 

SEM (15 df) 1.126 1.010 

CV (%) 14.9 19.3 

P 0.004 0.027 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values.  
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Table 3-72 Effect of irrigation frequency on harvest whole weight of radish plants: trend 

data. G1 was irrigated daily, G2 was irrigated every other day, G3 was irrigated every 4 

days and G4 was irrigated every 8 days. 

Source of variation df P 

Treatment 3 0.004 

Linear 1 <0.001 

Quadratic 1 0.700 

Deviations 1 0.538 

Residual 15  

Total 23  

 

 

Figure 3-30 Linear relationship between irrigation frequency and whole weight of radishes 

at harvest. G1 was irrigated daily, G2 was irrigated every other day, G3 was irrigated 

every 4 days and G4 was irrigated every 8 days. 

 

Irrigating radish plants more frequently significantly (P=0.027) increased hypocotyl harvest 

weight by 41.5% when comparing plants irrigated daily with plants irrigated every eight 
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days. The linear trend was significant (P=0.004) but the quadratic trend was not (Table 

3-73) indicating a linear relationship between irrigation frequency and hypocotyl weight at 

harvest (Figure 3-31). 

 

Table 3-73 Effect of irrigation frequency on harvest hypocotyl weight of radish plants: 

trend data.  

Source of variation df P 

Irrigation frequency 3 0.027 

Linear 1 0.004 

Quadratic 1 0.765 

Deviations 1 0.531 

Residual 15  

Total 23  

 

 

Figure 3-31 Linear relationship between irrigation frequency and hypocotyl weight of 

radishes at harvest. G1 was irrigated daily, G2 was irrigated every other day, G3 was 

irrigated every 4 days and G4 was irrigated every 8 days. 
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Hypocotyl weight after storage: Irrigating radish plants more frequently significantly 

(P=0.026) affected radish weight after seven days of cold storage. Radish irrigated daily 

were 45.8% heavier than radish irrigated every eight days. The linear trend was significant 

(P=0.004) but the quadratic trend was not (P=0.988) (Table 3-75) suggesting a linear 

relationship between irrigation frequency and radish weight (Figure 3-32). 

 

Table 3-74 Effect of irrigation frequency on radish hypocotyl weight after seven days of 

cold storage. G1 was irrigated daily, G2 was irrigated every other day, G3 was irrigated 

every 4 days and G4 was irrigated every 8 days. 

Treatment Weight (g) 

G1: 1 day 12.82b1 

G2: 2 days 12.12ab 

G3: 4 days 10.05ab 

G4: 8 days 9.32a 

SEM (15 df) 0.821 

CV (%) 18.2 

P 0.026 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values.  
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Table 3-75 Effect of irrigation frequency on radish weight after seven days of cold storage: 

trend data.  

Source of variation df P 

Irrigation frequency 3 0.026 

Linear 1 0.004 

Quadratic 1 0.988 

Deviations 1 0.470 

Residual 15  

Total 23  

 

 

Figure 3-32 Linear relationship between irrigation frequency and radish weight after seven 

days of storage. G1 was irrigated daily, G2 was irrigated every other day, G3 was irrigated 

every 4 days and G4 was irrigated every 8 days. 

 

Hypocotyl dry weight: Irrigating radish plants more frequently did not significantly 

(P=0.974) affect radish dry weight at harvest (Table 3-76). 

 

y = -0.5772x + 13.11 
R² = 0.93 

0

2

4

6

8

10

12

14

0 2 4 6 8 10

H
y
p

o
c

o
ty

l 
w

e
ig

h
t 

(g
) 

Irrigation frequency (days) 



214 
 

Table 3-76 Effect of irrigation frequency on radish dry weight at harvest. G1 was irrigated 

daily, G2 was irrigated every other day, G3 was irrigated every 4 days and G4 was 

irrigated every 8 days. 

Treatment Weight (g) 

G1: 1 day 0.918 

G2: 2 days 0.959 

G3: 4 days 0.967 

G4: 8 days 0.930 

SEM (15 df) 0.0841 

CV (%) 21.8 

P 0.974 

 

Irrigating radish plants more frequently did not significantly (P=0.615) effect radish dry 

weight after seven days of cold storage (Table 3-77). 

 

Table 3-77 Effect of irrigation frequency on radish dry weight after seven days of cold 

storage. G1 was irrigated daily, G2 was irrigated every other day, G3 was irrigated every 4 

days and G4 was irrigated every 8 days. 

Treatment Mean Weight (g) 

G1: 1 day 2.00 

G2: 2 days 1.94 

G3: 4 days 1.88 

G4: 8 days 1.88 

P 0.615 

 

Hypocotyl water content: Irrigating radish plants at different frequencies significantly 

affected (P=0.017) the water content of the radish hypocotyl at harvest of plants irrigated 

with different irrigation frequencies (Table 3-78). Plants irrigated daily had 2.19% more 

water than plants irrigated every eight days. 



215 
 

 

Table 3-78 Effect of irrigation frequency on radish hypocotyl water content at harvest. G1 

was irrigated daily, G2 was irrigated every other day, G3 was irrigated every 4 days and 

G4 was irrigated every 8 days. 

Treatment Water content (%) 

G1: 1 day 92.55a1 

G2: 2 days 92.27ab 

G3: 4 days 90.81ab 

G4: 8 days 90.57b 

SEM (15 DF) 0.467 

CV (%) 1.3 

P 0.017 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values.  

 

The linear (P=0.003) trend between irrigation frequency and hypocotyl water content was 

significant but the quadratic trend was not significant (P=0.966) (Table 3-79) indicating a 

linear relationship between irrigation frequency and radish water content at harvest 

(Figure 3-33).  

 

Table 3-79 Effect of irrigation frequency on radish hypocotyl water content at harvest: 

trend data 

Source of variation df P 

Irrigation frequency 3 0.017 

Linear 1 0.003 

Quadratic 1 0.966 

Deviations 1 0.269 

Residual 15  

Total 23  
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Figure 3-33 Effect of irrigation frequency on hypocotyl water content of radishes at 

harvest. G1 was irrigated daily, G2 was irrigated every other day, G3 was irrigated every 4 

days and G4 was irrigated every 8 days. 

 

Irrigating radish plants at different frequencies significantly affected (P=0.02) the water 

content of the radish hypocotyl after seven days of cold storage (Table 3-80). Plants 

irrigated daily contained 2.25% more water than plants irrigated every eight days. 

Therefore, daily irrigation results in radish hypocotyls with higher water contents after 

seven days of storage than plants irrigated every eight days. Between groups there was 

no significant difference between plants irrigated every day with plants irrigated every two 

days and plants irrigated every four days. There was a significant difference between 

plants irrigated every eight days and plants irrigated daily. 
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Table 3-80 Effect of irrigation frequency on radish hypocotyl water content after seven 

days of cold storage. G1 was irrigated daily, G2 was irrigated every other day, G3 was 

irrigated every 4 days and G4 was irrigated every 8 days. 

Treatment Mean hypocotyl water content (%) 

G1: 1 day 92.47b 

G2: 2 days 92.44ab 

G3: 4 days 91.98ab 

G4: 8 days 90.39a 

P 0.020 

 

There was no correlation between the mean hypocotyl water content of each treatment 

and the mean number of growth splits for each treatment (P=0.478) or the mean number 

of total splits after storage for each treatment (P=0.613).  

Mean substrate VWC: A significant difference (P=0.046) was observed in the average 

VWC of the pots of split and non-split radish (Figure 3-34). Pots containing radish which 

split had higher average VWC than pots containing radish which did not split.  
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Figure 3-34 The Mean (± SE) VWC of the sand and compost mix in pots of split and non-

split radish P=0.046. For non-split radish: n=113. For split radish: n=31.  
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3.5.2.4.4 Experiment 3.8: Discussion  

Irrigation frequency did not affect rates of growth splitting (P=0.912) therefore, the first null 

hypothesis was supported.  

A significant difference in the average pot VWC (P=0.046) of the plants which split and 

those which did not split was observed. Higher average water content was found in the 

pots with radish which split which is similar to results in previous experiments within this 

chapter where high VWC has also been correlated with high levels of splitting.  

The second null hypothesis was rejected as the irrigation frequency treatments affected 

the way the radishes grew as the growth rate was affected. Radishes which were most 

frequently irrigated grew the greatest and the radishes which were irrigated least 

frequently grew least in terms of total weight, number of leaves, trimmed hypocotyl weight, 

hypocotyl length and hypocotyl width. These results correlate with the work of Bokhtiar et 

al. (2001) who found Radish ‘Tasaki Mula’; a long white tropical radish variety grew the 

most under their most frequent irrigation regime, where plants were watered to field 

capacity every 10 days and they grew the least under no irrigation. The smaller size of 

radish irrigated less frequently suggests lower turgor pressure due to water deficit. In 

support of this theory, there was a significant difference (P=0.020) in the RWC of the 

radish hypocotyls after storage. Radishes which were irrigated more frequently had 

greater RWC and radishes which were irrigated less frequently had a lower RWC. The 

usual response for plants grown with limited water availability is to limit growth (Wilson 

1988). Turgor pressure is known to regulate both cell division and enlargement in plants 

generally (Kirkham et al. 1972) and specifically in radish (Joyce et al. 1983). Having a 

water deficit for a period of time would reduce turgor and therefore reduce growth during 

this period. The plants which were irrigated the least frequently would have had the 

longest periods of deficit and therefore the longest periods with reduced cellular 

expansion and division. 

In conclusion it would appear irrigation frequency does not have a significant effect on 

splitting but does have an effect on the growth and development rate of radishes. It is 

thought this is due to differences in the mean VWC of the compost affecting the RWC and 
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turgor pressure of the radish hypocotyls. Additionally VWC had a significant effect on 

splitting with radishes which were exposed to a greater mean VWC splitting more.  
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3.5.3 Experiment 3.9-3.12: Investigating the effects of timing of changes in 

VWC on the susceptibility of radishes to growth splits 

3.5.3.1 Experiment 3.9-3.12: Introduction  

Splitting in carrots has been shown to be affected by crop maturity with splitting mainly 

occurring later in crop development (Gracie & Brown 2004). It is also known growth stage 

affects when radishes are able to split as Experiment 3.2 showed the hypocotyl periderm 

does not become exposed until Growth Stage 41. As it is the periderm which splits, no 

splitting can occur until after Growth Stage 41. In apples growth stage is also known to 

have an effect on splitting. Throughout early growth, stress appears to be influenced by 

fruit size. However, during later growth stress is more affected by weather with large 

strains often associated with periods of heavy rain (Skene 1980). Similarly, the growth 

stage of carrots is thought to affect susceptibility to growth splitting as a result of water 

availability (Salter & Goode 1967; Sørensen et al. 1997). Salter (1967) found rates of 

splitting increased in carrots which experienced low water availability during mid-growth 

and then rain prior to harvest. Sørensen et al (1997) found splitting increased if there was 

a period of drought stress early in growth but decreased if there was a period of drought 

during mid-growth. It is difficult to compare the results from these two experiments as they 

do not refer to standardised growth stages so it is not known how the timing of their 

treatments compare. There is the potential radishes may also be more susceptible to 

growth splits as a result of VWC at certain growth stages. It may therefore be possible to 

reduce splitting by altering the environmental conditions and minimising stress at these 

key times.  

It should be noted another aspect of marketable yield is size. Uniformity in radish diameter 

is desirable as supermarkets typically require radishes which are between the sizes of 18 

mm and 32 mm, anything outside of this range is too small or too large for commercial 

sale. It is known that water availability effects radish growth and drought stress can have a 

detrimental effect (Joyce et al. 1983). Therefore to maximise marketable yield, any 

treatments which reduce splitting at harvest must not as a consequence also be damaging 
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to uniform growth of the hypocotyl, or retard the rate of growth to an extent which would 

not be commercially viable.  

In this section, a series of four experiments were conducted to investigate the effects of 

timing of water availability on splitting. The initial three experiments, Experiments 3.9, 3.10 

and 3.11, investigated how periods of drying during early or late growth affected the 

amount of splitting which was observed at harvest, the final experiment, Experiment 3.12, 

investigated how this was related to duration of drying and the growth stage at which 

drying occurs.   
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3.5.3.2 Experiment 3.9: Preliminary experiment investigating the effects of 

timing of changes in VWC on the susceptibility of radishes to growth 

splits 

3.5.3.2.1 Experiment 3.9: Introduction 

As mentioned previously, there is evidence that timing of water availability affects splitting 

in other crops (Salter & Goode 1967; Sørensen et al. 1997). This experiment studied the 

relationship between timing of water availability and splitting by altering the available 

water content at different times during radish growth. The aim of this first experiment into 

the effects of irrigation timing on splitting in the cultivar ‘Rudi’ was to begin to determine a 

method for manipulating the irrigation timing and measuring the resulting available water 

content and the conditions the radish plants are exposed to. Trends in the relationship 

between the timing of different available water contents and splitting were also 

investigated. The results from this experiment will enable greater refinement in future 

experiments. As radishes grow rapidly it was decided just to focus on two times in 

development, early to mid-growth and late growth. If differences were observed, this 

would allow more refinement of treatment times in future experiments. All radishes were 

irrigated for the initial period of development to ensure even germination. This also mirrors 

commercial production as radishes are irrigated after drilling to prevent scab.  

Aim: To determine if: 

 Timing of changes in VWC have an effect on splitting in radishes 

 Timing of changes in VWC have an effect on the growth rate and physiology of 

radishes 

Null hypothesis:  

1. Timing of changes in VWC will have no significant effect on hypocotyl splitting in 

radishes 

2. Timing of changes in VWC will have no significant effect on the growth rate and 

physiology of radishes 
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3.5.3.2.2 Experiment 3.9: Materials and Methods  

Radish were grown in 4.2 L pots containing a 1:1 mix of horticultural sand and John Innes 

No. 2 growing medium. Before mixing the sand was air dried on trays in the glasshouse to 

make the mix as homogeneous as possible. 

Treatments: For the purposes of this experiment the radish plants were grown for five 

weeks. In Week 1 all pots were watered to field capacity to allow germination and 

establishment. Treatments began after the first week and ran for two weeks. Treatments 

were applied twice a week on Tuesday and Friday. Treatment G1 was watered to field 

capacity throughout the experiment. Treatment G2 was watered to field capacity for the 

first half of the experiment then deficit irrigation was applied for the second half of the 

experiment. Deficit irrigation was applied to Treatment G3 for the first half of the 

experiment then watered to field capacity for the second half of the experiment. Treatment 

G4 received deficit irrigation throughout the experiment (Table 3-81). Under deficit 

irrigation, plants were irrigated with 25% of the water lost due to evapotranspiration since 

the pervious irrigation. All plants were watered to field capacity at the end of Week 3 

which was the end of the first treatment period and before the second treatment period.   

 

Table 3-81 Summary of treatments used in Experiment 3.9  

Treatment Number Irrigation Replication 

Weeks 2 -3 Weeks 4 -5 

G1 FC FC 6 pots containing 6 plants each 

G2 FC Deficit 6 pots containing 6 plants each 

G3 Deficit FC 6 pots containing 6 plants each 

G4 Deficit Deficit 6 pots containing 6 plants each 

 

Replication: There were six experimental and two destructive harvest pots for each 

treatment, giving eight pots per treatment, 32 pots in total containing a total of 192 radish 

plants, 144 of which were used for analysis.  
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Pots were arranged in a randomised block design (Figure 3-35) which was generated by 

GenStat for Windows 15th Edition (VSN International 2011).  

Block     

1 G4 G3 G1 G2 

2 G1 G4 G2 G3 

3 G1 G3 G4 G2 

4 G4 G3 G1 G2 

5 G4 G1 G2 G3 

6 G2 G1 G4 G3 

Figure 3-35 Randomised block design of pots on glasshouse bench for Experiment 3.9. 

Blue lines represent irrigation tape. Treatment G1 was watered to field capacity 

throughout the experiment. Treatment G2 was watered to field capacity for the first half of 

the experiment then deficit irrigation was applied for the second half of the experiment. 

Deficit irrigation was applied to Treatment G3 for the first half of the experiment then 

watered to field capacity for the second half of the experiment. Treatment G4 received 

deficit irrigation throughout the experiment 

 

Growth summary: Seeds were planted on Day 0 (30.07.2012) treatments commenced 

on Day 7 (06.08.2012) plants were harvested and moved to storage on Day 35 

(03.09.2012) storage was terminated after 14 days on 17.09.2012. 

Measurements during growth: Pots were weighed five times a week during the 

experiment and the VWC was calculated from the GWC. Compensation for the increasing 

weight of the radish plants was made by performing destructive harvests of plants grown 

under the same conditions but not used for analysis.  

Measurements during and after storage: The radishes were placed into a labelled 

cryovac bag to simulate commercial packaging and moved to a Sanyo Versatile 

Environmental Test Chamber Model: MLR-351H for 14 days. Relative humidity and 

temperature were logged in the growth cabinet using TGP 4500 TinyTag logger.  
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After storage, the radish hypocotyls were examined for splits and weighed. The radish 

hypocotyls were then placed in an oven at 105°C until they were a constant weight to 

enable a calculation of hypocotyl water content to be made.  

Statistical analysis: All data was analysed using GenStat for Windows 15th Edition (VSN 

International 2011). 

If data was parametric as confirmed by Shapiro-Wilk test for normal distribution it was 

analysed using ANOVA (Table 3-82). Where data was not normally distributed with or 

without transformation the non-parametric Friedman’s test was used. When a P value of 

less than 0.05 was observed a Tukey test was used for parametric data and Mann-U 

Whitney test was used for non-parametric data to determine which results were different 

from each other.  
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Table 3-82 Method of analysis for different factors measured in Experiment 3.9. Method of 

analysis (parametric or non-parametric) was decided according to normal distribution as 

determined by the Shapiro-Wilk test 

Measurement Shapiro-

Wilk 

Analysis used 

Number of splits at harvest P=0.001 Friedman’s test 

Number of leaves at harvest P=0.234 ANOVA and Tukey test 

Plant weight at harvest P=0.005 Friedman’s test and Mann-U Whitney 

test 

Hypocotyl weight at harvest P=0.018 

Log_e 

P=0.050 

ANOVA and Tukey test (on log_e 

transformed data) 

Hypocotyl length at harvest P=0.707 ANOVA and Tukey test 

Hypocotyl width at harvest P=0.320 ANOVA and Tukey test 

Number of splits after storage P=0.008 Friedman’s test 

Hypocotyl weight after storage P<0.001 Friedman’s test and Mann-U Whitney 

test 

Hypocotyl dry biomass after 

storage 

P=0.769 ANOVA and Tukey test 

Hypocotyl water content after 

storage 

P=0.031 Friedman’s test and Mann-U Whitney 

test 
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Skeleton ANOVA:  

Table 3-83 Skeleton ANOVA for splitting at harvest and after storage, the number of 

leaves at harvest, the plant weight at harvest, the hypocotyl length, width and weight at 

harvest and the hypocotyl weight, dry weight and water content after storage 

Source of variation df 

Treatment 3 

Blocks 5 

Residual 15 

Total 23 
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3.5.3.2.3 Experiment 3.9: Results 

Environmental growth and storage conditions: In the glasshouse the mean 

temperature was 20.4°C with a range of 43.5°C to 7.6°C. The mean relative humidity was 

68.1% ranging between 99.0% and 17.1%. 

The growth cabinet achieved a mean temperature of 4.2°C with a range between 6.5°C 

and 3.5°C. It had a mean relative humidity of 94.8% with a range between 100% and 

90.6%. 

Effect of treatments on soil water content: Treatments successfully created a 

difference in the VWC. G1 and G2 had higher water content in Weeks 2 and 3 then G1 

and G3 had the highest water contents in Weeks 4 and 5. In the second half of the 

experiment the VWC was slightly lower. This is thought to be due to increased plant size 

and increased rates of transpiration (Table 3-84).  

 

Table 3-84 Range of VWC for each treatment group in the first and second treatment 

period. Treatment G1 was watered to field capacity throughout the experiment. Treatment 

G2 was watered to field capacity for the first half of the experiment then deficit irrigation 

was applied for the second half of the experiment. Deficit irrigation was applied to 

Treatment G3 for the first half of the experiment then watered to field capacity for the 

second half of the experiment. Treatment G4 received deficit irrigation throughout the 

experiment 

 Week 2-3 Week 4-5 

Average 

VWC (%) 

Maximum 

VWC (%) 

Minimum 

VWC (%) 

Average 

VWC (%) 

Maximum 

VWC (%) 

Minimum 

VWC (%) 

G1: FC/FC 20.6 23.2 16.5 17.9 22.0 14.7 

G2: FC/D 20.4 23.2 15.6 10.4 16.5 2.9 

G3: D/FC 16.1 20.5 11.6 17.3 21.8 13.7 

G4: D/D 15.8 20.5 10.2 11.6 17.8 3.3 
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Effects of treatments on splitting: There was no significant effect of irrigation timing on 

splitting in radish at harvest (P=0.240) or after storage (P=0.161). However, there was a 

trend with G3, which received deficit irrigation for the first two weeks and then irrigation to 

field capacity for the final two weeks, appearing to have less splitting on average per pot 

than the other treatments which were all similar in their rates of splitting on average per 

pot (Figure 3-36). There were three additional split radishes after storage; one in G2 and 

two in G4. 

 

 

Figure 3-36 Mean (± SE) number of split radish per pot of 6 radishes at harvest (n=6). 

Treatment G1 was watered to field capacity throughout the experiment. Treatment G2 

was watered to field capacity for the first half of the experiment then deficit irrigation was 

applied for the second half of the experiment. Deficit irrigation was applied to Treatment 

G3 for the first half of the experiment then watered to field capacity for the second half of 

the experiment. Treatment G4 received deficit irrigation throughout the experiment 

 

Effect of treatments on radish growth: Irrigation timing significantly affected radish 

growth in terms of number of leaves (P<0.001), hypocotyl width (P<0.001), hypocotyl 
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length (P<0.001), total plant weight (P=0.002) and trimmed hypocotyl weight (P<0.001) at 

harvest. Irrigation timing also significantly affected the yield in terms of hypocotyl weight 

after storage. The weight of the radish hypocotyl after storage was significantly different 

between treatments due to both significantly different hypocotyl water contents (P=0.001) 

between treatments and a significant difference in dry biomass (P<0.001) between 

treatments. The mean hypocotyl water content for split radishes (93.71%) was greater 

than the mean hypocotyl water content for non-split radishes (93.19%) although this 

difference was not statistically different (P=0.897). Plants which were irrigated to field 

capacity in the last two weeks had the highest yields in terms of weight and size 

compared to plants which had deficit irrigation in the last two weeks. Marketable yield was 

greatest in plants which were given deficit irrigation in the first two weeks and irrigation in 

the final two weeks as they had the large hypocotyls with few splits. 
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Table 3-85 Measurements (mean) taken at harvest for each treatment group (n=6). 

Treatment G1 was watered to field capacity throughout the experiment. Treatment G2 

was watered to field capacity for the first half of the experiment then deficit irrigation was 

applied for the second half of the experiment. Deficit irrigation was applied to Treatment 

G3 for the first half of the experiment then watered to field capacity for the second half of 

the experiment. Treatment G4 received deficit irrigation throughout the experiment 

Treatment No. 

leaves 

Hypocotyl 

width (mm) 

Hypocotyl 

length 

(mm) 

Plant 

weight (g) 

Hypocotyl 

weight (g) 

Split 

radishes 

(max = 6) 

G1: FC/FC1 6.00 30.98b2 30.93c 25.12b 15.87 

(2.76)b 

2.17 

G2: FC/D 5.44 23.73a 26.74ab 13.54a 8.29 

(2.11)a 

1.83 

G3: D/FC 6.44 30.08b 30.23bc 24.69b 14.72 

(2.67)b 

1.00 

G4: D/D 5.64 21.90a 25.37a 13.23a 7.34 

(1.99)a 

1.50 

P <0.001 <0.001 <0.001 0.002 <0.001 0.240 

LSD (5 %) 0.3956 2.591 2.633  2.383 

(0.1742) 

 

1FC = Field Capacity, D= Deficit irrigation replacing 25% of water lost since previous 

irrigation 

2Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values.   
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Table 3-86 Measurements (mean) taken after storage for each treatment group (n=6). 

Treatment G1 was watered to field capacity throughout the experiment. Treatment G2 

was watered to field capacity for the first half of the experiment then deficit irrigation was 

applied for the second half of the experiment. Deficit irrigation was applied to Treatment 

G3 for the first half of the experiment then watered to field capacity for the second half of 

the experiment. Treatment G4 received deficit irrigation throughout the experiment 

Treatment Hypocotyl weight 

(g) 

Dry biomass 

(g) 

Water content 

(%) 

Split radishes 

(max = 6) 

G1: FC/FC1 19.31b 0.763c 94.90b 2.17 

G2: FC/D 7.45a 0.633ab 91.25a 2.00 

G3: D/FC 13.66b 0.735bc 93.85b 1.00 

G4: D/D 6.65a 0.529a 91.94a 1.83 

P 0.002 <0.001 0.001 0.161 

LSD  0.0865   

1FC = Field Capacity, D= Deficit irrigation replacing 25% of water lost since previous 

irrigation 

2Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values.   

  



234 
 

3.5.3.2.4 Experiment 3.9: Discussion  

Experiment 3.9 supported the first null hypothesis that timing of changes in VWC will have 

no significant effect on splitting in radishes. However, there was an indication of a trend, 

with radish plants which were irrigated throughout the experiment having the largest 

number of split radishes and radish plants which were given an early period of deficit 

irrigation having the fewest split radishes. This is supported in part by the research of 

Sørensen (1997) who found timing of irrigation had a significant effect on splitting in 

carrots. Similar to the results from this experiment, Sørensen (1997) found high levels of 

splitting in carrots which were irrigated to high water contents throughout growth. 

Sørensen (1997) also found early periods of drought led to high levels of splitting; this was 

not tested in this experiment as all radishes were given irrigation in the first week to 

ensure there was even germination between treatments. The shorter growth period of 

radishes compared to carrots makes it more difficult to have distinctly different VWCs 

during early, mid and late growth. Again, similar to the results from this experiment, 

Sørensen (1997) also found a period of drought during mid-growth resulted in a low 

number of split carrots. Sørensen (1997) attributed the differences in the effects of water 

content at different growth stages to the different modes of enlargement which occur 

during different growth stages. During mid-growth when a period of drought stress 

reduces splitting, carrot growth is created by rapid radial root expansion caused by cell 

enlargement whereas during early growth, when drought leads to high levels of splitting, 

carrot growth is characterised by cell division. Similar differences may also be true for 

radishes. Further investigation with greater numbers of replicates and more refined 

methodology are required to determine if the trends observed in this experiment are 

statistically significant or not.  

The second null hypothesis that timing of irrigation and water availability will have no 

significant effect on the growth rate and physiology of radish plants was rejected by the 

results from this experiment. Irrigation later in growth and in the case of this experiment, in 

the fourth and fifth week, appears to determine growth rate and consequently as the 

radishes were harvested at the same time, the width at harvest and after storage, weight 
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at harvest and after storage and the water content after storage. There was a significant 

difference between G1 and G3 when compared to G2 and G4 but no significant difference 

between G1 and G3 which were watered to field capacity in the last two weeks or G2 and 

G4 which had deficit irrigation in the last two weeks. In contradiction, total irrigation over 

the lifetime of the radish and timing of water availability appears to affect the hypocotyl 

length and the dry biomass. For these two factors, the hypocotyl length and dry biomass 

was greatest for G1 and least for G4 suggesting the total amount of irrigation was 

important. However, the second largest was G2 then followed by G3. As G2 received less 

water in total than G3 these results suggest it is timing of water availability in combination 

with total water availability which is important and radishes are more sensitive to drought 

later in growth. High water content throughout growth results in the most growth and high 

water content later in growth result in the second largest amount of growth in terms of 

hypocotyl length and dry biomass.  

The effects of water content on leaf number are less easy to interpret and do not appear 

to be solely dependent on VWC as they do not follow a clear pattern in relation to mean 

water content. The plants which received a period of deficit irrigation followed by watering 

to field capacity had the largest number of leaves followed by the treatment which was 

irrigated to field capacity for the duration of the experiment. After this, the treatment which 

received deficit irrigation for the duration of the experiment had the second lowest number 

of leaves and finally the treatment which received irrigation to field capacity followed by 

deficit irrigation had the fewest leaves. Work on carrots (Hutmacher et al. 1990) has been 

shown both prolonged and sudden decreases in water availability result in reductions in 

leaf area, therefore it would be expected the treatment which was irrigated to field 

capacity for the duration of the experiment would have the greatest number of leaves and 

the treatment which received deficit irrigation for the duration of the experiment would 

have the fewest leaves. However, it would appear the radish plants which received a 

period of deficit irrigation followed by a period of irrigation were conditioned to grow under 

dry conditions and then were able to exceed the growth rate late deficit of the radish 

plants which received irrigation for the duration of the experiment. Similar responses to an 



236 
 

increase in water availability after a period of stress have been observed in Nitella cells, 

corn plants, sugar beets, tomato, alfalfa, barley, corn and the stems of pine seedlings 

(Kramer 1983), where growth is very rapid after the stress is alleviated. This is often 

termed stored or compensatory growth. It is thought metabolites are accumulated during 

the period of stress while cell enlargement is inhibited by lack of turgor. Once turgor is 

restored these metabolites are thought to then be available for rapid cell wall synthesis 

and other processes associated with growth. 

