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A comparative analysis of the precipitation extremes obtained from 16 

TRMM satellite and rain gauges datasets over a semi-arid region  17 

Abstract 18 

The objectives of this research were to compare precipitation extremes obtained from TRMM 19 

satellite and those of rain gauges over a semi-arid area in Iran. Extreme precipitation indices 20 

(EPIs) (i.e. the number of days with precipitation value over 10 mm, maximum duration of 21 

wet and dry days, the number of days with precipitation over the 95th percentile, total 22 

precipitation higher than the 95th percentile, and maximum daily precipitation) were 23 

calculated across Fars province, Iran, 2000–2014 at seasonal time scales. The gauges data 24 

were interpolated at the spatial resolution of 0.25o × 0.25o to match the 3B42 data using 25 

Inverse Distance Weighting (IDW). Then EPIs from the two datasets were compared with 26 

each other. The findings showed that mean values computed from gauges and satellite data 27 

did not present any significant differences among all of the extreme indices. Furthermore, 28 

their variances presented a good level of congruence. Finally, the majority of indices 29 

presented a satisfactory correlation between the two dataset. To evaluate the prediction of 30 

extreme events in different temporal and tolerated distances, a fuzzy method was used. The 31 

results showed that the percentage of grid cells with useful predictions tripled with extending 32 

spatial tolerance by just one pixel. To evaluate methods of eliminating the uncertainty of 33 

probable missing rainfall data and the seasonal changes in rainfall averages, probabilistic 34 

methods based on Weibull distribution and truncated geometric distribution were employed 35 

to eliminate uncertainties in estimation of extreme precipitation amounts and extreme wet 36 



 

 

periods. The results showed that as to extreme precipitation amounts, a satisfactory method 37 

could not be drawn for arid southern regions of Fars, Iran .Similarly, as to extreme wet 38 

periods, the consistency between gauges and satellite data could not be improved 39 

significantly. 40 

Keywords: Extreme precipitation, TRMM satellite, Rain gauges, Fars province. 41 

1. Introduction 42 

Precipitation is an important meteorological parameter in the climatic, agricultural, and 43 

hydrological studies of a region. Traditionally, precipitation is measured in rain gauges with 44 

a good accuracy. However, precipitation is a parameter with high spatial variations. Most 45 

rain gauges are located in regions of easy reach by human operators—they have a very low 46 

density in regions far from cities or on very high mountains (Nastos et al., 2016). This creates 47 

a clear issue of coverage, which can be partially solved with remote sensing technologies 48 

(e.g. radar systems and earth-observing satellites), which are used to continuously estimate 49 

precipitation at global scales.  50 

In the past two decades, some satellites-based programs including Global Precipitation 51 

Climatology Project (GPCP) (Huffman et al., 2001), the Climate Prediction Centre Morphing 52 

technique (CMORPH; Joyce et al., 2004), Tropical Rainfall Measuring Mission (TRMM), 53 

Multi-sensor Precipitation Analysis (TMPA) (Huffman et al. 2007), Precipitation Estimation 54 

from Remotely Sensed Information using Artificial Neural Network (PERSIANN; Hsu et al., 55 

1997), PERSIANN Cloud Classification System (PERSIANN-CCS; Hong et al., 2007), 56 

PERSIAN-CDR (Ashouri et al., 2015) and Global Satellite Mapping of Precipitation 57 



 

 

(GSMaP; Ushio et al., 2009) have been developed to estimate precipitation. Moazami et al. 58 

(2016) evaluated the daily precipitation data of four widely-used satellite rainfall estimates 59 

(TMPA-3B42V7, TMPA-3B42RT, PERSIANN, and CMORPH) on a dense rain gauge 60 

network over six regions in Iran with various physiographic and climatic conditions. They 61 

concluded that the most accurate estimation of the daily precipitation was obtained from 62 

TMPA-3B42V7. Other studies for evaluation of the data estimated by the TRMM satellite 63 

across different parts of the world include studies over Iran (Javanmard et al., 2010; Alijanian 64 

et al. 2017), Greece (Nastos et al., 2016), India (Prakash et al., 2016b, 2018), Bangladesh 65 

(Tarek et al., 2017), Ethiopia (Awange et al., 2016), China (Zhao and Yatagai., 2014; Cai et 66 

al., 2016; Zhao et al., 2017), and the United States of America (Prat and Nelson, 2014; Chen 67 

et al., 2013; Qiao et al.,2014). In all of these studies, acceptable results were obtained from 68 

the TRMM data. The TRMM ended its mission in 2015 and was replaced with Global 69 

Precipitation Measurement (GPM) (Prakash et al., 2016a; Skofronick-Jackson et al., 2017; 70 

Manz et al. 2017). 71 

  72 

To examine the precipitation phenomenon in a region, the calculation and evaluation of the 73 

extreme precipitation values are crucial for management and decision-making under extreme 74 

environmental conditions, including flood and drought. Various studies have been conducted 75 

regarding extreme precipitation, including studies by Hajani and Rahman (Australia, 2018), 76 

Shrestha et al. (Koshi basin river, 2017), Najafi and Moazami (2016), Wang et al. (China 77 

and USA, 2014), Raveh-Rubin and Werneli (Mediterranean region, 2015) and Tangang et al. 78 

(Indonesia, 2017). However, only a few studies have been conducted for the comparison of 79 



 

 

extreme precipitation values obtained from satellite data and rain gauges. Lockhoff et al. 80 

(2014) evaluated European precipitation extremes obtained by GCPC and found them to be 81 

less than satisfactory. Katiraie-Boroujerdy et al. (2017) used PERSIAN-CDR data to 82 

evaluate the extreme precipitation indices (EPIs) over a subtropical semi-arid region. They 83 

concluded that PERSIANN-CDR mostly underestimated the indices. Pombo and Oliveira 84 

(2015) calculated the maximum annual daily precipitation in Angola based on ground rain 85 

gauges and TRMM satellite. They indicated that TRMM underestimated maximum annual 86 

daily precipitation. Nastos et al. (2013) compared ETCCDI extreme indices of the 87 

Mediterranean Sea obtained from ground rain gauges and TRMM satellite data and reported 88 

a significant difference between the two datasets. Bharti et al. (2016) used the TRMM 3B42 89 

version 7 (3B42) precipitation data to investigate extreme rainfall events during the monsoon 90 

season over the Northwest Himalaya for the period 1998-2013. However, their study did not 91 

include a comparison between satellite and ground data. Considering the limited number of 92 

studies regarding the evaluation of extreme precipitation values of TRMM satellite especially 93 

in Iran, the researchers have compared the estimated precipitation extremes from 3B42 and 94 

rain gauges in a semi-arid region of Iran. 95 

2. Material and methods 96 

2.1 Study area and data used  97 

The relative dry climate coupled with the indiscriminate withdrawal of groundwater has 98 

intensified pressure on water resources and exacerbated the water crisis in Iran. This calls for 99 

an enhanced management of water resources, which must start with a better management of 100 



 

 

meteoritic water. Fars province is one of the centres of livestock and arable farming in Iran, 101 

which is located between the latitudes 27°3′ and 31°42′ and the longitudes 50°30′ and 102 

55°36′(Figure 1a), partly covered by the Zagros mountain chain northwardly. It is also close 103 

to the Persian Gulf southwardly and Khuzestan Plain borders westwardly (Azadi and Karimi-104 

Jashni, 2016). According to the digital elevation model (DEM) maps generated by Shuttle 105 

Radar Topography Mission (SRTM) a wide range of altitudes is observed in Fars with a 106 

minimum elevation of just 114 m, and a maximum of 3922 m above sea level (Figure 1b). 107 

The unique geographic location of Fars along with the high variation of altitudes result in 108 

different climatic zones, namely, temperate semi-arid, temperate desert arid, cold semi-arid, 109 

temperate Mediterranean, cold desert arid, warm desert arid, and warm semi-arid based on 110 

modified De-Marton’s classification method (Soufi, 2004). 111 

Figure 2 (a) indicates average of annual precipitation (RTOT, mm), mean number of wet 112 

days in a year (NWET, day), average of annual precipitation over all wet days (INT, mm day-113 

1), and the 95th percentile from the empirical (wet day) distribution functions (Q95, mm), 114 

obtained from the rain gauges of Far province, 2000-2014. RTOT ranges from 125 mm in 115 

the southern and eastern regions of the province to near 1000 mm in the northwestern parts. 116 

Zagros Mountain chain plays a significant role in the precipitation diversity of Fars. Although 117 

a similar spatial trend is obvious for NWD, RTOT, INT, and Q95, the spatial variation 118 

coefficient (CV) for these parameters were not the same across the rain gauges, so that CV 119 

for Q95, INT, NWD, and RTOT were 0.21, 0.24, 0.27 and 0.47, respectively. Therefore, the 120 

highest CV was related to RTOT, and when the rainfall was normalized with the number of 121 

rainy days (INT), CV decreased by 50%. Precipitation over the Middle East and Iran is 122 



 

 

usually related to moist air masses originated in the Mediterranean Sea and the southern water 123 

bodies (Arabian sea, Oman Sea, Persian Gulf, Red Sea, and north Indian ocean; Raziei et al. 124 

2012).  To identify rainy months, the climatological means of monthly precipitation over 125 

Fars province is presented in Figure 3 for the period 2000 -2014, which shows the rainy 126 

months are from November to April, with only 3 percent of annual precipitation occurring 127 

from May to the end of October and with the highest monthly precipitation occurring in 128 

December and January. 129 

In order to maintain the quality of rain gauges data, of the total number of stations available 130 

(n=137), 90 stations were selected, with continuous data between January1st 2000 to 131 

December29th 2014. The dataset was obtained from Fars Regional Water Organization. The 132 

coordinates and statistical characterizations (mean, minimum and maximum, and standard 133 

deviation) of the gauges under investigation for the annual time scale are provided in Table 134 

S1 as Supporting Information. According to Zolina et al. (2005, 2010), heavy precipitation 135 

and dry and wet periods are practically insensitive to gaps in daily time series lower than 136 

10%. However, according to Fars Regional Water Organization, there are less than 5% 137 

missing values in the reported precipitation data. Hence, to increase certainty, the researchers 138 

used Double Mass Curve method (DMC; McCuen, 2016) to check the relative homogeneity 139 

of the precipitation data. Therefore, the researchers plotted accumulated rainfall at each 140 

station against the average accumulation for two adjacent stations with a high correlation. 141 

The r2 values accounted for over 99% of the statistical variance. In other words, only less 142 

than one percent of the statistical variance remained unexplained. When plotted curves for 143 

DMC were checked, missing values were only found in station No. 29. To remedy the 144 



 

 

problem, the researchers adjusted the precipitation values in the suspicious days for this 145 

station as proposed by Ouma et al. (2012). 146 

The TRMM satellite was launched on 9 November 1997 and it ended collecting data on April 147 

