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Abstract 

 

Several laboratory experiments were conducted during the course of this project to 

test the allelopathic effects of Brassica napus L. leaves, stems, roots and flowers on 

three weed species Phalaris minor (Retz.), Convolvulus arvensis (L.) and Sorghum 

halepanses (L.) germination and growth, and to determine the glucosinolates profile 

and their concentration in Brassica napus tissues. 

In this study, it was found that all water extract treatments from different Brassica 

napus parts and under different concentrations had the ability to inhibit weed 

species germination and growth significantly. Exposure to flower and stem extracts 

caused the greatest reduction in the seed germination and seedling growth of all 

weed species that were tested in this study. 

Water extracts from different Brassica napus parts and during different plant 

development stages significantly inhibited the seed germination and growth of all 

weed species. Glucosinolates profiles and concentrations in Brassica napus tissues 

were significantly different between different plant parts during different plant 

development stages. Progoitrin was the dominant glucosinolate in   B. napus flowers 

and gluconasturtiin in roots. However, flower extracts were more effective in weed 

management as compared with root extracts.  

Applying aqueous solution of pure glucosinolate significantly inhibit seed 

germination and seedling growth. Glucosinolate types and their concentrations 

linked positively with weed species inhibition. 

Water extract from different parts of B. napus during water stress conditions under 

all plant development stages demonstrated variability in their effect on germination 

and growth of weed species between the water stress levels and within the same 

plant development stage. Furthermore, glucosinolates concentrations and 
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myrosinase activity in B. napus tissues were significantly different between different 

plant parts during the water stress conditions and under different plant development 

stages. This project has revealed that using water extracts from B. napus may play 

an important role in weed species inhibition. 
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1.1. Introduction 

 

Weeds are plants that are adapted to a wide range of environmental conditions and 

interfere with crops (Cobb and Reade, 2010). They compete with cultivated crops 

for nutrients, moisture, sunlight and space, as well as harbouring pests and diseases 

that damage crops and reduce yields (Singh et al., 2001). Weeds are major 

problems in crop production worldwide.  Weeds are mainly combated through the 

use of herbicides and manual and mechanical control methods such as weed 

pulling, mowing, mulching, tilling, soil solarization and flooding (Tu et al., 2001). 

However, since all of these methods may have adverse impacts on agro eco-

systems alternative strategies are required (Lawley, 2010).  

In recent times in developing countries, herbicides have been favoured by farmers, 

but they face many problems in inefficient weed control because of a lack of 

information in herbicide technology.  Poor application of herbicides can lead to 

serious ecological and environmental problems such as increased herbicide 

resistance weeds, groundwater contamination and pollution (Jamil, 2004). 

Moreover, because of a lack of awareness and unsuitable regulatory and preventive 

mechanisms, the users and consumers in developing countries are facing pesticide-

related health problems (Gupta et al, 2008). In general, using chemical weed control 

is unsafe and may increase the risks on human and environmental health (Duke et 

al., 2001). 

Due to the increased risk of using chemical herbicides, a number of researchers 

have sought alternative methods of weed management.  Using allelopathy is one of 

the alternatives to reduce these problems and to reach sustainability in agriculture 

and maintain an unpolluted environment by reduce the usage of the herbicides.  The 

main aim of allelopathy is to decrease environmental pollution and maintain the 
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ecological balance of the organisms through decreasing use of chemical herbicides 

(Patil, 2007).  

Allelopathy is a natural approach to weed control which is based on the beneficial 

or harmful effects of one plant upon another and can involve either cultivated or wild 

plant species (Rice, 1984). The allelopathic effect of these plants is produced 

through chemical compounds such as; glucosinolates, phenolics and alkaloids from 

the plant which are released through volatilization, leaching and exudation (Weston, 

2005).  During the last three decades the potential influence of allelopathy in 

agriculture has been defined and discussed in detail (Qasem and Foy, 2001; Singh 

et al., 2001; Weston and Duke, 2003; Weston, 2005).  

Allelopathy may be used for pest; weed, insect, nematode, and pathogen control 

(Farooq et al., 2011a). Allelopathic plants used as mulch, cover crops, in rotational 

growing and as water extracts can reduce weeds, improve soil quality and increase 

yield significantly. (Awan et al., 2009 and Naseem et al., 2009).  

Allelopathy has obtained great attention from several investigators worldwide (Duke 

et al., 2001); crop plants such as brassicas (Al-Khatib and Boydston, 1999; Narwal, 

2001; Roshdy et al., 2008), sesame (Kumar and Varshney, 2008), sunflower 

(Nikneshan at el., 2011) and sorghum (Cheema at el., 2008). Researchers have 

reported that all plant parts including stem, roots, leaves, flowers, rhizomes, seeds 

and fruits have ability to produced allelopathic substances (Alam, 1993).                                        

In recent years Brassica spp have become increasingly important crops due to their 

high production of oil (McKevith, 2005); they also contain chemical compounds that 

can be used in weed control (Narwal, 2001). Rapeseed (Brassica napus) is 

cultivated in more than 120 countries in the world and contains 40- 47% oil and is 

also a rich source of protein 25 % (Roshdy et al., 2008). Previous studies have 

shown that several members of the Brassicaceae family have a number of 
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biologically active compounds including glucosinolates and their hydrolysis products 

thiocyanates and isothiocyanates, which have the ability to reduce seed germination 

and plant growth (Al-Khatib and Boydston, 1999).  

1.2. Allelopathy definition and history 

 

In 1937, Hans Molisch from Austria used the term of allelopathy for the first time. He 

created the term from two Greek words; 'allelon' which means 'of each other' and 

'pathos' which means 'mutual harm' or 'to suffer' the injurious effect of another (Lux-

Endrich and Hock, 2004). The International Allelopathy society in 1996 defined  

allelopathy as “Any process involving secondary metabolites produced by plants, 

micro-organisms, viruses and fungi that influence the growth and development of 

agricultural and biological systems (excluding animals), including positive and 

negative effects” (Torres et al., 1996). 

The phenomena of allelopathy has been reported over two thousand years ago. 

Theophrastus, in the 300 BC, was the first to report the phenomenon of allelopathy 

and noted inhibition of weeds by chickpea (Cicer arietinum) plants (Willis, 1985). 

Pliny II (Plinius Secundus, 1 A.D) found the exudates from plants such as chickpea, 

bitter vetch (Vicia ervilia) and barley (Hordeum vulgare) have effects on other plants 

and damaged the land (Rice, 1974). Japanese agronomists during 1600`s noticed 

that red pine (Pinus densiflora) had a harmful effect on crops growing under the pine 

after rain had washed off their leaves (Lee and Monsi, 1963). In the same period a 

number of English naturalists observed that some plants cannot develop well when 

they grow under red pine (Weston, 1996). 

DeCandolle in 1832 found that “soil sickness” in agriculture was caused by root 

exudates (Mandava, 1985). This theory was rejected because it was not supported 

by experimental data. Until 1900`s scientific experiments were not undertaken on 
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allelopathy, although the scientists had recognized the allelopathic phenomenon in 

plants two thousand years ago (Rice, 1984). 

1.3. Allelochemicals  

 

Allelopathic substances are termed as allelochemicals (Whittekar, 1970; Levin, 

1976). Most importantly secondary metabolites known as allelochemicals are  

produced via two biochemical pathways, acetate and shikimate acid which are 

involved in the production of secondary metabolites including flavonoids, alkaloids, 

phenolic acids, terpenoids, coumarins, brassinosteroids, hydroxamic acids, sulfides, 

cucurbitacins, saponins, chromenes, polyacetylenes, momilactone, glucosinolates, 

salicylates, jasmonates, carbohydrates and amino acids (Narwal,1994; Chou,1999; 

Kruse et al., 2000; Koul,2008; Jabran and Farooq, 2012; Farooq et al., 2013). 

Allelochemicals have been found in many different plants (Table 1.1) and in different 

plant regions including roots, stems, leaves, flower, rhizomes, pollen, fruits and 

seeds. These chemical compounds enter the soil and environment by 

decomposition of plant residues, rain leaching from the leaves and stems, 

volatilization and root exudation (Figure 1.1). Additionally microorganisms may have 

a role in the production of these chemical substances (Rice, 1984; Einhellig, 1996; 

Kruse et al., 2000). New analytical techniques used in  bioassays, isolation, 

extraction and identification of the compounds responsible for allelopathic 

interaction has increased knowledge about allelochemicals area and their 

allelopathic effects (Willis, 1997). 
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Figure 1.1 Routes by which allelochemicals release into the environment (Rice, 1984) 

 

 

 

 

 

 

 

Table 1.1. Allelochemicals revealed in different plant species  
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Plant species allelochemicals References 

Brassica spp    Caffeic acid, ferulic acid, vanillic acid, 

thiocyanates, Chlorogenic acid, 

isothiocyanates and phenolics acid. 

Widmer and Laurent 

(2006) 

Velasco at el.(2008) 

Haddadchi & Gerivani 

(2009 

Sorghum  

Sorghum bicolor 

Benzoic acid, p- comuaric acid, ferulic acid, 

chlorogenic acid, 

Nimbal et al (1996) 

Alsaadawi and Dayan 

(2009) 

Sunflower  

Helianthus annuus 

Chlorogenic acid, isochlorogenic acid, 

naphthol, scopolin, annuinonones, 

helivypolide D  

 

Macias et al. (1998) 

Macias et al. (1999) 

Anjum and Bajwa (2005) 

Wheat  

Triticum aestivum 

 

p-hydroxybenzoic, vanillic, cis-p-coumaric, 

syringic, cis-ferulic, trans-p-coumaric, and 

trans-ferulic acids 

Wu et al. (2000) 

Wu et al. (2001) 

Barley  

Hordeum vulgare 

Hordenine Kruse et al. (2000) 

Rye 

Secale cereale 

2,4-dihydroxy-1,4(2H)-benzoxazin-3-one 

(DIBOA) and 

2 (3H)-benzoxazolinone (BOA). 

Jane et al. (1987) 

Burgos et al. (2004) 

Schulz et al. (2013) 

Maize 

Zea mays 

6-methoxy-2-benzoxazolinone (MBOA) and 

2, 4-dihydroxy-1, 4(2H)-benzoxazin-3-one 

(DIBOA). 

Maaq et al. (2014) 

Tobacco 

Nicotiana tabacum 

cinnamic and benzoic acids Huiyong et al. (2014) 

 

Rice 

Oryza sativa L 

Phenolic acids, fatty acids, indoles and 

terpenes 

Noguchi (2012) 

 

Buck wheat  

Fagopyrium esculentum 

Fatty acids and phenolic acid Weston (1996) 

Golisz et al.(2007) 

Oat 

Avena sativa L. 

Phenolic acids and Scopoletin Dimberg et al.(2005) 

Bertoldi et al.(2009) 
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1.4. Release of allelochemicals from plants 

More recently allelopathic inhibition of weeds has received greater attention and 

during the last three decades the potential influence of allelopathy on agriculture 

has been defined and discussed in detail (Qasem and Foy, 2001; Singh et al., 2001; 

Weston, 1996; Weston and Duke, 2003). Using allelopathic plants by different 

methods, can reduce weeds, improve soil quality and increase yield significantly 

(Narwal, 2000; Awan et al., 2009; Naseem et al., 2009).  

Inhibition of weeds, using allelochemicals has been noted in a wide range of crops 

such as barley (Hordeum vulgare), alfalfa (Medicago sativa), brassica (Brassica 

spp.), sorghum (Sorghum spp.), sunflower (Helianthus annuus), oat (Avena fatua), 

rye (Secale cereale), rice (Oryza sativa), tobacco (Nicotiana tabacum), sesamum 

(Sesamum indicum) wheat (Triticum aestivum) and clovers (Trifolium spp.) (Narwal, 

1996; Weston, 1996; Narwal et al., 1998; Weston, 2005). 

Many studies have reported reduced germination, growth, development and yield of 

weeds and crops due to the release of allelochemicals when other crops were 

growing in the same field (Batish et al., 2001; Awan et al., 2009; Naseem et al., 

2009). For example, Uremis et al. (2009) found that shoot and root growth of 

Amaranthus retroflexus L. (redroot pigweed), Solanum nigrum L. (black 

nightshade), Portulaca oleracea L. (common purslane), Physalis angulata L. (cutleaf 

ground cherry) and Echinochloa colonum (L.) Link. (junglerice) were significantly 

affected by allelopathic potential of 25 rapeseed cultivars. Putnam and Duke (1978) 

first explored the possibility of using allelopathic crops to inhibit weed growth in crop 

production. They suggested weed management using several techniques including 

the use of rotational, intercrops and cover crops. Yeganehpoor et al. (2015) found 

that weed biomass was significantly affected by cover crop (clover, hairy vetch, basil 

and dill) and sowing date interaction. 



 9        
   

Allelochemicals are found in a range of plant tissues and are not restricted to specific 

parts of the plant (Sodaeizadeh et al., 2009; Gella et al., 2013). Moreover, the 

highest concentrations of these chemicals are most often stored in the leaves and 

roots, although allelochemicals may be located in flowers as well (Schoonhoven et 

al., 2005; Jafariehyazdi and Javidfa, 2011). Results showed that different levels of 

germination inhibition rates have been obtained by using fresh shoot and root 

extracts of Brassica species. The greatest suppression of germination were 

observed when treated by Brassica napus shoot extract and Brassica campestris 

root extract and the seed germination inhibited up to  58.7% and 54.3% respectively. 

Different substances such as allelochemicals and secondary metabolites from any 

plant species are released into the environment through various means including, 

extraction and decomposition, leaching, root exudation and volatilization. The 

toxicity of extracts, leachates and decomposed residuals depend on the type and 

concentration of chemical compounds available in them (Chang and Chang, 2015).  

In recent years Brassica spp has been receiving more attention from researchers 

due to their allelopathic effect on germination and growth of weed species (Nawal, 

2000). Members of the Brassicaceae family produce such as caffeic, ferulic, 

chlorogenic and vanillic acids, thiocyanates and isothiocyanates (Table 1.2).  All of 

these compounds have been recorded to have suppressive effect on weed 

germination and seedling growth (Bell and Muller, 1973; Putnam, 1988; Al- Khatib 

et al., 1997).  

Branca et al. (2002), reported that high levels of glucosinolates were found in 

several Brassica spp., which have ability to reduce the germination and seedling 

growth of plant species (Al-Khatib and Boydston, 1999). An experiment was 

conducted to determine the effect of using Brassica juncea and Sinapis alba as a 

green manure on Vigana unguiculata , and the results showed that  after 8 weeks 
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the Vigana unguiculata biomass was 118 g/m2 compared to the 413 g/m2 in control 

treatment (Norsworthy et al., 2005). In a glasshouse and laboratory experiment 

conducted by Tawaha and Turk (2003), to determine the effect of black mustard 

(Brassica nigra L.) on wild barley germination and growth.   Fresh black mustard 

residue and water extracts from leaves, stem, flower and root were applied to the 

wild barley.  It was found that fresh black mustard residue reduced the plant height 

and weight of wild barley significantly. Also, wild barley hypocotyl length, hypocotyl 

weight, radicle weight, seed germination, and radicle length were reduced by 44, 

55, 57, 63 and 75 %, respectively when black mustard water extract was compared 

with the control.  

Table 1.2. Physiological mechanism of action of Brassica napus (L.) allelochemicals     
Allelochemicals Inhibition References 

Caffeic acid Reduction in seed germination 

and growth 

Widmer and Laurent (2006) 

Ferulic and vanillic acids PO4, NO3, SO4, N, P, K, Fe  

uptake 

Al- Saadawi et al. (1986) 

 

Chlorogenic acids and 

isothiocyanates 

Reduction in seed germination Vaughn and Berhow (1999) 

 

Phenolics Reduction in seed germination Haddadchi & Gerivani (2009) 

Similar results were obtained by Turk and Tawaha (2003), when they carried out an 

experiment in Jordan to suppress germination and seedling growth of wild oat 

(Avena fatua L.) by using black mustard (Brassica nigra L.). They found that water 

extracts made using different plant parts from B. nigra (leaf, stem, flower and root) 

at different concentrations significantly affected germination, dry weight, shoot and 

root length. They also found that effectiveness increased significantly with 

increasing the water extract concentration of different parts of B. nigra (L.).      



 11        
   

Similar results were achieved by Uremis et al., (2009) in field and laboratory 

conditions when they used the residues of six brassica species to test their effect 

on Johnsongrass (Sorghum halepense L.) in Turkey.   Different parts of the field 

were used each year to cultivate Brassicaseae species (round white radish, garden 

radish, black radish, Little Radish, turnip and rapeseed). They found that 

Johnsongrass rhizomes were suppressed by rapeseed and Little Radish in the field.  

However, Johnsongrass was most effectively suppressed by Little Radish extract 

and garden radish extract under controlled conditions. 

In the USA, Boydston at el. (2008) added mustard (Sinapis alba) seed meal (MSM) 

to the soil surface of pots (113, 225, 450 g.m-2) to investigate the effect of MSM on 

several weeds (Poa annua L., Stellaria media L., Phlox paniculata L. and Coreopsis 

auriculata L.).  The number of Stellaria media L. plant decreased by 61%, 74%, and 

73% respectively after 8 weeks and the number of Poa annua L. decreased by 60%, 

86%, and 98%, respectively.  However, the researchers did not mention the 

temperature at which the experiment was carried out in the field environment or in 

the glasshouse and in which season. These factors would have an effect on the 

results.  

Although a number of publications have shown that brassica species have an effect 

on the germination and growth of weeds, field studies conducted in US revealed 

that brassica cover crops had little effect on redroot pigweed (Haramoto and 

Gallandt, 2005).  This could be attributed to differences in environmental conditions. 

For example, Tang et al. (1995) noted that concentration of phenolics and terpenes 

were increased by water- deficit stress. Also, they found that this increase may occur 

during nutrient or temperature stress. 
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Brassica spp. cover crops and weed control is well reviewed by Boydston and Al-

khatib (2006) and Haramoto and Gallandt (2004).   They focus on plant allelopathic 

as the tool of weed control, an also on the hydrolysis produced by glucosinolates as 

the allelochemicals responsible.  One of the secondary plan metabolites is 

glucosinolates which is found in Brassica spp., and myrosinase enzyme can 

hydrolysis the glucosinolates into toxic products like isothiocyanates, that have 

ability to control weed seeds (Brown and Morra, 1997; Al-Turki and Dick, 2003). 

Seed germination and seedling growth of numerous of weeds were inhibited by 

isothiocyanate (Brown and Morra, 1997; Al-Turki and Dick, 2003; Norsworthy et al., 

2006; Bangarwa et al., 2010). 

1.4.1. Volatilization 

 

In volatilization, the harmful chemical compounds are passed into the environment 

in the form of a gas from the leaves and then are absorbed by the plants nearby. 

Such volatiles may affect normal cellular processes (Chang and Chang, 2015). It 

was reported that many plant species have an ability to release chemical 

compounds into the air in the form of gas through leaf stomata. The mechanism of 

release of allelochemicals might be more significant under stress conditions (Rice, 

1974). For instance, the allelochemicals that were released from the plant tissues 

may move through the atmosphere and be absorbed by other plants, or chemical 

compounds may pass to the soil and solubilize in the soil solution, this mechanism 

is known as a biofumigation process (Haramoto and Gallandt, 2004). Biofumigation 

is the release of volatile allelochemicals, and their subsequent hybridization, from 

decaying Brassica spp tissue into the soil to inhibit pests and weeds (Kirkegaard 

and Sarwar1998; Matthiessen and Kirkegaard, 2006; Haidar, 2013). For example, 

using Sinapis alba, Brassica napus, Brassica juncea as cover crops significantly 

reduced winter- growing weeds due to their biofumigation potential (Fourie et al., 



 13        
   

2014). Additionally, Brassica spp residue has been shown significant biofumigation 

impact on disease when incorporated into soil, as a result of conversion of 

glucosinolates to isothiocyanates (Hartz et al. 2005). Isothiocyanates are 

compounds produced under enzymatic hydrolysis of glucosinolate that are 

characterized by volatile (Higdon et al., 2007; Bangarwa et al., 2011). An experiment 

was conducted by Bangarwa et al. (2010) to investigate the effect of different 

concentrations of phenyl isothiocyanate (ITC) and exposure period on purple 

nutsedge tuber viability.  Purple nutsedge tuber viability was reduced by up to 97% 

by using phenyl ITC concentration of 676 ppm in soil for 3 days in a closed 

environment compared with the control.  Similar work was carried  out by Norsworthy 

et al. (2006) in a greenhouse to determine the effects of applying  five concentrations 

of isothiocyanates (ITCs) 0, 100, 1000, 5000, and 10 000 nmol g−1 to soil in closed 

jars for 72 h to prevent gaseous losses on purple and yellow nutsedge.  Purple and 

yellow nutsedge shoot density and shoot biomass were inhibited by all ITCs 

concentrations. Petersen et al. (2001) reported that aqueous aryl-ITCs solutions 

were most effective on germination of weed seeds and the sensitivity of different 

weed species to ITCs mostly depended on the size of seeds, and that small seeds 

may be more sensitive. 

Zhang et al. (2012) noted some volatile allelochemicals were released from fresh 

leaf tissues of the Crofton weed (Ageratina adenophora) and these compounds had 

a significant effect on seedling growth of rice. Wang et al. (2005) identified that thirty-

eight allelochemicals were released from Giant ragweed (Ambrosia trifida) some of 

which passed into the air such as bicyclic monoterpenes, and affected other plant 

species. They also found that maize and wheat germination and growth was 

significantly reduced by volatile allelochemicals of Giant ragweed (Ambrosia trifida). 

Furthermore, Kim & Kil (2001) showed that volatile allelochemicals released from 
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leaves of tomato (Lycopersicon esculentum) had a significant effect on some crop 

species growing in the nearby. 

1.4.2. Root Exudation 

 

Several published papers show that roots of some plant species can exude 

allelochemicals. This process is termed root exudation, many of the exudates 

chemicals from plants are toxic therefore they may be used as potential herbicides 

(Drake et al., 2013).  

Root exudates contribute significantly in allelopathy because they contain a lot of 

chemical compounds. Seed germination, root and shoot length and nutrient uptake 

were shown to be reduced due to many allelochemicals released from roots (Yu and 

Matusi, 1994; Weston, 1996). Many factors including nutrition, moisture, plant age 

and light may affect the quality and quantity of allelochemicals (Einhellig, 1987).  

Einhellig and Souza (1992) demonstrated that Abutilon theophrasti, Datura 

stramonium, Amranthus retoflexus, Setaria viridis, Digitaria sangunalis and 

Echinochloa crusgalli growth were reduced by root exudates of sorghum due 

oxidization of dihydroquinone to ap-benzoquinone (sorgoleone). Additionally, black 

mustard root exudates suppressed seed germination and seedling growth of 

Phalaris paradoxa and Sisymbrium irio due to autotoxic effects of isothiocyanates 

(AL-Sherif et al., 2013). 

1.4.3. Leaching from plant tissue 

 

Leaching phenomenon was noted for the first time in 18th century (Rice, 1984). This 

term is known as a ‘removing allelochemicals from plants ’ which take place in living 

plants or in residues of the same plants into the environment because of rain, fog, 

dew and snow (Kumari and Kohli, 1987). Many allelochemicals that are released by 
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the leaching process include organic substances such as phenolic acids, terpenoids 

and alkaloids and these substances may have toxic effects on plants and the 

microorganisms in the neighborhood (Race, 1984).  

Creamer et al. (1996) found that leaching from Crimson clover (Trifolium incarnatum 

L.) tissues reduced the emergence of Eastern black nightshade (Solanum 

ptycanthum Dun), while the germination of yellow foxtail (Setaria glauca L.) was 

suppressed by rye (Secale cereale L.) and barley (Hordeum vulgare L.). In India 

researchers found that mesquite (Prosopis juliflora) had an ability to inhibit the 

growth of other plants around it due to the leaf leachate which containing phenolic 

acids (Geol et al., 1989).  

 

In Japan the effects of leaching from dry leaves and exudates from the roots of 71 

ground cover plant species on lettuce (Lactuca sativa) were tested. Results showed 

that seven species, Moss pink (Phlox subulata), trefoil (Oxalis brasiliensis), red 

spiderlily (Lycoris radiata), creeping thyme (Thymus serpyllum), European 

pennyroyal (Mentha pulegium), Roman chamomile (Chamaemelum nobile) and 

Star-of-Bethlehem (Ornithogalum umbellatum) had strong effects on shoot and root 

elongation of Lettuce seedling. Based on these results these cover crops were 

selected for the management of three weed species; live amaranth (Amaranthus 

lividus), southern crabgrass (Digitaria ciliaris) and common lambsquarters 

(Chenopodium album). Root length of all the tested weed species were reduced by 

leachate from trefoil and red spiderlily and root exudates from moss pink, trefoil and 

creeping thyme )Shiraishi et al. 2002). 

A series of field trials were conducted by Cheema et al. (2008) to examine the 

allelopathic effects of sorghum on weed control and wheat production. They 

observed that by applying 10% w/v water leachate from aerial parts of Sorghum 

bicolor after 30 and 60 days of sowing can decrease weed biomass by as much as 

49% and wheat yield increased over 20% compared with the control. They found 
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that water leachate from sorghum has a high potential to increase weed control and 

yield of wheat. This method for weed management has great economic and 

environmental benefits to crop cultivation. 

1.4.4. Decomposition of plant residues 

 

During the process of decomposition of plant residues such as dried stems, leaves, 

roots, fruit and seeds, allelochemicals may be released into the environment and 

these allelochemicals may influence the growth and development of other plants 

(Chou 1999; Kruse et al., 2000; Tesio and Ferrero, 2010).  In recent times, 

researchers have observed the ability of some cover crops and their residues to 

inhibit weeds (Liebman and Davis, 2000; Petersen et al., 2001; Brennan and Smith, 

2005).  

However, Haramoto and Gallandt (2005), found that some allelopathic cover crops 

including rapeseed and yellow mustard inhibit both weeds and subsequent crops.  

A similar result was obtained by Ackroyd et al. (2011), who observed that oilseed 

radish (Raphanus sativus var. oleiferus), Indian mustard (Brassica juncea), and 

white mustard (Sinapis alba) were used as green manures, germination percentage 

and radicle elongation of muskmelon (Cucumis melo) were reduced. 

Moreover, smother cropping includes the use of a living plant to decrease the growth 

and development of weeds mainly through competition for resources effect or this 

effect can be physical as well as allelopathic (Teasdale, 1998). In a study conducted 

by Putnam et al. (1990), smother crops such as black mustard, buckwheat, rye, 

sorghum and wheat were used for weed control.  

Certain crops suppress growth of several weed species by releasing phytotoxins 

from crop residues reducing weed seed germination (Bhadoria, 2011). However, the 

main concern about the crop remainders is their toxic effect on other crops (Thorne 
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et al., 1990).  A field experiment was conducted by Khaliq et al. (2010) to test the 

weed control potential by using a mixture of allelopathic crop residues and their 

effects on maize yield. Residues of sorghum (Sorghum bicolor L.), sunflower 

(Helianthus annuus), rice (Oryza sativa) and brassica (Brassica campestris L.) in 

various combinations were mixed in the soil at 5 and 7.5 t ha-1.  The results showed 

that the mixture of sorghum, sunflower and brassica residues at 7.5 t ha-1 reduced 

the density and dry weight of horse purslane (Trianthema portulacastrum L.) and 

purple nutsedge (Cyperus rotundus L.) up to 90% compared with the control .  These 

results indicate that mixing crop residues with soil may help as an important tool for 

weed management in maize fields.  

Khaliq et al. (2011a), investigated the allelopathic potential of sorghum cv. JS-263, 

sunflower cv. Hysun-33 and brassica cv. Rainbow residues applied individually or 

in combination to the soil for horse purslane (Trianthema portulacastrum) 

management. They observed that the crop residue incorporated into the soil 

significantly reduced the emergence index, final germination percentage, shoot and 

root length, leaf and root score and leaf area per plant. Horse purslane seedlings 

were reduced by 71% following exposure to the mixture of sorghum and sunflower 

residues. Thus, allelopathy can play an effective role in suppressing weeds through 

soil mixing with crop residues.  

For example, an experiment was conducted to investigate the influence of sorghum,   

sunflower and brassica residues on purple nutsedge (Cyperus rotundus). It was 

found that the combinations of residues were more effective in inhibiting purple 

nutsedge than the individual crop residues. The mixture of Sorghum and brassica 

residues did not allow any tuber to sprout. In addition, shoot and root length, shoot 

and root dry weight were reduced significantly (Matloob et al., 2010). 
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In addition, Khaliq et al (2011b), investigated the allelopathic potential of three crops 

residues; sorghum, sunflower and brassica in rice (Oryza sativa L.) and jungle rice 

(Echinochloa colona [L.] Link) as associated grass weed. Crop residues of the three 

species were chopped into small pieces and mixed with soil by 6 g kg-1 soil                 

(12 t ha-1) and a control treatment without residues was used. The germination of 

jungle rice was delayed by mixing crop residues with soil. Residue incorporation 

delayed germination time by 50% until emergence, mean emergence time, 

emergence index, and final germination percentage. Also, final germination of rice 

and jungle rice were inhibited by 11 to 15% and 11 to 27% when crop residues were 

added to the soil individually and by 18 to 22% and 8 to 34% with a mixture of crop 

residues, respectively. Crop residues affect shoot length significantly (25 to 100% 

and 14 to 44%) and root lengths (22 to 100% and 10 to 43%) of rice and jungle rice, 

respectively. Also, the shoot and root dry weight of rice and jungle rice were reduced 

significantly. 

 In organic agriculture farmers frequently use crop species in rotation or as cover 

crops to control weeds (Bond and Grundy, 2001).  Weston (1996) suggested that 

crop rotation has a greater influence on weed species control than tillage and 

additionally reduces weed densities. Japanese farmers found that using beans in 

spring, buckwheat in summer then wheat in winter helped to increase the yield of 

wheat and decrease weeds. They reported that beans can increase the nutrient 

levels in the soil, whilst buckwheat has the ability to inhibit weeds (Khan et al., 2005). 

1.5. Factors that affect allelopathy 

 

Several factors affect allelochemical production in plants including; temperature, 

light, water stress, mineral deficiency and age of plant, (Rice, 1984). Challker-Scott 

(1999) and Kopsell and Kopsell (2006) found that both nutrient and environmental 
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factors may affect growth, primary metabolism and a number of secondary 

pathways such as the synthesis of anthocyanins and carotenoids. 

1.5.1. Light effects 

 

Light is one of the factors that may affect the quantity of allelochemicals released by 

plants (Mkula, 2006). Cooner (1987), suggests that the increased concentration of 

allelochemicals in the presence of light could be directly related to an increase in 

rate of photosynthesis. 

Several studies have shown that light quality and quantity may affect glucosinolate 

concentrations in Brassica species. Yang et al. (2009) reports that under normal 

light intensity the concentrations of gluconapin, glucobrassicanapin, glucobrassicin, 

neoglucobrassicin, 4-methoxyglucobrasicin and gluconasturtiin were significantly 

increased. Moreover, Engelen-Eigles et al. (2006), observed that in watercress 

(Nasturtium officinale R. Be) the concentration of gluconasturtiin was increased by 

approximately 25- 40% when grown under metal halide light enriched with red 

compared with far-red light. In a study conducted by Pérez-Balibrea et al. (2008), 

they reported that in Brassica oleracea plants grown in dark conditions (darkness 

produced by wrapping the sprouting trays with domestic aluminium foil) contained 

lower total glucosinolates compared to those grown in light condition (16 h light / 8 

h dark). Furthermore, Mølmann et al. (2015), reported there is a link between 

contents of glucosinolates and long photoperiod, whereas, concentrations of 

gluciberin and glucoraphanin significantly increased in Brassica oleracea tissues 

under long day photoperiod.   However, Steindal et al. (2015) found that the content 

of glucoiberin reduces by up to 45% during a long day with high temperature in B. 

oleracea tissues. 
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1.5.2. Temperature effects 

   

Temperature may also affect accumulation of allelopathic compounds in plants. 

Plants facing resource limitation such as nutrient deficiencies and different levels of 

temperature produce larger amount of allelochemicals than those growing in good 

environmental conditions (Tang et al, 1995). Justen and Fritz (2013) reported that 

the glucosinolate levels of Brassica rapa increased by increasing the temperature. 

In a study conducted by Engelen-Eigles et al. (2006) gluconasturtiin concentration 

of watercress (Nasturtium officinale) was found to increase by at least 50% when 

the watercress plants were grown during days of lengthy daylight (16 h) and 

temperatures were 10 or 15 °C. In addition, in B. oleracea tissues the high 

temperature was significantly reduced the glucoiberin up to 45% (Steindal et al., 

2015). 

1.5.3. Water stress effects 

 

Water stress may affect plant physiology, morphology, and chemistry, which can in 

turn effect root and shoot growth and production of allelochemicals (Taiz and Zeiger 

2010). In addition, water is one of the important factors affecting allelopathy, 

because it works as a solvent and transporter of allelochemicals in the soil 

(Reinhardt et al., 1999).  Several studies have shown that allelochemical 

concentrations have been affected by moisture availability (Ren, et al., 2009; 

Hosseini and Hassibi, 2011, Kheradmand et al., 2014). The concentrations of 

alkaloids in opium poppy (Papaver somniferum) (Szabó et al., 2003) and phenolics 

in purple coneflower (Echinacea purpurea) (Gray et al., 2003), purple nutsedge 

(Cyperus rotundus) (Tang et al., 1995), St. John's wort (Hypericum perforatum) 

(Gray et al., 2003) and tomato (Solanum lycopersicum) (English-Loeb et al., 1997) 

increased under drought stress conditions. 
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The concentration of phenolic compounds in leaf exudate of false yellowhead 

(Dittrichia viscosa) was increased under drought stress, however, the total phenolics 

were reduced because of reduced leaf area (Karageorgou et al., 2002).  

In field experiments conducted in Germany Zhang et al. (2008) determined the effect 

of growing season (spring-summer, summer-autumn and autumn-winter) and water 

supply by three levels (25%, 50% and 75% of available soil water) on glucosinolate 

concentrations in turnip (Brassica rapa) roots was determined. It was found that the 

total glucosinolate concentration in turnip root was 1774-3221 µmol kg-1 ,  while fresh 

matter and gluconasturtiin showed the highest concentration 1004-1628 µmol kg-1 

fresh matter in turnip roots. In  spring- summer concentrations of total glucosinolates 

increased up to 52% and 47%, aliphatic glucosinolates up to 60% and 131%, and 

aromatic glucosinolates up to 47% and 21% under 25% available soil water 

treatment as compared with 50% and 75% available soil water treatments, 

respectively. 

On the other hand, glucosinolate concentration in Brassica species increased under 

water stress such as; Brassica oleracea L. var. capitata, Brassica napus L., Brassica 

rapa ssp. rapifera L. and Brassica carinata (Radovich at el., 2005; Champolivier and 

Merrien, 1996, Jensen et al., 1996; Zhang et al., 2008; Schreiner et al., 2009).  Water 

stress may reduce the vegetative growth of brassica plants with the subsequent 

increase of plant secondary metabolites by reducing primary metabolism (Jones and 

Hartley, 1999).  

Glucosinolates increase under water deficiency conditions has been documented 

as part of the plant reaction to water stress through the process of osmotic 

adaptation (Schreiner et al., 2009). However, Gutbrodt et al. (2012) reported 

different results; that concentration of total glucosinolates in Brassica oleracea was 

not affected by high water stress (30% of the amount of water received by well-

watered plants), and also in Brassica napus under mild water stress (Jensen et al., 
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1996), while the glucosinolate concentration in Brassica oleracea significantly 

reduced under water stress conditions (Robbins et al., 2005; Khan et al., 2011). 

Thus, the intensity and length of water deficiency seems to be a significant factor in 

the increase of glucosinolates, as well as the plant growth stage when the water 

stress is applied (Hale et al., 2005). 

Moreover, Khan et al. (2010) noted that Brassica oleracea grown for two weeks 

under water stress were significantly smaller and showed reduced concentration of 

total glucosinolates compared to glucosinolate contents of well-watered plants, 

while glucosinolate content increased slightly in plants grown under normal watering 

conditions.  In addition, a significant reduction in indolyl glucosinolate was identified 

in water-deficient plants; however aliphatic glucosinolate reduced slightly.  Mailer 

and Cornish (1987) studied the effect of water stress on glucosinolate levels in the 

seed meal of Brassica napus and Brassica rapa.  The results showed that in seeds 

of both cultivars the glucosinolate concentrations were increased significantly from 

18.2 µmol.g-1 in unstressed plants to 35.0 µmol.g-1 under the influence of water 

stress. 

1.5.4. Plant age  

 

Several studies determined that plant species may produce different quantities of 

chemical compounds at different growth stages (Rice, 1984). Reinhardta and 

Bezuidenhouta (2001) investigated the effect of using water extract from plant shoot 

and tubers of Cyperus esculentus collected at immature and mature stages on 

lettuce. They found that germination of lettuce was reduced by using a 2% extract 

dilution from both plant parts and stages of development. However, a 5% dilution 

water extract from immature plant shoot completely inhibited lettuce germination as 

compared with the control.  



 23        
   

Jafariehyazdi and Javidfar (2011) studied the effect of allelopathic potential of 

Brassica napus, Brassica rapa and Brassica juncea on sunflower seed germination 

and seedling growth. Water extracts collected of three species at two stages (full 

flowering and straw) were diluted to 10, 20, 30 and 40%. It was found that there was 

a highly significant difference between the two stages and also between different 

dilutions. Germination, root and shoot length and fresh and dry matter weight were 

significantly affected by water extracts compared with the control.  

1.5.5. Variation in allelochemical in plant tissues 

 

Race (1984) has reported that the greatest concentrations of allelochemicals were 

found mostly in leaves and sometimes in the roots or seeds. In a study conducted 

by Muhammad and Majeed (2014), the allelopathic potential of fresh water extracts 

and air dried water extracts of root, shoot and leaves of sunflower on germination 

and seedling growth of wheat (Triticum aestivum L.) and maize (Zea mays L.) was 

investigated.  Results showed that seed germination, growth and dry biomass of 

seedlings of wheat and maize were significantly reduced by water extracts from all 

plant parts. Water extracts from the leaf decreased seed germination of wheat 

significantly by 15.21%, plumule and radical growth were reduced by 21.66 and 

28.44% when compared with extracts from other parts including root and shoot. 

A laboratory experiment was conducted in Malaysia by Toosi and Baki (2012) to 

examine the allelopathic potential of Brassica juncea  extract in  different 

concentrations 10.8, 14.28, 18 and 30 gL-1 from different parts (leaf, stem and root) 

on radish (Raphanus sativus L.) and barnyard grass (Echinochloa crus-galli [L.] 

Beauv.). Leaf ethanol extract at all concentrations suppressed the germination of 

radish seeds. Additionally, root and shoot growths of barnyard grass and radish 

seedlings were strongly affected by the leaf stem and root extracts.  Although the 
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authors obtained good results from this experiment, the light in the growth chamber 

may have affected germination and seedling growth as well. 

Dry weight of weeds; Phalaris minor, Chenopodium album, Coronopis didymus, 

Rumex dentatus and Medicago polymorpha were  significantly reduced by 

application of sunflower root, stem and leaf extracts (Anjum et al., 2005). An 

experiment was conducted in the lab to investigate the allelopathic potential of water 

extracts of some weed species: Amaranthus hybridus, Parthenium hysterophorus, 

Datura stramonium and Argemone mexicana including samples from different parts 

(leaf, stem and root), and the effect on seed germination, seedlings growth and 

biomass production of wheat cultivars; HAR–1685 and Durum wheat.  Leaf extract 

of P. hysterophorus highly reduced the seed germination of wheat by up to 22%.  

Also, they observed that radicle length of wheat seedlings was inhibited significantly 

by the same water extract compared to the water extract from other parts (Gella et 

al., 2013). 

Several studies showed that allelochemicals, at high concentrations may be more 

effective; however, at lower concentrations these allelochemicals might stimulate 

the growth of other species (Narwal, 1994).  Turk and Tawaha (2002) evaluated the 

effect of different concentrations of water extracts from different parts of black 

mustard (leaves, flowers, roots and mixture) on lentil germination and seedling 

growth. The results showed that lentil germination decreased by increasing the 

concentration.  

Also, Turk et al. (2005) evaluated allelopathic effects of black mustard from different 

plant parts (leaf, stem, flower and root) on radish (Raphanus sativus) germination 

and seedling growth.  They found that radish seed germination and seedling growth 

were inhibited significantly by all water extracts compared with the control.  

Increasing the water extract concentrations of individual plant parts significantly 

inhibited seed germination. 
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A laboratory experiment was conducted to investigate the allelopathic potential of 

different concentrations (0, 50 and 100%) of rice straw extract on germination and 

seedling growth of different plants.  The results showed that 100% rice straw extract 

significantly reduced the germination and growth of plants compared with 0 and 50% 

rice straw extracts.   Ipomoea batatas, Rumex dentatus and Convolvulus arvensis 

were most affected by the rice extracts (Afridi et al., 2014).  In additional work Jamil 

et al. (2009) determined the effect of applying different concentrations of sorghum 

aquatic extract alone and mixed  with aquatic extracts of other plants: sunflower, 

eucalyptus, sesame, brassica and tobacco, on wild oat and canary grass (Phalaris 

minor). The results show that applying a high concentration (12 Lha−1) from each of 

sorghum and sunflower extracts was more effective than other mixtures, and wild 

oat dry matter decreased by up to 42–62%, and canary grass by up to 36–55% 

compared with 6 (Lha−1). 

An experiment was conducted to investigate bio-herbicidal potential of sorghum and 

sunflower extracts on germination and seedling growth of dragon spurge (Euphorbia 

dracunculoides L.). Different concentrations (0, 25, 50, 75, and 100%) of aqueous 

extracts, were used individually and in mixture.  The results showed that applying 

sorghum and sunflower water extracts individually and in mixture and their different 

concentrations delayed germination of Euphorbia dracunculoides. Mixture of 

Sorghum and sunflower water extracts at 100% concentration decreased seed 

germination by 92%, while applying water extract from sorghum was more effective 

on Euphorbia dracunculoides germination compared with sunflower water extract 

and the germination was reduced  by up to 88% and 80% respectively. 

Greenhouse and laboratory experiments were conducted by Ashrafi et al. (2009) to 

examine the effect of barley water extract from different parts (leaf, stem, flower and 

root) in  different concentrations (4, 8, 12, 16, and 20 g of tissue per 100 ml of water) 

on germination and seedling growth of quack grass (Agropyrum repens). Shoot and 



 26        
   

root length, shoot and root weight and seed germination quack grass were reduced 

by barley extracts compared to the control. The inhibition of quack grass 

germination, seedling length and weight increased significantly by increasing the 

water extract concentrations from 4 to 20 g per 100 ml of water of all barley parts. 

Water extracts from leaves and flowers were more effective when compared with 

water extracts from other parts. 

1.6. Mode of action of allelochemicals 

According to Rice (1974), allelochemicals may affect plant growth by  affecting  a 

number of physiological processes such as, cell division and elongation, mineral 

uptake, stomatal opening and photosynthesis, membrane permeability, protein, 

phytohormone induced growth, change in lipids, seed germinations, change in 

organic acid metabolism, inhibition of enzymes and effect on xylem. In addition, Rice 

(1984) describes the modes of action of allelochemicals widely, modes of action 

have also been reviewed in detail by (Alonzo, 1985; Inderjit et al., 1996; Al-Khatib 

et al., 1997; Krishana et al., 1998; Inderjit and Mallik, 2002; Turk and Tawaha, 2003; 

Macias et al., 2004; Bainard et al., 2009; Chon and Nelson, 2010 and Hui Li et al., 

2010).   

Earlier studies have shown that the allelochemicals release from plants may have 

different effects on the synthesis, functions, contents and activities of different 

enzymes. For example, chlorogenic acid, caffeic acid and catechol may have to 

inhibit the key enzyme λ-phosphorylase that involved in seed germination (Einhellig, 

1995). Volatile monoterpenoids (camphor, 1, 8-cineole, betapinene, alpha-pinene, 

and camphene) from Salvia leucophylla showed allelopathic effects on cell 

proliferation and DNA synthesis root apical meristem of Brassica campestris 

seedlings (Nishida et al., 2005). The exudate from Sorghum bicolor L. (sorgoleone) 

reduced the number of cells in prophase, metaphase, and anaphase stages (Hallak 
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et al., 1999). Soltys et al (2012) reported that cyanamide produced by hairy vetch 

(Vicia villosa Roth) was shown a strong allelopathic effect on roots growth of tomato 

(Solanum lycopersicum L.) by modifications in cell division and change in plant 

hormone levels (ethylene and auxin). 

Several studies have found that roots are more affected by allelochemicals than 

seedlings growth. Cai and Mu (2012) observed that the primary root elongation and 

lateral root development of Glycine max (L.) were inhibited by leaf extracts from 

Datura stramonium L. at high concentration, root hair length and density also 

decreased. Moreover, Gatti et al., (2010) the growth and development of seedlings 

of Sesamum indicum L reduced and their morphological were change by aqueous 

extracts of Artistolochia esperanzae and the size of root xylem cells was decreased 

up to 50%, primary root and in the number of secondary roots were changed. 

On the other hand, It has been reported that the photosynthesis and respiration 

significantly affected by allelochemicals which released to the environment by plants 

(Gniazdowska and Bogatek, 2005). For example, Elisante et al., (2013) found that 

the aqueous seed and leaf extracts of Datura stramonium significantly reduced the 

total chlorophyll content of Cenchrus ciliaris and Neonotonia wightii. Additionally, 

the phenolic allelochemicals have ability to impact the respiration of plants through 

weakening oxygen absorption capacity, meanwhile the effect on photosynthesis 

may occur by decrease the photosynthetic rate and chlorophyll content (Li et al., 

2010). Patterson (1981) observed that Caffeic, t-cinnamic, p-coumaric, ferulic, gallic, 

and vanillic acids at concentrations of 10⁻³ M, significantly reduced the net 

photosynthetic rate and stomatal conductance and  caused high reductions in leaf 

chlorophyll content of soybean (Glycine max). The amount of chlorophyll a, 

chlorophyll b, total chlorophyll, carotenoids and protein were significantly decreased 

by aqueous leachate of Achillea biebersteinii (Abu-Romman, 2011). 
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Moreover, total of chlorophyll in Barley (Hordeum vulgare L.) leaf was significantly 

inhibited by aqueous extract of Malva parviflora at concentration 100% and 

Chenopodium murale at 75% and 100%. Also, the two weeds was significantly 

reduced the photosynthesis and Chenopodium murale was more effective as 

compared with Malva parviflora (AL-Johani, et al., 2012). 

1.7. Glucosinolates  

Glucosinolates or mustard oils (GLS) are secondary metabolites most noted in 

species of the Brassicaceae, Capparidaceae and Caricaceae families such as 

cabbage, radish, broccoli, cauliflower, rapeseed, mustard, horseradish and turnip 

(Fahey et al., 2001; Mikkelsen et al., 2002; Rameeh, 2015).  Glucosinolates are 

major secondary metabolites found in all Brassica spp. mambers. These chemical 

compounds play an essential role in plant defense against plant pests. These 

secondary compounds have a structure which contains a beta-thioglucoside-N-

hydroxysulfate linked to a sulfonated aldoxime moiety and changeable side chain 

derived from amino acids (Figure 3.1).   More than 130 natural glucosinolates have 

been found in several plant families (Fahey et al., 2001; Agerbirk and Olsen, 2012; 

Rameeh, 2015). Based on the side chains, the glucosinolates can be classified into 

three major groups: (i) aliphatic alkenyl (ii) indolyl (iii) aromatic (Holst and 

Williamson, 2004; Gimsing et al. 2005). 

