The berries on the top

by Yeung, A.W.K., Tzvetkov, N.T., Zengin, G., Wang, D., Xu, S., Mitrovic, G., Brncic, M., Dall'Acqua, S., Pirgozliev, V., Kijjoa, A., Georgiev, M.I. and Atanasov, A.G.

Copyright, Publisher and Additional Information: This is the author accepted manuscript. The final published version (version of record) is available online via IOS Press.

Please refer to any applicable terms of use of the publisher

DOI: https://doi.org/10.3233/JBR-180357

Yeung, A.W.K., Tzvetkov, N.T., Zengin, G., Wang, D., Xu, S., Mitrovic, G., Brncic, M., Dall'Acqua, S., Pirgozliev, V., Kijjoa, A., Georgiev, M.I. and Atanasov, A.G. 2019. The berries on the top. *Journal of Berry Research*.

8 January 2019

1	(Journal of Berry Research)
2	
3	The berries on the top
4	
5	Andy Wai Kan Yeung ^a *, Nikolay T. Tzvetkov ^{b,c} , Vasil Pirgozliev ¹ , Gokhan Zengin ^d ,
6	Dongdong Wang ^{e,f,g,} , Suowen Xu ^h , Anake Kijjoa ⁱ , Milen I.Georgiev ^{j,k} , Atanas G.
7	Atanasov ^{e,f} *
8	
9	^a Oral and Maxillofacial Radiology, Applied Oral Sciences, Faculty of Dentistry, The
10	University of Hong Kong, Hong Kong S.A.R., China (ndyeung@hku.hk)
11	^b Institute of Molecular Biology "Roumen Tsanev", Department of Biochemical
12	Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria
13	^c Pharmaceutical Institute, University of Bonn, Bonn, Germany
14	^d Department of Biology, Selcuk University, Science Faculty, Konya, Turkey
15	(gokhanzengin@selcuk.edu.tr)
16	^e The Institute of Genetics and Animal Breeding, Polish Academy of Sciences,
17	Jastrzębiec, 05-552 Magdalenka, Poland
18	^f Department of Pharmacognosy, University of Vienna, Vienna, Austria
19	(<u>a.atanasov.mailbox@gmail.com</u>)
20	^g Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952
21	Schlieren, Switzerland (dongdong.wang@univie.ac.at)
22	^h Aab Cardiovascular Research Institute, University of Rochester Medical Center,
23	Rochester, NY, 14623, USA (suowen.xu@gmail.com)

- ¹ ICBAS-Instituto de Ciências Biomédicas Abel Salazar & CIIMAR, Universidade do
- 25 Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- 26 (ankijjoa@icbas.up.pt)
- ^j University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd,
- 28 011464 Bucharest, Romania
- 29 ^k Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff
- 30 Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000,
- 31 Plovdiv, Bulgaria (<u>milengeorgiev@gbg.bg</u>)
- 32 ¹ The National Institute of Poultry Husbandry, Harper Adams University, Shropshire,
- 33 UK (vpirgozliev@harper-adams.ac.uk)
- 34
- 35

36 * Correspondence:

- 37 Andy Wai Kan Yeung (ndyeung@hku.hk) and Atanas G. Atanasov
- 38 (a.atanasov.mailbox@gmail.com).

40 Abstract (200 words max)

BACKGROUND: Berries are important sources of crucial dietary components (such
as vitamins and minerals), as well as various phytonutrients that may be potentially
beneficial to human health and could be used against chronic diseases including cancer
and cardiovascular disorders.

45 **OBJECTIVE**: The current study aimed to identify and analyze the 100 most cited46 papers related to berry research.

47 METHODS: The Scopus database was searched to extract data. Two of the authors
48 independently evaluated the manuscripts for relevance. Bibliometric data, including
49 citation count, were analyzed together with the words in the titles and abstracts of the
50 100 most cited berry-related papers.

RESULTS: Seventy-two of the 100 most cited papers were research articles. Most of them were published during the 2000s, and related to subject areas of agricultural and biological sciences (n = 64), biochemistry, genetics and molecular biology (n = 35), chemistry (n = 29), medicine (n = 24), and nursing (n = 10). *Journal of Agricultural and Food Chemistry* was the dominating choice of publication outlet (n = 26).

