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Impact of agronomic factors on fusarium mycotoxins in harvested 

wheat 

 

The aim of this study was to model fusarium mycotoxins against agronomic 

factors in order to identify those that have the greatest impact on mycotoxin 

levels in harvested wheat. To achieve this fusarium mycotoxins levels were 

monitored, and associated agronomic data collected, in approximately 150 

English wheat fields/year between 2006 and 2013.  Results showed large 

seasonal variation in fusarium mycotoxin levels, with high levels in 2008 (13% 

and 29% exceeding legal limit for unprocessed soft wheat intended for human 

consumption for DON and ZON, respectively) and 2012 (10% and 15% 

exceeding legal limit for unprocessed soft wheat intended for human 

consumption for DON and ZON, respectively) and low levels in 2006 and 2011 

(no samples exceeding legal limits for unprocessed soft wheat intended for 

human consumption for DON or ZON).  Analysis of agronomic factors identified 

previous crop, cultivation and variety as the greatest risk factors.  The greatest 

risk of mycotoxin development in grain was following maize as a previous crop 

and minimum tillage. The combined effect of these factors gave respective 

average DON and ZON levels 20 and 14 times higher than other previous crop 

and cultivation combinations.  A newly quantified risk factor was harvest date.  A 

one month delay in harvest resulted in a 10 and 25 times greater mean DON and 

ZON concentration respectively, when compared to crops harvested around the 

long-term regional average harvest date.  These results highlight the highly 

seasonal variation in fusarium mycotoxins in wheat and the agronomic factors 

that should be avoided to minimise fusarium mycotoxin levels in harvested 

wheat. 

Keywords: fusarium, agronomy, previous crop, cultivation, variety, harvest 

delay, mycotoxin, trichothecene, deoxynivalenol, zearalenone, HT-2 toxin, T-2 

toxin 

  



 

 

Introduction 

Fusarium head blight (FHB) of small grain cereals may be caused by several fungal 

pathogens. The predominant species in the UK are Fusarium graminearum, F. 

culmorum, F. poae, F. avenaceum, Microdochium nivale and M. majus.  The Fusarium 

species within this disease complex produce a range of mycotoxins. The trichothecene 

mycotoxins produced by Fusarium species are divided into Type A and B.  

Deoxynivalenol (DON) and nivalenol (NIV) are Type B trichothecenes produced 

predominantly by F. culmorum and F. graminearum. Isolates of both these species are 

either DON or NIV producers. DON producers are referred to as Type 1 chemotype, 

this chemotype is further divided into 1A and 1B depending on the acetylated DON that 

is produced as a co-contaminant, 3- or 15-acetyl DON, respectively. Both DON and 

NIV chemotypes of F. culmorum (Jennings et al., 2004a) and F. graminearum 

(Jennings et al., 2004b) are present in the UK.  F. poae has also been linked to high 

levels of NIV (Fredlund et al. 2013). HT-2 and T-2 are Type A trichothecenes produced 

predominantly by F. langsethiae in the UK (Edwards et al. 2012). 

The occurrence, exposure and toxicity of DON was recently reviewed in an 

EFSA Scientific Opinion (EFSA Panel on Contaminants in the Food Chain 2017), 

where they assessed the risk to animal and human health of DON, the acetylated forms 

of DON and the DON metabolite, DON-3-glucoside.  Other trichothecenes have the 

same cellular activity (disruption of protein synthesis) but have a higher cellular toxicity 

than DON.  Nivalenol and T-2 are generally more toxic than DON in vitro, although the 

relative differences are dependent on the target cell studied (Escriva et al. 2015).   

In addition to DON or NIV, F. culmorum and F. graminearum also produce 

zearalenone (ZON). The function of ZON in the fungus is not known and is 

predominantly produced late in the crop growing season, near to harvest (Kharbikar et 



 

 

al. 2015; Matthaus et al. 2004). Zearalenone has low cellular toxicity but is problematic 

as it has high estrogenic activity causing hyperestrogenism in animals and humans.  In 

animals, the mycotoxin causes a range of fertility problems, with young female pigs 

being particularly susceptible. There is no direct evidence of health implications in 

humans, although elevated ZON concentrations have been detected in urine samples in 

cases of premature thelarche central idiopathic precocious puberty (Asci et al. 2014). 