15, 2015.The 3B42 product covers the latitude range 50oS-50oN with the basic temporal 148 

resolution of 3 hours. The daily precipitation data of TRMM 3B42 Version 7 (3B42) has 149 

been downloaded from the Goddard Earth Sciences Data and Information Services Centre 150 

(GES-DISC, http://mirador.gsfc.nasa.gov) with spatial resolution of 0.25 × 0.25 and 151 

temporal resolution of one day for the period of 1 January 2000 to 29 December 2014. The 152 

geographic location of 3B42 grid cells, which are located in the area of rain gauges data 153 

interpolation, are depicted in Figure 4.  The researchers also compared the daily rainfall data 154 

between the rain gauges and the nearest 3B42 grid cells and obtained the following results: 155 

correlation coefficient= 0.67, root mean square error= 8.5 mm, prediction of detection= 0.58, 156 

false alarm ratio= 0.51, and critical success index= 0.36 (all measures are described in 157 

Moazami et al. (2016)). 158 

2.2 Interpolation 159 

As the location of the rain gauges does not match the gridded 3B42 data, it is first necessary 160 

to interpolate the rain gauge data at 0.25° × 0.25° for each day. Four methods are commonly 161 

used to interpolate precipitation values as follows: kriging, inverse distance weighted (IDW) 162 

and thin plate spline (TPS) (Webster and Oliver, 2007), as well as a method suggested by 163 

Haylock et al. (2008). The latter involves a three step approach where monthly means are 164 

interpolated using TPS, then daily local precipitation are normalized (by dividing them for 165 

http://mirador.gsfc.nasa.gov/


 

 

the monthly mean for the same location) and the interpolation of anomalies using kriging. 166 

Therefore, the researchers applied a five-fold cross-validation (James et al. 2013) framework 167 

to determine which method performed the best for this particular dataset. Results (Table 1) 168 

are computed using the mean absolute error as an index that measures the average difference 169 

between observed and estimated rainfall values. These indicate that IDW and Haylock’s 170 

method are the most accurate method for the large majority of years. Moreover, their average 171 

accuracy over the entire time period is essentially the same.  The researchers finally decided 172 

to use IDW, since it is the simplest method to apply; it provides accurate results; and it is 173 

easy to automate in ArcGIS.  174 

Technically, raster layers for 5,499 days (from 1 January 2000 to 29 December 2014) were 175 

prepared, based on the daily data of the rain gauges for Fars province. The necessity to 176 

perform such a large number of daily interpolations caused us to automate the task using 177 

inverse distance weighted (Pombo and Oliviera, 2015) interpolation in Python within the 178 

ArcGIS 10.3 framework. The objective of any interpolation method is to estimate the value 179 

of a parameter at unmeasured locations based on a discrete set of observations, i.e. rain 180 

gauges. However, in locations far from gauges there may be a discrepancy between estimated 181 

data and real rainfall amount, which creates a certain amount of uncertainty in the 182 

interpolated values. Inverse distance is not capable of assessing this level of uncertainty. 183 

Other algorithms, e.g. kriging, are capable of interpolating univariate data and provide local 184 

uncertainty.  Nonetheless, in this study the number of gauges is not sufficient for this method 185 

to be applied successfully (Webster and Oliver, 2007). Additionally, the assumption that rain 186 

gauges provide a realistic measurement of precipitation events has also been questioned in 187 



 

 

the literature (Wehbe et al., 2017). Thus, adding another layer of uncertainty check seems 188 

unjustifiable, as no interpolation method would be capable of minimizing uncertainty further.  189 

2.3 Extreme precipitation indices 190 

In order to assess extreme rainfall events, in terms of their magnitude and intensity, some 191 

indices have been proposed by the Expert Team on Climate Change Detection and Indices 192 

(ETCCDI) (Zhang et al. 2011) as indicated in Table 2. The indices R10mm and R20mm 193 

show the number of days with precipitation higher than 10 and 20 mm, respectively. As 194 

shown in Figure 2, mean intensity for all rain gauges except for one was lower than 20 mm. 195 

As a result, the researchers considered only R10mm in this paper. The two indices CWD and 196 

CDD indicate the maximum number of wet or dry durations in a period of time. The 197 

precipitation intensity (INT) is equivalent to SDII (Table 2), which is investigated in section 198 

4.1 (climatological statistics). The percentile indices could be obtained by comparing the 199 

value of daily precipitation with a threshold value.  If it is higher than the threshold on a 200 

certain day, that is considered to be a day with extreme rainfall. The threshold value is 201 

obtained from the 95 or 99th percentile of long term series of precipitation in a location. Since 202 

climate in area under investigation is semi-arid, the 99th percentiles were excluded. Likewise, 203 

since the occurrence of five consecutive rainy days was nonexistent in most grid cells even 204 

in rainy seasons, the researchers did not consider Rx5day, either. 205 

Although some researchers have  used ETCCDI indices to study extreme precipitation (e.g. 206 

Heidinger et al. 2018, Li et al. 2018), others have raised objections to these indices due to 207 

uncertainties for the estimation of maximum consecutive wet/dry days (CWD/CDD) and the 208 

sensitivity of these indices to lost data. Likewise, similar objections have been raised to 209 



 

 

percentile indices such as R95pTOT (Zolina et al. 2009, Zolina et al. 2013, Leander et al. 210 

2014). For percentile indices, changes in total rainfall or the number of wet days have been 211 

reported as sources of uncertainty in the trend analysis. Thus, alternative methods have been 212 

presented to eliminate uncertainty (Zolina et al. 2009, Leander et al. 2014). The employed 213 

methods for percentile indices and wet/dry spells (CWD/CDD) are explained in sections 214 

2.3.1 and 2.3.2, respectively. 215 

2.3.1. Percentile extremes 216 

There are two absolute and relative general approaches to calculate the percentile indices. In 217 

the absolute approach, the amount of rainfall events that exceeds the percentile of long-term 218 

rainfall time series would be considered as extreme precipitation value (similar to the 219 

definition of ETCCDI, Table 2). However, in the relative approach, the amount of rainfall in 220 

extreme events is divided by the total rainfall of a single year or season. This approach was 221 

adopted by Klein Tank and Können (2003) for the first time. The main feature of this 222 

approach is that it considers the effect of a change in the total rainfall on changes in the 223 

amount of extreme events. However, in some areas or seasons with few wet days, this method 224 

will produce some uncertainty (Zolina et al., 2009). The increase in heavy precipitation could 225 

well be a function of variations in total precipitation or it could be due to increased 226 

precipitation and decreased number of wet days (e.g. Zolina et al. 2004, 2008). To counteract 227 

this uncertainty, Zolina et al (2009) provided Distribution of Fractional Contribution (DFC) 228 

based on gamma distribution for daily rainfall to calculate relative percentile indices in a 229 

season. They mentioned that this proposed percentile extreme index is more stable, especially 230 

when precipitation extremes are estimated from a limited number of wet days of the seasonal 231 

or monthly time series. Leander et al. (2014) addressed another uncertainty of proposed index 232 



 

 

by Zolina et al. (2009) - the fact that a change in the mean also affects the estimated percentile 233 

extreme even when the shape of the distribution is unchanged. Therefore, a trend within the 234 

percentile extreme index doesn't essentially represent a modification within the distributional 235 

form related to an amplified response of maximum precipitation. 236 

In this study, the researchers evaluated the estimations of relative percentile precipitation 237 

extremes of 3B42 data by employing the method proposed by Leander et al. (2014). 238 

According to Klein Tank and Können (2003) definition, R95pTOTr could be approximated 239 

as follows (Leander et al. 2014): 240 

R95pTOT𝑟 ≈
1

𝜇𝑤
∫ 𝑥𝑔𝑤(𝑥)𝑑𝑥

∞

𝑄

 
(1) 

where 𝑄 is long term 95th percentile, 𝜇𝑤 and 𝑔𝑤 are the average and the probability density 241 

function of wet days precipitation. Leander et al. (2014) proposed to use 95th percentile in a 242 

single season (𝑞) instead of 𝑄. Therefore, the modified R95pTOT𝑟 would be as follows: 243 

RS95pTOT ≈
1

𝜇𝑤
∫ 𝑥𝑔𝑤(𝑥)𝑑𝑥 =

∞

𝑞

∫ 𝑥′𝑔𝑤
′(𝑥′)𝑑𝑥′

∞

𝑞

𝜇𝑤

 
(2) 

where 𝑥′ is 
𝑥

𝜇𝑤
 and 𝑔𝑤

′ is the density function of 𝑥′. Leander et al. (2014) proposed two-244 

parameter Weibull distribution for 𝑔𝑤. Therefore, the probability density of shifted (as 𝛿) 245 

Weibull distribution is given as follows: 246 

𝑔𝑤(𝑥) =
𝑐

𝑎
(

𝑥 − 𝛿

𝑎
)

𝑐−1

𝑒𝑥𝑝 [− (
𝑥 − 𝛿

𝑎
)

𝑐

] , 𝑥 ≥ 𝛿 
(3) 

where 𝑎 and 𝑐 are scale and shape parameters, and 𝛿 is the wet-day threshold precipitation 247 

(i.e. 1 mm). The final expression for 𝑅𝑆95𝑝𝑇𝑂𝑇 would be as Equation (4). 248 



 

 

RS95pTOT ≈
𝑎Γ (1 +

1

𝑐
)

𝛿 + 𝑎Γ (1 +
1

𝑐
)

[
0.05𝛿

𝑎Γ (1 +
1

𝑐
)

+ 1 − 𝑃 (
1

𝑐
+ 1, −𝑙𝑜𝑔(0.05))] 

(4) 

 249 

where Γ  is gamma function and 𝑃  is the normalized incomplete gamma function. For 250 

estimation of 𝑐, two-parameter Weibull distribution was fitted to the wet-days amounts (over 251 

𝛿) using maximum likelihood method (Wilks, 2011).  252 

In addition, results were obtained on an individual basis per season to account for the ever-253 

changing precipitation patterns and weather regimes, which affected the accuracy of the 254 

satellite-based estimates as well as the uncertainty of the in situ measurements. The seasons 255 

were outlined as winter: December to February (DJF), spring: March to May (MAM), 256 

summer: June to August (JJA), and autumn: September to November (SON). According to 257 

Leander et al. (2014) seasons with 10 or more wet days were considered for 258 

calculating 𝑅𝑆95𝑝𝑇𝑂𝑇. Due to low rate of precipitation in summer, this season was excluded 259 

from this study. Since the highest amount and frequency of rainfall occur in winters and the 260 

limit to provide all of results, the researchers presented them for winters in details, while for 261 

the other seasons (spring and autumn) the overall results were reported 262 

2.3.2. Wet/dry spells 263 

To distinguish between dry and wet days, 1 mm precipitation was taken as the threshold value 264 

as proposed by Groisman and Knight (2008). Furthermore, wet periods (WPs) and dry 265 

periods (DPs) were considered separately for the wet season (October-March) and dry season 266 