Similarly, the radishes which were watered to field capacity and then received deficit 

irrigation had fewer leaves than the radishes which received deficit irrigation for the 

duration of the experiment despite receiving more water in total. Again it would appear the 

plants had been conditioned to grown under environments experienced early in growth 

and reacted more severely to the decrease in water compared to plants which had 

experienced it from early in growth. It is thought if water stress develops slowly, osmotic 

adjustment may occur (Kramer 1983). This enables growth to continue at lower water 

potentials than would otherwise be possible. Osmotic adjustment has been shown to 

occur in leaves of wheat plants (Kramer 1983) and may explain the results observed in 

this experiment.   

There were several problems observed with the methodology used for this experiment 

which will need to be improved in future experiments. Firstly the addition of sand made it 

difficult to achieve similar conditions in all pots. The sand appeared to be mobile within the 

compost when it was watered heavily resulting in an uneven mix in some pots. Secondly, 

the depth of the pots was 183 mm. In Experiment 3.9, VWC was calculated from GWC for 

the whole pot. It became apparent that within the taller pots there was a gradient of water 

contents down the pot and as it was unclear where the radishes were taking water from. 

Therefore, with the taller pots it was impossible to determine exactly what the water 

availability to the radish plants was. It is simpler and quicker to measure the VWC using a 

Theta Probe (Delta T Devices, Cambridge, UK). However, the length of the prongs is only 

60 mm which would only give you the VWC for the surface of the pot. Decreasing the pot 
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depth would allow more accurate measurements of the conditions the radish plant was 

experiencing.  
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3.5.3.3 Experiment 3.10: Experiment investigating the effects of timing of 

changes in VWC on the susceptibility of radishes to growth splits 

3.5.3.3.1 Experiment 3.10: Introduction 

The design for Experiment 3.10 is a refinement of Experiment 3.9 in which a non-

significant trend was observed suggesting high levels of splitting were associated with 

high VWC in the second and third weeks and that yield was determined by high VWC in 

the final two weeks prior to harvest. In Experiment 3.10 several improvements to the 

method which had been used in Experiment 3.9 were made. The number of replications 

was increased from six to 32 and the number of radishes in a pot was increased from six 

to ten plants. The substrate which the plants were grown in was changed from a 50:50 

mix of sand and John Innes No. 2 to 100% John Innes No. 2. The depth of the pots was 

decreased from 183 to 60 mm which is the same length as the Theta Probe prongs (Delta 

T Devices, Cambridge, UK) which were used to measure the volumetric water content 

during the experiment. 

Aim: To determine if: 

 Timing of changes in VWC have an effect on splitting in radishes 

 Timing of changes in VWC have an effect on the growth rate and physiology of 

radishes 

Null hypothesis:  

1. Timing of changes in VWC will have no significant effect on hypocotyl splitting in 

radishes 

2. Timing of changes in VWC will have no significant effect on the growth rate and 

physiology of radishes 
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3.5.3.3.2 Experiment 3.10: Materials and Methods  

Planting date: Seeds were planted on 19.02.2013, this was Day 1. Treatments 

commenced on Day 8 (26.02.2013).  

Glasshouse conditions: In the glasshouse the mean temperature was 16.8°C with a 

range of 4.7°C to 30.5°C. The mean relative humidity was 60.6% ranging between 29.5% 

and 100%. 

Experiment duration: Plants were harvested in block order on Days 29 (19.03.2013) and 

30 (20.03.2013). 

Treatments: The experimental period, which commenced after an initial seven day 

establishment period, was divided into two treatment periods. The first treatment period 

lasted for 11 days and the second treatment period lasted for 11 or 12 days depending on 

block. There were three treatment groups. The first group (W/W) received irrigation for the 

duration of the experiment, the second group (D/W) received no irrigation for the first 

treatment period and irrigation for the final treatment period, the third group (W/D) 

received no irrigation for the initial treatment period and irrigation for the final treatment 

period of the experiment (Table 3-87).  

 

Table 3-87 Irrigation regimes for the three treatment groups used in Experiment 3.10 

Treatment Day 8 to 18 Day 19 to harvest 

W/W Irrigation Irrigation 

D/W No Irrigation Irrigation 

W/D Irrigation No Irrigation 

 

Replication: n = 34. Pots were arranged in a randomised block design (Figure 3-37) 

which was generated by GenStat for Windows 15th Edition (VSN International 2011).  
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Block       Block 

1 W/D D/W W/W W/D W/W D/W 18 

2 D/W W/W W/D W/W W/D D/W 19 

3 W/W D/W W/D D/W W/W W/D 20 

4 D/W W/W W/D D/W W/W W/D 21 

5 W/W W/D D/W D/W W/W W/D 22 

6 W/D W/W D/W W/D W/W D/W 23 

7 D/W W/D W/W W/W D/W W/D 24 

8 W/W D/W W/D W/D W/W D/W 25 

9 D/W W/D W/W W/W D/W W/D 26 

10 W/D W/W D/W W/D W/W D/W 27 

11 W/D W/W D/W W/D D/W W/W 28 

12 D/W W/W W/D W/D W/W D/W 29 

13 D/W W/D W/W D/W W/W W/D 30 

14 W/W W/D D/W D/W W/W W/D 31 

15 W/D D/W W/W W/W D/W W/D 32 

16 D/W W/D W/W D/W W/D W/W 33 

17 D/W W/D W/W W/W D/W W/D 34 

Figure 3-37 Randomised block design of pots on glasshouse bench for Experiment 3.10. 

Blue lines represent irrigation tape. W/W received irrigation for the duration of the 

experiment, D/W received no irrigation for the first treatment period and irrigation for the 

final treatment period, W/D received no irrigation for the initial treatment period and 

irrigation for the final treatment period of the experiment 

 

VWC: VWC of all pots was measured three times a week. The maximum hypocotyl 

diameter was measured for each radish. Differences in VWC were analysed when the 

seeds were planted, at the start of treatments, at the end of the first treatment and mid-
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way through the second treatment to ensure all treatments received the same conditions 

during establishment and to coincide with the other measurements taken during growth.  

Measurements at the end of the first treatment period (Day 18): After the first 

treatment period and before treatments were changed the number of leaves in each pot 

was counted and the leaf temperature from one leaf per pot was measured. The leaves 

were too small to measure stomatal conductance. The hypocotyl width was measured of 

one plant in the same position from each pot; only the part of the hypocotyl which was 

visible above the soil surface was measured, the compost was not disturbed around the 

radish hypocotyl.  

Measurements on Day 22: On Day 22 stomatal conductance and hypocotyl width was 

measured as described above.  

Measurements on Day 24: On Day 24 the number of leaves, the leaf temperature, 

stomatal conductance and hypocotyl width were measured. 

Measurements before harvest (Day 28): On Day 28 hypocotyl width, the number of 

leaves, leaf temperature and stomatal conductance were measured.  

Measurements at harvest: Mean temperature in the glasshouse at harvest was 24.2°C 

on 19.03.2013 and 22.9°C on 20.03.2013). At harvest, the maximum hypocotyl width was 

measured not just the hypocotyl which was exposed above the surface of the compost as 

had been measured previously.  

Marketable yield: At harvest, marketable yield was calculated. This is the weight of 

radishes which are of a commercial size and have no splits. Uniformity in radish diameter 

is desirable as supermarkets typically require radishes which are have widths between 18 

mm and 32 mm, anything outside of this range is too small or too large for commercial 

sale. 

Measurements after storage: The controlled environment cabinet achieved an average 

temperature of 4.3°C with a range between 3.9°C and 5.1°C. The average relative 

humidity was 98.6% with a range between 94.3% and 100%. 

Plants were removed from storage after two days of storage on 21 and 22.03.2013 

depending on which day they had been harvested.  
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Statistical analysis: All data was analysed using GenStat for Windows 15th Edition (VSN 

International 2011). 

Using a two-tailed, unpaired Student’s T-test assuming equal variance, a comparison was 

made between the VWC at the end of the first treatment period for treatments W/W and 

W/D. there were 34 observations for each treatment and 66 degrees of freedom. 

Using general linear regression the number of split radishes per tray for treatments W/W 

and D/W were correlated with the mean hypocotyl water content of the radishes in that 

tray.  

For all other analysis there were three treatment groups therefore a T-test was not 

appropriate for analysis. If data was parametric as confirmed by Shapiro-Wilk test for 

normal distribution it was analysed using ANOVA. Where data was not normally 

distributed with or without transformation the non-parametric Friedman’s test was used 

(Table 3-88). When a P value of less than 0.05 was observed a Tukey test was used for 

parametric data and Mann-U Whitney test was used for non-parametric data to determine 

which results were different from each other.  
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Table 3-88 Method of analysis for different factors measured in Experiment 3.10. Method 

of analysis (parametric or non-parametric) was decided according to normal distribution as 

determined by the Shapiro-Wilk test 

Measurement Shapiro-Wilk Analysis used 

Seeds planted VWC <0.001 Friedman’s test 

Day 9 VWC <0.001 Friedman’s test 

Day 18 width <0.001 Friedman’s test 

Day 18 leaf temperature <0.001 Friedman’s and Mann-U Whitney test 

Day 18 number of leaves <0.001 Friedman’s and Mann-U Whitney test 

Day 22 width 0.228 ANOVA and Tukey test 

Day 22 leaf temperature <0.001 Friedman’s and Mann-U Whitney test 

Day 22 stomatal conductance 0.153 ANOVA and Tukey test 

Day 24 width 0.379 ANOVA and Tukey test 

Day 24 leaf temperature <0.001 Friedman’s and Mann-U Whitney test 

Day 24 stomatal conductance <0.001 Friedman’s and Mann-U Whitney test 

Day 24 number of leaves 0.178 ANOVA and Tukey test 

Day 25 VWC <0.001 Friedman’s and Mann-U Whitney test 

Harvest splits <0.001 Friedman’s and Mann-U Whitney test 

Harvest width <0.001 Friedman’s and Mann-U Whitney test 

Harvest plant weight <0.001 Friedman’s and Mann-U Whitney test 

Harvest hypocotyl weight <0.001 Friedman’s and Mann-U Whitney test 

Harvest leaf weight <0.001 Friedman’s and Mann-U Whitney test 

Harvest leaf area <0.001 Friedman’s and Mann-U Whitney test 

Storage hypocotyl weight <0.001 Friedman’s and Mann-U Whitney test 

Storage hypocotyl water content <0.001 Friedman’s and Mann-U Whitney test 

Storage hypocotyl dry biomass <0.001 Friedman’s and Mann-U Whitney test 
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Skeleton ANOVA:  

Table 3-89 Skeleton ANOVA for Day 22 stomatal conductance, Day 24 stomatal 

conductance, Day 24 width, Day 24 number of leaves 

Source of variation df 

Block 16 

Treatment 2 

Residual 32 

Total 50 

 

Table 3-90 Skeleton ANOVA for number of split radishes, VWC, Day 18 width, Day 18 leaf 

temperature, Day 18 number of leaves, Day 22 Width, Day 22 leaf temperature, Day 24 

leaf temperature, leaf area at harvest 

Source of variation df 

Block 33 

Treatment 2 

Residual 66 

Total 101 

 

 

Table 3-91 Skeleton ANOVA for linear regression of number of split radishes per tray and 

mean hypocotyl water content per tray for treatments W/W and D/W. W/W received 

irrigation for the duration of the experiment, D/W received no irrigation for the first 

treatment period and irrigation for the final treatment period 

Source of variation df 

Regression 1 

Residual 66 

Total 67 
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3.5.3.3.3 Experiment 3.10: Results  

Measurements during growth 

VWC:  

 

Figure 3-38 The VWC of pots undergoing different irrigation treatments. Bars represent 

the standard error. W/W received irrigation for the duration of the experiment, D/W 

received no irrigation for the first treatment period and irrigation for the final treatment 

period, W/D received no irrigation for the initial treatment period and irrigation for the final 

treatment period of the experiment 

 

There was no significant difference in VWC between treatments when the seeds were 

planted (P=0.385), at the start of the first treatment period (P=0.092) or between the W/W 

and W/D treatments (P=0.223) at the end of the first treatment period. The VWC of D/W 

was significantly (P<0.001) dryer by Day 9 when the first substrate moisture readings 

were taken after treatments had begun on Day 8. The VWC for D/W continued to 

decrease throughout the first treatment period as the growing medium dried-down. The 

VWC of W/D fell for the duration of the second treatment period. On Day 25, mid-way 
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through the second treatment period, there was a significant difference in the VWC for all 

treatments (P<0.001) W/W had a VWC of 68.86%, D/W was 63.94% and W/D was 

11.14%. The VWC for W/D ultimately fell below the minimum VWC which D/W achieved in 

the first treatment period, D/W dried down to a minimum VWC of 15.1% compared to a 

minimum of 6.6% for W/D. By the end of the experiment D/W had not rehydrated to the 

same level as W/W, having a mean VWC of 63.2% compared to a mean VWC of 68.1% 

for W/W (Figure 3-38). The mean VWC for W/W was 64.1%, for D/W was 49.0% and for 

W/D was 47.3%.   

Hypocotyl width:  

Table 3-92 Width of exposed hypocotyl above the compost surface of radish grown under 

different irrigation treatments. W/W received irrigation for the duration of the experiment, 

D/W received no irrigation for the first treatment period and irrigation for the final treatment 

period, W/D received no irrigation for the initial treatment period and irrigation for the final 

treatment period of the experimentDay 18 was before the second treatment started, Day 

22 and Day 24 were mid-way through the second treatment and Day 28 was before 

harvest (n=34) 

Treatment Day 18 Day 22 Day 24 Day 28 

W/W 5.85 14.13b1 18.65b 24.06b 

D/W 4.72 12.25a 15.41a 22.46b 

W/D 5.35 13.04ab 13.86a 11.39a 

P 0.085 0.039 <0.001 <0.001 

LSD  1.444 2.231  

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values. Least significant difference (LSD) available for results analysed 

using ANOVA only.  

 

The width of the radish was affected by VWC but there was a delay (Table 3-92). On Day 

18, at the end of the first treatment period, there was no significant difference in the widths 

of the radish from each group regardless of the different treatments. On Day 22, midway 
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through the second treatment, the W/W treatment group had significantly larger (P=0.039) 

mean widths than D/W even though they were both receiving irrigation at this point. 

Treatment D/W was not significantly different from either of the other treatment groups 

despite not receiving any irrigation at this point. On Day 24 the mean width of radishes 

grown with treatment W/W was significantly larger than either W/D or D/W which had both 

received periods without irrigation. However, by the end of the experiment the D/W 

treatment group had rapidly increased in size and there was no longer a significant 

difference in width between W/W and D/W. Treatment W/D decreased in width between 

Day 24 and Day 28 (Figure 3-39) resulting in hypocotyls from this treatment being 

significantly smaller than hypocotyls in the other two treatment groups. 

 

 

Figure 3-39 The mean hypocotyl widths (mm) of radishes grown under different irrigation 

treatments. Bars represent standard error for each treatment. W/W received irrigation for 

the duration of the experiment, D/W received no irrigation for the first treatment period and 

irrigation for the final treatment period, W/D received no irrigation for the initial treatment 

period and irrigation for the final treatment period of the experiment 
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Number of leaves:  

Table 3-93 Mean number of leaves per pot (n=10) for radishes grown under different 

irrigation regimes. W/W received irrigation for the duration of the experiment, D/W 

received no irrigation for the first treatment period and irrigation for the final treatment 

period, W/D received no irrigation for the initial treatment period and irrigation for the final 

treatment period of the experiment. Measurements before irrigation Treatment 2 (Day 18), 

mid-way through Treatment 2 (Day 24) and before harvest (Day 28) (n=34)  

Treatment Day 18 Day 24 Day 28 

W/W 23.64b1 35.46b 47.47b 

D/W 20.32a 32.56a 46.03a 

W/D 23.35b 35.91b 44.56a 

P <0.001 <0.001 <0.001 

LSD  1.902  

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values. Least significant difference (LSD) available for results analysed 

using ANOVA only 

 

The number of leaves was affected by irrigation regime. At the end of the first treatment 

the plants which had been exposed to the wet treatment had significantly (P<0.001) more 

leaves than the plants which had been given a dry treatment. Midway through the second 

treatment the pattern remained the same but by harvest the W/W treatment group plants 

had significantly more leaves than either of the other groups (Table 3-93).   

Unlike hypocotyl width the number of leaves continued to increase for all treatments for 

the duration of the experiment (Figure 3-40). 
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Figure 3-40 The mean number of leaves on 10 radish plants in a tray grown under 

different irrigation treatments. W/W received irrigation for the duration of the experiment, 

D/W received no irrigation for the first treatment period and irrigation for the final treatment 

period, W/D received no irrigation for the initial treatment period and irrigation for the final 

treatment period of the experiment 
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Leaf temperature:  

Table 3-94 The mean leaf temperature (°C) for radish plants grown under different 

irrigation regimes. W/W received irrigation for the duration of the experiment, D/W 

received no irrigation for the first treatment period and irrigation for the final treatment 

period, W/D received no irrigation for the initial treatment period and irrigation for the final 

treatment period of the experiment. Day 18 was before Treatment 2, Day 24 was mid-way 

through the second treatment, Day 28 was before harvest (n=34) 

Treatment Day 18 Day 24 Day 28 

W/W 17.79a1 17.86a 16.28a 

D/W 20.60b 17.20a 16.28a 

W/D 17.55a 21.32b 21.28b 

P <0.001 <0.001 <0.001 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values. Least significant difference (LSD) available for results analysed 

using ANOVA only. 

 

Leaf temperature (°C) was affected by irrigation regime. At the end of the first treatment 

plants which had been exposed to a wet treatment had a significantly (P<0.001) (Table 

3-94) lower temperature on average than plants which had been exposed to a dry 

treatment. Within five days after treatments changed the plants which changed from a dry 

to wet treatment decreased in temperature and plants which had been exposed to a wet 

environment and were now exposed to a dry treatment had increased in temperature. 

Plants which were given a wet treatment for the start and end of the experiment had a 

more constant leaf temperature throughout the experiment. By the end of the second 

treatment the W/W and D/W plants were significantly (P<0.001) cooler than the W/D. 
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Stomatal conductance:  

Table 3-95 Effects of irrigation treatment on stomatal conductance (mmol m-2 s-1). W/W 

received irrigation for the duration of the experiment, D/W received no irrigation for the 

first treatment period and irrigation for the final treatment period, W/D received no 

irrigation for the initial treatment period and irrigation for the final treatment period of the 

experiment (n=34) 

Treatment Day 22 Day 24 Day 28  

W/W 383.2b 544.9b 274.6b1  

D/W 337.0ab 501.4b 389.2c  

W/D 280.6a 68.5a 17.2a  

P 0.003 <0.001 <0.001  

LSD 56.2    

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values. Least significant difference (LSD) available for results analysed 

using ANOVA only. 

 

Irrigation had an effect on stomatal conductance (mmol m-2 s-1). On Day 22 the W/W 

treatment had the greatest stomatal conductance suggesting these plants were the least 

stressed and W/D had the lowest stomatal conductance suggesting these plants were the 

most stressed which is to be expected as they were in a drying down phase at this point. 

D/W plants had a stomatal conductance mid-way between the other two treatment groups 

suggesting they had not entirely recovered from the period of drying they had 

experienced. On Day 24 results were as expected, the two treatments which were 

receiving irrigation, W/W and D/W had a stomatal conductance which was not significantly 

different but is significantly greater than the plants which were in a drying phase (W/D). By 

Day 28 all three treatment groups had a different stomatal conductance. Treatments D/W 

had the greatest stomatal conductance, followed by W/W and finally by W/D which had a 

much smaller stomatal conductance than the other two groups suggesting these plants 

were experiencing drought stress.  
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Measurements at harvest 

Table 3-96 Effects of irrigation treatment on splitting and plant size at harvest. W/W 

received irrigation for the duration of the experiment, D/W received no irrigation for the 

first treatment period and irrigation for the final treatment period, W/D received no 

irrigation for the initial treatment period and irrigation for the final treatment period of the 

experiment (n=34) 

Treatment Split 

radish 

per tray 

(max=10) 

Hypocotyl 

width 

(mm) 

Plant 

weight 

(g) 

Hypocotyl 

weight (g) 

Leaf 

weight 

(g) 

Leaf 

area 

(cm2) 

W/W 4.2b1 27.3b 185.6c 116.0c 65.99c 102.42c 

D/W 1.0a 25.9b 139.8b 95.7b 44.67b 67.25b 

W/D 3.6b 11.2a 25.6a 13.5a 10.20a 35.74a 

P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

LSD 0.770      

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values. Least significant difference (LSD) available for results analysed 

using ANOVA only. 

 

Growth splits: The mean number of split radish per tray at harvest was significantly 

(P<0.001) lower for treatment D/W (9.7%) than either W/W or W/D (42 and 36% 

respectively) (Table 3-96).  

Hypocotyl width: Both W/W (mean width of 27.3 mm) and D/W (mean width of 25.9 mm) 

radishes were significantly (P<0.001) larger in width than the W/D (mean width of 11.2 

mm) radishes at harvest. There was no significant difference in width between W/W and 

D/W radishes. However, D/W radishes were more uniform in shape and diameter than the 

other two treatments (Figure 3-41).  
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Figure 3-41 Ten radishes harvested from one experimental tray from treatment W/W (a) 

and D/W (b). The radishes from W/W (a) appeared to be less uniform than the radish from 

D/W (b). W/W received irrigation for the duration of the experiment, D/W received no 

irrigation for the first treatment period and irrigation for the final treatment period 

 

Radishes below 18 mm in width and above 32 mm in width are outside of the typical 

commercial range in the UK. Commercial radishes are usually graded into two groups, 

small radishes are 18 to 25 mm and large radishes are 25 to 32 mm. In this experiment, 

91% of radishes from D/W were of commercial width compared to 67% of W/W and 0% of 

W/D (Figure 3-42).  

a 

b 
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Figure 3-42 Distribution of sizes of radishes from different irrigation treatments. W/W 

received irrigation for the duration of the experiment, D/W received no irrigation for the 

first treatment period and irrigation for the final treatment period, W/D received no 

irrigation for the initial treatment period and irrigation for the final treatment period of the 

experiment 

 

Plant weight: The radish plant weight at harvest was significantly different (P<0.001) for 

all treatments. Plant weight was heaviest for treatment W/W with a mean weight of 185.6 

g per tray, D/W radishes were second heaviest with a mean weight of 139.8 g per tray and 

W/D radishes were the lightest with a mean weight of 25.6 g per tray (Table 3-96). 

Hypocotyl weight: Following the same pattern as plant weight, the trimmed hypocotyl 

weight at harvest was significantly different (P<0.001) for all treatments. Hypocotyl weight 

was heaviest for treatment W/W with a mean weight of 116.0 g per tray, D/W radishes 

were second heaviest with a mean weight of 95.7 g per tray and W/D radishes were the 

lightest with a mean weight of 13.4 g per tray (Table 3-96).  

Leaf weight: Again following the same pattern, the leaf weight at harvest was significantly 

different (P<0.001) for all treatments. Leaf weight was heaviest for treatment W/W with a 
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mean weight of 65.99 g per tray, D/W radishes were second heaviest with a mean weight 

of 44.67 g per tray and W/D radishes were the lightest with a mean weight of 10.20 g per 

tray (Table 3-96). 

Leaf area: The leaf area at harvest also followed a similar pattern and was significantly 

different (P<0.001) for all treatments. Leaf area was greatest for treatment W/W with a 

mean leaf area of 102.42 cm2, D/W radishes were second largest with a mean leaf area of 

67.25 cm2 and W/D radishes were the smallest with a mean leaf area of 35.74 cm2 (Table 

3-96). 

Marketable yield: Marketable yield is the weight of saleable radish and can be roughly 

calculated from the data gathered in this experiment (Table 3-97). The calculated 

marketable yield for W/D was greatest at 78.6 g per tray, the marketable yield for W/W 

was 45.1 g per tray and there was no marketable yield for treatment W/D as the radishes 

were all less than 18 mm in width. Commercially, the minimum acceptable hypocotyl width 

is 18 mm.   

 

Table 3-97 Marketable yield calculations for radishes from different irrigation treatment 

groups. Marketable yield calculations presume radish splitting is evenly distributed 

throughout the different sizes and the hypocotyl weight is evenly spread across the 

different widths. W/W received irrigation for the duration of the experiment, D/W received 

no irrigation for the first treatment period and irrigation for the final treatment period, W/D 

received no irrigation for the initial treatment period and irrigation for the final treatment 

period of the experiment 

Treatment Hypocotyl weight 

(g) = W 

Commercial size 

(%) = C 

Not split 

(%) = S 

Marketable yield (g) 

= W*(C/100)*(S/100) 

W/W 116.0 67.25 57.94 45.08 

D/W 95.7 91.15 90.29 78.64 

W/D 13.4 0 64.12 0 
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Measurements after storage 

Table 3-98 Hypocotyl weight, water content and dry biomass after two days of storage in a 

controlled environment. W/W received irrigation for the duration of the experiment, D/W 

received no irrigation for the first treatment period and irrigation for the final treatment 

period, W/D received no irrigation for the initial treatment period and irrigation for the final 

treatment period of the experiment (n=34) 

Treatment Split radish per 

tray (max = 10) 

Hypocotyl 

weight (g) 

Hypocotyl dry 

biomass (g) 

Hypocotyl water 

content (%) 

W/W 4.2b1 112.9c 6.043c 94.66b 

D/W 1.0a 92.99b 4.134b 95.54b 

W/D 3.6b 13.06a 2.710a 78.70a 

P <0.001 <0.001 <0.001 <0.001 

LSD 0.770    

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values. Least significant difference (LSD) available for results analysed 

using ANOVA only. 

 

Harvest splits: There were no additional splits expressed during storage. 

Hypocotyl weight: The weight of the trimmed hypocotyls was significantly (P<0.001) 

different for all treatment groups after storage. The W/W radishes which received the most 

water were the heaviest, followed by the D/W radishes which were irrigated prior to 

harvest and finally the radishes which were in a drying period prior to harvest were the 

lightest. After drying the hypocotyls at 105°C to a constant weight the dry biomass (g) was 

also found to be significantly (P<0.001) different for all treatment groups (Table 3-98). Like 

fresh weight, the dry biomass was greatest for the W/W radishes and least for the W/D 

radishes. 

Hypocotyl water content: As a percentage of the total weight, the water content of the 

hypocotyls at harvest was significantly (P<0.001) lower in the W/D treatment (78.7%) 

compared to both the W/W (94.7%) and D/W (95.5%) treatments (Table 3-98).  
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For the W/W and D/W treatments a significant (P<0.001) correlation expressed by the 

equation: y = -21.24x + 2046 (R2=0.39) was found linking mean hypocotyl water content 

with the percentage of split radishes per tray (Figure 3-43).  

 

 

Figure 3-43 Percentage of split radishes per tray for trays with different mean hypocotyl 

water contents (%)  

y = -21.241x + 2046 
R² = 0.39 
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3.5.3.3.4 Experiment 3.10: Discussion  

VWC: Differences in minimum substrate VWC for the dry treatment during the first and 

second dry period were observed. Treatment D/W which was dry in the first half of the 

experiment reached a minimum VWC of 15.1% whereas treatment W/D which was dry for 

the second treatment period reached a minimum VWC of 6.6%. These results were 

expected and can be explained by greater transpiration of the more developed stage of 

plants in the second treatment period of the experiment. By the end of the second dry 

treatment period, W/D plants had 125% more leaves on average than the D/W plants did 

at the end of the earlier dry period.   

The substrate VWC of the trays in the D/W treatment had not increased compared to the 

VWC of the W/W trays by the end of the experiment. This can be explained by both 

hysteresis and the high humus content of the substrate. Hysteresis can result in 

substrates at the same water potential having different soil moisture content depending on 

whether they are wetting or drying substrates. Wetting substrates have lower moisture 

than drying substrates at the same water potential which is in keeping with results from 

this experiment. John Innes No.2 has high humus content as it contains plant based 

material in the form of sphagnum moss peat. The initial dry treatment may have resulted 

in plasmolysis of some of the cells in the plant material reducing the water holding 

capacity of the substrate.  

End of treatment 1 (Day 18): At the end of the first treatment period before treatments 

were changed the leaf temperature, maximum exposed hypocotyl width and the number 

of leaves per pot were recorded. There was no significant (P=0.085) difference in the 

width of the radishes but there was a significant difference in the leaf temperature 

(P<0.001) and the number of leaves (P<0.001). Radishes which had been given a wet 

treatment were significantly (P<0.001) cooler than radish which had been given a dry 

treatment suggesting the radishes which were being grown under dry treatments were 

closing their stomata to reduce water loss through transpiration and as a result increasing 

their temperature. The number of leaves on the radishes in the dry treatment was 

significantly fewer than the number of leaves for the wet treatments. This would suggest 
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growth rate was being limited by available water content in the dry treatment. At this point 

in the experiment, there was no significant difference in any of the factors measured 

between the two groups of plants which had received the wet treatment. This is as would 

be expected as there had been no differences in the irrigations treatments between the 

W/W and W/D treatment groups up to this point.  