56 **CONCLUSIONS**: Antioxidant and anticancer benefits appeared to be the major 57 subject terms. Berries that were mentioned in at least 10% of the 100 papers were 58 strawberry, blueberry, cranberry, raspberry, blackberry, bilberry, and grape berry. The 59 review could provide a valuable guide for designing future studies.

60

61 Keywords: antioxidant; berry; bibliometrics; chemistry; citation classic; food science.

63 **1. Introduction**

64 Berries contain not only crucial dietary components such as vitamins and minerals, but 65 also a wide range of phytonutrients that may be potentially beneficial to human health 66 [1] and could be used against chronic diseases including cancer and heart disorders [2]. 67 For instance, the consumption of berry may enhance the human liver function in terms 68 of reducing the alanine aminotransferase (ALAT) values [3], increasing high-density 69 lipoprotein (HDL) cholesterol, and reducing blood pressure, all of which could help 70 reduce systemic inflammation and risk of cardiovascular and metabolic diseases [4]. 71 For example, it was reported that dietary consumption of strawberry could increase the 72 plasma antioxidant capacity [5]. There have been numerous comprehensive reviews on 73 the phenolic contents of berries, including from phenolic acids, tannins, lignans, 74 stilbenes, and flavonoids [6], and their antioxidant, anticancer, anti-inflammatory as 75 well as neuroprotective properties [7, 8].

76

77 Research on berries could be traced back as early as in the mid-18th century, according 78 to Scopus literature database. Interestingly, the earliest publications seemed to focus on 79 berry poisoning and associated deaths [9-11], instead of the current focus on the health 80 benefits of consuming berries as introduced above. Undoubtedly, there have been 81 numerous publications on berry ripening; the berry research field, after over two 82 centuries of development, has literally ripened. It is worthwhile to identify the most 83 impactful publications on berries and give a brief overview of them. Therefore, in the 84 current study, we aimed to identify and analyze the 100 most cited papers on berries. 85 Besides, we aimed to identify also the hot topics, prominent authors and countries 86 contributing to these publications, and the most popular berries that were investigated 87 in these publications. Last but not least, as multiple studies have indicated a higher

- 88 journal impact factor as well as journal specialties would lead to an increased citation
- 89 count [12-14], we tested if such association existed within the 100 most cited berry-
- 90 related papers, and hypothesized that a positive correlation existed between the journal
- 91 impact factor and the paper citation count (both total and adjusted counts).

92 **2. Materials and methods**

93 2.1. Data source

94 Bibliometric data were extracted from Scopus, an online multidisciplinary database. 95 Upon a preliminary search, we have found that many of the highly cited papers 96 involving the word "berry" were related to Berry's phase or Berry's conjecture which 97 are the concepts used in physics, but certainly not related to the berry fruits. To 98 systematically exclude these irrelevant papers, in September 2018, we searched Scopus 99 to identify papers with the following string: TITLE-ABS-KEY ("berry" OR "berry") 100 OR "berries" OR "berries") AND NOT ("berry's phase" OR "berry phase" OR "berry's 101 conjecture" OR "berry conjecture" OR "berry's curvature" OR "berry curvature"). This 102 string searched for papers that mentioned berry or berries in their titles, abstracts or 103 keywords as fruits, but not Berry as a part of terms used in physics named after a 104 scientist.

105

The identified papers were sorted out by citation count in descending order. Two of the authors (AWKY and AGA) independently evaluated the manuscripts for relevance and compiled the list of 100 most cited papers. We did not place any additional restrictions on the search, such as year of publication and other parameters.

110

111 2.2. Data extraction

112 The 100 most cited papers were evaluated and recorded for: (1) publication year; (2)

journal title; (3) 2017 journal impact factor (released by Clarivate Analytics in Journal

114 Citation Reports 2018); (4) total citation count; (5) adjusted citation count (i.e., citation

115 count per year since publication); (6) authorship; and (7) manuscript type.