(April-September). Traditional seasonal schedules would lead to noticeable uncertainties 267 

when estimating the durations of WPs and DPs because wet and dry periods are not 268 



 

 

necessarily confined within seasonal boundaries. (Zolina et al., 2013). Consequently, the 269 

researchers attributed WPs to the season in which they began. However DPs were attributed 270 

to the season that included longer durations of the dry periods. This was considered necessary 271 

because of long dry periods in the dry season. Maximum values of WPs and DPs (CWD and 272 

CDD, respectively) were considered by ETCCDI as an extreme precipitation parameter in a 273 

season or year (Table 2). 274 

The analysis of wet and dry periods is highly sensitive to the continuity of records. In order 275 

to remove this limitation from the current study, as suggested by Zolina et al. (2013), the 276 

researchers fitted Truncated Geometric Distribution (TGD) to the data. The probability 277 

density function (PDF) of the TGD is given as follows (Zolina et al., 2013): 278 

𝑃(𝑥𝑖 = 𝑘) =
1

1 − (1 − 𝑝)𝑁
𝑝(1 − 𝑝)𝑘−1 

(5) 

where 𝑥𝑖  is the duration of the continuous wet (dry) period in days, 𝑝 is the distribution 279 

parameter, which  is the inverse of mean duration (wet/dry) in the standard geometric 280 

distribution, and N is the maximum of WPs/DPs. The PDF derivation of TGD is explained 281 

in details by Zolina et al. (2013). By using Equation (5), percentiles related to a given wet/dry 282 

duration could be estimated and vice versa.  To examine the goodness of fitness of the TGD 283 

on the data, Chi-square test was applied, which showed that there was not any significant 284 

differences between the distribution of WPs/DPs and TGD at the grid cells at 5%  285 

significance level. 286 

2.4 Data analysis 287 



 

 

The Pearson correlation coefficient (r) was used to assess the correlation between 3B42 and 288 

RG results. The bias ratio (BR; the ratio of 3B42 results and RG) was used to quantitatively 289 

compare the results of the two datasets. The two-sample t-test (Snedecor and Cochran, 1989) 290 

and the Mann–Whitney U test (MW; Stedinger et al., 1993) were used to check the 291 

homogeneity of the means. Moreover, the Levene test- based on the median- and F test were 292 

used to check the homogeneity of the standard deviations of the two datasets (Nordstokke et 293 

al., 2011).  All statistical tests were performed at 5% significance level. 294 

Besides the point by point evaluation approaches, fuzzy verification or neighbourhood 295 

method (Ebert 2008) was also employed with the purpose of allowing slight temporal/spatial 296 

displacements of 3B42 estimates for extreme events. The ‘maximum displacement allowed’ 297 

refers to a local neighbourhood (or window) surrounding the grid cell of interest. For instance, 298 

for a given spatiotemporal scale of 5 pixels and 3 days (hereafter shown as [5, 3]), the 299 

neighborhood encompasses 5 × 5 × 3 = 75 grid boxes. The treatment of neighborhood data 300 

depended on the selected fuzzy method and included for example, averaging, thresholding, 301 

or the generation of empirical frequency distributions (Lockhoff et al., 2014). As proposed 302 

by Lockhoff et al. (2014), fractions skill score (FSS) was chosen for the fuzzy method and 303 

was determined as follows: 304 

𝐹𝑆𝑆 = 1 −
∑ (〈𝑃3𝐵42〉𝑠 − 〈𝑃𝑅𝐺〉𝑠)2

𝑁

∑ 〈𝑃3𝐵42〉𝑠
2 +𝑁 ∑ 〈𝑃3𝐵42〉𝑠

2
𝑁

 
(6) 

where 〈𝑃3𝐵42〉 and 〈𝑃𝑅𝐺〉 are the fraction of grid boxes in a neighborhood with extreme events 305 

observed by 3B42 and RG, respectively, N is the number of neighborhood in the domain 306 

considered, and 〈 〉𝑠 indicate that the fractions are calculated based on the neighborhood 307 



 

 

surrounding the grid box of interest for the indicated spatiotemporal scale. FSS is calculated 308 

per grid box, so that the FSS is calculated for the temporal domain (i.e. the time period 309 

covered). Therefore, N is equal to the number of days per season for 15 years. The FSS ranges 310 

between 0 and 1 with 1 indicating the perfect score. The value of FSS above which the 311 

assessed dataset is considered to have useful (better than random) skill is given by: 312 

𝐹𝑆𝑆𝑢𝑠𝑒𝑓𝑢𝑙𝑙 = 0.5 +
𝑓𝑦

2
 

(7) 

where 𝑓𝑦 is the domain average fraction observed by the reference dataset (Roberts and Lean 313 

2008); that is, here the average fraction of extreme events observed by RG at a specific grid 314 

point over the entire time period. 315 

 Extreme thresholds were calculated per grid box at a 0.25°  resolution. The extreme 316 

thresholds were averaged over the increased spatial neighborhood. As the size of the 317 

neighborhood increased, the neighborhood window crossed the borders of the study area; 318 

therefore, it included no-data values. Thus, a neighborhood was scrutinized only when at 319 

least 50% of the neighborhood grid boxes provided valid values. This led to a decrease in the 320 

size of the area along the borders with increasing spatial scale. 321 

 322 

4. Results  323 

4.1. Climatological statistics 324 

Before investigating the extreme indices, based upon 15 years (2000-2014) of daily rainfall 325 

estimates, total rainfall (TOT), number of wet days (NWD), and wet day intensity (INT) were 326 

calculated for 3B42 and RG at seasonal time scales and different years. Qualitatively, Figure 327 



 

 

5 shows that the spatial patterns compared TOT with NWD satisfactorily. The north and 328 

northwest regions of the province had the highest values, while the southern and southeast 329 

grid cells of the province had the lowest values. However, the spatial distribution of INT in 330 

the southeastern regions based on 3B42 did not correspond to the results of RG, suggesting 331 

that it might be due to underestimation of NWD in these regions. According to BR maps, 332 

3B42 underestimated NWD (88% of the grid cells). Pierre et al. (2011) also reported 333 

underestimation of NWD by 3B42 in Sahelian belt, Africa. Correlation (r) between 3B42 and 334 

RG results decreased for TOT, INT and NWD, respectively. Buarque et al. (2011) also 335 

reported a higher correlation for estimation of TOT than NWD by 3B42 in the Amazon region. 336 

 As shown in Table 3, the mean test results indicated that the NWD had the highest number 337 

of grid cells with different means at probability level of 5%. However, the magnitude of 338 

results was not the same at different time scales, so that it was the highest for winter season. 339 

This might be due to higher number of precipitation events in this season. Furthermore, the 340 

most insignificant percentage of means was obtained for TOT. On the other hand, Levene 341 

and F tests showed that the highest percentage of grid cells with different variances were 342 

related to INT except for the Levene test in autumn, which identified NWD with the highest 343 

percentage of significant difference. 344 

4.2. R10mm and Rx1Day 345 

The means of R10mm and Rx1Day obtained by 3B42 and RG datasets across Fars province 346 

for the period 2000-2014 along with the corresponding spatial distributions of BR and r  are 347 

indicated in Figure 6. The means of the aforementioned indices calculated from RG and 3B42 348 

datasets  were almost identical for spatial variation, and so were they with respect to the 349 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/wrcr.20275#wrcr20275-bib-0019


 

 

minimum of estimated R10mm; nonetheless, the same indices calculated from 3B42 dataset 350 

indicated more grid cells with the minimum range (2.1 – 4 days) in south and eastern parts 351 

of the study area. With respect to BR map, 3B42 underestimated R10mm in over 81% of the 352 

grid cells. The rate of underestimation decreased in other seasons. As shown in Table 1, the 353 

average BR across the studied region was 1.02 for spring and autumn.  Contrary to R10mm, 354 

overestimation was predominant in the Rx1day, so that the BR mean for spring and autumn 355 

winter seasons were 1.16, 1.08 and 1.3, respectively (Table 4.). Regarding the correlation 356 

coefficient (Figure 6), in 63% and 81% of grid cells for R10mm and in 38% and 65% of grid 357 

cells for Rx1Day, the correlation coefficient was greater than 0.7 and 0.6, respectively. This 358 

shows a better accordance for the estimated values of R10mm than Rx1Day. Similar results 359 

were obtained for spring and autumn. As shown in Table 4, the spatially averaged values of 360 

r for R10mm were higher than those for Rx1Day.  361 

 Table 4 depicts MW and t test results. The maximum difference between the means of 362 

Rx1Day and R10mm indices calculated from 3B42 and RG was observed in the winter (i.e., 363 

12% of the grid cells). In other seasons (spring and autumn), a better match was found 364 

between the results. Thus, overall, the consistency between the means of the aforementioned 365 

indices was very good.  As to the equal variance tests, except for F test in winter, which 366 

indicated a significant difference for Rx1Day in 28% of grid cells, the results of other 367 

parametric and non-parametric equal variance tests were satisfactory in all seasons for both 368 

of the EPIs.  369 

4.2. Percentile indices 370 



 

 

As shown in Figures 7 and 8, the R95pTOT and total number of days with precipitation 371 

higher than Q95 (R95pDay) values were computed to compare the amount and frequency of 372 

determined extreme events by 3B42 and RG datasets. Then, fuzzy analysis was employed to 373 

compare the ability of this index to predict the occurrence of precipitation amounts higher 374 

than Q95 in different temporal and spatial neighbors (Figure 9). Finally, the improved index 375 

RS95pTOT was indicated in Figure 10.  376 

 As shown in Figure 7, the spatial distribution of R95pTOT obtained by 3B42 and RG 377 

overlapped in the margins of Fars province. However, 3B42 results depicted a zone with high 378 

values of extremes in central parts of the province. A similar difference in spatial pattern of 379 

3B42 and RG results was also observed in Figure 8 for the R95pDay. According to the BR 380 

maps (Figures 7 and 8), it is obvious that 3B42 overestimated R95pTOT (R95pDay) in 381 

70(63) % of grid cells, as the spatial average value of BR was 1.3 (1.17). 382 

Average values of r for R95pTOT (0.76) and R95pDay (0.71) confirm that good correlations 383 

existed between the results of RG and 3B42 in winter; however, the r values were lower in 384 

south-eastern parts of Fars, where lower amount and frequency of precipitation exists. With 385 

a similar spatial pattern (results are not shown), the average r for R95pTOT (R95pDay) 386 

decreased to 0.52 (0.53) and 0.36 (0.36) in the spring and autumn seasons, respectively, 387 

indicating a decrease in the matching of 3B42 and RG results in seasons with decreased 388 

precipitation totals. Mann-Whitney and t-tests showed no significant difference between the 389 

means of R95pTOT by 3B42 and RG for R95pTOT in 92 and 98% of grid cells for winter, 390 

99 % of the grid cells for spring and 99 and 98% of grid cells for autumn, respectively, at 5% 391 

significance level. Furthermore, F and Levene tests showed no significant difference between 392 