Early treatment 2 (Day 22): By Day 22, the second null hypothesis had been rejected as 

timing of irrigation was having a significant effect on hypocotyl width and therefore growth 

rate. Despite there being no difference in hypocotyl width on Day 18 when the treatments 

changed, by Day 22 the earlier period of drought appeared to be having an effect on the 

hypocotyl width of the plants from the D/W treatment as these were significantly smaller 

than the W/W treatment. The width of the plants from the W/D treatment was midway 

between the widths of the other two treatments but not significantly different from either of 

them suggesting the second drought period was beginning to have an effect on limiting 

hypocotyl expansion rate. The stomatal conductance was affected more rapidly than 

hypocotyl expansion by changes in available water content and mirrored the VWC of the 

compost. W/W had the greatest VWC (Day 21 VWC = 66.7%, Day 23 VWC = 67.1%) and 

the greatest stomatal conductance, D/W had a stomatal conductance which was between 

the other two groups and not significantly different from either and a VWC between the 

other two treatments (Day 21 VWC = 60.0%, Day 23 VWC = 63.0%) and W/D had the 

lowest stomatal conductance and the driest compost (Day 21 VWC = 41.3%, Day 23 VWC 

= 17.1%). These results are unexpected as it is usually considered that cell growth is 

more sensitive to water stress than stomatal opening (Kramer 1983). However, the 

responsiveness of stomata to water stress varies greatly between species, environmental 

conditions, leaf age and past treatment making it difficult to generalise (Kramer 1983). 

Late treatment 2 (Day 24): On Day 24 the stomatal conductance again mirrored the 

VWC. The highest stomatal conductance was observed for W/W and D/W which were 

receiving irrigation. W/D had the lowest VWC as it was in a period of drying and the plants 

had the lowest stomatal conductance. Leaf temperature followed the same pattern as 
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stomatal conductance. This is as would be expected if transpiration rates were being 

reduced by the reduction in stomatal conductance and thus increasing leaf temperature.  

The hypocotyl width was significantly greater for the W/W plants than either of the 

treatments which had received a period of drying. This suggests the plants from the W/D 

treatment were responding to water stress as the growth rate of the hypocotyls had 

slowed. The plants from the D/W treatment were increasing at a steady rate and do not 

appear to have been limited by the earlier period of water stress. This is in contradiction to 

the number of leaves which remains to be significantly fewer for the D/W treatment 

compared to the W/W and W/D treatments which suggests radish leaves are slower to 

respond to changes in available water content than radish hypocotyls.  

End of treatment 2 (Day 28): Before plants were harvested the stomatal conductance, 

leaf temperature, maximum exposed hypocotyl width, number of leaves and leaf area 

were measured.  

Between Day 24 and Day 28, the rate of hypocotyl expansion was greatest for D/W as 

there was no significant difference in the width of the W/W and D/W treatments at harvest 

when previously the W/W plants had been larger than the D/W plants. This finding is in 

keeping with the previous experiment where plants which had received a period of 

drought grew rapidly when the stress was alleviated. It was thought this may have been 

due to compensatory growth and results from this experiment are in accordance with this 

theory. At harvest W/W and D/W hypocotyls were both significantly (P<0.001) larger than 

the W/D treatment radish hypocotyls which had decreased in size since Day 24. The 

decrease in size suggests these plants are experiencing severe water stress and the 

plants are wilting.  

There was no significant difference in the number of leaves in the W/D and D/W radish at 

harvest but these both had significantly (P<0.001) fewer leaves than the W/W radish. This 

is in contrast to the previous experiment where the plants which received a period of 

drying followed by irrigation had the largest number of leaves at harvest. However, the 

number of leaves for D/W increased at a faster rate in the final few days compared to 

W/W and it may be that if the plants had been harvested later then a similar pattern to the 



261 
 

previous experiment would have been observed. In contrast to leaf number, the leaf area 

at harvest was significantly (P<0.001) different between all treatment groups. The 

radishes grown with W/W treatment had on average the greatest leaf area (102.4 cm2), 

the radish grown with D/W treatment were second largest on average (67.3 cm2) and the 

W/D radish had the smallest leaf area on average (35.7 cm2). This shows that although 

there was no significant difference in the number of leaves between W/W and D/W there 

was a difference in the size of the leaves between treatments and this pattern followed the 

amount of irrigation the plants received.  

There was no difference in leaf temperature between the W/W and D/W treatments but 

these were both significantly (P<0.001) lower than the leaf temperature for the W/D 

treatment. These results suggest the leaf temperature is being determined by available 

water content as the two treatments which were being irrigated had a lower temperature 

than the treatment which was drying down. Unexpectedly, the stomatal conductance did 

not follow the same pattern as leaf temperature and it was significantly (P<0.001) different 

between treatments; it was greatest for the D/W treatment and lowest for the W/D 

treatment. However, if the amount of gas which is being transpired is calculated by 

multiplying the stomatal conductance by leaf area, the rates for the two treatments which 

are receiving irrigation are similar (W/W = 281.25 mmol s-1, D/W = 261.74 mmol s-1) and 

the rate for the treatment which is not receiving irrigation was far lower (W/D = 6.15 mmol 

s-1). Water loss as a result of transpiration follows the pattern of leaf temperature. The 

higher stomatal conductance for D/W compared to W/W may have been due to a priming 

effect caused by the earlier period of drought stress which the D/W plants experienced. 

Some plants which have experienced drought stress in the past have been shown to have 

reduced sensitivity to abscisic acid (ABA) and increased water loss due to transpiration 

(Bruce et al. 2007).   

Growth splits: The first null hypothesis was rejected as the amount of splitting in radishes 

at harvest was affected by the VWC of the substrate between Day 8 and Day 18, the time 

of the first treatment period. The splitting rate was not significantly different for the plants 

in W/W and W/D, the common factor between these treatments is a higher VWC during 
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this period compared to the Treatment D/W which split less and had a lower VWC at this 

time. Although it was not recorded in this experiment, Day 18 has been shown in previous 

experiments to be approximately when Growth Stage 41 occurs. The majority of the 

hypocotyl expansion in radishes occurred after Day 18, the radish hypocotyl diameter 

increased 10 fold after Day 18. 

Marketable yield: The radish which received the D/W treatment had the greatest 

marketable yield of all three treatments despite not having the greatest mean hypocotyl 

weight, it is therefore recommended that where possible, radishes are grown with a period 

of drying up to Day 18 and then irrigation after this point. This is because the D/W 

treatment group had a greater proportion of radish of a commercial size and far fewer split 

radishes than the other two treatment groups. It should be noted the numbers are an 

indication of yield only as calculations presume the weight is even for all widths which is 

unlikely. The calculations also presume the likelihood of splitting is independent of width 

which has not been investigated in this experiment.  

Measurements after storage: The hypocotyl water content was affected by VWC in the 

final 10 days prior to harvest as Treatments W/W and D/W had hypocotyl water contents 

which were not significantly different to each other yet were significantly greater than the 

hypocotyl water content of Treatment W/D at harvest despite W/D having a similar mean 

VWC (47.3%) to D/W (49.0%). These results are as expected; reduced VWC of the 

growing medium would reduce the water availability to the plant. As the water content of 

the growing medium decreases the pressure required by the plant to extract the water 

increases and therefore less water is taken up by the plant. 

In conclusion, the results from this experiment showed timing of available water content 

was crucial in predicting splitting. The substrate VWC on Day 18, approximately Growth 

Stage 41, was important and explained far more of the splitting than the mean substrate 

VWC. Timing of water availability also had significant effects on the growth rate, 

marketable yield and physiology of the radish plants.  
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3.5.3.4 Experiment 3.11: A further experiment investigating the effects of 

timing of changes in VWC on the susceptibility of radishes to growth 

splits 

3.5.3.4.1 Experiment 3.11: Introduction 

Experiment 3.10 showed a significant difference in hypocotyl splitting of radishes when 

they are exposed to different VWC at different periods in growth. Specifically, a reduction 

in splitting was observed the when the radishes were given a period of drying between 

Day 8 and Day 18. This experiment aims to repeat the previous work to reinforce the 

results.  

Aim:  

 The aim of this experiment was to confirm if irrigation and more specifically timing of 

irrigation application has a significant effect on the rate of splitting in radishes 

Null hypothesis:  

1. Different irrigation regimes will have no significant effect on the amount of splitting at 

harvest  
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3.5.3.4.2 Experiment 3.11: Materials and Methods  

Planting date: Seeds were sown on 14.05.2013, this was Day 1, and treatments began 

on Day 7. 

Glasshouse conditions: In the glasshouse the mean temperature was 19.0°C with a 

range of 7.0°C to 41.0°C. The mean relative humidity was 68.7% ranging between 23.2% 

and 100%.  

Experiment duration: Plants were harvested in block order on Day 28 and 29. 

Treatments: Treatments began after the initial seven days of irrigation for establishment. 

There were two treatment periods each lasting 10 days. Treatment W/W received 

irrigation for the duration of the experiment; Treatment D/W received no irrigation for the 

first 10 days and irrigation for the final 10 days (Table 3-99). When irrigated plants were 

placed on capillary matting, the irrigation for the capillary matting was programmed to last 

for five minutes three times a day giving a total of 17 mm day -1. 

 

Table 3-99 Irrigation regimes for the two treatment groups used in Experiment 3.11 

Treatment Day 8 to 17 Day 18 to harvest 

W/W Irrigation Irrigation 

D/W No Irrigation Irrigation 

 

 

Replication: For the main harvest n = 34 (Figure 3-44). In addition 20 plants were grown 

under the same conditions and were used to measure stomatal resistance, leaf area and 

leaf temperature on Day 18, when treatments were changed and Day 28 when plants 

were harvested. Pots were arranged in a randomised block design (Figure 3-22) which 

was generated by GenStat for Windows 15th Edition (VSN International 2011). 
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Block 

    

Block 

1 D/W W/W D/W W/W 18 

2 W/W D/W W/W D/W 19 

3 W/W D/W W/W D/W 20 

4 D/W W/W W/W D/W 21 

5 D/W W/W D/W W/W 22 

6 D/W W/W W/W D/W 23 

7 D/W W/W D/W W/W 24 

8 D/W W/W W/W D/W 25 

9 D/W W/W W/W D/W 26 

10 W/W D/W W/W D/W 27 

11 W/W D/W W/W D/W 28 

12 D/W W/W W/W D/W 29 

13 D/W W/W D/W W/W 30 

14 W/W D/W W/W D/W 31 

15 W/W D/W W/W D/W 32 

16 D/W W/W W/W D/W 33 

17 D/W W/W D/W W/W 34 

 

Figure 3-44 Layout of experimental pots on glasshouse bench in Experiment 3.11. Blue 

lines represent the capillary tubing. Treatment W/W received irrigation for the duration of 

the experiment; Treatment D/W received no irrigation for the first 10 days and irrigation for 

the final 10 days 

 

Measurements taken during growth: On Day 18 leaf area and temperature were 

measured. On Day 28 leaf area, temperature and stomatal resistance were measured. 

Statistical analysis: All data was analysed using GenStat for Windows 15th Edition (VSN 

International 2011). 
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All data was analysed using a two-tailed, unpaired Student’s T-test assuming equal 

variance. 

Skeleton ANOVA:  

Table 3-100 Skeleton ANOVA for all analysis 

Source of variation df 

Treatment 1 

Residual 61 

Total 63 
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3.5.3.4.3 Experiment 3.11: Results  

VWC: There was no significant difference in VWC when seeds were planted. After 

treatments began the dry treatment, D/W was already significantly (P<0.001) dryer than 

W/W by the first soil moisture reading (Day 11)  and continued to dry down until irrigation 

was restarted at Day 18 when the VWC of D/W increased. The VWC of D/W was no 

longer significantly different from W/W by the second reading (Day 25) after treatments 

changed (P=0.561). The average VWC for W/W was 63.1% with a maximum of 65.5% 

and a minimum of 60.0%. The average VWC for D/W was 52.9% with a maximum of 

66.2% and a minimum of 20.2% (Figure 3-45). 

 

Figure 3-45 The VWC of pots undergoing different irrigation treatments. W/W pots (dark 

grey line) were irrigated for the duration of the experiment. D/W pots (light grey line) 

received no irrigation for 10 days between Day 8 and 18 (n=3) 

 

Stomatal resistance, leaf area and leaf temperature: By Day 18 there were no 

significant differences between treatments in the leaf area of the radishes (P=0.923). A 

significant difference was observed in leaf temperature (P=0.034) with W/W plants having 

significantly cooler leaves at 21.6°C compared to 22.5°C for D/W plants (Table 3-101).  
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Table 3-101 Measurements taken on Day 18 prior to irrigation of D/W. W/W was irrigated 

but D/W had not received any irrigation for 10 days (n=20) 

Treatment Leaf temperature (°C) Leaf area (cm2) 

W/W 21.6a1 12.8 

D/W 22.5b 12.6 

P 0.034 0.923 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values.   

 

On Day 28 there was no significant difference in the stomatal resistance (P=0.208), the 

temperature of the leaves (P=0.091) or the leaf area of the radishes (P=0.369) between 

the two treatments (Table 3-102).  

 

Table 3-102 Measurements taken on Day 28. W/W had received irrigation for the duration 

of the growing period but D/W received no irrigation from Day 8 to 17 (n=20) 

Treatment Stomatal resistance (m2 s mol-1) Leaf temperature 

(°C) 

Leaf area 

(cm2) 

W/W 1.0 15.9 128.5 

D/W 1.0 15.6 130.7 

P 0.208 0.091 0.369 

 

 

Harvest: At harvest there were significant differences in the number of split radishes per 

pot, the total weight of the radish, the trimmed radish weight and the diameter of the 

hypocotyls. No significant difference was observed in hypocotyl length between 

treatments. The average number of split radish per pot was significantly lower (P=0.001) 

for D/W (6.5 split radish) than W/W (7.7 split radish). Radishes were significantly larger in 

D/W than W/W for total weight (P=0.001), trimmed weight (P=0.011), and hypocotyl 

diameter (P=0.024). The length was not significantly different (P=0.491) between the two 
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groups. The fresh weight of the hypocotyl was significantly greater (P=0.011) for D/W, but 

dry biomass of the hypocotyls was found not to be significantly different (P=0.539). 

Radishes from D/W were found to have significantly greater hypocotyl water content than 

W/W (Table 3-99). 

 

Table 3-103 Effects of irrigation treatment on splitting and yield at harvest. Treatment 

W/W received irrigation for the duration of the experiment, Treatment D/W received no 

irrigation for the first 10 days and irrigation for the final 10 days (n=34) 

Treatment Split 

radish 

(max=10) 

Plant 

weight 

(g) 

Hypocotyl 

water 

content (%) 

Hypocotyl 

weight (g) 

Hypocotyl 

width (mm) 

Hypocotyl 

length 

(mm) 

W/W 7.7a1 93.7a 94.8a 41.3a 16.9a 27.6 

D/W 6.5b 113.5b 95.7b 53.8b 18.6b 28.1 

P <0.001 <0.001 <0.001 0.011 0.024 0.491 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values. 

 

Marketable yield: The calculated marketable yield for D/W was greatest at 10.7 g per tray 

compared to 4.1 g per tray for W/W. 

A greater proportion of radishes from D/W were of a commercial size at harvest (Figure 

3-46). 
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Figure 3-46 The size distribution of radishes grown with different irrigation regimes. W/W 

(dark grey bars) were irrigated for the duration of the experiment but D/W (light grey bars) 

received no irrigation for 10 days from Day 8 to Day 17 (n=340) 
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3.5.3.4.4 Experiment 3.11: Discussion 

As in Experiment 3.10, on Day 18 a significant difference was observed in leaf 

temperature between treatment groups with D/W plants having a greater leaf temperature 

than W/W (Table 3-104). This again suggests the plants which had received a period of 

drying had reduced the rate of transpiration to reduce water loss and as a result leaf 

temperature had increased.  

Plants in Experiment 3.11 appear to have retarded growth compared to plants in 

Experiment 3.10. At harvest, plants from this experiment had a mean trimmed hypocotyl 

weight of only 47.5 g / tray compared to 105.9 g / tray for the previous experiment. The 

smaller plants, and consequently leaves, in the second experiment will not have 

transpired as much and therefore the VWC during the drying period only dropped to 

20.2% compared to 15.1% in Experiment 3.10.  

The null hypothesis was rejected, as differences were again observed in the number of 

split hypocotyls at harvest. As with Experiment 3.10 the treatment which received a period 

of drying down from Day 7 had the fewest splits at harvest. However, in this experiment a 

far larger number of split radishes (W/W mean 7.7, D/W mean 6.5 per tray) were observed 

in both treatment groups than in the previous experiment (W/W mean 4.2, D/W mean 1.0 

per tray). This may have been due to the higher water content of the compost at drilling, in 

this experiment the VWC was 59.6% compared to 47.0% in the previous experiment. The 

higher VWC from the onset could have resulted in a greater turgor pressure in the 

hypocotyls due to up take of water from the growing medium for a longer duration. 
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Table 3-104 A comparison between the results from the previous experiment (Experiment 

3.10) with the results from this experiment (Experiment 3.11) 

 Previous experiment This experiment 

Stomatal conductance Day 28 D/W > W/W No difference 

Leaf temperature Day 18 D/W > W/W D/W > W/W 

Leaf temperature Day 28 No difference No difference 

Split hypocotyls at harvest W/W > D/W W/W > D/W 

Plant weight at harvest W/W > D/W D/W > W/W 

Hypocotyl width at harvest No difference D/W > W/W 

Hypocotyl weight at harvest W/W > D/W D/W > W/W 

Hypocotyl water content No difference D/W > W/W 

Leaf area at harvest W/W > D/W No difference 

 

In Experiment 3.11, no significant difference in leaf area was observed at harvest whereas 

in Experiment 3.10 W/W plants had a greater leaf area. This suggests the higher VWC in 

Experiment 3.11 compared to Experiment 3.10 did not cause enough water stress to have 

a significant effect on leaf area.   

At harvest, in Experiment 3.11 as in the Experiment 3.10, there was no significant 

difference in leaf temperature between the two treatment groups. However, unlike 

Experiment 3.10 there were also no differences in leaf area or stomatal resistance at 

harvest. However, this results in a similar amount of gas being lost from the plant as the 

AP4 porometer measures the rate of diffusion conductance over an area and there were 

no differences in rate or area. When the amount of gas being lost from the plant was 

calculated for the previous experiment, this was also found to be the same for the two 

treatments.  

At harvest, there were fewer radishes of commercial size for W/W than D/W. The radishes 

from W/W could have been grown longer to allow them to achieve a similar proportion of 

commercially sized radishes but this would have also increased the time they had to split. 
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At harvest, W/W already had a greater proportion of split radishes than D/W and this 

would only have increased.   

In conclusion, the results from this experiment again showed a period of drying mid-

growth up to Day 17 around the time of Growth Stage 41 was crucial in predicting splitting. 

Further experiments are now required to determine if it is the VWC at Growth Stage 41 

which is important or if any period of drying mid-growth will reduce splitting.   
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3.5.3.5 Experiment 3.12: Experiment investigating the effects of changes in 

VWC at Growth Stage 41 on the susceptibility of radishes to growth 

splits  

3.5.3.5.1 Experiment 3.12: Introduction 

Building on work from Experiments 3.9, 3.10 and 3.11 where a reduction in splitting has 

been observed in plants which have been grown with a period of drying mid-growth 

compared to plants which have been irrigated for the duration of the experiment, the 

objective of Experiment 3.12 was to determine the factors which result in this reduction in 

splitting.   

In Experiments 3.9, 3.10 and 3.11 the driest point in the treatments which received a 

period of drying and a reduction in splitting coincided with Growth Stage 41. Growth Stage 

41 is when rapid expansion of the hypocotyl begins following the rupture of the exodermis 

and outer cortex which exposes the periderm. There is support for timing of water stress 

having an effect in splitting from literature. Sørensen (1997) found the timing of water 

stress had an effect on splitting in carrot, with carrots grown under fully irrigated 

conditions, or with an early drought stress, splitting more than carrots grown with a period 

of drought stress mid-growth or shortly prior to harvest when rapid radial expansion is 

occurring. This investigation aimed to investigate if Growth Stage 41 was associated with 

the reduction in rates of splitting observed at harvest in previous experiments. 

In Experiments 3.6 and 3.7 a lower VWC for the duration of the experiment was shown to 

result in a reduction in splitting. This experiment also investigated if the length of the 

period of drying down affects the amount of splitting which is observed at harvest.  

Aim:  

 The aim of this experiment was to identify the features of a period of drying mid-growth 

which result in a reduction in splitting.  

Null hypothesis:  

1. Different irrigation treatments will have no significant effect on the amount of splitting 

observed at harvest.  
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3.5.3.5.2 Experiment 3.12: Materials and methods  

Planting date: Seeds were planted on 22.05.2013, treatments commenced on Day 7. 

Experiment duration: 27 to 29 days depending on block. 

Glasshouse conditions: In the glasshouse the mean temperature was 19.5°C with a 

range of 7.0°C to 41.0°C. The mean relative humidity was 71.4% ranging between 23.2% 

and 100%. 

Treatments: Following the initial seven days of irrigation for seedling establishment a total 

of five treatment regimens were imposed.  T1 received irrigation for the duration of the 

experiment; T2 received no irrigation for the first 10 days and irrigation for the final 10 

days, T3 received no irrigation for the first five day and irrigation for the final 15 days, T4 

received no irrigation for the first 15 days and irrigation for the final five days and T5 

received irrigation for the first five days, no irrigation for the following ten days and then 

irrigation for the final five days (Table 3-105). It was expected that T2 and T4 would be 

driest at the point when the hypocotyl begins to swell (Growth Stage 41), Treatments T1 

and T3 would have the greatest VWC at the point when the hypocotyl swells (Growth 

Stage 41) and Treatment T5 would have a VWC between the other groups. If splitting was 

related to the VWC at Growth Stage 41 then it was expected there would be a difference 

in the treatments which have different VWCs at this point. Conversely if differences in 

splitting were related to the duration of the drought period it was expected there would be 

differences between the treatment groups with different drought durations. T4 had the 

longest drought period of 15 days, T2 and T5 had the second longest drought period of 10 

days, T3 had the shortest drought period of five days and treatment group T1 had no 

drought period.  
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Table 3-105 Irrigation regimes for the five treatment groups used in Experiment 3.12 

Treatment Day 1-7 Day 8-12 Day 13-17 Day 18-22 Day 23 -27 

T 1 Irrigation 

T 2 Irrigation No Irrigation Irrigation 

T 3 Irrigation No Irrigation Irrigation 

T 4 Irrigation No Irrigation Irrigation 

T 5 Irrigation No Irrigation Irrigation 

 

 

Replication: n = 24. Pots were arranged in a randomised block design (Figure 3-47) 

which was generated by GenStat for Windows 15th Edition (VSN International 2011). 

 

Block 1 Block 5 Block 9 Block 13 Block 17 Block 21 

T4 T3 T3 T4 T2 2 

T3 T2 T5 T5 T3 5 

T1 T4 T2 T2 T1 3 

T2 T1 T4 T3 T4 1 

T5 T5 T1 T1 T5 4 

Block 2 Block 6 Block 10 Block 14 Block 18 Block 22 

T5 T5 T5 T5 T3 5 

T2 T1 T1 T2 T5 2 

T1 T2 T3 T1 T4 4 

T3 T3 T4 T4 T1 3 

T4 T4 T2 T3 T2 1 

Block 3 Block 7 Block 11 Block 15 Block 19 Block 23 

T1 T2 T3 T2 T4 1 

T5 T4 T5 T1 T3 3 

T3 T1 T1 T3 T5 4 
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T4 T3 T2 T4 T2 2 

T2 T5 T4 T5 T1 5 

Block 4 Block 8 Block 12 Block 16 Block 20 Block 24 

T4 T3 T1 T1 T4 1 

T5 T5 T4 T2 T2 2 

T2 T4 T2 T3 T1 4 

T3 T1 T3 T5 T3 5 

T1 T2 T5 T4 T5 3 

Figure 3-47 Layout of experimental pots on glasshouse bench for Experiment 3.12. Blue 

lines represent the capillary tubing. T1 received irrigation for the duration of the 

experiment; T2 received no irrigation for the first 10 days and irrigation for the final 10 

days, T3 received no irrigation for the first five day and irrigation for the final 15 days, T4 

received no irrigation for the first 15 days and irrigation for the final five days and T5 

received irrigation for the first five days, no irrigation for the following ten days and then 

irrigation for the final five days 

 

Measurements taken during growth: The VWC of the compost was measured at the 

start of the experiment on Day 1 and again on before treatments were changed on Day 8, 

before treatments were changed on Day 13, before treatments were changed on Day 18, 

before treatments were changed on Day 22 and before plants were harvested on Day 27.  

At harvest, stomatal resistance, leaf temperature and leaf area were taken from plants in 

even numbered blocks (n=12). 

Statistical analysis: All data was analysed using GenStat for Windows 15th Edition (VSN 

International 2011). 

If data was parametric as confirmed by Shapiro-Wilk test for normal distribution it was 

analysed using ANOVA. Where data was not normally distributed with or without 

transformation the non-parametric Friedman’s test was used. When a P value of less than 

0.05 was observed a Tukey test was used for parametric data and Mann-U Whitney test 



278 
 

was used for non-parametric data to determine which results were different from each 

other (Table 3-106).  

 

Table 3-106 Method of analysis for different factors measured in Experiment 3.12. Method 

of analysis (parametric or non-parametric) was decided according to normal distribution as 

determined by the Shapiro-Wilk test 

Measurement Shapiro-Wilk Analysis used 

VWC Day 18 <0.001 Friedman’s test and Mann-U Whitney 

Number of splits at harvest <0.001 Friedman’s test and Mann-U Whitney 

Leaf area 0.059 ANOVA and Tukey test 

Leaf temperature 0.088 ANOVA 

Stomatal resistance <0.001 Friedman’s test 

Hypocotyl length <0.001 Friedman’s test and Mann-U Whitney 

Hypocotyl width <0.001 Friedman’s test and Mann-U Whitney 

Roundness <0.001 Friedman’s test and Mann-U Whitney 

Plant weight <0.001 Friedman’s test and Mann-U Whitney 

Hypocotyl weight <0.001 Friedman’s test and Mann-U Whitney 

Hypocotyl water content <0.001 Friedman’s test and Mann-U Whitney 

 

Skeleton ANOVA: 

Table 3-107 Skeleton ANOVA for VWC Day 18, harvest splits, roundness, hypocotyl 

length, hypocotyl width, roundness, plant weight, hypocotyl weight, hypocotyl water 

content 

Source of variation df 

Block 23 

Treatment 4 

Residual 92 

Total 119 
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Table 3-108 Skeleton ANOVA for stomatal resistance, leaf area and leaf temperature 

Source of variation df 

Block 11 

Treatment 4 

Residual 44 

Total 59 
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3.5.3.5.3 Experiment 3.12: Results  

VWC: There was no significant difference (P=0.204) in VWC at the start of the experiment 

when seeds were planted. At harvest there was a significant difference (P<0.001) in VWC 

between the pair T1 (66.8%) and T3 (65.6%), with the pair T2 (61.1%) and T3 (65.6%) 

with T4 (55.8%) (Figure 3-48).  

  

Figure 3-48 The VWC of pots undergoing different irrigation treatments. T1 pots were 

irrigated for the duration of the experiment. T2 pots received no irrigation for 10 days 

between Day 8 and Day 17, T3 pots received no irrigation for five days between Day 8 

and Day 12, T4 pots received no irrigation for 15 days between Day 8 and Day 22 and T5 

pots received no irrigation for 10 days between Day 13 and Day 22 (n=24).  

 

Harvest: There was no significant difference in stomatal conductance (P=0.231) or leaf 

temperature (P=0.636) between treatment groups but there was a difference (P<0.001) in 

leaf area. T1 and T3 had the largest leaf area and T4 had the smallest leaf area (Table 

3-109). 
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Table 3-109 Stomatal resistance, leaf temperature and leaf area taken from plants in even 

numbered blocks. T1 received irrigation for the duration of the experiment; T2 received no 

irrigation for the first 10 days and irrigation for the final 10 days, T3 received no irrigation 

for the first five day and irrigation for the final 15 days, T4 received no irrigation for the first 

15 days and irrigation for the final five days and T5 received irrigation for the first five 

days, no irrigation for the following ten days and then irrigation for the final five days 

(n=12) 

Treatment Stomatal resistance (m2 s mol-1) Leaf temperature 

(°C) 

Leaf area 

(cm2) 

T1 1.11 17.95 157.90c1 

T2 1.32 17.88 128.76bc 

T3 1.07 18.01 156.56c 

T4 1.77 18.09 66.19a 

T5 1.75 17.95 100.41ab 

P 0.231 0.636 <0.001 

LSD n/a 0.278 25.96 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values. LSD only available for plants analysed using ANOVA. 

 

Significant differences were observed between treatments for the number of split radishes 

per tray (Table 3-111), the total weight of the radishes, the trimmed hypocotyl weight, the 

length and width of the hypocotyls and the water content of the hypocotyls (Table 3-110). 

The average number of split radish per pot was significantly lower (P<0.001) for plants in 

T2 and T4 (mean of 1.38 and 1.67 split radish per pot respectively) than T5 (mean of 3.79 

split radish per pot) and T5 radishes had significantly fewer (P<0.001) splits than radishes 

from T1 and T3 (mean of 6.5 and 7.5 split radishes per pot respectively). The size was 

significantly different between treatment groups in terms of total weight (P<0.001), 

trimmed weight (P<0.001) and hypocotyl diameter (P<0.001). Radishes grown in T4 were 
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the smallest for all of these parameters and radishes from T1 and T3 were the largest for 

all these parameters. All treatments produced similarly round radish except the radishes in 

T4 (P<0.001) which received the longest period of drying down and produced radishes 

which were proportionally longer in length than diameter than the other treatment groups 

(Table 3-110). 