The European Commission (EC) set legislative limits for the fusarium 

mycotoxins DON and ZON in cereal grains and cereal-based products intended for 

human consumption in 2006 (EC 2006b).  The limits for unprocessed cereals other than 

durum wheat, oats and maize intended for human consumption is 1250 µg kg-1 of DON 

and 100 µg kg-1 of ZON.  The maximum levels set for unprocessed cereals apply to 

cereals placed on the market for processing.  The European Commission states that 

maximum levels are set on unprocessed cereals to avoid highly contaminated cereals 

entering the food chain and to encourage all measures to minimise fusarium mycotoxin 

contamination to be taken in the field and storage stages of the production chain.  In 

2006, The European Commission also set guideline limits for fusarium mycotoxins in 

animal feed (EC 2006a).  General guidance limits for animal feed are 8000 µg kg-1 

DON and 2000 µg kg-1 ZON.  The lowest guidance limits have been set for pigs owing 

to their higher sensitivity to fusarium mycotoxins. The DON guidance value for 

complementary and complete feedingstuffs for pigs is 900 µg kg-1. The ZON guidance 

value for complementary and complete feedingstuffs for sows and fattening pigs is 250 

µg kg-1 and for piglets and gilts is 100 µg kg-1.  Currently there is no legislation for 

NIV; it is reported to be a co-contaminant of deoxynivalenol (Escriva, et al. 2015) and 

as such, levels are thought to be controlled via the limits for DON (Anon 2006).   

 



 

 

In 2013 the European Commission published a Recommendation on the 

mycotoxins HT2 and T2 (EC 2013).  The Recommendation included indicative levels 

for the combined concentration of HT-2 and T-2 toxins (HT2+T2) in unprocessed 

cereals and cereal products.  The indicative level for unprocessed wheat is 100 µg kg-1.  

The Recommendation states that Member States, in collaboration with industry, should 

continue to monitor the occurrence of the mycotoxins HT-2 and T-2.  Where levels 

exceed the indicative level an investigation should be conducted to determine why the 

exceedances occurred and what mitigation could be implemented to avoid future 

exceedances. 

Previous research has identified a number of agronomic factors which can affect 

the concentration of fusarium mycotoxins in harvested cereals, these include previous 

crop, cultivation, host cultivar and fungicide application (Wegulo 2012).  The effect of 

agronomy on ZON contamination of grain is likely to be similar to that for DON; 

however, no previous studies have modelled ZON concentrations against agronomic 

factors. 

The overall aim of this study was to identify the level of fusarium mycotoxins in 

English wheat at harvest over an 8-year period and to determine the impact of 

agronomy on these levels. 

 

Materials and methods 

Grain sample collection 

Between 2006 and 2013 requests for grain samples were sent to the 300 farms involved 

in the Defra-funded winter wheat disease survey.  The target number of samples for 

each year was 150 (50% return rate).   



 

 

The Defra survey was stratified based on regional wheat growing area, which meant 

that samples were not selected based on intended end use.  Samples were collected at 

harvest, from the field specified by the grower for use in the disease survey, this ensured 

that full agronomic data would be available for the sample.  Grain samples were either 

collected direct from the combine or taken from trailers as they left the field. Sub-

samples (approximately 300 g) were taken from ten arbitrary points around the field and 

combined to provide a 3 kg bulk sample.  Samples were sent to the laboratory by next 

day courier service.  On arrival at the laboratory the moisture content of the sample was 

determined, samples with a moisture content greater than 18% were dried overnight, 

using a heated-air dryer, and the moisture content re-assessed.  For each grain sample a 

500 g sub-sample was removed from the bulk sample, using a ripple divider, dried to 

12% moisture content and stored at room temperature as a grain archive.  The remaining 

sample was milled (ZM200, Retsch) using a 1 mm screen and mixed in a tumbler mixer. 