117 Meanwhile, Pearson's correlation tests were conducted in SPSS 25.0 (IBM, New York,

118 USA) to evaluate if there existed a correlation between the citation counts (total /

adjusted) of the 100 most cited papers and journal impact factor or number of authors.

120 Test results with p < 0.05 were considered significant.

121

122 *2.3. Term map*

123 The software VOSviewer was utilized to extract and analyze words that appeared in the 124 titles and abstracts of these 100 most cited papers [15], and visualize them with a bubble 125 map. Each bubble represents a term or phrase. The bubble size indicates how often the 126 word appeared among the 100 manuscripts (binary counting was used, which implied 127 that multiple appearances in a single paper counted as one). The bubble color indicates 128 the averaged citation count received by manuscripts involving the term. Two bubbles 129 are nearer to each other if the two terms co-occurred in manuscripts more often. The 130 term map visualizes terms that appeared in at least two of the 100 papers.

131

132 **3. Results and discussion**

133 The search resulted in 21,508 papers. The 100 most cited berry-related papers are listed 134 in Table 1. They were mainly research articles (n = 72) and reviews (n = 21), with a 135 few conference papers (n = 6) and a short survey (n = 1). All 100 papers were written 136 in English, most of which published during the 2000s (Figure 1), and were related to 137 subject areas of agricultural and biological sciences (n = 64), biochemistry, genetics 138 and molecular biology (n = 35), chemistry (n = 29), medicine (n = 24), and nursing (n = 24)139 = 10). These 100 papers listed 1 to 17 authors (mean \pm SD: 4.4 \pm 3.2), and were 140 published in journals with impact factor ranging from no impact factor value to 79.258 141 $(\text{mean} \pm \text{SD}: 4.882 \pm 7.860).$

142

143 3.1. Citation count

144 The citation count of these 100 papers ranged from 264 to 2,190 (mean \pm SD: 454.1 \pm 145 276.7). The adjusted citation count (i.e., citation count per year since publication) 146 ranged from 10.7 to 155.4 (mean \pm SD: 33.0 \pm 22.6). In terms of total citation count, 147 Kähkönen et al. published a top-ranked article that reported the antioxidant activity of 148 plant extracts, containing phenolic compounds, which were particularly abundant in 149 aronia and crowberry [16]. In terms of adjusted citation count, the top-ranked paper 150 was a review, published by Del Rio et al. on availability and evidence of benefits of 151 dietary polyphenolics such as anthocyanins from blueberries, blackberries and 152 strawberries against chronic diseases [17].

153

155

156 3.2. Major contributors

157 The papers were contributed by 160 authors, affiliated with 149 institutions distributed 158 among 25 countries / territories. The five most prolific authors for the most cited papers 159 were Simon P. Robinson from Commonwealth Scientific and Industrial Research 160 Organisation (CSIRO) Plant Industry in Australia (n = 5); Herman Adlercreutz, Marina 161 Heinonen from the University of Helsinki in Finland, Rune Blomhoff and Kari Holte 162 from the University of Oslo in Norway, Navindra P. Seeram from the University of 163 Rhode Island in the United States, and Bharat B. Aggarwal right now from the 164 Inflammation Research Center in the United States of America (each n = 4, equally 165 ranked second).

^{154 [}Table 1]