 

Table 3-110 Effects of irrigation treatment on splitting and yield at harvest. T1 received 

irrigation for the duration of the experiment; T2 received no irrigation for the first 10 days 

and irrigation for the final 10 days, T3 received no irrigation for the first five day and 

irrigation for the final 15 days, T4 received no irrigation for the first 15 days and irrigation 

for the final five days and T5 received irrigation for the first five days, no irrigation for the 

following ten days and then irrigation for the final five days (n=24). 

Treatment Plant 

weight 

(g) 

Hypocotyl 

weight (g) 

Hypocotyl 

width (D) 

(mm) 

Hypocotyl 

length (L) 

(mm) 

Roundness 

(L/D) 

Hypocotyl 

water 

content 

(%) 

T1 197.2d1 98.8c 23.3c 30.3c 1.2a 96.0a 

T2 138.1c 66.1b 21.5c 26.4b 1.2a 96.6b 

T3 196.9d 104.8c 25.7d 31.4c 1.2a 96.2ab 

T4 51.7a 10.4a 9.7a 19.2a 2.1b 96.6b 

T5 104.9b 59.9b 18.7b 24.2b 1.3a 96.6b 

P <0.001 <0.001 <0.001 <0.001 <0.001 0.004 

LSD n/a n/a n/a n/a n/a n/a 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values. LSD only available for plants analysed using ANOVA.  
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Figure 3-49 Mean splits (%) per treatment correlated with mean hypocotyl water content 

per treatment (%) 

 

The mean number of splits per treatment was found to be negatively correlated (P=0.036) 

with the mean hypocotyl water content per treatment (Figure 3-49). The strong linear 

relationship between splitting and hypocotyl water content was expressed by the equation:  

 

y = -96.802x + 9371 (R2=0.81) 

 

This finding would suggest radishes which split in this experiment had lower hypocotyl 

water contents. 

The number of split radishes was found to be positively correlated with the VWC on Day 

18 but there was only a slight negative correlation between splits and duration of dry 

period (Table 3-111). The duration of the dry period and the trimmed hypocotyl weight at 

harvest were found to be negatively correlated.  
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Table 3-111 Number of split radishes compared to duration of dry period and VWC on 

Day 18 when the hypocotyl has begun to expand. T1 received irrigation for the duration of 

the experiment; T2 received no irrigation for the first 10 days and irrigation for the final 10 

days, T3 received no irrigation for the first five day and irrigation for the final 15 days, T4 

received no irrigation for the first 15 days and irrigation for the final five days and T5 

received irrigation for the first five days, no irrigation for the following ten days and then 

irrigation for the final five days 

Treatment VWC (%) on Day 

18 

Duration of dry period 

(days) 

Split radishes per 

tray 

T1 62.8c1 0 6.50c 

T2 10.0a 10 1.38a 

T3 59.8c 5 7.54c 

T4 10.7a 15 1.67a 

T5 20.7b 10 3.79b 

P <0.001  <0.001 

LSD n/a  n/a 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values. LSD only available for plants analysed using ANOVA. 

 

Size distribution: Commercially only radishes which are between 18 and 32 mm in 

diameter are sold. Radishes which fall outside of these restrictions are graded out and 

discarded. It was found the greatest proportion of commercial size radishes at harvest 

were from T1 and T3 (Table 3-51).  
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Figure 3-50 The size distribution of radishes grown with different irrigation regimes. T1 

received irrigation for the duration of the experiment; T2 received no irrigation for the first 

10 days and irrigation for the final 10 days, T3 received no irrigation for the first five day 

and irrigation for the final 15 days, T4 received no irrigation for the first 15 days and 

irrigation for the final five days and T5 received irrigation for the first five days, no irrigation 

for the following ten days and then irrigation for the final five days 

 

Marketable yield: The calculated marketable yield for T2 was greatest at 43.5 g per tray, 

the marketable yield for T1 was next largest at 29.1 g per tray, then for T5 was 22.0 g per 

tray, for T3 was 21.7 g per tray and the marketable yield for T4 was least at 0.3 g per tray. 
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3.5.3.5.4 Experiment 3.12: Discussion 

In Experiment 3.12, the null hypothesis was rejected as different irrigation treatments had 

a significant effect on the amount of splitting observed at harvest. This experiment showed 

splitting does not appear to be related to the duration of the drying period or the minimum 

VWC reached during growth but it is affected by the VWC around Day 18 as the number 

of split radishes was found to be positively correlated with the VWC on Day 18. Day 17 is 

when Growth Stage 41 occurs and the hypocotyl begins to expand rapidly. All splitting 

occurs after Growth Stage 41 because it is the periderm which splits and the periderm is 

not exposed until this point. Sørensen (1997) also found the timing of water stress had an 

effect on splitting in carrot, with carrots grown under fully irrigated conditions, or with an 

early drought stress, splitting more than carrots grown with a period of drought stress mid-

growth or shortly prior to harvest when rapid radial expansion is occurring. Sørensen 

(1997) attributed the differences in timing of water stress to differences in the type of 

growth occurring at each development stage (Sørensen et al. 1997). During the early 

period of drought stress which failed to reduce splitting, carrot growth is characterised by 

cell division whereas during mid-growth when a period of drought stress reduced splitting, 

carrot growth is created by rapid radial root expansion caused by cell enlargement. As 

splitting is thought be affected by cell wall strength and composition, factors which affect 

this may affect splitting susceptibility. Sørensen (1997) suggested the decrease in splitting 

in carrots may have been due to a decrease in the rate of expansion during this period. In 

contradiction to this theory, previous experiments on radishes have shown the rate of 

hypocotyl expansion is more rapid in plants which have received a period of drought 

stress which has been relieved compared to ones which have received a constant supply 

of water. This difference may be explained by compensatory growth where it is thought 

metabolites are accumulated during the period of stress while cell enlargement is inhibited 

by lack of turgor. Once turgor is restored these metabolites are available for rapid cell wall 

synthesis and other processes associated with growth. A reduction in growth rate is not 

likely to explain the differences in splitting. There was also no clear pattern relating 

hypocotyl dry matter content with splitting in radishes suggesting there were not any 
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obvious relationships between cell wall structure as measured crudely by dry matter 

content and splitting susceptibility. However, dry matter content gives no measurement of 

cell wall components and these may have been affected by the irrigation treatments.  

Both timing and duration of the period of drying are important components of radish yield. 

A negative correlation was found between the duration of the dry period and the trimmed 

hypocotyl weight at harvest. In keeping with results from previous experiments, T2 

(equivalent to D/W) which received a 10 day period of drying down from Day 8 to Day 17 

had the highest marketable yield as a result of both a high proportion of radishes of a 

commercial size and a low proportion of split radishes.  However, in contradiction to 

previous experiments T2 resulted in the largest proportion of radishes of a commercial 

size yet in this experiment T1 (equivalent to W/W) and T3 resulted in slightly more 

radishes in the commercial size range than T2. In this experiment T4 which had the lowest 

average VWC due to the longest drought period had the lowest yield in terms of weight. 

T1 and T3 had the greatest yield in terms of weight and they also had the greatest mean 

VWC due to the shortest drought periods. The results from this experiment would suggest 

yield is linked to mean VWC.  

At harvest, there was no significant difference in stomatal resistance (P=0.231) or leaf 

temperature (P=0.636) between treatment groups but there was a difference (P<0.001) in 

leaf area. This is in keeping with the results from previous experiments where leaf 

temperature and stomatal resistance have been shown to mirror VWC. Also in keeping 

with the results from previous experiments the water loss from T1 (equivalent to W/W) and 

T2 (equivalent to D/W) would have been similar. Overall T1, T2 and T3 which had the 

largest leaf areas must have had a greatest rate of water loss due to transpiration as they 

had the greatest leaf area.  

In this experiment, T4 produced radishes which were less spherical in shape than the 

radishes from the other treatments. This was as the radishes from T4 were proportionally 

longer in length than width than the other treatment groups (P<0.001) this may have been 

due to a lack of water preventing hypocotyl swelling or may have been due to taproot 

elongation in the search for water.  
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The VWC of the compost at harvest was significantly different between groups. T1 and T3 

which had received either no dry period or the shortest duration of dry period and had the 

greatest minimum VWC had the greatest VWC at harvest, T2 and T5 which received the 

medium length of dry period had the median minimum VWCs and the median VWC at 

harvest. Finally T4 which received the longest duration of dry period had the driest 

minimum VWC over all and at harvest. Groups T4 and T5 both received irrigation for the 

same amount of time before harvest these results would suggest it is the duration of the 

dry period which determines how dry the compost becomes and how much and how 

quickly the compost absorbs water following irrigation.  

In conclusion, VWC at Growth Stage 41 affects the amount of splitting observed at 

harvest and VWC later in radish growth affects the yield. Marketable yield is determined 

by both of these factors.  
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3.5.3.6 Experiment 3.9-3.12: Discussion  

Timing of water availability and water stress appears to have a significant effect on 

hypocotyl splitting during growth in radishes. The four experiments in this section 

consistently showed a period of drying down from Day 8 to Day 18 or Growth Stage 41 

reduced splitting compared to plants which were irrigated for the duration of growth or 

were given periods of drying down at different times or for different lengths of time. The 

final experiment in this section gave strong evidence in support of the reduction in splitting 

being associated with the VWC at Growth Stage 41.  

Results from this series of experiments have shown that unlike apples splitting does not 

appear to be associated with size. Skene (1980) showed in apples stress developed at 

particular fruit sizes whereas results from these experiments have shown radish 

hypocotyls of different sizes split at similar rates and radishes of similar sizes can split at 

different rates depending on irrigation treatment. Stress was not measured in this series of 

experiments therefore it is not known if the stress in different sizes of fruit is different and 

the treatments have caused the radishes to be more resistant to these differences or if 

there is no difference in stress. However, the results consistently show fruit size cannot be 

used to indicate splitting susceptibility.  

In tomato, splitting rates have been shown to be at a peak when growth rates are at a 

maximum (Dorais et al. 2004) this is also broadly true of radishes. Hypocotyl expansion is 

at a maximum after Growth Stage 41 and splitting also occurs after Growth Stage 41. 

However, this association is due to physical reasons rather than growth rate causing 

splitting as the periderm does not become exposed until Growth Stage 41 and 

consequently cannot split. In fact, experiments in this section have provided evidence 

contrary to the theory that rapid growth rates are associated with splitting as hypocotyls 

from the D/W treatments which received a period of drying from Day 8 to Day 18 and then 

irrigation to harvest had hypocotyls which expanded more rapidly and split less than the 

hypocotyls from W/W plants which received irrigation for the duration of the experiment.  

In this series of experiments, timing of water stress was consistently shown to have an 

effect on growth splitting. With drying down mid-growth from Day 8 to 18 causing the 
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greatest reduction in splitting whilst  maintaining yield at harvest. Sørensen (1997) also 

found the timing of water stress had an effect on splitting in carrot. Similar to results from 

these experiments, Sørensen (1997) observed more splitting in carrots which were grown 

under fully irrigated conditions compared with carrots grown with a period of drought 

stress mid-growth or shortly prior to harvest. In carrots, similar to radishes, this period is 

when rapid expansion is occurring. Sørensen (1997) thought the differences in timing of 

water stress could be explained by differences in the type of growth occurring during early 

and late growth (Sørensen et al. 1997). Early carrot growth is characterised by cell 

division whereas during mid-growth the rapid radial root expansion is caused by cell 

enlargement. Sørensen (1997) suggested the decrease in splitting in carrots may have 

been due to a decrease in the rate of expansion during the cell enlargement period. In 

contradiction to this theory experiments on radishes have shown the rate of hypocotyl 

expansion is more rapid in plants which have received a period of drought stress 

compared to ones which have not. Since the radishes which have received a period of 

drying split less yet grow more rapidly, differences in growth rate are not likely to explain 

the differences in splitting.  

The reductions in radish hypocotyl splitting may result from a change in physiology which 

has made them more resistant to splitting. For example, it is known lignin in cell walls 

provides structural rigidity and may therefore be associated with splitting susceptibility. 

Experiments 3.1 in this thesis showed radish splits propagate through the cell wall in a 

process called plasmoptysis. Lignin biosynthesis is affected by water stress (Lee et al. 

2007) so it follows if stress occurs at a key time when cell walls are being produced then 

the lignin content and therefore cell wall strength may be affected. Early plant growth is 

typically characterised by cell division and this may coincide with the time when the plants 

are given a period of drying. Growth Stage 41 and the start of rapid hypocotyl expansion 

may indicate the time when growth changes from predominantly cell division to cell 

enlargement although further research is required to establish if this is the case.  

Another explanation in the reduction in splitting caused by a period of drying and water 

stress may be priming. Priming is known to have long lasting effects in some species and 
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the resulting epigenetic changes can have long term effects on gene expression (Bruce et 

al. 2007). A period of water stress at a key time may cause epigenetic changes in the 

radish plant acclimatising them to the water stress. As a consequence of the changes in 

physiology due to acclimatisation this may make the plants more resistant to splitting. This 

could be through changes in physiology which allow the plants to maintain turgor pressure 

at a level which does not increase susceptibility to splitting or by changing the cell wall 

components. Again further work is required to investigate this theory.  
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3.6 Chapter 3 Growth splits: Discussion 

The series of experiments (Experiments 3.1 to 3.12) in this section identified several 

factors which are associated with growth splitting in radish. These experiments also 

identified several factors which were not associated with splitting despite previous 

research indicating they might be.  

 

3.6.1 Differences in splitting susceptibility between cultivar 

In Experiment 3.1 a difference in splitting susceptibility between cultivars of radish was 

demonstrated. Raphanus sativus ‘Rudi’ was found to have significantly more (P=0.001) 

splits at harvest than ‘Celesta’ or ‘Topsi’. This is in keeping with previous research where 

cultivar has been shown to affect susceptibility to splitting in kohlrabi (Lippert 1999) carrot 

(Hartz et al. 2005; Hole et al. 1999) cherry (Demirsoy & Demirsoy 2004) and tomato 

(Dorais et al. 2004). In Experiment 3.2 a significant difference (P=0.031) was again 

observed in splitting between cultivars. The cultivar ‘Celesta’ split the least but not 

significantly less than ‘Rudi’, ‘Rougette’ or ‘Saxa 2’. The cultivar ‘Kaspar’ split the most but 

not significantly more than ‘Rudi’, ‘Rougette’ or ‘Saxa 2’. As was found in Experiment 3.1, 

the cultivar ‘Celesta’ had the lowest number of splits and the greatest yield in terms of 

total and hypocotyl weight.  

In contradiction to results from Experiments 3.1 and 3.3, in Experiment 3.7 splitting rates 

for ‘Celesta’ were not significantly lower than ‘Rudi’ or ‘Saxa 2’. In addition, ‘Celesta’ did 

not have as great a reduction in splitting when grown under dry conditions as the other 

two cultivars.  

Results from experiments in Chapter 3 would suggest cultivar does have an effect on 

splitting susceptibility but the results are not consistent. It seems unlikely therefore that 

breeding for resistance to splitting would prove fruitful.  

 

3.6.2 Periderm thickness  

In fruit, cuticle thickness is thought to explain some of the differences in splitting 

susceptibility between cultivars as Demirsoy (2004) found a negative correlation between 
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cuticle thickness and splitting in eight cultivars of sweet cherry. In Experiment 3.1, no 

significant difference (P=0.674) was found in periderm thickness between cultivars of 

radish although the periderm thickness followed the pattern of splitting susceptibility with 

‘Rudi’, which split the most readily, having the thickest periderm and ‘Celesta’, which split 

the least, having the thinnest periderm. In addition, although periderm thickness was not 

significantly different between cultivars, the thickness of the radish periderm tended 

(P=0.045) to be greater for the split radishes than the non-split radishes. These results are 

in accordance with research into splitting in carrots where it has been shown that 

removing the periderm makes them more resistant to splitting (Hartz et al. 2005). These 

results would suggest that periderm thickness may have an effect on splitting 

susceptibility but periderm thickness is not the same for all plants of a particular cultivar. 

Therefore it may be beneficial to select cultivars which tend to have a thinner periderm but 

other factors will also have an effect on splitting. Understanding the factors other than 

cultivar which affect periderm thickness is an area which needs further investigation.  

 

3.6.3 Hypocotyl shape   

Splitting occurs when mechanical stress exceeds the ability of the tissue to withstand it 

(Hole et al. 1999). Differences in stress within plant tissue may cause it to split depending 

on the degree of stress and the mechanical strength of the tissue. As stress is more 

uniformly spread in globes than shapes which deviate from this (Emmons & Scott 1998) 

shape may be an important factor in determining splitting susceptibility.  

Iwata et al (2004) showed Japanese radish shape was determined by both genetic and 

environmental factors. Iwata et al (2004) used different soil types to vary environmental 

growing conditions. The results showed there were significant differences in shape for all 

varieties and for all soil types and there was no interaction between soil type and variety 

for most shape characteristics (Iwata et al. 2004) suggesting soil type had similar effects 

on all varieties tested and therefore neither genetics nor environment alone can explain 

shape but it may be possible to predict the effects of cultivar or environment on shape.  
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In order to investigate if there is any correlation between susceptibility to growth splitting 

and hypocotyl roundness, roundness was measured in Experiment 3.1: The effects of 

radish cultivar on susceptibility to growth splits, Experiment 3.3: Determining the growth 

stages and growth rate of five cultivars of radishes and Experiment 3.12: Investigating the 

effects of changes in VWC at Growth Stage 41 on the susceptibility of radishes to growth 

splits.  

In Experiment 3.1, there was no significant (P=0.21) difference between cultivars in 

hypocotyl roundness despite there being a significant difference (P<0.001) in splitting 

between cultivars. Raphanus sativus ‘Rudi’ was found to have significantly (P<0.001) 

more growth splits than ‘Celesta’ or ‘Topsi’. The cultivar ‘Rudi’ had 43.75% split radishes 

at harvest compared to 8.33% of ‘Topsi’ and 2.08% of ‘Celesta’. These results suggest 

there is no relationship between roundness measured by dividing the length of the 

hypocotyl by the maximum width and growth splitting.  

In Experiment 3.3, five cultivars of radish were investigated and significant differences in 

hypocotyl roundness were observed. As in Experiment 3.1 there was no significant 

difference in the roundness of the cultivars ‘Celesta’ and ‘Rudi’ but there was a difference 

observed between these two cultivars and ‘Rougette’ and ‘Saxa 2’. The cultivars 

‘Rougette’ and ‘Saxa 2’ were not significantly different in roundness to each other. The 

cultivar ‘Kaspar’ was not found to be significantly different in roundness to any of the other 

cultivars. However, again as in Experiment 3.1, although a significant difference in growth 

splitting was observed (P=0.031), mean cultivar roundness was not found to be correlated 

with mean cultivar growth splits. The cultivar ‘Celesta’ split the least but not significantly 

less than ‘Rudi’, ‘Rougette’ or ‘Saxa 2’. The cultivar ‘Kaspar’ split the most but not 

significantly more than ‘Rudi’, ‘Rougette’ or ‘Saxa 2’.  

In Experiment 3.12, only one cultivar was grown but under different irrigation regimes. In 

this experiment, all treatments produced similarly round radish except the radishes in T4 

(P<0.001) which received the longest period of drying down and produced radishes which 

were proportionally longer in length than diameter than the other treatment groups. This 

may have been due to a lack of water preventing hypocotyl swelling or may have been 
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due to taproot elongation in the search for water. Although the roundness of the radish 

hypocotyls was consistent between all treatments except T4, the mean number of split 

radish per pot varied more and therefore there was no correlation between hypocotyl 

roundness and susceptibility to splitting. The number of radishes with growth splits was 

significantly lower (P<0.001) for plants in T2 and T4 (mean of 1.38 and 1.67 split radish 

per pot respectively) than T5 (mean of 3.79 split radish per pot) and T5 radishes had 

significantly fewer (P<0.001) splits than radishes from T1 and T3 (mean of 6.5 and 7.5 

split radishes per pot respectively). 

Differences in the roundness of cultivars may have been missed if some radish cultivars 

were flatter or more irregularly shaped in general but had a similar maximum width and 

length ratio. 

 

3.6.4 Mode of failure  

The mode of failure depends on the relative strengths of the intercellular bonds and cell 

walls (Lin & Pitt 1986). In many vegetable crops, root and tuber splitting is thought to 

occur predominantly due to plasmoptysis as opposed to cellular debonding (Lippert 1999; 

McGarry 1993). The mode of failure is important as the effects of turgor are thought to 

depend on the type of splitting which is occurring. When the mode of failure is 

plasmoptysis higher turgor pressure has been shown to reduce tissue strength but if 

splitting occurs as a result of cell debonding the opposite is true (Lin & Pitt 1986). As 

discussed in Chapter 1, previous work by Skok (1941) showed sections of split radishes 

which appeared to have failed due to plasmoptysis rather than cellular debonding 

although the mode of failure had not been discussed in the paper. Therefore, in Chapter 3 

split radishes were sectioned to verify the mode of failure within radish hypocotyl tissue. In 

these sections, ruptured cells were again observed along the split surfaces, it was 

concluded these radishes had split by plasmoptysis. This mode of failure is comparable to 

other vegetables such as kohlrabi (Lippert 1999) and carrot (McGarry 1993) and it is likely 

this is due to the limited intercellular space within these types of vegetable tissue. As the 
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mode of failure within the radish hypocotyl was plasmoptysis turgor pressure is likely to be 

an important factor in determining splitting susceptibility.  

 

3.6.5 Growth stage  

Evidence from other crops suggests growth splitting is affected by growth stage, splitting 

in carrots has been shown to be affected by crop maturity with splitting mainly occurring 

later in crop development (Gracie & Brown 2004).  

Experiment 3.2 successfully established the growth stages for Raphanus sativus ‘Rudi’. 

Experiment 3.3 showed these were relevant to a range of other cultivars of radishes and 

therefore likely to be applicable to radishes generally. The experiments showed that 

similar to other crops, splitting in radishes is affected by growth stage however the cause 

is different. Radishes are unable to split until Growth Stage 41 which occurs midway 

through the hypocotyl expansion. At this point the exodermis and cortex rupture revealing 

the periderm. Growth and harvest splits are of the periderm of the radish and the periderm 

is only fully formed and exposed after Growth Stage 41 therefore it cannot split until this 

time. In glasshouse grown radishes Growth Stage 41 is usually completed around Day 17.   

 

3.6.6 Growth rate 

Growth rate has been suggested by several researchers as a potential explanation for 

differences in splitting. Latimer (1991) suggested the low splitting rate observed in 

radishes which were exposed to mechanical leaf damage was a result of slow growth. 

However, conversely Dowker and Jackson (1977) found a slower growth rate in carrot 

was correlated with higher levels of splitting. Growth rate has been associated with 

splitting both in terms of typical growth rate of a cultivar (Lippert 1999) but also in growth 

rate which is altered as a result of environmental conditions (Latimer 1991). In this thesis 

the growth rate of radishes was measured as part of a number of experiments both 

investigating the differences in splitting susceptibility for different cultivars, the differences 

in susceptibility of radishes grown with different VWC and the interaction between the two. 

The growth rates were then compared to splitting rates to investigate if there is a 
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relationship between the two. The results from these experiments are summarised and 

discussed here.  

3.6.6.1 The effects of cultivar on growth rate and growth splitting  

In Experiment 3.1 the growth rate of radishes was shown to be affected by cultivar. The 

cultivar ‘Celesta’ had significantly larger whole weight (P<0.001), trimmed weight 

(P<0.001), plant biomass (P<0.001), number of leaves (P<0.001) and length (P<0.001) 

and width of the hypocotyl (P=0.008) at harvest compared to the cultivars ‘Topsi’ and 

‘Rudi’. As all the cultivars were sown on the same day, germinated at a similar time and 

were harvested after the same duration ‘Celesta’ must have grown the most rapidly to 

reach this larger size. In Experiment 3.1, cultivar was also shown to affect susceptibility to 

splitting. The cultivar ‘Celesta’ split the least (P<0.001) of the three cultivars examined but 

grew the most rapidly. ‘Rudi’ grew more slowly than ‘Celesta’ and split significantly more. 

Had only these two cultivars been grown then a similar but opposite conclusion to that of 

Lippert (1999) would have been made. Lippert (1999) found the rapidly growing cultivar 

‘Express Forcer’ was twice more likely to crack than the slower growing cultivar ‘Noriko’ 

and concluded that cracking in vegetative organs was due to rapid growth. However in 

Experiment 3.1, despite ‘Celesta’ growing the most rapidly and splitting the least, no 

correlation was found between rate of growth and splitting. ‘Celesta’ grew faster than 

‘Topsi’ yet there were no significant differences in splitting between ‘Celesta’ and ‘Topsi’. 

There were no significant differences in the size at harvest of ‘Topsi’ and ‘Rudi’ but ‘Rudi’ 

split significantly more than ‘Topsi’. Therefore, there was no relationship between the 

rates of growth of a cultivar and how much that cultivar splits during growth, if there was a 

relationship between growth rate and splitting it would be expected the cultivars which 

grew at the same rate would split at the same rate. Results from Experiment 3.1 

demonstrate how the conclusions of Lippert (1999) cannot be relied upon as they were 

based on the comparison of cracking rates in just two cultivars of kohlrabi.  

Experiment 3.3 showed the rate of hypocotyl expansion was not consistent between 

cultivars over the growing period. The rate of hypocotyl expansion varied between 

cultivars prior to Day 15, which is when Growth Stage 41 occurred in this experiment. 
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After this however, the growth rates were very similar for the hypocotyls of all cultivars. 

Therefore, the rate of expansion prior to Day 15, or Growth Stage 41, appears to 

determine time to harvest and could be used by growers to predict harvest date for 

different cultivars.  

As in Experiment 3.1, in Experiment 3.3 no correlation was found between rate of growth 

and splitting. In this experiment all cultivars were harvested by hypocotyl width, as they 

would be commercially, rather than on a particular date as in Experiment 3.1. Results from 

this cultivar experiment demonstrate overall growth rate is not an explanation for the 

differences in splitting between cultivars in radishes.  

In Experiment 3.7 an investigation into the effect of both cultivar and VWC on growth 

splitting was conducted. Three cultivars of radishes, ‘Rudi’, ‘Celesta’ and ‘Saxa 2’ were 

grown under two different VWC treatments, Wet and Dry. Each treatment group was 

harvested when the mean hypocotyl width was of the median commercial size. The 

cultivars ‘Celesta’ and ‘Saxa 2’ were affected to a greater extent by the VWC treatments 

and had a seven day difference in harvest time between Wet and Dry treatments 

compared to ‘Rudi’ which had a five day difference. For all cultivars the radishes which 

were grown with the Wet treatment had a more rapid hypocotyl expansion rate.  

 

3.6.6.2 The effects of VWC on hypocotyl growth rate and splitting  

Experiments 3.5, 3.6, 3.8, 3.9, 3.10 and 3.12 investigated various components of VWC on 

susceptibility of Raphanus sativus ‘Rudi’ to growth splitting. As part of these experiments, 

hypocotyl growth rate was recorded and investigated for any relationship with splitting. 

The main findings from these experiments is summarised in Table 3-112. 
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Table 3-112 Summary of results from experiments in Chapter 3 which measured 

hypocotyl growth rate and splitting 

Experiment Effect of VWC on hypocotyl growth rate Correlation between 

growth rate and 

splitting? 

3.5 Lower VWC resulted in slower expansion No correlation 

3.6 Dry treatment had slower expansion Dry treatment split less 

3.8 Expansion rate increased with increasing 

irrigation frequency 

No difference in splitting 

between treatments 

3.9 No drought or no drought late in growth result 

in the greatest hypocotyl expansion rates 

No correlation 

3.10 Decreases or increases in VWC resulted in 

decreases or increases in expansion rate 

respectively 

No correlation 

3.12 Hypocotyl weight positively correlated to VWC No correlation 

 

 

Experiments 3.5, 3.6, 3.7, 3.8, 3.9, 3.10 and 3.12 all showed a decrease in growth rate of 

the hypocotyl associated with lower VWC. This is in keeping with previous research where 

it has been shown the usual response of plants to drought is to limit growth (Wilson 1988) 

and previous research specifically into radishes in which drought conditions were found to 

reduce or stop cellular division and cellular expansion which would reduce growth rate 

(Joyce et al. 1983). The reduction in growth rate of radishes which are irrigated less 

suggests the water deficit is resulting in a lower turgor pressure. Turgor pressure is known 

to regulate both cell division and enlargement in plants (Kirkham et al. 1972). Having a 

water deficit for a period of time would reduce turgor and therefore reduce growth during 

this period.  

In Experiment 3.9 it was found timing of irrigation had an effect on growth rate. Irrigation 

later in growth and in the case of this experiment, in the fourth and fifth week, appears to 
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determine how long it takes radishes to achieve a commercial hypocotyl harvest size. 

There was no relationship between this and splitting.  