Once thoroughly mixed, two 300 g sub-samples were taken; the first sample was used 

for mycotoxin analysis and the second held as an archive sample at –20°C.   

Agronomic data was supplied by growers through completion of a questionnaire. The 

data collected included field location, variety sown, intended use, drilling date, seed 

treatment, previous cropping (last four years), crop debris treatment (removal or 

incorporation), cultivation, presence of maize in rotation or as a neighbouring crop, 

fungicide applications (what applied, dose, date and growth stage) and harvest date. 

 

Mycotoxin analysis of grain samples 

In 2006, all samples were analysed for DON and ZON using Ridascreen ELISA assays 

(R-biopharm Rhone). The reported limit of quantification (LoQ) for DON was 17.5 µg 

kg-1 and a recovery rate of 85-110%. The LoQ for ZON was 1.75 µg kg-1 and a recovery 



 

 

rate of approx. 80%. To allow comparable data to the subsequent years the LoQ were 

set at 10 and 2 µg kg-1 for DON and ZON respectively.  Concentrations determined 

were not adjusted for recovery.   

In subsequent years, all samples were analysed by Campden BRI using UKAS 

accredited procedures. The trichothecenes (DON, NIV, 3-acetylDON, 15-acetylDON, 

fusarenone X, T2 toxin, HT2 toxin, diacetoxyscirpenol and neosolaniol) and the non-

trichothecene, ZON, were analysed by liquid chromatography with tandem mass 

spectrometry (LC/MS/MS). Spiked samples were included in each batch to determine 

extraction recovery. The method had acceptable recovery range for each trichothecene 

of 60-120%. Results were corrected for recovery. The Limit of Quantification (LoQ) for 

the trichothecenes was 10 µg kg-1 and for ZON was 2 µg kg-1. The expanded 

measurement of uncertainty was calculated using a standard coverage factor of two, 

equivalent to a confidence of approximately 95%, that the actual level of the mycotoxin 

being measured lies within the quoted range. The expanded measurement of uncertainty 

was calculated to be 16% for DON and 13% for ZON for samples from 2007-2008 and 

to be 23% for DON and 24% for ZON for samples from 2009-2013.   

 

Summary statistics 

Samples with a mycotoxin concentration below the limit of quantification (LoQ) were 

assigned a value of (LoQ)/2 for calculation of mean values. Summary statistics 

(percentage greater than 10 µg kg-1, mean, median and percentage greater than legal 

limits) were calculated using Excel (Microsoft v.2013).  

 



 

 

Modelling fusarium mycotoxin risk – agronomy data 

Mycotoxin concentrations were log10 transformed to normalise the residuals before 

analysis.  Significant agronomic factors were selected for the model using a stepwise 

selection ANOVA on Genstat (v16, Lawes Agricultural Trust).  Temporal (year) and 

spatial (region) factors were forced into the model.  Other agronomic factors were 

ordered based on the order in which they occur within a growing season.  Interactions 

between factors were entered into the model where there was a biological reason to 

expect one to occur.  As weather is an important parameter of FHB epidemiology one 

could expect a temporal (year) and spatial (region) interaction.  As crop debris is an 

important parameter of FHB epidemiology, as in the type and amount of crop debris, 

then an interaction between previous crop, crop debris management and the method of 

cultivation could be expected (i.e. benefit of removal of straw and/or ploughing would 

vary depending on the previous crop).  Quantitative data were entered as quadratic 

polynomial sub-models.  Any categorical factor level represented by less than 10 

samples was entered as “Other”.  There were only a small number of samples where 

direct drilling was recorded so these were entered into the category “minimum tillage”.  

Once factors for the model had been selected the data file was filtered of all samples 

containing blanks within these factors and the data was re-analysed.  Results are 

presented as the predicted means and 95% confidence limits for each factor level.  The 

predicted means are the means calculated from the fitted model as if the dataset was 

balanced, ie had an equal number of samples from each year and region, etc.  