167	The five most prolific institutions were the University of Helsinki ($n = 15$), the United
168	States Department of Agriculture (USDA, $n = 6$), the University of Eastern Finland (n
169	= 6), Cooperative Research Centre for Viticulture (Australia, $n = 5$), and Agriculture
170	and Agri-Food Canada ($n = 5$). The United States of America has contributed to 38 of
171	these 100 papers, followed by Finland ($n = 20$), Australia ($n = 9$), Canada ($n = 8$), and
172	Japan ($n = 6$). Perhaps unsurprisingly, the dominance of the United States of America
173	was similar to other research fields such as neuroimaging [18], public health [19],
174	general neuroscience [20-22], and nutritional neuroscience [23]. This could be
175	potentially explained by the large amount of money invested by private sector into
176	research and development, as well as the large number of PhD students and full-time
177	researchers in the nation [24]. Here in berry research, however, the contribution by
178	Finland was significantly higher than its contribution to the highly cited manuscripts
179	dealing with related fields such as ethnopharmacology [25], and nutraceuticals and
180	functional foods [26]. In fact, berries were identified as important sources of flavonoid
181	intake for Finnish people [27]. This might have hinted an ethnobotanical reason, which
182	is worth to be further investigated. Regarding journals, Journal of Agricultural and
183	Food Chemistry was the dominating choice of publication outlet ($n = 26$), followed by
184	American Journal of Enology and Viticulture ($n = 6$). The rest of the journals have each
185	contributed to less than 5% of the 100 most cited berry-related papers. Such dominance
186	by a single most prolific journal is similar to the situation of the 100 most cited papers
187	in ethnopharmacology (Journal of Ethnopharmacology, 17%) [25] but not in
188	nutraceuticals and functional foods [26].

190 3.3. Relationship between citation count and author number or journal impact factor

Total citation count and adjusted citation count did not have significant correlation with author number (r = 0.031, p = 0.760; r = 0.135, p = 0.181) or journal impact factor (r = -0.073, p = 0.469; r = -0.065, p = 0.522). Meanwhile, total citation count was positively

- 194 correlated with adjusted citation count (r = 0.695, p < 0.001).
- 195

196 *3.4. Term map*

197 A term map was generated to visualize the words in the titles and abstracts of the 100 198 papers. There were 731 terms that appeared in two or more of the 100 papers, covering 199 various basic science aspects such as antioxidant and angiogenesis, which in turn might 200 influence carcinogenesis and some chronic diseases (Figure 2). These foci seemed to 201 have formed the cornerstones of the most cited berry research. Several molecules have 202 500+ citations per manuscript (Figure 3), namely trihydroxystilbene (n = 2, citations 203 per paper = 737), isoflavonoid glycoside (n = 3, citations per paper = 704), carotene (n204 = 3, citations per paper = 637), ferulic acid (n = 2, citations per paper = 629) and caffeic 205 acid (n = 3, citations per paper = 604), isoflavonoid (n = 4, citations per paper = 594), 206 catechin (n = 3, citations per paper = 584), cinnamic acid (n = 2, citations per paper = 207 580), procyanidin (n = 2, citations per paper = 557), lignin (n = 6, citations per paper = $\frac{1}{2}$ 208 545), and ellagic acid (n = 4, citations per paper = 543).

209

210 [Figures 2 and 3]

211

Meanwhile, the most frequently mentioned berries were strawberry (n = 18, citations per paper = 423), blueberry (n = 16, citations per paper = 456), cranberry (n = 13, citations per paper = 395), raspberry (n = 12, citations per paper = 485), blackberry (n= 12, citations per paper = 463), bilberry (n = 10, citations per paper = 441), and grape berry (n = 10, citations per paper = 351). However, it should be noted that the studies
usually investigated multiple berries species, as demonstrated by these studies [28-30],
instead of focusing on a single one.

219

220 3.5. Study limitations

One potential limitation was that the list is compiled by extracting data from Scopus database only, meaning that manuscripts not listed in Scopus were not included in the current report. Scopus in particular was chosen due to its broader coverage of biomedical literature relative to Web of Science, another well-known database that keeps track of citation data [31]. On the other hand, Google Scholar, for example, counts citations from non-academic sources such as websites, and hence was not selected by us for the current analysis.

228

229 4. Conclusions

A bibliometric analysis was performed to identify the 100 most cited berry-related papers. The *Journal of Agricultural and Food Chemistry* was the preferred choice of publication outlet. The total citation count and adjusted citation count did not appear to have a significant correlation with the number of authors or the journal impact factor. Antioxidant and anti-cancer benefits seemed to be the major topics. Berries species that were mentioned in at least 10% of the 100 papers were strawberry, blueberry, cranberry, raspberry, blackberry, bilberry, and grape berry.

237

238 **Conflict of interest**: The authors have no conflict of interest to report.