The glucosinolate side chains come from amino acids as the first stages in the 

biosynthetic pathway.  Aliphatic, indolyl and aromatic glucosinolates are derived 

from methionine, tryptophan and phenylalanine respectively (Mithen 1992; Bennet 

et al. 1993; Schonhof et al., 2004; Redovnikovic et al., 2008). Each Brassica species 

contains some of the compounds which ultimately determines the profile of 

glucosinolate produced. Several glucosinolates have been found in rapeseeds 
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(Brassica napus L.) (Fahey et al., 2001). Common glucosinolates found in Brassica 

spp are shown in (Table 1.3). 

 

 

                 Figure 1. 2. The general structure of glucosinolate (Polat, 2010) 

Each Brassica spp has different glucosinolate profiles and glucosinolate 

concentrations.  Furthermore, the profile and concentration of glucosinolates found 

in the tissues of Brassica spp and glucosinolate accumulation is affected by 

environmental conditions such as temperature, water stress, light, soil fertility. 

Glucosinolate concentration is also affected by the age of plant  as well as insect 

damage, wounding and fungal infection (Booth and Walker 1992; Ludwig-Müller et 

al., 1999; Bartlet et al., 1999; Hasegawa et al., 2000; Bellostas et al. 2007; Alnsour 

et al., 2013; Park et al., 2013). 

Several researchers noted that the glucosinolates levels and their distribution in the 

plant were significantly increased in the young leaves, shoot and silique walls and 

this may refer to the biosynthetic activities which are higher in growth stages 

(Bennett et al., 1995; Bellostas et al., 2004). Booth et al (1991) found that 

http://en.wikipedia.org/wiki/File:Glucosinolate-skeletal.png
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glucosinolate levels decreased in the mature leaves, especially at the stage when 

flowers and during seeds were produced. Moreover, Brown et al. (2003) noted that 

there were significant differences in both concentration and composition of 

glucosinolates in Arabidopsis thaliana tissues. Additionally, concentrations of 

aliphatic glucosinolates was significantly higher in seeds as compared with other 

organs, the younger leaves had higher glucosinolate concentrations than older 

leaves. Malik et al. (2010) reported that in wild radish (Raphanus raphanistrum) the 

highest level of glucosinolates was in flowers at the flowering stage.   

In addition, based on these findings these authors recommended wild radish should 

be incorporated into the soil at 50% flowering stage to provide the greatest 

glucosinolates for weed inhibition. In India, Bhushan et al. (2013) observed changes 

in glucosinolate profiles in ten different genotype of rapeseed mustard.  They found 

that the total glucosinolates were increased significantly at the beginning of the 

flowering stage to full bloom stage but total glucosinolates reduced during pod 

maturity stage. 

Glucosinolates content in different plant parts have been studied widely.  For 

example, an experiment was conducted by Bellostas et al. (2007) to observe the 

content and distribution of glucosinolates in seeds and seedling of five varieties of 

Brassica oleracea; White cabbage, red cabbage, savoy cabbage, cauliflower and 

broccoli. The individual glucosinolates concentration and their type showed a 

differences between the Brassica oleracea varieties and plant parts. Concentration 

of sinigrin decreased while glucobrassicin increased during seedling stage.  

Glucosinolate concentration was higher in the root, especially in 4 and 7 day old 

plants compared to the other parts.  Bellostas et al. (2004) showed that Brassica 

rapa roots contain the highest glucosinolate concentration compared with different 

plant parts.  
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Table 1.3. Glucosinolates commonly found in Brassica species. 
 

Common name  Chemical name  Molecular Formula R-group  
 

Sinigrin  2-propentyl (allyl) C10H16KNO9S2 Aliphatic 
 
 

Glucoberin 3-methylsulfinylpropyl C11H21NO10S3 Aliphatic 
 
 

Progoitrin  2-hydroxy-3-butenyl  C11H19NO10S2 Aliphatic  
 
 

Epi Progoitrin 2(S)-Hydroxy-3-
butenyl 

C11H19NO10S2 Aliphatic  
 
 

Gluconapin  3-butenyl  C11H19NO9S2 Aliphatic  
 
 

Glucobrassicanapin 4-pentenyl  C12H20NO9S2 Aliphatic  
 
 

Glucoraphanin  4-methylsulfinyl-butyl  C12H22NO10S3 Aliphatic 
  
 

Gluconapoleiferin 2- hydroxyl-4-pentenyl C12H20NO10S2 Aliphatic 
 
 

4-OH glucobrassicin  4-hydroxyindol-3-
ylmethyl  

C16H20N2O10S2 Indolyl  
 
 

Glucobrassicin  Indol-3-ylmethyl  C16H19N2O9S2 Indolyl  
 
 

Neoglucobrassicin 1-Methoxy-3-
indolylmethyl  

C17H22N2O10S2 Indolyl 
 
 

Sinalbin 4- hydroxybenzyl C14H19NO10S2 Aromatic 
 
 

Gluconasturtiin 2-phenylethyl C15H21NO9S2 Aromatic 
 

 

     

The glucosinolates in Brassica napus (L.) has been reported in numerus publication, 

for instance, Gimsing et al. (2005)  identified eight glucosinolates from Indian 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Gimsing%20AL%5BAuthor%5D&cauthor=true&cauthor_uid=16332113
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mustard (Brassica juncea) and rape (Brassica napus) tissues. Tao and He (2004) 

isolated high concentrations of glucosinolates from mustard seed meals. Moreover, 

Bhandari et al. (2015) found different glucosinolate profiles in different plant parts 

(seeds, sprouts, mature root, and shoot) of nine Brassica species including 

cauliflower, cabbage, broccoli, radish, baemuchae, pakchoi, Chinese cabbage, leaf 

mustard, and kal. In B. napus (L.), the aliphatic glucosinolates are produced mostly 

in the seed, while the indole glucosinolates are greatest in the leaf and stem tissues 

and the major aromatic glucosinolates are found in the root (Clossais-Besnard and 

Larher 1991; Kirkegaard and Sarwar 1999).  Blake-Kalff et al. (1998) found that the 

average of aliphatic, aromatic and Indolyl glucosinolates in young leaves of B. napus 

(L.) were 16, 23 and 61 %, respectively.  

Velasco et al. (2008) noted that the glucosinolate concentrations in B. napus seeds 

were higher than the leaves.  The percentage of aliphatic glucosinolates in seeds 

was between 91 to 94 %, while there was more variation in the leaves and in the 

root, with the aliphatic glucosinolates accounting for up to 80% from the total 

glucosinolate content.  Progoitrin was reported to be dominant, whilst the main 

glucosinolate formed in leaves was glucobrassicanapin. Other experiments were 

conducted by  Fang et al. (2012) to determine the glucosinolate content in four 

different parts ; hypocotyl and radicle, inner cotyledon, outer cotyledon seed coat 

and endosperm of rapeseed (B. napus L.). No variation in concentration of 

glucosinolates was found between all embryo parts. 

Glucosinolate content in B napus (L.) leaf was varied between 0.10 to 4.76 µmol. g-

1 dry matter and dominant glucosinolates found in the leaves were progoitrin, 

gluconapin and glucobrassicanapin (Cleemput and Becker 2012). Embaby et al. 

(2010) investigated the glucosinolate profile in canola meals from six varieties in 

Egypt. They identified 12 glucosinolates in all varieties with progoitrin, epiprogoitrin, 
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gluconapin, glucobrassicanapin and glucoberin being the most abundant aliphatic 

glucosinolates. The concentrations of indolic glucosinolates 4-

hydroxyglucobrassicin, glucobrassicin and 4- methoxybrassicin and aromatic 

glucosinolate gluconasturtiin were low compared with aliphatic glucosinolates.  El-

Beltagi and Mohamed (2010) noted there was little variation in the glucosinolate 

profile among B. napus (L.) cultivars; but, gluconapin and progoitrin were the 

dominant glucosinolate identified, and the highest total glucosinolate content was 

found in the cultivar Silvo was 5.97 µmol. g-1 dry matter. 

1.7.1. Glucosinolate biosynthesis  

 

In general, aliphatic glucosinolates are the most commonly produced glucosinolates 

and are produced from methionine. Glucosinolates come from amino acids and are 

based on the structure of the amino acid. Glucosinolates are classified into three 

groups: (i) aliphatic glucosinolates are produced from; isoleucine, leucine, alanine 

and methionine (ii) aromatic glucosinolates are produced from tryptophan and 

phenylalanine (iii) indolic glucosinolates are come from tryptophan.  

As shown in (Figure 3.2)   glucosinolates biosynthesis consists of three main stages; 

a) control elongation of side chain amino acids (isoleucine, leucine, alanine, 

methionine and tryptophan), b) modification of  amino acids to the core structure of 

glucosinolates and c) secondary adjustments of the amino acid side chain (Halkier 

and Gershenzon 2006). 

In the first step, chain elongation is stimulated by methylthioalkylmalate (MAM) 

synthases and condensation of acetyl-CoA.  Additional chain elongations can take 

place by frequent cycles of acetyl-CoA condensation (Verkerk et al., 2009).  

According to Grubb and Abel (2006) and Mikkelsen et al. (2004) synthesis of a core 

glucosinolate structure is completed in five steps and starts with the oxidation of 
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amino acids precursor to aldoximes by side chain - specific cytochrome P450 

monooxgenases (cytochrome P450) of the CYP79 gene family. The aldoximes are 

extra oxidised by cytochromes P450 of the CYP83 gene family to aci-nitro 

compounds or nitrile oxides, which are strong electrophiles that interact naturally 

with thiols to form S-alkylthiohydroximates. Next, a C-S lyase causes the spilt of the 

S-alkylthiohydroximate joined into thiohydroximates.  Thiohydroximates are reactive 

and unsteady compounds and those compounds glycosylated and sulphated from 

glucosinolates core structure.   

The final phases of glucosinolates biosynthesis are secondary modifications of the 

side chain, esterifications, oxidations, eliminations and alkylations.  Methionine-

derived glucosinolates are formed by two α-ketoglutarate- dependent dioxygenases, 

encoded by the strongly linked and replicated AOP2 and AOP3 genes which control 

production of alkenyl and hydroxyalkenyl glucosinolates ( Kilebenstein et al., 2001; 

Crubb and Abel, 2006).  A flavin monooxygenase that is localized within the GS-OX 

locus is possibly in authority for the S-oxygenation in the glucosinolate side chain of 

aliphatic glucosinolates, the indolic glucosinolate glucobrassicin hydroxylation 

caused by the gene CYP81F2 (Sønderby et al., 2010). 

Next, in biosynthesis of glucosinolate the MAM, CYP79, CYP83 and AOP gene 

families, MYB genes were involved. MYB28, MYB29 and MYB76 genes of 

transcription factors and for production of aliphatic glucosinolate those factors are 

controlled expression of the structural genes (Sønderby et al., 2010). 
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              Figure 1. 3.  Glucosinolate biosynthesis. (Verkerk et al., 2009).  

1.7.2. Glucosinolate hydrolysis 

Glucosinolates can be hydrolyzed by the myrosinase enzyme (Thioglucoside 

hydrolase E.C.3.2.1.147) to produce isothiocyanates, nitriles, thiocyanate and 

epithionitriles. However, the effect of undamaged plant tissue which contains 

glucosinolates is very little on the other organism (Rask et al., 2000).   

The myrosinase enzyme is isolated from glucosinolates in undamaged plants by cell 

organelles. When the plant tissues are damaged during freezing and thawing, 

grazing, chopping, mastication and wounding or insect and pathogen attack the 

glucosinolates come into contact with myrosinase (Bennett et al., 2006). (Song et 

al., 2005).  When the glucosinolates are hydrolyzed, a number of compounds are 

produced like isothiocyanate, oxazolidinthione or rhodanid, thiocyanate and nitrile 

(Figure 1.4) which have toxic effects against some organisms (Wittstock et al., 

2004).  
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Figure 1.4. Glucosinolate hydrolysis by the enzyme myrosinase. (Fahey et al., 

2001). 

1.8. Myrosinase 

Myrosinases (Thioglucoside hydrolase, E.C.3.2.3.1) are enzymes that have the 

ability to hydrolyse the glucosinolates to produce isothiocyanates, nitriles and 

thiocyanate. Myrosinases has been found in the Brassicaceae and in some fungi 

and bacteria (Rask et al., 2000; Bor et al., 2009).  In the early eighteen century, 

Myrosinase was found in Brassica nigra seeds by Bussy (1840). Myrosinase activity 

has been detected in all plants containing glucosinolates (Rask et al., 2000; Al-Turki 

& Dick, 2003). Myrosinase belongs to a family of enzymes which are involved in 

plant protection against herbivores, the enzyme is a member of glycoside hydrolase 

family and has a three-dimensional structures as well as numerous similarities with 

the O-glycosidases (Halkier and Gershenzon, 2006; Bones and Rossiter, 2006).  
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Different forms of myrosinase have been found in many plants and determined as 

a disulfide-linked dimer of 62-75 kDa subunit (Bones and Slupphaug, 1989; Bones 

& Rossiter 1996), even though immunological data suggests that they can form 

complexes of higher molecular weight with myrosinase compulsory proteins and 

myrosinase linked proteins.  In a study conducted by James & Rossiter (1991), 

several isoenzymes were found in Sinapsis alba seeds extracts. These authors 

found that the enzymatic activity of two isoenzymes in five day old Brassica napus 

seedlings differed depending on the substrate glucosinolate.  Below is a three 

dimensional structure of myrosinase from Sinapsis alba seeds (Figure 1.5) 

(Natarajan et al., 2015). 

 

Figure 1.5.  Three dimensional structure of myrosinase (Thioglucosidase) from 
Sinapis alba seeds (Natarajan et al., 2015). 

 

http://en.wikipedia.org/wiki/File:1e4m.png
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1.8.1. The myrosin cell 

 

In 1884, the myrosin cell was observed in Brassicaceae species and these cells 

differed in morphology and size compared with neighbouring cells.  The term 

‘myrosin cell’ was used for the first time in 1890, researchers expected that these 

cells would contain myrosinase within the plant (Rask et al., 2000; Halkier and 

Gershenzon, 2006).   

Bones and Rossiter (1996) and Andréasson et al. (2001) have identified the myrosin 

cells in roots, stems, leaves, petioles, seeds and seedlings. The morphology of 

myrosin cells differs based on both organ and tissue, and age of tissue. Additionally, 

they found myrosin cells in the phloem parenchyma, while no myrosin cells were 

revealed in the ground tissue, whereas in Brassica napus phloem parenchyma and 

ground tissue myrosinase could be revealed in myrosin cells.  

Bones et al., (1991) observed that myrosin cells in B. napus are not subject to large 

developmental changes during the first two weeks after germination. Bones & 

Iversen (1985) report that the myrosin cells number and myrosinase activity reduced 

during aging of the plant. 

1.8.2. Myrosinase activity 

 

Myrosinase activity is dependent on plant species, cultivar plant region and age and 

is affected by pH, temperature, ascorbic acid and metal ion, for example Fe+2 and 

Zn+2 (Bones and Rossiter, 1996; Osbourn, 1996; Charron et al., 2005).  Previous 

work has determined that the greatest levels of myrosinase activity occur in seeds 

and seedlings. Also, different myrosinase isoenzymes have been recognized in 

different plant organs of the same plant. No direct correlation between myrosinase 

activity and glucosinolate levels in plant tissues have yet been detected (Rask et al. 



 39        
   

2000). It has been found that myrosinase activity in S. alba tissues was 

approximately ten times higher than B. campestris, while the myrosinase activity in 

B. napus was slightly higher as compared with B. campestris (Bones, 1990). This 

author also documented that myrosinase activity in hypocotyls tissues was greatest 

as compared with other seedling tissues. For example, myrosinase activity in 

hypocotyls tissues was approximately twice higher than in seedling roots. Overall, 

the myrosinase activity appears to by greatest in young tissues as compared with 

the mature tissues of the plant (Bones 1990). 

Botti et al. (1995) reported that the myrosinase activity was increased by ascorbic 

acid. In addition, Bones and Slupphaug (1989) observed that the activity of 

myrosinase increased with  low concentrations of ascorbic acid and  high 

concentrations of ascorbic acid inhibited the activity of myrosinase; they also found 

that in Brassica napus the most favorable concentration of ascorbic acid to activate 

the myrosinase  was (0.3-0.5 mM). Increased activity of myrosinase during seed 

germination (James & Rossiter 1991), may be due to increased ascorbic acid 

concentration early seedling growth (Sukhija et al. 1985). 

The activity of myrosinase isoenzymes with low molecular weight (65-58 kDa) 

increased via ascorbic acid, even though isoenzymes with high molecular weight 

around (75-77 kDa) were not activated (James & Rossiter 1991; Bones et al. 1994).  

On the other hand, the activity of myrosinase was strongly reduced by the heavy 

metal ions Cu2+, Fe2+, Fe3+ and Zn2+ even at lower concentrations (Rai et al., 2013).  

Charron and Sams (2004) reported that the myrosinase activity in fresh leaves was 

around 30% higher than stems at 12 and 32 °C compared with 22 °C.  

In vitro study conducted by Sharma and Garg (1996) to investigate the factors 

affecting myrosinase activity and enzyme concentration. The authors documented 

that a pH of 7.0 and a temperature 37˚C were found to be optimum for highest 
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enzyme activity.  During early seedling growth of Brassica napus (L.) the myrosinase 

enzymes were optimally active at pH 5 to pH 6 (James and Rossiter 1991).   

In addition it has been suggested that abiotic stress such as salinity, water stress, 

temperatures and light may enhance the myrosinase activity and its substrate 

affinity in such a way that the hydrolysis products of the glucosinolates 

(isothiocyanates) might cause the inhibition of inward K+ channels in the guard cells 

to decrease water loss by closing stomata (Zhao et al., 2008).  Guo et al. (2013) 

investigated the effect of different levels of NaCl on glucosinolates concentration 

and myrosinase activity in broccoli.  The data showed that higher content of 

glucosinolates in broccoli was observed by NaCl treatment at the concentration of 

60 mmol/L for 5 days old. However, the activity of myrosinase decreased.  

1.9. Herbicidal potential of glucosinolate 

 

With tightening legislation on pesticide usage, there is increasing interest in 

alternative method of crop protection such as biofumigation. Brassica species 

contain glucosinolates may have ability to suppress seed germination and seedling 

growth, and may also inhibit a number of insect species and fungi (Brown and Morra, 

1996; Brown and Morra, 1997 Borek et al., 1998; Sarwar and Kirkegaard 1998) 

The growth of competing vegetation has been suppressed by a number of 

Brassicaceae plants, and the hydrolysis products from numerous glucosinolates 

have been isolated and shown to inhibit both plant or seed germination (Rosa et al. 

1997). 

Plant species containing glucosinolates have a reputation for suppressing the 

growth of neighboring weeds and crops such as wild oat (Avena sterilis), wheat and 

pea (Jones, 1992). Vaughn et al. (2006) observed a significant reduction in the 

wheat seedling emergence with using seed meals from 15 glucosinolate-containing 
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plant species at 1% (w/w) concentration with sandy loam soil. Seed meals from 

Indian mustard, money plant, and field pennycress completely inhibited wheat 

seedling emergence.  The seedling emergence inhibition may be due to both the 

type and concentration of glucosinolates and their hydrolysis products in the seed 

meals. These authors identified several glucosinolates; glucoerucin, 

glucotrapaeolin, glucoiberin, gluconapin, and glucoraphenin in the seed meals of 15 

different plant species and showed that isothiocyanates produced from these 

glucosinolates were able to inhibit the germination of sicklepod (Senna obtusifolia). 

Brown and Morra (1996) reported that glucosinolate hydrolysis products from 

Brassica napus tissues, especially leaf and stem, can inhibit the seed germination 

of Lactuca sativa and these findings may support the suggestion that the plant 

tissues containing glucosinolate may help to decrease the use of  synthetic 

herbicides for weed control.  Moreover, Arslan et al. (2005) conducted an 

experiment to identify the effect of bio-herbicidal of fresh shoot and root extracts of 

six Brassica species by different concentrations on cutleaf ground-cherry (Physalis 

angulata L.) seed germination. 

A glasshouse experiment was conducted by Norsworthy et al. (2005) to determine 

the herbicidal activity of five aliphatic and three aromatic isothiocyanates on three 

weed species. The isothiocyanates were applied in different concentrations to soil 

at 0, 10, 100, 1,000 and 10,000 nmol g−1 of soil and incorporated.  All 

isothiocyanates had a harmful effect on Palmer amaranth and pitted morningglory 

emergence. The most effective isothiocyanates against yellow nutsedge was 

Phenyl and 3-methylthiopropyl at 10,000 nmol g−1 of soil and the emergence 

reduced by 92%. 
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1.10. Rational for this study 

 

The main field crop in Iraqi Kurdistan rain-fed area are cereal crops (Ismail, 2006; 

Marof 2007), crops yield was reduced approximately by 45 % because of weed 

plants (Al- Ali, 1982).  In Kurdistan, cotton and lentil yields were found to be reduced 

by 65% and 35% respectively due to weed growth (Sultan and Aliki, 2003; Aliki et 

al., 2006). Little work has been done on allelopathic potential of crop plant species 

on weed species such as durum wheat Triticum durum, Barley Hordeum vulgare 

and Oat Avena sativa (Ali et al., 2012; Ali, 2013). For example, Ali et al. (2012) found 

that effect of using wheat straw water extracts significantly reduced plants height, 

levels of chlorophyll a, b and total chlorophyll of wild oat Avena fatua, canary grass 

Phalaris minor and cow cockle Vaccaria pyramidata. However, no literature 

available about using allelopathic potential of Brassica species on weed species.  

In addition, in Iraq and specifically the Kurdistan Region, due to economic blockades 

and wars for four decades there has been lack of investment in agriculture, 

agricultural extension and educating farmers on the safe use of pesticides.  These 

factors have contributed to poor use of pesticides and the lowering of yields.  More 

alternative strategies and must be investigated for sustainable weed management. 

1.11. Conclusion 

 

Allelopathic potential of Brassica spp. for weed suppression has been focused on 

the employment of Brassica spp. as natural herbicides to control weed species as 

discussed above. 

From the above review it seems that allelopathy can be used in several aspects of 

crop production.  One of the main applications of allelopathy in crop production is 

for weed control. Various studies have been applied to explore the probability of 

using allelopathic crops to suppress weed germination and seedling growth in 
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agricultural sites. Crop plants have the ability to produce and exude allelochemicals 

in to the environments from different plant parts and during different growth stages 

to inhibit the growth of weeds in their neighborhood. Intercropping of allelopathic 

crops may improve the productivity of mixtures on one side and sustainable weed 

suppression on the other.  

Brassica napus is a new crop in the Kurdistan region of Iraq with unique 

characteristics that may provide new opportunities for farmers that are being 

encouraged to plant a cover crop to provide environmental benefits. Brassica napus 

can provide a variety of benefits to cropping systems, including weed inhibition. 

Brassica napus water extracts can inhibit weeds by several of mechanisms. The 

mechanisms of weed suppression by Brassica napus water extracts are not 

currently understood. Research is needed to evaluate the repeatability and duration 

of Brassica napus weed inhibition and to identify the mechanisms of this weed 

inhibition in order to develop management practices to best take advantage of this 

weed inhibition in the Kurdistan region.   

Furthermore, GSL biosynthesis and accumulation differs among Brassica spp  parts 

and can be affected by many environmental factors such as water stress, light and 

temperature and also plant development stages.  Because GSL biosynthetic 

regulation and accumulation vary between different B. napus parts tissues, B. napus 

provides a uniquely well-suited crop to examine the differential effect of 

environmental factors on root, stem, flower and leaf GSL concentrations and 

myrosinase activity. Better understanding of the affect of the environmental factors 

on GLS concentrations and myrosinase activity in different parts of B. napus will 

provide useful information to maximize the inhibitor effect on weed species. 
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1.12. The objectives and Null hypotheses 

 

The main objective of this study is to develop an understanding of the allelopathic 

properties of Brassica napus (L.) plants in order to improve methods for controlling 

different weeds species Sorghum halepanses (L.)  (Johnsongrass), Convolvulus 

arvensis (L.) (field bindweed), and Phalaris minor (Retz.) (canary grass) in 

laboratory. These three weed species were chosen because of their high spread in 

fields and subsequent cause of large losses in the yield of farmers. 

The specific objectives of the present study are: 

 Identify allelopathic weed suppression from Brassica napus (L.). 

 Elucidate allelopathic chemicals responsible from Brassica napus (L.) for 

weed suppression. 

 Investigate the effects of water extract concentrations from different parts of 

Brassica napus on seed germination and seedling growth of weeds species. 

 Assess the allelopathic chemicals produced by Brassica napus (L.) during 

different stages of growth and their influence on weed species inhibition.   

 Assess the levels of glucosinolates and myrosinase enzyme activity 

produced by Brassica napus (L.) from different parts under water stress 

conditions and their influence on weed species inhibition. 

 Assess the effect of using pure glucosinolates on seed germination and 

growth of wees species tested. 

The hypothesise studied were 

 Water extracts applications from Brassica napus will not affect the level of 

weed germination and seedling growth. 
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 There is no significant differences between using water extract from different 

parts of Brassica napus on weed germination and seedling growth 

 Water extract concentrations from different parts of Brassica napus will not 

affect seed germination and seedling growth of weeds species. 

 Water stress levels during different plant growth stages will not influence the 

levels of glucosinolates and myrosinase enzyme activity produced by 

Brassica napus (L.) from different parts and their effect on weed species. 

 There is no significant differences between the levels of glucosinolates and 

myrosinase enzyme activity produced by Brassica napus (L.) from different 

parts during different growth stage and their effect on seed germination and 

seedling growth of weed species tested.  

 Pure glucosinolates will not affect seed germination and seedling growth of 

weed species tested. 
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2.1. Introduction 

 

Allelopathy is defined as the beneficial or harmful effect of one plant on another plant 

due to the production of certain chemical compounds (Naseem et al., 2009). 

Allelopathy has been proved to have the ability to control pests, weeds, insects, 

nematodes and pathogens (Jabran et al., 2008; Niknechan et al., 2011; Farroq et 

al., 2013). There are numerous reports that some crop plants have allelopathic 

effects on seed germination and seedlings growth of weed species (Rice, 1984; 

Shibu and Andrew, 1998; Delabays et al., 2004; Mulatu et al., 2009).  

The toxic effects of water extract from different parts tissue of crops have been 

reported by many researchers. According to Putnam (1988) the chemical substance 

with allelopathic potential present in all plants part tissues, like leaf, stem, flower, 

fruit, seed and root. Under different conditions, these allelochemicals are released 

in to atmosphere or rhizosphere in high quantities and long persistence to affect a 

neighbouring plant. Several brassica species have significant effects on seed 

germination and seedling growth of weeds due to chemical compounds found in 

brassica water extract include caffeic, ferulic, chlorogenic and vanillic acids, 

thiocyanates and isothiocyanates (Bell and Muller, 1973; Al-Saadawi et al., 1986; 

Putnam, 1988; Vaughn and Berhow, 1999; Widmer and Laurent, 2006; Haddadchi 

and Gerivani, 2009). 

The water extracts of brassica species showed phytotoxicity to various weed 

species. For instance, seed germination and seedling growth of wild oat, alfalfa, 

lentil and wild radish were inhibited by Brassica nigra L. water extracts from different 

parts such as leaf, root, stem and flower  (Turk & Tawaha, 2002; 2003, Turk et al., 

2003; Turk et al., 2005).  Growth of (Zea mays) (Zaji & Majd, 2011), soybean 

(Oskoeui et al., 2012) and different weeds (Uremis et al., 2009) were suppressed 
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by water extracts of B. napus. From different parts. Ina addition , seed germination 

of cutleaf ground-cherry (Physalis angulate L.) inhibited by B. compestris water 

extract from shoot and B. rapa root water extract by 58.7%and 54.3% respectively 

(Arslan et al., 2005). Also. In a greenhouse trials, the biomass of hairy nightshade 

and long spine sandbur was reduced by 90 and 83% when rapeseed tissue added 

to a sandy soil (Boydston and Hang, 1995). 

Although, some work has been carried out on the allelopathic potential of crops in 

weed control in the Kurdistan Region of Iraq, there has been lack of investment in 

agriculture, agricultural extension and educating farmers on the safe use of 

pesticides due to wars and economic blockade for the last three decades. These 

factors have contributed to the poor use of pesticides and reduced yields. The 

purpose of the experiments  presented in this chapter were to determine the effect 

of Brassica napus (L.) water extracts from different parts of B. napus plants on 

germination and seedling growth of weed species found in Iraq. 

2.1.1. Aim 

 

The aim of this experiment was to determine the effect of B. napus water extracts 

from different plant parts on weed species germination and seedling growth. 

2.1.2. Hypotheses 

 

i- The level of weed germination and seedling growth will not be affected by water 

extracts applications from Brassica napus. 

ii- There are no significant differences between using water extract from different 

parts of Brassica napus on weed germination and seedling growth. 
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2.2. Materials and methods  

2.2.1. Preparation of water extracts 

Oilseed rape (Brassica napus L.) (cv. PR46W21) plants were collected from First 

Fox Hole field at Harper Adams University (Edgmond, Newport, Shropshire, 

England, UK) at the beginning of flowering (GS 4.5). Fresh rapeseed plants were 

separated into leaves, stems, roots and flowers. leaves, stems , roots and whole 

plants cut into 1 cm pieces and fresh tissue (100 g kg-1) from each plant part and 

whole plants were soaked separately in 1 L distilled water (1:10 W/V) for 24 hours 

at room temperature (20 0C± 2) to obtain water extracts (Turk and Tawaha, 2003). 

This solution was filtered through two sheets of filter paper (Whatman No.2) to 

remove the solid organic material and stored in a freezer (-25 0C± 2) until required. 

 2.2.2. Bioassay 

Three weed species Sorghum halepanses (L.)  (Johnsongrass), Convolvulus 

arvensis (L.) (field bindweed), and Phalaris minor (Retz.) (canary grass) were 

purchased from Herbiseed Ltd, Berkshure, UK. Seeds (250) from each weed 

species were surface sterilized by soaking them in 5% sodium hypochlorite for 15 

minutes before twice washing them in distilled water. Twenty seeds from each weed 

species were evenly placed on filter paper (Whatman No.1) in 9 cm petri dishes. 

Ten ml of extract solution from each plant part (stem, leaf, flower, root and whole 

plant) were added to each petri dish and distilled water was used as a control. All 

Petri dishes were placed in plant growth chambers (Sanyo MLR) randomly at 25°C 

and 70% humidity and in continuous darkness. Treatments were arranged in a 

completely randomized design (CRD) with five replications (6 Plant water extract 

types x 5 replications). The experiment was repeated three times to ensure reliability 

of results.  



 50        
   

 

2.2.3. Assessment 

 

Germination percentage was calculated for fourteen days after sowing using the 

equation (2.1) (ISTA, 1976). 

 

Germination(%) =
Number of seeds germinated

Number of total number of seeds
× 100                         (2.1) 

Shoot and root length was measured (cm) for all seedlings at fourteen days using a 

caliper. Shoot and root fresh weight (g) was measured by using electronic balance 

(Precisa 262 SMA- FR) in the same seedlings that were used for shoot and root 

length. 

2.2.4. Experimental design and data analysis 

A completely randomized design (CRD) with five replications (6 Plant water extract 

types x 5 replications) for each weed species was used for the experiment.  Data of 

each weed species were used separately for statistical analysis using Kruskal- 

Wallis One-Way Analysis of Variance (nonparametric test) using Genstat 14th 

Edition (Release PL21.1, Lawes Agricultural Trust, Rothamsted, UK), because there 

was no germination in some treatments Differences between the means were tested 

by Kolmogorov-Smirnov two sample tests. The full outputs of Kolmogorov-Smirnov 

two sample tests are displayed in the Appendix (1). 
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2.3. Results  

2.3.1. Seed germination %  

Water extracts from different parts of Brassica napus plants showed a significant 

(P<0.001) inhibitory effect on the seed germination of Phalaris minor (Retz.), 

Convolvulus arvensis (L.) and Sorghum halepense (L.). Water extracts from flowers 

and leaves caused the lowest germination when compared with the control (Figure 

2.1). The Kolmogorov-Smirnov two sample test showed that there were also 

significant differences between the treatments themselves.  Water extracts from 

leaves, flowers, stems and roots were found be more effective on P. minor(Retz.), 

C. arvensis (L.) and S. halepense (L.) when compared with water extract prepared 

from the whole plant and with the control (Figure 2.1, Appendix 1). 

2.3.2. Shoot length (cm) 

The effect of B. napus water extract treatments on shoot length was highly 

significant (P<0.001). Shoot length (cm) of Phalaris minor (Retz.), Convolvulus 

arvensis (L.) and Sorghum halepense (L.) was significantly (P=0.007) reduced by 

using water extract from all parts of B. napus (L.). 

There was a significant difference between water extract treatments. Flower water 

extract had a significant (P=0.007) effect on shoot length of all three species of 

weeds. Water extracts from flowers and leaves decreased shoot length of P. minor 

(Retz.) by 100% and 50.1% respectively. Flower and stem water extracts were 

found to inhibit the shoot length of C. arvensis (L.) by 89.3% and 37.6% respectively. 

Also, the shoot length of S. halepense (L.) was reduced by flower and stem water 

extract up to 83.5%and 91.9% respectively (Figure 2.2, Appendix 2). 
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Figure 2.1. Effect of various Brassica napus (L.) water extracts on the seed    
germination % of Phalaris minor (Retz.),   Convolvulus arvensis (L.) 
and Sorghum halepense (L.) 14 days after sowing. n = 25 for each 
treatment. Error bars represent the standard error of the mean. 

2.3.3. Shoot weight (mg) 

Brassica napus (L.) water extract from all parts had a significant (P<0.001) effect on 

shoot weight (mg) of Phalaris minor (Retz.), Convolvulus arvensis (L.) and Sorghum 

halepense (L.). There were significant differences between the treatments with 

exception of the whole plant water extract. Flower water extract had the most 

significant (P=0.007) effect on weight (g) of weeds, especially C. arvensis (L.). Water 

extract from flowers and leaves decreased shoot weight of P. minor (Retz.) by 100% 

and 69.2% respectively. Meanwhile, leaf, stem and root extracts were also effective 

on C. arvensis (L.) and reduced shoot weight by 47% to 48% compared to the 

control. Also, the shoot weight of S. halepense (L.) was reduced by flower and stem 

water extract by up to 97.5% and 95.6% respectively (Figure 2.3, Appendix 3).
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Figure 2.2. Effect of various Brassica napus (L.) water extracts on the shoot length 

(cm) of Phalaris minor (Retz.), Convolvulus arvensis (L.) and Sorghum 
halepense (L.) 14 days after sowing. n = 25 for each treatment. Error 
bars represent the standard error of the mean. 

 

 

Figure 2.3. Effect of various Brassica napus (L.) water extracts on the shoot weight 
(mg) of Phalaris minor (Retz.), Convolvulus arvensis (L.) and Sorghum 
halepense (L.) 14 days after sowing. n = 25 for each treatment. Error 
bars represent the standard error of the mean. 
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2.3.4. Root length (cm) 

The root length of Phalaris minor (Retz.), Convolvulus arvensis (L.) and Sorghum 

halepense (L.) were affected significantly (P<0.001) by using all B. napus (L.) water 

extract treatments compared with control. There was a significant difference 

between water extract treatments themselves. Water extracts from leaves, roots and 

(particularly) flowers produced a significantly higher (P=0.007) effect on the root 

length of all three weed species. Flower and root water extract showed higher 

reduction in P. minor (Retz.) and C. arvensis (L.) root length up to 100%, 77.9% and 

100%, 82.3% respectively. Leaf, flower and root extracts decreased S. halepense 

(L.) root length by 100% compared to the control (Figure 2.4, Appendix 4). 

 

 

Figure 2.4. Effect of various Brassica napus (L.) water extracts on the root length 
(cm) of Phalaris minor (Retz.), Convolvulus arvensis (L.) and Sorghum 
halepense (L.) 14 days after sowing. n = 25 for each treatment. Error 
bars represent the standard error of the mean.
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2.3.5. Root weight (mg) 

 

It was found that the root weight of Phalaris minor (Retz.), Convolvulus arvensis (L.) 

and Sorghum halepense (L.) significantly (P<0.001) decreased with the different 

treatments. Kolmogorov-Smirnov two sample tests determined that treatments of 

whole plant, leaf, flower, stem and root water extracts significantly reduced the root 

weight (mg). Moreover, root weight of P.s minor (Retz.) was suppressed by flowers 

and leaves water extract up to 100% and 81.8% respectively. Flower extract 

reduced the root weight of C. arvensis (L.) by up to 100% Also, flower, leaf and root 

extract inhibited the S. halepense (L.) roots weight up to 100%. The results in (Figure 

2.5, Appendix 5), show that Phalaris minor (Retz.) and Sorghum halepense (L.) 

were most affected by water extract from all plant parts. 

 

Figure 2.5. Effect of various Brassica napus (L.) water extracts on the root weight 
(mg) of Phalaris minor (Retz.), Convolvulus arvensis (L.) and Sorghum 
halepense (L.) 14 days after sowing. n = 25 for each treatmentError 
bars represent the standard error of the mean. 
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2.4. Discussion 

The present study attempts to evaluate the ability of B. napus (L.) water extracts to 

inhibit germination and seedling growth of three weeds species that are important 

in Kurdistan region. The results of the present study have indicated that extracts of 

B. napus (L.) have a suppressive effect on the germination of P. minor (Retz.), C. 

arvensis (L.) and S. halepense (L.). Although all extract treatments had some effect 

on germination of weed species, flower water extracts were the most effective on 

inhibiting the germination of the weed species tested. Using flower extracts there 

was no germination in P. minor (Retz.), C. arvensis (L.) and S. halepense (L.) 

germination was reduced by 93.88% and 90.5% respectively. A similar result was 

reported by Turk and Tawaha (2003) who found that Brassica nigra (L.) water 

extracts from different plant parts (lea, stem, flower and root) reduced wild barley 

germination, dry weight, shoot length and root length compared with the control. 

This may be due to the presence of phenolic compounds which inhibit the activity of 

gibberellic acid and also inhibit the cell division and elongation process that are very 

important at this stage or by interfering with enzymes involved in the mobilization of 

nutrients necessary for germination (Einhellig, 1996; Levizou et al, 2002). Yukiko et 

al. (2001) reported that phenolic compounds had the ability to reduce the seed 

germination of shirakamba birch (Betula platyphylla Sukatchev var.) by 60% to 

100%. Peterson et al (2001) found that isothiocyanates are one of the important 

chemical compound in Brassicas that have the ability to inhibit the germination of 

many weeds species such as Sonchus asper L. Hill), scentless mayweed (Matricaria 

inodora L.), smooth pigweed (Amaranthus hybridus L.), barnyardgrass (Echinochloa 

crusgalli L. Beauv.) and blackgrass (Alopecurus myosuroides Huds.).  

The results of this study showed that weed species seedlings growth (shoot length, 

root length, shoot weight and root weight) were inhibited by water extract from all 
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parts of Brassica napus (L.). Shoot and root length of Phalaris minor (Retz.), 

Convolvulus arvensis (L.) and Sorghum halepense (L.) were affected significantly 

by all water extract treatments compared to the control. However, the whole plant 

water extracts were the least effective treatment on weed seedling growth compared 

to other treatments.  

These results are similar with other studies reporting that Brassica spp water 

extracts had an effect on the seedling growth of weeds. Cheema at el. (2003) found 

that brassicas have the ability to reduce density, shoot length, root length, shoot and 

root weight of weeds such as canarygrass (Phalaris minor Retz), wild oat (Avena 

fatua L.), broad leaf dock (Rumax dentatus L.), lambsquarters (Chenopodium album 

L.) and field bind weed (C. arvensis L.) by 40-50%. 

Turk and Tawaha (2003) recorded that water extract from different parts (leaf, stem, 

flower and root) of black mustard (Brassica nigara L.) had strong inhibitory effect on 

germination and seedling growth of wild oat. They found that the degree to which 

germination and root length was inhibited by this extract increased with increasing 

the concentration of the water extract. Also, these authors determined that seed 

germination of wild oat was reduced and this may be because of the interruption in 

water uptake may cause a reduction in seed protease activity, which have ability to 

affect the protein hydrolysis during germination therefore may reduce the imbibition 

and water uptake of seeds. The findings are agree with the results of (Rice, 1984). 

Moreover, Babar et al. (2009) reported that the germination of chickpea seeds when 

soaked in root extract of Asphodelus tenuifolius were delay compared with the 

control.  

The coefficient of variation (C.V. %) for seed germination, shoot and root length, 

shoot and root weight was very high and this may be due to the high difference 
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between the mean values and the data is a non-normal distribution, lower C.V.% 

can obtain by increseing the number of replications  (John, 2009).  

2.5. Conclusion  

In this experiment water extracts made from different parts of B. napus (L.) were 

used to evaluate their effect on weed species in control conditions. All treatments 

showed significant inhibition of germination, shoot and root length and shoot and 

root weight for all weed species compared to the control. The greatest effect was 

seen with the flower extract especially on P. minor (Retz.) and C. arvensis (L.), but 

the stem extract had the greatest effect on S. halepense (L.). These findings will 

help us to develop our knowledge about the effect of B. napus (L.) on weed species 

in further work.  
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3. Effects of concentrations of Brassica napus (L.) 
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3.1. Introduction 
 

Allelopathic crops can decrease noxious weeds, prevent plant disease and improve 

soil quality and crop yield when used as cover crops, mulch, green manures, or 

grown in rotation (Cheema and Khaliq. 2000; Awan at el., 2009; Khalil et al., 2010).  

However, this ability to suppress and control weeds depends on the concentration 

of the chemical compounds in the allelopathic plant (Bhowmik and Inderjiit, 2003). 

Various studies revealed that allelochemicals, at high concentrations may be more 

effective; however, at lower concentrations these allelochemicals may stimulate the 

growth of other species (Narwal, 1994).   

For example, Tosi and Baki (2012) state that Brassica juncea leaves ethanol extract 

at all concentrations 10.8, 14.28, 18 and 30 gL-1 inhibited the germination of radish 

(Raphanus sativus L.) seeds. Also, root and shoot growths of barnyard grass and 

radish seedlings were significantly affected by the leaf stem and root extracts.   

 

Turk and Tawaha (2002) found that the lentil germination and seedling growth 

decreased by increasing the concentration of water extracts from different parts of 

black mustard (leaves, flowers, roots and mixture). In additional work Afridi et al. 

(2014) investigate the allelopathic potential of different concentrations (0, 50 and 

100%) of rice straw extract on germination and seedling growth of different plants. 

The authors observed that 100% rice straw extract significantly inhibited the 

germination and growth of Ipomoea batatas, Rumex dentatus and Convolvulus 

arvensis. 

 Additionally, Turk et al. (2005) evaluated allelopathic effects of black mustard from 

different plant parts (leaf, stem, flower and root) on radish (Raphanus sativus) 

germination and seedling growth.  They found that radish seed germination and 

seedling growth were inhibited significantly by all water extracts and increasing the 

water extract concentrations of individual plant parts significantly inhibited seed 
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germination. Also, germination and seedling growth of quack grass (Agropyrum 

repens) significantly reduced by barley extracts from different parts (leaf, stem, 

flower and root). The inhibition of Agropyrum repens germination, seedling length 

and weight increased significantly by increasing the water extract concentrations 

from 4 to 20 g per 100 ml of water (Ashrafi et al., 2009). 

3.1.1. Aim 

 

The aim of these experiments was to investigate the effect of water extract 

concentrations from different parts of B. napus germination and seedling growth. 

3.1.2. Hypotheses 

Water extract from different parts of B. napus at different concentrations will not 

affect germination and seedling growth of weeds species. 

3.2. Materials and Methods 
 

3.2.1. Experiment 1: 

 

Oilseed rape (Brassica napus L.) cv. PR46W21 plants were collected from a field at 

Harper Adams University, Edgmond, Newport, Shropshire, England, UK at the 

beginning of flowering (GS 4.5) in March 2012. The field had been treated with a 

number of pesticides (table 3.1). The same procedure was used to prepare the 

water extracts from different plant parts (stem, leaf, flower and root) as described in 

(Chapter 2 section 2.2.1).  The water extracts from different plant parts diluted to 

prepare different concentrations (25%, 50%, 75% and 100% v/v) with sterile distilled 

water and samples were stored in a freezer (-25 oC± 2) until required.  

Experiment 2: 

 Oilseed rape (Brassica napus L.) cv. PR46W21 was cultivated in the polytunnel at 

Harper Adams University, Edgmond, Newport, Shropshire, England, UK. Oilseed 
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rape plants were harvested at the beginning of flowering (GS4.5) in August 

2012.The same procedure as experiment 1 was used except preparing different 

concentrations (3.125%, 6.25%, 12.5%, 25% v/v) with sterile distilled water and 

samples were stored in a freezer (-25 oC± 2) until required.  

 

3.2.1.1. Bioassay 

 

This chapter reports the findings of two replicated experiments. Seeds (250) of test 

weeds [Phalaris minor (Retz.) (canary grass), Convolvulus arvensis (L.) (field 

bindweed) and Sorghum halepanses (L.) (Johnsongrass)] were prepared as 

previously described  ( Chapter 2,  section 2.2.2).Ten ml of extract solution from 

each concentration was added to each petri dish and distilled water was used as 

control. All Petri dishes were placed in a plant growth chamber (Sanyo MLR) at 25°C 

in dark condition. Treatments were arranged in a completely randomized design 

(CRD) with six replications (5 concentratios x 6 replications) for each weed species. 

3.2.1.2. Observations 

 

Germination, shoot and root length and fresh weight of seedlings was measured as 

as previously described  ( Chapter 2,  section 2.2.3). 

3.2.2. Statistical analysis 

 

A completely randomized design (CRD) with six replications (5 concentratios x 6 

replications) for each weed species was used for the experiment 1 and 2.  The data 

from experiment 1 were not normally distributed because there was no germination 

and no root growth in some treatments. Consequently, the data was then analysed 

using a Kruskal- Wallis one -way Analysis of Variance using Genstat 14th Edition 

(Release PL21.1, Lawes Agricultural Trust, Rothamsted, UK) for each weed species 
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separately. Differences between the means were tested by Kolmogorov-Smirnov 

two-sample tests. Data were subjected to a general analyses of variance (ANOVA) 

one-way to analysis the experiment 2 results for each weed species individually and 

where necessary, data were log10-transformed to normalise residuals. A Duncan 

test was used at P < 0.05 for comparison of data obtained from different plant parts 

at concentrations. 
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Table 3.1. (Pesticides applied to the Brassica napus field) 
Description Field Rate 

Dosage ha-1 

Chemical type Date applied 

Centium 360 CS clomazone 0.20 Litres 

 

herbicide 29/08/2011 

Oryx metazachlor+ quinmerac 2.02 Litres 

 

herbicide 29/08/2011 

Attract 4.04 Litres 

 

herbicide 09/09/2012 

Permasect C cypermethrin 0.25 Litres  

 

insecticide 28/10/2011 

Fusilade Max fluazifop-P-butyl 0.60 Litres herbicide 28/10/2011 

 

Harvesan carbendazim+ flusilazole 0.61 Litres 

 

fungicide 28/10/2011 

 

 

Corinth tebuconazole 

prothioconazole 

0.50 Litres 

 

fungicide 02/03/2012 

 

 

Headland Boson 2.50 micronutrients 02/03/2012 

 

Delsene 50 Flo carbendazim 0.50 Litres 

 

fungicide 02/03/2012 

Toppel 100 EC cypermethrin 0.25 Litres insecticide 30/03/2012 

 

Priori xtra azoxystrobin+ 

cyproconazole 

0.80 Litres 

 

fungicide 30/03/2012 
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3.3. Results  

3.3.1. Experiment one  
 

3.3.1.1. Seed germination % 

  
The flower, stem, leaf and root extracts of Brassica napus significantly (p<0.001) 

inhibited the seed germination of test weeds [Phalaris minor (Retz.), Convolvulus 

arvensis (L.) and Sorghum halepense (L.)]. The degree of suppression increased 

with increasing extract concentrations from different parts (Table 3.2). Kolmogorov-

Smirnov two-sample tests showed that there were also significant differences 

between the treatments (P < 0.05). Water extracts from flowers and stems at 75% 

and 100% concentrations were more inhibitory to weed species. Undiluted extracts 

of flowers at 75% and 100% concentrations inhibited the germination of P. minor by 

87%, 91.4%, C. arvensis by 73.3%, 83% and S. halepense by 79.75%, 84.9 %, 

respectively. Also the undiluted extracts of stems inhibited the germination of P. 

minor, C. arvensis and S. halepense by 100%%, 95.05 and 99.4% at 100% 

concentration, respectively, and 99.4%, 81.5% and 94 % at a concentration of 75%, 

respectively.  