 

 



 

 

Results 

Between 2006 and 2013, a total of 1276 harvested wheat grain samples were sent for 

fusarium mycotoxin analysis by growers participating in the Defra-funded winter wheat 

disease survey. This equated to approximately 150 samples per year.  Approximately 

60% of samples were intended for feed, 35% for human consumption and 5% for other 

uses, primarily seed. 

 

 Mycotoxin summary statistics 

The winter wheat disease survey was a stratified survey within England, and as such 

mycotoxin results generated from these samples provide an accurate assessment of 

fusarium mycotoxins in England.  Of the ten mycotoxins analysed eight were detected 

(DON, NIV, ZON, HT2, T2, 3-acetylDON, 15-AcetylDON and fusarenone X).  

Mycotoxin distributions were highly skewed with a left-hand truncation at the LoQ and 

an extended right-handed tail. 

Deoxynivalenol was the most frequently detected fusarium mycotoxin with an 

average annual incidence (>10 µg kg-1) of 79% (Table 1) and was usually present at the 

highest concentration, with an overall mean of 261 µg kg-1 and a maximum of 8106 µg 

kg-1.  An average of 4% of samples exceeded the legal limit for wheat intended for 

human consumption with a seasonal range of zero to 13% (Table 1).   

ZON was quantified above 10 µg kg-1 in 38% of samples (Table 1) and had a 

maximum of 1754 µg kg-1.  Due to the lower legal limits for ZON, more samples 

exceeded the legal limit when compared to DON; this despite ZON occurring at lower 

levels than DON (Table 1).  On average 7% of samples exceeded the ZON limit of 100 

µg kg-1 with a seasonal range of zero to 29% of samples. 



 

 

Nivalenol was not analysed in 2006 but was detected at varying frequencies in 

other years with a range of incidence (>10 µg kg-1) from zero in 2010 and 2011 to 59% 

in 2008, with a mean of 28% and a range of annual means of less than 10 to 18 µg kg-1.  

NIV never occurred at high concentrations with a maximum level of 189 µg kg-1 

detected in 2008.   

HT2 and T2 toxins were rarely detected in samples. They had an overall 

incidence of 1.4% and a combined (HT2+T2) maximum of 73 µg kg-1.  Acetylated 

derivatives, 3-acetylDON and 15-acetylDON were detected above the LoQ (10 µg kg-1) 

in a very few samples and always as low concentration secondary contaminants in the 

presence of a high concentration of DON.  The highest concentrations for 3-acetyl DON 

and 15-acetyl DON were 72 and 142 µg kg-1, respectively.  Fusarenone X is an 

acetylated version of NIV and was detected in 2012 and 2013 in a total of six samples 

with a maximum concentration of 32 µg kg-1. 

 

Modelling fusarium mycotoxin risk – agronomy 

Significant agronomic factors were selected for the model using a stepwise selection 

ANOVA on Genstat (v16, Lawes Agricultural Trust).  After selection of factors to be 

used in the model, the data file was filtered to remove all samples containing blanks 

within these factors and the data was re-analysed (n=1154).  The models generated 

identified that the same agronomic factors were significant for both DON and ZON 

concentrations and that their impact on risk were similar for the two mycotoxins.  Of the 

factors tested, year, region, previous crop, cultivation, variety and harvest timing were 

all significant.  There were significant interactions between year and region and 

between previous crop and cultivation.  



 

 

For DON, the model accounted for 74% of the observed variance; 59% of the 

variance was accounted for by year (p<0.001) and an additional 10% of the variance 

accounted for by region (p<0.001) and the year.region interaction (p<0.001).  For ZON, 

the model accounted for 69% of the observed variance; 51% of the variance was 

accounted for by year (p<0.001) and an additional 10% of the variance accounted for by 

region (p<0.001) and the year.region interaction (p<0.001).  Consequently, the 

agronomic factors only accounted for an additional 5 and 8% of the variance in the 

DON and ZON models, respectively. 