Experiment 3.10 gave greater resolution to the fluxes in hypocotyl growth rate with 

changing VWC. For this experiment, there were three treatment groups. W/W received 

irrigation for the duration of the experiment, W/D received irrigation until Day 18 and D/W 

received irrigation from Day 19 until harvest. Hypocotyl width was measured at intervals 

throughout the experiment. On Day 18 when the treatments changed there was no 

difference in hypocotyl width between treatments. However, by Day 22, early in the 

second irrigation treatment period, timing of irrigation was having a significant effect on 

hypocotyl width and therefore growth rate. It appeared the earlier period of drought was 

having a delayed effect on the hypocotyl width of the plants from the D/W treatment as 

these were significantly smaller than the W/W treatment. The width of the plants from the 

W/D treatment was midway between the widths of the other two treatments but not 

significantly different from either of them suggesting the second drought period was 

beginning to have an effect on limiting hypocotyl expansion rate. By Day 24 the hypocotyl 

width was significantly greater for the W/W plants than either of the treatments which had 

received a period of drying. This suggests the plants from the W/D treatment were 

responding to water stress as the growth rate of the hypocotyls had slowed. The plants 

from the D/W treatment were increasing at a steady rate and do not appear to have been 

limited by the earlier period of water stress. Between Day 24 and Day 28, the rate of 

hypocotyl expansion was greatest for D/W as there was no significant difference in the 

width of the W/W and D/W treatments at harvest when previously the W/W plants had 

been larger than the D/W plants. It was thought this may have been due to compensatory 

growth and results from this experiment are in accordance with this theory. At harvest 

W/W and D/W hypocotyls were both significantly (P<0.001) larger than the W/D treatment 

hypocotyls which had decreased in size since Day 24. The decrease in size suggests 

these plants were experiencing severe water stress and were wilting as a result. There 

was no relationship observed between growth rates and splitting.  
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By investigating the effects of timing and duration of a period of drought, Experiment 3.12 

showed duration of the period of drying is an important component of yield and growth 

rate. A negative correlation was found between the duration of the dry period and the 

trimmed hypocotyl weight at harvest. The results from this experiment would suggest yield 

is linked to mean VWC. No association was found between growth rates and splitting.  

 

3.6.6.3 The effects of VWC on leaf growth  

As well as hypocotyl growth rate, leaf growth was also shown to be affected by VWC. 

Differences in growth rate of leaves and hypocotyls were observed under the different 

irrigation regimes in both Experiment 3.6 and 3.7. The usual response to limited water 

availability is for assimilates to be directed more towards the root than the leaves thus 

reducing the shoot to root ratio (Wilson 1988). Results from Experiments 3.6 and 3.7 

suggest in the case of radishes, which have a swollen hypocotyl and tap root, it appears 

assimilates are directed to this organ under conditions of drought in a similar way to which 

they would be towards the taproots and roots in other plants.  

In Experiment 3.9 leaf number did not appear to be solely dependent on VWC as there 

was no clear pattern in relation to mean water content. The plants which received a period 

of deficit irrigation followed by watering to field capacity had the largest number of leaves 

followed by the treatment which was irrigated to field capacity for the duration of the 

experiment. After this, the treatment which received deficit irrigation for the duration of the 

experiment had the second lowest number of leaves and finally the treatment which 

received irrigation to field capacity followed by deficit irrigation had the fewest leaves. As 

was found with radish hypocotyls in Experiment 3.10 as discussed above, it would appear 

the radish plants which received a period of deficit irrigation followed by a period of 

irrigation were conditioned to grow under dry conditions and then were able to exceed the 

growth rate of the radish plants which received irrigation for the duration of the 

experiment. This is often termed stored or compensatory growth. Similarly, the radishes 

which were watered to field capacity and then received deficit irrigation had fewer leaves 

than the radishes which received deficit irrigation for the duration of the experiment 
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despite receiving more water in total. Again it would appear the plants had been 

conditioned to grow under environments experienced early in growth and reacted more 

severely to the decrease in water compared to plants which had experienced it from early 

in growth. It is thought if water stress develops slowly, osmotic adjustment may occur 

(Kramer 1983). This enables growth to continue at lower water potentials than would 

otherwise be possible. Osmotic adjustment has been shown to occur in leaves of wheat 

plants (Kramer 1983) and may explain the results observed in this experiment.   

In Experiment 3.10 there was no significant difference in the number of leaves in the W/D 

and D/W radish at harvest but these both had significantly (P<0.001) fewer leaves than 

the W/W radish. This is in contrast to the results from Experiment 3.9 where the plants 

which received a period of drying followed by irrigation had the largest number of leaves 

at harvest. However, the number of leaves for D/W increased at a faster rate in the final 

few days compared to W/W and it may be that if the plants had been harvested later then 

a similar pattern to the previous experiment would have been observed. In contrast to leaf 

number, the leaf area at harvest was significantly (P<0.001) different between all 

treatment groups. The radishes grown with W/W treatment had on average the greatest 

leaf area (102.4 cm2), the radish grown with D/W treatment were second largest on 

average (67.3 cm2) and the W/D radish had the smallest leaf area on average (35.7 cm2). 

This shows that although there was no significant difference in the number of leaves 

between W/W and D/W there was a difference in the size of the leaves between 

treatments and this pattern followed the amount of irrigation the plants received.  

 

3.6.7 Commercial data 

The results from Experiment 3.4 and analysis of the commercial data suggest weather 

had an effect on splitting. Relative humidity and accumulated rainfall during growth were 

both positively correlated with splitting suggesting radishes are more likely to split with 

increasing rainfall. Relative humidity and temperature both during growth and at harvest 

tended to have a negative correlation with splitting suggesting radishes are more likely to 

split with lower temperatures. It is hypothesised that increased rainfall during growth 
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would lead to increased hypocotyl water content and turgor pressure. Similarly, high 

relative humidity may limit transpiration rates and also increase turgor pressure and low 

temperatures are also thought to increase splitting susceptibility by increasing turgor 

pressure. High turgor pressure has been shown in carrots (McGarry 1993, 1995) to result 

in increased splitting susceptibility and low temperatures have been shown to decrease 

failure force in potatoes (Bourne 1982).  

 

3.6.8 VWC 

In keeping with research on the large winter varieties of radishes (Kang & Wan 2005) 

research in this Chapter 3 showed that when radishes are irrigated to a constant VWC the 

VWC has an effect on splitting. In Experiment 3.6 and 3.7 splitting rates were greater in 

radishes which were grown in greater VWCs.  

In contradiction to research on the effects of irrigation frequency on winter radishes (Wan 

& Kang 2005), results from Experiment 3.8 in Chapter 3 show fluctuations in soil water 

potential during growth had no effect on rates of growth splitting. However, experiments 

consistently showed timing of water availability during growth did affect growth splitting. 

Results were similar to those of Sørensen (1997) who found the timing of water stress had 

an effect on splitting in carrot. Results both from Sørensen (1997) and from this chapter 

showed plants grown under fully irrigated conditions, split more than plants grown with a 

period of drought stress mid-growth when rapid expansion was occurring. In Experiment 

3.12 it was demonstrated growth splitting could be predicted accurately by measuring the 

VWC at Growth Stage 41. Experiment 3.2 and 3.3 showed this growth stage can be 

identified non-destructively in the field. In Experiment 3.12 higher VWC at this point 

resulted in a higher level of splitting at harvest.  

Results from experiments in Chapter 3 although able to find correlations between VWC 

and splitting were unable to provide an explanation for why a lower VWC during growth or 

a period of drought prior to Growth Stage 41 might result in a lower susceptibility to 

splitting. It had been proposed that a higher VWC might lead to an increase in hypocotyl 

water content or RWC and therefore an increase in turgor. An increase in turgor is thought 
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to put more stress on cells making them less resistant to splitting as a result of 

plasmoptysis. In other crops the increase in splitting which is associated with greater 

water availability is thought to be due to an increase in pressure on the skin from within as 

a result of water uptake by the vascular system into the tissue (Sekse 1995). Higher 

pressure within the organ results in the tissue being more susceptible to splitting as less 

additional force is required to rupture tissue which is already under tension. Plasmoptysis 

was shown in Experiment 3.1 to be the mode of failure of tissue in a radish hypocotyl. 

However, in experiments conducted as part of Chapter 3 inconsistent results were found 

for the relationship between hypocotyl WC and RWC and splitting and no relationship was 

found to link hypocotyl WC with hypocotyl water pressure in Experiment 3.7 (Table 3-113) 

suggesting the causes for growth splitting susceptibility may be more complex than just 

hypocotyl water content and turgor pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



305 
 

Table 3-113 Summary of results linking hypocotyl water content and splitting from 

experiments in Chapter 3 

Experiment Trend 

3.3 Trend (P=0.082) linking higher hypocotyl RWC with higher levels of splitting 

3.6 Treatment with higher hypocotyl water content had significantly (P<0.001) 

more growth splits and radishes which split as a result of impact texture 

analysis (P<0.001) 

3.7 Positive correlation between VWC and hypocotyl WC. 

Positive correlation between hypocotyl WC and splitting. 

No relationship found between hypocotyl water pressure and hypocotyl 

water content.  

3.8 No relationship between hypocotyl WC and growth or harvest splitting 

P=0.478 for growth splits 

P=0.613 for splits after storage (growth and harvest splits) 

3.9 No difference in splitting between treatments.  

Hypocotyl WC higher for split radishes (93.71% compared to 93.19%) but 

the difference was not statistically different (P=0.879) 

3.10 Negative linear correlation between hypocotyl water content and number of 

splits (P<0.001) 

3.11 Negative linear correlation between hypocotyl water content and number of 

splits (P<0.001) 

3.12 Negative linear correlation between hypocotyl water content and number of 

splits (P=0.036) 

 

In Experiments 3.10, 3.11 and 3.12 which investigated the effects of timing of water 

availability on growth, marketable yield was consistently greatest for plants which were 

given a period of drying from Day 8 to Growth Stage 41. This was because the size of 

these radishes at harvest was similar to that of radishes which had been irrigated for the 

duration of the experiment but there were far fewer split radishes.  
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3.7 Chapter 3 Growth Splits: Conclusions 

 Choice of cultivar affects splitting susceptibility 

 There is a trend linking greater periderm thickness with increased splitting 

susceptibility 

 VWC has an effect on growth rate 

 For all cultivars tested, radishes grown under dryer conditions had a slower rate of 

growth than radishes grown under greater available water contents 

 No correlation was found linking growth rate which is altered as a result of VWC 

and splitting 

 When irrigated to a constant substrate VWC, radishes grown under dryer 

conditions had a greater marketable yield as they had lower levels of splitting and 

although they grew more slowly they did eventually achieve the same size 

 Growth rate was different for different cultivars but did not correlate with splitting  

 No relationship was found between irrigation frequencies and splitting 

 Irrigation frequency affected growth rate. Frequent irrigation resulted in the most 

rapid growth rate and the most infrequent irrigation resulted in the slowest growth 

rate 

 Splitting at harvest can be predicted by the VWC at Growth Stage 41 

 Irrigation prior to harvest and more specifically in the final 10 days prior to harvest 

determines yield at harvest.  

 Hypocotyl growth rate is increased by a period of drying from Day 8 to Day 18 

which is then alleviated by irrigation until harvest. This is thought to be due to 

compensatory growth 

 Marketable yield was greatest for plants which were given a period of drying from 

Day 8 to Growth Stage 41. These plants grew at a similar rate to plants which 

were irrigated for the duration of growth, had a lower level of splitting and tended 

to be more consistent in size at harvest 
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The factors which were found to be associated with susceptibility to growth splitting in 

Chapter 3 are summarised in Figure 3-51. 

 

 

Figure 3-51 Factors which are associated with susceptibility to growth splitting 
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4. Harvest Splits  

4.1 Chapter 4 Harvest splits: Introduction  

Hypocotyl splitting in radish can occur during growth, harvest or post-harvest. In Chapter 4 

factors affecting splitting susceptibility post-harvest will be investigated.  

 

Commercial data: Much of the research into the causes of splitting has begun by 

investigating the environmental conditions and agronomic practices of commercially 

grown produce which correlate with levels of splitting. This then allows future experiments 

to be conducted to test the observed relationships under controlled environmental 

conditions. In investigations looking at field grown crops, water potential and temperature 

have been linked with harvest splitting. Hartz et al (2005) found both turgor and air 

temperature prior to harvest were positively correlated with splitting in carrot suggesting 

hypocotyls with greater water potentials and harvesting at higher temperatures may result 

in more splitting. Research is required to investigate the environmental conditions during 

commercial production which correlate with harvest splitting in radishes.  

 

Relative water content (RWC): Irrigation and water availability during growth may also 

affect hypocotyl water contents at harvest, Marcelis (1999) found increased salinity and 

consequently decreased water availability during growth resulted in a lower percentage 

water content, in the radish hypocotyl at harvest. These results suggest water availability 

during growth may affect hypocotyl water content at harvest, though salinity effects on 

osmotic potentials can be complex. Post-harvest washing may also increase hypocotyl 

water content as preliminary experiments have shown radishes are able to absorb water 

through the periderm. Hypocotyl water content may affect splitting post-harvest by 

affecting turgor pressure. McGarry (1993, 1995) found failure force in carrot tissue was 

negatively correlated with tissue turgor and water potential. There have been no reported 

investigations into the effects of hypocotyl water content on splitting susceptibility in 

radishes.  
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Temperature: The temperature of the radish hypocotyls during harvest and post-harvest 

processes may also have an effect on splitting susceptibility. In a review of the effects of 

temperature on a range of fruits and vegetables, which did not include radishes, Bourne 

(1982) showed for the majority of crops tested, increased temperature was associated 

with decreasing firmness. This was measured as failure force with a texture analyser. This 

relationship was represented by an approximately linear relationship. Bajema et al (1998) 

also found a decrease in compressive failure strain and tissue toughness with increasing 

temperature in potatoes. In this investigation the effects of turgor were also investigated 

and a similar pattern was observed. The similarities between the effects of temperature 

and turgor led the investigators to conclude that the same mechanism must explain both 

the effects of temperature and turgor. 

The main objective of work carried out in Chapter 4 was to identify some of the factors 

which effect susceptibility to harvest splitting in radishes. This chapter will begin with 

Experiment 4.1 an analysis of commercially grown radishes to identify environmental 

factors which correlate with splitting susceptibility. Then a series of experiments 

(Experiments 4.3 to 4.7) will investigate the relationships between hypocotyl water content 

and hypocotyl RWC with splitting. The chapter will then conclude with Experiment 4.8 

which is an investigation into the relationship between hypocotyl temperature and harvest 

splitting.  
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4.2 Experiment 4.1: Preliminary experiment optimising the method for 

hypocotyl saturation  

4.2.1 Experiment 4.1: Introduction 

In order to investigate the relationship between RWC and splitting, a standard method to 

saturate the radish hypocotyls was required. The method needed to be easily replicable 

and to not influence any other measurements which were necessary.  

Aim: 

 The aim of this preliminary experiment was to investigate the differences in water 

uptake by radish hypocotyls cut into different numbers of sections.  

Hypothesis: 

1. There will be no difference in the speed of water absorbed by radish hypocotyls 

cut into different numbers of segments 
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4.2.2 Experiment 4.1: Materials and method 

Radishes grown by G’s Growers were purchased from Waitrose. These were weighed 

using a PCB 2500-2 balance (Kern and Sohn GmbH, Balingen, Germany) then either left 

whole, cut into halves, quarters or eighths and placed into plastic pots containing 

approximately 100 mL of dH2O. Cutting the radishes into sections increased the surface 

area for water uptake and potentially increased the rate with which saturation occurred.  

The pots of radishes were placed into a controlled environment at 2.5°C. The temperature 

2.5°C was chosen as it is below 4°C, the temperature at which plant growth stops but 

above freezing as this may have damaged the cells and affected the amount of water 

which they could absorb.  

The radishes were then weighed 5 times over the subsequent 48 hours. Before weighing, 

the radishes were all patted dry using paper towel.  
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4.2.3 Experiment 4.1: Results and discussion  

By 48 hours all of the radishes had begun to plateau in weight suggesting they were 

reaching saturation. The radishes which were cut into eight segments had the greatest 

and most rapid change in weight (Figure 4-1). Therefore, cutting the radishes into eight 

segments was chosen as the standard method for calculating RWC for future 

experiments.  

 

Figure 4-1 Change in weight over time of radish hypocotyls cut into different numbers of 

segments and placed into dH2O (n=2) 
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4.3 Experiment 4.2: Analysis of commercial QA split data   

4.3.1 Experiment 4.2: Introduction 

Weather conditions during growth may affect splitting susceptibility by affecting the turgor 

pressure within the radish hypocotyl. High turgor pressure has been shown to be related 

to increased splitting susceptibility in other crops (McGarry 1993; McGarry 1995). The 

theory is that less force is required to rupture cells which are already under some degree 

of stress. Large amounts of rainfall during growth may increase the hypocotyl water 

content, increase turgor pressure within the hypocotyl and increase splitting susceptibility. 

High relative humidity may decrease rates of water loss as a result of evapotranspiration, 

increase turgor pressure within the hypocotyl and increase splitting. Low temperature may 

increase turgor pressure with the hypocotyl and increase splitting.  

The conditions which the radishes are exposed to during harvest and post-harvest 

handling may also affect splitting susceptibility. Cold temperature during harvest and 

handling may increase splitting susceptibility by increasing turgor and high relative 

humidity may decrease evaporation, maintaining turgor and increasing splitting 

susceptibility. 

Experiment 4.2 analysed splitting data from G’s Growers QA in 2014 for the cultivar 

‘Celesta’ and combined this with additional experiments on splitting susceptibility and 

measurements of RWC conducted at HAU. By investigating commercial splitting trends 

and correlating these with weather data, RWC and a standardised test for splitting 

susceptibility it should be possible to determine if weather appears to affect splitting by 

changing the RWC of the radish hypocotyl. The factors which appear to be correlated with 

splitting can then be investigated under controlled conditions in future experiments to 

determine more conclusively if they have an effect on splitting.  

The main objective of the analysis was to investigate commercial splitting trends and 

correlate these with hypocotyl RWC and weather during growth determine if 

environmental conditions during growth appear to be related to hypocotyl RWC and 

splitting. 
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Aim: To determine if the:  

 Amount of splitting observed at a commercial site can be predicted by the weather 

conditions during growth and harvest of the radishes; 

 Weather conditions correlate with the RWC of the radishes;  

 RWC of the radishes correlates with the amount of splitting recorded by the QA team 

at G’s Growers 

 RWC of the radishes correlates with susceptibility to splitting as a result of impact  

 Impact texture analysis can be used to test susceptibility to splitting  

Null hypothesis:  

1. No significant relationship will be observed between weather parameters and splitting 

or post-harvest splitting susceptibility in commercially grown radishes 

2. There will be no correlation between weather conditions and RWC of the radish 

hypocotyls  

3. RWC of the radishes will not correlate with the amount of splitting recorded by the QA 

team at G’s Growers  

4. RWC of the radishes will not correlate with susceptibility to splitting as a result of 

impact  

5. Impact texture analysis is not an accurate way to test susceptibility to splitting  
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4.3.2 Experiment 4.2: Materials and Methods  

Production and delivery: During the 2014 growing season, on 23 occasions, a box of 

radishes from G’s growers, Feltwell, was couriered on the day of harvest to arrive at HAU, 

Shropshire the following morning. The first delivery was made on 16th April 2014 and the 

final delivery was made on 14th October 2014. The radishes had been topped in the field 

and harvested into a trailer following standard commercial harvesting procedure but were 

removed from the harvested batch at an unwashed stage and had not been washed, 

graded or trimmed prior to transport. For transport the radishes were placed into a clear 

plastic storage bag (Waitrose, Berkshire, UK) which was tied at the top then placed inside 

a 305 mm x 230 mm x 230 mm double wall cardboard removal box which was taped 

closed. The batch number was written on the box. This allowed a comparison with the 

data gathered at G’s and the drill date and harvest date to be determined.  

 

Processing: Upon arrival at HAU, 100 radishes were removed from the box. These were 

briefly washed in tap water to get rid of soil residue and trimmed using a knife to remove 

any remaining leaf petioles and fibrous roots. The radishes were assessed for splits at this 

point for comparison with values recorded for the same batch by the QA team at G’s 

Growers. At G’s Growers, radishes are assessed after they have been washed and 

trimmed. The maximum diameter of the radishes was measured and they were weighed. 

Any radishes which were split were cut into eight pieces and placed in a pot of 

approximately 100 mL of dH2O and placed into cold storage at 2.5°C for 48 hours to 

saturate (as had been determined by Experiment 4.1).  

 

Testing splitting susceptibility: The remaining radishes were tested for susceptibility to 

splitting using impact texture analysis. The number of radishes which split as a result of 

dropping was counted. A record was made of the weight, diameter and if the radishes 

were split on arrival, split due to dropping or not split.  
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RWC: Additional non-split radishes which were of commercial size, between 18 and 32 

mm in diameter, were taken from the box. These were washed, trimmed and dropped as 

before, until a total of 100 commercial sized non-split radishes had been dropped. 

Commercial sizes were used to make the results as relevant as possible to growers. Up to 

a maximum of 25 radishes which split as a result of dropping, were cut into 8 segments 

and placed into individual pots of approximately 100 mL of dH2O and placed into cold 

storage at 2.5°C to saturate. A further 25 radishes which did not split were also each cut 

into 8 pieces, placed into a container of approximately 100 mL of water and stored in a 

controlled environment at 2.5°C to saturate.  

The temperature in the controlled environment was logged using a TinyTag logger 

(Gemini Data Loggers (UK) Ltd., Chichester, UK) every half hour during the period from 

16/04/2014 when the first radishes were delivered and 17/10/2014 when the final lot of 

radishes was removed from the cold store. The mean temperature during this period was 

2.5°C with a standard error of 0.004.  

After 48 hours all the radishes which had been placed in storage to saturate were 

removed from the water, patted dry using paper towel and weighed using the same scales 

which they were initially weighed with, this was the turgid weight (TW). The radishes were 

then placed in a drying oven at 65°C for a minimum of 48 hours, until they had reached a 

constant weight. The radishes were re-weighed giving the dry weight (DW). The RWC 

was calculated using the equation (Kirkham 2005):  

 

RWC =  
(FW − DW)

(TW − DW)
 

 

Where, FW = fresh weight, DW = dry weight and TW = turgid or saturated weight  

 

Statistical analysis: All data was analysed using GenStat for Windows 15th Edition (VSN 

International 2011). 

Throughout the season, the mean number of split radishes which G’s recorded was 

compared to the number of split radishes upon arrival at HAU. The number of radishes 
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which were split on arrival at HAU was compared to the number of radishes which split as 

a result of dropping and the number of radishes which split as a result of dropping was 

compared to the RWC. The batch number for the radishes was supplied by G’s and from 

this the drill date and harvest date could be determined. Using weather data from RAF 

Marham which was supplied by BADC and the Met Office, the rainfall during growth, the 

relative humidity during growth and at harvest and the temperature at growth and at 

harvest were correlated with RWC, the number of radishes which arrived split and the 

number of radishes which split as a result of dropping.  

All data was analysed using regression, when the response variable and explanatory 

variables both contained continuous data, simple or polynomial regression was used to 

estimate their relationship. When the response variable consisted of presence absence 

data, for example split or not split radishes, linear regression with a probit link function 

was used.  
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4.3.3 Experiment 4.2: Results  

The mean number of split radishes for each batch recorded by the quality assessment 

team at G’s was correlated with relative humidity and temperature on the day of harvest 

suggesting harvest conditions influenced the splitting susceptibility of the radishes. There 

was also a correlation between the environmental conditions during growth, namely 

temperature and accumulated precipitation, and the amount of splitting observed at G’s 

suggesting weather conditions during growth may also effect splitting (Table 4-1).  

Temperature both during growth and at harvest was negatively correlated with splitting 

suggesting lower temperatures may result in an increased splitting susceptibility. 

Accumulated precipitation and relative humidity at harvest were positively correlated with 

splitting recorded at G’s suggesting higher levels of rainfall and higher relative humidity 

result in more splitting (Table 4-1).  

The amount of splitting which was observed on arrival at HAU was correlated with the 

splitting recorded at G’s and was negatively correlated with temperature during growth 

and at harvest.  

The number of radishes which split as a result of impact texture analysis was correlated 

with RWC but the number of radishes recorded as split by G’s and the number of radishes 

which arrived split at HAU were not (Table 4-1). 

RWC of the radish hypocotyls was not correlated with any of the weather conditions 

during growth or at harvest (Table 4-1). 
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Table 4-1 Correlation matrix showing the relationships (R2) between splitting (as 

measured by the quality assessment team at G’s, the number which were split on arrival 

at HAU and the number which split as a result of dropping), RWC and weather (as 

measured by the Met Office and BADC) during growth for radishes grown in 2014 by G’s 

Growers (n=23) 

 

GS FS DS RWC R TG RHG TH RHH 

GS1 1 

        FS 0.569** 1 

       DS 0.360 0.629** 1 

      RWC -0.092 0.227 0.698*** 1 

     R 0.398 0.005 0.287 0.160 1 

    TG -0.453 -0.362 0.054 0.315 0.284 1 

   RHG 0.075 0.263 0.116 0.190 -0.328 -0.021 1 

  TH -0.619** -0.398 -0.058 0.211 -0.031 0.703*** -0.096 1 

 RHH 0.605** 0.144 0.133 -0.212 0.333 -0.269 0.267 -0.314 1 

1GS = mean number of split radishes recorded by the quality assessment team at G’s, FS 

= number of radishes which were split on arrival at HAU, DS = number of radishes which 

split as a result of impact texture analysis, RWC = RWC of the radish hypocotyls, R = total 

accumulated precipitation during radish growth, TG = mean temperature during growth, 

RHG = mean relative humidity during growth, TH = mean temperature on the day of 

harvest, RHH = mean relative humidity on the day of harvest. *** = denotes significance at 

the 1% level (PPMC = 0.652), **= denotes significance at the 5% level (PPMC = 0.537) 

 

Fitted models: A multiple linear regression of the weather data which was correlated with 

the amount of splitting recorded at G’s resulted in a model which accounted for 57% of the 

variation in splitting. The model included accumulated precipitation during growth, mean 

temperature and relative humidity on the day of harvest and mean temperature during 

growth (Table 4-2).  
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Table 4-2 Model determined by multiple linear regression and stepwise deletion for the 

relationship between splitting observed at G’s by the quality assessment team and 

weather conditions measured by the Met Office and BADC. 

Split type Model fitted P Variance accounted for SE 

GS1 Tg+RHh+Th+P <0.001 57.0 % 1.20 

1 GS = Number of splits recorded at G’s, Tg = Mean temperature during growth (°C), RHh = 

Mean relative humidity on the day of harvest (%), Th = Mean temperature on the day of 

harvest (°C), R = Accumulated precipitation (mm) 

 

In the model the temperature during growth accounted for the greatest proportion of the 

total sum of squares (38.32%) followed by mean relative humidity on the day of harvest 

(18.75%) then mean accumulated precipitation (7.75%) and mean temperature on the day 

of harvest (0.003%) (Table 4-3).  

 

Table 4-3 The significance of variation for splitting recorded at G’s, parameter estimate, 

mean, standard error of the mean and proportion of total sum of squares accounted for by 

the accumulated sum of squares for each weather variable used in the model determined 

by multiple linear regression 

Parameter P Parameter estimate Mean S.E.M Proportion of TSS (%) 

Tg
1 0.364 -0.124 14.13 0.134 38.32 

RHh 0.062 0.0731 80.18 0.0367 18.75 

Th 0.102 -0.245 14.01 0.142 0.003 

R 0.062 0.0441 29.23 0.0221 7.75 

1 Tg = Mean temperature during growth (°C), RHh = Mean relative humidity on the day of 

harvest (%), Th = Mean temperature on the day of harvest (°C), R = Accumulated 

precipitation (mm), TSS is the total sum of squares  

 

Using a simple linear correlation showed the number of radishes which were split on 

arrival at HAU (FS) was correlated (P<0.001) with the number of radishes which were 
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recorded as split by the quality assessment team at G’s (GS), although fewer splits tended 

to be recorded at G’s than at HAU. This may have been as a result of the additional 

handling and transport which the radishes received on the way to HAU. FS was 

significantly correlated (P<0.001) with the number of radishes which split after they were 

dropped from a height of 1.4 m (DS). As expected, the number of radishes which split 

after dropping was greater than the number of radishes which were split on arrival at HAU. 

GS and DS were not highly correlated but there was a trend (P=0.091) (Table 4-4).  

 

Table 4-4 Correlations between different split types of radishes grown by G’s Growers in 

2014 

Variables 

correlated 

P Variance accounted for 

(%) 

SE Model 

GS1 + FS <0.001 29.2 1.54 GS = 0.24 FS + 1.77 

DS + FS <0.001 36.7 6.72 DS = 1.20 FS + 6.63 

GS + DS 0.091 8.8 1.75 GS = 0.08 DS + 1.73 

1 Refers to the type of split, FS = the number of radishes which were split on arrival at 

HAU, DS = the number of radishes which split after they were dropped, GS = the number 

of radishes recorded by the quality assessment team at G’s, SE = standard error  

 

The number of radishes which split after dropping was highly correlated (P<0.001) with 

hypocotyl RWC (Table 4-5). 