3.3.1.2. Shoot length (cm) 

 

Shoot length of P. minor, C. arvensis and S. halepense was significantly reduced ( 

P< 0.001) by flower, stem, leaf and root extracts at all concentrations in both 

experiments (Table 3.3). Based on Kolmogorov-Smirnov two-sample tests the 

extracts from different parts of B. napus at various concentrations showed significant 

differences between the treatments (P < 0.05).  All concentrations inhibited the shoot 

length, and the effect was concentrations dependent.  Undiluted flower, stem, leaf 

and root extracts reduced the shoot length of P. minor by 58%, 100%, 61% and 

43%, respectively. The same treatments ( undiluted flower, stem, leaf and root 
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extracts), also decreased the shoot length of C. arvensis by 45.3%, 82.5%, 73.5% 

and 44.9%, respectively and reduced the shoot length of S. halepense by 57.3%, 

96.5%, 77.9% and 65.2%, respectively.    

3.3.1.3. Root length (cm) 

 

Brassica napus water extracts from all parts significantly (P < 0.001) inhibited the 

root length of P. minor, C. arvensis and S. halepense. The sensitivity of each weeds 

root length to water extract was increased with increasing concentrations (Table 

3.4). The B. napus flower, stem, leaf and root extracts at 75% and 100% 

concentrations were more inhibitory to root elongation of S. halepense than to P. 

minor. Stem extracts at 75% and 100% concentrations completely inhibited the root 

length of P. minor and S. halepense, however, C. arvensis root length was reduced 

by 84.6% and 100%, respectively. 

3.3.1.4. Shoot fresh weight (mg) 

 

 The fresh shoot weight of P. minor, C. arvensis and S. halepense was inhibited 

significantly (P <0.05) by all extracts of B. napus (Table 3.5).  There were also 

significant differences between the various extracts (P < 0.05). The fresh shoot 

weight of each weed species decreased with increasing concentrations of water 

extract. Undiluted flower, stem, leaf and root extracts reduced the fresh shoot weight 

of P. minor by 58%, 100%, 61% and 43.6%, respectively and the same treatments 

decreased the shoot weight of C. arvensis by 45.3%, 82.5%, 73.5% and 44.9%, 

respectively and the shoot weights of S. halepense by 57.3%, 96.5%, 77.9% and 

65.2%,  respectively. 
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3.3.1.5. Root fresh weight (mg) 

 

Fresh root weight was significantly decreased (P < 0.001) by all water extract 

concentrations over the control (Table 3.6). The impact of treatments on fresh root 

weight of weed species significantly differed. Water extract concentrations of 75% 

and 100% significantly reduced the fresh root weight of weed species. Undiluted 

flower, stem, leaf and root extracts completed inhibited the S. halepense fresh root 

100 % inhibition. Likewise, the flower and stem extracts reduced the fresh root 

weight of C. arvensis and P. minor by 100%.  

3.3.2. Experiment two  

3.3.2.1. Seed germination % 
 

The results of germination of all three weed species are shown in Fig 3.1 In most 

cases the seed germination percent of all three weed species were varied because 

of different concentration.  The inhibitory effect was significantly increased (P < 

0.001) for all three weed species at high concentration of water extract from all parts 

of B. napus. Water extract concentrations at 12.5% and 25% for all plant parts were 

more inhibitory to weed species than concentrations 6.25% and 3.125%. Undiluted 

flower extracts were the most effective against weed species compared with 

extracts derived from other tissues of B. napus. Undiluted extracts of flowers 

inhibited the germination at 75% and 100% concentration of P. minor by 60%, 43.6% 

, C. arvensis by 53.6%, 47.6% and S. halepense  by 51.3%, 39.5% respectively. 

3.3.2.2. Shoot length (cm) 

 

Water extracts from all plant parts significantly inhibited (P < 0.001) shoot length of 

weed species Fig 3.2. Undiluted extracts of flowers, stems, leafs and roots reduced 

the shoot length of P. minor, C. arvensis and S. halepense significantly. The water 



 68        
   

extract from flowers and stems appeared the most effective in inhibiting shoot length 

of P. minor, C. arvensis and S. halepense and it was followed by that of leaf water 

extracts and then roots water extracts. 

All B. napus water extract concentrations significantly affected (P < 0.001) P. minor, 

C. arvensis and S. halepense shoot length Fig 3.2. Higher water extract 

concentrations (all tissue types) 25% and 12.5% showed the greatest suppression 

of shoot length of P. minor, C. arvensis and S. halepense significantly. The lowest 

suppression was recorded with the 3.125 % concentration. 

 

3.3.2.3. Root length (cm) 

 

Data regarding root length of P. minor, C. arvensis and S. halepense seedlings Fig 

3.3 shown that B. napus water extracts from all plant parts and at different 

concentrations significantly reduced root length (P < 0.001). The highest reduction 

in root length of P. minor, C. arvensis and S. halepense seedlings is recorded with 

applying flowers water extracts at 12.5% and 25% concentration. 

 Flower extracts (25%) concentration inhibited the root length of P. minor by up to 

70%, C. arvensis by up to 51.9% and S. halepense by up to 67.6%. Leaf extract at 

25% concentration was the next best water extracts in suppressing root length of P. 

minor, C. arvensis and S. halepense seedlings and root length by up to 48%, 41.3 

and 65% respectively. The lowest inhibition was documented with a concentration 

3.125 % by using stems extract. 

3.3.2.4. Shoot fresh weight (mg) 

 

The data showed that Brassica napus extract concentration significantly (P < 0.001) 

affected shoot fresh weight of P. minor, C. arvensis and S. halepense seedlings Fig 

3.4. All plant parts water extract significantly reduced shoot fresh weight of weed 
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species Fig 3.4. The highest reduction in shoot fresh weight of weed species was 

noted by using flowers, stems and leaves compared with using roots extracts.  

The shoot fresh weight of P. minor and S. halepense was suppression up to 39.3%, 

64.5% by applying flower water extract at 25% and up to 38.5%, 65.4% by applying 

leaf water extract at 25%. 

3.3.2.5. Root fresh weight (mg) 

 

All plant parts water extracts significantly (p < 0.001) decreased root fresh weight of 

P. minor, C. arvensis and S. halepense seedlings (Fig 3.5). Also, root fresh weight 

was significantly decreased (p < 0.001) by all water extract concentrations over the 

control (Fig 3.5).  

The impact of treatments on root fresh weight of weed species significantly differed 

between concentrations and plant parts. Water extract concentrations of 12.5% and 

25% significantly decreased the root fresh weight of weed species. Undiluted flower 

water extract at a concentration of 25% reduced root fresh weight of P. minor by 

60.4%, stem water extract  at a concentration 25% decreased  the root fresh weight 

of C. arvensis and S. halepense by 94.7% and 56.4% respectively. 

3.4. Discussion 

 

In this study germination and seedling growth of Phalaris minor (Retz.), Convolvulus 

arvensis (L.) and Sorghum halepense (L.) was significantly suppressed by all water 

extracts made from different B. napus tissues (flower, stem, leaf and root). Most 

treatments were suppressive to seed germination of weed species. However, the 

highest concentrations at 75 and 100% of water extracts from flower and stem were 

the most effective on the seed germination in Petri dishes. 
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These results agree with those of Al-Sherif et al., (2013) who found that seed 

germination of Phalaris paradoxa was decreased with the lowest concentration of 

the different extracts from black mustard. However, the aqueous extract at 4% 

completely reduced the germination. Moreover,Tawaha and Turk (2003) document 

that black mustard (Brassica nigra L.) water extracts from different parts (leaves, 

stem, flower and root) decreased wild oat(Avena fatua L.) seed germination and 

seedling growth compared with the control.  The results showed that seed 

germination and root length were affected by water extracts of brassca species. The 

suppressive effect on seed germination was increased with increasing 

concentration of water extracts from the fresh plant parts.  

Futhermore, Naseem et al. (2009) report that isothiocyanates are most important 

chemical compounds in Brassicascase members to suppress the germination of 

many weeds species [sowthistle (Sonchus asper L.), scentless mayweed (Matricaria 

inodora L.), smooth pigweed (Amaranthus hybridus L.), barnyard grass 

(Echinochloa crusgalli L. Beauv.) and blackgrass (Alopecurus myosuroides Huds.)].   

Also, Mason-Sedun et al. (1986), found that water extracts of Brassica tissues were 

mostly toxic to wheat germination. These results may due to hydrolysis of 

glucosinolates in Brassica tissues, which release numerous chemical compounds 

(mostly isothiocyanate), that possibly will suppress the seed germination (Brown & 

Morra, 1996; Yasumoto et al., 2010; Walsh et al., 2014). Fathermore Baleroni et al., 

(2000) observed that glucosinolate compounds from Brassicaceae members were 

capable of significantly inhibiting seed germination. They found that seed 

germination of  alfalfa (Medicago sativa L.), radish and turnip (Brassica rapa var. 

rapa L.) were decreased significantly by seed water extracts of Brassica juncea (L.) 

Czern.  
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Bell and Muller (1973) reported that the germination of Bromus rigidus (Roth) seeds 

was significantly inhibited by allyl isothiocyante released from B. nigra leaves. 

Furthermore, the allelochemicals such as isotiocyanates have ability to inhibit the 

growth and development of weeds (Bangarwa and Norsworthy, 2014), also the 

concentration of this allelochemical is varied in different plant parts (Fahey et al., 

2001). 

Allelopathic inhibitory effects of the Brassica napus extracts from various parts used 

in this study are well reported in the literature ( Kim et al. 1993; Batish et al. 2002; 

Mughal, 2000; El-Beltagi and Mohamed, 2010; Embaby et al., 2010). The water 

extracts from different plant parts by concentration 25% in the experiment two 

mostly more effective on seedling growth of weed species compared with the same 

concentration in experiment one.  

This differences in the results of two experiments may due to several factors 

affecting the amount of allelochmicals in B. napus tissues such as; light, temperature 

and timing of crop sowing or maybe also that the field crop was treated with 

agrochemicals. For instance, Justen and Fritz (2013) reported that the glucosinolate 

levels have been increased by increasing the temperatures.  

3.5. Conclusion 

In this study the using different concentration of water extracts from different parts 

of B. napus revealed that all concentrations showed significant inhibition of 

germination, shoot and root length and shoot and root weight for all weed species 

compared to the control. The greatest effect was observed with using hiegh 

concentration from all parts of B. napus especially with using the flower and stem 

extract at 100% and 75%.  
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Stem extracts at 75% and 100% concentrations completely inhibited the root length 

of P. minor and S. halepense. P. minor weight was the most effecitev weed by great 

concentration from all plant parts. Flower, stem, leaf and root extracts completed 

inhibited the S. halepense fresh root by 100 % inhibition. Also, the flower and stem 

extracts reduced the fresh root weight of C. arvensis and P. minor by 100%. 
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Table 3.2. Effect Brassica napus (L.) water extracts of various concentrations on the seed germination % over the control of Phalaris minor 
(Retz.) (P.m.), Convolvulus arvensis (L.) (C.a.)  and Sorghum halepense (L.) (S.h.). n = 25 for each treatment. 

 
Treatments 
 

Percentage of Seed germination inhibition over the control 
 Flower extracts                                        Stem extracts                                       Leaf extracts                                     Root extracts 
    P.m.              C.a.               S.h.               P.m.             C.a.               S.h.               P.m.              C.a.                S.h.              P.m.               C.a.              S.h.  

25% 74.75 45.3 72.5 60.3 29.1 53.9 22.9 41 61.3 24.75 14.1 52.9 

50% 82.8 60.5 73.8 93.8 63.9 91.1 62.3 61.2 76 47.3 26.6 67.1 

75% 87 73.3 79.75 99.4 81.5 94 66.7 69.2 90 69.75 42.9 79.9 

100% 91.4 83 84.9 100 95.05 99.4 78.7 75.75 95.6 80.75 56.5 86.6 

SEM 

C.V.% 

P value 

3.905 

75.10 

< 0.001 

3.917 

52.37 

< 0.001 

3.797 

70.31 

0.002 

4.691 

125.6 

< 0.001 

5.443 

72.54 

< 0.001 

4.771 

122.7 

< 0.001 

5.568 

55.72 

< 0.001 

5.459 

61.92 

< 0.001 

4.708 

94.16 

< 0.001 

5.037 

54.48 

< 0.001 

3.519 

29.45 

< 0.001 

3.615 

66.22 

< 0.001 
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Table 3.3. Effect Brassica napus (L.) water extracts of various concentrations on the shoot length (cm) over the control of Phalaris minor 
(Retz.) (P.m.), Convolvulus arvensis (L.) (C.a.)  and Sorghum halepense (L.) (S.h.). n = 25 for each treatment. 

 
Treatments 

Percentage of shoot length inhibition over the control 
           Flower extracts                                 Stem extracts                                      Leaf extracts                                Root extracts 
     P.m.            C.a.                S.h.                P.m.             C.a.               S.h.               P.m.              C.a.                S.h.            P.m.              C.a.               S.h.  

25% 25.5 14 43.8 11.5 20.7 35.1 12.5 21.1 11.01 18.2 18.3 23 

50% 30 29.5 42.9 48.9 32 74.9 31.9 36.3 32.1 35 28.6 38.4 

75% 34.5 32.3 54 95.2 50 84.7 48.8 67.15 51.55 51.5 33.9 53 

100% 58 45.3 57.3 100 82.5 96.5 61.6 73.5 77.9 43.6 44.9 65.2 

SEM 

C.V.% 

P value 

0.266 

30.03 

< 0.001 

0.470 

26.02 

0.003 

0.507 

37.41 

0.010 

0.657 

95.13 

< 0.001 

0.651 

36.92 

< 0.001 

0.989 

105.9 

< 0.001 

0.329 

37.38 

< 0.001 

0.713 

50.14 

< 0.001 

0.701 

39.75 

< 0.001 

0.241 

24.28 

< 0.001 

0.355 

20.93 

< 0.001 

0.578 

40.95 

< 0.001 
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Table 3.4. Effect Brassica napus (L.) water extracts of various concentrations on the root length (cm) over the control of Phalaris minor (Retz.) 
(P.m.), Convolvulus arvensis (L.) (C.a.)  and Sorghum halepense (L.) (S.h.). n = 25 for each treatment. 

 
Treatments 

Percentage of root length inhibition over the control 
         Flower extracts                                       Stem extracts                                   Leaf extracts                                      Root extracts 
    P.m.            C.a.                S.h.                P.m.             C.a.               S.h.                 P.m.              C.a.             S.h.               P.m.              C.a.               S.h.  

25% 58.4 54.75 79.7 26.1 44.35 81.3 32 50.1 27.6 21.75 45.1 58.9 

50% 74 84.6 95.8 81.1 71.7 98.3 51.4 64.1 64 38.2 56 78.1 

75% 88.5 93 100 100 84.6 100 62.8 70.9 90 45.6 56.4 95 

100% 94 98.3 100 100 100 100 76.8 85 100 56.9 72.6 100 

SEM 

C.V.% 

P value 

0.293 

107.9 

< 0.001 

0.859 

115.2 

< 0.001 

0.352 

164.6 

< 0.001 

0.438 

119.9 

< 0.001 

0.864 

90.97 

< 0.001 

0.231 

182.0 

< 0.001 

0.309 

52.9 

< 0.001 

0.663 

67.28 

< 0.001 

0.336 

90.17 

< 0.001 

0.190 

30 

< 0.001 

0.556 

52.14 

< 0.001 

0.351 

114.8 

< 0.001 
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Table 3.5. Effect Brassica napus (L.) water extracts of various concentrations on the fresh shoot weight (mg) over the control of Phalaris 
minor (Retz.) (P.m.), Convolvulus arvensis (L.) (C.a.)  and Sorghum halepense (L.) (S.h.). n = 25 for each treatment. 

 
Treatments 

Percentage of fresh shoot weight inhibition over the control  
             Flower extracts                                      Stem extracts                               Leaf extracts                              Root extracts 
      P.m.            C.a.                S.h.                P.m.             C.a.               S.h.                P.m.            C.a.                S.h.            P.m.              C.a.               S.h.  

25% 36.2 35.1 62 12.8 28.4 22.7 17 18 27.8 13.5 24.6 21.8 

50% 44 43.6 68.7 55.8 47.8 78.9 31.6 34.9 67 27.4 35.6 43.2 

75% 48.4 46.3 72.1 96.9 53.7 77.5 41.4 49.7 75.2 34.7 45.4 69.7 

100% 65.2 60.4 71.4 100 76.2 94.7 60 63.9 88.5 45.5 55.5 77.2 

SEM 

C.V.% 

P value 

0.463 

36.39 

< 0.001 

6.08 

35.81 

0.003 

2.46 

75.73 

0.031 

0.849 

96.34 

< 0.001 

6.53 

47.34 

0.029 

1.52 

108.4 

< 0.001 

0.412 

33.49 

< 0.001 

4.48 

32.08 

< 0.001 

2.74 

72.53 

< 0.001 

0.262 

19.55 

< 0.001 

4.7 

30.13 

< 0.001 

1.38 

52.22 

< 0.001 
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Table 3.6. Effect Brassica napus (L.) water extracts of various concentrations on the fresh root weight (mg) over the control of Phalaris minor 
(Retz.) (P.m.), Convolvulus arvensis (L.) (C.a.)  and Sorghum halepense (L.) (S.h.). n = 25 for each treatment. 

 
Treatments 

Percentage of fresh root weight inhibition over the control 
             Flower extracts                                  Stem extracts                                   Leaf extracts                               Root extracts 
      P.m.            C.a.                S.h.                P.m.             C.a.               S.h.              P.m.              C.a.                S.h.              P.m.              C.a.               S.h.  

25% 69.8 41.7 62 43.2 62.3 84.4 34.4 48 25 22.5 50.2 56.1 

50% 78.9 63.9 94.7 91.9 68.4 99.85 49.5 61.1 70.4 50 55.9 73.3 

75% 96 83.4 100 100 84.5 100 70.7 76.3 94.6 59.1 67.7 98.1 

100% 97 96.3 100 100 100 100 83.5 82.8 100 79.8 70.5 100 

SEM 

C.V.% 

P value 

0.463 

36.39 

< 0.001 

6.08 

35.81 

0.003 

2.46 

75.73 

0.031 

0.849 

96.34 

< 0.001 

6.53 

47.34 

0.029 

1.52 

108.4 

< 0.001 

0.412 

33.49 

< 0.001 

4.48 

32.08 

< 0.001 

2.74 

72.53 

< 0.001 

0.262 

19.55 

< 0.001 

4.7 

30.13 

< 0.001 

1.38 

52.22 

< 0.001 
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Figure 3. 1. Effect Brassica napus (L.) water extract of various concentrations on the seed 
germination (%) over the control of Phalaris minor (P.m.), Convolvulus 
arvensis (C.a.) and Sorghum halepense (S.h.) 14 days after sowing.  
3.125%  6.25%   12.5%   25%. Bars with the same letter are not 
significantly different according to Duncan’s multiple range test (P < 0.05). 
n = 25 for each treatment. 
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Figure 3. 2. Effect Brassica napus (L.) water extract of various concentrations on the shoot 
length (cm) over the control of Phalaris minor (P.m.), Convolvulus arvensis 
(C.a.) and Sorghum halepense (S.h.) 14 days after sowing.  3.125%  
6.25%   12.5%   25%. Bars with the same letter are not significantly 
different according to Duncan’s multiple range test (P < 0.05). n = 25 for 
each treatment. 
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Figure 3. 3. Effect Brassica napus (L.) water extract of various concentrations on the root 
length (cm) over the control of Phalaris minor (P.m.), Convolvulus arvensis 
(C.a.) and Sorghum halepense (S.h.) 14 days after sowing.  3.125%  
6.25%   12.5%   25%. Bars with the same letter are not significantly 
different according to Duncan’s multiple range test (P < 0.05). n = 25 for 
each treatment. 
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Figure 3. 4. Effect Brassica napus (L.) water extract of various concentrations on the shoot 
fresh weight (mg) over the control of Phalaris minor (P.m.), Convolvulus 
arvensis (C.a.) and Sorghum halepense (S.h.) 14 days after sowing.  
3.125%  6.25%   12.5%   25%. Bars with the same letter are not 
significantly different according to Duncan’s multiple range test (P < 0.05). 
n = 25 for each treatment. 
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Figure 3. 5. Effect Brassica napus (L.) water extract of various concentrations on the root 
fresh weight (mg) over the control of Phalaris minor (P.m.), Convolvulus 
arvensis (C.a.) and Sorghum halepense (S.h.) 14 days after sowing.  
3.125%  6.25%   12.5%   25%. Bars with the same letter are not 
significantly different according to Duncan’s multiple range test (P < 0.05).  
n = 25 for each treatment. 
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Chapter 4 

 

4. Allelopathic effect of Brassica napus L. tissues   
collected at different development stages on the 
suppression of weed species 
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4.1. Introduction  
 

As revealed in Chapters 2 and 3, it is clear that Brassica napus had a significant 

inhibitory effect on all three weed species when treated by water extracts from 

different plant parts at a range of concentration. In order to provide a deeper 

understanding of the mechanism of this inhibitory effect on weed species inhibition 

further studies were conducted on water extracts from different B. napus tissues 

(leaves, stems, flowers and roots) which were collected during different growth 

development time.  

It is well documented that members of the Brassicaceae family possess allelopathic 

metabolites whose profile and quantity is affected by the growth stages of the plant 

and the type of tissue from which they are extracted from (Chapter 1). 

The production of chemical substance (allelochemicals) depends on the 

development stages of plants and several environmental conditions (Tang et al., 

1995). Previously, Jafarieyazdi and Javidfar (2011) used water extracts from three 

species of brassica (B. napus, B. rapa and B. juncea) collected at two development 

stages significantly reduced sunflower germination, germination rate, shoot and root 

length and their weight. The most sensitive parameter to these water extracts was 

the root length.  

Several researchers have shown that the profile of glucosinolates and their 

concentration in species within the Brassicaceae were affected by plant parts and 

growth development stages (Booth and Walker 1992; Ludwig-Müller et al., 1999; 

Bartlet et al., 1999; Hasegawa et al., 2000; Bellostas et al. 2007; Alnsour et al., 

2013; Park et al., 2013).  Rosa et al. (1997) observed the glucosinolate content to 

be about 1% of dry weight in some parts of the Brassica spp and 10% in the seed.  
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Glucosinolate concentration in the Brassica species plant were significantly higher 

in the young leaves, shoots and silique walls, possibly due to the biosynthetic 

activities which are higher at these stages (Bennett et al., 1995; Bellostas et al., 

2004). Similar observations have been made by Booth et al (1991) who showed that 

glucosinolate levels decreased in the mature leaves, especially at the flowering and 

seeds stage.  

On other hand, the activity of plant myrosinase and its isoenzymes may demonstrate 

significant variances between and within Brassica species and cultivars, in different 

parts of the plants and between seasons. (Charron et al., 2005). Myrosinase activity 

was the highest in leaves, followed by developing seeds compared with the mature 

seeds (Atwal et al., 2009).  During early seedling growth the enzyme activity was 

significantly increased in Brassica napus tissues (James and Rossiter, 1991). 

4.2. Aims  

i. To quantify the effect of Brassica napus water extracts from different parts (stem, 

leaf, root and flower) collected at different growth development times on weed 

species suppression. 

ii. Determine the glucosinolate profile and myrosinase activity from different parts 

of Brassica napus at different growth development times to develop better weed 

management strategies for using B. napus. 
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4.3. Materials and methods 

4.3.1. Plant material 

 

Oilseed rape (Brassica napus L.) cv. PR46W21 were planted in 100 pots (19 cm-

diameter) March 2013.  Pots were filled using John Innes No. 2 sterilised loam based 

compost (Norwich, UK). Five seeds were planted at 01/02/2014 in each pot and 

placed in a poly-tunnel at Harper Adams University Edgmond, Newport, Shropshire, 

England, UK. Plants were watered when required. After two weeks, the plants were 

thinned to 2 plants per pot.  

Plants were collected at eight different growth times:  

1- Time 1 (T1) at 01/03/2014. 

2- Time 2 (T2) at 15/03/2014. 

3- Time 3 (T3) at 01/04/2014. 

4- Time 4 (T4) at 15/04/2014. 

5- Time 5 (T5) at 01/05/2014. 

6- Time 6 (T6) at 15/05/2014. 

7- Time 7 (T7) at 01/06/2014. 

8- Time 8 (T8) at 15/06/2014. 

4.3.2. Plant sampling and processing 

 

Fresh Brassica napus leaves, stems and roots from T1 to T8 and flowers from T7 

and T8, collected and transported to the laboratory using dry ice to inactivate 

endogenous myrosinase enzyme, and then and placed into separate plastic bags 

and stored at -80 °C before freeze-drying.  Frozen samples were dried using a 

GVD6/13 MKI freeze dryer, (GIROVAC Ltd, North Walsham, UK) for 6-7 days before 

being milled to a fine powder in a micro-grinder (Retsch GmbH Cyclone Mill-Twister, 
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Haan, Germany). Each milled samples was placed in a separate plastic bag and 

stored below -18° until required for water extracts preparation and glucosinolates 

analysis. 

4.3.3. Preparation of water extracts 

 

Water extracts were prepared based on the method described by AL- Sharif et al., 

(2013) with some minor modifications. One gram of freeze-dried material from the 

leaves, stems, roots and flowers from each plant development stages were soaked 

seperately in 100 ml distilled water for 24 h at room temperature (20oC± 2) to obtain 

water extracts. This solution was filtered through two sheets of filter paper 

(Whatman No.2) to remove the solid organic material.  

4.3.4. Bioassay 

 

Seeds (250) of test weeds [Phalaris minor (Retz.) (canary grass), Convolvulus 

arvensis (L.) (field bindweed) and Sorghum halepanses (L.) (Johnsongrass)] were 

prepared as previously described  ( Chapter 2,  section 2.2.2). 

Ten ml of extract solution from each plant parts collected at different development 

stages was added to each petri dish and distilled water was used as the control.  All 

Petri dishes were placed randomly in plant growth chambers (Sanyo MLR) at 25°C 

in dark conditions. Treatments were arranged in a completely randomized design 

(CRD) with factorial arrangements in six replications (5 Plant water extract types x 

8 times from (stem, leaf and root) and 2 times from flower for each weed species 

separetely.  
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4.3.5. Assessment 

 

Germination, shoot and root length and fresh weight of seedlings were measured 

as previously described  ( Chapter 2,  section 2.2.3). 

4.3.6. Determination of glucosinolate  
 

High Performance Liquid Chromatography (HPLC) (Agilent HPLC series 1100, 

Plate 4.1) was used to determine the different glucosinolates in Brassica napus. The 

following reagents were used for extraction and analysis of glucosinolates and 

obtained from Sigma Aldrich®, UK. 

 Sinigrin monohydrate  

 2M acetic acid 

 Formic acid 

 Imidazole 

 Sulfatase (β-glucuronidase) Type H-1 from Helix pomatia (10 KU) 

 Sephadex A-25 

 Sephadex C-25  

 Absolut Methanol  

 Acetonitrile 

4.3.6.1. Extraction of glucosinolates from Brassica napus material  

 

Glucosinolate concentrations from freeze-dried Brassica napus tissues were 

determined by using procedure described in ISO 9167-1-1992, and Brown et al. 

(2003). 

Three hundred mg of freeze-dried plant tissue were transferred to a 15 ml 

polypropylene tube and heated in a water bath at 75°C for 1 min.  Four ml of boiling 
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methanol 70% v/v were added to the polypropylene tubes containing freeze-dried 

plant tissue to deactivate the myrosinase enzyme. Tubes were incubated at 75°C 

for a further 10 min during which the tubes at were gently shaking at regular intervals 

before being allowed to cool.  The tubes were centrifuged at 5000 g for 10 min at 

4˚C (Beckman AvantiTM 30 High Speed Compact Centrifuge) and each sample was 

extracted twice and the supernatant was combined in a 15 ml polypropylene tube 

and 1µmol (200µl from a 5mM stock solution) of internal standard solution of sinigrin 

was added to the extract. The combined extracts were gently mixed and the volume 

adjusted to 5 ml.  

4.3.6.2. Purification and desulfation  

 

DEAE-Sephadex A-25 (Sigma Aldrich®, UK) is one of the weak anion exchangers 

with a diethyaminoethyl, hence the ion exchange stage was important in order to 

remove contaminating hydrophilic impurities that might interact with detection and 

quantification as well as binding to intact glucosinolates. To prepare the anion 

exchange resin column, a Pasteur pipette was placed on a stand and then a glass 

wool plug was placed in the constricted end of each pipette; 0.5 ml of DEAE-

Sephadex A-25 resin suspension was added to the pipette.  The column was rinsed 

with 2 ml of 6 M imidazole formats and allowed to derail, after which, it was washed 

twice with 1 ml deionised water.  One ml of the extract was added to the prepared 

column followed by 2x1 ml aliquots of sodium acetate buffer at pH 4, which were 

allowed to drain after each addition.  Then 75 µl of diluted purified sulfatase solution 

type H-1 from Helix pomotia was added to each column, and the column was 

covered by parafilm and allowed to incubate overnight at room temperature. The 

desulfo-glucosinolates were eluted with 3 x 0.33 ml aliquots of deionize water. Water 

was allowed to drain into HPLC vials after each addition and the vials were then 

capped for HPLC analysis.  
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4.3.6.3. HPLC analysis 

  

The different glucosinolates and their concentrations in rapeseed were determined 

using High Performance Liquid Chromatography (HPLC) (Agilent HPLC series 

1100, Waldbronn, Germany).  A reverse-phase gradient HPLC column Spherisop® 

RP-C18 ODS-2 (250X 4.6mm, Phenomenex Inc. Macclesfield, UK) with a particle 

size of 5 µm was used. The mobile phase consisted of eluent-A (deionised water) 

and eluent-B (acetonitrile/ deionised water, 70:30 v/v).   Ten µl of each sample was 

auto-injected into the column.  A linear gradient was carried out from 0-30% eluent 

B over a period of 18 min, and held at 30% eluent B for 1min prior to returning to 

0% eluent B for 1min. This was followed by an equilibrium establishment over 6 min 

and a post – run time of 2 min. The desulfo-glucosinolates were determined at a 

flow rate of 1.5 ml min-1 at 30 oC and a UV wavelength of 229 nm. Glucosinolate 

concentrations were calculated using equation (4.2) where, Ag= peak area of 

relative GSL, As = peak area of the internal standard hused, n= amount (µmol) of 

the IS used, m= Mass (g) of freeze-dried test sample and RRF = relative response 

factor of the glucosinolate. Total and individual glucosinolates are expressed as 

μmol g-1. 

GSL concentrations =
Ag

As
×

n

m
  RRF                                          (4.2)  

4.3.7. Determination of myrosinase activity  

 

The myrosinase activity was based on the release of glucose through the reaction 

between sinigrin and myrosinase.  Myrosinase activity was determined using a 

spectrophotometer in water extracts prepared from different parts of B. napus ( 

leaves, stems, roots and flowers), according to enzymatic assay procedure 

previously described with minor modifications (Sigma Aldrich®, UK).  Plant tissue 
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samples were prepared as described previously (see section 4.3.2) and were used 

to determine the myrosinase activity.  

Sample solutions were prepared by adding 0.2 mg from grounded leaf, stem, root 

and flower of B. napus to 5 ml deionized water and centrifuged for 5 min at  5000 g 

for 10 min at 4˚C (Beckman AvantiTM 30 High Speed Compact Centrifuge) to 

remove debris.  The supernatant was moved in a 10 ml polypropylene tube and 

stored at 4˚C in the ice box until used.  Sinigrin 4.8 mM solution was prepared by 

dissolving a 199.39 mg of potassium allylglucosinolate monohydrate in 100 ml of 

126 mM sodium phosphate buffer with 37 mM citric acid and 1 mM ascorbic acid 

adjusted to pH 6 at 25°C.  Nine ml from of sinigrin solution was added to 15 ml 

polypropylene tube and equilibrated to 25 ̊ C and 1 ml of the supernatant was added 

to the sinigrin solution, immediately mixed by inversion and incubated for exactly 10 

min.  Three mg of glucose was dissolved in 3 ml of deionized water and added into 

suitable cuvettes equilibrated to 25 ˚C than 0.10 ml from mixed sinigrin solution with 

supernatant was add to glucose solution in cuvettes and immediately mixed and 

record the increase in A340nm for approximately 5-10 min until constant.  Myrosinase 

activity was calculated using equation (4.3) where,  

10 = Total volume (in milliliters) of mixed solution ( 9 ml sinigrin + 1ml supernatant) 

3.1 = Total volume (in milliliters) of mixed solution (3 ml glucose solution + 0.10 ml 

of mixed solution of sinigrin and supernatant). 

df = Dillution factor  

1 =  volume of supernatant solution (in milliliters) 

0.1 = volume of mixed sinigrin and supernatant solution (in milliliters) 

10 = Time of incubated of mixed sinigrin and supernatant solution ( in minutes) 

Units ml enzyme =
(∆A340nm Test) (10) (3.1) (df)

(1) (0.1) (10)
⁄                (4.3) 
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4.3.8. Statistical analysis 

 

Treatments were arranged in a completely randomized design (CRD) with factorial 

arrangements in six replications [5 plant water extract types x 8 plant development 

stages from 1-8 for (stem, root and leaf)] and from 7-8 for flower. A general analysis 

of variance (ANOVA) two –way was carried out to analyse the experiment results 

from each weed sepcies separately using GenStat® 15th Edition (VSN international, 

Hemel Hemstead, UK). Also, two –way ANOVA was carried out to analyse the 

results of Glucosinolatet concetrations and myrosinase activity using GenStat® 15th 

Edition (VSN international, Hemel Hemstead, UK) [4 plant parts x 8 plant 

development stages from 1-8 for (stem, root and leaf)] and from 7-8 for flower with 

six replications. Where necessary, data were log10-transformed to normalise 

residuals. A Duncan multiple range test was used to compare the differences 

between means of treatments at level (P < 0.05). Regression analysis was also 

applied to determine the relationship between different characters 

4.4. Results 
 

4.4.1. Bioassay 
 

4.4.1.1. Seed germination % 

 

The effect of using water extracts from different parts of Brassica napus at different 

development stages on seed germination% of P. minor (Retz.), C. arvensis (L.) and 

S. halepense (L.) is demonstrated in figures 4.1, 4.2 and 4.3.  The results of the data 

analysis showed that water extracts from all parts of Brassica napus, collected at 

different development stages, significantly (p<0.001) inhibited seed germination % 

of all three weed species as compared with control (Figure 4.1, 4.2 and 4.3) and 

(Table 4.1). Seed germination of P. minor was completely inhibited in petri dishes 
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when treated with water extract from flowers at T7 and T8 and germination was 

reduced by 100%.  Also, water extract from stems was found to be more effective 

on P. minor germination at theT1, T3 and T6 development stages when compared 

with water extract from leaves and roots at the same development stages, with 

germination suppressed by up to 82%, 88.6% and 84.5% respectively.  

Almost a similar trend was found with applying water extracts from all plant parts in 

T7 and T8 on C. arvensis and S. halepense with the water extract from flowers 

appearing to be the most effective in suppressing the germination (Figure 4.2 and 

4.3).  The germination of C. arvensis was inhabited by up to 97.9% and 100% 

respectively, while also S. halepense germination was reduced by up to 96.9% and 

98.9% respectively.  

The extract from stems at T1 was the most effective in suppressing the germination 

of C. arvensis compared with leaf and root extracts.  However, in T2 and T3, the 

greatest inhibition of C. arvensis germination was demonstrated when leaf and root 

extracts were applied.  Also, the water extract from stems and leaves in T7 and T8 

revealed a strong effect on C. arvensis germination compared with other 

development stages. However, no significant effect was found between stem, leaf 

and root extracts in T4 and T5 (Figure 4.2).  On the other hand, S. halepense 

germination was highly inhibited by applying water extract from stems, leaves and 

roots in T1, T2, T3 and T5.  In T6, stem and root extracts were the most effective on 

S. halepense germination when compared with application of leaf extracts (Figure 

4.3). The relationship between and seed germination % of P. minor C. arvensis and 

S. halepense and total GSL concentration was weak and non-significant (R2 = 

0.0831, R2 = 0.0136 and R2 = 0.0081) (Figure 4.4 A, B and C) 
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Figure 4.1. Effect of B. napus water extracts from (stem, root and leaf) collected at different 
times after germination (T1-T8) and flower collected at (T7 and T8) on the 
germination (%) of Phalaris minor 14 days after sowing. Bars with the same 
letter in each growth stage are not significantly different according to 
Duncan’s multiple range test (P < 0.05). ). Error bars represent the standard 
error of the mean. n = 192 for each treatment. 

 

 

Figure 4.2. Effect of B. napus water extracts from (stem, root and leaf) collected at different 
times after germination (T1-T8) and flower collected at (T7 and T8) on the 
germination (%) of Convolvulus arvensis 14 days after sowing. Bars with 
the same letter in each growth stage are not significantly different according 
to Duncan’s multiple range test (P < 0.05). ). Error bars represent the 
standard error of the means. n = 192 for each treatment. 
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Figure 4.3. Effect of B. napus water extracts from (stem, root and leaf) collected at 
different times after germination (T1-T8) and flower collected at (T7 
and T8) on the germination (%) of Sorghum halepense 14 days after 
sowing. Bars with the same letter in each growth stage are not 
significantly different according to Duncan’s multiple range test (P < 
0.05). ). Error bars represent the standard error of the mean. n = 192 

for each treatment. 
 
 

 

 

 

 

 

 

 

 

 

c c c b c c d d

ab

a a

a

a
a

c
b

a
a a

a
b

b

ab b

b

b
b

a b
a bc

c

a a

0

10

20

30

40

50

60

70

80

90

100

T1 T2 T3 T4 T5 T6 T7 T8

ge
rm

in
at

io
n

%

Growth development stages

control

stem

leaf

root

flower



96 
 

 

 

 

 

Figure 4.4. Relationships between seed germination (%) of Phalaris minor (A), Convolvulus 
arvensis (B), Sorghum halepense (C) and Total glucosinolate (GSLs) 
concentration during different development stages after 14 days. 
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4.4.1.2. Shoot length (cm) 

 

Figures 4.5, 4.6 and 4.7 and Anova variance table 4.2 illustrate the effect of water 

extracts from different plant parts at different development stages. The shoot length 

data of all three weed species P. minor (Retz.), C. arvensis (L.) and S. halepense 

(L.) showed significant (P< 0.001) effects from all water extracts from all different 

plant parts at different development stages on shoot length as compared with the 

control. 

It was observed that flower water extract at T7 and T8 completely inhibited the 

germination of P. minor by 100% and that means no seeds germinated under these 

treatments, thus the P. minor shoot length reduced by 100%. The next best 

treatment was leaf water extract at T7 and T8, and the shoot length of P. minor was 

suppressed by 53.5% and 100% respectively. Additionally, water extract from stems 

at T1, T2, T3 and T6 significantly affected P. minor shoot length and were reduced 

up to 36.2%, 62.5%, 29.8% and 16.4% respectively. 

Meanwhile, similar results were observed with applying flower water extract at T7 

and T8 on C. arvensis and S. halepense. The shoot length of C. arvensis was 

reduced up to 93.8% and 100% respectively, while reductions in S. halepense shoot 

length were 87.3% and 93.4 respectively ( Figure 4.6 and 4.7).  Root water extract 

appeared to be the most effective treatment in suppressing C. arvensis shoot length 

at T1, T2, T4, T5 and T6, followed by water stem extracts.  Moreover, water extracts 

from stems, leaves and roots at T3, T5 and T6 significantly reduced S. halepense 

shoot length but there is no significant differences between the treatments.  Stems 

extract at T1 and T2 was the most effective on S. halepense shoot length. A weak 

realationship was ound between the shoot length of all three weed species P. minor 

(Retz.), C. arvensis (L.) and S. halepense (L.) and total GSL concentration (R2 = 

015, R2 = 0.002 and R2 = 0.12) respectively (Figure 4.8 A, B and C) 
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Figure 4.5. Effect of B. napus water extracts from (stem, root and leaf) collected at different 
times after germination (T1-T8) and flower collected at (T7 and T8) on the 
shoot length (cm) of Phalaris minor 14 days after sowing. Bars with the 
same letter in each growth stage are not significantly different according to 
Duncan’s multiple range test (P < 0.05). ). Error bars represent the standard 

error of the mean. n = 192 for each treatment. 
 

 

Figure 4.6. Effect of B. napus water extracts from (stem, root and leaf) collected at different 
times after germination (T1-T8) and flower collected at (T7 and T8) on the 
shoot length (cm) of Convolvulus arvensis 14 days after sowing. Bars with 
the same letter at different growth stages are not significantly different 
according to Duncan’s multiple range test (P < 0.05). ). Error bars represent 
the standard error of the mean. n = 192 for each treatment. 
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Figure 4.7. Effect of B. napus water extracts from (stem, root and leaf) collected at different 
times after germination (T1-T8) and flower collected at (T7 and T8) on the 
shoot length (cm) of Sorghum halepense 14 days after sowing. Bars with 
the same letter in each growth stage are not significantly different according 
to Duncan’s multiple range test (P < 0.05).  Error bars represent the 
standard error of the mean. n = 192 for each treatment. 
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Figure 4.8. Relationship between root length (cm) of Phalaris minor (A), Convolvulus 
arvensis (B), Sorghum halepense (C) and Total glucosinolate (GSLs) 
concentrations during different development stages after 14 days. 
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4.4.1.3. Root length (cm) 

 

The results of the data presented in figure 4.9, 4.10 and 4.11 and Anova variance 

table 4.3 revealed that water extract from all B. napus parts at all different 

development stages significantly (P<0.001) affected the root length of P. minor 

(Retz.), C. arvensis (L.) and S. halepense (L.) as compared with the control 

treatment.  The root length of P. minor was completely inhibited when water extracts 

stems or leaves were applied at T1 and T8 respectively, and also flower water 

extract at T7 and T8 suppressed root length of P. minor completely.  In T2 and T6, 

there was no significant effect was between suppression from stem or leaf extracts, 

however both treatments reduced P. minor significantly compared with the water 

extract made from root. Moreover, the stem extract at T3 and T4 was most effective 

on P. minor compared with extract from leaves and roots. Meanwhile, similar results 

were observed from using flower water extracts at T7 and T8 on C. arvensis root 

length, as it was inhibited significantly by up to 96.3% and 100% respectively (Figure 

4.8).  At the T1, water extract from stems was the most effective treatment on C. 

arvensis root length as compared with other treatments. At the T2 the difference 

between stem water extract treatments and water extract from roots was not 

significant.  Roots extract at T5 and T6 appeared to be the most effective treatments 

in suppressing C. arvensis root length, followed by stem and leaf extracts. 

Root length S. halepense was completely inhibited when treated with water extract 

from flowers at T7 and T8.  Stem extract collected at T1-T5 appeared to be the most 

effective treatments in reducing S. halepense root length, with the next best 

treatment being water extract from leaves.  Stem, leaf and root extract collected at 

T6 reduced S. halepense root length as compared with the control, but the 

difference between them was not significant. A weak realationship was found 
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between the root length of all three weed species P. minor (Retz.), C. arvensis (L.) 

and S. halepense (L.) and total GSL concentration (R2 = 005, R2 = 0.3 and R2 = 

0.57) respectively (Figure 4.12 A, B and C) 

 

 

 

 

Figure 4.9. Effect of B. napus water extracts from (stem, root and leaf) collected at different 
times after germination (T1-T8) and flower collected at (T7 and T8) on the 
root length (cm) of Phalaris minor 14 days after sowing. Bars with the same 
letter in each growth stage are not significantly different according to 
Duncan’s multiple range test (P < 0.05). ). Error bars represent the standard 
error of the mean. n = 192 for each treatment. 
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Figure 4.10. Effect of B. napus water extracts from (stem, root and leaf) collected 

at different times after germination (T1-T8) and flower collected at (T7 and T8) on 

the root length (cm) of Convolvulus arvensis 14 days after sowing. Bars with the 

same letter in each growth stage are not significantly different according to Duncan’s 

multiple range test (P < 0.05). ). Error bars represent the standard error of the mean. 

n = 192 for each treatment. 

 

Figure 4.11. Effect of B. napus water extracts from (stem, root and leaf) collected at different 
times after germination (T1-T8) and flower collected at (T7 and T8) on the 
root length (cm) of Sorghum halepense 14 days after sowing. Bars with the 
same letter in each growth stage are not significantly different according to 
Duncan’s multiple range test (P < 0.05). ). Error bars represent the standard 
error of the mean. n = 192 for each treatment. 
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Figure 4.12. Relationship between shoot length (cm) of Phalaris minor (A), Convolvulus 
arvensis (B), Sorghum halepense (C) and Total glucosinolate (GSLs) 
concentrations during different development stages after 14 days. 
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4.4.1.4. Shoot fresh weight (mg) 
 

The mean fresh weight of P. minor shoots (Retz.), C. arvensis (L.) and S. halepense 

(L.) are demonstrated in figure 4.13, 4.14 and 4.15 and Anova variance table 4.4.  

Water extracts from all B. napus parts collected at each development stage 

excluding T6 significantly (p< 0.001) reduced the fresh shoot weight of all three 

weed species as compared with the control.  It was revealed that stem extracts 

collected at T1, T2, T3, T4 and T5 was the most effective treatment on P. minor as 

compared with other treatments where fresh weight of shoots were reduced by up 

to 29.25%, 36.7%, 67.5%, 27.2% and 32.1% respectively. Meanwhile, at T1 to T5, 

the difference between leaf water extract, and root water extract treatments was not 

significant (Figure 4.10). However, the flower extracts collected at T7 and the flower 

and leaf extracts collected at T8 appeared to be the most effective treatment in 

inhibiting P. minor fresh shoot weight (100% reduction) . 

 Flower water extract collected at T7 and T8 was significantly affected the fresh 

weight of C. arvensis and inhibited by up to 93.2% and 100% respectively as 

compared with the control (Figure 4.13).  Additionally, the shoot fresh weight of C. 

arvensis was strongly inhibited by stem extract collected at T1, by up to 86.1%. 

Water extracts produced at T2, T5 and T6, from stem and root extracts were the 

most effective treatments on the fresh weight of C. arvensis shoots as compared 

with control and leaf extracts (Figure 4.13). 