Model outputs for predicted DON and ZON concentrations (Figure 1a and b) 

showed the large seasonal variation present in the observed data; high DON means in 

2008 and 2012, and high ZON in 2008.  Regional differences were also observed, these 

fluctuated between seasons, however there was a consistent trend of higher DON risk in 

the East Midlands.   

The Figures presented for each agronomic factor show the back-transformed 

predicted means for each significant factor and the 95% confidence limits for the 

predicted means.  For some agronomic factors, the dataset was highly unbalanced with 

low numbers of samples for some factor levels, these can be identified by the large 

confidence limits.  Cultivation alone was not a significant factor for DON (p=0.071) or 

ZON (p=0.333), however previous crop and the interaction of previous crop and 

cultivation were both highly significant for DON and ZON (p<0.001 and p<0.005 

respectively).  The clear difference in the predicted means for the interaction of 

previous crop and cultivation (Figure 2) shows that growing wheat after maize and 

minimum tillage was a major risk factor.  The predicted mean for this agronomy was 

nearly twice the legal limit for DON and close to the legal limit for ZON.   



 

 

Varieties present in more than ten samples were analysed individually and there 

were significant differences for both DON and ZON (p<0.001 and p=0.001, 

respectively). The predicted means for each variety appeared to bear little relation to the 

resistance rating for FHB recorded for the varieties based on national variety trials 

(AHDB RL website https://cereals.ahdb.org.uk/varieties/ahdb-recommended-lists.aspx) 

and there was a poor correlation between the concentration of DON and ZON for each 

variety (Figure 3).   

Figure 4 shows the impact of harvest week on the mycotoxin content of 

harvested wheat.  The average harvest day was calculated based on the six-year average 

for each county.  The harvest day of each sample was then calculated relative to the 

long-term average, this was then categorised into weeks with a minus score for early 

harvests and positive score for late harvests.  The risk for both DON and ZON (Figure 4 

a and b) increased slightly as harvest moved from early (negative values) to average 

timing (0).  The risk of contamination increased exponentially as the delay in harvest 

increased from the average.  The increase in risk was greatest for ZON with a 25-fold 

increase in the predicted mean when the harvest was delayed by 4 weeks compared to 

no delay.  This compared to a 10-fold increase in the predicted mean for DON the same 

time period. 

The intended use of harvested wheat was not significant when placed at the front 

of the models (p=0.079 and 0.751 DON and ZON respectively).  This indicated that any 

variation in agronomy applied to wheat crops with a specific end-use had no significant 

effect on the level of DON and ZON in harvested grains.  The presence of maize as a 

neighbouring crop or within the rotation had no significant effect on DON or ZON 

(p>0.05).  Previous crop history beyond the most recent crop was tested by looking at 

each previous crop for the last four years, or by looking at cereal intensity (number of 



 

 

cereal crops in last 4 years) or cereal sequence (number of previous crops since a non-

cereal was grown).  None of these factors were significant (p>0.05) within the DON or 

ZON models.  Crop debris management, i.e. removal of straw from the previous crop 

compared with incorporation had no significant (p>0.05) effect on DON or ZON 

concentration in the subsequent wheat crop.  This occurred even when analysed as an 

interaction with previous crop and cultivation.  

There were no significant differences in the DON or ZON content of wheat 

crops which received different fungicide regimes. Seed treatment was analysed based 

on the product used, with no significant (p>0.05) differences identified. FHB-targeted 

fungicide treatment (fungicide application at flowering, GS59 – 61) was analysed based 

on:  

 Application of a triazole (Yes/No) 

 Application of a FHB recommended product based on UK guidelines (Anon. 

2017) (Yes/No) 

 Rate of application of a FHB recommended product (0-0.49, 0.50-0.74, 0.75-1.0 

field rate) 

None of the above factors were significant (p>0.05).  