 

 

the variance of R95pTOT obtained by the two datasets in 97 and 92% of grid cells for winter, 393 

82 and 79% of grid cells for spring and 75 and 79% of grid cells for autumn, respectively, at 394 

5% significance level. The matching percentage of the mean and variance tests for the 395 

R95pDay index was equal to or slightly higher than the R95pTOT ones. Therefore, it is 396 

concluded that there was a very good accordance between means and variances of the 397 

obtained 95 percentile extremes by RG and 3B42. 398 

 As shown in Figure 9, the 95th percentile threshold was used to define extreme events with 399 

reference to temporal and spatial neighborhood sizes for winter. The [1, 1] time-scale pair 400 

(i.e.  The former indicates the temporal neighborhood size in days, the latter the spatial 401 

neighborhood in pixels) is a substitute for the traditional point-by-point verification, which 402 

results in low FSS values. The objective was to mitigate the effect of mismatches due to 403 

sampling and difference in the definition of the pair. The objective is achieved with a steady 404 

increase in FSS to values above the local FSSuseful, assigning 3B42 a useful skill at the 405 

aforementioned scales. As Figure 9 indicates, the improvement of results due to increasing 406 

spatial neighborhood was greater than the increasing temporal neighborhood, so that for all 407 

the temporal neighborhoods, when the spatial neighborhood increased from 1 pixel to 3 408 

pixels, the percentage of grid boxes with FSS higher than FSSuseful almost doubled. In all 409 

combinations of time and space, the southeastern part of province had the lowest values of 410 

FSS, even at the scale [7, 7], the pixels in this area had FSS less than FSSuseful. The 411 

phenomenon may be due to the scarcity of wet days in this area (Figure 5). The same spatial 412 

patterns were observed in other seasons as well. However, the percentages of grid cells with 413 

useful estimations were lower than those in winter. For example, for spring and autumn at 414 



 

 

[1,1] ([7,7]), the percentages of grid cells with useful estimations were 15% (87%) and 5% 415 

(79%), respectively. 416 

 As explained in Section 2.3.1, RS95pTOT was calculated for each grid cell and season.  To 417 

be eligible, there must be ten or more precipitation events per season. As Figure 5 shows, the 418 

number of eligible years increased from the low rainfall areas in the south-east to northwest 419 

areas with highest precipitation totals. Regarding the BR map, in more than 58 percent of the 420 

grid cells, 3B42 underestimated the RS95pTOT. The mean BR was 0.98 for the whole 421 

province. These were in contrast to the R95pTOT results, where 3B42 overestimated 422 

R95pTOT in most locations. Also, except for the eastern regions, the spatial consistency of 423 

the RS95pTOT was much higher than that of the R95pTOT. 424 

4.3. Dry/wet spells 425 

In this section, first the results of 3B42 and RG in the estimation of CWD and CDD indices 426 

is compared. Then, given the uncertainties for the estimation from RG data, the distribution 427 

of TGD is fitted to the number of WP durations in each season.  Finally, the average value 428 

and the 95th percentile (WPs_mean and WPs_P95, respectively) of the fitted distribution is 429 

compared from both RG and 3B42 datasets.  430 

As can be observed in Figure 11, the spatial distributions of obtained CDD and CWD by RG 431 

and 3B42 datasets overlapped, so that high values of duration indices were observed in 432 

northern parts and the low values were located in southern parts of Fars province. It was 433 

shown in section 4.1 that 3B42 generally underestimated NWD. A similar trend was observed 434 

for CWD in Figure 11, so that the BR value for this parameter was less than 1 in more than 435 



 

 

89% of the grid cells. Consequently, the CDD values were overestimated by 3B42 in 84% of 436 

grid cells. On the other hand, the average r for CWD and CDD (0.23 and 0.39, respectively) 437 

showed a low correlation between the results of RG and 3B42. Parametric and nonparametric 438 

tests, namely, t-test and Mann-Whitney, respectively, showed that for CDD (CWD) in 93 439 

(39) and 90 (39) % of the grid cells, there was no significant difference between results of 440 

3B42 and RG datasets at 5% significance level. Levene and F tests showed  that in 96 (80) 441 

and 91 (75)% of the grid cells , respectively, no significant difference was observed between 442 

the variances of obtained CDD (CWD) by 3B42 and RG, at 5% significance level.  443 

 Because the number of rainy events in the April-September season was low in most of grid 444 

cells, it was not possible to fit TGD to these data. As a result, April-September data were 445 

excluded from TGD analysis. The area under investigation is a semi-arid region and has a 446 

long duration of dry spells, even in the wet season. This means a large value for N in Equation 447 

5, which resulted in lengthening time for fitting method proposed by Zolina et al. (2013). 448 

Therefore, obtaining TGD function for DPs data was discarded due to hardware constraints 449 

and only TGD distribution calculations were performed for wet spells of the wet season 450 

(October-March). 451 

Regarding WPs_mean and WPs_P95 in the wet season, Figure 12 shows that 3B42 452 

underestimated them in 98 and 89% of the grid cells, respectively, which was similar to CWD 453 

results. The spatially averaged values of r for these two parameters were 0.29 and 0.23, 454 

respectively, which showed a low correlation between the results of 3B42 and RG. It can be 455 

concluded that the use of TGD did not increase the correlation between 3B42 and RG. On 456 



 

 

the other hand, the use of TGD did not change the rate of underestimation/overestimation of 457 

extreme wet spells significantly. 458 

4.3. Case studies 459 

For more detailed comparison  between 3B42 and RG results, two grid cells- one with the 460 

highest annual rainfall (30.375oN, 51.875oE) and the other  in the low rainfall regions of 461 

southeast of the province (27.875oN, 54.375oE)- were selected. Initially, the time series of 462 

winter rainfall were plotted for each location based on RG and 3B42 (Figure 13). Then 463 

empirical and TGD histograms of WPs were compared in Figure 14. 464 

The first interesting point in Figure 13 is that the Q95 value at point 15 and 140 was under- 465 

and overestimated by 3B42, respectively. This is not related to under/over estimation of total 466 

rainfall, so that BR values for the total rainfall in these grid cells were 0.86 and 0.83, 467 

respectively.  The underestimation of wet days at 140 (BR= 0.72) caused the overestimation 468 

of extreme rainfall. Regarding grid cell 15, the opposite is true because the BR value for the 469 

NWD was 1.15, Therefore, Q95 was underestimated by 3B42. The interesting point in this 470 

figure is that although the R95pTOT had a good correlation coefficient with the precipitation 471 

data of rain gauges, the time for the maximum amount of rainfall in the time series had no 472 

adaptation in both locations, so that for grid cell No. 15, the maximum daily rainfall was 473 

observed in 2002 and 2004 based on RG and 3B42, respectively. This trend also took place 474 

at grid cell No. 140, which as RG and 3B42 indicated received the maximum daily rainfall 475 

in 2009 and 2006, respectively. Another interesting point is that, regardless of the 476 



 

 

over/underestimation of Q95, 3B42 overestimated the maximum daily precipitation during 477 

the time series. This trend was observed in 77% of the examined grid cells. 478 

The empirical histograms of wet durations and approximation of these histograms by the 479 

TGD for grid cell No. 15 and 140 are indicated in Figure 14. These histograms were obtained 480 

from annual time series of WPs in wet seasons. For all WPs, the probability of experimental 481 

and the TGD histograms were close to each other except for 1 and 2 days durations at grid 482 

cell No. 140. At this location, the WPs frequency with 2 days duration was the highest. A 483 

phenomenon that resulted in diffraction of the two histograms based on RG results. As 3B42 484 

showed, the aforementioned cell received the highest frequency in one-day rainfall, 485 

confirming the fact that this region was the rainiest region of the province; therefore, this 486 

result is not unexpected. Regarding grid cell No. 140, there was a good agreement between 487 

the probabilities of TGD and experimental histograms obtained by RG and 3B42.  488 

5. Discussion 489 

The overall results show that the spatial distribution of extreme indices by 3B42 overlapped 490 

with the results of RG. Nastos et al. (2013) showed that high altitudes have increased values 491 

of percentile and threshold EPIs compared to coastal regions. According to Nastos et al. 492 

(2013), in mountainous regions of the north-western part of Fars higher values of extreme 493 

measures were observed compared to southeast parts of the province. Furthermore, the results 494 

showed that generally a higher correlation between the results of RG and 3B42 was observed 495 

in these regions. The previous studies also documented that there was a high correlation 496 

coefficient between RG and 3B42 monthly precipitation over the regions with high amounts 497 



 

 

of precipitation (Shirvani and Fakharizade-Shirazi, 2014; Javnmard et al., 2010; Moazami et 498 

al., 2016). Among the ETCCDI indices, R95pTOT and Rx1Day had the highest correlation 499 

coefficients, while CDD indices had the lowest values with the precipitation data of rain 500 

gauges. According to Moazami et al. (2016) the average value of correlation coefficient 501 

between 3B42 precipitation and synoptic rain gauges across Iran is 0.61. Shirvani and 502 

Fakharizade-Shirazi (2014) showed that the range of correlation coefficient between the 503 

precipitation data of rain gauges and 3B42 was between 0.1-0.7 over Fars province for the 504 

period 1998-2011. However, the maximum value of r across the region for R10mm, CWD, 505 

CDD, R95pTOT, R95pDay, and Rx1Day were 0.96, 0.86, 0.91, 0.97, 0.95, and 0.92 in the 506 

current study. This shows that the best obtained values of correlation coefficient for 507 

precipitation extreme values were higher than those obtained for precipitation data across the 508 

area under investigation. Although the researchers presented the results in separate seasons,  509 

their findings are  also confirmed when mean values of r for annual scale (not shown in the 510 

results) for R10mm, CWD, R95pTOT, R95pDay, Rx1Day,  which are 0.66, 0.66, 0.80, and 511 

0.63 respectively, are compared with the results  reported by Moazami et al. (2016) in Iran. 512 

A probable reason for increased correlation coefficient is that R10mm, CWD, R95pTOT, 513 

R95pDay, Rx1Day obtained from seasonal rainfall data and certain date of extreme rainfall 514 

occurrence is not a matter of concern in determination of them. This is confirmed when the 515 

correlation coefficient of total seasonal rainfall is considered (Figure 5), which was higher 516 

than 0.8 for most of the area under investigation.  517 

Results from 3B42 indicate that generally R10mm and CWD are underestimated, whereas 518 

CDD, R95pDay, R95pTOT and Rx1Day indices are overestimated. Due to lower relative 519 



 

 

humidity and higher temperature in semi-arid zones, rain drops may evaporate before 520 

reaching the earth surface (Tesfagiorgis et al. 2011). Shirvani and Fakhari Zade Shirazi 521 