Shoot fresh weight of S. halepense was significantly (P<0.001) reduced by all B. 

napus water extracts collected as illustrated in Figure 4.14.  At both growth stages 

T1 and T2, stem extract significantly inhibited S. halepense shoot fresh weight 

compared with other treatments.  No significant differences were found between 

stems, leaves and roots at growth stages T3, T5, T6, T7 and T8.   However, stem 

and root water extracts significantly reduced the S. halepense shoot fresh weight at 
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T4 compared with leaf extract.  At growth stages T7 and T8, the flower extract 

appeared to be the most effective treatment in suppressing the fresh weight of S. 

halepense shoots showing significant (P<0.001) reductions of by up to 88.4% and 

93.9% respectively. A weak realationship was found between the shoot fresh weight 

of all three weed species P. minor (Retz.), C. arvensis (L.) and S. halepense (L.) 

and total GSL concentration (R2 = 0.05, R2 = 0.0005 and R2 = 0.11) respectively 

(Figure 4.16 A, B and C) 

 

Figure 4.13. Effect of B. napus water extracts from (stem, root and leaf) collected at different 
times after germination (T1-T8) and flower collected at (T7 and T8) on the 
shoot fresh weight of Phalaris minor 14 days after sowing. Bars with the 
same letter in each growth stage are not significantly different according to 
Duncan’s multiple range test (P < 0.05). ). Error bars represent the standard 
error of the mean. n = 192 for each treatment. 
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Figure 4.14. Effect of B. napus water extracts from (stem, root and leaf) collected at different 
times after germination (T1-T8) and flower collected at (T7 and T8) on the 
shoot fresh weight of Convolvulus arvensis 14 days after sowing. Bars with 
the same letter in each growth stage are not significantly different according 
to Duncan’s multiple range test (P < 0.05). ). Error bars represent the 
standard error of the mean. n = 192 for each treatment. 

 

Figure 4.15. Effect of B. napus water extracts from (stem, root and leaf) collected at different 
times after germination (T1-T8) and flower collected at (T7 and T8) on the 
shoot fresh weight of Sorghum halepense 14 days after sowing. Bars with 
the same letter in each growth stage are not significantly different according 
to Duncan’s multiple range test (P < 0.05). ). Error bars represent the 
standard error of the mean. n = 192 for each treatment.  
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Figure 4.16. Relationship between shoot fresh weight (g) of Phalaris minor (A), Convolvulus 
arvensis (B), Sorghum halepense (C) and Total glucosinolate (GSLs) 
concentrations during different development stages after 14 days. 
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4.4.1.5. Root fresh weight (mg) 

 

Phalaris minor (Retz.), Convolvulus arvensis (L.) and Sorghum halepense root fresh 

weight was significantly (p<0.001) affected by water extract from all parts of B. 

napus under different growth stages compared with control, as illustrated in Figures 

4.17, 4.18 and 4.19 and Anova variance table 4.5.   At growth stages T1 and T2, no 

significant differences were found between stem and leaf water extract, but both 

treatments highly affected P. minor root fresh weight and were significantly inhibited 

by 100% and 85.7%, 92.5% and 92.6% respectively (Figure 4.17). Stem extract 

collected at growth stage T3 and T4 was significantly reduced P. minor root fresh 

weight compared to the leaf and root extract. Moreover, at growth stages in T5 and 

T6, there was no significant difference revealed between stems, leaves and roots 

on their effect on P. minor root fresh weight, however all three treatments 

significantly reduced the root fresh weight of P. minor as compared with control.  

Meanwhile, flower extracts collected at T7, and flower and leaf extract collected at 

T8 appeared to provide the most effective reduction of P. minor as compared with 

other treatments, with root fresh weight was suppressed completely. 

Convolvulus arvensis root fresh weight was significantly (p>0.001) reduced by water 

extract collected at different plant development stages as shown in figure 4.18. Stem 

and leaf extracts collected at T1 and stem extracts at T2 were the most effective 

treatments in reducing root fresh weight of C. arvensis compared with other extracts 

and the control.  Meanwhile, at growth stages T3, T4, T5 and T6, there were no 

significant differences between stem, leaf and root extracts and all three extracts 

were significantly reduced fresh root weight of C. arvensis in comparison with the 

control.  The root fresh weight of C. arvensis was significantly affected by flower 

extract collected at T7 and reduced by 94.8%. Moreover, root fresh weight of C. 

arvensis was inhibited completely by flower extract collected at T8, and this was 
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followed by leaf extract. Flower extract collected at growth stages T7 and T8 were 

the most effective treatments in reducing root fresh weight of S. halepense (Figure 

4.19).  Moreover, at growth stage T1 stem extract completely inhibited the S. 

halepense root fresh weight. Similarly at T2, the greatest reduction of root fresh 

weight was observed on by applying stem extracts. A weak realationship was found 

between the root fresh weight of all three weed species P. minor (Retz.), C. arvensis 

(L.) and S. halepense (L.) and total GSL concentration (R2 = 0.0002, R2 = 0.24 and 

R2 = 0.02) respectively (Figure 4.20 A, B and C) 

 

 

Figure 4.17. Effect of B. napus water extracts from (stem, root and leaf) collected at different 
times after germination (T1-T8) and flower collected at (T7 and T8) on the 
root fresh weight (mg) of Phalaris minor 14 days after sowing. Bars with the 
same letter in each growth stage are not significantly different according to 
Duncan’s multiple range test (P < 0.05). Error bars represent the standard 
error of the mean. n = 192 for each treatment. 
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Figure 4.18. Effect of B. napus water extracts from (stem, root and leaf) collected at different 
times after germination (T1-T8) and flower collected at (T7 and T8) on the 
root fresh weight (mg) of Convolvulus arvensis 14 days after sowing. Bars 
with the same letter in each growth stage are not significantly different 
according to Duncan’s multiple range test (P < 0.05). Error bars represent 
the standard error of the mean. n = 192 for each treatment. 

 

 

Figure 4.19. Effect of B. napus water extracts from (stem, root and leaf) collected at different 
times after germination (T1-T8) and flower collected at (T7 and T8) on the 
root fresh weight (mg) of Sorghum halepense 14 days after sowing. Bars 
with the same letter in each growth stage are not significantly different 
according to Duncan’s multiple range test (P < 0.05). Error bars represent 
the standard error of the mean. n = 192 for each treatment. 
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Figure 4.20. Relationship between root fresh weight (g) of Phalaris minor (A), Convolvulus 
arvensis (B), Sorghum halepense (C) and Total glucosinolate (GSLs) 
concentrations during different development stages after 14 days.
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Table 4.1. Analysis of variance relating to the effect of water extract from different B napus parts collected at different growth development 
stages seed germination % of weed species 

Source of variation d.f. Mean squares 

Germination (%) 

Phalaris minor Convolvulus arvensis Sorghum halepense 

 
Plant development stages 

 
7 
 

 
621.35** 

    
1269.94**   

 
337.93** 

Plant parts  
 

3 62843.58** 38164.24** 43703.60** 

Plant development stages x Plant 
parts  

 

21 263.02** 586.06** 278.01** 

Residual 160 
 

31.15 26.61 33.83 

Total 191    
 

CV%  14.8 12.9 18.8 
 

SEM  5.581 5.159 5.816 
 

                          **Significant at 1% probability level, *Significant at 5% probability level, NS = Non-significant 
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Table 4.2. Analysis of variance relating to the effect of water extract from different B. napus parts collected at different growth development 
stages on shoot length (cm) of weed species 

Source of variation d.f. Mean squares 

Shoot length 

Phalaris minor Convolvulus arvensis Sorghum halepense 

 
Plant development stages 

 
7 
 

 
31.5854** 

    
105.7752**   

 
217.900** 

Plant parts  
 

3 98.0017** 123.2010** 307.836** 

Plant development stages x Plant 
parts  

 

21 11.4716** 13.5432** 11.168** 

Residual 160 
 

0.8983 0.7265 2.734 

Total 191    
 

CV%  17.4 9.1 13.3 
 

SEM  0.9478  0.8523 1.653 

                          **Significant at 1% probability level, *Significant at 5% probability level, NS = Non-significant 
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Table 4.3. Analysis of variance relating to the effect of water extract from different B. napus parts collected at different growth development 
stages on root length (cm) of weed species 

Source of variation d.f. Mean squares 

Root length 

Phalaris minor Convolvulus arvensis Sorghum halepense 

 
Plant development stages 

 
7 
 

 
36.0158** 

    
62.0083**   

 
24.5988** 

Plant parts  
 

3 80.6982** 355.3867** 111.1180** 

Plant development stages x Plant 
parts  

 

21 5.5649** 22.9085** 3.8503** 

Residual 160 
 

0.3604 0.6983 0.5309 

Total 191    
 

CV%  19.7 12.8                       20.8 
 

SEM  0.6003  0.8356 0.7286 

                          **Significant at 1% probability level, *Significant at 5% probability level, NS = Non-significant 
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Table 4.4. Analysis of variance relating to the effect of water extract from different B. napus parts collected at different growth development 
stages on shoot fresh weight (mg) of weed species 

Source of variation d.f. Mean squares 

Shoot fresh weight 

Phalaris minor Convolvulus arvensis Sorghum halepense 

 
Plant development stages 

 
7 
 

 
74.94** 

    
11481**   

 
1576.56** 

Plant parts  
 

3 231.729** 5584** 4767.58** 

Plant development stages x Plant 
parts  

 

21 32.556** 8366** 128.63** 

Residual 160 
 

2.414 3871 44.28 

Total 191    
 

CV%             20.3        76.5                         22.0 
 

SEM      1.554  62.22 6.654 

                           **Significant at 1% probability level, *Significant at 5% probability level, NS = Non-significant 
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Table 4.5. Analysis of variance relating to the effect of water extract from different B. napus parts collected at different growth development 
stages on root fresh weight (mg) of weed species 

Source of variation d.f. Mean squares 

Root fresh weight 

Phalaris minor Convolvulus arvensis Sorghum halepense 

 
Plant development stages 

 
7 
 

 
18.5771** 

    
485.78**   

 
46.496** 

Plant parts  
 

3 125.5564** 4254.15** 273.013** 

Plant development stages x Plant 
parts  

 

21 5.9051** 89.21** 9.935** 

Residual 160 
 

0.4120 16.02 1.030 

Total 191    
 

CV%    24.2         23.6                       23.5 
 

SEM  0.6418  4.002 1.0147 

                           **Significant at 1% probability level, *Significant at 5% probability level, NS = Non-significant 
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4.4.2. Individual and total glucosinolates concentrations 

 

Ten glucosinolates (GSL) from different parts of B. napus were determined in the 

present study; glucoberin, progoitrin, epi- progoitrin, gluconapin, glucobrassinapin, 

glucoraphanin, glucobrassicin, 4OH glucobrassicin, neoglucobrassicin and 

gluconasturtiin.  

4.4.2.1. Effect of different B. napus parts at different plant growth stages on             
the concentration of individual glucosinolates 

 

There were great differences in the concentration of glucosinolates between the 

different plant parts at different plant growth stages. There was significant (P< 0.001) 

difference in the concentration of progoitrin, glucoraphanin, gluconapin and 

gluconasturtiin at different plant growth stages in B. napus stems (Figure 4.21). 

The concentration of progoitrin was increased at growth stage T3, T7 and T8 and it 

was followed by treatment T6 and T5. However, progoitrin concentration at T1, T2 

and T4 was significantly lower than other development stages. Glucoraphanin and 

gluconapin were not found at T1. The highest concentration of glucoraphanin was 

observed at T3 followed by T4. Gluconapin concentration was significantly higher at 

T5 than other development stages. Gluconasturtiin was one of the dominant 

glucosinolates in stem tissue and the concentration significantly (P<0.001) 

increased at plant development stage T1.   

  The lowest concentration of progoitrin in B napus roots was observed at plant 

development stages T1 and T2, however the concentration was significantly 

(p<0.001) higher in other development stages. The highest concentration of 

progoitrin was found at T5 and T6 followed by T8.    
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Glucoraphanin concentration in roots was low in all plant development stages. 

However, the concentration slightly increased with increasing plant age.  A similar 

trend was found with gluconapin. Gluconasturtiin concentration was significantly 

(p<0.001) higher in B. napus roots at T1, than other stages, although the 

concentration increased again at flowering stage.   

Low concentration of all glucosinolates; progoitrin, glucoraphanin, gluconapin and 

gluconasturtiin was observed in B. napus leaf extract at T1 , T2,  and also in the T7 

as no glucoraphanin and gluconasturtiin were found in this stage.  Progoitrin 

concentration was found to be significantly higher in different plant development 

stages T3, T4 and T6, followed by T5 (Figure 4.22). Figure 4.23 demonstrates who 

the concentration of glucosinolates was affected by plant development stages in the 

flower extract. Progoitrin concentration increased in flower extract at both plant 

development stages T7 and T8. Also, gluconapin and gluconasturtiin concentration 

significantly increased at T8 in comparison to T7. 

Figure 4.21. Glucosinolate concentration in the stems of B. napus at different times 

after germination (T1-T8). Bars with the same letter in each growth stage are not 

significantly different according to Duncan’s multiple range test (P < 0.05). Error bars 

represent the standard error of the mean. n = 8 for each treatment.  
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Figure 4.22. Glucosinolate concentration in the roots of B. napus at different times after 
germination (T1-T8). Bars with the same letter in each growth stage are not 
significantly different according to Duncan’s multiple range test (P < 0.05). 

Error bars represent the standard error of the mean. n = 8 for each 
treatment. 

 

Figure 4.23. Glucosinolate concentration in the leaves of B. napus at different times after 
germination (T1-T8). Bars with the same letter in each growth stage are not 
significantly different according to Duncan’s multiple range test (P < 0.05). 

Error bars represent the standard error of the mean. n = 8 for each 
treatment. 
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Figure 4.24. Glucosinolate concentration in the flowers of B. napus at different times after 
germination (T7-T8). Bars with the same letter in each growth stage are not 
significantly different according to Duncan’s multiple range test (P < 0.05). 

Error bars represent the standard error of the mean. n = 8 for each 
treatment. 

 

  4.4.2.2. Effect of different B. napus parts at different plant growth stages on 

total glucosinolates concentration  

There was significant (p<0.001) difference in the concentration of total 

glucosinolates in various parts of Brassica napus at different development stages 

(Figure 4.25). Total glucosinolates concentration in roots at development stages T1, 

T5 and T8 was significantly (p<0.001) higher as compared with concentration of 

total glucosinolates at T2, T3, T4, T6 and T7.  Meanwhile, the concentration of total 
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with other development stages. Whereas the total concentration of glucosinolates 
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development ages, while the total glucosinolate in the leaf extracts increased in 

mature development stages and the higher concentration was recorded at T7 and 

T8.  
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In general, the total and individual GSL concentration in flowers extract was 

significantly higher (p > 0.001) than other parts. Also the total GSL concentration in 

roots was significantly higher (P > 0.001) than GSL concentration in stems and 

leaves (Figure 4.25). 

 

Figure 4.25. Total glucosinolate concentration in the B. napus parts at different times after 
germination (T1-T8). Bars with the same letter in each growth stage are not 
significantly different according to Duncan’s multiple range test (P < 0.05). 

Error bars represent the standard error of the mean. n = 8 for each 
treatment. 

 

4.4.3. Effect of different B. napus parts at different plant growth stages on             
myrosinase enzyme activity 

 

There were significant (P <0.05) differences in the activity of myrosinase between 

different B. napus tissues and plant development stages (Figure 4.26). Myrosinase 

activity in root extracts at T2 was significantly (p=0.007) higher than other plant 

development stages, with the enzyme activity reducing with increasing plant age.  

The myrosinase activity in stem extracts was significantly (p<0.001) highest at T2, 

T3, T4 and T5, but was found to reduce at later development stages.  In comparison, 

the levels of myrosinase activity in leaf extracts were significantly than root or stem 

extracts.  The highest enzyme activity in leaf extracts was determined at T4 and T5. 
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Flower extract, myrosinase activity was not found to be significantly different 

between stages T7 and T8.  However, the enzyme activity was the highest in flower 

extracts when compared with the enzyme activity root, stem and leaf extracts. 

 

Figure 4.26. Myrosinase activity in the B. napus parts at different times after    germination 
(T1-T8). Bars with the same letter in each growth stage are not significantly 
different according to Duncan’s multiple range test (P < 0.05). Error bars 

represent the standard error of the mean. n = 8 for each treatment. 
 

4.5. Discussion 

 

4.5.1 Weeds species germination and seedling growth 
 

In the last three decades, the effect of water extracts from crop plants such as B. 

napus on weed species germination and seedling growth has received additional 

attention by researchers (Tawaha and Turk, 2003; Wakjira et al., 2005; Uremis et 

al., 2009; Toosi and Baki, 2012; Modhej et al., 2013; Al-Sherif et al., 2013; Walsh et 

al., 2014).  This study of water extracts from different plant parts at different 

development stages has demonstrated variability in germination and seedling 

growth of P. minor (Retz.), C. arvensis (L.) and S. halepense. As presented in 
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section 4.4.1.1, the germination of all three weed species significantly was reduced 

by applying water extract from all plant parts and at all plant development stages 

compared to the control.  However, inhibition of weed species germination 

depended on the type of extract used.  The results obtained in this present study 

are in congruent with other studies that documented variation in the suppressive 

effect of allelopathic plants depending on the type of plant tissue selected (Chon 

and Kim, 2002; Turk and Tawaha, 2002; Turk and Tawaha; 2003). For example, 

Turk and Tawaha (2003), found that leaf water extracts from Brassica nigra were 

the most effective on wild barley (Hordeum spontaneum). Additionally, Tollsten and 

Bergstrom (1988) observed that allyl-isothiocyanates (ITC) isolated from B. nigra 

residues suppressed  the germination of grass species in a natural grassland, Also 

found that the Brassica alba can  produce a Benzyl-ITC, who  was able to inhibited 

seed germination and seedling growth of Abutilon theophrast (velvetleaf), Senna 

obtusifolia L., Cassia obtusifolia L. (sicklepod), and sorghum (Sorghum bicolor (L.). 

The variation between the effect on plant development stages and on germination 

of weed species could be due the differences among individual and total 

glucosinolates concentrations found in B. napus at different plant development 

stages. These results match with data observed by Brown et al., (2003) and 

Redovniković et al., (2008), who reported differences between the glucosinolate 

profiles and their concentrations in the different plant parts and during B. napus 

developmental stages.  Meanwhile, no germination was recorded when flower water 

extract collected at T7 and T8, was applied and the reduction was 100%.  These 

results are in agreement with that reported by (Abdel-Farid et al., 2014), who found 

that canola seeds were very sensitive to flower water extract of Calotropis procera 

as compared with the other parts.  
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In general, all weed species germination had similar sensitivity to stem, leaf and root 

extracts at T4 and T5.  The allopathic effect caused by extracts from B. napus stems, 

leaves and roots appears to be a consequence of the bioactivity of same chemical 

compounds produced by hydrolysis of glucosinolates (Angus et al., 1994; Buskov 

et al., 2002; Bellostas et al., 2007). On the other hand, C. arvensis germination was 

completely suppressed by applying flower extract at plant developmental stages 

during T8 and the redaction was 100% and also at T7, it was the most effective as 

well as with S. halepense germination. These results may be due to high 

concentrations of progoitrin, total glucosinolates and the allyl-isothiocyanates (ITC) 

product from flower water extract through GSLs hydrolysis by enzyme myrosinase 

during the flowering stage.  These findings are in line with those reported by 

Peterson et al., (2001), Malik et al., (2010) and Modhej et al., (2013). They reported 

that the inhibition in weed germination by Brassica spp. was probably due to 

isothiocyonamatic compounds which had high ability to suppress the seed 

germination. In additional, Malik, 2009; have been found the highest level of GSLs 

in flower of Wild radish (Raphanus raphanistrum), and the most dominant GSLs 

were glucotropaeolin, glucobrassicin and glucoraphanin. 

All dominant glucosinolates present in this study are degraded to isothiocyanates, 

which are linked with weed inhibition (Song et al., 2005; Uremis et al., 2009; Malik 

et al., 2010).  Furthermore, Sorghum halepense germination appears to be the most 

sensitive species for all water extracts from various plant tissues.   

4.5.2. Weed species shoot and root length 

 

Observations of applying water extracts from all B. napus parts during all plant 

development stages on weed species (Figures 4.5 to 4.11) confirmed that shoot 

length and root length of weed species were affected by the application of all water 

extracts.  The reduction of P. minor shoot length was significantly greater with 
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applying stem extracts during different growth development stages (T1 to T6). The 

reduction in weed species may refer to the phytotoxicity effect of companion 

between all glucosinolate observed in B. napus tissue.  This result confirms the 

findings of Chung and Miller (1995), Turk and Tawaha (2003), who document that 

a mixture of water extracts from all black mustard parts significantly suppressed the 

shoot length of weed species as compared with the control. Moreover, P. minor 

shoot length appeared to be most sensitive to flower extract during plant 

development stage T7, and also leaf and flower extracts at T8.  This finding might 

be due to the combination between progoitrin and gluconapin because, as the 

results show in figure 4.23, the glucoraphanin and gluconasturtiin disappeared in 

leaf extracts during T7.  Overall, an almost identical trend was found with the 

reduction of C. arvensis and S. halepense shoot length during different plant 

development stages by applying water extract from all plant parts (Figures 4.6 and 

4.7). 

Furthermore, root length of all three weed species appeared to be more sensitive to 

GSLs observed in this study as compared with weed species shoot length, (Figures 

4.9, 4.10 and 4.11). Therefore, the glucosinolates determined in this study may have 

herbicidal activity potential for weeds through affecting the roots weed species. 

These observations are in agreement with earlier results reporting that plant water 

extract had more toxic effects on weeds’ root length than on weeds’ shoot length 

(Chung and Miller, 1995; Tawaha and Turk, 2003; Turk and Tawaha, 2003; Turk et 

al. 2005). These outcomes might be due to the roots being the first to imbibe the 

allelochemicals from the water extracts (Jenning and Nelson, 2002; Turk and 

Tawaha 2002). In addition to the root inhibition by different water extract, weed root 

morphology was deformed, such as root twisting, compared with the control 

(Jenning and Nelson, 2002; Matloob et al., 2010). 
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4.5.3. Weed species shoot and root fresh weight 

 

In the present study, the fresh weight of the shoots from all three weed species was 

significantly suppressed by applying water extracts from all B. napus parts during 

different plant growth development (Figures 4.13 to 4.19). Stem extract seemed to 

be the most effective treatment on the fresh weight of P. minor shoots during 

development stages T1 to T5.  However, there was higher redaction on fresh weight 

during T7 and T8 caused by leaf as compared to the stem and root extracts. Also, 

because of no germination recorded for P. minor when treated by flower extract 

under T7 and T8, thus no shoot length and shoot fresh weight will be recorded.  

Furthermore, the degree of inhibition of shoot fresh weight of C. arvensis with 

applying stem extract during T1 was largely dependent on the shoot length.  

These outcomes may be due to the reductions happened in shoot length. Mainly 

there were no significant differences between water extract from stems, leaves and 

roots to S. halepense shoot weight during plant growth stages T2, T3, T5, T6 and 

T7. However, during T1 the stem extracts exhibit stronger phytotoxicity to S. 

halepense shoot weight.  These findings are in line with those reported by (Vene et 

al., 1987; Uremis et al., 2009; Yasumoto et al., 2010 and 2011), who documented 

that Brassica spp. had phytotoxicity on the growth of the following crops; they 

demonstrated that mixing Brassica spp. biomass into soil reduced the plant density 

in followed crops.  

In Figures 4.17, 4.18, 4.19, the significant reduction in all weed species’ root fresh 

weight caused by water extracts from all B. napus parts during different plant 

development stages were probably because of allelopathic effects on root length as 

previously described. These findings are in line with other studies reporting the 

inhibitory effects of water extracts of allelopathic Brassica spp. (Al-Khatib et al., 

1997; Krishana et al., 1998).  Flower extracts from B. napus reduced the root fresh 
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weight of all three weed species significantly (Abdel-Farid et al., 2014). Different 

parts from the B. napus show different effects on weed fresh weight (Tanveer et al., 

2010; Chandra and Mali, 2012; Abdel-Farid et al., 2014), this may refer to the profile 

of allelochemicals found in different plant parts (Cheema et al., 2007; Sisodia and 

Siddiqui, 2010). 

 

4.5.4. Individual, total glucosinolates and myrosinase activity 

 

The Brassica napus parts (stems, leaves, roots and flowers) studied, revealed 

variability in concentration and type of individual glucosinolates between the 

different parts and within the parts during different plant development stages.  Also, 

the total concentration of glucosinolates was affected by Brassica napus parts 

(stems, leaves, roots and flowers) during different plant development stages. These 

results are in line with those stated in literature (McGregor, 1988; Kirkegaard & 

Sarwar, 1998; Lambdon et al., 2003; Bellostas et al., 2007). Ten glucosinolates were 

determined in different parts of B. napus in present study; Glucoberin, progoitrin, 

epi- progoitrin, gluconapin, glucobrassinapin, glucoraphanin, Glucobrassicin, 4OH 

glucobrassicin, neoglucobrassicin and gluconasturtiin. The major glucosinolates 

based on concentrations were progoitrin, glucoraphanin, gluconapin and 

gluconasturtiin.   

In general, from accounting the total glucosinolates, the highest total glucosinolates 

were observed during plant development stages T7 and T8 and the total 

glucosinolates in flowers were significantly different as compared with the other 

parts.  This means that the allelopathic effect observed for flower water extract 

(Chapter 2 and 3) was resulting from the ITC associated with glucosinolates in this 

water extracts. This was well supported by results from experiments (Chapter 5) in 

which those glucosinolates were shown to be greatly toxic to weed species 
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germination and seedling growth. These findings may due to high concentrations of 

the dominant glucosinolate (progoitrin) found in the flower tissues.  Recently, a 

similar allelopathic effect of flower extract has been described by Abdel-Farid et al. 

(2014), who found that the glucosinolates in flower extracts showed high toxicity to 

weed germination and their growth.  Additionally, stem extracts show a high toxicity 

to weed germination and seedling growth under different plant growth stages. 

In general, Brassica spp. members are using the glucosinolate- myrosinase system 

as a defence system against antagonists (Bennett and Wallsgrove, 1994; Wittstock 

and Gershenzon, 2002). In the present study, the data revealed significant 

differences in myrosinase activity between different plant parts during different plant 

growth development stages, despite the myrosinase activity in leaf extracts being 

significantly higher than other plant parts during development stages T1 to T6 

(Figure 4.26).  Furthermore, water extracts from other plant parts in during 

numerous stages of plant development, such as stem extract, were significantly 

more effective on weed species germination and seedling growth, or there was no 

significant differences between them.  Also, during plant development stages T7 

and T8, myrosinase activity in flower and leaf extracts were high, although flower 

extract was more effective as compared with leaf extracts. These results were in 

line with the observation reported by Hansen (2011), who found that although the 

differences in soil myrosinase activity were detected among the samples, there was 

no positive correlation between soil myrosinase activity and glucosinolates 

concentrations released after incorporation of freeze-dried mustard leaves.  

4.6. Conclusion 

The results of this experiment revealed that water extracts from all parts of Brassica 

napus, collected at different development stages, significantly (p<0.001) inhibited 

seed germination % of all three weed species. No germination recorded for P. minor 
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when treated by flower extract under T7 and T8, thus no shoot length and shoot 

fresh weight will be recorded.   

The reduction of P. minor shoot length was significantly greater with applying stem 

extracts during different growth development stages (T1 to T6). Additionally, P. 

minor shoot length appeared to be most sensitive to flower extract during plant 

development stage T7, and also leaf and flower extracts at T8. 

Root length of all three weed species seemed to be more sensitive to GSLs 

observed in this study as compared with weed species shoot length. Stem extract 

was the most effective treatment on the fresh weight of P. minor shoots during 

development stages T1 to T5. The highest total glucosinolates were observed 

during plant development stages T7 and T8 and the total glucosinolates in flowers 

were significantly different as compared with the other parts. Furthermore, it was 

found a significant differences in myrosinase activity between different plant parts 

during different plant growth development stages, despite the myrosinase activity in 

leaf extracts being significantly higher than other plant parts during development 

stages T1 to T6. 
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Chapter 5 

 

5. Effect of pure glucosinolates and myrosinase 
enzyme on weed species germination and seedling  
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5.1. Introduction 

 

Glucosinolates (GSLs) are one group of the secondary plant metabolites found in 

Brassica spp. Hydrolyses of GSLs by the enzyme myrosinase results in an array of 

volatile and biocidal compounds such as isothiocyanates, which have the ability to 

suppress weed seeds (Brown and Morra, 1997; Al-Turki and Dick, 2003).  

More than 130 individual glucosinolates have been observed in several plant 

families (Fahey et al., 2001; Agerbirk and Olsen, 2012; Rameeh, 2015). 

Researchers have reported that glucosinolates cannot be effective without 

hydrolysis by effective myrosinases enzyme (thioglucosidase glucohydrolase; EC 

3.2.3.1). These chemical compounds may be toxic to a variety of organisms such 

as weed species and fungal pathogens (Halkier and Gerahenzon, 2006; 

Jafarieyazdi and Javidar, 2011).  

Several studies carried out in the laboratory and glasshouse demonstrated that the 

hydrolysis products of glucosinolates, in addition to brassica water extracts and 

brassica residues containing these chemical compounds like isothiocyanate, reduce 

weed germination and seedling growth and development (Mason-Sedun et al, 1986; 

Bialy et al., 1990; Brown and Morra, 1997; Al-Turki and Dick, 2003; Webater, 2005; 

Norsworthy et al., 2006; Bangarwa et al., 2010; Bangarwa and Norsworthy, 2014).  

Also, research recommends that using Brassicaceae members as a cover crop may 

be phytotoxic to numerous crop seeds. For example, an experiment conducted in 

the glasshouse has shown that chemical compounds produced by brassica cover 

crops (isothiocyanates) have the ability to suppress shoot density and shoot 

biomass of purple nutsedge (Cyperus rotundus L.) and yellow nutsedge (Cyperus 

esculentus) (Norsworthy et al., 2006).  
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Petersen et al. (2001), suggest that weed inhibition in the field was possible because 

of the high concentration of ITCs found in turnip rape mulch. Also, they reported that 

Isothiocyanates strongly affect the germination of the tested species and possibly 

interact with weed seeds in the soil solution and as vapour in soil pores. 

5.1.1. Aim 

 

The present study was undertaken to evaluate the effect of pure glucosinolates in 

the presence and absence of myrosinase enzyme on seed germination and seedling 

growth of Phalaris minor (Retz.), Convolvulus arvensis (L.) and Sorghum halepense. 

5.1.2. Hypotheses 

Seed germination and seedling growth of weed species are not affected by pure 

glucosinolates in the presence and absence of myrosinase enzyme. 
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5.2. Material and methods  

 

5.2.1. Chemicals 

 

Glucoraphanin (R-(-) - Glucoraphanin potassium salt, ≥99%) and gluconasturtiin 

(Phenethyl glucosinolate potassium salt, ≥97%) were purchased from Santa Cruz 

Biotechnology, Inc. Texas, USA. Gluconapin (Gluconapin potassium salt ≥98%), 

was purchased from (Bio Sciences, Creative Dynamics, Inc. USA). Myrosinase 

enzyme (thioglucosidase glucohydrolase; EC 3.2.1.147) was obtained from Sigma-

Aldrich Co. UK. 

5.2.2. Preparation of glucosinolate standard solutions 

 

Solutions were prepared from glucoraphanin, gluconasturtiin gluconapin and 

mixture glucosinolates at different concentrations (25, 12.5, 6.25, 3.125, 1.56 

Micromoles. L-1) dissolved in distilled water. Myrosinase enzyme solution was 

prepared as (0.5 unit) by dissolving 100 enzyme units in 200 ml distilled water. 

5.2.3. Seed bioassays 

 

Seeds (250) of test weeds [Phalaris minor (Retz.) (canary grass), Convolvulus 

arvensis (L.) (field bindweed) and Sorghum halepanses (L.) (Johnsongrass)] were 

prepared as previously described  ( Chapter 2,  section 2.2.2). Each solution (9 mls) 

was added to a separate Petri dish and assays were carried out in the presence and 

absence on myrosinase. One ml myrosinase was add to each Petri dish and distilled 

water was add as a control. All Petri dishes were placed in plant growth chambers 

(Sanyo MLR) at 25°C and 70% humidity and in continuous darkness. Treatments 

were arranged in a completely randomized design (CRD) with factorial 
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arrangements in five replications (4 pure glucosinolates solutions x 6 concentrations 

x 2 myrosinase enzyme). 

 

5.2.4. Assessment 

 

Germination, shoot and root length and fresh weight of seedlings were measured 

as as previously described (Chapter 2, section 2.2.3). 

5.2.5. Statistical analysis 

 

The experiment consisted of three factors (4 pure glucosinolates solutions x 6 

concentrations x 2 myrosinase enzyme) with five replicates for each treatment 

arranged in a completely randomized design for each weed species. 

Factorial ANOVA (pure glucosinolates x concentrations x myrosinase enzyme) was 

carried out to analyse the experiment results using GenStat® 15th Edition (VSN 

international, Hemel Hemstead, UK) for each weed species separately. A Duncan 

test was used to compare the differences between means of pure glucosinolates at 

different concentrations at level (P < 0.05) and is displayed in the (Appendix 6, 7 

and 8). Regression analysis was also undertaken to determine the relationship 

between different characters. 
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5.3. Results 

 

5.3.1. Effects of glucosinolates in the presence and absence of myrosinase 
on weed seed germination 

 

Analysis of Variance (Table 5.1) showed that the different glucosinolates used at 

different concentrations with and without myrosinase significantly (P<0.001) 

inhibited seed germination (%) of Phalaris minor (Retz.), Convolvulus arvensis (L) 

and Sorghum halepanses (L.) as compared with control.  

The germination of P. minor (Retz.), C. arvensis (L) and S. halepense (L.) was 

significantly (P<0001) inhibited in petri dishes when using all glucosinolates. 

Glucoraphanin was the most effective on seed germination (%) of all three weed 

species, and also gluconapin and gluconasturtiin were more inhibiting to seed 

germination (%)  than the  glucosinolate mixture  (Figures. 5.1, 5.2 and 5.3 and 

Duncan test results in Appendix 6, 7 and 8). 

Seed germination (%) of weed species at different concentrations of glucosinolates 

(Figures. 5.1, 5.2 and 5.3) indicated a significant suppression (P<0.001) in seed 

germination (%) under different glucosinolates concentration treatments.  All 

concentrations of treatments significantly decreased the germination of all weed 

species. Higher concentrations of all glucosinolates used in the studies showed 

significantly maximum inhibition of seed germination (%) of weed species compared 

with other treatments. Also, myrosinase enzyme significantly suppressed seed 

germination (%) of weed species by increasing the effects of the glucosinolates (see 

Duncan test results in Appendix 6, 7 and 8). 

Glucoraphanin and gluconapin at 25 µmol reduced the germination of P. minor 

(Retz.) up to 39.8% and 37.1% respectively and S. halepense (L) up to 35.2% and 

28.4% respectively; however the gluconasturtiin at 25 µmol was more effective than 

the gluconapin when applied on C. arvensis (L) and the germination was decreased 
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up to 29.7% and by applying glucoraphanin at 25 µmol the germination reduced up 

to 33.1% (see Duncan test results in Appendix 6, 7 and 8). 

Glucoraphanin and gluconapin with myrosinase enzyme were found be more 

effective on P. minor and S. halepense (L) germination compared with 

gluconasturtiin + myrosinase enzyme, however gluconasturtiin + myrosinase 

enzyme had more of an inhibitor effect on C. arvensis (L) compared with 

gluconapin+ myrosinase enzyme. 

All glucosinolates at 25 µmol with myrosinase enzyme showed a significant 

inhibitory effect on seed germination (%) of all weed species (see Duncan test 

results in Appendix 6, 7 and 8). 

5.3.2. Effects of glucosinolates in the presence and absence of myrosinase 
on shoot length (cm) of weed species 

 

Data presented in Analysis of Variance (Table 5.2) reveals that there was a 

significant difference (P≤0.001) between glucosinolates and various concentrations 

with myrosinase enzyme and without myrosinase enzyme.  Shoot length of P. minor 

(Retz.), C. arvensis (L) and S. halepense (L.) was highly significantly (P<0.001) 

affected by glucosinolates, concentrations and myrosinase enzyme. 

Glucoraphanin and glucosinolates mixture were found to be highly effective in 

inhibiting the growth of P. minor (Retz.), C. arvensis (L), while S. halepense (L.) 

shoot length was more effected by gluconapin and gluconasturtiin (Figures. 5.4, 5.5 

and 5.6 and Duncan test results in Appendix 6, 7 and 8). 

Shoot length of weed species were significantly reduced by various concentrations 

of glucosinolates. Furthermore, an increase in concentration demonstrated 

insignificant differences as compared with the control and lower concentration 

(Figures. 5.4, 5.5 and 5.6 and Duncan test results in Appendix 6, 7 and 8). 
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Glucoraphanin at 25 µmol was found to inhibit the shoot length of P. minor and C. 

arvensis by 30.7% and 28.6% respectively. Meanwhile, the gluconasturtiin at 25 

µmol inhibits the shoot length of S. halepense by 25.8% compared with the control. 

All glucosinolates with myrosinase enzyme significantly inhibited the shoot length of 

all three weed species compared with glucosinolates without myrosinase enzyme. 

Glucoraphanin with myrosinase enzyme inhibited the P. minor and C. arvensis by 

23.3% and 25.2% respectively, while gluconapin with myrosinase enzyme 

suppressed shoot length of S. halepense by 23.8% (see Duncan test results in 

Appendix 6, 7 and 8). 

Each concentration of each glucosinolate had a significant inhibitory effect on shoot 

length of all three weed species when the glucosinolates were applied with 

myrosinase enzyme (see Duncan test results in Appendix 6, 7 and 8). 

5.3.3. Effects of glucosinolates in the presence and absence of myrosinase 
on root length (cm) of weed species 

 

The results from Analysis of Variance (Table 5.3) revealed that glucosinolates used 

at various concentrations with and without myrosinase enzyme significantly 

(P<0.001) suppressed root length of P. minor (Retz.), C. arvensis (L) compared to 

the control. However, S. halepense (L.) root length was not significantly affected by 

glucosinolates. 

The results showed that all glucosinolates significantly decreased P. minor and C. 

arvensis root length (Figures. 5.7, 5.8 and 5.9 and Duncan test results in Appendix 

6, 7 and 8), glucosinolates mixture appeared the most effective in suppressing root 

length of P. minor, and the next most effective treatment when gluconapin applied. 

Glucoraphanin and ` gluconasturtiin significantly inhibited the C. arvensis root 

length. Various concentrations were used in the experiment; higher concentrations 
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25 µmol and 12.5 µmol of glucosinolates used in the studies demonstrated 

significantly higher inhibition of all three weed species root length as compared with 

other concentrations (Figures. 5.7, 5.8 and 5.9 and Duncan test results in Appendix 

6, 7 and 8). 

The highest reduction in root length of P. minor was reported in petri dishes treated 

with the glucosinolates mixture applied at 25 µmol and 12.5 µmol and the next best 

treatment was applying glucoraphanin at 25 µmol. Meanwhile, the greatest 

reduction in root length of C. arvensis was recorded when treated with 

gluconasturtiin applied at 25 µmol and also by glucoraphanin at 25 µmol. Applying 

gluconapin at 25 µmol was the most effective treatment on root length of S. 

halepense. 

The results revealed that using different glucosinolates with myrosinase enzyme 

significantly inhibited the root length all three weed species. Also, the interaction 

between different glucosinolates with myrosinase enzyme with all concentrations 

significantly inhibited the root length all three weed species compared with the 

control (see Duncan test results in Appendix 6, 7 and 8). 

5.3.4. Effects of glucosinolates in the presence and absence of myrosinase 
on shoot fresh weight (mg) of weed species 

 

The results presented in Analysis of Variance (Table 5.4) revealed that there was a 

significant difference (P<0.01) among glucosinolates, various concentrations and 

myrosinase enzyme. Shoot fresh weight of P. minor (Retz.), C. arvensis (L) and S. 

halepense (L.) was highly significantly (P<0.01) affected by glucosinolates, 

concentrations and myrosinase enzyme.  

All glucosinolates significantly inhibited all three weed species shoot fresh weight, 

while glucoraphanin appeared the most effective in suppressing shoot fresh weight 
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of P. minor followed by the glucosinolate mixture. Meanwhile, gluconasturtiin was 

the most effective on shoot fresh weight of C. arvensis and S. halepense (Figures 

5.10, 5.11 and 5.12 and Duncan test results in Appendix 6, 7 and 8).  Shoot fresh 

weight of all three weed species were significantly affected by all concentrations and 

shoot fresh weight reduction increased by increasing the concentrations, treatment 

of 25 µmol decreased shoot fresh weight P. minor, C. arvensis and S. halepense by 

up to 25%, 28.8% and 43.5% respectively (see Duncan test results in Appendix 6, 

7 and 8). 

All glucosinolate concentrations tested were found to be significant for shoot fresh 

weight of all three weed species. The highest reduction in shoot fresh weight of P. 

minor was recorded in treatment with glucoraphanin at concentrations of 25 µmol 

and 12.5 µmol, while the reduction in shoot fresh weight of C. arvensis occurred 

when treated by the glucosinolate mixture at concentration of 25 µmol, and also 

when treated  by gluconapin at 25 µmol. Meanwhile, the highest reduction in fresh 

weight of S. halepense was recorded when treated with gluconasturtiin and 

gluconapin at concentration of 25 µmol.  

Glucosinolates reduced the shoot fresh weight of all three weed species regardless 

of the addition of myrosinase. However, when glucosinolates were combined with 

myrosinase enzyme the were even more effective at  reducing shoot fresh weight 

(Figures 5.10, 5.11 and 5.12 and Duncan test results in Appendix 6, 7 and 8). The 

glucosinolates mixture at 25 µmol and 12.5 µmol with myrosinase enzyme appeared 

the most effective in suppressing shoot fresh weight of P. minor compared with other 

treatments, the next best treatment was glucoraphanin at 25 µmol with myrosinase 

enzyme. Meanwhile, the highest reduction in shoot fresh weight of C. arvensis and 

S. halepense were recorded when treated by gluconapin at 25 µmol with myrosinase 
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enzyme, and also by gluconasturtiin at 25 µmol with myrosinase enzyme (see 

Duncan test results in Appendix 6, 7 and 8). 

5.3.5. Effects of glucosinolates in the presence and absence of myrosinase 
on root fresh weight (mg) of weed species 

 

Analysis of Variance (Table 5.5) revealed that different glucosinolates at various 

concentrations with and without myrosinase enzyme significantly (P<0.05) 

suppressed the root fresh weight of P. minor (Retz.) and C. arvensis (L). Sorghum 

halepense (L.) root fresh weight was also significantly (P<0.001) affected by all 

treatments individually and combination with myrosinase enzyme. 

The results obtained on root fresh weight of weed species that were exposed to 

different glucosinolates indicated a significant suppression (P<0.001) under different 

concentrations of glucosinolate treatments (Figures 5.13, 5.14 and 5.15 and Duncan 

test results in Appendix 6, 7 and 8). All glucosinolate treatments significantly 

decreased the root fresh weight of all weed species. Gluconapin seemed to be the 

most effective in inhibiting root fresh weight of P. minor, followed by the 

glucosinolate mixture.  The highest reduction in root fresh weight of C. arvensis was 

reported when treated with glucoraphanin followed by gluconasturtiin. However, 

gluconasturtiin was the most effective on S. halepense root fresh weight (Figures 

5.13, 5.14 and 5.15 and Duncan test results in Appendix 6, 7 and 8). Higher 

concentration of all glucosinolates used in the studies showed maximum inhibition 

of root fresh weight of all three weed species compared with other treatments. (see 

Duncan test results in Appendix 6, 7 and 8). 

 The highest reduction in root fresh weight of P. minor was observed when treated 

with gluconapin at 25 and 12.5 µmol followed by gluconasturtiin at 25 µmol. 

Glucoraphanin and gluconasturtiin at the 25 µmol concentration caused the greatest 
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inhibition to C. arvensis and S. halepense root fresh weight (Figures 5.13, 5.14 and 

5.15 and Duncan test results in Appendix 6, 7 and 8).  

All glucosinolates with and without myrosinase enzyme significantly reduced the 

root fresh weight of all three weed species. However, glucosinolates with 

myrosinase enzyme were most effective on root fresh weight (Figures. 5.13, 5.14 

and 5.15 and Duncan test results in Appendix 6, 7 and 8).  

The results revealed that gluconapin at 25 µmol combined with myrosinase enzyme 

significantly inhibited the root fresh weight of P. minor and C. arvensis by 64.6% and 

66.4% respectively. Glucoraphanin at 25 µmol concentration with myrosinase 

enzyme reduced the root fresh weight of S. halepense by 69%. 

5.3.6. The relationships between different pure glucosinolates with 
myrosinase and seed germination (%) 

 

Regression analysis showed positive linear relationships between different pure 

glucosinolates (glucoraphanin (i), gluconapin (ii), gluconasturtiin (iii) and mixed 

(GSLs) with myrosinase (iiii) and seed germination (%) of all three weed species 

after 14 days (Figures 5.16, 5.17 & 5.18). 

The relationship was significant (P=0.05) for all pure glucosinolates (GSLs) 

concentration with seed germination % of Phalaris minor, Convolvulus arvensis & 

Sorghum halepense.  

5.4. Discussion 

 

A laboratory experiment was conducted to investigate the potential effect of using 

pure glucosinolates under various concentrations in the presence and absence of 

myrosinase enzyme on seed germination and seedling growth of three weed 
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species; P. minor (Retz.) (canary grass), C. arvensis (L.) (field bindweed) and S. 

halepense (L.)  (Johnsongrass).   

Seed germination and seedling growth of P. minor (Retz.), C. arvensis (L.) and S. 

halepense (L.) in laboratory bioassays were significantly supressed by applying pure 

glucosinolates at different concentrations and myrosinase enzyme. All pure 

glucosinolates treatments exhibited consistency in their ability to inhibit the 

germination (%) of all three weed species at different concentrations under 

laboratory conditions. Glucoraphanin applied with myrosinase enzyme was most 

effective and suppressed the weed species germination (%) regardless of the 

concentration used. The next best treatment was gluconapin at different 

concentrations with myrosinase enzyme especially with P. minor and S. halepense; 

however, gluconasturtiin at different concentrations with myrosinase enzyme was 

the next best affective treatment on C. arvensis. 

Although the glucosinolates mixture applied with myrosinase had significant effects 

on germination (%) of all weed species, this treatment was the least effective on 

weed germination (Figures. 4.1, 4.2 and 4.3 and Duncan test results in Appendix 6, 

7 and 8). The degree of suppression was mostly dependent on the concentration of 

the pure glucosinolates tested in this study, the inhibition of seed germination of all 

three species reduced largely by increasing the concentration glucoraphanin and 

gluconapin followed by gluconasturtiin. 

The use of pure glucosinolates for weed management have not previously been 

reported. The closest reports to the results recorded were the experiments 

conducted to test the allelopathic potential of using Brassicaceae family members 

and using brassica crops as green manures. These findings are consistent with 

those of (Al-Khatib and Boydston, 1999), who found that members of the 

Brassicaceae family have a number of biologically active compounds including 
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glucosinolates and their hydrolysis products thiocyanates and isothiocyanates, 

which have the ability to reduce seed germination and plant growth. Also, Branca et 

al. (2002), reported that high levels of glucosinolates were found in several Brassica 

spp., which have ability to reduce the germination and seedling growth of plant 

species. 