 

Discussion 

The levels of DON and ZON found here were similar to those reported by 

Edwards (2009), although in the current study there were years with higher exceedances 

of the legislative limits for both DON and ZON (2008 and 2012).  These years were 

reported as having delayed, wet harvests.  High levels of DON and ZON were reported 

recently in Switzerland during a survey covering a similar timescale with 11% and 7% 

exceedance of the DON and ZON legislative limits respectively (Vogelgsang et al. 

2017).  High DON and ZON levels were also reported recently in Norway (6.5% and 

10% exceedance of the legislative limits (Hofgaard et al. 2016).   



 

 

In this study, year accounted for most of the variance within the DON and ZON 

models.  Temporal and spatial variation is routinely observed in fusarium mycotoxin 

occurrence data, with temporal variation having the greater importance (Vogelgsang, et 

al. 2017).  This is due to the high seasonality of FHB as a consequence of the 

requirement of moisture/rainfall during a narrow infection window shortly before and 

during anthesis (Wegulo 2012).  A previous study in the UK (Edwards 2009) identified 

a significant interaction between year and region, which was probably due to fluctuation 

in weather between years and regions.  Highest concentrations of DON were found in 

the South and East of England with lower levels in the North.  By comparing data from 

the previous study with this study a shift northward from the East of the country was 

observed with higher DON levels detected in the East Midlands and Yorkshire/ 

Humberside in recent years.  Why the East Midlands would have higher DON 

compared to the East region is unclear as they have similar agronomic practices and 

weather.  This suggests that other factors were also having an impact.  There was a large 

year.region interaction for ZON concentration and this was believed to be due to delays 

in harvest.  In 2008, there were long delays to the harvest due to wet weather, with 20% 

of the wheat harvest delayed by more than one month; more crops affected by a rain 

delay in the South West and North West than in other regions. 

Few studies have analysed the impact of agronomic factors on ZON.  Krnjaja et 

al. (2015) showed differences in ZON in one of two years’ worth of field trials, with 

significant difference between the two varieties tested.  The current study was the first 

observational study to model ZON against agronomic factors.  Results showed similar 

trends for both DON and ZON, this might be expected as they are both produced by the 

same two Fusarium species which commonly cause FHB in the UK, namely F. 

graminearum and F. culmorum.  However, there were differences in the year and region 



 

 

interaction which probably resulted from differences in the time when DON and ZON 

are produced; with DON produced from infection onwards and ZON only produced 

during periods of high moisture in the ripening phase (Kharbikar, et al. 2015).  

Consequently, wet weather at different times in the wheat growing season (anthesis and 

ripening) impacts on DON and ZON production differently. 

Many studies have shown maize as a previous crop, and particularly in 

combination with reduced tillage/direct drilling, as a major risk factor for DON 

contamination (Blandino et al. 2010, Qiu et al. 2016).  However, one study has shown 

this is not always the case (Spolti et al. 2015).  Studies in Europe have shown that the 

risk is greater after grain maize compared to forage maize (Bottalico and Perrone 2002, 

Eiblmeier and von Gleissenthall 2007, Obst et al. 1997), probably due to the greater 

amount of crop debris remaining, but may also be in part due to differences in host 

susceptibility and later harvests.  Landschoot et al. (2013) saw no significant difference 

between DON in plots of wheat after the previous crop of maize was harvested at the 

same time for either forage or grain maize.  This may indicate harvest method is not a 

factor, however plots were adjacent to one another and there may have been movement 

of inoculum between plots.  Currently, the acreage of grain maize in the UK is very low, 

limited to the South West, but is predicted to increase with climate change (Kenny and 

Harrison 1992). 

 Based on the known importance of crop debris within the Fusarium 

lifecycle one could expect that straw removal for some previous crops could result in a 

reduction in inoculum, and this would interact with method of cultivation. However, 

this was not identified as significant within the DON or ZON model.  Blandino, et al. 

(2010) showed that by the manual removal of maize debris from plots they could reduce 

the DON content of a following wheat crop.  In the current study the majority of crop 



 

 

debris removed was likely to be small grain cereal straw.  For this type of debris, the 

impact on Fusarium inoculum maybe minimal. 