 

Table 4-5 Correlation between the numbers of radishes grown by G’s Growers which split 

when dropped and RWC 

Variables P Variance accounted for (%) SE Model 

DS1 RWC <0.001 46.3 6.19 DS = 207.89 RWC – 174.4 

1DS = Number of radishes which split after dropping from a height of 1.4 m. SE = standard 

error  
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The RWC of the radishes which did not split and split as a result of dropping was 

significantly different at the 5% level. The RWC of the radishes which were split on arrival 

at HAU was mid-way between the RWC of the radishes which did not split and the 

radishes which split as a result of dropping but was not significantly different from either. 

The water content of the radishes which did not split was significantly lower than the water 

content of the radishes which were split on arrival at HAU and those which split after 

dropping. There was no significant difference in the water content of the radishes which 

were split on arrival at HAU and those which split as a result of dropping (Table 4-6). 

 

Table 4-6 RWC and water content (WC) of radishes, grown by G’s Growers, which were 

not split, which were split on arrival at HAU and which split after they were dropped 

Split type n RWC WC 

Not Split 575 0.888 a1 96.57 a 

Split on arrival 77 0.895 ab 96.74 b 

Split after dropping 245 0.912 b 96.91 b 

P  <0.001 <0.001 

1Denotes difference at the 5% level, where letters are shared no significant difference is 

present between values.   
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4.3.4 Experiment 4.2: Discussion 

Analysis of commercially produced radishes was conducted in 2014 to determine if, a) the 

amount of splitting observed by G’s can be predicted by the weather conditions during 

growth and harvest of the radishes; b) the weather conditions correlate with the RWC of 

the radishes; c) the RWC of the radishes correlates with the amount of splitting recorded 

by G’s and finally d) impact texture analysis can be used to test splitting susceptibility. 

Correlation matrices and regression were used to determine the parameters which were 

correlated and to investigate trends in splitting. In this investigation, the first null 

hypothesis was rejected because similar to the findings of Hartz et al (2005) on carrot, a 

relationship was observed between some weather parameters and splitting.  

There were more splits on arrival at HAU compared to the number of radishes which were 

recorded as split at G’s. This suggests radishes continued to split after harvest while they 

were being couriered. There is anecdotal evidence from growers that radishes continue to 

split during the first couple of days of storage and these results would appear to support 

this. It would be expected that water lost from the hypocotyl after harvest would decrease 

splitting susceptibility by decreasing the pressure within the hypocotyl. If keeping the 

radishes under conditions of high relative humidity maintains the hypocotyl water content 

above a critical value they would still be susceptible to splitting as a result of impact from 

being moved around and compression from being stored in large Dolavs.   

More radishes split as a result of dropping than were recorded as either split at G’s or 

which were split on arrival at HAU. This result is as would be expected as it is unlikely 

commercial radishes would all experience drops of this magnitude. The number of 

radishes which split as a result of dropping and the number of radishes which were split 

on arrival at HAU was highly correlated (P<0.001) and there was trend (P=0.091) between 

the number of radishes which split as a result of dropping and the number of radishes 

which were recorded as split by G’s. These results suggest impact texture analysis may 

be a representative way to test splitting susceptibility rejecting the fifth null hypothesis.  

The number of radishes which split as a result of impact texture analysis was highly 

correlated with RWC (P<0.001) therefore, the fourth null hypothesis was rejected. 
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However, in support of the third and second null hypotheses no relationship was observed 

between RWC and the number of split radishes which were recorded by G’s or weather 

conditions and RWC. It should be remembered that RWC was only measured at HAU and 

not at G’s at the point of harvest. To determine definitively that there was no relationship 

between RWC and the splitting observed by G’s or weather conditions, further 

assessment of the RWC of the radishes at harvest would need to be made at G’s.  

Split radishes may lose water more rapidly than intact radishes due to the split surface 

which would not only have lost protection from the periderm but would also have an 

increased surface area. This could potentially cause boxes containing a large percentage 

of split radishes to have a lower RWC on arrival at HAU than boxes with relatively few split 

radishes. When the RWC of the radishes which were not split and were split on arrival 

were compared no significant difference was observed yet the water content was 

significantly different, with the radishes which split having greater water contents. These 

results indicate the split radishes may have had, had high RWCs at the point of splitting as 

they still maintained at high water content. However, they may have lost more water than 

the non-split radishes in the time between splitting and measurement of the RWC as a 

result of a greater rate of water loss from the split surfaces resulting in a lower RWC at the 

point of measurement compared to the point at which they split.   

The first null hypothesis was rejected as weather conditions during growth and at harvest 

were significantly correlated with the amount of splitting which was recorded by the quality 

assessment team at G’s and the model containing the correlated weather parameters 

accounted for 57.0 % of the variance in splitting observed at G’s. Due to the nature of 

weather data all the parameters would have had interactions with each other and it is 

impossible to determine exactly which were having an effect on splitting. Further 

investigation under controlled conditions is required to determine exactly which factors 

during growth and at harvest have an effect on splitting.  

The weather parameters were not significantly correlated with the amount of splitting 

observed on arrival at HAU or the number of radishes which split as a result of impact 

texture analysis. Weather conditions were unlikely to be correlated with the amount of 
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splitting which was observed on arrival at HAU or as a result of impact texture analysis. 

This can be explained by the amount of time which had passed after harvest. The 

radishes were couriered on the day of harvest and did not arrive at HAU until the following 

day at least 24 hours later. The temperature and relative humidity during transport from 

G’s to HAU were not controlled by the couriers and would have been different to those 

experienced by the radishes during growth and at harvest and different again from the 

conditions which the radishes were exposed to during impact texture analysis which was 

done under ambient conditions. The postharvest conditions were likely to have had an 

effect on the RWC and temperature of the hypocotyl during transport and then during 

texture analysis and calculation of RWC but as these were not measured the effects 

cannot be determined. Further investigations into the effects of RWC on post-harvest 

splitting susceptibility were conducted under controlled conditions at HAU. 
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4.4 Experiments 4.3-4.7: Investigating the effect of hypocotyl water content 

on the susceptibility of radishes to harvest splits 

4.4.1 Introduction: Experiments 4.3-4.7 

In Experiment 4.2, relative humidity and accumulated precipitation were observed to be 

positively correlated with the amount of splitting recorded at G’s by the quality control 

team. Hypocotyl RWC and splitting as a result of impact were also found to be positively 

correlated. These results suggest a high accumulated precipitation or relative humidity 

may have resulted in a high hypocotyl RWC which may have made the hypocotyls more 

susceptible to splitting. Many of the results from Experiment 4.2 were based on 

observational data therefore Experiments 4.3-4.7 were conducted under controlled 

conditions to investigate the relationship between hypocotyl water content and splitting 

susceptibility further.  

It is thought the post-harvest hypocotyl water content of radishes may have an effect on 

splitting susceptibility by affecting the turgor pressure of the cells. In Chapter 3 the mode 

of failure of split radish hypocotyls was revealed to be plasmoptysis.   Higher turgor 

pressure has been shown to reduce tissue strength and increase tissue failure through 

plasmoptysis (Lin & Pitt 1986). Hypocotyl water content affects turgor pressure because 

pressure potential increases as water enters a cell. The increase in the amount of water 

inside the cell exerts an outward pressure which is opposed by the cell wall. The cell wall 

is then placed under increased tension. Under increased turgor pressure cells may be 

more susceptible to splitting because the cell walls are already stressed and consequently 

more easily ruptured (Kokkoras 1995).  

The relationship between turgor pressure and splitting has been reported in a number of 

root crops: Gracie (2004) found a reduction in turgor pressure caused by partially-lifting 

carrots reduced splitting susceptibility. The carrots were partially-lifted to sever the fibrous 

root system then left in the soil over night before harvesting the following morning. These 

carrots with reduced turgor had a greatly diminished splitting susceptibility when tested 

with a penetrometer. Further evidence to support turgor pressure affecting splitting 

susceptibility is provided by the investigation conducted by Konstankiewicz and Zdunek 
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(2001). They found the compressive strength of the tissue samples decreased with 

increasing turgor pressure suggesting potato tubers are more susceptible to splitting when 

they are more turgid (Konstankiewicz & Zdunek 2001). The results obtained by 

Konstankiewicz and Zdunek (2001) are similar to those of Bajema et al (1998) who also 

found potatoes with lower turgor had higher compressive strength than more turgid 

potatoes. McGarry (1993) found failure force in the phloem parenchyma tissue of carrots 

was negatively correlated with both water potential and turgor pressure.  

Experiments in this section investigated the effects of hypocotyl water content and water 

content on splitting susceptibility and how these were linked to hypocotyl water pressure. 

A series of three preliminary experiments (Experiment 4.3) was conducted to investigate if 

the radish hypocotyl is able to absorb water through the periderm how rapidly this process 

occurs. Four experiments (Experiment 4.4-4.7) were then conducted to look at the effects 

of hypocotyl water content and RWC on splitting of commercially grown radishes and how 

hypocotyl water content and RWC are relative to hypocotyl water pressure.  

Aims:  

 Determine if water is absorbed through the radish hypocotyl  

 Determine if water is able to pass through the periderm of the radish hypocotyl  

 Determine if hypocotyl water content is correlated with splitting susceptibility as a 

results of impact, compression or puncture  

 Determine if hypocotyl RWC is correlated with splitting susceptibility as a result of 

impact or puncture  

 To investigate the relationship between failure force as a result puncture of 

hypocotyls with and without a periderm  

 To investigate the relationship between hypocotyl water content and hypocotyl 

water pressure  

 To investigate the relationship between hypocotyl RWC and hypocotyl water 

pressure  

Null Hypotheses:  

1. Water is not absorbed through the radish hypocotyl  
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2. Water is not able to pass through the periderm of the radish hypocotyl  

3. There is no correlation between hypocotyl water content and splitting susceptibility 

as a results of impact, compression or puncture  

4. There is no correlation between hypocotyl RWC and splitting susceptibility as a 

result of impact or puncture  

5. There is no relationship between hypocotyl RWC and hypocotyl water pressure  

6. There is no relationship between failure force as a result puncture of hypocotyls 

with and without a periderm  

7. There is no relationship between hypocotyl water content and hypocotyl water 

pressure  
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4.4.2 Experiment 4.3: Preliminary experiments: Determining if radishes 

absorb water through the periderm 

4.4.2.1 Experiment 4.3: Introduction  

During harvest and post-harvest processing, radish hypocotyls are washed, trimmed and 

transported by floating in water, a process which can take several minutes. It is unclear 

firstly if radishes take up water through the periderm of the hypocotyl during this process 

and secondly, if water is taken up, the rate at which this happens.   

In an attempt to answer these two questions, three preliminary experiments were 

conducted to determine firstly if radishes are able take up water through the periderm of if 

the surface is too waxy to allow water to penetrate. The mode of water uptake may have 

implications on methods used in future experiments and could influence recommendations 

to growers for post-harvest handling if a relationship is found between RWC and splitting. 

The second and third experiments investigated the rate at which water is lost or absorbed. 

These experiments will reveal if the post-harvest handling procedure which only takes a 

few minutes can have an effect on the RWC of the radish hypocotyls.  

Aims:  

 To determine if water can be taken up through the hypocotyl periderm into the 

radish hypocotyl.  

 To determine the speed at which water is lost or taken up by the radish hypocotyl.  

Null hypothesis:  

1. There will be no change in water content of the radish hypocotyl. 
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4.4.2.2 Experiment 4.3: Materials and method 

Preliminary Experiment 1 - Water absorption through the hypocotyl periderm: 

Radishes grown by G’s Growers were bought at a local supermarket, Waitrose, having 

been displayed in a refrigerated display cabinet. Ten radishes were weighed and placed 

individually in hammocks suspended in beakers of dH2O. They were positioned so the cut 

ends at the top and bottom of the radish, where the leaves and roots had been removed, 

were exposed above the water and some of the periderm was submerged below the 

surface of the water (Figure 4-2, Figure 4-3). A further ten radishes were weighed and 

individually placed in 10 beakers with no water in them.  

 

 

Figure 4-2 Showing the ‘hammock’ suspending a radish in water.  Top view. 

  

 



331 
 

 

Figure 4-3 Showing the radish suspended in water using a ‘hammock’.  N.B. the cut ends 

at the top and bottom were above the surface of the water but the periderm on the side of 

the radish was submerged. View from the side.  

 

The beakers of radishes were then placed into a MLR-351H Versatile Environmental Test 

Chamber (SANYO Electric Co. Ltd., Japan) for 24 hours. The chamber was set to 90% 

relative humidity and the temperature was set to 4°C. This temperature was chosen to 

minimise plant growth and respiration.  

After 24 hours, the radishes were removed from the chamber, dried with paper towel and 

weighed. The percentage change in weight compared to the initial weight was then 

calculated and the results were analysed using a Student’s T-Test.  

Preliminary Experiment 2 – Speed of water uptake/loss for shop bought radishes: 

Radishes grown by G’s Growers were bought at a local supermarket, Waitrose, having 

been displayed in a refrigerated display cabinet. Seven radishes were individually 

weighed and placed into seven glass beakers of dH2O and a further seven radishes were 

individually weighed placed into seven empty glass beakers. The beakers of dH2O had 



332 
 

been prepared prior to the start of the experiment and placed in the controlled 

environment chamber to allow the water to reach 4°C. The beakers of radishes were then 

placed into a MLR-351H Versatile Environmental Test Chamber (SANYO Electric Co. 

Ltd., Japan). The chamber was set to 90% relative humidity and 4°C. After five minutes, 

each radish was individually removed from the chamber, patted dry using paper towel, 

weighed, and returned to the same glass beaker in the controlled environment chamber. 

This process was repeated every five minutes for 60 minutes. Each radish was weighed a 

total of 13 times. The results were then analysed using linear regression.  

Skeleton ANOVA: 

Table 4-7 Skeleton ANOVA for regression analysis of change in weight of radish 

hypocotyls placed in water or allowed to air dry 

Source of variation df 

Regression 4 

Residual 8 

Total 12 

 

 

Preliminary Experiment 3 – Speed of water uptake/loss for fresh radishes: The 

previous two preliminary experiment in Experiment 4.3 used shop bought radishes which 

had been transported through the supply chain. Therefore, the conditions following 

harvest were unknown and may have led to them being more dehydrated than radishes 

which were freshly harvested affecting the rate of uptake of water. This third preliminary 

experiment aimed to determine the rate of water uptake of more recently harvested 

radishes; of greater relevance to the following experiments, Experiments 4.4-4.7 which 

used freshly harvested and couriered radishes grown by G’s Growers. In this preliminary 

experiment radishes grown by G’s Growers were couriered to HAU on the same day as 

they were harvested for analysis the following day. The radishes had not been washed or 

sent through quality control. On arrival at HAU they were briefly washed in dH2O.  
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Ten radishes were weighed and individually placed into glass beakers of dH2O and ten 

radishes were individually placed into empty glass beakers. The beakers of dH2O had 

been prepared prior to the start of the experiment and placed in the controlled 

environment chamber to allow the water to reach 4°C. The beakers containing the 

radishes were then returned to the controlled environment test chamber. The chamber 

was set to 90% relative humidity and 4°C. After six minutes, each radish was individually 

removed from the chamber, patted dry using paper towel, weighed, and returned to the 

same glass beaker in the controlled environment chamber. This process was repeated 

every six minutes for 30 minutes. Each radish was weighed a total of six times. The 

radishes were then placed into an oven and dried at 105°C to a constant weight. Once dry 

the radishes were again weighed to allow a calculation of their water content to be made. 

The results were then analysed using linear regression.  

Skeleton ANOVA: 

Table 4-8 Skeleton ANOVA for the rate of change in weight and water content of radish 

hypocotyls over 30 minutes  

Source of variation df 

Regression 1 

Residual 4 

Total 5 
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4.4.2.3 Experiment 4.3: Results and discussion  

Preliminary Experiment 1 – Water uptake through the periderm: There was a clear 

difference in appearance (Figure 4-4) and a significant (P<0.001) difference between 

initial weight and weight after 24 hours (18 df) (Figure 4-5) between the radishes which 

were placed in empty beakers and radishes which were suspended in hammocks with 

part of their periderm submerged in water. The radishes which were placed in empty 

beakers had a mean decrease in weight of 22.7% whereas the radishes which were 

partially submerged had a mean increase in weight of 5.2% (Figure 4-5). 

 

 

Figure 4-4 Difference in appearance after 24 hours of shop-bought radishes allowed to air 

dry (bottom five radishes) or suspended in a hammock with part of their periderm 

submerged in water (top five radishes).  
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Figure 4-5 Change in weight of radishes placed in a beaker and suspended in a hammock 

with part of their periderm submerged in dH2O (blue) or placed in an empty beaker and 

allowed the air dry (red) for 24 hours (n=10). 

 

As the weight of the radishes which had their periderm in water increased in weight and 

the radishes which were kept in air decreased in weight, the results from this experiment 

suggest radishes are able to take up water through the periderm and the null hypothesis is 

rejected.  

Preliminary Experiment 2 – Rate of water uptake/loss for shop bought radishes: 

Over a 60 minute period there was a significant (P<0.001) increase in weight of the 

radishes which were placed in water and there was a significant (P<0.001) decrease in 

weight of the radishes which were left in the air (Table 4-9, Table 4-10) suggesting the 

radishes placed in water took up water and the radishes which were placed in air lost 

water over this time. The results also showed water was lost more rapidly than it was 

taken up over a 60 minute period, the radishes which were placed in dH2O had a mean 

increase in weight of 4.0% whereas the radishes which were in air had a mean decrease 

in weight of 4.3% (Figure 4-6). 
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Figure 4-6 Change in weight of radishes placed in dH2O (blue) or left in air (red) over 60 

minutes (n=7). Bars represent standard error.  

 

Table 4-9 Pattern of water uptake by radish hypocotyls over 60 minutes. P<0.001, 99.5% 

variance accounted for (n=7) 

Parameter Estimate Standard error P 

Constant 0.0683 0.0742 0.385 

Linear 0.2149 0.0187 <0.001 

Quadratic -0.00734 0.00135 <0.001 

Cubic 0.0001374 0.0000344 0.004 

Quartic 0.000000940 0.000000284 0.011 
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Table 4-10 Pattern of water loss of radish hypocotyls over 60 minutes. P<0.001, 99.7% 

variance accounted for (n=7)  

Parameter Estimate Standard error P 

Constant -0.0357 0.0620 0.581 

Linear -1.892 0.0156 <0.001 

Quadratic 0.00652 0.00113 <0.001 

Cubic -0.0001330 0.0000287 0.002 

Quartic 0.000000950 0.000000238 0.004 

 

 

The pattern of water uptake and loss over time was not linear (Figure 4-6, Table 4-9, 

Table 4-10). Both groups of radishes changed in weight more rapidly at the start of the 60 

minutes and by the end of the 60 minutes had begun to plateau in weight. This suggests 

when the radishes are being washed and processed commercially they will change in 

water content over the short period of time which they are being processed for. However, 

the radishes used for this experiment were shop bought and it may have been several 

days since they had been harvested. This may have resulted in a decrease in hypocotyl 

water content and meant they took up water more rapidly than a freshly harvested radish 

would have done.  

Preliminary Experiment 3 – Rate of water uptake/loss for fresh radishes: There was 

a significant change in weight of the radishes placed in water for 30 minutes (P<0.001) 

and the radishes left in air for 30 minutes (P=0.006). There was a linear relationship for 

both the increase and decrease in weight over the 30 minute period. The rate of change in 

weight for fresh radishes was less rapid than the shop bought radishes in the previous 

experiment. After 30 minutes, the shop bought radishes in the previous experiment which 

were left in air had decreased in weight by 2.7% whereas the fresh radishes in this 

experiment had only decreased in weight by 0.2%. For the radishes which were placed in 

water, in the previous experiment after 30 minutes, the shop bought radishes had 

increased in weight by 2.9% whereas the fresh radishes in this experiment had only 
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increased in weight by 0.9%. The fresh radishes may have taken up water less rapidly 

because they had a greater RWC compared to shop bought radishes but as this was not 

measured the hypothesis cannot be tested. It is unclear why the fresh radishes would 

have lost weight more slowly than shop bought radishes but potentially some radishes are 

more porous than others. The shop bought radishes would have passed through the more 

vigorous washing procedure at G’s Growers compared to brief hand washing at HAU and 

may have had more of the periderm removed or scratched.  

 

 

Figure 4-7 Change in weight (%) of fresh radishes placed in dH2O or allowed to air dry for 

30 minutes (n=10) 

 

The radish hypocotyls which were placed in water increased from a mean water content of 

97.553 % water to 97.757% water over 30 minutes (Figure 4-8). The radish hypocotyls 

which were allowed to air dry decreased from 96.863% water content to 96.855% water 

content over 30 minutes (Figure 4-9). The following experiments in this experiment will 

test if hypocotyl water content has an effect on splitting susceptibility.  
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Figure 4-8 Change in water content (%) of fresh radishes placed in water for 30 minutes 

(n=10) 

 

 

Figure 4-9 Change in water content (%) of fresh radishes allowed to air dry for 30 minutes 

(n=10) 
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4.4.2.4 Experiment 4.3: Conclusion 

In conclusion, the null hypothesis for Experiment 4.3 was rejected as it was shown water 

is able to pass through the periderm of the radish hypocotyl.  

Radishes in commercial production are only floated for a few minutes but these 

preliminary experiments showed the hypocotyls were able to take up water over this time 

period. In addition, water was absorbed most rapidly initially when the radishes were first 

placed into dH2O.  

Radishes which were more recently harvested were shown to absorb water more slowly 

than shop bought radishes suggesting the higher the RWC the slower the absorption of 

water. However, there were other differences in the two groups of radishes which were 

tested and this result is not conclusive.  

Further experiments are required to test if changes in RWC of the magnitude found in this 

preliminary experiment have an effect on susceptibility to harvest splitting. 
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4.4.3 Experiment 4.4: Investigating the effect of hypocotyl water content on 

the susceptibility of radishes to harvest splits  

4.4.3.1 Experiment 4.4: Introduction  

This experiment was designed to look at the relationship between hypocotyl water content 

and splitting susceptibility. Splitting susceptibility at different hypocotyl water contents was 

measured using three different tests: impact, puncture and compression. These tests 

were used as they were considered most likely to replicate commercial harvesting and 

packing processes. During harvest radishes are dropped from heights up to 1.4 m into a 

metal trailer and then, after the initial grading, they are dropped again into Dolavs. In the 

trailers used to transport the radishes from the field and during washing the radishes may 

experience puncture from stones or other foreign bodies collected from the field. Once in 

the Dolavs, the radishes experience compression from the weight of the other radishes in 

the Dolav.  

Aim:  

 The aim of this experiment was to determine if there is a relationship between 

hypocotyl water content and splitting susceptibility as a result of impact, puncture 

and compression.  

Null Hypotheses:  

1. There is no relationship between hypocotyl water content and splitting 

susceptibility as a result of impact.  

2. There is no relationship between hypocotyl water content and splitting 

susceptibility as a result of puncture. 

3. There is no relationship between hypocotyl water content and splitting 

susceptibility as a result of compression. 
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4.4.3.2 Experiment 4.4: Materials and Method 

Radishes from G’s Growers in Norfolk, England were couriered on the day of harvest to 

arrive at HAU, Shropshire, England the following morning. Upon arrival radishes were 

briefly washed in dH2O to remove soil residue and trimmed to remove any remaining leaf 

stalks and roots. The radish hypocotyls were then placed into plastic pots in groups of 

three. The experimental unit was one pot of three radishes. The pots of radishes were 

then placed into a MLR-351H Versatile Environmental Test Chamber (SANYO Electric 

Co. Ltd., Japan) where they were either allowed to air dry or the pots were filled with 

approximately 100 ml of dH2O to saturate the hypocotyls. Radishes were removed from 

the chamber every 2 to 3 days over the following week, weighed and subjected to 

destructive texture analysis. After texture analysis the radishes were dried to a constant 

weight at 105°C to calculate the water content at the point of analysis. The chamber was 

set to 90% relative humidity and achieved a mean relative humidity of 83.5% ranging from 

62.0% to 100.0%, the temperature was set to 4°C and achieved a mean temperature of 

4.5°C ranging from 2.5°C to 7.4°C. The variations in temperature and relative humidity are 

thought to have been due to the opening and closing of the chamber to remove samples.  

Puncture: Puncture tests were performed using a TA.HD.plus texture analyser (Stable 

Micro Systems, Surrey, England). The texture analyser was fitted with a P/2 cylindrical 

probe, the test speed was 1 mmS-1 and the test distance was 16 mm. During the 

experiment a curve was plotted of the force (kg) as a factor of distance. The point at which 

the periderm of the radish was punctured could be observed on the plotted curve as 

abrupt decrease in force.  

Impact: Impact tests were performed using the method described in Chapter 4.2. The 

drop height was 1.4 m to ensure some splitting was observed, this height is at the upper 

limit of what would be observed commercially when the first radishes are harvested into 

the trailer.  

Compression: Uniaxial compression tests were performed using a P/75 probe fitted to a 

TA.HD.plus texture analyser (Stable Micro Systems, Surrey, England). The pre-set apple 

compression test was used. The test speed was 0.05 mmS-1 and the test distance was 16 
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mm. During the test a curve was plotted of force (kg) as a factor of distance (mm). As the 

compression distance increased peaks were observed in the graph profile. Each peak 

indicates a compression failure in the radish. For the purposes of this experiment the first 

peak was recorded as the failure force of the radish hypocotyl.  

Statistical analysis: All data was analysed using GenStat for Windows 15th Edition (VSN 

International 2011). 

Either simple or polynomial regression was used to analyse the data. As the data for 

compression and puncture both the response variable and explanatory variables 

contained continuous data, therefore simple or polynomial regression was appropriate to 

use to estimate their relationship. The data for the results from impact contained 

continuous explanatory variables and interval data as the response variable. In this case it 

was also appropriate to use polynomial regression for analysis.  

Skeleton ANOVA:  

Table 4-11 Skeleton ANOVA for the three types of texture analysis conducted as part of 

Experiment 4.4 

 df 

Source of variation Impact Compression Puncture 

Regression 3 1 1 

Residual 66 66 35 

Total 69 67 36 
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4.4.3.3 Experiment 4.4: Results and discussion  

Impact:  

There was a significant (P<0.001) increase in the number of radishes which split as a 

result of impact as hypocotyl water content increased. There appeared to be a threshold 

at a hypocotyl water content of 96.5% above which splitting as a result of dropping 

occurred. The average percentage of split radish per pot below a hypocotyl water content 

of 96.5% was 0.8% (n=42), above 96.5% this number increased to 38.1% (n=28) (Figure 

4-10).  

 

 

Figure 4-10 Results from regression analysis of the percentage of split radish hypocotyls 

in a sample of three which split as a result of dropping down a 1.4 m tube onto an 

aluminium plate at different hypocotyl water contents (n = 70). 
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Table 4-12 Parameters and their estimates for the regression analysis of the percentage 

of split radish hypocotyls in a sample of three which split as a result of dropping down a 

1.4 m tube onto an aluminium plate at different hypocotyl water contents (n = 70) 

Parameter Estimate Standard error P 

Constant -15790749 360861 <0.001 

Linear 441260 100425 <0.001 

Quadratic -3468 786 <0.001 

Cubic 0 - - 

Quartic 0.0635 0.0143 <0.001 

 

In this experiment the propensity of radish hypocotyls to split due to impact as a result of 

dropping from a height of 1.4 m was found to increase at hypocotyl water contents over 

96.5%. This would appear to be the point at which the cells walls of radish hypocotyls are 

under enough stress that when the additional stress of being dropped from a fixed height 

of 1.4 m, the tissue fails and the radish splits. There was a significant linear relationship 

between failure force due to puncture and hypocotyl water content again suggesting that 

there may be a particular amount of stress which the hypocotyl cells are able to withstand 

before they fail. As the amount of stress increases due to increased water content the 

added amount of stress the cell walls are able to withstand as a result of puncture force 

decreases.  

Puncture: In this experiment, a relationship was observed between hypocotyl water 

content and splitting susceptibility as a result of both impact and puncture, therefore, the 

first and second null hypotheses were rejected. Results from this experiment suggest 

hypocotyls are more susceptible to splitting as a result of impact and damage as a result 

of puncture at high hypocotyl water contents.  

There was a significant (P<0.001) negative linear correlation between the puncture force 

(kg) and the hypocotyl water content (%) which explained 70.6% of the variance. This 

relationship was expressed by the equation:  
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y = -325.89x + 32268 

 

Figure 4-11 The force (g) required to puncture the periderm of radishes at different radish 

hypocotyl water contents (%) 

 

Compression: No relationship between hypocotyl water content and the failure force due 

to compression was observed (P=0.391) (Figure 4-12). Some radishes had not split at the 

maximum load of 35 kg. The third null hypothesis was not rejected because no 

relationship was observed between hypocotyl water content and splitting susceptibility as 

a result of compression. However, this may have been as a result of faults in the 

methodology of this investigation rather than there being no relationship. It was 

considered the test speed was too slow, resulting in the radishes being squeezed and the 

hypocotyls leaking water during the compression analysis. This would have meant the 

hypocotyls were not at the measured water content when and if they eventually split and 

therefore no meaningful conclusions can be drawn from the results. The association 

between hypocotyl water content and failure force as a result of compression needs 

further work to establish if there is a connection.   
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Figure 4-12 Failure force (kg) of radish hypocotyls at different water contents (%) as a 

result of compression (n=68) 

 

Overall, a relationship was observed between hypocotyl water content and splitting 

susceptibility as a result of both impact and puncture, therefore, the first and second null 

hypotheses were rejected. There was no relationship with compression but this may have 

been due to faults with the methodology used rather than a lack of relationship. The 

methodology will be improved in further experiments.  