(2014) show that in north-western part of Fars province- with higher precipitation and 522 

altitudes - underestimations of precipitation are observed, whereas in eastern parts- with 523 

lower precipitation and altitudes- overestimation of precipitation are observed. Accordingly, 524 

overestimation of R10mm, and percentile indices in southeastern parts of the province could 525 

be justified. However, in the mountainous regions, where the distance of raindrop travel to 526 

earth is shorter, overestimations of these extreme are observed. This is also consistent with 527 

the results reported by Moazami et al. (2016) for Iran.  528 

To evaluate the prediction of extreme precipitation events by 3B42, a fuzzy method was used. 529 

The results showed a better performance for the satellite at the regions with higher amounts 530 

of rainfall. Lockhoff et al. (2014) used the same method for the evaluation of GPCP 90th 531 

percentile threshold over Europe. They showed that at [1, 1] (1 pixel and 1 day window), 532 

none of GPCP grid cells had the value of FSS higher than FSSuseful. However, in the present 533 

study, 20% of grid cells had the FSS value higher than the criteria, despite the facts that pixel 534 

size for 3B42 is one fourth of GPCP and the threshold value for extreme precipitation (Q90) 535 

in their study was lower than Q95. AghaKouchak et al., (2011) and Lockhoff et al., (2014) 536 

indicated that prediction of detection of precipitation extremes by satellite products decreased 537 

as the extreme threshold value increased from Q75 to Q95, which confirms a better 538 

performance of 3B42  as compared to GPCP products.  The researchers also compared the 539 

daily precipitation estimates of 3B42 and GPCP results with each other (not shown), and 540 

found a better performance of 3B42. 541 



 

 

The index R95pTOT shows the relative contribution of very wet days (i.e. days with 542 

precipitation amounts exceeding the 95th percentile) to the total precipitation amounts. This 543 

index has often been used to monitor the changes of extreme precipitation amounts. However, 544 

the use of this index has been questioned because of its strong year-to-year variations (Zolina 545 

et al., 2009; Leander et al., 2014). Leander et al., 2014 showed that R95pTOT is influenced 546 

by changes in the mean wet-day precipitation. Since the problem is a matter of concern in 547 

trend analysis of extreme precipitation, the researchers also compared the results of 3B42 548 

and RG in estimation of the improved index RS95pTOT. The results showed that the spatial 549 

consistency between the 3B42 and RG results was very high especially in the north and west 550 

parts of Fars with higher values and frequencies of precipitation. The main problem in the 551 

estimation of RS95pTOT was that a minimum number of days with precipitation (i.e. 10 552 

days) were required. This criterion reduced the eligible years for calculation of RS95pTOT 553 

to zero in some south-eastern grid cells of Fars. This makes trend analysis impossible with 554 

this extreme index in arid zones. However, this problem was not observed in the northwestern 555 

parts of the study area. 556 

 Any comprehensive analysis of wet/dry durations and extreme precipitation is made possible 557 

only when special attention is paid to the extent of data coverage and individual records.  In 558 

effect, it means that dense precipitation networks are required for such an analysis (Zolina et 559 

al., 2009 and 2013). The density of rain gauges in a region is a function of the frequency and 560 

the intensity of precipitation. Since southern parts of Fars receive low rainfall, the researchers 561 

believe that their findings suffer from low rain gauges density problem. This problem is most 562 



 

 

noticeable in the northeastern part of the study area. Hence, the findings are most robust for 563 

grid cells that include at least one rain gauge. 564 

6. Conclusion 565 

Research on extreme climate characteristics makes it possible to reveal the spatial and 566 

temporal features of a region in the extremeness of precipitation events. In this study, EPIs 567 

were obtained from high density rain gauges and TRMM (3B42 V7) datasets. The spatial 568 

consistency of 3B42 and RG was good, so that they worked equally well in the northwestern 569 

parts of Fars with higher extreme precipitation frequency and amounts. The fuzzy evaluation 570 

of results revealed that 3B42 estimations of extreme conditions were useful only in 20% of 571 

grid cells on certain days. This was a better result for a satellite product than the previous 572 

studies. The fuzzy results got better, as the window of temporal or spatial neighborhood were 573 

extended. An interesting conclusion for the results was that the effect of increasing spatial 574 

neighborhood was significantly higher than that of extending temporal window. The 575 

percentile precipitation was also obtained based on Weibull distribution to eliminate the 576 

seasonal changes of rainfall averages uncertainty. Although the consistency of 3B42 and RG 577 

results was very good in northwestern parts of Fars, due to lack of required number of wet 578 

days in southern parts, the results of this method could not be derived in most of the seasons. 579 

This was the main disadvantage of this method in the semi-arid region Fars. For duration 580 

indices, another probabilistic method was used based on truncated geometric distribution to 581 

remove the uncertainty of probable missing rainfall data.  The results indicated that although 582 

the consistency between 3B42 and RG datasets was very good, it did not increase 583 

significantly in general with the application of the method. It is noteworthy that the 584 



 

 

correlation between the results of the two datasets was acceptable and higher than those 585 

obtained in previous studies for evaluating TRMM precipitation data over Fars province and 586 

Iran. Therefore, with respect to obtained bias ratios for the indices, calibration approaches 587 

are recommended to improve satellite results in climate studies.  588 

Acknowledgements 589 

 The researchers thank the Fars Regional Water Organization for providing precipitation data 590 

used in this study. They also appreciate the anonymous reviewers who have taken out time 591 

to read this manuscript and given them very useful feedbacks. Their critical review improved 592 

the clarity and quality of this paper. 593 

 594 

Supporting Information 595 

The following supporting information is available as part of online article: 596 

Table S1. List of Meteorological rain gauge stations along with their geographic 597 

characteristics and statistics for the respective annual precipitation in period 2000 to 2014.  598 

 599 

7. References 600 

 601 

1. AghaKouchak, A., Behrangi, A., Sorooshian, S., Hsu, K., & Amitai, E. (2011). 602 

Evaluation of satellite‐retrieved extreme precipitation rates across the central United 603 



 

 

States. Journal of Geophysical Research: Atmospheres, 116(D2). 604 

https://doi.org/10.1029/2010JD014741. 605 

2. Alijanian, M., Rakhshandehroo, G. R., Mishra, A. K., & Dehghani, M. (2017). 606 

Evaluation of satellite rainfall climatology using CMORPH, PERSIANN‐CDR, 607 

PERSIANN, TRMM, MSWEP over Iran. International Journal of Climatology, 608 

37(14), 4896-4914. https://doi.org/10.1002/joc.5131. 609 

3. Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. 610 

D., ... & Prat, O. P. (2015). PERSIANN-CDR: Daily precipitation climate data record 611 

from multisatellite observations for hydrological and climate studies. Bulletin of the 612 

American Meteorological Society, 96(1), 69-83. https://doi.org/10.1175/BAMS-D-613 

13-00068.1. 614 

4. Awange, J. L., Ferreira, V. G., Forootan, E., Andam‐Akorful, S. A., Agutu, N. O., & 615 

He, X. F. (2016). Uncertainties in remotely sensed precipitation data over Africa. 616 

International Journal of Climatology, 36(1), 303-323. 617 

https://doi.org/10.1002/joc.4346.  618 

5. Azadi, S., & Karimi-Jashni, A. (2016). Verifying the performance of artificial neural 619 

network and multiple linear regression in predicting the mean seasonal municipal 620 

solid waste generation rate: A case study of Fars province, Iran. Waste Management, 621 

48, 14-23. https://doi.org/10.1016/j.wasman.2015.09.034. 622 

6. Bharti, V., Singh, C., Ettema, J., & Turkington, T. A. R. (2016). Spatiotemporal 623 

characteristics of extreme rainfall events over the Northwest Himalaya using satellite 624 

https://doi.org/10.1029/2010JD014741
https://doi.org/10.1175/BAMS-D-13-00068.1
https://doi.org/10.1175/BAMS-D-13-00068.1


 

 

data. International journal of climatology, 36(12), 3949-3962. 625 

https://doi.org/10.1002/joc.4605. 626 

7. Buarque, D. C., de Paiva, R. C. D., Clarke, R. T., & Mendes, C. A. B. (2011). A 627 

comparison of Amazon rainfall characteristics derived from TRMM, CMORPH and 628 

the Brazilian national rain gauge network. Journal of Geophysical Research: 629 

Atmospheres, 116(D19). https://doi.org/10.1029/2011JD016060 630 

8. Cai, Y., Jin, C., Wang, A., Guan, D., Wu, J., Yuan, F., & Xu, L. (2016). 631 

Comprehensive precipitation evaluation of TRMM 3B42 with dense rain gauge 632 

networks in a mid-latitude basin, northeast, China. Theoretical and applied 633 

climatology, 126(3-4), 659-671.https://doi.org/10.1007/s00704-015-1598-4. 634 

9. Chen, S., Hong, Y., Gourley, J. J., Huffman, G. J., Tian, Y., Cao, Q., ... & Li, Z. 635 

(2013). Evaluation of the successive V6 and V7 TRMM multisatellite precipitation 636 

analysis over the Continental United States. Water Resources Research, 49(12), 637 

8174-8186. https://doi.org/ 10.1002/2012WR012795. 638 

10. Ebert, E. E. (2008). Fuzzy verification of high‐resolution gridded forecasts: a review 639 

and proposed framework. Meteorological applications, 15(1), 51-64. 640 

https://doi.org/10.1002/met.25. 641 

11. Groisman, P. Y., & Knight, R. W. (2008). Prolonged dry episodes over the 642 

conterminous United States: new tendencies emerging during the last 40 years. 643 

Journal of Climate, 21(9), 1850-1862. https://doi.org/10.1175/2007JCLI2013.1. 644 

12. Hajani, E., & Rahman, A. (2018). Characterizing changes in rainfall: a case study for 645 

New South Wales, Australia. International Journal of Climatology, 38(3), 1452-646 

1462. https://doi.org/10.1002/joc.5258 647 

https://doi.org/10.1029/2011JD016060
https://doi.org/10.1002/met.25
https://doi.org/10.1175/2007JCLI2013.1


 

 

13. Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., & New, 648 

M. (2008). A European daily high‐resolution gridded data set of surface temperature 649 

and precipitation for 1950–2006. Journal of Geophysical Research: Atmospheres, 650 

113(D20). https://doi.org/10.1029/2008JD010201. 651 

14. Heidinger, H., Carvalho, L., Jones, C., Posadas, A., & Quiroz, R. (2018). A new 652 

assessment in total and extreme rainfall trends over central and southern Peruvian 653 

Andes during 1965–2010. International Journal of Climatology, 38, e998-e1015. 654 

https://doi.org/10.1002/joc.5427. 655 

15. Hong, Y., Gochis, D., Cheng, J. T., Hsu, K. L., & Sorooshian, S. (2007). Evaluation 656 

of PERSIANN-CCS rainfall measurement using the NAME event rain gauge 657 

network. Journal of Hydrometeorology, 8(3), 469-482. https://doi.org/ 658 

10.1175/JHM574.1. 659 

16. Hsu, K. L., Gao, X., Sorooshian, S., & Gupta, H. V. (1997). Precipitation estimation 660 

from remotely sensed information using artificial neural networks. Journal of Applied 661 