 

 

There was no significant effect of seed treatment identified within the DON and 

ZON models.  This may be because very few wheat samples came from crops with no 

seed treatment applied and most single purpose dressings have good activity towards 

Fusarium.  There is one publication from a limited observational study (n=13) which 

showed a reduction in FHB when a seed treatment was used  (Teich and Hamilton 

1985) however other studies have shown no reduction of DON by seed treatments 

(Birzele et al. 2002, Jørgensen et al. 2012).  There was also no significant effect of 

fungicide sprays identified in either model.  As this is observational data, care must be 

taken as growers may apply a specific FHB recommended product or apply a high rate 

of specifically because the crop is a high fusarium mycotoxin risk.  Many previous 

experimental studies have shown a significant reduction of DON when triazole 

fungicides; prothioconazole, metconazole or tebuconazole are applied alone or in 

combination in field experiments at anthesis (Paul et al. 2008).  Blandino et al. (2017) 

also showed significant reductions for several other Fusarium mycotoxins using 

prothioconazole but only in one out of three years for ZON.  In the Blandino study ZON 

concentrations were low in all years (<1 µg kg-1) which is likely to have impacted on 

the ability to detect significant reductions. 

 Varieties of UK winter wheat are assessed for head blight resistance as part of 

the AHDB Recommended List trials through the use of inoculated and naturally 

infected trial sites.  Results from this survey for DON and ZON concentrations showed 

no clear relationship to the FHB resistance scores for the varieties generated from fully 



 

 

replicated field trials and there was no clear correlation between the mean DON and 

ZON concentrations for each variety.  As this study was an observational study, the 

dataset was unbalanced with a number of varieties only represented in some years or 

regions of the survey.  For example, KWS Santiago was only present in 2012 and 2013.  

Also, other varieties such as Xi19 were preferred as a variety for late drilling which in 

itself may increase mycotoxin risk in some years due to the greater potential for harvest 

delays or the fact that late drilled crops follow the later harvests of the previous crops 

maize and sugar beet.  The unbalanced nature of the distribution of varieties within the 

survey and the confounding impact of the favouring some varieties in particular 

agronomic scenarios may explain the inconsistency in correlation between the varieties 

reported FHB resistance ratings within replicated field trials and the observed DON and 

ZON concentrations within this observational study.  It should also be noted that 

varieties in the UK have a limited range of resistance and would all be classed as 

moderately susceptible compared to wheat varieties worldwide (Gosman, et al. 2007) 

One new significant factor identified in the model was harvest timing with a 

calculation for a field harvest date in respect of a regions six-year average harvest date.  

The data were categorised into harvest weeks with week 0 been harvested within +/- 3 

days of the long-term average and a minus week harvested earlier and a positive week 

later.  This new factor was highly significant for both DON and ZON (p<0.001) and 

accounted for 0.6 and 5.4% additional variance within the models, respectively.  The 

impact of a one month delay in harvest was a 10-fold increase for DON and 25-fold 

increase for ZON.  This observational data fits with recent experimental data that 

showed that delayed harvests and wet conditions during crop ripening increased both 

DON and ZON, but have a greater effect on ZON (Kharbikar, et al. 2015).  In the 

experimental study, the importance of rainfall during the ripening phase was shown to 



 

 

be critical for ZON production.  When plots with high levels of FHB and DON were 

protected from rainfall during the ripening phase then ZON levels remained very low.  

This can be explained by the timing of production of DON and ZON.  DON is produced 

during infection and can be detected to increase from flowering onwards, whereas ZON 

remains at low levels until the crop ripens, after this time the level of ZON increases 

rapidly (Matthaus, et al. 2004).  Based on this information, a better prediction of ZON 

would require an accurate recording or prediction of the start of crop ripening, 

collection of rainfall data from ripening to harvest and modelling of ZON against the 

rainfall data.  (Pageau et al. 2009) looked at the effect of delayed harvest on DON in 

barley and found no significant effect in a 4 year study; although a delay of only 1 and 2 

weeks was used, where a longer delay may have identified a significant increase.  