240 Acknowledgments: Atanas G. Atanasov and Dongdong Wang acknowledge the 241 support by the Polish KNOW (Leading National Research Centre) Scientific 242 Consortium "Healthy Animal-Safe Food," decision of Ministry of Science and Higher 243 Education No. 05-1/KNOW2/2015 and the HOMING programme of the Foundation 244 for Polish Science co-financed by the European Union under the European Regional 245 Development Fund. Milen I. Georgiev gratefully acknowledges the support obtained 246 through the project SusMAPWaste, SMIS 104323, Contract No. 89/09.09.2016, from 247 the Operational Program Competitiveness 2014-2020, project co-financed from the 248 European Regional Development Fund.

250 References

- 251 [1] Battino M, Beekwilder J, Denoyes Rothan B, Laimer M, McDougall GJ,
- 252 Mezzetti B. Bioactive compounds in berries relevant to human health. Nutr Rev.
- 253 2009;67:S145-S50.
- [2] Seeram NP. Recent trends and advances in berry health benefits research. J AgricFood Chem. 2010;58(7):3869-70.
- 256 [3] Lehtonen H, Suomela J, Tahvonen R, Vaarno J, Venojärvi M, Viikari J et al.
- 257 Berry meals and risk factors associated with metabolic syndrome. Eur J Clin Nutr.
- 258 2010;64(6):614-21.
- 259 [4] Erlund I, Koli R, Alfthan G, Marniemi J, Puukka P, Mustonen P et al. Favorable
- 260 effects of berry consumption on platelet function, blood pressure, and HDL
- 261 cholesterol–. Am J Clin Nutr. 2008;87(2):323-31.
- 262 [5] Tulipani S, Romandini S, Busco F, Bompadre S, Mezzetti B, Battino M.
- Ascorbate, not urate, modulates the plasma antioxidant capacity after strawberry
- 264 intake. Food Chem. 2009;117(1):181-8.
- 265 [6] Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez T.
- Berries: improving human health and healthy aging, and promoting quality life—a
 review. Plant Foods Hum Nutr. 2010;65(3):299-308.
- [7] Nile SH, Park SW. Edible berries: Bioactive components and their effect on
 human health. Nutrition. 2014;30(2):134-44.
- [8] Battino M, Mezzetti B. Update on fruit antioxidant capacity: a key tool for
 Mediterranean diet. Public Health Nutr. 2006;9(8A):1099-103.
- [9] Hurt S. Poisonous effects of the berries, or seeds, of the yew. The Lancet.
 1836;27(693):394-5.
- [10] Lloyd J. Case of poisoning by yew berries. Provincial Medical and Surgical
 Journal. 1848;12(24):661-2.
- [11] Rickards A. DEATH FROM EATING POISON-BERRIES. The Lancet.
 1858;72(1830):343.
- [12] Callaham M, Wears RL, Weber E. Journal prestige, publication bias, and other
 characteristics associated with citation of published studies in peer-reviewed journals.
 JAMA. 2002;287(21):2847-50.
- [13] Didegah F, Thelwall M. Which factors help authors produce the highest impact
- research? Collaboration, journal and document properties. J Informetr. 2013;7(4):86173.
- 284 [14] Uthman OA, Okwundu CI, Wiysonge CS, Young T, Clarke A. Citation classics
- in systematic reviews and meta-analyses: who wrote the top 100 most cited articles?
 PLoS One. 2013;8(10):e78517.
- [15] van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for
 bibliometric mapping. Scientometrics. 2009;84(2):523-38.
- 289 [16] Kähkönen MP, Hopia AI, Vuorela HJ, Rauha J-P, Pihlaja K, Kujala TS et al.
- 290 Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food
- 291 Chem. 1999;47(10):3954-62.