Moreover, similar results were obtained by Turk and Tawaha (2003), when they 

found that water extracts made using different plant parts from B. nigra (leaf, stem, 

flower and root) at different concentrations significantly affected germination, dry 

weight, shoot and root length. They also found that effectiveness increased 

significantly with increasing the water extract concentration of different parts of B. 

nigra (L.). According to Rice (1984), allelochemicals such as glucosinolates, may 

affect plant growth by affecting a number of physiological processes such as cell 

division and elongation, mineral and water uptake, stomatal opening and 

photosynthesis, membrane permeability, change in lipids, seed germinations, 

change organic acid metabolism, inhibition of enzymes and effect on xylem. 

The probable cause of germination inhibition was glucosinolate producing toxins. 

Earlier research shows that examining extracts from glucosinolate producing plant 

species have an ability to inhibit germination (Brown and Morra, 1996; Al-Khatib et 

al., 1997; Norsworthy et al., 2007; Malik et al., 2008). Leblová-Svobodová and Koštir 

(1962) observed that the protein synthesis in seed germination and seedling 

emergence may be affected by chemical compounds formed from glucosinolate 

hydrolysis and this suppression may be due to of relatively large amounts of 

isothiocyanates absorbed compared to the seed mass, or that one of the first 

processes in seed germination was inhibited. 
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One of the secondary plant metabolites is glucosinolate which is found in Brassica 

spp., and myrosinase enzyme can hydrolysise the glucosinolates into toxic products 

like isothiocyanates that have the ability to control weed seeds (Brown and Morra, 

1997; Al-Turki and Dick, 2003).  Seed germination and seedling growth of numerous 

of weeds were inhibited by isothiocyanate (Brown and Morra, 1997; Al-Turki and 

Dick, 2003; Norsworthy et al., 2006; Bangarwa et al., 2010). Also, Jafariehyazdi and 

Javidfar (2011) suggested that the toxic effect of Brassica spp. may be caused by 

hydrolysis products of glucosinolates that occur in substantial amounts in the 

vegetative parts of Brassica spp. 

The investigations showed that shoot length of all three weed species was 

significantly inhibited by all pure glucosinolate treatments at different concentrations 

and with myrosinase enzyme (Figures 4.4, 4.5 and 4.6 and Duncan test results in 

Appendix 6, 7 and 8). The average shoot length inhibition was increased by 

increasing the pure glucosinolate concentration. This might be due to the pure 

glucosinolates at different concentrations both with and without myrosinase 

enzyme, have a great potential to minimize shoot length and it probably affects cell 

division and elongation by interacting with production or transport of plant growth 

regulators such as, cytokinins and auxins that stimulate cell division and cell 

elongation (Rice,1984). 

Similar observations were made with root length of all three weed species treated 

by all pure glucosinolate treatments at different concentrations and with myrosinase 

enzyme (Figures. 4.7, 4.8 and 4.9 and Duncan test results in Appendix 6, 7 and 8). 

However, the root length was affected more than that of the shoot length. This might 

be because of the direct contact of root with the inhibitory chemicals pure 

glucosinolates (Quasem, 1995). The results show (Figures 4.10, 4.11 and 4.12 and 

Duncan test results in Appendix 6, 7 and 8), that shoot and root fresh weight were 
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significantly decreased by all pure glucosinolate treatments at different 

concentrations with and without myrosinase enzyme. The reduction in shoot and 

root fresh weight may be attributed to the inhibition in shoot and root length. This 

finding concurs with results observed by Obaid and Qasem (2005).   

In the present study, the results clearly confirm that all glucosinolates at different 

concentrations without enzymes significantly affect all three weed species. Seed 

germination (%), shoot and root length, shoot and root fresh weight were inhibited 

significantly; however, these reductions in all parameters were less compared with 

all treatments with myrosinase enzyme. It might be due to potential toxicity levels 

caused by pure glucosinolates and this may lead to affecting the water uptake by 

increasing the pure glucosinolates concentrations. Jafariehyazdi and Javidfar 

(2011) suggested that that water uptake was reduced by increasing the 

concentration of aqueous extracts from B. napus, B. rapa and B. juncea. 

These results are in contrast to previous results reported by several researchers 

including; (Leblová-Svobodová and Koštir, 1962; Brown and Morra, 1996; Brown 

and Morra, 1997; Al-Khatib et al., 1997; Rask et al., 2000; Norsworthy et al., 2007; 

Al-Turki and Dick, 2003; Wittstock et al,. 2004; Song et al., 2005; Bennett et al., 

2006; Norsworthy et al., 2006; Malik et al., 2008; Bangarwa et al., 2010 ). Their 

research suggested that isothiocyanates are primarily released when brassica plant 

residues are hydrolysed, and the effect of undamaged plant tissue which contains 

glucosinolates is very little on the other organism. However, the results of using pure 

glucosinolates with and without myrosinase in the laboratory were not clear in 

comparison with those previously reported by the several researchers because they 

may have used a different experimental methodology under different conditions.  
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5.5. Conclusions 

 

The results of this experiment have demonstrated that all pure glucosinolates with 

and without myrosinase enzyme significantly reduced germination %, shoot and root 

length, shoot and root fresh weight for all three weed species. The greatest effect in 

all parameters of three weed species was obtained with using pure glucosinolates 

with myrosinase enzyme compared with the pure glucosinolates without myrosinase 

enzyme. Glucoraphanin at 25 µmol the most showed the greatest inhibitory effect 

on C. arvensis germination, shoot and root length and root weight, but shoot weight 

was also reduced by gluconasturtiin at 25 µmol. Glucoraphanin at 25 µmol was the 

effective treatment on P. minor germination %, shoot length and shoot fresh weight, 

however, root length and weight effected by gluconapin at 25 µmol. Also, gluconapin 

at 25 µmol was the most effective treatment on S. halepense germination, shoot 

and root length, but shoot and root fresh weight were more effected by 

gluconasturtiin at 25 µmol.  

 



148 
 

Table 5.1. Analysis of variance relating to the effect of different glucosinolates with various concentrations and myrosinase enzyme 
on seed germination % of weed species 

Source of variation d.f. Mean squares 

Germination (%) 

Phalaris minor Convolvulus arvensis Sorghum halepense 

 
Glucosinolates 

 
3 
 

 
955.8** 

    
  308.2** 

 
595.1** 

Concentrations 
 

5 4296.9** 2894** 2123.4** 

Myrosinase enzyme 1 
 

18375** 5415** 6355.1** 

Glucosinolates x Concentrations 
 

3 118.8** 40.4** 66.4** 

Glucosinolates x Myrosinase 
enzyme 

5 831.9** 202.8** 461.3** 
 
 

Concentrations x Myrosinase 
enzyme 

15 
 

1508.8** 477.3** 768.4** 
 
 

Glucosinolates x Concentrations x 
Myrosinase enzyme 

15 130.4** 42.4** 77.8** 
 
 

Residual 192 
 

9.53 19.38 5.365 

Total 239    
 

CV%  4.1 6.1 3.4 
 

SEM  3.087 4.402 2.316 
 

                     **Significant at 1% probability level, *Significant at 5% probability level, NS = Non-significant 
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Table 5.2. Analysis of variance relating to the effect of different glucosinolates with various concentrations and myrosinase enzyme 
on shoot length (cm) of weed species 

Source of variation d.f. Mean squares 

Shoot length  

Phalaris minor Convolvulus arvensis Sorghum halepense 

 
Glucosinolates 

 
3 
 

 
1.81** 

     
 3.89** 

 
20.42** 

Concentrations 
 

5 17.03** 63.97** 73.89** 

Myrosinase enzyme 1 
 

32.05** 434.16** 310.08** 

Glucosinolates x Concentrations 
 

3 0.67** 0.25NS 1.65** 

Glucosinolates x Myrosinase 
enzyme 

5 6.62** 0.84** 20.07** 
 
 

Concentrations x Myrosinase 
enzyme 

15 
 

3.46** 16.69** 23.28** 
 
 

Glucosinolates x Concentrations x 
Myrosinase enzyme 

15 0.69** 0.27** 1.49** 
 
 

Residual 192 
 

0.042 0.231 0.155 

Total 239    
 

CV%  3.2 4.6 2.7 
 

SEM  0.2049 0.4808 0.3941 
 

                   **Significant at 1% probability level, *Significant at 5% probability level, NS = Non-significant 
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Table 5.3. Analysis of variance relating to the effect of different glucosinolates with various concentrations and myrosinase enzyme 
on root length (cm) of weed species 

Source of variation d.f. Mean squares 

Root length  

Phalaris minor Convolvulus arvensis Sorghum halepense 

 
Glucosinolates 

 
3 
 

 
0.57*** 

     
 20.56*** 

 
0.2 NS 

Concentrations 
 

5 11.25*** 70.78*** 186.77*** 

Myrosinase enzyme 1 
 

34.73*** 910.26*** 4177.5*** 

Glucosinolates x Concentrations 
 

3 0.17*** 1.57*** 0.057NS
 

Glucosinolates x Myrosinase 
enzyme 

5 3.25*** 6.83*** 1.29*** 
 
 

Concentrations x Myrosinase 
enzyme 

15 
 

1.31*** 49.11*** 153.46*** 
 
 

Glucosinolates x Concentrations x 
Myrosinase enzyme 

15 0.14*** 1.49*** 0.07 
NS 

 
 

Residual 192 
 

0.048 0.120 0.142 

Total 239    
 

CV%  5.4 4.8 4.2 
 

SEM  0.2195 0.3467 0.3772 
 

                   ***Significant at 1% probability level, *Significant at 5% probability level, NS = Non-significant 
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Table 5.4. Analysis of variance relating to the effect of different glucosinolates with various concentrations and myrosinase enzyme 
on shoot fresh weight (mg) of weed species 

Source of variation d.f. Mean squares 

Shoot fresh weight  

Phalaris minor Convolvulus arvensis Sorghum halepense 

 
Glucosinolates 

 
3 
 

 
7.733** 

    
 217.33 ** 

 
843.60** 

Concentrations 
 

5 24.416** 6763.5** 4383.2** 

Myrosinase enzyme 1 
 

75.264** 87439.8** 37813.2** 

Glucosinolates x Concentrations  
 

3 0.231** 121.47** 26.25** 

Glucosinolates x Myrosinase 
enzyme 

5 1.677** 1060.9** 154.73** 
 
 

Concentrations x Myrosinase 
enzyme 

15 
 

4.383** 3626.5** 1322.9** 
 
 

Glucosinolates x Concentrations x 
Myrosinase enzyme 

15 0.466** 94.51** 24.76** 
 
 

Residual 192 
 

0.0725 26.38 10.91 

Total 239    
 

CV%   3.7 5 6.8 
 

SEM  0.2693 5.136 3.303 
      

                   **Significant at 1% probability level, *Significant at 5% probability level, NS = Non-significant 
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Table 5.5. Analysis of variance relating to the effect of different glucosinolates with various concentrations and myrosinase enzyme 
on root fresh weight (mg) of weed species 

Source of variation d.f. Mean squares 

Root fresh weight  

Phalaris minor Convolvulus arvensis Sorghum halepense 

 
Glucosinolates 

 
3 
 

 
1.00*** 

    
177.92 *** 

 
1.54*** 

Concentrations 
 

5 17.63*** 370.79*** 18.78*** 

Myrosinase enzyme 1 
 

66.04*** 3271.55*** 235.18*** 

Glucosinolates x Concentrations  
 

3 0.15** 5.24*** 0.095 
NS 

Glucosinolates x Myrosinase 
enzyme 

5 2.37*** 88.27*** 0.103NS 
 
 

Concentrations x Myrosinase 
enzyme 

15 
 

1.43*** 167.95*** 9.11*** 
 
 

Glucosinolates x Concentrations x 
Myrosinase enzyme 

15 0.135** 5.14** 0.07NS 
 
 

Residual 192 
 

0.065 2.02 0.07 

Total 239    
 

CV%   7.8 7.6 6.9 
 

SEM  0.256 1.4206 0.265 
      

                   *** Highly significant at (P<0.001) probability level, **Significant at 1% probability level, NS = Non-significant
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Figure 5.1. Effect of various concentrations of glucosinolates with (M+) myrosinase 
enzyme and without myrosinase (-M) on the seed germination (%) of 
Phalaris minor 14 days after sowing. Error bars represent the 

standard error of the mean. n = 240 for each treatment. 
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Figure 5.2. Effect of various concentrations of glucosinolates with (M+) myrosinase enzyme 
and without myrosinase (-M) on the seed germination (%) of Convolvulus 
arvensis 14 days after sowing. Error bars represent the standard error of 

the mean. n = 240 for each treatment. 
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Figure 5.3. Effect of various concentrations of glucosinolates with (M+) myrosinase enzyme 
and without myrosinase (-M) on the seed germination (%) of Sorghum 
halepense 14 days after sowing. Error bars represent the standard error of 
the mean. n = 240 for each treatment. 
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Figure 5.4. Effect of various concentrations of glucosinolates with (M+) myrosinase enzyme 
and without myrosinase (-M) on the shoot length (cm) of Phalaris minor 14 
days after sowing. Error bars represent the standard error of the mean. n = 
240 for each treatment. 
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Figure 5.5. Effect of various concentrations of glucosinolates with (M+) myrosinase enzyme 
and without myrosinase (-M) on the shoot length (cm) of Convolvulus 
arvensis 14 days after sowing. Error bars represent the standard error of 
the mean. n = 240 for each treatment. 
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Figure 5.6. Effect of various concentrations of glucosinolates with (M+) myrosinase enzyme 
and without myrosinase (-M) on the shoot length (cm) of Sorghum 
halepense 14 days after sowing. Error bars represent the standard error of 
the mean. n = 240 for each treatment. 
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Figure 5.7. Effect of various concentrations of glucosinolates with (M+) myrosinase enzyme 
and without myrosinase (-M) on the root length (cm) of Phalaris minor 14 

days after sowing. Error bars represent the standard error of the mean. n = 
240 for each treatment. 
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Figure 5.8. Effect of various concentrations of glucosinolates with (M+) myrosinase enzyme 
and without myrosinase (-M) on the root length (cm) of Convolvulus 
arvensis 14 days after sowing. Error bars represent the standard error of 

the mean. n = 240 for each treatment. 
 
 

 

 

 

 

0

2

4

6

8

10

12

0 1.56 3.125 6.25 12.5 25

R
o

o
t 

le
n

gt
h

 (
cm

)

Glucoraphanin concentration (µmol)

M+ M-

0

2

4

6

8

10

12

0 1.56 3.125 6.25 12.5 25

R
o

o
t 

le
n

gt
h

 (
cm

)

Gluconapin concentration (µmol)

M+ M-

0

2

4

6

8

10

12

0 1.56 3.125 6.25 12.5 25

R
o

o
t 

Le
n

gt
h

 (
cm

)

Gluconastutiin concentration (µmol)

M+ M-

0

2

4

6

8

10

12

0 1.56 3.125 6.25 12.5 25

R
o

o
t 

le
n

gt
h

 (
cm

)

Mixed GSL concentration (µmol)

M+ M-



161 
 

  

  

Figure 5.9. Effect of various concentrations of glucosinolates with (M+) myrosinase enzyme 
and without myrosinase (-M) on the root length (cm) of Sorghum halepense 
14 days after sowing. Error bars represent the standard error of the mean. 

n = 240 for each treatment. 
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Figure 5.10. Effect of various concentrations of glucosinolates with (M+) myrosinase 
enzyme and without myrosinase (-M) on the shoot fresh weight (mg) of 
Phalaris minor 14 days after sowing. Error bars represent the standard error 

of the mean. n = 240 for each treatment. 
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Figure 5.11. Effect of various concentrations of glucosinolates with (M+) myrosinase 
enzyme and without myrosinase (-M) on the shoot fresh weight (mg) of 
Convolvulus arvensis 14 days after sowing. Error bars represent the 

standard error of the mean. n = 240 for each treatment. 
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Figure 5.12. Effect of various concentrations of glucosinolates with (M+) myrosinase 
enzyme and without myrosinase (-M) on the shoot fresh weight (mg) of 
Sorghum halepense 14 days after sowing. Error bars represent the 

standard error of the mean. n = 240 for each treatment. 
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Figure 5.13. Effect of various concentrations of glucosinolates with (M+) myrosinase 
enzyme and without myrosinase (-M) on the root fresh weight (mg) of 
Phalaris minor 14 days after sowing. Error bars represent the standard error 

of the mean. n = 240 for each treatment. 
 
 

 

 

 

 

 

 

0

1

2

3

4

5

6

0 1.56 3.125 6.25 12.5 25

R
o

o
t 

w
ei

gh
t 

(m
g)

Glucoraphanin concentration (µmol)

M+ M-

0

1

2

3

4

5

6

0 1.56 3.125 6.25 12.5 25

R
o

o
t 

w
ei

gh
t 

(m
g)

Gluconapin concentration (µmol)

M+ M-

0

1

2

3

4

5

6

0 1.56 3.125 6.25 12.5 25

R
o

o
t 

fr
es

h
 w

ei
gh

t 
(m

g)

Gluconastutiin concentration (µmol)

M+ M-

0

1

2

3

4

5

6

0 1.56 3.125 6.25 12.5 25

R
o

o
t 

fr
es

h
 w

ei
gh

t 
(m

g)

Mixed GSL concentration (µmol)

M+ M-



166 
 

  

  

Figure 5.14. Effect of various concentrations of glucosinolates with (M+) myrosinase 
enzyme and without myrosinase (-M) on the root fresh weight (mg) of 
Convolvulus arvensis 14 days after sowing. Error bars represent the 

standard error of the mean. n = 240 for each treatment. 
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Figure 5.15. Effect of various concentrations of glucosinolates with (M+) myrosinase 
enzyme and without myrosinase (-M) on the root fresh weight (mg) of 
Sorghum halepense 14 days after sowing. Error bars represent the 

standard error of the mean. n = 240 for each treatment. 
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Figure 5.16. Relationships between seed germination (%) of Phalaris minor and pure 
glucosinolates (GSLs) concentration with myrosinase after 14 days. 
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Figure 5.17. Relationships between seed germination (%) of Convolvulus arvensis and 
pure glucosinolates (GSLs) concentration with myrosinase after 14 days. 
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Figure 5.18. Relationships between seed germination (%) of Sorghum halepense and pure 
glucosinolates (GSLs) concentration with myrosinase after 14 days. 
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Chapter 6 

 

6. Influence of different levels of water stress on 
allelopathic impact of Brassica napus L. tissues   
collected at different development stages on the 
suppression of weed species 
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6.1 Introduction  

 

As the results from chapters 2, 3 and 4 showed, it is clear that Brassica napus water 

extract from different plant parts had a significant inhibitor effect on weed species 

germination and their seedling growth. This effect was documented not only in 

response to certain concentrations but under different concentrations and at 

different plant development stages.  In addition, the weed species were significantly 

affected when treated by pure glucosinolates with myrosinase as the results shown 

in chapter 5. These effects may have been due to secondary plant metabolites 

mainly glucosinolates in B. napus water extract.  

It is well documented as presented in Chapter 1 that glucosinolate hydrolysis by 

myrosinase results in the production of biocidal products such as isothiocyanates, 

which have the ability to inhibit weeds seed germination and seedling growth (Brown 

and Morra, 1997; Al-Turki and Dick, 2003; Norsworthy et al., 2006; Bangarwa et al., 

2010). Suppression of weeds is increased by using brassica tissues with higher 

glucosinolate content (Giamoustaris and Mithen, 1995; Mithen, 2001; Al-Turki and 

Dick, 2003; Tawaha and Turk, 2003). Therefore, several studies have been focused 

on increasing the levels of glucosinolate in various brassica tissues by differing ways 

such as sowing at different times (seasonal effects), under different temperatures or 

water stress (Booth et al., 1991; Bennett et al., 1995; Bellostas et al., 2004; Justen 

et al., 2011; Bhushan et al., 2013). One of the major abiotic stresses which may 

affect plant physiology and, subsequently plant development is water stress (Zhu, 

2001; Munns and Tester, 2008). Glucosinolate accumulation in brassica species 

Nasturtium officinale Engelen-Eigles (2006), Brassica oleracea (Champolivier and 

Merrien 1996; Paschold et al., 2000; Radovich et al., 2005), Brassica napus (Jensen 

et al., 1996), Brassica rapa ssp. (Zhang et al., 2008) and Brassica carinata 

(Schreiner et al., 2009), increased under water stress, and also may reduce plant 
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growth parameters following an increase of secondary metabolites at the expense 

of primary metabolism (Jones and Hartley, 1999).   

6.2. Aims  

i. The purpose of this study is to evaluate the effect of water stress on levels of 

glucosinolates and myrosinase activity from different parts of Brassica napus 

ii. To determine the effect of Brassica napus water extracts from different parts at 

different water stress levels on weed species inhibition. 

6.3. Materials and Methods 

6.3.1. Experimental set-up  

 

A Poly-tunnel experiment was conducted during March 2014 at Harper Adams 

University, Edgmond, Newport, Shropshire, England, UK. Oilseed rape (Brassica 

napus L.) cv. PR46W21 plants were grown in plastic pots of 19 cm (up diameter). 

The pots were filled with 2950 grams of (John Innes No. 2, sterilised loam based 

compost, Norwich, UK). Five seeds were planted in each pot and after two weeks 

plants were thinned to 2 plants per pot prior to the start of the treatment. 

Plants were subjected to four different levels of water stress (soil moisture stress) 

treatments [WS1= 30% of field capacity (F.C.), WS2= 50% of F.C., WS3= 70 % of 

F.C. and WS4= 100% of F.C. (no stress)], during three different plant growth stages 

(stem elongation stage (S), flowering stage (F) and stem elongation stage + 

flowering stage (S+F). To observe the quantity of water and percentage of 

volumetric water content at field capacity for 5 pots, the weight of pots was taken 

with and without soil, using a digital weighing balance (Soehnle Professional 10 kg 

max.). For 24 hours pots with soil were submerged in water to saturate the soil, after 

that pots were taken out of the water, to measure the weight and the volumetric 
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moisture content by using a theta probe (Prop Type HH2, Delta-T Devices Ltd, 

Burwell, UK, Plate 2). The weight and the volumetric moisture content were 

recorded at 2 hour intervals for the first 12 hours, then at 24 and 48 hours when 

soils had stopped losing weight. Application of water to each pot was done three 

times weekly to determine the required amount of water to be applied using the soil 

moisture meter Theta Prop. In this way, pots with a soil moisture reading of 

volumetric water content below the WS1, WS2, and WS3 and WS4 levels were 

balanced by adding the required amount of water. 

6.3.2. Plant sampling and processing 

 

Fresh Brassica napus leaves, stems and roots and flowers were collected at the mid 

flowering stage and transported to the laboratory using dry ice to inactivate 

endogenous myrosinase enzyme, then placed into separate plastic bags and stored 

at -80 °C before freeze-drying. Frozen samples were dried using a GVD6/13 MKI 

freeze dryer, (GIROVAC Ltd, North Walsham, UK) for 6-7 days before being milled 

to a fine powder in a micro-grinder (Retsch GmbH Cyclone Mill-Twister, Haan, 

Germany). Each milled sample was placed in a separate plastic bags and stored 

below -18°C until required for water extracts preparation and glucosinolates 

analysis. 

6.3.3. Preparation of water extracts 

 

Water extracts were prepared from each plant parts under three water WS1, WS2, 

and WS3 collected at the mid flowering stage as previously described in chapter 4 

(section 4.3.3). The sample from the treatment WS4= 100% of F.C. (no stress) was 

accidentally discarded by a member of laboratory staff.  
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6.3.4. Bioassay 

 

Seeds (250) of test weeds [Phalaris minor (Retz.) (canary grass), Convolvulus 

arvensis (L.) (field bindweed) and Sorghum halepanses (L.) (Johnsongrass)] were 

prepared as previously described  ( Chapter 2,  section 2.2.2). 

Ten ml of extract solution from each plant parts prepared as described in (section 

6.3.3) was added to each petri dish and distilled water was used as the control.  All 

Petri dishes were placed randomly in plant growth chambers (Sanyo MLR) at 25°C 

in dark conditions. Treatments were arranged in a completely randomized design 

(CRD) with factorial arrangements in six replications (3 levels of water stress x 3 

plant growth stages) for each weed species separately.  

6.3.5. Assessment 

 

Germination, shoot and root length and fresh weight of seedlings was measured as 

as previously described (Chapter 2, section 2.2.3). 

6.3.6. Determination of glucosinolate  
 

The different glucosinolates and myrosinase activity were determine in Brassica 

napus as previously described in Chapter 4 (see section 4.3.6 to  section 4.3.7 ). 

6.3.7. Statistical analysis 

 

The experiment consisted of two factors (3 water stress x 3 plant growth stage) with 

five replicates treatments arranged in a completely randomized design for each 

weed speceis.Two-way ANOVA (water stress x plant growth stage) was carried out 

to analyse the experiment results using GenStat® 15th Edition (VSN international, 

Hemel Hemstead, UK) for each palnt part and weed species separately.  
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Also, two –way ANOVA was undertaken to analyse the results of Glucosinolatet 

concetrations and myrosinase activity using GenStat® 15th Edition (VSN 

international, Hemel Hemstead, UK) (water stress x plant growth stage) with five 

replications for each plant part separately. Where necessary, data were log10-

transformed to normalise residuals. A Duncan multiple range test was used to 

compare the differences between means of treatments at level (P < 0.05). 

 

6.4. Results 

6.4.1. Bioassay  

6.4.1.1. Seed germination % 

 

The results showed that seed germination % of Phalaris minor , Convolvulus 

arvensis and Sorghum halepanses was significantly (P > 0.05) inhibited  by applying 

water extracts from different parts of Brassica napus under all water stress levels 

and during different plant growth development stages Figures 6.1 A, B, C and D.  

 Applying flower and stem water extract treatments under all water stess levels 

during all plant development stages was found to be more effective on the seed 

germination of  all three weed species as compared with root and leaf water extracts. 

However, C. arvensis seed germination (%) was significantly reduced by leaf  water 

extacts under all three water stress levels when applied during stem to flower plant 

development stages (Figure 6.1 D). As shown in Figure 6.1 B, the most effective 

treatment on seed germination (%) of C. arvensis and S. halepanses was when the 

brassica plant was under water stress (30% of field capacity) (WS1) during stem 

elongation + flowering stage, however, P. minor seed germination % was most 

affected by all three water stress treatments during the flowering stage. Meanwhile, 

P. minor and C. arvensis seed germination % was highly suppressed by applying 
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roots water extract under water stress treatment (70% of fid capacity) (WS3) during 

stem elongation + flowering stage (Figure 6.1 C). 

6.4.1.2. Shoot length (cm) 
 

The effect of all factors using water extracts from different  parts of B. napus, 

different levels of water stress during different plant development stages on shoot 

length of P. minor (Retz.), C. arvensis (L.) and S. halepense (L.) is presented in 

figures 6.2 A, B C and D. The results of data analysis showed that water extracts 

from all parts of B. napus, different water stress levels  during different plant 

development stages significantly (p<0.001) supressed shoot length of all three weed 

species (Figures 6.2 A, B C and D). The greatest inhibition of shoot length of P. 

minor and C. arvensis was found when flower water extract was applied to plants 

under water stress (30% of field capacity) (WS1) during stem elongation. While 

applying flower water extract under water stress (70% of field capacity) (WS3) 

during stem elongation and flowering stage S+F the water extract appeared to have 

the greatest effect on shoot length of S. halepanses (Figure 6.1 A). However, under 

water stress, WS1, during S+F the highest inhibition of C. arvensis, shoot length 

was revealed when stem water extract was applied (Figure 6.1 B). Whereas, P. 

minor shoot length was significantly reduced by applying stem water extract under 

water stress WS2 during F. However, S. halepanses shoot length was greatly 

affected under water stress WS3 during S+F. Meanwhile, root water extract tended 

to be the most effective on shoot length of P. minor under water stress WS1 during 

F and shoot length of S. halepanses during S+F. However, shoot length of C. 

arvensis was effected under water stress WS3 during F (Figure 6.1 C). On the other 

hand, water stress WS1 during S+F treatment showed that the highest application 

of root extract reduced P. minor and S. halepanses shoot length significantly. Water 



178 
 

stress WS3 during F treatment revealed a significantly higher reduction in shoot 

length of C. arvensis (Figure 6.1 D). 
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Figure 6.1. Effect of water extract from different B. napus parts (A) flowers, (B) stems, (C) roots and (D) leaves at different water stress levels [WS1=30% of 

field capacity (F.C.), WS2= 50% of F.C. and WS3= 70 % of F.C.] at different plant growth, stages stem elongation stage (S), flowering stage (F) 
and stem elongation stage + flowering stage (S+F)  on the seed germination % of weed species after 14 days. Bars with the same letter are not 
significantly different according to Duncan’s multiple range test (P < 0.05). Error bars represents standard error of means. n = 45 for each 
treatment. n = 45 for each treatment. 
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Figure 6.2. Effect of water extract from different B. napus parts (A) flowers, (B) stems, (C) roots and (D) leaves at different water stress levels [WS1=30% of 
field capacity (F.C.), WS2= 50% of F.C. and WS3= 70 % of F.C.] at different plant growth, stages stem elongation stage (S), flowering stage (F) 
and stem elongation stage + flowering stage (S+F)  on the shoot length (cm) of weed species after 14 days. Bars with the same letter are not 
significantly different according to Duncan’s multiple range test (P < 0.05). Error bars represents standard error of means. n = 45 for each 
treatment.
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6.4.1.3. Root length (cm) 
 

The results of data presented in figures 6.3 A, B, C and D revealed that water extract 

from all B. napus plant parts under different levels of water stress (WS1, WS2 and 

WS3) during different plant development stages S, F and S+F significantly 

(P<0.001) inhibited root length of Phalaris minor (Retz.), Convolvulus arvensis (L.) 

and Sorghum halepense (L.). The results show that water extracts from flowers 

tends to be a more effective treatment for root length for all three weed species 

under all water stress conditions and during all plant development stages, followed 

by stems extracts and then leaf extracts (Figures 6.3 A, B and D). However, leaf 

extract under WS3 during S trend to be more effective than stem extract under WS3 

during S on all three weed species (Figures 6.3 C and D). In general, the greatest 

inhibitor to root length of P. minor was found in the Petri dish treated with flower 

extract.  Root length was less than 1 cm under all water stress levels and during all 

plant development stages as compared with C. arvensis root length in treatments 

and S. halepense under WS1 and WS3 during S plant development stage (Figures 

6.3 A). However, no root length changes were reported with S. halepense seedling 

when treated by flower and stem extract under WS1, during S+F plant development 

stage, WS2 under S and S+F and WS3 under F and S+F (Figures 6.3 A and B). The 

greatest values of reducing C. arvensis root length were found when treated with 

leaf extract under WS1 during F and S+F, also under WS2 and WS3 under S+F 

(Figure 6.3 D). The observations in figure 6.3 C revealed that there was no root 

length change for S. halepense seedlings when treated with root extract under WS1 

during S+F. 
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6.4.1.4. Shoot fresh weight (mg) 

 

The effect of using water extracts from different parts of B. napus under different 

water stress levels  and all plant development stages and their interactions on shoot 

fresh weight of P. minor (Retz.), C. arvensis (L.) and S. halepense (L.) is shown in 

figures 6.4 A, B, C and D.  

The results of data analysis showed that water extracts from different parts of B. 

napus under different water stress levels and during all plant development stages 

significantly (p<0.001) inhibited shoot fresh weight of P. minor (Retz.), C. arvensis 

(L.) and S. halepense (Figures 6.4 A, B, C and D). Shoot fresh weight of P. minor 

and S. halepense was significantly inhibited and  tended to be more affected by 

water extracts from all plant parts under all water stress levels during all plant 

development stages as compared with C. arvensis (Figures 6.4 A, B, C and D). In 

the case of applying leaf extract under WS2 and WS3 during S+F the results show 

that shoot fresh weight of C. arvensis was significantly supressed compared with 

the other shoot fresh weight of weed species (Figurer 6.4 D). Shoot fresh weight of 

S. halepense showed more sensitivity to the water extract from flowers and roots 

under all treatments (Figures 6.4 A and C). However, it is less effected by leaf extract 

under all treatments (Figures 6.4 D). 

6.4.1.5. Root fresh weight (mg) 

 

The results revealed that P. minor (Retz.), C. arvensis (L.) and S. halepense root 

fresh weight was significantly (P<0.05) affected by water extract from flowers, stems 

and roots of B. napus under different levels of water stress and during all plant 

development stages as illustrated in figures 6.5 A, B and C.
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Figure 6.3. Effect of water extract from different B. napus parts (A) flowers, (B) stems, (C) roots and (D) leaves at different water stress levels [WS1=30% of field capacity 

(F.C.), WS2= 50% of F.C. and WS3= 70 % of F.C.] at different plant growth, stages stem elongation stage (S), flowering stage (F) and stem elongation stage + flowering 

stage (S+F)  on the root length (cm) of weed species after 14 days. Bars with the same letter are not significantly different according to Duncan’s multiple range test (P < 

0.05). Error bars represents standard error of means. n = 45 for each treatment. 
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Figure 6.4. Effect of water extract from different B. napus parts (A) flowers, (B) stems, (C) roots and (D) leaves at different water stress levels [WS1=30% 
of field capacity (F.C.), WS2= 50% of F.C. and WS3= 70 % of F.C. ] at different plant growth, stages stem elongation stage (S), flowering 
stage (F) and stem elongation stage + flowering stage (S+F)  on the shoot weight (mg) of weed species after 14 days. Bars with the 
same letter are not significantly different according to Duncan’s multiple range test (P < 0.05). Error bars represents standard error of 
means. n = 45 for each treatment.
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 Additionally, leaf extract inhibited C. arvensis (L.) and S. halepense root fresh 

weight was significantly reduced (P<0.001) under different levels of water stress and 

during all plant development stages. While P. minor root fresh weight was reduced 

significantly during all plant development stages. Moreover, no significant effect of 

water stress was found on P. minor root fresh weight (Figure 6.5 D). The 

observations showed that root fresh weight of P. minor and S. halepense tend to be 

more effected by flower and stem water extract under all water stress levels and 

during all plant development stages (Figures 6.5 A and B). As described previously 

(see section 6.4.1.3), no root length changes were reported with S. halepense 

seedlings when treated with flower and stem extract under WS1 during S+F plant 

development stage, WS2 under S and S+F and WS3 during F and S+F (Figures 6.3 

A and B). Meanwhile, the greatest inhibition of root fresh weight of C. arvensis was 

found when treated with flower extract under water stress level WS1 under F and 

S+F and with applying stems extract under WS1 during S+F, also, when treated by 

root extract under SW1 during F and S+F and WS2 during F (Figure 6.3 C). Leaf 

extract was more effective however, on root fresh weight of C. arvensis under WS3 

during S+F (Figure 6.3 D). 
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Figure 6.5. Effect of water extract from different B. napus parts (A) flowers, (B) stems, (C) roots and (D) leaves at different water stress levels (WS) 
[WS1= 30% of field capacity (F.C.), WS2= 50% of F.C. and WS3= 70 % of F.C.] at different plant growth, stages stem elongation stage 
(S), flowering stage (F) and stem elongation stage + flowering stage (S+F)  on the root weight (mg) of weed species after 14 days. Bars 
with the same letter are not significantly different according to Duncan’s multiple range test (P < 0.05). Error bars represents standard 
error of means. n = 45 for each treatment.
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6.4.2. Individual and total glucosinolates concentrations 

 

In this study 10 individual glucosinolates (GSL) from of B. napus parts were found; 

Progoitrin, gluconapoleiferin, gluconapin, glucobrassinapin, glucoraphanin, 

glucotropaeolin, glucobrassicin, 4OH glucobrassicin, neoglucobrassicin and 

gluconasturtiin by using HPLC analysis.  

6.4.2.1. Effect of water stress levels during different plant development 
stages on individual glucosinolates concentration in different parts of B. 
napus. 

 

The effect of water stress levels during different plant development stages on 

concentration of individual glucosinolates in different B. napus parts is demonstrated 

in figures 6.6, 6.7, 6.8 and 6.9. There was a great difference in the concentration of 

glucosinolates between the different plant parts under different water stress levels 

and plant growth stages. Progoitrin, glucoraphanin, gluconapin, and 

glucobrassinapin concentrations in flower tissue were significantly (P< 0.05) 

affected by all treatments. However, gluconasturtiin it not present in flower tissue 

(Figures 6.6). Progoitrin concentration significantly (P< 0.05) increased in flower 

tissue as compared with the other glucosinolates concentration under all water 

stress levels and during all plant development stages. The greatest value obtained 

was under WS2 during F, followed by WS3 during S (Figures 6.6). Also, the 

glucobrassinapin concentration was higher as compared with glucoraphanin, 

gluconapin under all treatments, followed by glucoraphanin then gluconapin 

(Figures 6.6). In general, the concentration of progoitrin, glucoraphanin, gluconapin, 

and glucobrassinapin in flower tissues was significantly higher. The results in figure 

6.7 shows there was significant (P< 0.05) difference in concentration of Progoitrin, 

glucoraphanin, gluconapin, and glucobrassinapin under different water stress levels 
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and different plant growth stages in B. napus leaves tissues. However, the 

concentration of all glucosinolates was low. The progoitrin concentration was 

greater than the other especially under SW2 during S, F and S+F, followed by 

glucobrassinapin concentration. Also, in stem tissue the observations revealed that 

progoitrin concentration was highest when compared with the other glucosinolates 

under all water stress levels and during all plant development stages treatment. The 

greatest value of progoitrin concentration was determined by WS1 during S+F and 

WS3 during S (Figure 6.8). The next highest glucosinolate concentration was 

glucobrassinapin when plants were under water stress levels WS3 during S. while, 

gluconasturtiin concentration was the lowest. However, in root tissue the 

gluconasturtiin concentration recorded the highest value and significantly increased 

compared with the other glucosinolates concentration under all water stress levels 

and during all plant development stages (Figure 6.9), the next best glucosinolates 

in concentration was progoitrin. 

6.4.2.2. Effect of water stress levels during different plant development stages 
on total glucosinolates concentration in different parts of B. napus  

 

There was significant (P<0.05) difference in concentration of total glucosinolate in 

various parts of Brassica napus under all water stress levels and different 

development stages (as revealed in figure 6.10), and both factors significantly 

affected total glucosinolates. Total glucosinolates concentration in roots under water 

stress level WS2 during plant development stages S and S+F was significantly 

(P<0.001) higher as compared with total glucosinolates concentration under the 

other treatments (Figure 6.10). Meanwhile, the total glucosinolates concentration in 

flower extract was significantly increased under water stress WS2 and WS3 during 

plant development F. Also, the total glucosinolates concentration in stem extract 

increased significantly and a higher concentration reported under water stress level 
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WS3 under plant development stages S, followed by SW2 under S+F treatment 

(Figure 6.10). Whereas, the total glucosinolates concentration in leaves extract was 

significantly lower compared with the other parts. The highest total glucosinolates 

concentration in leaf extract was reported under water stress level WS3 during plant 

development F as compared with the other treatments (Figure 6.10). 

6.4.3. Effect of water stress levels during different plant development stages 
on myrosinase enzyme activity in different parts of B. napus  

 

There were significant (P > 0.05) differences in activity of myrosinase enzyme 

between different B. napus plant parts, water stress levels and plant development 

stages (Figure 6.11). Myrosinase activity significantly increased in flowers and leaf 

extract at different plant growth stages. There were no significant differences found 

between the treatments on myrosinase activity in flower extract. However, 

significant differences between treatments were observed on myrosinase activity in 

roots extract (Figure 6.11). The greatest value of myrosinase activity in flower 

extract was found under WS1 during S stage and WS2 during F stage. In root extract 

the highest myrosinase activity was reported when plants were treated under water 

stress WS2 during plant development stages F and S+F, as compared with all other 

treatments (Figure 6.11),while, the lowest value was documented in stem and root 

extract. In stems extract the lowest myrosinase activity was found under WS1 during 

S+F.  Whereas, in root extract, the lowest myrosinase activity was reported under 

WS2 during S+F (Figure 6.11).
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Figure 6.6. Effect of different water stress levels [WS1= 30% of field capacity (F.C.), WS2= 50% of F.C. and WS3= 70 % of F.C.] at different plant 
growth, stages stem elongation stage (S), flowering stage (F) and stem elongation stage + flowering stage (S+F)  on glucosinolates 
concentration in flowers dry tissue. Bars with the same letter are not significantly different according to Duncan’s multiple range test (P 
< 0.05). Error bars represents standard error of means. n = 45 for each treatment. 
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Figure 6.7. Effect of different water stress levels [WS1= 30% of field capacity (F.C.), WS2= 50% of F.C. and WS3= 70 % of F.C.] at different plant 
growth, stages stem elongation stage (S), flowering stage (F) and stem elongation stage + flowering stage (S+F)  on glucosinolates 
concentration in leaves dry tissue. Bars with the same letter are not significantly different according to Duncan’s multiple range test (P 
< 0.05). Error bars represents standard error of means. n = 45 for each treatment. 
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Figure 6.8. Effect of different water stress levels [WS1= 30% of field capacity (F.C.), WS2= 50% of F.C. and WS3= 70 % of F.C] at different plant 
growth, stages stem elongation stage (S), flowering stage (F) and stem elongation stage + flowering stage (S+F)  on glucosinolates 
concentration in stems dry tissue. Bars with the same letter are not significantly different according to Duncan’s multiple range test (P 
< 0.05). Error bars represents standard error of means. n = 45 for each treatment. 
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Figure 6.9. Effect of different water stress levels [WS1= 30% of field capacity (F.C.), WS2= 50% of F.C. and WS3= 70 % of F.C.] at different plant 
growth, stages stem elongation stage (S), flowering stage (F) and stem elongation stage + flowering stage (S+F)  on glucosinolates 
concentration in roots dry tissue. Bars with the same letter are not significantly different according to Duncan’s multiple range test (P < 
0.05). Error bars represents standard error of means. n = 45 for each treatment. 
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Figure 6.10. Effect of different water stress levels [WS1= 30% of field capacity (F.C.), WS2= 50% of F.C. and WS3= 70 % of F.C.] at different plant 
growth stages stem elongation stage (S), flowering stage (F) and stem elongation stage + flowering stage (S+F)  on total glucosinolates 
concentration in different B. napus parts. Bars with the same letter are not significantly different according to Duncan’s multiple range 
test (P < 0.05). Error bars represent standard error of means. n = 45 for each treatment. 
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Figure 6.11. Effect of different water stress levels [WS1= 30% of field capacity (F.C.), WS2= 50% of F.C. and WS3= 70 % of F.C.] at different plant 
growth stages, stem elongation stage (S), flowering stage (F) and stem elongation stage + flowering stage (S+F)  on myrosinase 
enzyme activity in different B. napus parts. Bars with the same letter are not significantly different according to Duncan’s multiple range 
test (P < 0.05). Error bars represents standard error of means. n = 45 for each treatment. 
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6.5. Discussion 

 

In this study, an in vitro experiment was carried out to examine the effects of water 

extract from different B. napus parts under different water stress levels (WS1, WS2 

and WS3) and during different plant development stages ( S, F and S+F) on 

germination and seedling growth of weed species; Phalaris minor (Retz.), 

Convolvulus arvensis (L.) and Sorghum halepense. Also, their effect on individual 

and total glucosinolates  

6.5.1 Weeds species germination and seedling growth 

 

6.5.1.1 Weeds species germination 

 

The water extract from different parts of B. napus during the three water stress levels 

under all plant development stages studied demonstrated variability in their effect 

on germination and seedling growth of three weed species P. minor (Retz.), C. 

arvensis (L.) and S. halepense (L.) between the water stress levels and within the 

same plant development stage (Tang et al., 1995; Karageorgou et al., 2002; Szabó 

et al., 2003; Gray et al., 2003; Tawaha and Turk, 2003; Wakjira et al., 2005; Uremis 

et al., 2009; Taiz and Zeiger 2010).  

This finding showed that seed germination % of all three weed species significantly 

decreased by treating with water extract from all parts of B. napus during the three 

water stress levels under all plant development stages as compared with the control 

from previous results observed  in  chapters 1, 2 or 3. However, the effect of B. 

napus plant part extracts on weed species seed germination percentage was varied. 

These findings are in line with those reported by (Chon and Kim, 2002; Turk and 

Tawaha, 2002; Turk and Tawaha; 2003). 
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The results were similar with those observed in chapter 4. The greatest values of P. 

minor germination% reduction was found when treated with flower extract under 

WS2 during F and stems extract WS1, and WS3 during F, as compared with leaf 

and root extract. These observations contradicted results found by Turk and Tawaha 

(2003). They found that wild barley (Hordeum spontaneum) germination was most 

effective when treated by water extract from black mustard leaves, .The contrast 

might be due to using water extracts from different Brassica spp on different weed 

species in their experiment. Furthermore, the effects between different levels of 

water stress during different plant development stages on weed species germination 

were varied, and is more likely to be due to the differences among individual and 

total glucosinolates concentration found in B. napus under different water stress 

levels at different plant development stages. These results are in line with data 

observed by Brown et al., 2003; Redovniković et al., 2008; Khan et al., 2010; Ullah 

et al., 2012 and Martinez-Ballesta et al., 2013, who documented differences 

between the glucosinolate profiles and their concentrations in the different plant 

parts under different water stress levels and during different plant developmental 

stages. Moreover, seed germination of C. arvensis (L.) and S. halepense was more 

sensitive to stem extract under water stress WS1 during plant development S+F. 

These results may be due to high concentration of progoitrin and total glucosinolates 

in flower extract during the flowering stage. These findings are in line with those 

reported by (Peterson et al., 2001; Malik et al., 2010; Modhej et al., 2013). These 

authors reported that the inhibition in weed germination by Brassica spp.  was 

probably due to isothiocyonamatic compounds which had a high ability to suppress 

seed germination. Similarly, seeds germination of Convolvulus arvensis (L.) was 

very sensitive to leaf extract under all water stress levels during plant development 

stage S+F. Although, the total glucosinolates was highest in the root tissues, roots 

water extract was the least effective on all weed species under all water stress levels 



198 
 

and during all plant development stages. This result may be because of the activity 

of myrosinase being lower than other plant parts (Bennett and Wallsgrove, 1994; 

Wittstock and Gershenzon, 2002). 

6.5.1.2. Weed species shoot and root length 

 

In three weed species Phalaris minor (Retz.), Convolvulus arvensis (L.) and 

Sorghum halepense (L.), applying water extract from all B. napus parts under all 

water stress levels during different plant development stages have been shown to 

reduce the shoot and root length. Shoot and root length of all three weed species in 

the present study appeared to be more sensitive to flower and stem water extract 

as compared with leaf and root water extract (Abdel-Farid et al., 2014). However, 

Turk and Tawaha (2003) disagree with these results, as they found that leaf extract 

was most effective on weeds’ shoot and root length. In general, the shoot length of 

P. minor (Retz.) and C. arvensis was shorter following exposure to each type of 

water extract regardless of the treatment factors, whereas the shoot length of S. 

halepense was specifically affected by applying flower water extract under water 

stress (WS3) during S+F. This might be due to different water stress treatments 

increasing the glucosinolate accumulation in flower and stem tissues compared with 

the concentration in leaf and root tissues. Hence, the decrease in shoot length of 

weed species may relate to the phytotoxic effect of glucosinolates hydrolysis 

products, observed in B. napus flower and stem tissues. This result is in keeping 

with the findings of Chung and Miller (1995), and Turk and Tawaha (2003). 