Similarly, Eiblmeier and von Gleissenthall (2007) did not show a significant difference 

in DON concentration between early and late harvested wheat samples in five out of six 

years surveyed although the factor was only split into two categories based on if 

harvested was before or after 60 days from flowering.  The duration of the delay is 

important as seen in this study but there is also a need for conditions conducive for 

DON and ZON production (i.e. high moisture content) (Kharbikar, et al. 2015), a late 

harvest without conducive conditions will not increase risk.  As such a more accurate 

predictor of risk would be a measure of high moisture/rainfall during the ripening phase 

rather than days to harvest.  Several studies have shown that delayed harvests can also 

result in increased DON in maize (Blandino et al. 2009, Lauren et al. 2007).   

Results from this study clearly identify the high seasonality of fusarium 

mycotoxins in English wheat production with a variation in exceedances of legal limits 

for wheat intended for human consumption of 0-30%.  The study also identified the 

agronomic factors associated with increased risk for both DON and ZON with the large 



 

 

risk associated with wheat following maize and minimum tillage highlighted.  A new 

factor, not previously quantified in observational models for mycotoxins in wheat is 

harvest timing with delayed harvests resulting in dramatic increases in DON and ZON.  

Growers can reduce mycotoxin risk by optimising harvest operations by 

sowing/harvesting wheat earlier, increasing harvest machinery capacity and harvesting 

at a higher moisture content followed by post-harvest drying. 
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Table 1. Deoxynivalenol and zearalenone summary statistics for English wheat samples 

analysed between 2006 and 2013.   

Year Number 
  DON µg kg-1 ZON µg kg-1

  
% 

>10 Mean* Median
** % 

>1250  
% 

>10 Mean* Median
** % 
>100

2006 182  77 37 17 0.0 10 2 <2 0.0
2007 152  98 305 140 3.9 18 14 <2 2.6
2008 175  98 584 306 13.1 87 120 47 28.6
2009 152  95 202 77 1.9 41 22 7 5.3
2010 177  41 14 <10 0.0 3 4 <2 0.6
2011 150  27 18 <10 0.0 0 <2 <2 0.0
2012 158  100 615 333 10.1 59 56 16 13.3
2013 130   99 309 95 3.8 15 10 <2 2.3

Average   79 261 4 38 29 7
* For calculation of the mean values, samples below the limit of quantification (LoQ) 

were allocated a value of half the LoQ (5 µg kg-1 for DON and 1 µg kg-1 for ZON); ** 

EU legal limits for unprocessed wheat intended for human consumption are 1250 and 

100 µg kg-1 for DON and ZON respectively. 

  



 

 

a) 

b) 

Figure 1. The predicted mean concentration (µg kg-1) of (a) deoxynivalenol (DON) and 

(b) zearalenone (ZON) in wheat grain by region for each year between 2006 and 2013.  



 

 

 

a) 

 

b) 

Figure 2. The predicted mean concentration (µg kg-1) of (a) deoxynivalenol (DON) and 

b) zearalenone (ZON) of wheat for the interaction between previous crop and 

cultivation. Bars represent 95% confidence limits for predictions. 

 



 

 

 

a) 

 

b) 

Figure 3. The predicted mean concentration (µg kg-1) of (a) deoxynivalenol (DON) and 

b) zearalenone (ZON) for wheat varieties grouped by AHDB FHB resistance ratings (1-

9; 9=resistant).  Bars represent 95% confidence limits for predictions.  



 

 

 

 

a) 

 

b) 

Figure 4.  The predicted mean concentration (µg kg-1) of (a) deoxynivalenol (DON) and 

b) zearalenone (ZON) of wheat for each harvest week.  Week zero represent the long 

term county average harvest date +/-3 days.  Minus weeks are early harvests, plus 

weeks are late harvests.   Bars represent 95% confidence limits for predictions.  
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