In Experiment 4.4, hypocotyl water content was used to indicate the amount of stress 

which cells in the hypocotyl may be under. However, the RWC of the radishes may be a 

more accurate way to indicate the amount of stress which they are under. Water content 

calculates the proportion of water compared to dry matter, whereas the RWC determines 

the water content compared to the potential maximum water content. Maximum water 

content would be the most stress the cells could be placed under as a result of water 

uptake. Knowing how close the radishes were to this point could be beneficial and should 

be investigated further.  
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In conclusion, results from Experiment 4.4 suggest hypocotyls are more susceptible to 

splitting as a result of impact and damage as a result of puncture at high hypocotyl water 

contents.  
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4.4.4 Experiment 4.5: Investigating the effect of hypocotyl water content on 

the susceptibility of radishes to harvest splits with improved 

methodology 

4.4.4.1 Experiment 4.5: Introduction  

In the previous experiment, Experiment 4.4, the results from the investigation into the 

relationship between hypocotyl water content and splitting susceptibility due to 

compression were inconclusive. The methodology used in this experiment was modified 

with the aim to determine more conclusively if there is a relationship between hypocotyl 

water content and splitting susceptibility as a result of compression.  

In this experiment, Experiment 4.5, in addition to measuring hypocotyl water content, 

measurements of hypocotyl RWC were made for impact and puncture analyses. This was 

done to determine if RWC has a greater correlation with splitting susceptibility than 

hypocotyl water content.  

Aim: The aims of this experiment were to determine or confirm if there is a relationship 

between: 

 Hypocotyl water content and splitting susceptibility due to impact 

 Hypocotyl RWC and splitting susceptibility due to impact 

 Hypocotyl water content and failure force due to puncture 

 Hypocotyl RWC and failure force due puncture 

 Hypocotyl water content and failure force due to compression 

Null hypotheses: There will be no significant relationship between: 

1. Hypocotyl water content and splitting susceptibility due to impact 

2. Hypocotyl RWC and splitting susceptibility due to impact 

3. Hypocotyl water content and failure force due to puncture 

4. Hypocotyl RWC and failure force due puncture 

5. Hypocotyl water content and failure force due to compression 
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4.4.4.2 Experiment 4.5: Materials and method 

For this experiment, the protocol from Experiment 4.4 was refined. As in Experiment 4.4, 

all radishes were grown and harvested by G’s Growers and then couriered to HAU on the 

day of harvest for testing the following day. The radishes were placed into a controlled 

environment set to 4°C as soon as they arrived and until analysis was carried out. At the 

point of analysis all radishes were considered commercially viable by the examiner. The 

mean temperature in the controlled environment for the duration of storage of this 

experiment and the following two experiments was 2.6°C with a maximum of 2.7°C and a 

minimum of 2.3°C the mean relative humidity was 100% with a maximum of 100% and a 

minimum of 99.1%. 

Splitting susceptibility at different water contents was measured using three different tests, 

impact, puncture and compression using the methods described above for Experiment 4.4 

with modification. As before, all radishes used for analysis were of a commercial size.  

To ensure there was a range of hypocotyl water contents and RWCs, the radishes which 

were to be used for the puncture, compression and pressure tests, were divided into three 

groups:  

1. Fresh (tested 1 day post-harvest) 

2. Saturated for 1 day (tested 2 days post-harvest) 

3. Air dried for 1 day (tested 2 days post-harvest) 

For saturation the radishes were placed into pots of approximately 100 mL of dH2O to 

increase the hypocotyl water content. The radishes which were air dried were also placed 

into empty plastic pots.  

Impact: Impact analysis was performed on 30 radishes, 10 which were fresh, 10 which 

had been saturated for one day and 10 which had been air dried for one day. The 

radishes were tested using the method described previously other than each radish was 

an experimental unit, not a group of three radishes.   

Puncture: Puncture tests were performed on 45 radishes, 15 which were fresh, 15 which 

had been saturated for one day and 15 which had been air dried for one day. The 

radishes were tested using a TA.HD.plus texture analyser (Stable Micro Systems, Surrey, 
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England). As in Experiment 4.4, the texture analyser was fitted with a P/2 cylindrical 

probe, the test distance remained 16 mm but the test speed was increased to 2 mmS-1. 

Compared to Experiment 4.4 the test speed was doubled as the increased speed enabled 

more tests to be conducted in the same amount of time.  

Compression: Uniaxial compression tests were performed on 45 radishes, 15 which 

were fresh, 15 which had been saturated for 1 day and 15 which had been air dried for 1 

day. The radishes were tested using a P/75 probe fitted to a TA.HD.plus texture analyser 

(Stable Micro Systems, Surrey, England). The test speed was 2 mmS-1 and the test 

distance was 25 mm. This is a slight modification of the method used for Experiment 4.4. 

The test speed was increased from 0.05 mmS-1 to 2 mmS-1 to allow a greater number of 

samples to be processed and to minimise the amount of water lost from the hypocotyl 

during compression. A preliminary experiment was conducted to optimise the test speed. 

As no clear pattern was observed relating the test speed to failure force (Table 4-13) the 

fastest speed was chosen.  

 

Table 4-13 Test speed and mean failure force for freshly harvested and 1 week post-

harvest radishes (n=5) 

Test speed (mm/sec) 

Failure force (kg) 

Fresh radishes 

Failure force (kg) 

1 week old radishes 

0.5 21.51 27.53 

1 18.80 20.73 

2 19.24 22.62 

 

In addition liquid had been observed to be lost from the radishes at the slower speed 

making it impossible to determine exactly the water content at the point of failure.  

For compression texture analysis, the test distance was also increased from 16 to 25 mm. 

This was because a number of radishes did not fail with the shorter distance and it was 

felt an increased test distance, in addition to the increased speed, would reduce the 

likelihood of this occurring.  



352 
 

RWC: Prior to testing, each radish was weighed. After testing, the radishes which had 

been subjected to compression analysis were dried at 68°C to a constant weight and 

weighed to enable a calculation of water content (WC) to be made.  

After impact and puncture analysis the radishes were saturated using the same method 

as described in Experiment 4.1. Radish hypocotyls were cut into 8 segments and placed 

into individual pots of approximately 100 mL of dH2O. The pots were then placed into 

controlled environment storage at 2.5°C for 48 hours. The radish segments were then 

dried at 68°C to a constant weight and the RWC for each radish was calculated. The 

radishes which had undergone compression testing were too damaged allow saturation 

for a calculation of RWC to be made. 

Statistical analysis: All data was analysed using GenStat for Windows 15th Edition (VSN 

International 2011). 

Linear regression was used to estimate the relationship between the failure force due to 

compression or puncture of the radish hypocotyls and the hypocotyl water content or 

RWC. This method of analysis was selected as the response variable and explanatory 

variables both contained continuous data. When the response variable consisted of 

presence/absence data, as in the case of the impact texture analysis, and there were 

unequal group sizes, a Two-sided T-test was used.  

Skeleton ANOVA:  

Table 4-14 Skeleton ANOVA for the three types of texture analysis conducted as part of 

Experiment 4.5  

 df 

Source of variation Impact Compression Puncture 

Regression 1 1 1 

Residual 28 43 43 

Total 29 44 44 

  



353 
 

4.4.4.3 Experiment 4.5: Results and discussion  

Impact: Hypocotyl water contents ranged from 96.0% to 97.5% giving a range of RWCs 

from 0.85 to 0.97.  

The radishes which split as a result of dropping had significantly (P=0.009) greater 

hypocotyl RWCs than the radishes which did not split. Therefore the second null 

hypothesis was rejected. The first hypothesis was partially rejected because there was a 

non-significant trend (P=0.057) suggesting the radishes which split also had a greater 

hypocotyl water content than those which did not split (Table 4-15).  

 

Table 4-15 Mean water content and RWC of radishes which split and did not split as a 

result of being dropped from a height of 1.4 m 

 Mean water content (%) Mean RWC 

Split (n=9) 96.8 0.93 

Non-split (n=21) 96.6 0.90 

P 0.057 0.009 

SEM split 0.142 0.008 

SEM non-split 0.061 0.006 

  

 

Compression: The range in hypocotyl water contents which were used for compression 

texture analysis ranged from 95.9% to 97.7%.  

The fifth hypothesis was rejected because a significant (P<0.001) relationship was 

observed between hypocotyl water content and failure force due to compression. Failure 

force as a result of compression was negatively correlated with hypocotyl water content 

(P<0.001) (Figure 4-13) suggesting radish hypocotyls are more susceptible to splitting due 

to compression at high hypocotyl water contents. When correlated using linear regression, 

22.4% of the variance in failure force due to compression was accounted for by hypocotyl 

water content.  
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Figure 4-13 Failure force of radish hypocotyls as a result of compression at different 

hypocotyl water contents (n=45) 

 

Puncture: The range in hypocotyl water contents which were used for puncture texture 

analysis ranged from 96.0% to 97.1% and the range in hypocotyl RWCs was from 0.83 to 

0.94.  

The third null hypothesis was rejected because hypocotyl failure force as a result of 

puncture was negatively correlated with hypocotyl water content (P=0.004) (Figure 4-14). 

When hypocotyl periderm failure force was correlated with hypocotyl water content, 15.7% 

of the variance in failure force was accounted for by hypocotyl water content.  
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Figure 4-14 Hypocotyl failure force as a result of puncture at different hypocotyl water 

contents (n=45) 

 

The fourth null hypothesis was also rejected because a significant relationship was found 

between hypocotyl RWC and failure force due puncture (P=0.025) (Figure 4-15). When 

hypocotyl periderm failure force was correlated with hypocotyl RWC, 9.1% of the variance 

in failure force was accounted for by hypocotyl RWC.  

  

y = -161.28x + 16289 
R² = 0.1764 

0

200

400

600

800

1000

1200

95.80 96.00 96.20 96.40 96.60 96.80 97.00 97.20

F
a
il

u
re

 f
o

rc
e
 (

g
) 

Hypocotyl water content (%) 



356 
 

 

 

Figure 4-15 Hypocotyl failure force as a result of puncture at different hypocotyl RWCs 

(n=45) 

 

In conclusion the first null hypothesis was partially rejected as the radishes which split as 

result of impact tended (P=0.057) to have a higher water content than those which did not 

split. The second null hypothesis was rejected as the radishes which split as result of 
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contents were more susceptible to splitting as a result of puncture. The fourth null 

hypothesis was also rejected as there was a significant (P=0.025) relationship between 

hypocotyl RWC and splitting. Radishes with higher hypocotyl RWC were more susceptible 
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water content explained more of the variance in splitting (15.7%) than RWC (9.1%). 

Hypocotyl water content therefore appears to be a more accurate indicator of splitting 

susceptibility as a result of puncture. 

The fifth null hypothesis was also rejected as there was a significant (P<0.001) 

relationship between hypocotyl water content and failure force as a result of compression. 

Radishes with greater hypocotyl water contents were shown to be more susceptible to 

splitting as a result of compression.  
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4.4.5 Experiment 4.6: Investigating the effect of hypocotyl water content 

and periderm on the susceptibility of radishes to harvest splits 

4.4.5.1 Experiment 4.6: Introduction  

In Experiment 3.1 a trend was observed linking periderm thickness with splitting 

susceptibility of different radish cultivars. A thicker periderm was linked to a greater 

splitting susceptibility. In this experiment (Experiment 4.6) failure force as a result of 

puncture both with and without periderm was investigated to determine how periderm 

strength relates to the failure force due to puncture. No correlation between the forces 

required to puncture the radish with and without the periderm would suggest there is no 

relationship between periderm strength and cortex strength, and either the cortex or the 

periderm could determine splitting susceptibility in different radishes. If the two are 

correlated and neither has a higher puncture force, this suggests it is either the strength of 

the cortex which is determining the splitting susceptibility and the periderm is stretching 

until the tissue under it fails or both the cortex and the periderm have the same strength. If 

the two are correlated and the periderm has a higher puncture force, this suggests the 

periderm has determined the splitting susceptibility but the genotypic and environmental 

factors affecting the strength and composition of the periderm were also likely to be 

determining the strength and composition of the cells in the cortex.  

In this experiment the diameter of the radish hypocotyls was recorded for compression 

texture analysis. It is hypothesised that the size of the radish hypocotyl may affect how 

resistant it is to splitting as a result of compression. Potentially larger radishes have a 

greater number of cells if the cell size is similar within different sized radishes. A greater 

number of cells may increase the capacity of the hypocotyl for compression. If each cell 

has a similar amount it is able to compress, having a greater number of cells will result in 

a greater cumulative amount the hypocotyl is able to compress before it fails.  

In an attempt to make the relationship between hypocotyl water content and hypocotyl 

RWC with splitting susceptibility clearer, this experiment aimed to have a greater range in 

hypocotyl water and RWCs compared to Experiment 4.5, this was achieved by allowing 

the hypocotyls longer to air dry or absorb water.  
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Aim:  

 Investigate the role of the periderm in splitting as result of puncture 

 Investigate if a greater degree of variance in failure force as a result of compression 

can be accounted for if there is a greater range in hypocotyl water contents and RWCs 

 Investigate if a greater degree of variance in failure force as a result of compression 

can be accounted for if there is a greater range in hypocotyl water contents.  

 Investigate if the size of the radish hypocotyl has an effect on splitting susceptibility as 

a result of compression.  

Null hypotheses: 

1. There is no significant relationship between puncture failure force with and without a 

hypocotyl periderm  

2. There is no relationship between the failure force of the periderm as a result of 

puncture and hypocotyl water content  

3. There is no relationship between the failure force of the periderm as a result of 

puncture and hypocotyl RWC  

4. There is no relationship between failure force as a result of compression and 

hypocotyl water content  

5. There is no relationship between hypocotyl diameter and failure force as a result of 

compression  
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4.4.5.2 Experiment 4.6: Materials and method  

This experiment attempted to create a greater range in the water content and RWC of the 

radish hypocotyls compared to Experiment 4.5. Therefore the radishes were allowed to air 

dry or take up water for a greater amount of time. Again the radishes were divided into 

three groups before testing but this time they were:  

1. Fresh (tested 1 day post-harvest) 

2. Saturated for 6 days (tested 7 days post-harvest) 

3. Air dried for 3 days (tested 4 days post-harvest)  

Compression and puncture texture analyses were carried out and then the hypocotyl 

water content and RWC were measured as described previously for Experiment 4.5. 

Twenty radishes from each group were used for texture analysis giving a total of 60 

radishes for puncture analysis and 60 for compression texture analysis. The diameter of 

each radish which underwent compression texture analysis was measured before 

analysis.  

In addition to the puncture analysis with the periderm, texture analysis was also performed 

on the same radishes with the periderm removed. The first analysis was performed with 

the periderm intact and then the radish hypocotyls were rotated by 90°, an area of 

periderm approximately 5 mm2 was shaved and the texture analysis was repeated on the 

shaved area. The periderm which was removed was retained for saturation and weighing 

and drying to calculate the hypocotyl water content and RWC.  

Statistical analysis: All data was analysed using GenStat for Windows 15th Edition (VSN 

International 2011). 

Linear regression was used to estimate the relationship between the failure force due to 

compression or puncture of the radish hypocotyls and the hypocotyl water content or 

RWC. This method of analysis was selected as the response variable and explanatory 

variables both contained continuous data.  
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Skeleton ANOVA:  

Table 4-16 Skeleton ANOVA for hypocotyl texture analysis at different hypocotyl water 

contents and RWCs 

 df 

Source of variation Compression Puncture 

Regression 1 1 

Residual 58 58 

Total 59 59 
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4.4.5.3 Experiment 4.6: Results and discussion  

Compression: Experiment 4.6 failed to achieve a greater range in water contents 

compared to Experiment 4.5. A similar range of values was observed in this experiment 

but at higher water contents compared to RWC 1. Water contents ranged between a 

maximum of 98.5% and a minimum of 96.7%.  

The fourth null hypothesis was rejected because a significant (P=0.016) negative 

correlation was observed between hypocotyl failure force due to compression and 

hypocotyl water content (Figure 4-16). The variance in failure force due to compression 

accounted for by hypocotyl water content was 8.1%. This result suggests radishes 

increase in susceptibility to splitting as a result of compression as hypocotyl water content 

increases. However, as the variance accounted for was relatively low this suggests there 

are other factors involved.   

 

 

Figure 4-16 Hypocotyl failure force (g) due to compression at different hypocotyl water 

contents 
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When hypocotyl water content (%), diameter (mm) and days post-harvest were all 

included in a multiple linear regression with failure force due to compression there was a 

significant relationship (P<0.001) and 60.0% of the variation in failure force was accounted 

for (Table 4-17). As there was a significant relationship between hypocotyl diameter and 

failure force due to compression the fifth null hypothesis was rejected.  

 

Table 4-17 Model determined by multiple linear regression and stepwise deletion for the 

relationship between hypocotyl failure force due to compression, water content (%) (WC), 

diameter (mm) and days post-harvest (DHP). 

 Model fitted P Variance accounted for 

Failure force (g) WC + diameter +DPH <0.001 60.0% 

 

 

Table 4-18 Parameters and their estimates for the linear regression between failure force 

= WC + diameter + DPH 

Parameter Estimate SE P 

Constant 307113 86320 <0.001 

Water content -322919 88616 <0.001 

Width 1019 117 <0.001 

DPH -547 134 <0.001 

 

 

There was a negative parameter estimate for water content therefore as hypocotyl water 

content increases the failure force due to compression decreases. Consequently, radish 

hypocotyls are more susceptible to splitting at higher hypocotyl water contents. As 

discussed previously, this is thought to be as a result of cells with a greater water content 

being having cells walls which are under a greater amount of stress and therefore 

requiring less additional force for them to fail.  
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There was a positive parameter estimate for diameter suggesting larger hypocotyls are 

more resistant to splitting than smaller ones. This may be because larger radishes have a 

greater number of cells. If the cell size is similar within different sized radishes there must 

be a greater number of cells within a larger radish hypcotyl. A greater number of cells may 

increase the capacity of the hypocotyl for compression. If each cell has a similar amount it 

is able to compress, having a greater number of cells will result in a greater cumulative 

amount the hypocotyl is able to compress before it fails.  

There was a negative parameter estimate for days post-harvest suggesting as time since 

harvest increases, the radish hypocotyls become less resistant to splitting. This may be 

due to senescence. Potentially the structures within the cell walls begin to degrade over 

time making them less resistant to splitting.  

Puncture:  

Periderm  

The first null hypothesis was rejected because failure force of the radish hypocotyl due to 

puncture with and without the periderm were correlated (P<0.001) (Figure 4-17). The 

percentage variance accounted for in the break force of the hypocotyl without a periderm 

accounted for by the break force of the hypocotyl with a periderm was 21.2 %. This 

relationship would suggest the genotypic and environmental factors which are involved in 

determining the strength of the periderm and cortex cells are linked. This result suggests 

that although there was a relationship between the strength of the periderm and cortex 

cells and some of these are likely to be related other factors were also likely to be involved 

in determining strength. The failure force due to puncture was greater for hypocotyls with 

a periderm than without a periderm suggesting in general the periderm is adding strength 

to the hypocotyl and determines the failure force of the hypocotyl as a result of puncture. 

This is in keeping with the results from Experiment 3.1 where there was a trend linking the 

periderm thickness of the radish hypocotyl with splitting susceptibility.  
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Figure 4-17 Failure force due to puncture of radish hypocotyls with and without a periderm 

(n=60) 

 

RWC  
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the measurement of RWC does not accurately indicate the RWC of the periderm this 

could explain why there is less variance accounted for by RWC in the failure force due to 

puncture with the periderm compared to without.  

 

 

Figure 4-18 The failure force of radish hypocotyls both with (WS) and without (WOS) a 

periderm as a result of puncture at different RWCs (n=60) 

 

When hypocotyl RWC and days post-harvest were both included in a multiple linear 

regression with hypocotyl failure force due to puncture (with periderm) there was a 

significant relationship (P=0.002) and 17.0 % of the variation in failure force was 

accounted for (Table 4-19). This was greater than the variance in failure force accounted 

for by RWC alone suggesting the time since harvest has an effect on splitting 

susceptibility.  
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Table 4-19 Model determined by multiple linear regression and stepwise deletion for the 

relationship between hypocotyl failure force due to puncture, RWC and days post-harvest 

(DPH). 

 Model fitted P Variance accounted for 

Failure force (g) RWC +DPH 0.002 17.0% 

 

 

Both RWC and DPH have a negative parameter estimates (Table 4-20) suggesting as 

they increase failure force due to puncture decreases. This suggests the radish 

hypocotyls become more susceptible to splitting as a result of puncture at higher RWCs 

and as time since harvest increases.  

 

Table 4-20 Parameters and their estimates for the linear regression between failure force 

= RWC + days post-harvest (DPH) 

Parameter Estimate SE P 

Constant 1055 392 0.009 

RWC -309 500 0.539 

DPH -18.2 10.0 0.075 

 

 

Water content  

This experiment successfully achieved a greater range in water contents than Experiment 

4.5, a range in water contents from a maximum of 97.9% to a minimum of 95.8% were 

observed.  

The second null hypothesis was rejected because hypocotyl puncture force both with 

(P=0.005) and without a periderm (P=0.004) were correlated with water content. The 

percentage variance accounted for in the hypocotyl failure force by water content in 

hypocotyls with a periderm was 11.4% and without a periderm was 12.0%. Both of these 

figures are less than the variance accounted for by the RWC with or without a periderm 
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suggesting RWC is a better indicator of splitting susceptibility due to puncture than water 

content. This is thought be because RWC gives a proportion of the maximum potential 

water content and therefore potentially an indicator of the stress which the cells are under, 

whereas water content is just a percentage.  

 

 

Figure 4-19 The failure force of radish hypocotyls both with (WS) and without (WOS) a 

periderm as a result of puncture at different water contents (n=60) 

 

When hypocotyl water content (%) and days post-harvest were both included in a multiple 

linear regression with hypocotyl failure force due to puncture (with periderm) there was a 

significant relationship (P<0.001) and 23.1% of the variation in failure force was accounted 

for (Table 4-19).  
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Table 4-21 Model determined by multiple linear regression and stepwise deletion for the 

relationship between hypocotyl failure force due to puncture, water content (%) (WC) and 

days post-harvest (DPH). 

 Model fitted P Variance accounted for 

Failure force (g) WC +DPH <0.001 23.1% 

 

 

Table 4-22 Parameters and their estimates for the linear regression between failure force 

= water content (WC) + days post-harvest (DPH)  

Parameter Estimate SE P 

Constant 9627 3951 0.018 

Water content -91.2 40.9 0.030 

DPH -19.53 6.21 0.003 

 

 

Both water content and days post-harvest have negative parameter estimates (Table 

4-22). This suggests the radish hypocotyls become more susceptible to splitting as a 

result of puncture at higher water contents and as time since harvest increases. This is in 

keeping with the results from RWC where time since harvest also increased splitting 

susceptibility and as RWC increased splitting susceptibility increased. As hypocotyl RWC 

and water content are correlated (Figure 4-20) this result would be expected.  

There was a significant correlation (P<0.001) between hypocotyl water content and RWC 

but only 21.3% of the variance in RWC is accounted for by water content. This is likely to 

be because RWC takes into consideration the potential maximum water content, which 

would be affected by physiological factors such as cell wall elasticity, in addition to the 

water content at the time of analysis whereas the water content just calculates the 

proportion of water compared to dry matter. Results in this experiment have shown RWC 

is a better indicator of splitting susceptibility than water content.  
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Figure 4-20 Relationship between hypocotyl water content and hypocotyl relative water 

content 

 

In conclusion the first null hypothesis was rejected as there was a correlation (P<0.001) 
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As in Experiment 4.5 failure force decreased with increasing water content. The fifth null 

hypothesis was also rejected as there was a correlation (P=0.001) between hypocotyl 

failure force as a result of compression and hypocotyl diameter. Failure force was found to 

increase with increasing hypocotyl diameter.  
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A correlation between the time since harvest and splitting susceptibility was also 

observed. As days post-harvest increased, the failure force decreased suggesting splitting 

susceptibility increased with time.   
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4.4.6 Experiment 4.7: Investigating the effect of hypocotyl water content on 

the susceptibility of radishes to harvest splits and how this relates to 

hypocotyl water pressure   

4.4.6.1 Experiment 4.7: Introduction  

In the previous experiment, Experiment 4.6 there was a correlation between the time 

since harvest and splitting susceptibility. As days post-harvest increased, the failure force 

decreased suggesting splitting susceptibility increased with time. As the radishes which 

had undergone different treatments to create differences in water contents were tested on 

different days there may have been an effect on the results of the experiment. Therefore, 

to remove the effects of this confounding factor, in this experiment all radishes were 

tested on the same day.  

In previous experiments it has been hypothesised the increase in splitting susceptibility at 

higher hypocotyl water contents and RWCs is a result of increased water pressure. In this 

experiment hypocotyl water pressure was tested using a pressure chamber.  

Aim: To determine if:  

 More of the variance in failure force as a result of compression and puncture are 

accounted for by RWC and water content when the texture analysis is all performed 

on the same day. 

 Hypocotyl RWC and water content are correlated with hypocotyl water pressure  

Null hypotheses: 

1. There will be no significant correlation between hypocotyl failure force as a result of 

compression and water content  

2. There will be no significant correlation between hypocotyl failure force as a result of 

puncture and water content  

3. There will be no significant correlation between hypocotyl failure force as a result of 

puncture and RWC  

4. There will be no significant correlation between hypocotyl water content and hypocotyl 

water pressure  
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5. There will be no significant correlation between hypocotyl RWC and hypocotyl water 

pressure  
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4.4.6.2 Experiment 4.7: Materials and method 

In Experiment 4.7 all radishes underwent texture analysis on the same day. As in previous 

experiments, to create a range of water contents three treatments were used:  

1. 1 day saturated (tested 2 days post-harvest)  

2. 1 day closed container (tested 2 days post-harvest) 

3. 1 day open container (tested 2 days post-harvest) 

Compression and puncture texture analyses were carried out and hypocotyl water content 

and RWC were measured as described previously for Experiments 4.5 and 4.6. Twenty 

radishes from each group were used for texture analysis giving a total of 60 radishes for 

puncture analysis and 60 for compression texture analysis.  

Pressure: The water potential (bar) of 20 radish hypocotyls per treatment was measured. 

Statistical analysis: All data was analysed using GenStat for Windows 15th Edition (VSN 

International 2011). 

Linear regression was used to estimate the relationship between the failure force due to 

compression or puncture of the radish hypocotyls and the hypocotyl water content or 

RWC. Linear regression was also used to estimate the relationship between hypocotyl 

water content and RWC with hypocotyl water pressure. Linear regression was selected as 

the response variable and explanatory variables both contained continuous data. 

 

Skeleton ANOVA:  

Table 4-23 Skeleton ANOVA for compression and puncture texture analysis and hypocotyl 

water pressure at different hypocotyl water contents and RWCs 

 df 

Source of variation Compression Puncture Pressure 

Regression 1 1 1 

Residual 43 43 18 

Total 44 44 19 
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4.4.6.3 Experiment 4.7: Results and discussion  

Compression: Despite having the shortest treatment times to create a range in hypocotyl 

RWCs this experiment had a greater range in hypocotyl water contents than Experiment 

4.5 and Experiment 4.6. A range in hypocotyl water contents between a maximum of 

98.7% and a minimum of 95.5% was observed at the time of texture analysis.  

When a correlation matrix between the force required to split the radish and the WC and 

diameter of the radish was conducted, both the size of the radish and its water status 

were correlated with failure force, therefore the first null hypothesis was rejected. As has 

been observed and discussed previously, there was a negative correlation between failure 

force and hypocotyl water content suggesting failure force decreased as water content 

increased. There was a positive correlation between diameter and failure force (Table 

4-24) suggesting larger radishes are more resistant to damage from compression, the 

potential reasons for this have been discussed previously.  