Furthermore, shorter shoot length of P. minor and C. arvensis was obtained when 

treated by flower extracts under WS1 during S. Further, C. arvensis shoot length 

was reduced significantly by leaf extract under WS3 during S+F. Moreover, water 

extract from flower and stem under SW3 during S+F was the most effective 

treatment on S. halepense shoot length. On the other hand, root length of all weed 
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species was affected more than that of the shoot length. These findings are in line 

with earlier observations that plant water extract had greater toxic effects on root 

length than on shoot length (Chung and Miller, 1995; Tawaha and Turk, 2003; Turk 

and Tawaha, 2003; Turk et al. 2005). These out comes might be because roots are 

the first to imbibe the allelochemicals from the water extracts (Jenning and Nelson, 

2002; Turk and Tawaha 2002), or it could be as a result of direct contact of root with 

the water extract and thus with biocidal chemical compounds (Quasem 1995). In 

addition to the root length inhibition by different water extracts, weed root 

morphology was deformed such as root twisting (Jenning and Nelson, 2002; 

Matloob et al., 2010). Moreover, the root of S. halepense also was severely stunted 

when applied with stem extract under WS1 during S+F, WS2 during S and S+F and 

WS3 during F and S+F. In general, root extract under different WS levels and during 

different plant development stages was the less effective on weed species root 

length. 

6.5.1.3. Weed species shoot and root fresh weight 

 

In the this experiment,  the shoot and root fresh weight of all three weed species 

was significantly inhibited by treating with water extracts from all B. napus parts 

under different water stress levels and during different plant growth development.  

P. minor and S. halepense shoot fresh weight seemed to be the most effective 

treated with water extracts from all B. napus parts under different water stress levels 

and during different plant growth development treatments. The effects change from 

one treatment to another because of the changes in individual and total 

glucosinolates concentration and myrosinase activity under the same treatment 

(Keling and Zhujun, 2010). In this study, the highest inhibition in P. minor shoot fresh 

weight was when treated with flower and leaf water extract (Tawaha and Turk, 2003; 

Turk and Tawaha, 2003; Abdel-Farid et al., 2014). Leaf extract under WS1 during S 
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had a great effect on C. arvensis shoot fresh weight and was significantly reduced 

under WS2 and WS3 during S+F.    

Additionally, flower, stems and roots extract significantly supressed P. minor and S. 

halepense root fresh weight more than C. arvensis root fresh weight. Furthermore, 

when S. halepense was treated with flower extract under WS1 during S+F, WS2 

during S and S+F and WS3 during F and S+F no root changes were  recorded.  

Also, when stem extract was applied under WS1 during S+F, WS2 and WS3 during 

S and S+F, results showed that the treatments vary in their effect on S. halepense 

root fresh weight. This finding may due to the high concentration of progoitrin and 

glucobrassinapin in flower, stem and root extract. Moreover, root fresh weight was 

the least effected by all treatments. The outcomes showed that root fresh weight 

was affected by all treatments more than that of the shoot fresh weight (Quasem 

1995).  

6.5.2. Individual, total glucosinolates and myrosinase activity 

 

In the present study, the concentration and type of individual glucosinolates in B. 

napus parts (stems, leaves, roots and flowers) and also within the parts under 

different water stress levels and during different plant development stages. All 

glucosinolates obtained in this study were significantly affected by water stress 

levels. On the other hand, similar results obtained for total concentration of 

glucosinolates were affected by B. napus parts under all treatments. These 

observations support previous work (Rosa et al., 1996; Champolivier and Merrien, 

1996; Kirkegaard & Sarwar, 1998; Lambdon et al., 2003; Bellostas et al., 2007). 

However, the results contradict data observed by Radovich et al. (2005), who found 

that glucosinolate concentration was not affected by plant development stages.  Ten 

individual glucosinolates were reported in different parts of B. napus in the present 

experiment; Progoitrin, gluconapoleiferin, gluconapin, glucobrassinapin, 
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glucoraphanin, glucotropaeolin, glucobrassicin, 4OH glucobrassicin, 

neoglucobrassicin and gluconasturtiin. Based on the concentrations Progoitrin, 

glucoraphanin, gluconapin and gluconasturtiin and glucobrassinapin were dominate 

and the highest glucosinolates observed. Progoitrin recorded the greatest value in 

flower, stem and leaf extract under all treatments, followed by glucobrassinapin. 

However, in root extract, gluconasturtiin was reported to have the highest 

concentration followed by progoitrin. In general, glucosinolates concentration 

slightly increased in WS2 and SW3 as compared with WS1. These results support 

previous data recorded by Khan et al. (2010). Furthermore, total glucosinolate was 

significantly affected by water stress and plant development stages in different plant 

parts.  The highest total glucosinolates was observed in B. napus roots extract under 

all water stress levels and during all plant development stages. This increase in the 

total glucosinolate in root was possibly because of the increase in concentration of 

gluconasturtiin. Moreover, total glucosinolate in flower extracts was significantly 

higher, followed by stem extract and then leaves. As the results reveal flower and 

stem extract were more effective on weed germination and growth seedling. 

However, total glucosinolate in root extract was significantly higher. Therefore, this 

may   be due to the concentration of dominate glucosinolates being  higher in flower 

and stem extracts, hence, the relationship between them where high activity of 

myrosinase could be more effective than gluconasturtiin with high concentrations 

and low concentrations of other individual glucosinolate in root extract. This finding 

support the results obtained from previous experiments (Chapter 4and 5) which 

showed that the dominated glucosinolates are greatly toxic to weed species 

germination and seedling growth. This observation matches that of Abdel-Farid et 

al. (2014), who found that the glucosinolates in flower extract had high toxicity to 

weed germination and seedling growth. The glucosinolate- myrosinase system is 

one defence system against antagonists using Brassica members (Bennett and 
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Wallsgrove, 1994; Wittstock and Gershenzon, 2002). In this study the results show 

significant differences in myrosinase activity between different plant parts under 

different water stress and during different plant growth development sages. In 

general, the myrosinase activity in flower extracts is significantly higher than in other 

plant parts under different water stress and during different plant growth 

development sages, followed by leaf, stem and roots. Although, the enzyme activity 

was significantly higher in leaf extracts, the effect of water extracts from leaves on 

weed germination and seedling growth was less. These results support the data 

reported by Hansen (2011), who found  that although  differences in soil myrosinase 

activity were detected among the samples, no positive correlation was found 

between soil myrosinase activity and glucosinolates concentrations ( released after 

incorporation of freeze-dried mustard leaves).  

6.6. Conclusion 

 

The results obtained from this experiment have clearly shown that seed germination 

% of all three weed species significantly reduced by treating with water extract from 

all parts of B. napus during the all water stress levels under all plant development 

stages. The highest values of P. minor germination% reduction was obsreved when 

treated with flower extract under WS2 during F and stems extract WS1, and WS3 

during F. Additionally, seed germination of C. arvensis (L.) and S. halepense was 

more affected by stem extract under water stress WS1 during plant development 

S+F. 

Also, of P. minor and C. arvensis shoot length was reduced significantl by flower 

extracts under WS1 during S. Moreover, water extract from flower and stem under 

SW3 during S+F was the most effective treatment on S. halepense shoot length. 

Root length of all weed species was affected more than that of the shoot length. 
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Root of S. halepense also was significantly reduced when applied with stem extract 

under WS1 during S+F, WS2 during S and S+F and WS3 during F and S+F.  

Shoot fresh weight of P. minor and S. halepense was the most affected when treated 

with water extracts from all B. napus parts under different water stress levels and 

during different plant growth development treatments. The highest inhibition in P. 

minor shoot fresh weight was when treated with flower and leaf water extract. Leaf 

extract under WS1 during S had a great effect on C. arvensis shoot fresh weight 

and was significantly reduced under WS2 and WS3 during S+F.  

Flower, stems and roots extract significantly supressed P. minor and S. halepense 

root fresh weight more than C. arvensis root fresh weight. Furthermore, when S. 

halepense was treated with flower extract under WS1 during S+F, WS2 during S 

and S+F and WS3 during F and S+F no root changes were  recorded.  Also, when 

stem extract was applied under WS1 during S+F, WS2 and WS3 during S and S+F, 

results showed that the treatments vary in their effect on S. halepense root fresh 

weight. 

Glucosinolates concentration slightly increased in WS2 and SW3 as compared with 

WS1.  The highest total glucosinolates was observed in B. napus roots extract 

under all water stress levels and during all plant development stages. Moreover, 

total glucosinolate in flower extracts was significantly higher, followed by stem 

extract and then leaves. Flower and stem extract were more effective on weed 

germination and growth seedling. Progoitrin recorded the greatest value in flower, 

stem and leaf extract under all treatments, followed by glucobrassinapin. In general, 

the myrosinase activity in flower extracts is significantly higher than in other plant 

parts under different water stress and during different plant growth development 

sages, followed by leaf, stem and roots. 
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7.1. General Discussion 

 

7.1. General Discussion 

 

Prior this research, there has been little information available on the effectiveness 

of the Brassica napus for weed species inhibition (Phalaris minor (Retz.), 

Convolvulus arvensis (L.) and Sorghum halepense (L.) in the Iraq and Kurdistan 

region. The aim of the present study is to establish the allelopathic potential in 

Brassica napus and its effect on weed species inhibition in glasshouse and 

laboratory settings, and to determine whether other factors such as plant growth 

stages and water stress levels are involved to increase the allelopathic potential in 

B. napus through increasing the glucosinolate concentrations. This main target was 

successfully achieved through several experiments reported in chapters 2 to 6.   

In the present study, the evaluation has been performed through an initial finding of 

the allelopathic effect of Brassica napus water extract from different plant parts with 

different concentrations, as described in Chapter 2 and 3. The effect of Brassica 

napus water extracts of different concentrations on weed management is well 

researched (Al-Khatib et al., 1997; Al-Khatib and Boydston, 1999; Branca et al., 

2002; Jafariehyazdi and Javidfar, 2011; Yasumoto et al.; 2011). However, little 

attention has been paid in Iraq and Kurdistan region to the use Brassica napus water 

extracts for weed management. 

The effect of Brassica napus water extracts from different parts on germination and 

seedling growth of Phalaris minor, Convolvulus arvensis and Sorghum halepense 

was investigated. Significant results were observed by using Brassica napus water 

extracts from different parts on all three weed species, as seed germination and 

seedling growth were inhibited in comparison with the control. These observations 

are in the line with other results reporting that Brassica spp water extracts had an 
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effect on the seed germination and seedling growth of weed species such as 

canarygrass (Phalaris minor Retz), wild oat (Avena fatua L.), broad leaf dock 

(Rumax dentatus L.), lambsquarters (Chenopodium album L.) and field bind weed 

(Convolvulus arvensis L.) (Al- Khatib and Boydston, 1999; Narwal, 2001; Cheema 

at el., 2003; Turk and Tawaha, 2003). Moreover, Mason-Sedun et al. (1986) found 

that extracts from B. nigra were toxic to wheat growth. Also, Oleszek (1987) 

observed similar results as it was found that the germination of lettuce, barnyard 

grass and wheat was inhibited when treated with volatiles from B. nigra. Several of 

these authors refer to the significant effect of numerous Brassica species on weed 

management to possibility of containing high levels of glucosinolate which is able to 

inhibit germination and supress seedling growth. 

Although, the results of this study showed significant effect of water extract from 

different plant parts on weeds parameters in the laboratory, conclusive proof is often 

lacking. Numerous studies have obtained different results under laboratory and field 

conditions (Inderjit & Weston, 2000). In the field, several factors are interacting in 

simultaneously and sequentially and constantly changing such as temperature, 

light, aeration, water content of soil, nutrient, soil texture, organic matter, soil 

microbes and pH of soil. On the other hand, various studies showed ample evidence 

that allelochemical in soil can be broken down by microbes and that levels usually, 

although not always, decline rapidly due to microbial degradation (Von Kiparski, Lee 

& Gillespie, 2007). Also, there is a possibility that soil possesses the ability to 

detoxify allelochemicals, so the bioassays conducted under laboratory conditions in 

the absence of soil might be misleading due to an overestimation of the allelopathic 

potential (Foy, 1999; Inderjit, 2001). Therefore, further work is required to study the 

allelopathic effect of Brassica napus on weeds species by residue incorporation or 

spraying the extract under field conditions.  
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The main limitation of this study was using Petri dishes to grow weeds inside 

enclosed plant growth chambers where some of the environmental factors are 

limited. The enclosed chamber led to a limitation of some abiotic factors such as 

different levels of water, air, humidity, soil, temperature and light, also, some biotic 

factors for example, plants, fungi, bacteria. The size of Petri dish and chambers also 

limited the number of weeds that could be grown, and as a consequence did not 

allow an investigation of all relevant parameters. Moreover, growing weeds in a Petri 

dish may lead to a restriction in weed growth and a possible limitation of nutrient 

availability to support weed growth while testing the effect of water extract for longer 

time. 

Water extracts from all B. napus parts significantly affect all weed parameters and 

reduced seed germination, shoot length, root length, shoot fresh weight and root 

fresh weight.  However, the degree of suppression effect of water extracts from 

different parts on weed parameters was varied. Our results were supported (Turk 

and Tawaha, 2003; Anjum et al., 2005; Toosi and Baki, 2012; Gella et al., 2013) as 

they report that extracts from different plant parts have different effect on weed 

species inhibition. This is assumed because of the variation in levels of 

glucosinolates in different plant parts as the results showed in chapters 4 and 6, 

where the concentrations and types of glucosinolates was varied between plant 

parts. There is evidence in the literature of enhanced increasing in the level of 

isothiocyanates released from glucosinolates after hydrolysis by myrosinase 

enzymes which have herbicidal properties (Norsworthy and Meehan 2005). Brown 

& Morra, (1996) suggested that enzymatic hydrolysis of glucosinolates in Brassica 

spp tissues releases a number of chemical compounds, mostly isothiocyanates, 

which will probably reduce seed germination. Several studies on Brassica showed 

that the isothiocyanates which are released from glucosinolates glucoiberin, 

glucoerucin, glucoraphanin, gluconapin, gluconasturtin, and glucotrapaeolin after 
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hydrolysis by myrosinase, have potential herbicidal properties and may also be used 

as biofumigants (Kirkegaard and Sarwar 1998). This suggestion supports our results 

in chapters 4 and 6, as the production of glucosinolates such as glucoberin, 

progoitrin, epi-progoitrin, gluconapin, glucobrassinapin, glucoraphanin, 

glucobrassicin, 4OH glucobrassicin, neoglucobrassicin and gluconasturtiin were 

observed through using HPLC analysis. Additionally, in chapter 5 the results showed 

that using pure glucosinolates in the laboratory with and without myrosinase can 

inhibit seed germination and seedling growth of weed species tested. Therefore, this 

finding provid evidence that glucosinolates contained in the B. napus tissues tested 

have a great effect on weed species germination and seedling growth. The inhibitory 

effect of the test extracts on seed germination and radicle length may be due to the 

presence of putative allelochemicals. The main constituents of brassica are several 

glucosinolates which are responsible for its wide ranging biological effects (Chandra 

et al., 2012). In the present study, allelopathic effect of brassica extract can be 

attributed to its glucosinolates content. The effect may be due to synergistic effect 

rather than single constituent. 

From the this study, it can be concluded that B. napus parts exhibited remarkable 

negative allelopathic potential by significantly affecting the germination, shoot and 

root growth of P. minor was found to be more sensitive than C. arvensis and S. 

halepense. The observed allelopathic effect was plausibly due to its glucosinolates 

content.  Further studies are necessary to determine the exact chemical constituents 

of B. napus accounting for its allelopathic activity. Allelopathic effects of B. napus 

under field conditions also need further research in pursuit of a new effective natural 

herbicide. 

In the present study, water extract from flowers had the most effectiveness on seed 

germination and seedling growth of Phalaris minor and Convolvulus arvensis, and 
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no germination report in Phalaris minor, and also the germination reduced up to 

93.88% and 90.5% for Convolvulus arvensis and Sorghum halepense respectively. 

Although the water extract from other parts was less effective on weed species 

germination and seedling growth, weed species tested parameters were inhibited 

significantly (Cheema et al., 2003; Turk and Tawaha, 2003). On the other hand, the 

stem extract had the greatest effect on Sorghum halepense seedling growth. The 

inhibition of weed species germination and seedling growth obtained with flowers 

extract was associated with the amount of toxic isothiocyanates released through 

enzymatic hydrolysis of glucosinolates, as the results in chapters 4 and 6 showed 

that the production of total glucosinolate in Brassica flower tissue was higher as 

compared with other parts (Baleroni et al., 2000; Peterson et al., 2001; Yasumoto 

et al., 2010; Walsh et al., 2014). In addition, the reduction in weed species seed 

germination and seedling growth of weed species has increased by increasing the 

concentration of water extract from all parts of B. napus (Tawaha and Turk, 2003; 

Jafariehyazdi and Javidfar, 2011; Al- Sherif et al., 2013). A further finding was that 

the inhibitory effect of water extract from different plant parts on weed species 

germination and seedling growth was increased with increasing the concentrations 

of the extracts, thus, increasing the isothiocyanates amount through enzymatic 

hydrolysis of glucosinolates (Bell and Muller, 1973; Brown & Morra, 1996; Baleroni 

et al., 2000; Yasumoto et al., 2010; Walsh et al., 2014; Bangarwa and Norsworthy, 

2014). As a result, under high concentrations of water extracts from B. napus, seed 

germination can be completely inhibited because of deactivation of the hydrolytic 

enzymes taking part in seed germination. This inhibition in seed germination and 

seedling growth of all weed species agrees with germination (Turk et al., 2003) and 

growth (Turk et al., 2005) of alfalfa and radish. Moreover, these results are in line 

with the finding by (Ghareib et al., 2010; Hegab & Ghareib, 2010). 



210 
 

 In this research, a plant development stage experiment was conducted to 

understand the link between times collecting samples from different parts of B. 

napus and glucosinolates concentration and myrosinase enzyme activity and their 

effect on weed species inhibition. This experiment showed a significant difference 

between plant parts of B. napus at different plant development stages in production 

of glucosinolates concentration and myrosinase enzyme activity, and their effect on 

weed species seed germination and seedling growth.  Although all treatments 

significantly affect all the plant parameters, the results showed a variation in the 

effect of using water extract from different parts of B. napus on germination % and 

seedling growth of Phalaris minor, Convolvulus arvensis and Sorghum halepense. 

(Chon and Kim, 2002; Turk and Tawaha, 2002; Turk and Tawaha; 2003). Similar to 

the results obtained in chapters 2 and 3, using flower water extract at T7 and T8 

completely inhibited the seed germination % of Phalaris minor. It was followed by 

stems extract from T1, T3 and T6 development stages as compared with the water 

extract from leaves and roots at same development stages. Additionally, flower 

extracts at T7 and T8 significantly affected Convolvulus arvensis and Sorghum 

halepense as the Convolvulus arvensis germination % was supressed up to 97.9% 

and 100% respectively and Sorghum halepense germination % was reduced up to 

96.9% and 98.9% respectively. These results were in agreement with data observed 

by Jafariehyazdi and Javidfar (2011), who found that flowers and stems extract have 

a great effect on sunflower germination and seedling growth. They also documented 

that root length was more sensitive to the water extracts as compared with shoot 

length and this finding supports our results in chapters 2, 3, 4 and 6.  Overall, these 

results may be due to an increase in the glucosinolates accumulation in the long 

photoperiod and under high temperatures during flowering stage, subsequently 

increasing in the amount of toxic isothiocyanates released through enzymatic 

hydrolysis of glucosinolates. Justen and Fritz (2013) reported that the glucosinolate 
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concentrations in Brassica rapa have been increased by raising the temperatures; 

also a positive relationship between glucosinolates and soil temperature has been 

found in Brassica oleracea (Charron and Sams, 2004). The present study 

demonstrated remarkable allelopathic potential of brassica against the weed seeds. 

The effect was possibly due to the glucosinolates contents of brassica. These 

results were obtained under laboratory conditions. The evaluation of the 

allelochemicals and their isolation, identification, release, and movement under field 

conditions are important guidelines for future research.  

In the present study, the data showed that the effect of using water extract from 

same plant parts with same concentration on seed germination and seedling growth 

was slightly different in chapters 2, 3 and 4. This is probable because the plant used 

for extracts in chapter 2 was grown in the field, however for other experiments the 

B. napus used for extracts was grown in polytunnel under different conditions such 

as time of sowing, temperatures, day length, light, soil and humidity. Rice (1984) 

recorded that numerous factors may affect the allelochemicals produced by plants 

such as; temperature, light, water stress, mineral deficiency. Moreover, Mkula 

(2006) suggested that light is one of the factors that may affect the quantity of 

allelochemicals released by plants. Additionally, the increased concentration of 

allelochemicals in the presence of light might be because of the promotion effect of 

photosynthesis in chloroplasts (Cooner, 1987). Mølmann et al. (2015), reported a 

variation in individual glucosinolates with different temperatures and day length. 

Also, Steindal et al. (2015), documented that the content of individual glucosinolates 

in B. oleracea tissues are affected by temperature and photoperiod. Depending on 

glucosinolate type, the responses to the temperature and photoperiod was varied 

as they found that glucoiberin content reduces approximately up to 45% during a 

long day with high temperature (21/15 °C). Velasco et al. (2007) observed that the 

content of glucosinolate in B. oleracea plants was reduced when low growth 
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temperature reduced to freezing. However, the content of glucosinolate in leaves 

harvested in January, the coldest month, was slightly higher as compared with other 

treatments. It seems to be this is the main reason of the variation in concentration 

of individual glucosinolate and myrosinase activity and their content in different parts 

of B. napus under different harvesting time. Therefore, it was clear that the individual 

type and content of glucosinolate was affected by the time of harvesting samples 

from different B napus parts, sowing date and environment conditions. 

In this research, seed germination and seedling growth were also influenced by 

applying pure glucosinolate; glucoraphanin, gluconasturtiin gluconapin and mixed 

glucosinolates with myrosinase enzyme and without enzyme at different 

concentrations. All glucosinolates at high concentration with myrosinase enzyme 

and without enzyme showed significant inhibition of seed germination (%) of weed 

species compared with other treatments. Glucoraphanin and gluconapin at 25µmol 

with myrosinase were the more effective on the germination of Phalaris minor and 

Sorghum halepense. However, the gluconasturtiin and glucoraphanin at 25 µmol 

with myrosinase were more effective than gluconapin when applied on Convolvulus 

arvensis. Shoot length, root length, shoot fresh weight and root fresh weight of all 

weed species were influenced when treated with high concentration of pure 

glucosinolates.  It is clear that this finding supports our results obtained in chapters 

2, 3, 4 and 6 by applying water from different parts of B. napus on weed species, 

which contain isothiocyanates released from glucosinolates through hydrolysis by 

myrosinase and have potential herbicidal effect (Brown & Morra, 1996; Kirkegaard 

and Sarwar, 1998; Baleroni et al., 2000; Yasumoto et al., 2010; Walsh et al., 2014; 

Bangarwa and Norsworthy, 2014). The most interesting observation in this 

experiment was the seed germination and seedling growth of all weed species was 

significantly reduced by all pure glucosinolates tested without myrosinase. However, 

the effect of myrosinase was often greater where higher concentrations of GSLs 
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were applied. These results are in contrast with previous findings by several 

researchers (Brown & Morra, 1996; Kirkegaard and Sarwar, 1998; Baleroni et al., 

2000; Chon and Kim, 2002; Turk and Tawaha, 2002; Turk and Tawaha; 2003; 

Yasumoto et al., 2010; Walsh et al., 2014; Bangarwa and Norsworthy, 2014), as 

these authors report that isothiocyanates released from glucosinolates through 

hydrolysis by myrosinase and the myrosinase play a key role in the change of 

glucosinolate from nontoxic to toxic compound and have a potential herbicidal effect 

on germination and growth of plants. However, Gomaa et al. (2014), found that the 

osmotic potential of the aqueous extract from Sonchus oleraceus significantly 

lowered the total germination and the speed of accumulated germination of the 

target weed species. In addition, the osmotic potential of the plant extract at a 

concentration of 1% significantly reduced the root growth of Melilotus indicus, also 

the shoot growth of all target species except Chenopodium murale. Moreover, 

previous studies reported that both plant allelopathic and potential osmotic pressure 

of the aqueous extract may significantly inhibit seed germination and seedling 

growth (Wardle et al. 1992; Souza et al. 2010). Its main limitation was the 

unexamined the effect of pure GSL under natural conditions because of their little 

availability and the high cost.  

Due to the significant effect of water stress on the synthesis of secondary plant 

products and accumulation of natural products in the Brassica plant tissue such as 

glucosinolates (Zhang et al., 2008; Taiz and Zeiger 2010; Selmar and Kleinwächter, 

2013), an experiment was set up to investigate the effect of water stress levels 

during different plant growth stage on glucosinolates concentration and their effect 

on seed germination and seedling growth (chapter 6). Glucosinolate concentration, 

myrosinase activity, seed germination and seedling growth were significantly 

influenced by water stress. Ten individual glucosinolates were identified through 

High Performance Liquid Chromatography analysis (HPLC) analysis; the 
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concentration of progoitrin, glucoraphanin, gluconapin, gluconasturtiin and 

glucobrassinapin was the highest. Flowers, stems and leaves tissue contained the 

highest concentration of progoitrin, followed by glucobrassinapin under all 

treatments. However, the concentration of gluconasturtiin was the greatest in root 

tissue. Under WS2 and WS3, the glucosinolates concentration was slightly 

increased.  A number of authors documented that glucosinolate biosynthesis in 

plants and their accumulation is affected by water stress conditions (Radovich et al., 

2005; Robbins et al., 2005; Zhang et al., 2008). Additionally, numerous studies 

report that environmental stresses such as drought, salt stress, temperature and 

light significantly affect glucosinolates profile and concentration (Velasco et al., 

2007; Yuan et al., 2010; Steindal et al., 2015). Furthermore, Endara and Coley 

(2011), have concluded that when plants are under stress their growth is frequently 

reduced more than photosynthesis, and carbon fixation is mostly invested to 

secondary metabolites production, and this may lead to an increase in the 

secondary metabolism and subsequently increase the glucosinolates. In agreement 

with this suggestion, Jones and Hartley (1999) suggested that plant growth 

parameters often reduce under water stress and secondary metabolites 

subsequently may increase at the expense of primary metabolism. Total 

glucosinolate is significantly higher in roots extract under all treatments followed by 

flowers extract, stems extract then leaf extract. Also, myrosinase activity was 

significantly higher in flower and leaf tissue, similar results were report in chapter 4. 

Several authors reported that the activity of myrosinase enzyme may depend on 

genetic variation, or may be due to ascorbic acid concentration, pH and temperature 

(Ludikhuyze et al., 2000;   Rask et al., 2000). Hence, to achieve optimization in 

phytochemical content of Brassica spp. at each location, plant variety selection must 

be tailored to particular environmental factors in that location. Also, seed 

germination, shoot length, root length, shoot fresh weight and root fresh weight of 
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weed species tested significantly influenced by applying water extract from all parts 

under all water stress treatments.   These results were strongly confirmed by the 

findings obtained in chapters 2, 3, 4 and 6 under control conditions where seed 

germination and seedling growth of all weed species tested in this project were 

reduced when treated with water extract from different parts from B. napus, under 

different concentrations and during different plant growth stages.  

Laboratory bioassays are suitable for understanding different aspects of allelopathy 

such as release of allelochemicals from the donor plant, persistence in soil and 

uptake of allelochemicals but it is also important to know the fate of these 

allelochemicals in the soil and their interaction with abiotic and biotic influences. 

Therefore, further experimentation needs to be done to verify the validity of these 

observations in environments more closely resembling those occurring in nature. 

Moreover, the allelopathic effects exerted by plant extracts probably does not mirror 

well the natural release of allelochemicals from plants or their residual matter. In 

subsequent experiments it will be important to use soil as a growing medium, and 

that fresh plant material be used instead of the aqueous extract solutions.  

In summary, the aims of this project have been examined through the studies 

presented in chapters 2 - 6 to investigate the possibilities of using B. napus water 

extracts for weed management. The results indicated that B. napus water extracts 

from different parts and at different levels significantly inhibit the seed germination 

and seedling growth of all weed species tested. Glucosinolate concentration and 

myrosinase activity varied in extracts prepared from B. napus samples harvested 

during different plant development stages and from different plant parts, also seed 

germination and seedling growth of all weed species tested were significantly 

suppressed when treated by water extract from those samples.  Additionally, water 

extracts from B. napus under different water stress levels and plant development 
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stages show allelopathic activity against seed germination and seedling growth of 

all weed species tested. Also, progoitrin and glucobrassinapin concentration were 

the highest in frozen- dried flowers and stems tissues under all treatments.  In the 

frozen-dried leaf tissues, progoitrin concentration was significantly higher. However, 

glucobrassinapin concentration was higher under WS2 during F and S+F plant 

development stages. At the same time, in frozen- dried root tissues the 

gluconasturtiin concentration significantly increased and recorded the highest value, 

followed by progoitrin then glucobrassinapin under all treatments. On the other 

hand, myrosinase activity increased significantly in flower and leaf extracts, followed 

by stem and root extracts, which recorded the lowest myrosinase activity. Flower 

extracts show no significant differences between the treatments on myrosinase 

activity.  It is imperative to conclude whether these allelochemicals can accumulate 

under field conditions and effect of a weeds. This confirms the need to carry out field 

trials to quantify suppression caused by an allelopathic species. To determine 

allelopathic effects conclusively, the allelochemical has to be added in the 

environment and stay there long enough to be available for uptake by the target 

plant. In addition, the allelochemical must be detrimental to the target plant at typical 

concentrations and under realistic environmental conditions in order to play a 

significant ecological role (Choesin & Boerner, 1991). 

In the present study, seed germination rate, shoot and root development were 

recorded to monitor the allelopathic action.  Seed germination appeared to be the 

most sensitive parameter when treated by flower water extract, the results clearly 

indicated the allelopathic effect of B. napus extract on all tested weeds. 

From these results, it is clear that P. minor was more sensitive to water extract from 

B. napus as compared to other species. Allelopathic effect was evaluated by 

recording the number of germinated seeds after 14 days. However, several 
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researchers evaluated the allelopathic effect on seed germination of weeds by 

recording the number of germinated seeds after 2, 3, 4 days (Turk and Tawaha, 

2003; Chandra at el., 2012) and 10 days (Nath et al., 2016) and that is mean the 

allelopathic effect from brassica parts have strong ability to prevent the germination 

of  weeds.  According to the outcomes of this project, the allelopathic phenomenon 

can be considered as a useful agricultural practice for weed management in field in 

order to reduce dependence on herbicides and achieve agroecosystem 

sustainability. 

7.2. Recommendations for future studies 

 

The allelopathic activity of Brassica napus extracts against weed species tested in 

this study may not act against other weed species. Future in vitro studies are 

necessary using Brassica napus water extracts with other weed species such as 

black-grass (Alopecurus myosuroides), barley grass (Hordeum leporinum), 

Bermuda grass (Cynodon dactylon) and common cocklebur (Xanthium strumarium) 

which have importance in farmer’s fields. For GSL analysis, further work should 

investigate the use of different solvent for extractions such as hot water, methanol, 

chloroform, Petroleum ether and ethanol. In the study the results from in vitro 

experiments a showed that water extract affects weed species germination and 

seedling growth. However, this should be tested by residue incorporation or 

spraying the extract under field conditions. In this study, glucosinolate profiles and 

concentrations were determined. Further identification and quantifying of other 

chemical compounds in B. napus tissues are really required such as phenolic acids 

which may have allelopathic effect against weed species. Also, the effect of different 

development stages and water stress on total GSLs concentration were only 

investigated on one cultivar and others should be studied to determine if there is 

genotypic variance in these responses. The most effective water extract on weed 
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parameters was flower extract due to producing high levels of GSL associated with 

the release of toxic ITC.  Extracts produced from flowers significantly inhibit the 

weed germination in the lab. Therefore, it would be of particular interest to 

investigate this effect under field conditions by incorporating the brassicas plant 

during flowering stage with soil or spraying the extract. Another necessary aspect 

to investigate is the combined effects of different allelopathic crop water extracts 

such as water extract from B napus with water extract from sunflower, rice, tobacco 

or sesame on weed species germination and seedling growth. In this study 

glucosinolate profiles and concentrations were determined. The activity of some 

allelochemicals may increase in soil. Further study is required to incorporate B. 

napus plant with soil during different plant growth stages.  

7.3. Conclusions  

 

From the overall investigation on the evaluation of allelopathic potential of brassica 

napus on weed species test, the following conclusions were drawn:  

1- Brassica napus water extracts from the flowers appeared to be most effective 

treatment on seed germination and seedling growth of weed species, followed by 

stem extracts than leaf extracts.  

2- Seed germination and seedling growth of all weed species tested in this study 

were significantly suppressed by high concentration of water extracts from all B. 

napus parts. 

3- Seed germination of all three weed species were significantly inhibit by water 

extract from all B. napus parts collected at different plant development stages, water 

extract collected at T7 and T8 growth stages from all B. napus parts were the most 

effective, flower extract showed the most inhibitor effect on seed germination and 

seedling growth in comparison with other parts. 
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4- Brassica napus water extract showed allelopathic activity against root length of 

all weed species more than shoot length. 

5- Total glucosinolates and myrosinase activity appeared to be highest in flower 

tissues collected at plant development stages T7 and T8, followed by root. 

6- The levels of progoitrin and gluconasturtiin were the dominate glucosinolates in 

all tissues of Brassica napus. 

7- Pure glucosinolates with myrosinase enzyme significantly affected the weed 

species as comparison with the pure glucosinolates without myrosinase enzyme. 

Glucoraphanin at 25 µmol showed the most inhibitor effect on Convolvulus arvensis 

and Phalaris minor germination and shoot length, however, gluconapin at 25 µmol 

was the most effective treatment on Sorghum halepense germination, shoot and 

root length. 

8- Water stress levels during different plant growth stages influences glucosinolate 

concentrations and myrosinase activity and subsequently weed species 

parameters, however more study is required to understand the relationship between 

them. 
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9. Appendices 

 

Appendix 1.  Kruskal-Wallis one-way analysis of variance and Kolmogorov-Smirnov 
two-sample test of weed species germinations %.  

Kruskal-Wallis one-way analysis of variance of Phalaris minor (Retz.) seed germination% 

Sample Mean rank 

 Control  
Whole plant water extract 
Leaves water extract  
Flowers water extract 
Stems water extract 
Root water extract 

28.00 
19.70 
12.00 
3.00 

15.20 
15.10 

DF=5, Chi-square P<0.001, Value of H=22.11, Adjusted of ties =22.95 

Kolmogorov-Smirnov two-sample test of Phalaris minor (Retz.) seed germination %. 
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Difference between control & whole plant water extract X2=10,p=0.007 

Difference between control  & leaves water extract X2=10,p=0.007 

Difference between control &  flowers water extract X2=10,p=0.007 

Difference between control & stems water extract X2=10,p=0.007 

Difference between control & roots water extract X2=10,p=0.007 

 

Difference between Whole plant  & leaves water extract X2=3.6,p=0.167 

Difference between whole plant  & flowers water extract X2=10,p=0.007 

Difference between whole plant  & stems water extract X2=1.6,p=0.449 

Difference between whole plant & roots water extract X2=3.6,p=0.1.65 

 

Difference between leaves & flowers water extract X2=10,p=0.007 

Difference between leaves & stems water extract X2=1.6,p=0.449 

Difference between leaves & roots water extract X2=1.6,p=0.449 

 

Difference between flowers & stems water extract X2=10,p=0.007 

Difference between flowers & roots water extract X2=10,p=0.007 

 

Difference between stems & roots water extract X2=0.4,p=0.819 

 

 

 

 

Kruskal- Wallis one- way analysis of variance of Convolvulus arvensis (L.)  Seed germination%. 

Sample Mean rank 

 Control  
Whole plant water extract 
Leaves water extract  
Flowers water extract 
Stems water extract 
Root water extract 

27.20 
19.80 
11.90 
3.00  
21.40  
9.70 

DF=5, Chi-square P<0.001, Value of H=25.36, Adjusted of ties=25.60 

Kolmogorov-Smirnov two-sample test of Convolvulus arvensis (L.) germination 

Difference between control & whole plant water extract. X2=6.4,p=0.041 

Difference between control  & leaves water extract X2=10,p=0.007 



266 
 

 Difference between control &  flowers water extract X2=10,p=0.007 

Difference between control & stems water extract X2=6.4,p=0.041 

Difference between control & roots water extract X2=10,p=0.007 

 

Difference between Whole plant  & leaves water extract X2=3.6,p=0.165 

Difference between whole plant  & flowers water extract X2=10,p=0.007 

Difference between whole plant  & stems water extract X2=1.6,p=0.449 

Difference between whole plant & roots water extract X2=6.4,p=0.041 

 

Difference between leaves & flowers water extract X2=10,p=0.007 

Difference between leaves & stems water extract X2=10,p=0.007 

Difference between leaves & roots water extract X2=1.6,p=0.449 

 

Difference between flowers & stems water extract X2=10,p=0.007 

Difference between flowers & roots water extract X2=10,p=0.007 

 

Difference between stems & roots water extract X2=10,p=0.007 

 

 

 

Kruskal-Wallis one-way analysis of variance of Sorghum halepense (L.) seed germination %. 

Sample Mean rank 

 Control  
Whole plant water extract 
Leaves water extract  
Flowers water extract 
Stems water extract 
Root water extract 

27.60 
22.40  
14.10 
9.10 
7.30  

12.50 

DF=5, Chi-square P<0.001, Value of H=20.21, Adjusted of ties=20.84 
 

Kolmogorov-Smirnov two-sample test of Sorghum halepense (L.) seed germination%. 

Difference between control & whole plant water extract. X2=6.4,p=0.041 
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Difference between control  & leaves water extract X2=10,p=0.007 

 Difference between control &  flowers water extract X2=10,p=0.007 

Difference between control & stems water extract X2=10,p=0.007 

Difference between control & roots water extract X2=10,p=0.007 

 

Difference between Whole plant  & leaves water extract X2=3.6,p=0.165 

Difference between whole plant  & flowers water extract X2=10,p=0.007 

Difference between whole plant  & stems water extract X2=10,p=0.007 

Difference between whole plant & roots water extract X2=6.4,p=0.041 

 

Difference between leaves & flowers water extract X2=1.6,p=0.449 

Difference between leaves & stems water extract X2=3.6,p=0.165 

Difference between leaves & roots water extract X2=1.6,p=0.449 

 

Difference between flowers & stems water extract X2=1.6,p=0.449 

Difference between flowers & roots water extract X2=3.6,p=0.165 

 

Difference between stems & roots water extract X2=0.5,p=0.779 

 

 

 

Appendix 2. Kruskal-Wallis one-way analysis of variance and Kolmogorov-Smirnov 
two-sample test of weed species shoot length (cm)  

Kruskal-Wallis one-way analysis of variance of Phalaris minor (Retz.) shoots length (cm) 

Sample Mean rank 

 Control  
Whole plant water extract 
Leaves water extract  
Flowers water extract 
Stems water extract 
Root water extract 

28 
17.30 
13.70 
3.00 

14.80 
16.2 

DF=5, Chi-square P<0.001, Value of H=20.64, Adjusted of ties=20.75 
 

 

  Kolmogorov-Smirnov two-sample test of Phalaris minor (Retz.) shoots length (cm) 
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Difference between control & whole plant water extract. X2=10,p=0.007 

Difference between control  & leaves water extract X2=10,p=0.007 

 Difference between control &  flowers water extract X2=10,p=0.007 
Difference between control & stems water extract X2=10,p=0.007 

Difference between control & roots water extract X2=10,p=0.007 

 

Difference between Whole plant  & leaves water extract X2=1.6,p=0.449 

Difference between whole plant  & flowers water extract X2=10,p=0.007 
Difference between whole plant  & stems water extract X2=1.6,p=0.449 

Difference between whole plant & roots water extract X2=1.6,p=0.449 

 

Difference between leaves & flowers water extract X2=10 ,p=0.007 

Difference between leaves & stems water extract X2=1.6,p=0.449 

Difference between leaves & roots water extract X2=3.6,p=0.165 
 

Difference between flowers & stems water extract X2=10,p=0.007 

Difference between flowers & roots water extract X2=10,p=0.007 

 

Difference between stems & roots water extract X2=1.6,p=0.449 

  Kruskal-Wallis one-way analysis of variance of Convolvulus arvensis (L.) shoots length 

Sample Mean rank 

 Control  
Whole plant water extract 
Leaves water extract  
Flowers water extract 
Stems water extract 
Root water extract 

26.60 
20.00 
18.60 
3.00 

13.60 
14.00 

 

DF=5, Chi-square P<0.001, Value of H=21.32, Adjusted of ties=21.34 

  Kolmogorov-Smirnov two-sample test Convolvulus arvensis (L.) shoot length (cm) 

Difference between control & whole plant water extract. X2=3.6,p=0.165 

Difference between control  & leaves water extract X2=10,p=0.007 

 Difference between control &  flowers water extract X2=10,p=0.007 

Difference between control & stems water extract X2=10,p=0.007 

Difference between control & roots water extract X2=6.4,p=0.041 
 

Difference between Whole plant & leaves water extract X2=6.4,p=0.41 

Difference between whole plant & flowers water extract X2=10,p=0.007 

Difference between whole plant & stems water extract X2=6.4,p=0.041 

Difference between whole plant & roots water extract X2=3.6,p=0.165 
 

Difference between leaves & flowers water extract X2=10,p=0.007 

Difference between leaves & stems water extract  X2=0.4,p=0.819 

Difference between leaves & roots water extract X2=1.6,p=0.449 
 

Difference between flowers & stems water extract X2=10,p=0.007 

Difference between flowers & roots water extract X2=10,p=0.007 
 

Difference between stems & roots water extract X2=3.6,p=0.165 

 
  Kruskal-Wallis one-way analysis of variance of Sorghum halepense (L.) shoots length    (cm) 

Sample Mean rank 
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 Control  
Whole plant water extract 
Leaves water extract  
Flowers water extract 
Stems water extract 
Root water extract 

28.00 
23.00 
13.80 
9.20 
6.60 

12.40 

DF=5, Chi-square P<0.001, Value of H=22.19, Adjusted of ties=20.38 
 

 
  Kolmogorov-Smirnov two-sample test Sorghum halepense (L.) shoot length (cm) 

Difference between control & whole plant water extract. X2=10,p=0.007 

Difference between control  & leaves water extract X2=10,p=0.007 

 Difference between control &  flowers water extract X2=10,p=0.007 

Difference between control & stems water extract X2=10,p=0.007 

Difference between control & roots water extract X2=10,p=0.007 
 

Difference between Whole plant  & leaves water extract X2=10,p=0.007 

Difference between whole plant  & flowers water extract X2=10,p=0.007 

Difference between whole plant  & stems water extract X2=10,p=0.007 

Difference between whole plant & roots water extract X2=10,p=0.007 
 

Difference between leaves & flowers water extract X2=3.6,p=0.165 
Difference between leaves & stems water extract X2=3.6,p=0.165 

Difference between leaves & roots water extract X2=1.6,p=0.449 
 

Difference between flowers & stems water extract X2=3.6,p=0.165 

Difference between flowers & roots water extract X2=3.6,p=0.165 
 

Difference between stems & roots water extract X2=3.6,p=0.165 

 

 
 
 
 
 
 
 
 
Appendix 3. Kruskal-Wallis one-way analysis of variance and Kolmogorov-Smirnov 

two- sample test of weed species shoot weight (mg). 
 

  Kruskal-Wallis one-way analysis of variance of Phalaris minor (Retz.) shoots weight (g) 

Sample Mean rank 

 Control  
Whole plant water extract 
Leaves water extract  
Flowers water extract 
Stems water extract 
Root water extract 

28 
17 

11.10 
3.00 

16.60 
17.30 

 

DF=5, Chi-square P<0.001, Value of H=21.86, Adjusted of ties=20.97 
 

  Kolmogorov-Smirnov two-sample test of Phalaris minor (Retz.) shoots weight (g) 

Difference between control & whole plant water extract. X2=10,p=0.007 

Difference between control  & leaves water extract X2=10,p=0.007 
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 Difference between control &  flowers water extract X2=10,p=0.007 

Difference between control & stems water extract X2=10,p=0.007 

Difference between control & roots water extract X2=10,p=0.007 
 

Difference between Whole plant  & leaves water extract X2=3.6,p=0.165 

Difference between whole plant  & flowers water extract X2=10,p=0.007 
Difference between whole plant  & stems water extract X2=1.6,p=0.449 

Difference between whole plant & roots water extract X2=1.6,p=0.449 
 

Difference between leaves & flowers water extract X2=10,p=0.007 

Difference between leaves & stems water extract X2=3.6,p=0.165 

Difference between leaves & roots water extract X2=3.6,p=0.165 
 

Difference between flowers & stems water extract X2=10,p=0.007 

Difference between flowers & roots water extract X2=10,p=0.007 
 

Difference between stems & roots water extract X2=0.4,p=0.819 

Kruskal-Wallis one-way analysis of variance of Convolvulus arvensis (L.) shoots weight (g) 

Sample Mean rank 

 Control  
Whole plant water extract 
Leaves water extract  
Flowers water extract 
Stems water extract 
Root water extract 

28.00 
21.10 
13.50 
3.20 

14.50 
12.70 

 
 

DF=5, Chi-square P<0.001, Value of H=22.69, Adjusted of ties=22.75 
 

     

 

 

            

 Kolmogorov-Smirnov two-sample test of Convolvulus arvensis (L.) shoots weight (g) 

Difference between control & whole plant water extract. X2=10,p=0.007 

Difference between control  & leaves water extract X2=10,p=0.007 

 Difference between control &  flowers water extract X2=10,p=0.007 

Difference between control & stems water extract X2=10,p=0.007 

Difference between control & roots water extract X2=10,p=0.007 
 

Difference between Whole plant  & leaves water extract X2=3.6,p=0.165 

Difference between whole plant  & flowers water extract X2=10,p=0.007 

Difference between whole plant  & stems water extract X2=3.6,p=0.165 

Difference between whole plant & roots water extract X2=3.6,p=0.165 
 

Difference between leaves & flowers water extract X2=10,p=0.007 

Difference between leaves & stems water extract X2=1.6,p=0.449 
Difference between leaves & roots water extract X2=2.69,p=0.261 

 

Difference between flowers & stems water extract X2=10,p=0.007 
Difference between flowers & roots water extract X2=4.5,p=0.105 
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Difference between stems & roots water extract X2=1.6,p=0.449 
 

Kruskal-Wallis one-way analysis of variance of Sorghum halepense (L.) shoots weight (g) 

Sample Mean rank 

 Control  
Whole plant water extract 
Leaves water extract  
Flowers water extract 
Stems water extract 
Root water extract 

28,00 
21.50 
12.80 
11.90 
7.70 

11.10 
 

DF=5, Chi-square P<0.001, Value of H=18.88, Adjusted of ties=19.05 
 

 

  Kolmogorov-Smirnov two-sample test of Sorghum halepense (L.) shoots weight (g) 

 

Difference between control & whole plant water extract X2=10,p=0.007 

Difference between control  & leaves water extract X2=10,p=0.007 

 Difference between control &  flowers water extract X2=10,p=0.007 

Difference between control & stems water extract X2=10,p=0.007 

Difference between control & roots water extract X2=10,p=0.007 
 

Difference between Whole plant  & leaves water extract X2=6.4,p=0.041 
Difference between whole plant  & flowers water extract X2=6.4,p=0.041 

Difference between whole plant  & stems water extract X2=6.4,p=0.041 

Difference between whole plant & roots water extract X2=6.4,p=0.041 
 

Difference between leaves & flowers water extract X2=0.4,p=0.819 

Difference between leaves & stems water extract X2=3.6,p=0.165 

Difference between leaves & roots water extract X2=1.6,p=0.449 
 

Difference between flowers & stems water extract X2=3.6,p=0.165 

Difference between flowers & roots water extract X2=1.6,p=0.449 
 

Difference between stems & roots water extract X2=1.6,p=0.449 

 
Appendix 4. Kruskal-Wallis one-way analysis of variance and Kolmogorov-Smirnov 

two-sample test of weed species root length (cm). 