Meteorology, 36(9), 1176-1190. https://doi.org/ 10.1175/1520-662 

0450(1997)036<1176:PEFRSI>2.0.CO;2.  663 

17. Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S., Joyce, R., 664 

... & Susskind, J. (2001). Global precipitation at one-degree daily resolution from 665 

multisatellite observations. Journal of hydrometeorology, 2(1), 36-50. https://doi.org/ 666 

10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2. 667 

18. Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., ... & 668 

Stocker, E. F. (2007). The TRMM multisatellite precipitation analysis (TMPA): 669 

https://doi.org/10.1029/2008JD010201
https://doi.org/10.1002/joc.5427
https://doi.org/10.1175/1525-7541(2001)002%3c0036:GPAODD%3e2.0.CO;2


 

 

Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. 670 

Journal of hydrometeorology, 8(1), 38-55. https://doi.org/ 10.1175/JHM560.1. 671 

19. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to 672 

statistical learning (Vol. 112). New York: springer. 673 

20. Javanmard, S., Yatagai, A., Nodzu, M. I., BodaghJamali, J., & Kawamoto, H. (2010). 674 

Comparing high-resolution gridded precipitation data with satellite rainfall estimates 675 

of TRMM_3B42 over Iran. Advances in Geosciences, 25, 119-125. 676 

https://doi.org/10.5194/adgeo-25-119-2010. 677 

21. Joyce, R. J., Janowiak, J. E., Arkin, P. A., & Xie, P. (2004). CMORPH: A method 678 

that produces global precipitation estimates from passive microwave and infrared 679 

data at high spatial and temporal resolution. Journal of Hydrometeorology, 5(3), 487-680 

503. https://doi.org/ 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2. 681 

22. Katiraie-Boroujerdy, P. S., Ashouri, H., Hsu, K. L., & Sorooshian, S. (2017). Trends 682 

of precipitation extreme indices over a subtropical semi-arid area using PERSIANN-683 

CDR. Theoretical and Applied Climatology, 130(1-2), 249-260. 684 

https://doi.org/10.1007/s00704-016-1884-9. 685 

23. Klein Tank, A. M. G., & Können, G. P. (2003). Trends in indices of daily temperature 686 

and precipitation extremes in Europe, 1946–99. Journal of climate, 16(22), 3665-687 

3680. https://doi.org/10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2 688 

24. Leander, R., Buishand, T. A., & Tank, A. K. (2014). An alternative index for the 689 

contribution of precipitation on very wet days to the total precipitation. Journal of 690 

Climate, 27(4), 1365-1378. https://doi.org/10.1175/JCLI-D-13-00144.1. 691 

https://doi.org/10.1175/1520-0442(2003)016%3c3665:TIIODT%3e2.0.CO;2
https://doi.org/10.1175/JCLI-D-13-00144.1


 

 

25. Li, X., Wang, X., & Babovic, V. (2018). Analysis of variability and trends of 692 

precipitation extremes in Singapore during 1980–2013. International Journal of 693 

Climatology, 38(1), 125-141. https://doi.org/10.1002/joc.5165 694 

26. Lockhoff, M., Zolina, O., Simmer, C., & Schulz, J. (2014). Evaluation of satellite-695 

retrieved extreme precipitation over Europe using gauge observations. Journal of 696 

Climate, 27(2), 607-623. https://doi.org/10.1175/JCLI-D-13-00194.1. 697 

27. Manz, B., Páez-Bimos, S., Horna, N., Buytaert, W., Ochoa-Tocachi, B., Lavado-698 

Casimiro, W., & Willems, B. (2017). Comparative Ground Validation of IMERG and 699 

TMPA at Variable Spatiotemporal Scales in the Tropical Andes. Journal of 700 

Hydrometeorology, 18(9), 2469-2489. https://doi.org/10.1175/JHM-D-16-0277.1 701 

28. McCuen, R. H. (2016). Hydrologic analysis and design (Vol. 3). Prentice Hall. 702 

29. Moazami, S., Golian, S., Hong, Y., Sheng, C., & Kavianpour, M. R. (2016). 703 

Comprehensive evaluation of four high-resolution satellite precipitation products 704 

under diverse climate conditions in Iran. Hydrological Sciences Journal, 61(2), 420-705 

440. https://doi.org/10.1080/02626667.2014.987675. 706 

30. Najafi, M. R., & Moazami, S. (2016). Trends in total precipitation and magnitude–707 

frequency of extreme precipitation in Iran, 1969–2009. International Journal of 708 

Climatology, 36(4), 1863-1872. https://doi.org/10.1002/joc.4465. 709 

31. Nastos, P. T., Kapsomenakis, J., & Douvis, K. C. (2013). Analysis of precipitation 710 

extremes based on satellite and high-resolution gridded data set over Mediterranean 711 

basin. Atmospheric Research, 131, 46-59. 712 

https://doi.org/10.1016/j.atmosres.2013.04.009. 713 

https://doi.org/10.1002/joc.5165
https://doi.org/10.1175/JCLI-D-13-00194.1
https://doi.org/10.1175/JHM-D-16-0277.1


 

 

32. Nastos, P. T., Kapsomenakis, J., & Philandras, K. M. (2016). Evaluation of the 714 

TRMM 3B43 gridded precipitation estimates over Greece. Atmospheric Research, 715 

169, 497-514. https://doi.org/10.1016/j.atmosres.2015.08.008.  716 

33. Nordstokke, D. W., Zumbo, B. D., Cairns, S. L., & Saklofske, D. H. (2011). The 717 

operating characteristics of the nonparametric Levene test for equal variances with 718 

assessment and evaluation data. Practical Assessment, Research & Evaluation, 16. 719 

Available online: http://pareonline.net/getvn.asp?v=16&n=5. 720 

34. Ouma, Y. O., Owiti, T., Kipkorir, E., Kibiiy, J., & Tateishi, R. (2012). Multitemporal 721 

comparative analysis of TRMM-3B42 satellite-estimated rainfall with surface gauge 722 

data at basin scales: daily, decadal and monthly evaluations. International journal of 723 

remote sensing, 33(24), 7662-7684. https://doi.org/10.1080/01431161.2012.701347. 724 

35. Pierre, C., Bergametti, G., Marticorena, B., Mougin, E., Lebel, T., & Ali, A. (2011). 725 

Pluriannual comparisons of satellite‐based rainfall products over the Sahelian belt for 726 

seasonal vegetation modeling. Journal of Geophysical Research: Atmospheres, 727 

116(D18). https://doi.org/10.1029/2011JD016115 728 

36. Pombo, S., & de Oliveira, R. P. (2015). Evaluation of extreme precipitation estimates 729 

from TRMM in Angola. Journal of Hydrology, 523, 663-679. 730 

https://doi.org/10.1016/j.jhydrol.2015.02.014. 731 

37. Prakash, S., Mitra, A. K., Gairola, R. M., Norouzi, H., & Pai, D. S. (2018). Status of 732 

High-Resolution Multisatellite Precipitation Products Across India. In Remote 733 

Sensing of Aerosols, Clouds, and Precipitation (pp. 301-314). 734 

https://doi.org/10.1016/B978-0-12-810437-8.00014-1. 735 

https://doi.org/10.1080/01431161.2012.701347
https://doi.org/10.1029/2011JD016115
https://doi.org/10.1016/B978-0-12-810437-8.00014-1


 

 

38. Prakash, S., Mitra, A. K., Pai, D. S., & AghaKouchak, A. (2016a). From TRMM to 736 

GPM: How well can heavy rainfall be detected from space?. Advances in Water 737 

Resources, 88, 1-7. http://dx.doi.org/10.1016/j.advwatres.2015.11.008. 738 

39. Prakash, S., Mitra, A. K., Rajagopal, E. N., & Pai, D. S. (2016b). Assessment of 739 

TRMM‐based TMPA‐3B42 and GSMaP precipitation products over India for the 740 

peak southwest monsoon season. International Journal of Climatology, 36(4), 1614-741 

1631. https://doi.org/10.1002/joc.4446. 742 

40. Prat, O. P., & Nelson, B. R. (2014). Characteristics of annual, seasonal, and diurnal 743 

precipitation in the Southeastern United States derived from long-term remotely 744 

sensed data. Atmospheric research, 144, 4-20. 745 

https://doi.org/10.1016/j.atmosres.2013.07.022. 746 

41. Qiao, L., Hong, Y., Chen, S., Zou, C. B., Gourley, J. J., & Yong, B. (2014). 747 

Performance assessment of the successive Version 6 and Version 7 TMPA products 748 

over the climate-transitional zone in the southern Great Plains, USA. Journal of 749 

hydrology, 513, 446-456. https://doi.org/10.1016/j.jhydrol.2014.03.040. 750 

42. Raveh‐Rubin, S., & Wernli, H. (2015). Large‐scale wind and precipitation extremes 751 

in the Mediterranean: a climatological analysis for 1979–2012. Quarterly Journal of 752 

the Royal Meteorological Society, 141(691), 2404-2417. 753 

https://doi.org/10.1002/qj.2531. 754 

43. Raziei, T., Mofidi, A., Santos, J. A., & Bordi, I. (2012). Spatial patterns and regimes 755 

of daily precipitation in Iran in relation to large‐scale atmospheric circulation. 756 

International Journal of Climatology, 32(8), 1226-1237. 757 

https://doi.org/10.1002/joc.2347 758 

https://doi.org/10.1002/joc.4446
https://doi.org/10.1002/joc.2347


 

 

44. Roberts, N. M., & Lean, H. W. (2008). Scale-selective verification of rainfall 759 

accumulations from high-resolution forecasts of convective events. Monthly Weather 760 

Review, 136(1), 78-97. https://doi.org/10.1175/2007MWR2123.1. 761 

45. Shirvani, A., & Fakhari Zade Shirazi E. (2014). Comparison of ground based 762 

observation of precipitation with satellite estimations in Fars province. Journal 763 

Agricultural. Meteorology. 2: 1-15 (in Persian). 764 

46. Shrestha, A. B., Bajracharya, S. R., Sharma, A. R., Duo, C., & Kulkarni, A. (2017). 765 

Observed trends and changes in daily temperature and precipitation extremes over 766 

the Koshi river basin 1975–2010. International Journal of Climatology, 37(2), 1066-767 

1083. https://doi.org/10.1002/joc.4761.  768 

47. Skofronick-Jackson, G., Petersen, W. A., Berg, W., Kidd, C., Stocker, E. F., 769 

Kirschbaum, D. B., & Kirstetter, P. E. (2017). The global precipitation measurement 770 

(GPM) mission for science and society. Bulletin of the American Meteorological 771 