 

Table 4-24 Correlation matrix (R2) for failure force due to crushing, water content (WC) 

and hypocotyl diameter (n=55); (PPMCC critical value for n=60 = 1.671 at P=0.05; 2.390 

at P=0.01; 2.660 at P=0.005) 

 

Diameter (mm) WC Failure force (kg) 

Diameter (mm) 1 

  WC 0.180 1 

 Failure force (kg) 0.527 -0.337 1 

 

 

When both diameter and hypocotyl water content were included in a multiple linear 

regression with failure force there was a significant relationship (P<0.001) and 66.1% of 

the variation in failure force was accounted for. This is a greater amount of the variance in 

failure force due to compression than has been explained in previous experiments 

suggesting testing the radishes on different days as had been done previously had 

introduced variability. 
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Table 4-25 Model determined by multiple linear regression and stepwise deletion for the 

relationship between failure force due to compression and hypocotyl diameter and water 

content 

 Model fitted P Variance accounted for 

Failure force (Kg) Diameter + WC <0.001 66.1% 

 

 

Puncture:  

RWC  

Again despite having the shortest treatment times to create a range in hypocotyl RWCs 

this experiment had the greatest variety in hypocotyl RWCs compared to Experiment 4.5 

and 4.6. The range in RWC which was observed at the time of texture analysis was 

between a maximum of 0.98 and a minimum of 0.76. The third hypothesis was partially 

rejected because there was a non-significant trend (P=0.058) between hypocotyl RWC 

and puncture force with 6.0% of the variance being accounted for (Figure 4-21). These 

results would suggest radishes may be less resistant to splitting as a result of puncture at 

higher RWCs. The variance in failure force accounted for by RWC in this experiment was 

lower than has been observed in previous experiments. The reasons for this are unclear 

but potentially the hypocotyls were not fully saturated or dried prior to calculation of the 

RWC.  
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Figure 4-21 The force required to puncture the hypocotyl of radishes at different hypocotyl 

RWCs (n=55) 

 

Water content  

A range in hypocotyl water contents between a maximum of 97.4% and a minimum of 

95.6% was observed at the time of texture analysis. The second null hypothesis was 

rejected because there was a negative linear correlation (P<0.001) between water content 

(WC) and puncture force with 44.4% of the variance being accounted for (Figure 4-22). As 

observed in previous experiments, these results would suggest radishes are less resistant 

to splitting as a result of puncture at higher water contents. A greater amount of the 

variance in failure force as a result of puncture has been explained in this experiment 

compared to previous experiments where texture analysis was performed on different 

days. As with compression, this would suggest testing the radishes on different days as 

had been done previously introduced variability.  
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Figure 4-22 The force required to puncture the hypocotyl of radishes at different hypocotyl 

water contents (n=55) 

 

Hypocotyl water pressure:  

Water content  

The fourth null hypothesis was rejected because a significant (P=0.034) negative linear 

relationship was observed between hypocotyl water content and hypocotyl water 

pressure, with 18.4% of the variance in hypocotyl water pressure being accounted for by 

hypocotyl water content. This would suggest as has been hypothesised in previous 

experiments, at higher water contents the cells within the radish hypocotyl are under 

increased pressure.  
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Figure 4-23 Linear correlation between hypocotyl pressure (bar) and hypocotyl water 

content (%) 

 

RWC  

The fifth null hypothesis was rejected because there was a significant (P=0.002) linear 

correlation between hypocotyl water pressure and hypocotyl RWC (Figure 4-24). The 

variance in hypocotyl water pressure accounted for by RWC was 40.2%. This is greater 

than the variance in hypocotyl water pressure which was accounted for my water content 

suggesting RWC is a more accurate indicator of hypocotyl water pressure. This is thought 

to be because RWC is a measure of the proportion of the maximum potential water 

content and therefore potentially an indicator of the stress which the cells are under, 

whereas water content is just a percentage. 
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Figure 4-24 Linear correlation between hypocotyl pressure (bar) and hypocotyl RWC 

 

In conclusion the first null hypothesis was rejected as a significant (P<0.001) correlation 

between hypocotyl failure force as a result of compression and water content was 

observed. As with Experiment 4.6 hypocotyl failure force as a result of compression was 

found to decrease with increasing water content. Again as in Experiment 4.6 a correlation 

was also observed between hypocotyl failure force as a result of compression and 

hypocotyl diameter. Failure force was found to increase with increasing hypocotyl 

diameter. 

The second null hypothesis was rejected as there was a significant (P<0.001) correlation 

between hypocotyl failure force as a result of puncture and water content. As with the 

results from Experiments 4.4-4.6 the failure force as a result of puncture decreased with 

increasing water content. 

The third null hypothesis was partially rejected as a trend (P=0.058) was observed 

correlating hypocotyl failure force as a result of puncture and RWC. As in Experiments 4.5 

and 4.6 the failure force as a result of puncture decreased with increasing RWC. 

y = 25.453x - 24.644 
Variance accounted for = 40.2 % 

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

H
y
p

o
c

o
ty

l 
w

a
te

r 
p

re
s
s

u
re

 (
b

a
r)

 

Hypocotyl relative water content 



381 
 

The fourth and fifth null hypotheses were rejected as there was a significant correlation 

between hypocotyl water content (P=0.034) and RWC (P=0.002) with and hypocotyl water 

pressure. 
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4.4.7 Experiments 4.3 to 4.7: Discussion 

In Experiment 4.2, relative humidity and accumulated precipitation were observed to be 

positively correlated with the amount of splitting recorded at G’s by the QA team. 

Hypocotyl RWC and splitting as a result of impact were also found to be positively 

correlated. These results suggest a high accumulated precipitation or relative humidity 

may have resulted in a high hypocotyl RWC which may have made the hypocotyls more 

susceptible to splitting. The results in Experiment 4.2 were made from observational data 

and Experiments 4.3-4.7 were conducted under controlled conditions to investigate the 

relationship between hypocotyl water content and splitting susceptibility further.  

It was demonstrated the radish hypocotyl was able to absorb water through the periderm 

as had been hypothesised in Experiment 4.2. As a consequence, the first two null 

hypotheses were rejected as preliminary experiments showed: 

1. Water was able to pass through the periderm of the radish hypocotyl  

2. There was change the water content of the radish hypocotyl over time  

As had been shown in observational studies in Experiment 4.2, results in Experiment 4.3-

4.7 also showed a significant relationship between hypocotyl water content and RWC. 

Splitting susceptibility as a result of impact was again shown to increase at higher water 

contents. Furthermore, results in Experiments 4.3-4.7 also showed this relationship was 

true for compression and puncture, two other likely causes of splitting in radish hypocotyls 

in commercial production. Therefore, the third null hypothesis was rejected because 

significant correlations were observed between hypocotyl water content and splitting 

susceptibility as a result of impact, compression and puncture.  

The fourth null hypothesis was also rejected because significant correlations were found 

between hypocotyl RWC and splitting susceptibility as a result of impact and puncture. 

Hypocotyl RWC tended to explain more of the variance in failure force as a result of 

puncture and impact than hypocotyl water content and was thought to be a better indicator 

or splitting susceptibility. The RWC of radishes which underwent compression texture 

analysis could not be measured as the radish hypocotyls were too damaged after the 

texture analysis.  
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The fifth and sixth null hypotheses were rejected as significant relationships were 

observed between hypocotyl water content and hypocotyl water pressure, and hypocotyl 

RWC and hypocotyl water pressure. RWC was observed to explain more of the variance 

in hypocotyl water pressure than hypocotyl water content suggesting RWC is a better 

measure of hypocotyl water pressure.  

One explanation of the observed responses is that post-harvest radish hypocotyl water 

content may affect splitting susceptibility by affecting the turgor pressure of the cells. In 

Experiment 3.1 the mode of failure of split radish hypocotyls was revealed to be 

plasmoptysis and when the mode of failure is plasmoptysis higher turgor pressure has 

been shown to reduce tissue strength (Lin & Pitt 1986). Hypocotyl water content affects 

the turgor pressure because pressure potential increases as water enters a cell. As water 

passes through the cell wall and cell membrane, it increases the total amount of water 

present inside the cell. The increase in the amount of water inside the cell exerts an 

outward pressure which is opposed by the cell wall. The cell wall is then placed under 

increased tension. Under increased turgor pressure cells may be more susceptible to 

splitting because the cell walls are already stressed and consequently more easily 

ruptured (Kokkoras 1995).  

Evidence of water status having an effect on splitting in other crops comes from Gracie 

(2004). Gracie (2004) found a reduction in turgor pressure caused by partially-lifting 

carrots reduced splitting susceptibility. The carrots were partially-lifted to sever the fibrous 

root system then left in the soil over night before harvesting the following morning. These 

carrots with reduced turgor had a greatly diminished splitting susceptibility when tested 

with a penetrometer. Further evidence to support turgor pressure affecting splitting 

susceptibility is provided by the investigation conducted by Konstankiewicz and Zdunek 

(2001). They found the compressive strength of the tissue samples decreased with 

increasing turgor pressure suggesting potato tubers are less susceptible to splitting when 

they are more turgid (Konstankiewicz & Zdunek 2001). The results obtained by 

Konstankiewicz and Zdunek (2001) are similar to those of Bajema et al. (1998) who also 

found potatoes with lower turgor had higher compressive strength than more turgid 
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potatoes. McGarry (1993) found failure force in the phloem parenchyma tissue of carrots 

was negatively correlated with both water potential and turgor pressure.  

In conclusion: 

 Water is absorbed through the periderm  by the radish hypocotyl  

 Water is able to pass through the periderm of the radish hypocotyl  

 There is a correlation between hypocotyl water content and splitting susceptibility 

as a results of impact, compression or puncture  

 There is a correlation between hypocotyl RWC and splitting susceptibility as a 

result of impact or puncture  

 There is a relationship between hypocotyl RWC and hypocotyl water pressure  

 There is a relationship between failure force as a result puncture of hypocotyls with 

and without a periderm  

 There is a relationship between hypocotyl water content and hypocotyl water 

pressure  
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4.5 Experiment 4.8: Investigating the effect of hypocotyl temperature on the 

susceptibility of radishes to harvest splits 

4.5.1 Experiment 4.8: Introduction  

Experiment 4.2 showed temperatures both during growth and at harvest were negatively 

correlated with splitting suggesting lower temperatures may result in an increased 

susceptibility to splitting. In support of this finding, there is evidence within the literature 

that temperature affects splitting susceptibility (Bourne 1982; Bajema et al. 1998; 

Kokkoras 1995).  

Following harvest, radishes are handled in a controlled environment therefore if 

temperature has a significant effect on splitting there is the potential to reduce the 

prevalence of post-harvest splitting by changing the temperature.  

In Experiment 4.8 impact texture analysis was selected to investigate the relationship 

between temperature and splitting susceptibility. This method of texture analysis was 

chosen due to its relevance to commercial post-harvest practices. During harvest radishes 

are dropped from heights up to 1.4 m into a metal trailer and then after the initial grading 

they are dropped again into Dolavs.  

Aim:  

 The aim of this experiment was to investigate the relationship between hypocotyl 

temperature and splitting susceptibility as a result of impact at a range of 

temperatures.  

Null hypothesis:  

1. There is no significant relationship between splitting susceptibility as a result of impact 

and temperature.  
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4.5.2 Experiment 4.8: Materials and method 

Radishes from a commercial grower in Norfolk, England were couriered on the day of 

harvest to arrive at HAU, Shropshire, England the following day. Upon arrival 115 

radishes were washed in dH2O to remove soil residue and trimmed to remove any 

remaining leaf stalks and roots. They were then placed in a controlled environment 

chamber overnight ready for testing the following day. The temperature and relative 

humidity in the controlled environment were measured with a TinyTag logger (Gemini 

Data Loggers (UK) Ltd., Chichester, UK) every half hour. The mean temperature in the 

cold store during this period was 2.6°C ranging from a maximum of 3.4°C to a minimum of 

1.8°C. The mean relative humidity was 98.4% with a maximum of 100% and a minimum of 

93.0%. 

On the day of testing, the radishes were placed into individual G3 grip seal bags 

measuring 75 x 80 mm (Weller Packaging, Lichfield, UK). The bags of radishes were 

placed into baths of water at the required temperature (Figure 4-25). The temperatures of 

the five baths were set to 5, 10, 20, 30 and 40°C respectively. The experimental unit was 

one radish hypocotyl and 20 replicates were used for each temperature. An additional 

three radishes were placed in grip seal bags at each temperature to enable the 

temperature of the hypocotyls to be measured. This was done by inserting a temperature 

probe into the radish hypocotyls (Figure 4-26). 
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Figure 4-25 Water bath set to 40°C containing radishes in grip seal bags prior to texture 

analysis 
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Figure 4-26 Measuring the temperature of a radish hypocotyl in a water bath using a 

temperature probe 

 

Impact testing for splitting susceptibility at the five temperatures was performed once the 

radishes had acclimatised to approximately the temperature of the water bath, this took 

roughly two hours. This was measured by inserting a digital thermometer into three 
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additional destructive radishes which had also been placed into grip seal bags in each of 

the five water baths (Figure 4-26). Impact tests were performed as previously described, 

by dropping the radishes down a 1.4 m pipe onto a metal plate. In an effort to keep the 

radishes at the correct temperature, they were individually removed from the water 

immediately prior to testing leaving the remaining radishes in the water bath. If the radish 

split or not was recorded. The number of split radishes in each water bath was correlated 

with the mean temperature of the destructive harvest radishes using simple linear 

regression.  

Statistical analysis: All data was analysed using GenStat for Windows 15th Edition (VSN 

International 2011). 

Linear regression was used to analyse the data as the response variable and explanatory 

variables both contained continuous data.   

 

Table 4-26 Skeleton ANOVA for hypocotyl RWC at harvest 

Source of variation df 

Regression 1 

Residual 3 

Total 4 
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4.5.3 Experiment 4.8: Results  

The five different water baths set to 5, 10, 20, 30 and 40°C resulted in radishes with mean 

temperatures of 6.0, 11.0, 23.7, 29.6 and 38.7°C respectively.  

Radish splitting susceptibility as a result of impact was found to have a strong (R2=0.82) 

negative linear correlation with temperature (P=0.035). The greatest amount of splitting, 

70% was observed at the lowest temperature, 6.0°C, and the least amount of splitting, 

0%, was observed at the highest temperature, 38.7°C. The variance in splitting 

susceptibility accounted for by temperature was 75.5%. These results suggest radishes 

are more susceptible to splitting at lower temperatures (Figure 4-27).  

 

 

Figure 4-27 Percentage of radishes which split as a result of impact at different 

temperatures (n=20).  

 

These results are in keeping with previous research into the effects of temperature on 

failure force (Bourne 1982). Under commercial conditions, radishes are stored and packed 

between 2 and 5°C which is slightly lower than the lowest temperature, 6.0°C, used in this 

investigation. Using the model S = -1.85T + 65.30, which described the linear relationship 

y = -1.8486x + 65.299 
R² = 0.82 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

0 10 20 30 40 50

S
p

li
t 

ra
d

is
h

e
s
 (

%
) 

Radish temperature (ºC) 



391 
 

between temperature (T) and percentage splitting (S) in this investigation, it is predicted 

that at 5°C, 56.1% of the radishes which were dropped would split, and at 2°C, 61.6% of 

the radishes would split. These results suggest, in terms of reducing splitting susceptibility 

it may be preferable to store and process radishes at warmer temperatures and then to 

chill them after handling to limit the consequences on shelf life and respiration.  
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4.5.4 Experiment 4.8: Discussion  

The null hypothesis was rejected because results from this experiment showed increased 

splitting susceptibility at lower temperatures. In a review of the effects of temperature on a 

range of fruits and vegetables, Bourne (1982) also showed for the majority of crops 

tested, increased temperature was associated with decreasing firmness and Bajema et al 

(1998) found decreasing temperature resulted in significantly decreasing failure strain and 

tissue toughness in potato. Bajema et al (1998) also investigated the effects of turgor and 

a similar pattern was observed with increasing turgor resulting in decreasing failure strain 

and tissue toughness. The similarities between the effects of temperature and turgor led 

the investigators to conclude that the same mechanism must explain both the effects of 

temperature and turgor. Kokkoras (1995) also found an effect of temperature on tissue 

stress within carrots and concluded the effect was due to associated changes in turgor 

making the tissue for susceptible to damage. They proposed low temperatures cause an 

increase in cellular turgidity by causing differences in contraction between the vacuole 

content, which is predominantly water, and the cytoplasm and cell wall. It is thought the 

cytoplasm and cell wall may contract to a greater extent than the vacuole at low 

temperatures causing an increase in turgor pressure (Kokkoras 1995).   

Results from Experiment 4.7 linked radish hypocotyl water pressure with splitting 

susceptibility and it may be true that temperature affects water pressure and turgidity 

within the radish hypocotyl as has been suggested by Kokkoras (1995). However, this 

was not tested as part of this experiment so requires further investigation to determine the 

veracity of the statement.    

In conclusion, to reduce susceptibility to splitting growers should store and handle 

radishes at as warm a temperature as is possible whilst maintaining shelf life and other 

quality attributes. As there is a linear relationship between temperature and splitting 

susceptibility, any increase in temperature would be beneficial in terms of reducing 

susceptibility to splitting.  
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4.6 Chapter 4 Harvest splits: Discussion 

The main objective of work carried out in this chapter was to identify some of the factors 

which affect post-harvest splitting susceptibility in radishes. This chapter began with 

analysis of commercially grown radishes to identify environmental factors which correlate 

with splitting susceptibility. It was found relative humidity and temperature at harvest were 

correlated with the amount of splitting recorded by the quality control team at G’s and the 

hypocotyl RWC was found to correlate with splitting susceptibility as a result of impact 

when analysed at HAU.  

Following the results from the analysis of commercially grown radishes, a series of 

experiments were conducted to investigate the relationships between hypocotyl water 

content and hypocotyl RWC with splitting as a result of impact, compression and 

puncture. The aim of these experiments was to investigate if the results from the 

commercially grown radishes could be replicated under controlled experimental 

conditions. In support of the results from the commercial data, it was observed that 

splitting susceptibility as a result of impact, puncture and compression was increased at 

higher water contents. For impact and puncture texture analysis, the relationship between 

RWC and splitting susceptibility was also investigated. RWC tended to explain more of the 

variance in splitting susceptibility as a result of puncture or impact than water content. It 

was postulated that the explanation for increased splitting susceptibility at higher water 

contents and RWCs was due to the cells being under a greater amount of stress and 

therefore less additional stress was required to cause failure. To explore this hypothesis 

further, an experiment was conducted to investigate the relationship between hypocotyl 

RWC and water content with hypocotyl water pressure. In these investigations, it was 

shown that hypocotyls had a higher water pressure at higher water contents and RWCs. 

RWC was found to have a greater correlation with hypocotyl water pressure than water 

content; this is thought to be why RWC tended to explain more of the variance in splitting 

susceptibility than water content. RWC was a better indicator of splitting susceptibility and 

had a greater correlation with hypocotyl water pressure. This is not surprising as RWC is a 

measure of the water content of the tissue as a proportion of the total possible water 
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content whereas water content is a simple percentage. Results from these experiments 

support the hypothesis that the increase in splitting susceptibility which was observed at 

higher RWCs was due to a greater water pressure within the hypocotyl putting the cells 

under increased stress. These results are supported by the literature as Hartz et al (2005) 

found turgor prior to harvest was positively correlated with splitting in carrot and, similarly, 

McGarry (1993, 1995) found failure force in carrot tissue was negatively correlated with 

tissue turgor and water potential. 

The chapter then concluded with an investigation into the relationship between hypocotyl 

temperature and harvest splitting. This showed radish hypocotyls were more susceptible 

to splitting at lower temperatures a finding that is in keeping with results from similar 

investigations involving other crops such as apple, cherry, carrot, beet and pea (Bourne 

1982); Bajema et al (1998) also found a decrease in compressive failure strain and tissue 

toughness with increasing temperature in potatoes. In this investigation the effects of 

turgor were investigated and a similar pattern was observed. The similarities between the 

effects of temperature and turgor lead to the conclusion that the same mechanism must 

explain both the effects of temperature and turgor. The mechanism for differences in 

splitting susceptibility at different temperatures may be similar to that of RWC in radishes 

but as this was not investigated it cannot be verified.  
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4.7 Chapter 4 Harvest splits: Conclusions 

 Water is able to be taken up by the hypocotyl through the periderm 

 Water can be gained or lost by the periderm in minutes  

 Higher hypocotyl water content results in higher susceptibility to splitting as a 

result of impact  

 Higher hypocotyl water content results in higher susceptibility to splitting as a 

result of puncture 

 Higher hypocotyl water content results in higher susceptibility to splitting as a 

result of compression 

 Higher hypocotyl RWC results in higher susceptibility to splitting as a result of 

impact 

 Higher hypocotyl water content results in higher susceptibility to splitting as a 

result of puncture  

 RWC tends to correlate better with splitting susceptibility as a result of impact and 

puncture than water content  

 Hypocotyl water content is correlated with hypocotyl water pressure 

 Hypocotyl RWC is correlated with hypocotyl water pressure 

 Hypocotyl RWC has a better correlation with hypocotyl water pressure than 

hypocotyl water content 

 Radishes with larger hypocotyl diameters are more resistant to splitting  

 As days since harvest increase splitting susceptibility as a result of puncture and 

compression increase  

 Splitting susceptibility as a result of impact reduces with increasing temperature  

The factors which were found to be associated with susceptibility to growth splitting in 

Chapter 4 are summarised in Figure 4-28.  
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Figure 4-28 Factors which have been associated with susceptibility to harvest splitting in 

Chapter 4. 
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5. Summary of main findings  

The main objectives of this thesis were to investigate the potential of reducing splitting 

in radishes, while maintaining acceptable yields. The aim was to achieve this by 

understanding the factors which affect splitting and the underlying mechanisms behind 

susceptibility to splitting. The prevalence of splitting could then be minimised by 

manipulating conditions during growth, harvest or post-harvest. These objectives were 

achieved by dividing the research into two principal studies: growth splits (Chapter 3: 

Growth Splits, investigated splitting which occurs during growth); and harvest splits 

(Chapter 4: Harvest Splits focused on splitting which occurs during and post-harvest). 

In Chapter 3, the effects of cultivar were investigated, the growth stages of radishes 

were established, quality control data from commercially grown radishes was 

investigated for trends correlating growth splits with weather conditions and the 

relationship between VWC and splitting was investigated. In Chapter 4, commercial 

quality control data was again analysed for relationships between weather data and 

harvest splitting, further to this, the effects of hypocotyl water content on harvest splits 

was investigated as was the effect of hypocotyl temperature on harvest splitting 

susceptibility. At the end of Chapter 3 and Chapter 4 there was a discussion of the 

findings relating solely to growth or harvest splitting. To avoid repetition, Chapter 5 will 

focus on the theme which is common to both Chapter 3 and Chapter 4, hypocotyl 

turgor pressure.  

In Experiment 3.1 split radishes were sectioned to verify the mode of failure within radish 

hypocotyl tissue. In these sections, ruptured cell walls were observed, therefore it was 

concluded these radishes had split by plasmoptysis. This result was in keeping with 

previous work by Skok (1941) who showed sections of split radishes which appeared to 

have failed due to plasmoptysis rather than cellular debonding. This mode of failure is 

comparable to other vegetables such as kohlrabi (Lippert 1999) and carrot (McGarry 

1993) and may result from the limited intercellular space within these vegetable tissues.   
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Results from Chapter 4 demonstrated harvest splitting susceptibility is increased at higher 

hypocotyl WC, RWC and water pressure. As the mode of failure within the radish 

hypocotyl was plasmoptysis, it is thought the increased susceptibility to splitting at higher 

hypocotyl WC, RWC and water pressure was a result of reduced tissue strength resulting 

from increased turgor pressure. At higher pressure, tissue is more susceptible to 

plasmoptysis as less additional force is required to rupture cell walls which are already 

under tension. These findings are in accordance with results from other vegetable crops 

such as carrot (McGarry 1993, 1995) where higher turgor pressure has also been shown 

to result in increased splitting susceptibility.  

In Experiment 4.8 susceptibility to splitting was also shown to increase with decreasing 

temperature. The mechanism for this is also thought to be due to turgor pressure as a 

result of low temperatures causing differences in contraction between the vacuole content, 

which is predominantly water, and the cytoplasm and cell wall. It is thought the cytoplasm 

and cell wall may contract more than the vacuole at low temperatures causing an increase 

in turgor pressure (Kokkoras 1995).  This theory was not tested in experiments conducted 

as part of Experiment 4.8 and requires further investigation to test its validity.  

Results from Chapter 3 are not conclusive in terms of the effects of hypocotyl water 

pressure on susceptibility to growth splitting. In Experiment 3.4, it was shown that weather 

conditions were correlated with levels of splitting in commercially grown radishes. Results 

from the analysis of commercial QA data showed relative humidity and rainfall both had 

exclusively positive parameter estimates when correlated with splitting suggesting 

radishes were more susceptible to splitting with increasing rainfall and relative humidity. It 

was hypothesised that the radishes which experienced higher levels of rainfall during 

growth had higher hypocotyl turgor pressure as a result of absorbing water by osmosis 

from the soil through the periderm into the hypocotyl. Greater water availability in the soil 

may also result in greater water uptake by the vascular system into the tissue, increasing 

turgor pressure and placing an increased pressure on the skin from within (Sekse 1995).  

The radishes which experienced higher relative humidity may have had higher hypocotyl 
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turgor pressure as a result of lower transpiration rates resulting in less water being lost 

from the hypocotyl.  

Similar to the results from Experiment 3.4, in Experiments 3.6 and 3.7, it was shown 

different cultivars of radishes grown under conditions of constantly higher VWC all had a 

higher rate of splitting compared to radishes grown under conditions of constantly lower 

VWC. In Experiment 4.3 it was demonstrated that radishes are able to absorb water 

through their periderm hence the higher rates of splitting observed in radishes grown in 

conditions of greater VWC could have been due to these radishes having a relatively 

higher turgor pressure within the hypocotyl resulting in the periderm being under higher 

levels of stress and more susceptible to splitting compared to radishes grown under 

conditions of lower VWC. However, inconsistent results were found for the relationship 

between hypocotyl WC and RWC and splitting and no relationship was found to link 

hypocotyl WC with hypocotyl water pressure in Experiment 3.7. This may be because the 

underlying mechanism behind susceptibility to growth splitting is more complex than 

hypocotyl WC and water pressure putting increased stress on the cell wall making it less 

resistant to splitting. During growth radishes are developing and responding to the 

environmental conditions they are exposed to. For instance it is known water availability 

can have an effect on cellular composition and in particular lignin biosynthesis (Lee et al. 

2007). Joyce et al. (1983) suggested lignin synthesis may be reduced to a lesser extent 

by water deficit than cell division and expansion resulting in a build-up of cell wall material. 

As lignin is a constituent of cell strength this may have an effect on susceptibility to 

splitting. Lignin levels were not measured in these studies and this area requires further 

investigation. 

There may also be problems with the method used to measure hypocotyl WC and RWC of 

split radishes because the split surface may have resulted in greater water loss compared 

to radishes without a split surface. If radishes with a higher hypocotyl water content split 

more readily but then also lose water at a greater rate as a result of this split, measuring 

the hypocotyl water content at the point of harvest will not be a true representation of the 

hypocotyl water content at the point of splitting. As it is impossible to predict growth 
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splitting it would be difficult to measure the hypocotyl water content at the point of splitting 

to determine if this is correlated with growth splitting.   

Results from experiments conducted as part of this thesis suggest it may be more 

practical for growers to reduce post-harvest splitting susceptibility by optimising post-

harvest handling. If radishes which have been split as a result of growth splits can be 

removed at harvest, harvest splitting can be minimised by reducing turgor pressure. This 

should prevent supermarket rejections.  
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5.1 Overall conclusions  

 Radishes split by plasmoptysis  

 Substrate VWC affects growth splitting  

 Radishes are more susceptible to splitting as a result of high VWC at Growth 

Stage 41 

 Water can be absorbed by the hypocotyl post-harvest  

 High RWC and WC are linked to high water pressure  

 Increasing hypocotyl WC, RWC or water pressure increases susceptibility to 

harvest splitting 

 Decreasing temperature increases susceptibility to harvest splitting  
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5.2 Adoption and field application  

Field grown radishes are not routinely irrigated in the UK and accurately controlling the 

VWC according to the growth stage of the crop could be challenging under field conditions 

where there is always a chance of rainfall at any point during radish growth. This may limit 

the successful application of a period of drying prior to Growth Stage 41 in radishes. It is 

not thought it would be commercially viable to grow radishes under polytunnels which tend 

to be used exclusively for higher value crops such as strawberries in the UK. The climate 

of the UK is, however, changing and the total summer precipitation has decreased in most 

parts of the UK, typically by between 1 to 40% since 1961 (Street 2007).The trend is 

towards warmer wetter winters and hotter drier summers with projected 50% less 

precipitation in the summer months and up to 30% more precipitation in the winter months 

by 2100. The impacts of these projected changes are expected to increase the temporal 

and spatial demand for irrigation around 20% by 2020 and around 30% by 2050 due to 

longer dry periods in summer (Street 2007). Therefore, in future if radish crops do become 

routinely irrigated there is scope for reducing growth splitting by introducing a period of 

drying prior to Growth Stage 41 which is easily and non-destructively identifiable in the 

field.  

Under current agronomic practices, harvest splitting in radishes could be reduced by 

reducing the turgor pressure at key points in handling identified as when the produce is 

most susceptible to damage. Reducing the turgor pressure could either be achieved by 

reducing the hypocotyl water pressure or by increasing temperature. In experiments 

conducted as part of this thesis, small changes in hypocotyl water content resulted in 

large changes in splitting susceptibility therefore it may be possible to reduce the water 

content of the radishes to a level which is commercially acceptable but which is also less 

susceptible to harvest splitting. Alternatively, radish hypocotyls were shown to be able to 

absorb water through the periderm post-harvest so it may be possible to re-hydrate the 

radishes prior to packing. As a linear relationship was shown between hypocotyl 

temperature and susceptibility to harvest splitting any increase in temperature during 

handling would decrease the susceptibility to splitting.   
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5.3 Critical review of methodologies  

The experimental designs and number of replicates used in all applied experiments 

(Chapters 3 & 4) were generally acceptable for quantifying the effects of different factors 

on growth and harvest splitting. Where faults in methodology were identified, 

improvements were made and further investigation conducted.  

Methodology from research in this thesis can be applied to similar research into splitting in 

other crops. In addition some of the equipment designed for use in experiments has 

already been used for other pieces of research assessing lettuce leaf rib RWC and 

cracking. 
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