Kruskal-Wallis one-way analysis of variance of Phalaris minor (Retz.) root length (cm) 

Sample Mean rank 

 Control  
Whole plant water extract 
Leaves water extract  
Flowers water extract 
Stems water extract 
Root water extract 

26.60 
20.00 
11.70 
4.00 

19.00 
11.70 

 
 

DF=5, Chi-square P<0.001, Value of H=20.44, Adjusted of ties=20.71 
 

  Kolmogorov-Smirnov two-sample test of Phalaris minor (Retz.) root length (cm) 

Difference between control & whole plant water extract. X2=6.4,p=0.041 
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Difference between control  & leaves water extract X2=6.4,p=0.041 

 Difference between control &  flowers water extract X2=10,p=0.007 

Difference between control & stems water extract X2=6.4,p=0.041 
Difference between control & roots water extract X2=10,p=0.007 

 

Difference between Whole plant  & leaves water extract X2=6.4,p=0.041 
Difference between whole plant  & flowers water extract X2=10,p=0.007 

Difference between whole plant  & stems water extract X2=3.6,p=0.165 

Difference between whole plant & roots water extract X2=6.4,p=0.041 
 

Difference between leaves & flowers water extract X2=3.6,p=0.165 

Difference between leaves & stems water extract X2=6.4,p=0.041 

Difference between leaves & roots water extract X2=1.6,p=0.449 
 

Difference between flowers & stems water extract X2=10,p=0.007 

Difference between flowers & roots water extract X2=10,p=0.007 
 

Difference between stems & roots water extract X2=6.4,p=0.014 

  Kruskal-Wallis one-way analysis of variance of Convolvulus arvensis (L.) root length (cm) 

Sample Mean rank 

 Control  
Whole plant water extract 
Leaves water extract  
Flowers water extract 
Stems water extract 
Root water extract 

28.00 
17.30 
15.30 
3.00 

16.30 
13.10 

DF=5, Chi-square P<0.001, Value of H=20.79, Adjusted of ties=20.98 

 Kolmogorov - Smirnov two-sample test of Convolvulus arvensis (L.) root length (cm) 

Difference between control & whole plant water extract. X2=10,p=0.007 

Difference between control  & leaves water extract X2=10,p=0.007 

 Difference between control &  flowers water extract X2=10,p=0.007 

Difference between control & stems water extract X2=10,p=0.007 

Difference between control & roots water extract X2=10,p=0.007 
 

Difference between Whole plant  & leaves water extract X2=1.6,p=0.449 

Difference between whole plant  & flowers water extract  X2=10,p=0.007 

Difference between whole plant  & stems water extract X2=04,p=0.819 

Difference between whole plant & roots water extract X2=1.6,p=0.449 
 

Difference between leaves & flowers water extract X2=10,p=0.007 
Difference between leaves & stems water extract X2=0.4,p=0.819 

Difference between leaves & roots water extract X2=1.6,p=0.449 
 

Difference between flowers & stems water extract X2=10,p=0.007 

Difference between flowers & roots water extract X2=10,p=0.007 
 

Difference between stems & roots water extract X2=1.6,p=0.449 

  Kruskal-Wallis one-way analysis of variance of Sorghum halepense (L.) root length (cm) 

Sample Mean rank 
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 Control  
Whole plant water extract 
Leaves water extract  
Flowers water extract 
Stems water extract 
Root water extract 

28.00 
13.80 
11.50 
11.50 
16.70 
11.50 

DF=5, Chi-square P<0.001, Value of H=13.46, Adjusted of ties=22.21 
 

   Kolmogorov-Smirnov two-sample test of Sorghum halepense (L.) root length (cm) 

Difference between control & whole plant water extract. X2=10,p=0.007 

Difference between control  & leaves water extract X2=10,p=0.007 

 Difference between control &  flowers water extract X2=10,p=0.007 

Difference between control & stems water extract X2=10,p=0.007 

Difference between control & roots water extract X2=10,p=0.007 
 

Difference between Whole plant  & leaves water extract X2=0.4,p=0.819 

Difference between whole plant  & flowers water extract X2=0.4,p=0.819 

Difference between whole plant  & stems water extract X2=1.6,p=0.449 

Difference between whole plant & roots water extract X2=0.4,p=0.819 
 

Difference between leaves & flowers water extract X2=0.0,p=1 

Difference between leaves & stems water extract X2=1.6,p=0.449 
Difference between leaves & roots water extract X2=0.0,p=1 

 

Difference between flowers & stems water extract X2=1.6,p=0.449 
Difference between flowers & roots water extract X2=0.0,p=1 

 

Difference between stems & roots water extract X2=1.6,p=0.449 
 

 

 

 

 

Appendix 5. Kruskal-Wallis one-way analysis of variance and Kolmogorov-Smirnov 
two-sample test of weed species root weight (mg). 

Kruskal-Wallis one-way analysis of variance of Phalaris minor (Retz.) root weight (mg) 

Sample Mean rank 

 Control  
Whole plant water extract 
Leaves water extract  
Flowers water extract 
Stems water extract 
Root water extract 

26.60 
17.60 
8.90 
4.00 

22.00 
13.90 

DF=5, Chi-square P<0.001, Value of H=22.47, Adjusted of ties=22.77 
 

 

  Kolmogorov-Smirnov two-sample test of Phalaris minor (Retz.) root weight (mg) 



274 
 

Difference between control & whole plant water extract. X2=6.4,p=0.041 

Difference between control  & leaves water extract X2=10,p=0.007 

 Difference between control &  flowers water extract X2=10,p=0.007 
Difference between control & stems water extract X2=6.4,p=0.041 

Difference between control & roots water extract X2=8.89,p=0.012 
 

Difference between Whole plant  & leaves water extract X2=6.4,p=0.041 

Difference between whole plant  & flowers water extract X2=10,p=0.007 

Difference between whole plant  & stems water extract X2=6.4,p=0.041 

Difference between whole plant & roots water extract X2=6.4,p=0.041 
 

Difference between leaves & flowers water extract X2=3.6,p=0.165 

Difference between leaves & stems water extract X2=10 ,p=0.007 

Difference between leaves & roots water extract X2=1.6,p=0.449 
 

Difference between flowers & stems water extract X2=10,p=0.007 

Difference between flowers & roots water extract X2=10,p=0.007 
 

Difference between stems & roots water extract X2=6.4,p=0.0.041 
 

  Kruskal-Wallis one-way analysis of variance of Convolvulus arvensis (L.) root weight (mg) 

Sample Mean rank 

 Control  
Whole plant water extract 
Leaves water extract  
Flowers water extract 
Stems water extract 
Root water extract 

28.00 
21.10 
13.50 
3.20 

14.50 
12.70 

DF=5, Chi-square P<0.001, Value of H=22.69, Adjusted of ties=22.75 
 

 Kolmogorov-Smirnov two-sample test of Convolvulus arvensis (L.) root weight (mg) 

Difference between control & whole plant water extract. X2=10,p=0.007 

Difference between control  & leaves water extract X2=10,p=0.007 

 Difference between control &  flowers water extract X2=10,p=0.007 

Difference between control & stems water extract X2=10,p=0.007 

Difference between control & roots water extract X2=10,p=0.007 

 

Difference between Whole plant  & leaves water extract X2=3.6,p=0.165 

Difference between whole plant  & flowers water extract X2=10,p=0.007 

Difference between whole plant  & stems water extract X2=3.6,p=0.165 

Difference between whole plant & roots water extract X2=3.6,p=0.165 
 

Difference between leaves & flowers water extract X2=10,p=0.007 

Difference between leaves & stems water extract X2=1.6,p=0.449 

Difference between leaves & roots water extract X2=1.6,p=0.449 
 

Difference between flowers & stems water extract X2=10,p=0.007 

Difference between flowers & roots water extract X2=6.4,p=0.041 
 

Difference between stems & roots water extract X2=1.6,p=0.449 
 

  Kruskal-Wallis one-way analysis of variance of Sorghum halepense (L.) root weight (mg) 
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Sample Mean rank 

 Control  
Whole plant water extract 
Leaves water extract  
Flowers water extract 
Stems water extract 
Root water extract 

28.00 
16.50 
11.50 
11.50 
14.00 
11.50 

DF=5, Chi-square P<0.001, Value of H=13.39, Adjusted of ties=22.09 
 

 

  Kolmogorov-Smirnov two-sample test of Sorghum halepense (L.) root weight (mg) 

Difference between control & whole plant water extract. X2=10,p=0.007 

Difference between control  & leaves water extract X2=10,p=0.007 

 Difference between control &  flowers water extract X2=10,p=0.007 

Difference between control & stems water extract X2=10,p=0.007 

Difference between control & roots water extract X2=10,p=0.007 
 

Difference between Whole plant  & leaves water extract X2=1.6,p=0.449 

Difference between whole plant  & flowers water extract X2=1.6,p=0.449 

Difference between whole plant  & stems water extract X2=0.4,p=0.819 

Difference between whole plant & roots water extract X2=1.6,p=0.449 
 

Difference between leaves & flowers water extract X2=0.0,p=1 

Difference between leaves & stems water extract X2=0.4,p=0.819 
Difference between leaves & roots water extract X2=0.0,p=1 

 

Difference between flowers & stems water extract X2=0.4,p=0.819 
Difference between flowers & roots water extract X2=0.0,p=1 

 

Difference between stems & roots water extract X2=0.4,p=0.819 

 

 

 

 

 

 

Appendix 6.  A Duncan's multiple range test to compare the differences between 
means of different factors used on Phalaris minor 

 
 

Phalaris minor germination %  
Duncan's multiple range test 
Pure glucosinolates 

  Mean   

 Glucoraphanin  72.00  a 

 Gluconapin  73.25  b 

 Gluconasturtiin  77.33  c 

 Mixed GSL  80.75  d 

Duncan's multiple range test 
Concentration (µmol) 

  Mean   

 25  63.25  a 

 12.5  66.75  b 
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 6.25  72.87  c 

 3.125  78.25  d 

 1.56  82.75  e 

      0                      91.12 f 

Duncan's multiple range test 
Pure glucosinolates× Concentration (µmol) 

  Mean   

 Glucoraphanin 25  55.00  a 

 Gluconapin 25  57.50  a 

 Gluconapin 12.5  60.50  b 

 Glucoraphanin 12.5  62.00  b 

 Gluconapin 6.25  68.50  c 

 Glucoraphanin 6.25  69.00  c 

 Gluconasturtiin 25  69.50  c 

 Gluconasturtiin 12.5  71.00  cd 

 Mixed GSL 25  71.00  cd 

 Mixed GSL 12.5  73.50  de 

 Glucoraphanin 3.125  74.50  e 

 Gluconasturtiin 6.25  75.00  e 

 Gluconapin 3.125  78.00  f 

 Gluconasturtiin 3.125  78.50  f 

 Mixed GSL 6.25  79.00  f 

 Glucoraphanin 1.56  80.00  fg 

 Gluconasturtiin 1.56  80.50  fg 

 Mixed GSL 3.125  82.00  gh 

 Gluconapin 1.56  83.50  h 

 Mixed GSL 1.56  87.00  i 

 Gluconasturtiin 0  89.50  ij 

 Glucoraphanin 0  91.50  j 

 Gluconapin 0  91.50  j 

Duncan's multiple range test 
Pure glucosinolates × Myrosinase 

  Mean   

 Glucoraphanin +M  58.83  a 

 Gluconapin +M  63.50  b 

 Gluconasturtiin +M  69.50  c 

 Mixed GSL +M  76.50  d 

 Gluconapin -M  83.00  e 

 Mixed GSL -M  85.00  f 

 Gluconasturtiin -M  85.17  f 

          Glucoraphanin -M                 85.17  f 

              Mixed GSL -M                92.00  j 
 
 
 
Duncan's multiple range test 
Concentration (µmol) ×Myrosinase 

  Mean   

 25 +M  46.50  a 

 12.5 +M  52.75  b 

 6.25 +M  62.50  c 

 3.125 +M  71.50  d 

 1.56 +M  78.50  e 

 25 -M  80.00  ef 

 12.5 -M  80.75  f 

 6.25 -M  83.25  g 

 3.125 -M  85.00  g 

 1.56 -M  87.00  h 

 0+M  90.75  i 

 0 -M  91.50  i 

Duncan's multiple range test 
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Pure glucosinolates × Concentration (µmol) ×Myrosinase                                                                  

                                                                   Mean 

 Glucoraphanin 25+M  29.00  a 

 Gluconapin 25+M  37.00  b 

 Gluconapin 12.5 +M  41.00  c 

 Glucoraphanin 12.5 +M  43.00  c 

 Glucoraphanin 6.25 +M  55.00  d 

 Gluconapin 6.25 +M  55.00  d 

 Gluconasturtiin 25 +M  58.00  de 

 Gluconasturtiin 12.5 +M  60.00  ef 

 Mixed GSL 25 +M  62.00  efg 

 Glucoraphanin 3.125 +M  63.00  fgh 

 Gluconasturtiin 6.25 +M  65.00  gh 

 Mixed GSL 12.5 +M  67.00  h 

 Gluconasturtiin 3.125 +M  71.00  i 

 Glucoraphanin 1.56 +M  72.00  i 

 Gluconapin 3.125 +M  73.00  i 

 Gluconasturtiin 1.56 +M  75.00  ij 

 Mixed GSL 6.25 +M  75.00  ij 

 Gluconapin 25 -M  78.00  jk 

 Mixed GSL 3.125+M  79.00  jkl 

 Gluconapin 12.5 -M  80.00  klm 

 Mixed GSL 12.5 -M  80.00  klm 

 Mixed GSL 25 -M  80.00  klm 

 Glucoraphanin 12.5 -M  81.00  klmn 

 Glucoraphanin 25 -M  81.00  klmn 

 Gluconasturtiin 25 -M  81.00  klmn 

 Gluconasturtiin 12.5 -M  82.00  klmno 

 Gluconapin 6.25 -M  82.00  klmno 

 Glucoraphanin 6.25 -M  83.00  lmno 

 Gluconapin 1.56+M  83.00  lmno 

 Gluconapin 3.125 -M  83.00  lmno 

 Mixed GSL 6.25 -M  83.00  lmno 

 Gluconapin 1.56 -M  84.00  mnop 

 Mixed GSL 1.56+M  84.00  mnop 

 Gluconasturtiin 6.25 -M  85.00  nop 

 Mixed GSL 3.125 -M  85.00  nop 

 Gluconasturtiin 3.125 -M  86.00  opq 

 Glucoraphanin 3.125 -M  86.00  opq 

 Gluconasturtiin 1.56 -M  86.00  opq 

 Glucoraphanin 1.56 -M  88.00  pqr 



278 
 

 Gluconasturtiin 0+M  88.00  pqr 

 Mixed GSL 1.56 -M  90.00  qr 

 Gluconasturtiin 0 -M  91.00  r 

 Glucoraphanin 0+M  91.00  r 

 Gluconapin 0 -M  91.00  r 

 Glucoraphanin 0 -M  92.00  r 

 Gluconapin 0+M  92.00  r 

 Mixed GSL 0 -M  92.00  r 

                           Mixed GSL 0+M  92.00  r 

 

Phalaris minor shoot length (cm) 
 

Duncan's multiple range test 
 Pure glucosinolates  

  Mean   

 Glucoraphanin  6.208  a 

 Gluconapin  6.442  b 

 Gluconasturtiin  6.533  c 

 Mixed GSL            6.608 d 

Duncan's multiple range test  
Concentration (µmol) 
  

  Mean   

 25  5.642  a 

 12.5  5.895  b 

 6.25  6.307  c 

 3.125  6.560  d 

 1.56  6.840  e 

 0  7.442  f 

 
 
 
 
 
 
 
 
Duncan's multiple range test 
 Pure glucosinolates × Concentration (µmol) 

 

  Mean   

 Glucoraphanin 25  5.020  a 

 Gluconapin 25  5.350  b 

 Glucoraphanin 12.5  5.590  c 

 Gluconapin 12.5  5.640  c 

 Mixed GSL 25  5.970  d 

 Glucoraphanin 6.25  6.140  de 

 Mixed GSL 12.5  6.140  de 

 Gluconasturtiin 12.5  6.210  ef 

 Gluconasturtiin 25  6.230  ef 

 Gluconasturtiin 6.25  6.290  efg 
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 Gluconapin 6.25  6.350  fg 

 Glucoraphanin 3.125  6.390  fg 

 Mixed GSL 6.25  6.450  gh 

 Gluconasturtiin 3.125  6.470  gh 

 Mixed GSL 3.125  6.620  hi 

 Glucoraphanin 1.56  6.750  i 

 Gluconasturtiin 1.56  6.750  i 

 Gluconapin 3.125  6.760  i 

 Mixed GSL 1.56  6.790  i 

 Gluconapin 1.56  7.070  j 

 Gluconasturtiin 0  7.250  jk 

 Glucoraphanin 0  7.360  kl 

 Gluconapin 0  7.480  l 

 Mixed GSL 0  7.680  m 

Duncan's multiple range test 
 Pure glucosinolates × Myrosinase  

  Mean   

 Glucoraphanin +M  5.390  a 

 Gluconapin +M  6.033  b 

 Gluconasturtiin +M  6.393  c 

 Mixed GSL +M  6.513  d 

 Gluconasturtiin -M  6.673  e 

 Mixed GSL -M  6.703  e 

 Gluconapin -M  6.850  f 

 Glucoraphanin -M  7.027  g 

Duncan's multiple range test 
 Concentration (µmol) ×Myrosinase   

 Mean    

 25 +M  4.810  a 

 12.5 +M  5.275  b 

 6.25 +M  6.010  c 

 3.125 +M  6.375  d 

 25   -M  6.475  de 

 12.5 -M  6.515  e 

 6.25 -M  6.605  ef 

 1.56 +M  6.700  fg 

 3.125 -M  6.745  g 

 1.56 -M  6.980  h 

 0 +M  7.325  i 

 0 -M  7.560  j 

 

 
Duncan's multiple range test 
Pure glucosinolates × Concentration (µmol) ×Myrosinase 

  Mean   

 Glucoraphanin 25 +M  3.220  a 

 Glucoraphanin 12.5 +M  4.320  b 

 Gluconapin 25 +M  4.340  b 

 Gluconapin 12.5 +M  4.760  c 

 Glucoraphanin 6.25 +M  5.520  d 
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 Mixed GSL 25 +M  5.720  de 

 Glucoraphanin 3.125 +M  5.940  ef 

 Gluconasturtiin 25 +M  5.960  ef 

 Mixed GSL 12.5 +M  5.980  ef 

 Gluconapin 6.25 +M  6.020  fg 

 Gluconasturtiin 12.5 +M  6.040  fg 

 Gluconasturtiin 6.25 +M  6.200  fgh 

 Mix GSL 25 -M  6.220  fghi 

 Glucoraphanin 1.56+M  6.280  ghij 

 Mixed GSL 6.25+M  6.300  ghijk 

 Mixed GSL 12.5 -M  6.300  ghijk 

 Gluconapin 25 -M  6.360  hijk 

 Gluconasturtiin 6.25 -M  6.380  hijkl 

 Gluconasturtiin 12.5 -M  6.380  hijkl 

 Gluconasturtiin 3.125+M  6.420  hijklm 

 Gluconasturtiin 25 -M  6.500  hijklmn 

 Gluconasturtiin 3.125 -M  6.520  ijklmno 

 Gluconapin 12.5 -M  6.520  ijklmno 

 Mixed GSL 3.125+M  6.540  jklmnop 

 Gluconapin 3.125+M  6.600  klmnopq 

 Mixed GSL 6.25 -M  6.600  klmnopq 

 Gluconapin 6.25 -M  6.680  lmnopqr 

 Gluconasturtiin 1.56+M  6.680  lmnopqr 

 Mixed GSL 3.125 -M  6.700  mnopqr 

 Glucoraphanin 6.25 -M  6.760  nopqrs 

 Mixed GSL 1.56+M  6.780  nopqrst 

 Mixed GSL 1.56 -M  6.800  nopqrst 

 Glucoraphanin 25 -M  6.820  opqrst 

 Gluconasturtiin 1.56 -M  6.820  opqrst 

 Glucoraphanin 3.125 -M  6.840  pqrst 

 Glucoraphanin 12.5 -M  6.860  qrst 
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 Gluconapin 3.125 -M  6.920  rst 

 Glucoraphanin 0+M  7.060  stu 

 Gluconapin 1.56+M  7.060  stu 

 Gluconasturtiin 0 +M  7.060  stu 

 Gluconapin 1.56 -M  7.080  tu 

 Glucoraphanin 1.56 -M  7.220  uv 

 Gluconapin 0+M  7.420  vw 

 Gluconasturtiin 0 -M  7.440  vw 

 Gluconapin 0 -M  7.540  wx 

 Mixed GSL 0 -M  7.600  wx 

 Glucoraphanin 0 -M  7.660  wx 

              Mixed GSL 0 +M        7.760    x 

 

Phalaris minor root weight (mg) 
 
Duncan's multiple range test 
 Pure glucosinolates    

  Mean   

 Mixed GSL  3.895  a 

 Gluconapin  4.048  b 

        Glucoraphanin  4.078  b 

       Gluconasturtiin        4.120   b 

Duncan's multiple range test 
Concentration (µmol) 

  
 

 

  Mean   

 25  3.462  a 

 12.5  3.637  b 

 6.25  3.827  c 

 3.125  4.042  d 

 1.56  4.312  e 

 0  4.930  f 

Duncan's multiple range test 
Pure glucosinolates ×  Concentration (µmol)    

  Mean   

 Mixed GSL 25  3.160  a 

 Mixed GSL 12.5  3.350  ab 

 Glucoraphanin 25  3.440  bc 

 Gluconapin 25  3.530  bcd 

 Mixed GSL 6.25  3.590  cd 

 Glucoraphanin 12.5  3.670  de 

 Gluconapin 12.5  3.680  de 

 Gluconasturtiin 25  3.720  def 

 Gluconapin 6.25  3.840  efg 

 Gluconasturtiin 12.5  3.850  efgh 
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 Mixed GSL 3.125  3.900  fghi 

 Glucoraphanin 6.25  3.940  ghij 

 Gluconasturtiin 6.25  3.940  ghij 

 Gluconapin 3.125  4.060  hijk 

 Gluconasturtiin 3.125  4.090  ijk 

 Glucoraphanin 3.125  4.120  jk 

 Gluconapin 1.56  4.220  kl 

 Gluconasturtiin 1.56  4.270  kl 

 Glucoraphanin 1.56  4.370  l 

 Mixed GSL 1.56  4.390  l 

 Gluconasturtiin 0  4.850  m 

 Glucoraphanin 0  4.930  m 

 Gluconapin 0  4.960  m 

 Mixed GSL 0  4.980  m 

Duncan's multiple range test 
Pure glucosinolates ×Myrosinase  

  Mean   

 Mixed GSL M+  3.213  a 

 Glucoraphanin M+  3.633  b 

 Gluconapin M+  3.873  c 

 Gluconasturtiin M+  3.900  c 

 Gluconapin M-  4.223  d 

 Gluconasturtiin M-  4.340  e 

 Glucoraphanin M-  4.523  f 

 Mixed GSL M-              4.577  f 

Duncan's multiple range test 
Concentration (µmol) ×Myrosinase  

 Mean   

 25 M+  2.885  a 

 12.5 M+  3.090  b 

 6.25 M+  3.395  c 

 3.125 M+  3.695  d 

 1.56 M+  4.025  e 

 25 M-  4.040  e 

 12.5 M-  4.185  f 

 6.25 M-  4.260  fg 

 3.125 M-  4.390  g 

 1.56 M-  4.600  h 

 0M+  4.840  i 

 0 M-  5.020  j 

Duncan's multiple range test 
Pure glucosinolates × Concentration (µmol) × Myrosinase  

  Mean   

 Mix GSL 25 M+  2.160  a 

 Mix GSL 12.5 M+  2.420  ab 

 Glucoraphanin 25 M+  2.680  bc 

 Mix GSL 6.25 M+  2.780  cd 

 Glucoraphanin 12.5 M+  3.020  de 
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 Mix GSL 3.125 M+  3.220  ef 

 Gluconapin 25 M+  3.280  efg 

 Gluconapin 12.5 M+  3.380  fgh 

 Gluconasturtiin 25 M+  3.420  fgh 

 Glucoraphanin 6.25 M+  3.500  fghi 

 Gluconasturtiin 12.5 M+  3.540  ghi 

 Gluconapin 6.25 M+  3.620  hij 

 Gluconasturtiin 6.25 M+  3.680  hijk 

 Glucoraphanin 3.125 M+  3.760  ijkl 

 Gluconapin 25 M-  3.780  ijkl 

 Mix GSL 1.56M+  3.880  jklm 

 Gluconapin 3.125M+  3.900  jklmn 

 Gluconasturtiin 3.125M+  3.900  jklmn 

 Glucoraphanin 1.56M+  3.980  klmno 

 Gluconapin 12.5 M-  3.980  klmno 

 Gluconasturtiin 25 M-  4.020  lmnop 

 Gluconapin 6.25 M-  4.060  lmnopq 

 Gluconasturtiin 1.56M+  4.120  mnopqr 

 Gluconapin 1.56M+  4.120  mnopqr 

 Gluconasturtiin 12.5 M-  4.160  mnopqrs 

 Mixed GSL 25 M-  4.160  mnopqrs 

 Glucoraphanin 25 M-  4.200  mnopqrs 

 Gluconasturtiin 6.25 M-  4.200  mnopqrs 

 Gluconapin 3.125 M-  4.220  nopqrs 

 Mixed GSL 12.5 M-  4.280  opqrst 

 Gluconasturtiin 3.125 M-  4.280  opqrst 

 Glucoraphanin 12.5 M-  4.320  pqrst 

 Gluconapin 1.56 M-  4.320  pqrst 

 Glucoraphanin 6.25 M-  4.380  qrst 
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 Mixed GSL 6.25 M-  4.400  rst 

 Gluconasturtiin 1.56 M-  4.420  rst 

 Glucoraphanin 3.125 M-  4.480  stu 

 Mixed GSL 3.125 M-  4.580  tuv 

 Gluconasturtiin 0M+  4.740  uvw 

 Glucoraphanin 1.56 M-  4.760  uvw 

 Mixed GSL 0M+  4.820  vw 

 Glucoraphanin 0M+  4.860  vwx 

 Mixed GSL 1.56 M-  4.900  wx 

 Gluconapin 0M+  4.940  wx 

 Gluconasturtiin 0 M-  4.960  wx 

 Gluconapin 0 M-  4.980  wx 

 Glucoraphanin 0 M-  5.000  wx 

          Mixed GSL 0 M-              5.140  x 

 
Phalaris minor  shoot weight (mg) 
 
Duncan's multiple range test 
Pure glucosinolates    

  

  Mean   

 Glucoraphanin  6.793  a 

 Mixed GSL  7.278  b 

 Gluconasturtiin  7.438  c 

 Gluconapin           7.633    d 
 

Duncan's multiple range test 
Concentration (µmol)  

  Mean   

 25  6.330  a 

 12.5  6.707  b 

 6.25  6.975  c 

 3.125  7.372  d 

 1.56  7.887  e 

      0                   8.442  f 

Duncan's multiple range test 
 

Pure glucosinolates ×Concentration (µmol) 

  Mean   

 Glucoraphanin 25  5.810  a 

 Glucoraphanin 12.5  6.120  b 

 Glucoraphanin 6.25  6.410  c 

 Mixed GSL 25  6.410  c 

 Gluconasturtiin 25  6.450  cd 

 Gluconapin 25  6.650  cde 

 Mixed GSL 12.5  6.700  de 

 Glucoraphanin 3.125  6.840  ef 
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 Mixed GSL 6.25  6.850  ef 

 Gluconasturtiin 12.5  7.000  fg 

 Gluconapin 12.5  7.010  fg 

 Gluconasturtiin 6.25  7.220  gh 

 Mixed GSL 3.125  7.240  gh 

 Gluconapin 6.25  7.420  hi 

 Glucoraphanin 1.56  7.530  ij 

 Gluconasturtiin 3.125  7.650  ij 

 Mixed GSL 1.56  7.740  j 

 Gluconapin 3.125  7.760  j 

 Gluconasturtiin 1.56  8.010  k 

 Glucoraphanin 0  8.050  kl 

 Gluconapin 1.56  8.270  l 

 Gluconasturtiin 0  8.300  l 

 Gluconapin 0  8.690  m 

            Mixed GSL 0               8.730  m 

Duncan's multiple range test 
Pure glucosinolates × Myrosinase 

  Mean   

 Glucoraphanin +M  6.010  a 

 Mixed GSL +M  6.717  b 

 Gluconasturtiin +M  7.057  c 

 Gluconapin +M  7.120  c 

 Glucoraphanin -M  7.577  d 

 Gluconasturtiin -M  7.820  e 

 Mixed GSL -M  7.840  e 

 Gluconapin -M  8.147  f 

Duncan's multiple range test 
 Concentration (µmol) ×Myrosinase 

  Mean   

 25% +M  5.325  a 

 12.5% +M  5.930  b 

 6.25% +M  6.290  c 

 3.125% +M  6.870  d 

 25% -M  7.335  e 

 12.5% -M  7.485  ef 

 1.56% +M  7.600  f 

 6.25% -M  7.660  f 

 3.125% -M  7.875  g 

 1.56% -M  8.175  h 

 0% +M  8.340  h 

 0% -M  8.545  i 
 
 
 
 
 
Duncan's multiple range test 
Pure glucosinolates × Concentration (µmol) ×Myrosinase 

  Mean   

 Glucoraphanin 25 +M  4.300  a 

 Glucoraphanin 12.5 +M  4.860  b 

 Glucoraphanin 6.25 +M  5.360  c 

 Gluconasturtiin 25 +M  5.580  cd 

 Mixed GSL 25 +M  5.640  cd 



286 
 

 Gluconapin 25 +M  5.780  de 

 Mixed GSL 12.5 +M  6.040  ef 

 Mixed GSL 6.25 +M  6.060  ef 

 Glucoraphanin 3.125 +M  6.160  f 

 Gluconapin 12.5 +M  6.280  fg 

 Gluconasturtiin 12.5 +M  6.540  gh 

 Mixed GSL 3.125 +M  6.580  ghi 

 Gluconasturtiin 6.25 +M  6.820  hi 

 Gluconapin 6.25 +M  6.920  ij 

 Mixed GSL 25 -M  7.180  jk 

 Mixed GSL 1.56+M  7.260  jkl 

 Glucoraphanin 1.56+M  7.300  kl 

 Glucoraphanin 25 -M  7.320  kl 

 Gluconasturtiin 25 -M  7.320  kl 

 Gluconapin 3.125+M  7.320  kl 

 Mixed GSL 12.5 -M  7.360  klm 

 Glucoraphanin 12.5 -M  7.380  klm 

 Gluconasturtiin 3.125+M  7.420  klm 

 Gluconasturtiin 12.5 -M  7.460  klmn 

 Glucoraphanin 6.25 -M  7.460  klmn 

 Glucoraphanin 3.125 -M  7.520  klmno 

 Gluconapin 25 -M  7.520  klmno 

 Gluconasturtiin 6.25 -M  7.620  lmnop 

 Mixed GSL 6.25 -M  7.640  lmnopq 

 Gluconapin 12.5 -M  7.740  mnopqr 

 Glucoraphanin 1.56 -M  7.760  mnopqrs 

 Gluconasturtiin 1.56+M  7.840  nopqrst 

 Gluconasturtiin 3.125 -M  7.880  opqrst 

 Mixed GSL 3.125 -M  7.900  opqrst 

 Gluconapin 6.25 -M  7.920  pqrst 

 Gluconapin 1.56+M  8.000  pqrst 
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 Glucoraphanin 0 -M  8.020  qrst 

 Glucoraphanin 0+M  8.080  rstu 

 Gluconasturtiin 0+M  8.140  stu 

 Gluconasturtiin 1.56 -M  8.180  tuv 

 Gluconapin 3.125 -M  8.200  tuv 

 Mixed GSL 1.56 -M  8.220  tuv 

 Gluconapin 0+M  8.420  uvw 

 Gluconasturtiin 0 -M  8.460  uvw 

 Gluconapin 1.56 -M  8.540  vw 

 Mixed GSL 0+M  8.720  wx 

 Mixed GSL 0 -M  8.740  wx 

             Gluconapin 0 -M         8.960 x   

 
Phalaris minor root weight (mg) 
 
Duncan's multiple range test 
 Pure glucosinolates  

  Mean   

 Gluconapin  3.128  a 

 Mixed GSL  3.297  b 

 Gluconasturtiin  3.310  b 

 Glucoraphanin  3.443  c 

Duncan's multiple range test 
Concentration (µmol)  

  Mean   

 25  2.562  a 

 12.5  2.810  b 

 6.25  3.017  c 

 3.125  3.312  d 

 1.56  3.667  e 

    0                     4.397  f 

Duncan's multiple range test 
Pure glucosinolates × Concentration (µmol)  

  Mean   

 Gluconapin 25  2.350  a 

 Gluconapin 12.5  2.560  ab 

 Gluconasturtiin 25  2.580  ab 

 Mixed GSL 25  2.640  bc 

 Glucoraphanin 25  2.680  bc 

 Gluconapin 6.25  2.730  bc 

 Gluconasturtiin 12.5  2.790  bc 

 Mixed GSL 12.5  2.850  cd 

 Glucoraphanin 12.5  3.040  de 

 Mixed GSL 6.25  3.040  de 

 Gluconasturtiin 6.25  3.050  de 



288 
 

 Gluconapin 3.125  3.080  de 

 Glucoraphanin 6.25  3.250  ef 

 Mixed GSL 3.125  3.330  fg 

 Glucoraphanin 3.125  3.400  fg 

 Gluconasturtiin 3.125  3.440  fg 

 Mixed GSL 1.56  3.530  g 

 Gluconapin 1.56  3.550  g 

 Gluconasturtiin 1.56  3.790  h 

 Glucoraphanin 1.56  3.800  h 

 Gluconasturtiin 0  4.210  i 

 Mixed GSL 0  4.390  ij 

 Glucoraphanin 0  4.490  j 

 Gluconapin 0  4.500  j 

 Duncan's multiple range test 
Pure glucosinolates ×Myrosinase 

  Mean   

 Mixed GSL M+  2.567  a 

 Gluconapin M+  2.623  a 

 Glucoraphanin M+  2.840  b 

 Gluconasturtiin M+  3.050  c 

 Gluconasturtiin M-  3.570  d 

 Gluconapin M-  3.633  d 

 Mixed GSL M-  4.027  e 

 Glucoraphanin M-  4.047  e 

 Duncan's multiple range test 
 Concentration (µmol) × Myrosinase 

  Mean   

 25 M+  1.845  a 

 12.5 M+  2.130  b 

 6.25 M+  2.435  c 

 3.125 M+  2.800  d 

 1.56 M+  3.205  e 

 25 M-  3.280  e 

 12.5 M-  3.490  f 

 6.25 M-  3.600  f 

 3.125M-  3.825  g 

 1.56 M-  4.130  h 

 0 M+  4.205  h 

 0 M-  4.590  i 

  
 
 
Duncan's multiple range test 
Pure glucosinolates × Concentration (µmol) × Myrosinase 

  Mean   

 Gluconapin 25M+  1.660  a 

 Glucoraphanin 25M+  1.720  a 

 Mixed GSL 25 M+  1.880  ab 

 Gluconapin 12.5M+  1.920  ab 

 Mixed GSL 12.5M+  2.000  ab 
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 Gluconasturtiin 25M+  2.120  bc 

 Mixed GSL 6.25M+  2.200  bcd 

 Gluconapin 6.25M+  2.200  bcd 

 Glucoraphanin 12.5M+  2.220  bcd 

 Gluconasturtiin 12.5M+  2.380  cd 

 Mixed GSL 3.125M+  2.500  de 

 Glucoraphanin 6.25M+  2.520  de 

 Gluconapin 3.125M+  2.560  de 

 Mixed GSL 1.56M+  2.760  ef 

 Gluconasturtiin 6.25M+  2.820  ef 

 Glucoraphanin 3.125M+  2.860  efg 

 Gluconasturtiin 25 M-  3.040  fgh 

 Gluconapin 25M-  3.040  fgh 

 Gluconapin 1.56M+  3.100  fgh 

 Gluconasturtiin 12.5M-  3.200  gh 

 Gluconapin 12.5M-  3.200  gh 

 Gluconapin 6.25M-  3.260  hi 

 Gluconasturtiin 6.25M-  3.280  hij 

 Gluconasturtiin 3.125M-  3.280  hij 

 Glucoraphanin 1.56M+  3.320  hij 

 Mixed GSL 25M-  3.400  hijk 

 Gluconapin 3.125M-  3.600  ijkl 

 Gluconasturtiin 3.125M-  3.600  ijkl 

 Glucoraphanin 25M-  3.640  jklm 

            Gluconasturtiin 1.56M+    3.640  jklm 

 Mixed GSL 12.5M-  3.700  klmn 

 Glucoraphanin 12.5M-  3.860  lmno 

 Mixed GSL 6.25M-  3.880  lmno 

 Glucoraphanin 3.125M-  3.940  lmnop 
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 Gluconasturtiin 1.56M-  3.940  lmnop 

 Glucoraphanin 6.25M-  3.980  mnop 

 Gluconapin 1.56M-  4.000  mnopq 

 Gluconasturtiin 0M+  4.060  nopqr 

 Mixed GSL 0M+  4.060  nopqr 

 Mixed GSL 3.125M-  4.160  opqr 

 Glucoraphanin 1.56M-  4.280  pqrs 

 Gluconapin 0M+  4.300  pqrs 

 Mixed GSL 1.56M-  4.300  pqrs 

 Gluconasturtiin 0M-  4.360  qrst 

 Glucoraphanin 0M+  4.400  rstu 

 Glucoraphanin 0M-  4.580  stu 

 Gluconapin 0M-  4.700  tu 

 Mixed GSL 0M-  4.720  u 

 

 

 

 

 

 
 
Appendix 7. A Duncan's multiple range test to compare the differences between 

means of different factors used on Convolvulus arvensis  
 
Duncan's multiple range test  
Pure glucosinolates  
    

Mean   

 Glucoraphanin  69.67  a 

 Gluconapin  70.50  ab 

 Gluconasturtiin  71.50  b 

 Mixed GSL  74.83  c 

Duncan's multiple range test 
 Concentration (µmol)  

  Mean   

 25  60.00  a 

 12.5  65.38  b 
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 6.25  69.25  c 

 3.125  73.75  d 

 1.56  78.12  e 

 0  83.25  f 

Duncan's multiple range test 
 Pure glucosinolates × Concentration (µmol)  
 

  Mean   

 Glucoraphanin 25  54.50  a 

 Gluconasturtiin 25  59.00  b 

 Gluconapin 25  60.50  bc 

 Gluconapin 12.5  63.00  bcd 

 Gluconasturtiin 12.5  63.50  cd 

 Glucoraphanin 12.5  64.50  cd 

 Gluconapin 6.25  66.00  de 

 Mixed GSL 25  66.00  de 

 Gluconasturtiin 6.25  69.00  ef 

 Glucoraphanin 6.25  70.00  ef 

 Mixed GSL 12.5  70.50  fg 

 Gluconapin 3.125  72.00  fgh 

 Mixed GSL 6.25  72.00  fgh 

 Glucoraphanin 3.125  72.50  fgh 

 Gluconasturtiin 3.125  74.50  ghi 

 Glucoraphanin 1.56  75.00  hij 

 Mixed GSL 3.125  76.00  hij 

 Gluconapin 1.56  78.00  ijk 

 Gluconasturtiin 1.56  79.00  jk 

 Mixed GSL 1.56  80.50  kl 

 Glucoraphanin 0  81.50  kl 

 Gluconapin 0  83.50  l 

 Gluconasturtiin 0  84.00  l 

 Mixed GSL 0  84.00  l 

 Duncan's multiple range test 
 Pure glucosinolates × Myrosinase 
 

  Mean   

 Glucoraphanin +M  64.17  a 

 Gluconasturtiin +M  64.50  a 

 Gluconapin +M  67.17  b 

 Mixed GSL +M  71.67  c 

 Gluconapin -M  73.83  cd 

 Glucoraphanin -M  75.17  d 

 Mixed GSL -M  78.00  e 

 Gluconasturtiin -M  78.50  e 

 
 
Duncan's multiple range test 
 Concentration (µmol) × Myrosinase 

Mean    

25 +M  50.00 a 

12.5 +M  58.00  b 

6.25 +M  64.25  c 

25 -M  70.00  d 

3.125 +M  70.50  d 

12.5 -M  72.75  de 

6.25 -M  74.25  ef 

1.56 +M  76.00  f 

3.125 -M  77.00  f 

1.56 -M  80.25  g 

0 +M  82.50  gh 

0 -M  84.00  h 

Duncan's multiple range test 
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 Pure glucosinolates × Concentration (µmol) × Myrosinase 
  

Mean    

Glucoraphanin 25 +M  39.00  a 

Gluconasturtiin 25 +M  46.00  b 

Gluconasturtiin 12.5 +M  52.00  c 

Gluconapin 25+M  55.00  cd 

Gluconapin 12.5 +M  57.00  cde 

Glucoraphanin 12.5 +M  57.00  cde 

Mixed GSL 25 +M  60.00  def 

Gluconasturtiin 6.25 +M  61.00  def 

Gluconapin 6.25 +M  62.00  ef 

Glucoraphanin 6.25 +M  65.00  fg 

Gluconapin 25 -M  66.00  fgh 

Mix GSL 12.5 +M  66.00  fgh 

Gluconapin 3.125 +M  69.00  ghi 

Gluconapin 12.5 -M  69.00  ghi 

Mixed GSL 6.25 +M  69.00  ghi 

Glucoraphanin 3.125 +M  70.00  ghi 

Glucoraphanin 25 -M  70.00  ghi 

Gluconasturtiin 3.125 +M  70.00  ghi 

Gluconapin 6.25 -M  70.00  ghi 

Gluconasturtiin 25-M  72.00  hij 

Mixed GSL 25 -M  72.00  hij 

Glucoraphanin 12.5 -M  72.00  hij 

Mixed GSL 3.125 +M  73.00  ijk 

Glucoraphanin 1.56 +M  73.00  ijk 

Glucoraphanin 3.125 -M  75.00  ijkl 

Glucoraphanin 6.25 -M  75.00  ijkl 

Gluconasturtiin 1.56 +M  75.00  ijkl 

Gluconapin 3.125-M  75.00  ijkl 

Mixed GSL 6.25 -M  75.00  ijkl 

Mixed GSL 12.5 -M  75.00  ijkl 
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Gluconasturtiin 12.5 -M  75.00  ijkl 

Gluconasturtiin 6.25 -M  77.00  jklm 

Gluconapin 1.56+M  77.00  jklm 

Glucoraphanin 1.56 -M  77.00  jklm 

Gluconasturtiin 3.125 -M  79.00  klmn 

Gluconapin 1.56 -M  79.00  klmn 

Mixed GSL 1.56 +M  79.00  klmn 

Mixed GSL 3.125 -M  79.00  klmn 

Glucoraphanin 0 +M  81.00  lmn 

Glucoraphanin 0 -M  82.00  mn 

Mixed GSL 1.56 -M  82.00  mn 

Gluconasturtiin 0 +M  83.00  mn 

Gluconasturtiin 1.56 -M  83.00  mn 

Gluconapin 0 +M  83.00  mn 

Mixed GSL 0 +M  83.00  mn 

Gluconapin 0 -M  84.00  n 

Gluconasturtiin 0 -M  85.00  n 

Mixed GSL 0 -M  85.00  n 

 

 
 
 
 
 
 
 
Convolvulus arvensis shoot length(cm) 
Duncan's multiple range test 
 Pure glucosinolates  

  Mean   

 Glucoraphanin  10.13  a 

 Mixed GSL  10.62  b 

 Gluconapin  10.65  b 

 Gluconasturtiin      10.66     b 

Duncan's multiple range test 
Concentration (µmol)  

  Mean   

 25  9.21  a 

 12.5  9.62  b 

 6.25  10.04  c 

 3.125  10.42  d 

 1.56  11.07  e 

 0  12.74  f 
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Duncan's multiple range test 
Pure glucosinolates × Concentration (µmol)  
 

  Mean   

 Glucoraphanin 25  8.92  a 

 Gluconapin 25  9.25  ab 

 Gluconasturtiin 25  9.28  abc 

 Glucoraphanin 12.5  9.34  abc 

 Mixed GSL 25  9.41  bc 

 Glucoraphanin 6.25  9.65  bcd 

 Gluconasturtiin 12.5  9.66  bcd 

 Gluconapin 12.5  9.72  bcd 

 Mixed GSL 12.5  9.75  cd 

 Glucoraphanin 3.125  9.99  de 

 Gluconapin 6.25  10.05  def 

 Mixed GSL 6.25  10.06  def 

 Gluconasturtiin 6.25  10.38  efg 

 Glucoraphanin 1.56  10.41  efg 

 Mixed GSL 3.125  10.44  efg 

 Gluconapin 3.125  10.51  fg 

 Gluconasturtiin 3.125  10.74  g 

 Gluconasturtiin 1.56  11.25  h 

 Mixed GSL 1.56  11.29  h 

 Gluconapin 1.56  11.34  h 

 Glucoraphanin 0  12.50  i 

 Gluconasturtiin 0  12.63  ij 

 Mixed GSL 0  12.80  ij 

 Gluconapin 0  13.03  j 

Duncan's multiple range test 
 Pure glucosinolates) × Myrosinase 
 

  Mean   

 Glucoraphanin +M  8.67  a 

 Mixed GSL +M  9.20  b 

 Gluconapin +M  9.41  b 

 Gluconasturtiin +M  9.41  b 

 Glucoraphanin -M  11.60  c 

 Gluconapin -M  11.89  d 

 Gluconasturtiin -M  11.90  d 

 Mixed GSL -M  12.05  d 

 
 
 
 
Duncan's multiple range test 
Concentration (µmol) × Myrosinase 

  Mean   

 25 +M  7.39  a 

 12.5 +M  7.86  b 

 6.25 +M  8.38  c 

 3.125 +M  8.90  d 

 1.56 +M  9.85  e 

 25 -M  11.03  f 

 12.5 -M  11.38  g 

 6.25 -M  11.68  h 

 3.125 -M  11.93  h 

 1.56 -M  12.29  i 

 0+M  12.64  j 

 0 -M  12.84  j 

Duncan's multiple range test 
Pure glucosinolates × Concentration (µmol) × Myrosinase 
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  Mean   

 Glucoraphanin 25 +M  7.16  a 

 Gluconapin 25 +M  7.40  ab 

 Gluconasturtiin 25 +M  7.44  ab 

 Glucoraphanin 12.5 +M  7.52  abc 

 Mixed GSL 25 +M  7.58  abcd 

 Mixed GSL 12.5 +M  7.84  bcde 

 Glucoraphanin 6.25 +M  7.86  bcde 

 Gluconasturtiin 12.5 +M  7.98  bcde 

 Gluconapin 12.5 +M  8.08  bcdef 

 Mixed GSL 6.25 +M  8.20  cdefg 

 Glucoraphanin 3.125 +M  8.26  defg 

 Gluconapin 6.25 +M  8.46  efgh 

 Mixed GSL 3.125 +M  8.70  fghi 

 Glucoraphanin 1.56 +M  8.82  ghi 

 Gluconasturtiin 6.25 +M  9.02  hij 

 Gluconapin 3.125 +M  9.14  ij 

 Gluconasturtiin 3.125 +M  9.52  jk 

 Mixed GSL 1.56 +M  10.06  kl 

 Gluconasturtiin 1.56 +M  10.10  kl 

 Gluconapin 1.56 +M  10.42  l 

 Glucoraphanin 25 -M  10.68  lm 

 Gluconapin 25 -M  11.10  mn 

 Gluconasturtiin 25 -M  11.12  mn 

 Glucoraphanin 12.5 -M  11.16  mn 

 Mixed GSL 25 -M  11.24  mno 

 Gluconasturtiin 12.5 -M  11.34  mnop 

 Gluconapin 12.5 -M  11.36  mnop 

 Glucoraphanin 6.25 -M  11.44  nop 

 Gluconapin 6.25 -M  11.64  nopq 

 Mixed GSL 12.5 -M  11.66  nopq 
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 Glucoraphanin 3.125 -M  11.72  nopqr 