Society, 98(8), 1679-1695. https://doi.org/10.1175/BAMS-D-15-00306.1. 772 

48. Snedecor, G. W. C., & William, G. (1989). STATISTICAL METHODS/GEORGE W. 773 

SNEDECOR AND WILLIAM G. COCHRAN (No. QA276. 12. S6313 1989.). 774 

49. Soufi, M. (2004, July). Morpho-climatic classification of gullies in Fars province, 775 

Southwest of IR Iran. In International Soil Conservation Organisation Conference, 776 

Brisbane (p. 4). 777 

50. Stedinger, J. R. (1993). Frequency analysis of extreme events. in Handbook of 778 

Hydrology. 779 

https://doi.org/10.1175/2007MWR2123.1
https://doi.org/10.1175/BAMS-D-15-00306.1


 

 

51. Tangang, F., Juneng, L., & Aldrian, E. (2017). Observed changes in extreme 780 

temperature and precipitation over Indonesia. International Journal of Climatology, 781 

37(4), 1979-1997. https://doi.org/10.1002/joc.4829. 782 

52. Tarek, M. H., Hassan, A., Bhattacharjee, J., Choudhury, S. H., & Badruzzaman, A. 783 

B. M. (2017). Assessment of TRMM data for precipitation measurement in 784 

Bangladesh. Meteorological Applications, 24(3), 349-359. 785 

https://doi.org/10.1002/met.1633. 786 

53.  Tesfagiorgis, K., Mahani, S. E., Krakauer, N. Y., & Khanbilvardi, R. (2011). Bias 787 

correction of satellite rainfall estimates using a radar-gauge product-a case study in 788 

Oklahoma (USA). Hydrology and Earth System Sciences, 15(8), 2631. 789 

https://doi.org/10.5194/hess-15-2631-2011. 790 

54. Ushio, T., Sasashige, K., Kubota, T., Shige, S., Okamoto, K. I., Aonashi, K., ... & 791 

Oki, R. (2009). A Kalman filter approach to the Global Satellite Mapping of 792 

Precipitation (GSMaP) from combined passive microwave and infrared radiometric 793 

data. Journal of the Meteorological Society of Japan. Ser. II, 87, 137-151. 794 

https://doi.org/10.2151/jmsj. 87A. 795 

55. Wang, F., Yang, S., Higgins, W., Li, Q., & Zuo, Z. (2014). Long‐term changes in 796 

total and extreme precipitation over China and the United States and their links to 797 

oceanic–atmospheric features. International Journal of Climatology, 34(2), 286-302. 798 

https://doi.org/10.1002/joc.3685. 799 

56. Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. John 800 

Wiley & Sons. 801 

https://doi.org/10.1002/joc.4829
https://doi.org/10.1002/met.1633


 

 

57. Wehbe, Y., Ghebreyesus, D., Temimi, M., Milewski, A., & Al Mandous, A. (2017). 802 

Assessment of the consistency among global precipitation products over the United 803 

Arab Emirates. Journal of Hydrology: Regional Studies, 12, 122-135. 804 

https://doi.org/10.1016/j.ejrh.2017.05.002. 805 

58. Wilks, D. S. (2011). Statistical methods in the atmospheric sciences (Vol. 100). 806 

Academic press. 807 

59. Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., ... & 808 

Zwiers, F. W. (2011). Indices for monitoring changes in extremes based on daily 809 

temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 810 

2(6), 851-870. https://doi.org/10.1002/wcc.147. 811 

60. Zhao, T., & Yatagai, A. (2014). Evaluation of TRMM 3B42 product using a new 812 

gauge‐based analysis of daily precipitation over China. International Journal of 813 

Climatology, 34(8), 2749-2762. https://doi.org/10.1002/joc.3872. 814 

61. Zhao, Y., Xie, Q., Lu, Y., & Hu, B. (2017). Hydrologic Evaluation of TRMM 815 

Multisatellite Precipitation Analysis for Nanliu River Basin in Humid Southwestern 816 

China. Scientific Reports, 7(1), 2470. https://doi.org/10.1038/s41598-017-02704-1. 817 

62. Zolina, O., Kapala, A., Simmer, C., & Gulev, S. K. (2004). Analysis of extreme 818 

precipitation over Europe from different reanalyses: a comparative assessment. 819 

Global and Planetary Change, 44(1-4), 129-161. 820 

https://doi.org/10.1016/j.gloplacha.2004.06.009. 821 

63. Zolina, O., Simmer, C., Belyaev, K., Gulev, S. K., & Koltermann, P. (2013). Changes 822 

in the duration of European wet and dry spells during the last 60 years. Journal of 823 

Climate, 26(6), 2022-2047. https://doi.org/10.1175/JCLI-D-11-00498.1. 824 

https://doi.org/10.1016/j.gloplacha.2004.06.009
https://doi.org/10.1175/JCLI-D-11-00498.1


 

 

64. Zolina, O., Simmer, C., Belyaev, K., Kapala, A., & Gulev, S. (2009). Improving 825 

estimates of heavy and extreme precipitation using daily records from European rain 826 

gauges. Journal of Hydrometeorology, 10(3), 701-716. 827 

https://doi.org/10.1175/2008JHM1055.1. 828 

65. Zolina, O., Simmer, C., Gulev, S. K., & Kollet, S. (2010). Changing structure of 829 

European precipitation: longer wet periods leading to more abundant rainfalls. 830 

Geophysical Research Letters, 37(6). https://doi.org/10.1029/2010GL042468. 831 

66. Zolina, O., Simmer, C., Kapala, A., & Gulev, S. (2005). On the robustness of the 832 

estimates of centennial‐scale variability in heavy precipitation from station data over 833 

Europe. Geophysical Research Letters, 32(14). 834 

https://doi.org/10.1029/2005GL023231. 835 

67. Zolina, O., Simmer, C., Kapala, A., Bachner, S., Gulev, S., & Maechel, H. (2008). 836 

Seasonally dependent changes of precipitation extremes over Germany since 1950 837 

from a very dense observational network. Journal of Geophysical Research: 838 

Atmospheres, 113(D6). https://doi.org/10.1029/2007JD008393. 839 

https://doi.org/10.1175/2008JHM1055.1
https://doi.org/10.1029/2005GL023231
https://doi.org/10.1029/2007JD008393


Table 1. Cross-validation results for kriging, Inverse Distance Weighting (IDW), Heylock 
et al. (2008) method, and Thin Plate Spline (TPS). These results are median values 
computed from comparing daily observations with estimates employing the mean 

absolute error as accuracy index. 

Year Method    

 Kriging IDW Haylock et al. TPS 

2000 0.59 0.5 0.5 0.64 

2001 0.63 0.61 0.56 0.79 

2002 0.35 0.29 0.26 0.41 

2003 0.76 0.67 0.75 0.88 

2004 0.44 0.41 0.53 0.6 

2005 0.54 0.43 0.43 0.62 

2006 0.43 0.42 0.44 0.53 

2007 0.29 0.25 0.24 0.39 

2008 0.28 0.22 0.21 0.33 

2009 0.44 0.4 0.41 0.47 

2010 0.32 0.26 0.24 0.33 

2011 0.78 0.76 0.7 0.89 

2012 0.28 0.25 0.28 0.36 

2013 0.35 0.33 0.24 0.39 

2014 0.33 0.28 0.25 0.43 

Mean 0.454 0.405 0.403 0.537 

 



Table 2. The precipitation extreme indices as proposed by ETCCDI (Zhang et al. 2011). 

Number Index Indicator name Definition Unit 

1 R10mm Number of heavy precipitation days Count of days when PR>=10 mm day 

2 R20mm 
Number of very heavy precipitation 
days 

Count of days when PR >=20 mm day 

3 CDD Consecutive dry days Maximum number of consecutive days with PR<1 mm day 

4 CWD Consecutive wet days Maximum number of consecutive days with PR>=1 mm day 

5 SDII Simple daily intensity index 
Total precipitation divided by number of wet days in the 
year 

mm 
day-1 

6 R95pTOT vey wet days Total PR when RR>95th percentile mm 

7 R99pTOT Extremely wet days Total PR when RR>99th percentile mm 

8 R95pDay vey wet days Count of days when RR>95th percentile day 

9 R99pDay Extremely wet days Count of days when RR>99th percentile day 

10 RX1day Max 1-day precipitation amount Maximum 1-day precipitation mm 

11 RX5day Max 5-day precipitation amount Maximum consecutive 5-day precipitation mm 

 



Table 3. Percentage of  grid cells with insignificant 
(Ins) different mean (MW and t-student tests) and 
variance (Levene and F tests)  at significance level 

of 5% and spatiotemporal averaged correlation 
coefficient for NWD, TOT, and INT at different time 

scales, 2000-2014. 

    Winter Spring Autumn 

MW Ins. % 

NWD 36.1 82.8 93.5 

TOT 89.4 93.5 97.6 

INT 53.3 91.7 89.9 

t-Studend Ins. 
% 

NWD 32.0 82.3 32.0 

TOT 89.9 91.7 89.9 

INT 53.3 90.5 53.3 

Levene Ins. % 

NWD 87.0 85.2 57.4 

TOT 99.4 97.0 87.0 

INT 72.2 85.2 79.3 

F test Ins. % 

NWD 82.8 88.8 82.8 

TOT 97.0 97.6 97.0 

INT 50.3 77.5 50.3 

Correlation 

NWD 0.49 0.80 0.61 

TOT 0.91 0.90 0.72 

INT 0.67 0.60 0.54 

 



Table 4. Percentage of  grid cells with insignificant 
(Ins) different mean (MW and t-student tests) and 
variance (Levene and F tests) and spatiotemporal 
averaged correlation coefficient for R10mm and 

Rx1Day at different time scales at siginificance level 
of 5%, 2000-2014. 

    Winter Spring Autumn 

MW Ins % 
R10mm 89.35 89.94 100 

Rx1Day 88.76 95.86 100 

t-Studend 
Ins % 

R10mm 88.17 89.35 100 

Rx1Day 87.57 95.27 98.22 

Levene Ins % 
R10mm 92.31 94.08 82.25 

Rx1Day 84.62 95.86 93.49 

F test Ins % 
R10mm 86.39 95.27 86.98 

Rx1Day 71.6 94.08 94.67 

r 
R10mm 0.72 0.75 0.63 

Rx1Day 0.62 0.69 0.6 

BR 
R10mm 0.82 1.02 1.02 

Rx1Day 1.16 1.08 1.3 

 



Table S1. List of Meteorological rain gauge stations along with their geographic 
characteristics and statistics for the respective annual precipitation in period of 2000 
to 2014. 

No Station 
Lon 
(o) 

Lat 
(o) 

Alt (m) 
Mean 

Annual 
(mm) 

Min Max 
Standard 
Deviation 

1 Goshnegan-Maharloo 52.88 29.5 1440 452 67.8 228.6 101.4 

2 Mooroozeh 51.9 30.17 1946 1048.5 271 575.6 199.3 

3 Barghan 52.02 30.21 2109 1175.5 286.5 625 228.3 

4 Batoon 51.32 30.24 751 948.5 211.8 533.4 203.2 

5 Mal-Ghayedi 52.02 30.04 1639 951 226 481.9 179.7 

6 Babamonir 51.21 30.08 1033 826 137 433.2 174 

7 Booshigan-Kazeroon 51.51 29.73 735 706 116.5 403 146.3 

8 Kazeroon 51.66 29.61 841 857.5 130.2 416.3 177.3 

9 Dasht-Arzhan 51.99 29.66 2029 1436.5 353 729 276 

10 Nargesi 52.05 29.26 933 607 88 288.7 120.5 

11 Jareh 51.98 29.25 868 702.5 103 314.8 141.2 

12 Farashband 52.08 28.84 805 539 53.5 225.1 110 

13 Chiti-Boorki 51.31 29.6 490 703 87 317.2 144.7 

14 Ghaemieh 51.6 29.84 915 1014.5 162.5 522.7 203.1 

15 Khormayek 52.05 28.77 781 523 49 216.5 109.1 

16 Sarmashhad 51.71 29.29 822 660.5 81.5 280.5 134.1 

17 Band-Bahman 52.57 29.21 1597 872.5 128.5 401.8 181.9 

18 Aliabad-Khafr 53.03 29.02 1368 590 63.5 258.9 132.2 

19 Karian 53.54 28.15 843 382.5 68.5 194 91.2 

20 Fasa 53.65 28.93 1370 560.9 57.4 245.4 124.4 

21 Soroor 53.75 28.47 1347 758 93.5 324.8 160.8 

22 Tang-Karzin-Dohbe 53.13 28.45 712 502 94.5 245 105.9 

23 Mobarakabad 53.33 28.36 715 493 55 221.9 114.2 

24 Hanifghan 52.56 29.09 1598 851 133 391.4 169.7 

25 Tongab-Firoozabad 52.54 28.91 1376 971.5 113 405 192.3 

26 Roniz-Olya 53.78 29.2 1597 564 72.5 223 124.8 

27 Jahrom 53.56 28.5 1047 497 69.5 245.7 111.7 

28 Khanzenyan 52.15 29.67 1966 738 210.5 440.8 143.8 

29 eej 54.24 29.03 1495 339 43 216.3 90.6 

30 Baba-arab 53.8 28.59 1160 432.5 65.8 190.5 100.2 

31 Khoorab 52.32 28.6 606 468 38.5 222.3 109.9 

32 Hakkan 53.42 28.62 966 592.5 88 271.3 127.8 

33 Dezhgah 52.39 28.2 223 283 35.9 143.6 68.8 

34 Khorgheh 52.38 28.91 1590 1163.5 142 501.9 226.4 

35 Dahvieh 52.74 28.68 1372 721 92 346.4 146.1 

36 Sheshdeh-Gharebolagh 53.96 28.96 1411 537.5 64.5 252 110.5 

37 Hengam 52.6 28.37 560 445 61.5 217.4 97.6 

38 Ooz 54.01 27.77 969 296.5 61.5 186.4 73.7 

39 Jookan 52.58 29.04 1528 767.5 110 344.9 153.5 



40 Dehkooyeh 54.42 27.86 1010 238 59.5 156 63.4 

41 Hasanabad-Marmeh 53.91 28.07 873 276 37 159.6 83.1 

42 Garebayegan 53.92 28.61 1154 401 64 198.2 101.1 

43 Myanjangal 53.42 29.16 1713 897 104 352 189.1 

44 Dehrood-Firoozabad 52.57 28.62 903 462.5 53 221.6 108 

45 Gavazoon 54.45 28.82 1239 523.2 94.4 265.3 108.4 

46 Dehkheir-Jannatshahr 54.68 28.66 1173 370 85.5 221.8 95.8 

47 Darbeghaleh 54.38 28.95 1422 519 96.3 257.9 111.4 

48 Hajiabad-Zarindasht 54.43 28.35 1067 298 57 186.5 80.1 

49 Forg 55.21 28.28 928 253.5 47 147.5 58.7 

50 Edareh-Lar 54.31 27.65 841 248.1 59 154 63.9 

51 Lamerd 53.16 27.34 450 351.8 76.5 183.6 88.2 

52 Layezangan 54.98 28.67 1967 598 151 423.5 141.3 

53 Menj 53.9 30.36 1865 237.5 50 126.1 59.2 

54 Mazayjan-Bavanat 53.81 30.3 2128 401.5 61.5 201 91 

55 Meshkan 54.33 29.48 2215 523.5 86.5 268.2 114.1 

56 Sadegh-Abad 52.32 31.16 2361 461 38.5 206.2 97.2 

57 Soorian 53.63 30.47 2136 424.5 75 184.1 100.9 

58 Mehrabad-Ramjerd 52.7 29.97 1606 732.3 138.3 329.7 146.8 

59 Jamalbeig 51.95 30.61 2010 784 203.5 479.7 165.9 

60 Chamriz 52.1 30.47 1810 833 157 415.7 168.3 

61 Bidkol 52.63 30.17 1626 744 145.5 361 152.6 

62 Kaftar 52.73 30.53 2342 971 191.5 471.9 207 

63 Jahanabad-Bakhtegan 53.86 29.71 1577 481.4 82 216.6 98.2 

64 Arsanjan 53.32 29.92 1648 603.5 75 268.8 144.6 

65 Dashtbal 52.98 30 1673 710 117.8 311.6 146.5 

66 Ghalat-Shiraz 52.35 29.84 1881 1090 222 530.2 210.9 

67 Polekhan 52.77 29.85 1493 664.5 92.5 276.3 139.9 

68 Shiraz 52.53 29.63 1522 730.5 129.9 333.2 147.4 

69 Dobaneh 52.78 29.42 1489 855.5 137.5 359 175.5 

70 Khosroshirin 52.01 30.9 2342 702.5 127.5 382.3 145.2 

71 Garde-Estahban 53.88 29.16 1698 841.5 96.5 341.6 191.6 

72 Doshmanziari 52.37 30.08 1663 781 144 385.5 159.4 

73 Choobkhale 51.89 30.55 2056 1318.5 377.5 845.8 270 

74 Abade-Tashk 53.73 29.81 1604 532 77 234.3 121.5 

75 
Ahmadabad-

Chahardangeh 
52.69 30.39 2275 744.5 134.5 332.1 160.5 

76 Sahlabad 53.9 29.26 1518 403 52 181.2 84.4 

77 Doroodzan 52.44 30.21 1662 786 193 423.9 160.4 

78 Madarsoleiman 53.18 30.19 1868 610.5 120 305.3 133.3 

79 Estahban 54.05 29.12 1745 704 82.9 299.7 157.3 

80 Hosseinabad-Sarab 52.36 29.97 1695 747.5 168 395.6 143.5 

81 Neiriz 54.35 29.19 1657 378 57 164.6 78.1 

82 Sarvestan 53.22 29.28 1570 432 60.5 205.8 90.7 

83 Emamzadeh-Esmaeel 52.59 30.32 1842 859.5 193 459.7 172.4 



84 Dashtak 52.47 30.29 2031 784 219 447.3 154.6 

85 Horgan 54.47 29.11 1898 649.5 84.5 279.3 145.2 

86 Kholar 52.24 29.97 2056 1112 287 574.7 228.6 

87 Sedeh 52.16 30.72 2198 829.5 136.7 446 184 

88 Komahr 51.88 30.45 2354 1789 431 1007.3 367.6 

89 Poltalkh 53.43 29.46 1592 359.5 55 152.1 77.5 

90 Fenjan 53.49 30.39 2376 657 135 327.7 137 

 



  

Figure 1. (a) Geographic location of Fars province in I.R. of Iran; (b) Elevation map of Fars 

province (m). 

 



  

 

 

   
Figure 2. (a) Average of annual precipitation (RTOT, mm), (b) mean number of wet days in a 

year (NWET, day) (c) average of annual precipitation over all wet days (INT, mm day-1), (d)  

and 95th percentile from the empirical (wet day) distribution functions (Q95, mm), for the rain 

gauges of Far province, 2000-2014. 

 



 
Figure 3. The climatological mean of monthly precipitation (mm) and the percentage of annual 

precipitation across the Fars province, 2000 – 2014. 
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Figure 4. Geographic location of rain gauges and 3B42 grid cells across Fars province. 
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 Figure 5. (a) Climatological mean total precipitation (mm), (b) mean number of wet days (day/season), (c) mean wet-day 

intensity (mm/day) based on winter season (DJF) of the entire time period (2000-2014) for 3B42 estimates (first column), 
RG results (second column), bias ratio (3B42/RG, third column), and Pearson correlation coefficient (forth column). 
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Figure 6. (a) Mean R10mm and (b) mean Rx1Day based on winter season (DJF) of the entire time period (2000-2014) for 3B42 
estimates (first column), RG results (second column), bias ratio (3B42/RG, third column), and Pearson correlation coefficient (forth 
column). 

 

 



  

  
Figure 7. Spatial distribution of R95pTOT obtained from 3B42 and RG with bias ratio (BR) and Pearson 

correlation coefficient (r) for winter (DJF) for the period 2000-2014. 
 



  

  

Figure 8. Spatial distribution of R95pDay obtained from 3B42 and RG with bias ratio (BR) and Pearson 

correlation coefficient (r) for winter (DJF) for the period 2000-2014. 
 

 

 



    

 
 
 
 
 
 
 
 
 

 
 

    

    

    
Figure 9. FSS based on the 95th percentile threshold for the winter season (DJF) as a function of increasing temporal (1,3,5, and 7 days; first 
numbers in brackets) and spatial (1, 3, 5, and 7 pixels; second numbers in brackets) size of the neighborhood. The numbers beside % sign 
indicate the relative number of grid boxes (%) with FSS values exeedind the local FSSuseful and the points in the maps indicate the location of 
these pixels. 

 



  

  
Figure 10. Climatological (2000-2014) mean of RS95pTOT for winter (DJF) with coresponding values of 
mean bias ratio (BR) and number of cosiderderd winter (DJF) seasons. 

 



    

    
Figure 11. Spatial variation of mean CDD and CWD, with bias ratio (BR) , and Pearson correlation coefficient (r) for each, the 

values are averages for the wet season (October-March) 2000-2014. 
 

 

 



    

    
Figure 12. Distribution of the mean duration (WPs_mean), 95 percentile (WPs_P95) of wet spells obtained from TGD based on 

3B42 and RG datasets and bias ratio (BR) Pearson correlation coefficient (r), all maps are for wet season (October-March), 2000-

2014. 
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Figure 13. Time series of daily precipitation at two locations (a) 30.375oN,51.875oE and (b) 
27.875oN,54.375oE for 14 winter seasons as depicted by (1) RG and (2) 3B42.  
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Figure 14. Examples of empirical histograms of WPs durations for the two selected grid cells (dark pixels 
in the maps) for wet season (October-March) during 2000-2014, as well as their approximation by the 
TGD. 
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