 Gluconasturtiin 6.25 -M  11.74  nopqr 

 Gluconapin 3.125 -M  11.88  opqrs 

 Mixed GSL 6.25 -M  11.92  opqrst 

 Gluconasturtiin 3.125 -M  11.96  pqrst 

 Glucoraphanin 1.56 -M  12.00  pqrst 

 Mixed GSL 3.125 -M  12.18  qrstu 

 Gluconapin 1.56 -M  12.26  qrstuv 

 Glucoraphanin 0%+M  12.40  rstuv 

 Gluconasturtiin 1.56 -M  12.40  rstuv 

 Gluconasturtiin 0+M  12.42  rstuv 

 Mixed GSL 1.56 -M  12.52  stuvw 

 Glucoraphanin 0 -M  12.60  tuvw 

 Mixed GSL 0+M  12.80  uvw 

 Mixed GSL 0 -M  12.80  uvw 

 Gluconasturtiin 0 -M  12.84  uvw 

 Gluconapin 0+M  12.94  vw 

        Gluconapin 0-M                13.12  w 

 

 
 
 
 
 
 
 
Convolvulus arvensis root length (cm) 
Duncan's multiple range test 
 Pure glucosinolates  

  Mean   

 Glucoraphanin  6.668  a 

 Gluconasturtiin  7.025  b 

 Gluconapin  7.323  c 

 Mixed GSL  8.047  d 

Duncan's multiple range test 
Concentration (µmol)  

  Mean   

 25  5.937  a 

 12.5  6.195  b 

 6.25  6.690  c 

 3.125  7.252  d 
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 1.56  8.005  e 

 0  9.515  f 

Duncan's multiple range test 
Pure glucosinolates × Concentration (µmol)  

  Mean   

 Gluconasturtiin 25  5.730  a 

 Glucoraphanin 25  5.800  ab 

 Gluconapin 25  5.890  abc 

 Glucoraphanin 12.5  5.900  abc 

 Gluconasturtiin 12.5  5.980  abcd 

 Glucoraphanin 6.25  6.110  bcde 

 Gluconapin 12.5  6.190  cdef 

 Glucoraphanin 3.125  6.300  defg 

 Mixed GSL 25  6.330  efg 

 Gluconasturtiin 6.25  6.490  fgh 

 Gluconapin 6.25  6.520  fgh 

 Glucoraphanin 1.56  6.640  gh 

 Mixed GSL 12.5  6.710  h 

 Gluconasturtiin 3.125  7.080  i 

 Gluconapin 3.125  7.110  i 

 Mixed GSL 6.25  7.640  j 

 Gluconasturtiin 1.56  7.790  j 

 Gluconapin 1.56  8.350  k 

 Mixed GSL 3.125  8.520  k 

 Gluconasturtiin 0  9.080  l 

 Mixed GSL 1.56  9.240  l 

 Glucoraphanin 0  9.260  l 

 Mixed GSL 0  9.840  m 

 Gluconapin 0  9.880  m 

Duncan's multiple range test 
Pure glucosinolates × Myrosinase 

  Mean   

 Glucoraphanin +M  4.480  a 

 Gluconapin +M  5.067  b 

 Gluconasturtiin +M  5.217  b 

 Mixed GSL +M  6.510  c 

 Gluconasturtiin -M  8.833  d 

 Glucoraphanin -M  8.857  d 

 Gluconapin -M  9.580  e 

 Mixed GSL -M  9.583  e 

 Duncan's multiple range test 
Concentration (µmol) × Myrosinase 

  Mean   

 25 +M  2.930  a 

 12.5 +M  3.370  b 

 6.25 +M  4.220  c 

 3.125 +M  5.270  d 

 1.56 +M  6.650  e 

 25 -M  8.945  f 

 12.5 -M  9.020  fg 

 6.25 -M  9.160  fgh 

 3.125 -M  9.235  gh 

 1.56 -M  9.360  hi 

 0+M  9.470  i 
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 0 -M  9.560  i 

Duncan's multiple range test 
 Pure glucosinolates × Concentration (µmol) × Myrosinase 

  Mean   

 Gluconapin 25 +M  2.440  a 

 Gluconasturtiin 25 +M  2.880  b 

 Glucoraphanin 25 +M  2.980  bc 

 Gluconapin 12.5 +M  2.980  bc 

 Glucoraphanin 12.5 +M  3.160  bcd 

 Gluconasturtiin 12.5 +M  3.280  bcde 

 Mixed GSL 25 +M  3.420  cde 

 Glucoraphanin 6.25 +M  3.460  cde 

 Gluconapin 6.25 +M  3.500  de 

 Glucoraphanin 3.125 +M  3.740  ef 

 Mixed GSL 12.5 +M  4.060  fg 

 Gluconasturtiin 6.25 +M  4.200  gh 

 Glucoraphanin 1.56 +M  4.260  gh 

 Gluconapin 3.125 +M  4.620  h 

 Gluconasturtiin 3.125 +M  5.320  i 

 Mixed GSL 6.25 +M  5.720  i 

 Gluconasturtiin 1.56 +M  6.580  j 

 Gluconapin 1.56 +M  7.040  k 

 Mixed GSL 3.125 +M  7.400  k 

 Gluconasturtiin 25 -M  8.580  l 

 Glucoraphanin 25 -M  8.620  lm 

 Glucoraphanin 12.5 -M  8.640  lm 

 Gluconasturtiin 12.5 -M  8.680  lm 

 Mix GSL 1.56+M  8.720  lm 

 Glucoraphanin 6.25 -M  8.760  lmn 

 Gluconasturtiin 6.25 -M  8.780  lmno 

 Gluconasturtiin 3.125 -M  8.840  lmnop 
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 Glucoraphanin 3.125 -M  8.860  lmnopq 

 Gluconasturtiin 1.56 -M  9.000  lmnopqr 

 Glucoraphanin 1.56 -M  9.020  lmnopqr 

 Gluconasturtiin 0+M  9.040  lmnopqrs 

 Gluconasturtiin 0 -M  9.120  mnopqrst 

 Glucoraphanin 0 -M  9.240  nopqrstu 

 Mixed GSL 25 -M  9.240  nopqrstuv 

 Glucoraphanin 0+M  9.280  opqrstuvw 

 Gluconapin 25 -M  9.340  pqrstuvwx 

 Mixed GSL 12.5 -M  9.360  qrstuvwx 

 Gluconapin 12.5 -M  9.400  rstuvwx 

 Gluconapin 6.25 -M  9.540  stuvwxy 

 Mixed GSL 6.25 -M  9.560  tuvwxy 

 Gluconapin 3.125 -M  9.600  tuvwxy 

 Mixed GSL 3.125 -M  9.640  uvwxy 

 Gluconapin 1.56 -M  9.660  uvwxy 

 Mixed GSL 0+M  9.740  uvwxy 

 Mixed GSL 1.56 -M  9.760  uwxy 

 Gluconapin 0+M  9.820  xy 

 Gluconapin 0 -M  9.940  y 

 Mixed GSL 0 -M  9.940  y 

 

Convolvulus arvensis  shoot weight 
 
 Duncan's multiple range test 
 Pure glucosinolates  
 

  Mean   

 Gluconasturtiin  100.3  a 

 Glucoraphanin  101.0  a 

 Gluconapin  101.4  a 

 Mixed GSL     104.6 b 

Duncan's multiple range test 
Concentration (µmol)  

  Mean   

25% 89.0  a 

 12.5  93.0  b 

 6.25  96.0  c 
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 3.125  100.8  d 

 1.56  107.1  e 

 0  125.1  f 

 Duncan's multiple range test 
 Pure glucosinolates × Concentration (µmol)  

  Mean   

 Mixed GSL 25  86.7  a 

 Gluconapin 25  89.5  ab 

 Gluconasturtiin 25  89.6  ab 

 Glucoraphanin 25  90.2  abc 

 Gluconasturtiin 12.5  92.4  bcd 

 Gluconapin 12.5  93.0  bcde 

 Mixed GSL 12.5  93.2  bcde 

 Glucoraphanin 12.5  93.3  bcde 

 Gluconapin 6.25  95.2  cdef 

 Gluconasturtiin 6.25   95.4  cdef 

 Glucoraphanin 6.25  95.7  def 

 Mixed GSL 6.25  97.9  efg 

 Glucoraphanin 3.125  98.2  efg 

 Gluconasturtiin 3.125  98.6  fg 

 Gluconapin 3.125  98.6  fg 

 Glucoraphanin 1.56  101.0  g 

 Gluconasturtiin 1.56  102.8  gh 

 Gluconapin 1.56  107.1  hi 

 Mixed GSL 3.125  107.6  i 

 Mixed GSL 1.56  117.4  j 

 Gluconasturtiin 0  123.1  k 

 Gluconapin 0  124.8  k 

 Mixed GSL 0  124.8  k 

 Glucoraphanin 0  127.6  k 

Duncan's multiple range test 
 Pure glucosinolates × Myrosinase 
 

  Mean   

 Glucoraphanin + M  78.4  a 

 Gluconasturtiin + M  79.4  ab 

 Gluconapin + M  81.5  b 

 Mixed GSL + M  91.6  c 

 Mixed GSL - M  117.6  d 

 Gluconasturtiin - M  121.2  e 

 Gluconapin - M  121.3  e 

 Glucoraphanin - M  123.6  e 

 
 
 
Duncan's multiple range test 
 Concentration (µmol) × Myrosinase 
 

  Mean   

 25 + M  61.8  a 

 12.5 + M  67.8  b 

 6.25 + M  72.5  c 

 3.125 + M  80.0  d 

 1.56 + M  90.3  e 

 25 - M  116.2  f 

 12.5 - M  118.1  f 

 6.25 - M  119.5  fg 

 3.125 - M  121.5  gh 

 1.56 - M  123.8  hi 

 0+ M  123.9  hi 

 0 - M  126.2  i 
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Duncan's multiple range test 
 Pure glucosinolates × Concentration (µmol) × Myrosinase 

 
 

 Mean   

 Glucoraphanin 25 + M  60.8  a 

 Gluconasturtiin 25 + M  61.2  a 

 Gluconapin 25 + M  61.6  a 

 Mixed GSL 25 + M  63.4  ab 

 Glucoraphanin 12.5 + M  65.6  abc 

 Gluconasturtiin 12.5 + M  65.6  abc 

 Gluconapin 12.5 + M  67.4  abc 

 Glucoraphanin 6.25 + M  69.0  bcd 

 Gluconapin 6.25 + M  69.8  bcd 

 Gluconasturtiin 6.25 + M  70.4  bcd 

 Glucoraphanin 3.125 + M  72.4  cd 

 Mixed GSL 12.5 + M  72.8  cd 

 Gluconapin 3.125 + M  75.2  de 

 Gluconasturtiin 3.125 + M  75.6  de 

 Glucoraphanin 1.56 + M  76.0  def 

 Mixed GSL 6.25 + M  81.0  ef 

 Gluconasturtiin 1.56 + M  82.6  f 

 Gluconapin 1.56 + M  90.6  g 

 Mixed GSL 3.125 + M  96.8  g 

 Mixed GSL 25 - M  110.0  h 

 Mixed GSL 1.56+ M  112.0  hi 

 Mixed GSL 12.5 - M  113.6  hij 

 Mixed GSL 6.25 - M  114.8  hijk 

 Gluconapin 25 - M  117.4  ijkl 

 Gluconasturtiin 25 - M  118.0  ijklm 

 Mixed GSL 3.125 - M  118.4  ijklmn 

 Gluconapin 12.5 - M  118.6  ijklmn 

 Gluconasturtiin 12.5 - M  119.2  ijklmno 

 Glucoraphanin 25 - M  119.6  jklmno 
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 Gluconasturtiin 6.25 - M  120.4  jklmno 

 Gluconapin 6.25 - M  120.6  jklmnop 

 Glucoraphanin 12.5 - M  121.0  jklmnop 

 Gluconasturtiin 0+ M  121.2  jklmnop 

 Gluconasturtiin 3.125 - M  121.6  klmnop 

 Gluconapin 3.125 - M  122.0  klmnop 

 Glucoraphanin 6.25 - M  122.4  klmnop 

 Mixed GSL 1.56 - M  122.8  lmnop 

 Gluconasturtiin 1.56 - M  123.0  lmnop 

 Gluconapin 1.56 - M  123.6  lmnop 

 Mixed GSL 0+ M  123.6  lmnop 

 Glucoraphanin 3.125 - M  124.0  lmnop 

 Gluconapin 0+ M  124.2  lmnop 

 Gluconasturtiin 0 - M  125.0  lmnop 

 Gluconapin 0 - M  125.4  mnop 

 Mixed GSL 0 - M  126.0  nop 

 Glucoraphanin 1.56 - M  126.0  mnop 

 Glucoraphanin 0+ M  126.8  op 

 Glucoraphanin 0 - M  128.4  p 

 

 
 
 
 
 
Convolvulus arvensis root weight (mg) 
Duncan's multiple range test 
Pure glucosinolates  

   Mean   

 Glucoraphanin  16.70  a 

 Gluconasturtiin  17.77  b 

 Gluconapin  19.23  c 

 Mixed GSL       20.65    d 

Duncan's multiple range test 
 Concentration (µmol)  

  Mean   

 25  15.24  a 

 12.5  16.18  b 

 6.25  17.36  c 

 3.125  18.88  d 
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 1.56  20.29  e 

 0  23.57  f 

Duncan's multiple range test 
Pure glucosinolates × Concentration (µmol)  

  Mean   

 Glucoraphanin 25  13.68  a 

 Gluconasturtiin 25  14.38  ab 

 Glucoraphanin 12.5  14.55  abc 

 Gluconasturtiin 12.5  15.26  bcd 

 Glucoraphanin 6.25  15.40  bcd 

 Gluconapin 25  15.84  cde 

 Gluconasturtiin 6.25  16.53  def 

 Gluconapin 12.5  16.92  efg 

 Glucoraphanin 3.125  17.03  efgh 

 Mixed GSL 25  17.06  efgh 

 Gluconapin 6.25  17.53  fghi 

 Gluconasturtiin 3.125  17.98  ghi 

 Mixed GSL 12.5  18.00  ghi 

 Glucoraphanin 1.56  18.45  hi 

 Gluconasturtiin 1.56  18.65  i 

 Gluconapin 3.125  18.67  i 

 Mixed GSL 6.25  19.98  j 

 Glucoraphanin 0  21.10  jk 

 Gluconapin 1.56  21.25  jk 

 Mixed GSL 3.125  21.85  kl 

 Mixed GSL 1.56  22.80  lm 

 Gluconasturtiin 0  23.80  mn 

 Mix GSL 0  24.20  no 

 Gluconapin 0  25.20  o 

 Duncan's multiple range test 
Pure glucosinolates × Myrosinase 

  Mean   

 Gluconapin +M  13.87  a 

 Glucoraphanin +M  13.88  a 

 Gluconasturtiin +M  13.97  a 

 Mixed GSL +M  17.87  b 

 Glucoraphanin -M  19.52  c 

 Gluconasturtiin -M  21.57  d 

 Mixed GSL -M  23.43  e 

 Gluconapin -M  24.60  f 

 Duncan's multiple range test 
Concentration (µmol) × Myrosinase 

  Mean   

 25 +M  9.39  a 

 12.5 +M  10.90  b 

 6.25 +M  12.77  c 

 3.125 +M  15.37  d 

 1.56 +M  17.58  e 

 25 -M  21.08  f 

 12.5 -M  21.46  fg 

 6.25 -M  21.95  fg 

 3.125 -M  22.39  gh 

 1.56 -M  22.99  hi 

 0+M  23.35  i 
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 0 -M  23.80  i 

Duncan's multiple range test 
Pure glucosinolates × Concentration (µmol) × Myrosinase 

  Mean   

 Gluconapin 25 +M  8.18  a 

 Gluconasturtiin 25 +M  8.60  ab 

 Glucoraphanin 25 +M  9.20  abc 

 Gluconasturtiin 12.5 +M  10.00  abcd 

 Gluconapin 12.5 +M  10.00  abcd 

 Glucoraphanin 12.5 +M  10.40  bcd 

 Gluconapin 6.25 +M  10.80  cde 

 Mixed GSL 25 +M  11.60  def 

 Glucoraphanin 6.25 +M  11.70  def 

 Gluconasturtiin 6.25 +M  11.80  def 

 Gluconapin 3.125 +M  12.62  efg 

 Mixed GSL 12.5 +M  13.20  fgh 

 Gluconasturtiin 3.125 +M  14.26  gh 

 Glucoraphanin 3.125 +M  14.40  gh 

 Gluconasturtiin 1.56 +M  14.94  hi 

 Glucoraphanin 1.56 +M  16.60  ij 

 Mixed GSL 6.25 +M  16.80  ijk 

 Gluconapin 1.56 +M  17.20  jkl 

 Glucoraphanin 25 -M  18.16  jklm 

 Glucoraphanin 12.5 -M  18.70  klmn 

 Glucoraphanin 6.25 -M  19.10  lmno 

 Glucoraphanin 3.125 -M  19.66  mnop 

 Gluconasturtiin 25 -M  20.16  nop 

 Mixed GSL 3.125+M  20.20  nop 

 Glucoraphanin 1.56 -M  20.30  nopq 

 Gluconasturtiin 12.5 -M  20.52  nopqr 

 Glucoraphanin 0+M  21.00  opqrs 
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 Glucoraphanin 0 -M  21.20  pqrst 

 Gluconasturtiin 6.25 -M  21.26  pqrst 

 Mixed GSL 1.56+M  21.60  pqrstu 

 Gluconasturtiin 3.125 -M  21.70  pqrstu 

 Gluconasturtiin 1.56 -M  22.36  qrstuv 

 Mixed GSL 25 -M  22.52  rstuvw 

 Mixed GSL 12.5 -M  22.80  stuvwx 

 Mixed GSL 6.25 -M  23.16  tuvwxy 

 Gluconasturtiin 0 -M  23.40  uvwxy 

 Gluconapin 25 -M  23.50  uvwxy 

 Mixed GSL 3.125 -M  23.50  uvwxy 

 Mixed GSL 0+M  23.80  vwxy 

 Gluconapin 12.5 -M  23.84  vwxy 

 Mixed GSL 1.56 -M  24.00  vwxyz 

 Gluconasturtiin 0+M  24.20  vwxyz 

 Gluconapin 6.25 -M  24.26  vwxyz 

 Gluconapin 0+M  24.40  vwxyz 

 Mixed GSL 0 -M  24.60  wxyz 

 Gluconapin 3.125 -M  24.72  xyz 

 Gluconapin 1.56 -M  25.30  yz 

         Gluconapin 0 -M                 26.00  z 

 
 
Appendix 8. A Duncan's multiple range test to compare the differences between 

means of different factors used on Sorghum halepense 
 

Sorghum halepense germination % 
 Duncan's multiple range test 
  Pure glucosinolates 

  Mean   

 Glucoraphanin  65.83  a 

 Gluconapin  66.83  b 

 Gluconasturtiin  67.83  c 

 Mixed GSL  72.92  d 

Duncan's multiple range test 
Concentration (µmol)  
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  Mean   

 25  57.88  a 

 12.5  63.00  b 

 6.25  67.38  c 

 3.125  70.38  d 

 1.56  73.25  e 

 0  78.25  f 

Duncan's multiple range test 
Pure glucosinolates × Concentration (µmol)  
 

  Mean   

 Glucoraphanin 25  49.50  a 

 Gluconapin 25  55.50  b 

 Gluconasturtiin 25  58.50  c 

 Glucoraphanin 12.5  60.00  cd 

 Gluconapin 12.5  61.00  d 

 Gluconasturtiin 12.5  62.00  d 

 Gluconapin 6.25  65.50  e 

 Gluconasturtiin 6.25  66.00  ef 

 Glucoraphanin 6.25  66.50  efg 

 Mixed GSL 25  68.00  fgh 

 Gluconapin 3.125  68.50  gh 

 Mixed GSL 12.5  69.00  h 

 Glucoraphanin 3.125  70.00  hi 

 Gluconasturtiin 3.125  70.00  hi 

 Mixed GSL 6.25  71.50  ij 

 Glucoraphanin 1.56  72.50  j 

 Gluconapin 1.56  72.50  j 

 Gluconasturtiin 1.56  73.00  jk 

 Mixed GSL 3.125  73.00  jk 

 Mixed GSL 1.56  75.00  kl 

 Glucoraphanin 0  76.50  lm 

 Gluconasturtiin 0  77.50  m 

 Gluconapin 0  78.00  m 

 Mixed GSL 0  81.00  n 

 Duncan's multiple range test 
Pure glucosinolates × Concentration (µmol)  

 

  Mean   

 Glucoraphanin +M  59.00  a 

 Gluconapin +M  59.83  a 

 Gluconasturtiin +M  62.17  b 

 Mixed GSL +M  71.83  c 

 Glucoraphanin -M  72.67  cd 

 Gluconasturtiin -M  73.50  de 

 Gluconapin -M  73.83  de 

 Mixed GSL -M  74.00  e 
 
Duncan's multiple range test 
Concentration (µmol) × Myrosinase 

  Mean   

 25 +M  46.00  a 

 12.5 +M  55.25  b 

 6.25 +M  61.50  c 

 3.125 +M  66.25  d 

 25 -M  69.75  e 

 12.5 -M  70.75  ef 

 1.56+M  71.75  f 

 6.25 -M  73.25  g 

 3.125 -M  74.50  g 

 1.56 -M  74.75  g 

 0 -M  78.00  h 
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 0+M  78.50  h 

Duncan's multiple range test 
Pure glucosinolates x Concentration (µmol) × Myrosinase 

  Mean   

 Glucoraphanin 25 +M  30.00  a 

 Gluconapin 25 +M  41.00  b 

 Gluconasturtiin 25 +M  47.00  c 

 Glucoraphanin 12.5 +M  50.00  d 

 Gluconasturtiin 12.5 +M  52.00  d 

 Gluconapin 12.5 +M  52.00  d 

 Gluconapin 6.25 +M  56.00  e 

 Glucoraphanin 6.25 +M  60.00  f 

 Gluconasturtiin 6.25 +M  60.00  f 

 Gluconapin 3.125 +M  62.00  f 

 Gluconasturtiin 3.125 +M  66.00  g 

 Glucoraphanin 3.125 +M  66.00  g 

 Mixed GSL 25 +M  66.00  g 

 Mixed GSL 12.5 +M  67.00  gh 

 Glucoraphanin 25 -M  69.00  ghi 

 Gluconapin 1.56+M  70.00  hij 

 Gluconasturtiin 25 -M  70.00  hij 

 Mixed GSL 6.25+M  70.00  hij 

 Glucoraphanin 12.5 -M  70.00  hij 

 Gluconapin 12.5 -M  70.00  hij 

 Gluconapin 25 -M  70.00  hij 

 Mixed GSL 25 -M  70.00  hij 

 Glucoraphanin 1.56+M  71.00  ijk 

 Gluconasturtiin 1.56+M  71.00  ijk 

 Mixed GSL 3.125+M  71.00  ijk 

 Mixed GSL 12.5 -M  71.00  ijk 

 Gluconasturtiin 6.25 -M  72.00  ijkl 

 Gluconasturtiin 12.5 -M  72.00  ijkl 
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 Glucoraphanin 6.25 -M  73.00  jklm 

 Mixed GSL 6.25 -M  73.00  jklm 

 Glucoraphanin 1.56 -M  74.00  klmn 

 Glucoraphanin 3.125 -M  74.00  klmn 

 Gluconasturtiin 3.125 -M  74.00  klmn 

 Gluconasturtiin 1.56 -M  75.00  lmno 

 Gluconapin 1.56 -M  75.00  lmno 

 Gluconapin 3.125 -M  75.00  lmno 

 Gluconapin 6.25 -M  75.00  lmno 

 Mixed GSL 1.56 -M  75.00  lmno 

 Mixed GSL 1.56+M  75.00  lmno 

 Mixed GSL 3.125 -M  75.00  lmno 

 Glucoraphanin 0 -M  76.00  mno 

 Glucoraphanin 0+M  77.00  nop 

 Gluconasturtiin 0+M  77.00  nop 

 Gluconapin 0+M  78.00  op 

 Gluconasturtiin 0 -M  78.00  op 

 Gluconapin 0 -M  78.00  op 

 Mixed GSL 0 -M  80.00  pq 

 Mixed GSL 0+M  82.00  q 

 

 

Sorghum halepense  shoot length (cm)  
 
Duncan's multiple range test 
Pure glucosinolates 

  Mean   

 gluconapin  13.82  a 

 Gluconasturtiin  14.29  b 

 Mixed GSL  14.85  c 

 Glucoraphanin  15.13  d 

Duncan's multiple range test 
Concentration (µmol)  

  Mean   

 25  12.70  a 

 12.5  13.44  b 

 6.25  14.31  c 

 3.125  14.85  d 

 1.56  15.33  e 
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 0  16.51  f 

 
Duncan's multiple range test 
Pure glucosinolates x Concentration (µmol)  

  Mean   

 Gluconasturtiin 25  12.13  a 

 gluconapin 25  12.24  a 

 Gluconasturtiin 12.5  12.76  b 

 gluconapin 12.5  12.77  b 

 Glucoraphanin 25  12.95  b 

 gluconapin 6.25  13.32  c 

 Mixed GSL 25  13.49  cd 

 Mixed GSL 12.5  13.68  cd 

 gluconapin 3.125  13.85  d 

 gluconapin 1.56  14.20  e 

 Gluconasturtiin 6.25  14.27  e 

 Mixed GSL 6.25  14.50  ef 

 Glucoraphanin 12.5  14.55  ef 

 Gluconasturtiin 3.125  14.76  f 

 Glucoraphanin 6.25  15.14  g 

 Mixed GSL 3.125  15.24  gh 

 Gluconasturtiin 1.56  15.48  ghi 

 Glucoraphanin 3.125  15.53  hi 

 Mixed GSL 1.56  15.71  ij 

 Glucoraphanin 1.56  15.93  j 

 Gluconasturtiin 0  16.35  k 

 Mixed GSL 0  16.48  k 

 gluconapin 0  16.54  k 

 Glucoraphanin 0  16.67  k 

Duncan's multiple range test 
 Pure glucosinolates x Myrosinase 

  Mean   

 gluconapin +M  11.95  a 

 Gluconasturtiin +M  12.96  b 

 Mixed GSL +M  14.20  c 

 Glucoraphanin +M  14.44  d 

 Mixed GSL -M  15.50  e 

 Gluconasturtiin -M  15.63  ef 

 gluconapin -M  15.69  ef 

 Glucoraphanin -M  15.82  f 

 
 
 
 
 
Duncan's multiple range test 
 Concentration (µmol) × Myrosinase 

  Mean   

 25 +M  10.43  a 

 12.5 +M  11.72  b 

 6.25 +M  13.19  c 

 3.125 +M  14.00  d 

 1.56 +M  14.61  e 

 25 -M  14.98  f 

 12.5 -M  15.17  f 

 6.25 -M  15.43  g 

 3.125 -M  15.69  h 

 1.56 -M  16.05  i 

 0+M  16.38  j 

 0 -M  16.65  k 
 

Duncan's multiple range test 
Pure glucosinolates x Concentration (µmol) × Myrosinase 
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   Mean   

 gluconapin 25 +M  9.42  a 

 Gluconasturtiin 25 +M  9.46  a 

 gluconapin 12.5 +M  10.24  b 

 Gluconasturtiin 12.5 +M  10.44  b 

 Glucoraphanin 25 +M  10.64  bc 

 gluconapin 6.25 +M  11.10  c 

 gluconapin 3.125 +M  12.12  d 

 Mixed GSL 25 +M  12.18  d 

 gluconapin 1.56 +M  12.40  d 

 Mixed GSL 12.5 +M  12.48  d 

 Gluconasturtiin 6.25 +M  13.22  e 

 Glucoraphanin 12.5 +M  13.70  ef 

 Mixed GSL 6.25 +M  13.78  f 

 Gluconasturtiin 3.125 +M  13.84  f 

 Glucoraphanin 6.25 +M  14.66  g 

 Mixed GSL 3.125 +M  14.80  gh 

 Gluconasturtiin 25 -M  14.80  gh 

 Mixed GSL 25 -M  14.80  gh 

 Gluconasturtiin 1.56%+M  14.84  ghi 

 Mixed GSL 12.5 -M  14.88  ghi 

 gluconapin 25 -M  15.06  ghij 

 Gluconasturtiin 12.5 -M  15.08  ghij 

 Mixed GSL 6.25 -M  15.22  ghijk 

 Glucoraphanin 3.125+M  15.24  ghijkl 

 Glucoraphanin 25 -M  15.26  hijkl 

 gluconapin 12.5 -M  15.30  hijkl 

 Gluconasturtiin 6.25 -M  15.32  hijkl 

 Glucoraphanin 12.5 -M  15.40  ijklm 

 Mixed GSL 1.56+M  15.42  ijklmn 

 gluconapin 6.25 -M  15.54  jklmno 

 gluconapin 3.125 -M  15.58  jklmno 
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 Glucoraphanin 6.25 -M  15.62  jklmno 

 Mixed GSL 3.125 -M  15.68  klmno 

 Gluconasturtiin 3.125 -M  15.68  klmno 

 Glucoraphanin 1.56+M  15.78  klmno 

 Glucoraphanin 3.125 -M  15.82  lmno 

 Gluconasturtiin 0+M  15.94  mnop 

 gluconapin 1.56 -M  16.00  nopq 

 Mixed GSL 1.56 -M  16.00  nopq 

 Glucoraphanin 1.56 -M  16.08  opqr 

 Gluconasturtiin 1.56 -M  16.12  opqr 

 Mixed GSL 0 -M  16.44  pqrs 

 gluconapin 0+M  16.44  pqrs 

 Mixed GSL 0+M  16.52  qrs 

 Glucoraphanin 0+M  16.60  rs 

 gluconapin 0 -M  16.64  rs 

 Glucoraphanin 0 -M  16.74  s 

 Gluconasturtiin 0-M                16.76  s 

 

Sorghum halepense root length (cm)  

 
Duncan's multiple range test 
Pure glucosinolates  

  Mean   

 Gluconapin  8.978  a 

 Gluconasturtiin  9.062  a 

 Glucoraphanin  9.088  a 

 Mixed GSL  9.110  a 

Duncan's multiple range test 
 Concentration (µmol)  

  Mean   

 25  7.620  a 

 12.5  7.887  b 

 6.25  8.195  c 

 3.125  8.500  d 

 1.56  8.765  e 

 0  13.390  f 

Duncan's multiple range test 
Pure glucosinolates x Concentration (µmol)  

  Mean   

 Gluconapin 25  7.530  a 

 Glucoraphanin 25  7.590  a 

 Gluconasturtiin 25  7.620  ab 
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 Gluconapin 12.5  7.710  ab 

 Mixed GSL 25  7.740  ab 

 Gluconasturtiin 12.5  7.880  abc 

 Glucoraphanin 12.5  7.970  bcd 

 Mixed GSL 12.5  7.990  bcd 

 Gluconapin 6.2  8.120  cde 

 Mixed GSL 6.25  8.170  cdef 

 Glucoraphanin 6.25  8.220  cdefg 

 Gluconasturtiin 6.25  8.270  defg 

 Gluconapin 3.125  8.410  efgh 

 Gluconasturtiin 3.125  8.510  fgh 

 Glucoraphanin 3.125  8.520  fgh 

 Mixed GSL 3.125  8.560  ghi 

 Gluconapin 1.56  8.660  hi 

 Gluconasturtiin 1.56  8.720  hi 

 Mixed GSL 1.56  8.760  hi 

 Glucoraphanin 1.56  8.920  i 

 Glucoraphanin 0  13.310  j 

 Gluconasturtiin 0  13.370  j 

 Mixed GSL   13.440  j 

 Gluconapin 0  13.440  j 

Duncan's multiple range test 
 Pure glucosinolates) × Myrosinase 

  Mean   

 Gluconapin +M  4.670  a 

 Gluconasturtiin +M  4.877  b 

 Mixed GSL +M  4.880  b 

 Glucoraphanin +M  5.123  c 

 Glucoraphanin -M  13.053  d 

 Gluconasturtiin -M  13.247  e 

 Gluconapin -M  13.287  e 

 Mixed GSL -M  13.340  e 

  
 
 
 
 
 
 
 
Duncan's multiple range test 
Concentration (µmol) × Myrosinase 

  Mean   

 25 +M  2.335  a 

 12.5 +M  2.720  b 

 6.25 +M  3.225  c 

 3.125 +M  3.705  d 

 1.56 +M  4.155  e 

 25 -M  12.905  f 

 12.5 -M  13.055  fg 

 6.25 -M  13.165  gh 

 0+M  13.185  gh 

 3.125 -M  13.295  gh 

 1.56 -M  13.375  hi 

 0 -M  13.595  i 
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Duncan's multiple range test 
Pure glucosinolates x Concentration (µmol) × Myrosinase 

  Mean   

 Gluconapin 25 +M  2.100  a 

 Gluconasturtiin 25 +M  2.280  ab 

 Gluconapin 12.5 +M  2.320  abc 

 Mixed GSL 25 +M  2.440  abc 

 Glucoraphanin 25 +M  2.520  abc 

 Gluconasturtiin 12.5 +M  2.680  bcd 

 Mixed GSL 12.5 +M  2.820  cde 

 Gluconapin 6.25 +M  3.040  def 

 Mixed GSL 6.25 +M  3.060  def 

 Glucoraphanin 12.5 +M  3.060  def 

 Gluconasturtiin 6.25 +M  3.340  efg 

 Glucoraphanin 6.25 +M  3.460  fgh 

 Gluconapin 3.125 +M  3.460  fgh 

 Mixed GSL 3.125 +M  3.680  ghi 

 Gluconasturtiin 3.125 +M  3.720  ghi 

 Gluconapin 1.56 +M  3.860  ghi 

 Glucoraphanin 3.125 +M  3.960  hi 

 Gluconasturtiin 1.56 +M  4.060  i 

 Mixed GSL 1.56 +M  4.080  i 

 Glucoraphanin 1.56 +M  4.620  j 

 Glucoraphanin 25 -M  12.660  k 

 Glucoraphanin 12.5 -M  12.880  kl 

 Gluconasturtiin 25 -M  12.960  klm 

 Gluconapin 25 -M  12.960  klm 

 Glucoraphanin 6.25 -M  12.980  klmn 

 Mixed GSL 25 -M  13.040  klmn 

 Glucoraphanin 3.125 -M  13.080  klmno 

 Gluconasturtiin 12.5 -M  13.080  klmno 
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 Gluconapin 12.5 -M  13.100  klmnop 

 Glucoraphanin 0+M  13.120  klmnop 

 Mixed GSL 12.5 -M  13.160  klmnop 

 Gluconasturtiin 0+M  13.180  klmnop 

 Mixed GSL 0+M  13.200  klmnop 

 Gluconasturtiin 6.25 -M  13.200  klmnop 

 Gluconapin 6.25 -M  13.200  klmnop 

 Glucoraphanin 1.56 -M  13.220  klmnop 

 Gluconapin 0+M  13.240  lmnop 

 Mixed GSL 6.25 -M  13.280  lmnop 

 Gluconasturtiin 3.125 -M  13.300  lmnop 

 Gluconapin 3.125 -M  13.360  lmnop 

 Gluconasturtiin 1.56 -M  13.380  lmnop 

 Mixed GSL 1.56 -M  13.440  lmnop 

 Mixed GSL 3.125 -M  13.440  lmnop 

 Gluconapin 1.56 -M  13.460  lmnop 

 Glucoraphanin 0 -M  13.500  mnop 

 Gluconasturtiin 0 -M  13.560  nop 

 Gluconapin 0 -M  13.640  op 

          Mixed GSL 0 -M                13.680   p 

 

 
 
Sorghum halepense  shoot weight (mg) 
 
Duncan's multiple range test 
Pure glucosinolates  

   Mean   

 Gluconasturtiin  44.59  a 

 Gluconapin  47.10  b 

 Mixed GSL  47.95  b 

        Glucoraphanin      53.48   c 

Duncan's multiple range test 
 Concentration (µmol)  

 Mean   

 25  37.96  a 

 12.5  41.25  b 

 6.25  43.85  c 
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 3.125  47.52  d 

 1.56  51.88  e 

 0  67.22  f 

Duncan's multiple range test 
 Pure glucosinolates x Concentration (µmol)  

  Mean   

 Gluconasturtiin 25  32.55  a 

 Gluconapin 25  37.10  b 

 Gluconasturtiin 12.5  38.10  b 

 Gluconapin 12.5  39.80  bc 

 Mixed GSL 25  40.10  bcd 

 Gluconasturtiin 6.25  40.20  bcd 

 Glucoraphanin 25  42.10  cde 

 Mixed GSL 12.5  42.20  cde 

 Gluconapin 6.25  42.80  cde 

 Gluconasturtiin 3.125  43.40  def 

 Mixed GSL 6.25  44.40  efg 

 Glucoraphanin 12.5  44.90  efgh 

 Gluconapin 3.125  46.20  fghi 

 Mixed GSL 3.125  46.80  ghij 

 Glucoraphanin 6.25  48.00  hijk 

 Gluconasturtiin 1.56  48.30  ijk 

 Gluconapin 1.56  49.50  jk 

 Mixed GSL 1.56  50.70  k 

 Glucoraphanin 3.125  53.70  l 

 Glucoraphanin 1.56  59.00  m 

 Mixed GSL 0  63.50  n 

 Gluconasturtiin 0  65.00  no 

 Gluconapin 0  67.20  o 

 Glucoraphanin 0  73.20  p 

 
Duncan's multiple range test 
 Pure glucosinolates x Myrosinase 
 

  Mean   

 Gluconasturtiin +M  31.88  a 

 Gluconapin +M  33.90  b 

 Mixed GSL +M  37.67  c 

 Glucoraphanin +M  39.47  d 

 Gluconasturtiin -M  57.30  e 

 Mixed GSL -M  58.23  e 

 Gluconapin -M  60.30  f 

 Glucoraphanin -M  67.50  g 

 
 
 
 
Duncan's multiple range test 
Concentration (µmol) × Myrosinase 
 

  Mean   

 25 +M  21.78  a 

 12.5 +M  25.35  b 

 6.25 +M  28.65  c 

 3.125 +M  33.55  d 

 1.56 +M  38.90  e 

 25 -M  54.15  f 

 12.5 -M  57.15  g 

 6.25 -M  59.05  g 

 3.125 -M  61.50  h 

 1.56 -M  64.85  i 

 0+M  66.15  i 

 0 -M  68.30  j 
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Duncan's multiple range test 
Pure glucosinolates x Concentration (µmol) × Myrosinase 
 

  Mean   

 Gluconasturtiin 25 +M  17.90  a 

 Gluconapin 25 +M  20.40  ab 

 Gluconasturtiin 12.5 +M  21.60  ab 

 Glucoraphanin 25 +M  21.80  ab 

 Gluconapin 12.5 +M  23.60  bc 

 Gluconasturtiin 6.25 +M  24.60  bcd 

 Glucoraphanin 12.5 +M  26.40  cde 

 Mixed GSL 25 +M  27.00  cde 

 Gluconapin 6.25 +M  27.40  cde 

 Gluconasturtiin 3.125 +M  28.80  def 

 Mixed GSL 12.5 +M  29.80  ef 

 Glucoraphanin 6.25 +M  30.20  efg 

 Gluconapin 3.125 +M  30.80  efgh 

 Mixed GSL 6.25 +M  32.40  fgh 

 Gluconapin 1.56 +M  34.40  gh 

 Gluconasturtiin 1.56 +M  34.80  h 

 Mixed GSL 3.125 +M  35.20  h 

 Glucoraphanin 3.125 +M  39.40  i 

 Mixed GSL 1.56 +M  39.60  i 

 Glucoraphanin 1.56 +M  46.80  j 

 Gluconasturtiin 25 -M  47.20  j 

 Mixed GSL 25 -M  53.20  k 

 Gluconapin 25 -M  53.80  kl 

 Mixed GSL 12.5 -M  54.60  kl 

 Gluconasturtiin 12.5 -M  54.60  kl 

 Gluconasturtiin 6.25 -M  55.80  kl 

 Gluconapin 12.5 -M  56.00  kl 

 Mixed GSL 6.25 -M  56.40  kl 

 Gluconasturtiin 3.125 -M  58.00  lm 
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 Gluconapin 6.25 -M  58.20  lm 

 Mixed GSL 3.125 -M  58.40  lm 

 Gluconapin 3.125 -M  61.60  mn 

 Gluconasturtiin 1.56 -M  61.80  mn 

 Mixed GSL 1.56 -M  61.80  mn 

 Mixed GSL 0+M  62.00  mno 

 Glucoraphanin 25 -M  62.40  mno 

 Glucoraphanin 12.5 -M  63.40  nop 

 Gluconasturtiin 0+M  63.60  nop 

 Gluconapin 1.56 -M  64.60  nop 

 Mixed GSL 0 -M  65.00  nop 

 Glucoraphanin 6.25 -M  65.80  nop 

 Gluconasturtiin 0 -M  66.40  nop 

 Gluconapin 0+M  66.80  opq 

 Gluconapin 0 -M  67.60  pq 

 Glucoraphanin 3.125 -M  68.00  pqr 

 Glucoraphanin 1.56 -M  71.20  qrs 

 Glucoraphanin 0+M  72.20  rs 

 Glucoraphanin 0-M             74.20  s 

 
 
 
 
 
 
 
 
 

Sorghum halepense Root weight (mg) 
 Duncan's multiple range test 
 Pure glucosinolates  

  Mean   

 Gluconasturtiin  3.687  a 

 Glucoraphanin  3.710  a 

 Mixed GSL  3.975  b 

 Gluconapin  3.977  b 

Duncan's multiple range test 
 Concentration (µmol)  

  Mean   

 25  3.110  a 

 12.5  3.312  b 

 6.25  3.542  c 
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 3.125  3.817  d 

 1.56  4.280  e 

 0  4.960  f 

Duncan's multiple range test 
Pure glucosinolates x Concentration (µmol)  

  Mean   

 Glucoraphanin 25  2.970  a 

 Gluconasturtiin 25  3.030  ab 

 Gluconapin 25  3.200  abc 

 Gluconasturtiin 12.5  3.230  bcd 

 Mixed GSL 25  3.240  bcd 

 Glucoraphanin 12.5  3.270  bcd 

 Mixed GSL 12.5  3.370  cde 

 Gluconapin 12.5  3.380  cdef 

 Glucoraphanin 6.25  3.430  cdefg 

 Gluconasturtiin 6.25  3.480  defg 

 Gluconapin 6.25  3.590  efg 

 Glucoraphanin 3.125  3.640  fg 

 Mixed GSL 6.25  3.670  g 

 Gluconasturtiin 3.125  3.690  g 

 Gluconapin 3.125  3.950  h 

 Gluconasturtiin 1.56  3.950  h 

 Mixed GSL 3.125  3.990  h 

 Glucoraphanin 1.56  4.110  h 

 Mixed GSL 1.56  4.420  i 

 Gluconapin 1.56  4.640  ij 

 Gluconasturtiin 0  4.740  j 

 Glucoraphanin 0  4.840  j 

 Gluconapin 0  5.100  k 

 Mixed GSL 0  5.160  k 

Duncan's multiple range test 
 Pure glucosinolates x Myrosinase 

   Mean   

 Gluconasturtiin +M  2.653  a 

 Glucoraphanin +M  2.697  a 

 Gluconapin +M  2.997  b 

 Mixed GSL +M  3.037  b 

 Gluconasturtiin -M  4.720  c 

 Glucoraphanin -M  4.723  c 

 Mixed GSL -M  4.913  d 

 Gluconapin -M  4.957  d 

Duncan's multiple range test 
Concentration (µmol) × Myrosinase 

  Mean   

 25 +M  1.675  a 

 12.5 +M  1.985  b 

 6.25 +M  2.310  c 

 3.125 +M  2.755  d 

 1.56 +M  3.545  e 

 25 -M  4.545  f 

 12.5 -M  4.640  fg 

 6.25 -M  4.775  gh 

 0+M  4.805  gh 

 3.125 -M  4.880  hi 
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 1.56 -M  5.015  ij 

 0 -M  5.115  j 

Duncan's multiple range test 

Pure glucosinolates x Concentration (µmol) × Myrosinase 

   Mean   

 Glucoraphanin 25 +M  1.440  a 

 Gluconasturtiin 25 +M  1.520  ab 

 Gluconasturtiin 12.5 +M  1.840  bc 

 Gluconapin 25 +M  1.840  bc 

 Mixed GSL 25 +M  1.900  cd 

 Glucoraphanin 12.5 +M  1.960  cd 

 Mixed GSL 12.5 +M  2.060  cde 

 Gluconapin 12.5 +M  2.080  cde 

 Glucoraphanin 6.25 +M  2.200  cdef 

 Gluconasturtiin 6.25 +M  2.240  defg 

 Gluconapin 6.25 +M  2.380  efg 

 Mixed GSL 6.25 +M  2.420  efg 

 Glucoraphanin 3.125 +M  2.540  fgh 

 Gluconasturtiin 3.125 +M  2.600  gh 

 Gluconapin 3.125 +M  2.880  hi 

 Mixed GSL 3.125 +M  3.000  i 

 Gluconasturtiin 1.56 +M  3.020  i 

 Glucoraphanin 1.56 +M  3.380  j 

 Mixed GSL 1.56 +M  3.780  k 

 Gluconapin 1.56 +M  4.000  k 

 Glucoraphanin 25 -M  4.500  l 

 Gluconasturtiin 25 -M  4.540  lm 

 Gluconapin 25 -M  4.560  lm 

 Glucoraphanin 12.5 -M  4.580  lmn 

 Mixed GSL 25 -M  4.580  lmn 

 Gluconasturtiin 12.5 -M  4.620  lmno 
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 Glucoraphanin 0+M  4.660  lmnop 

 Glucoraphanin 6.25 -M  4.660  lmnop 

 Gluconapin 12.5 -M  4.680  lmnop 

 Mixed GSL 12.5 -M  4.680  lmnop 

 Gluconasturtiin 0+M  4.700  lmnop 

 Gluconasturtiin 6.25 -M  4.720  lmnop 

 Glucoraphanin 3.125 -M  4.740  lmnop 

 Gluconasturtiin 0 -M  4.780  lmnop 

 Gluconasturtiin 3.125 -M  4.780  lmnop 

 Gluconapin 0+M  4.800  lmnop 

 Gluconapin 6.25 -M  4.800  lmnop 

 Glucoraphanin 1.56 -M  4.840  lmnop 

 Gluconasturtiin 1.56 -M  4.880  lmnopq 

 Mixed GSL 6.25 -M  4.920  mnopqr 

 Mixed GSL 3.125 -M  4.980  nopqr 

 Glucoraphanin 0 -M  5.020  opqrs 

 Gluconapin 3.125 -M  5.020  opqrst 

 Mixed GSL 0+M  5.060  pqrstu 

 Mixed GSL 1.56 -M  5.060  pqrstu 

 Mixed GSL 0 -M  5.260  qrstu 

 Gluconapin 1.56 -M  5.280  rstu 

 Gluconapin 0 -M  5.400  su 
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