- 292 [17] Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A.
- 293 Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of
- 294 protective effects against chronic diseases. Antioxidants & redox signaling.
- 295 2013;18(14):1818-92.
- [18] Yeung AWK, Goto TK, Leung WK. A bibliometric review of research trends in neuroimaging. Curr Sci. 2017;112(4):725-34. doi:10.18520/cs/v112/i04/725-734.
- 298 [19] Soteriades ES, Falagas ME. A bibliometric analysis in the fields of preventive
- 299 medicine, occupational and environmental medicine, epidemiology, and public health.
 300 BMC Public Health. 2006;6(1):301.
- 301 [20] Yeung AWK, Ho Y-S. Identification and analysis of classic articles and sleeping
 302 beauties in neurosciences. Curr Sci. 2018;114(10):2039-44.
- 303 [21] Yeung AWK, Goto TK, Leung WK. The Changing Landscape of Neuroscience
 304 Research, 2006–2015: A Bibliometric Study. Front Neurosci. 2017;11:120.
- 305 [22] Yeung AWK, Goto TK, Leung WK. At the Leading Front of Neuroscience: A
- 306 Bibliometric Study of the 100 Most-Cited Articles. Front Hum Neurosci.
- 307 2017;11:363.
- 308 [23] Yeung AWK. Bibliometric study on functional magnetic resonance imaging
- 309 literature (1995–2017) concerning chemosensory perception. Chemosens Percept.
- 310 2018;11(1):42-50.
- 311 [24] King DA. The scientific impact of nations. Nature. 2004;430(6997):311-7.
- 312 [25] Yeung AWK, Heinrich M, Atanasov AG. Ethnopharmacology—A Bibliometric
- Analysis of a Field of Research Meandering Between Medicine and Food Science?
- 314 Front Pharmacol. 2018;9:215.
- 315 [26] Yeung AWK, Mocan A, Atanasov AG. Let food be thy medicine and medicine
- 316 be thy food: A bibliometric analysis of the most cited papers focusing on
- 317 nutraceuticals and functional foods. Food Chem. 2018;269:455-65.
- [27] Knekt P, Jarvinen R, Reunanen A, Maatela J. Flavonoid intake and coronary
 mortality in Finland: a cohort study. BMJ. 1996;312(7029):478-81.
- 320 [28] Pantelidis GE, Vasilakakis M, Manganaris GA, Diamantidis G. Antioxidant
- 321 capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries,
- red currants, gooseberries and Cornelian cherries. Food Chem. 2007;102(3):777-83.
- 323 [29] Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS et al. Blackberry,
- 324 black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit
- growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem.
 2006;54(25):9329-39.
- 327 [30] Zheng W, Wang SY. Oxygen radical absorbing capacity of phenolics in
- 328 blueberries, cranberries, chokeberries, and lingonberries. J Agric Food Chem.
- 329 2003;51(2):502-9.
- 330 [31] Mongeon P, Paul-Hus A. The journal coverage of Web of Science and Scopus: a
- comparative analysis. Scientometrics. 2016;106(1):213-28.
- 332
- 333

334 Figure Captions

335 Figure 1. Distribution of the 100 most cited berry-related papers across the

publication years. Year 2007 was the most influential year when 16 out of the 100

340 Figure 2. Term map of words from the titles and abstracts of the 100 most cited 341 berry-related papers. There were 731 words or phrases that appeared in at least two 342 papers and hence included in the visualization. Each bubble represents a term or phrase. 343 The bubble size indicates its number of appearance. The bubble color indicates the 344 averaged citation count received by papers containing the term or phrase. Two bubbles 345 are closer to each other if the two terms co-appeared in more papers. It seemed that 346 antioxidant capacity and angiogenesis effect were the two major aspects under 347 investigation that may lead to potential health benefits against cancer and chronic 348 diseases.

351 Figure 3. Notable representative molecules mentioned by berry-related papers. The

352 respective search name and citation per manuscript are in parenthesis.

353

Rank	Reference	Impact	Total	Adjusted
		factor	citation	citation
		(IF)	count	count
1	Kähkönen MP, Hopia AI, Vuorela HJ, Rauha J, Pihlaja K, Kujala TS, Heinonen M. Antioxidant activity of plant extracts	3.412	2190	115.3
	containing phenolic compounds. J Agric Food Chem 1999;47(10):3954-62.			
2	Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol	4 235	1196	99.7
	2006;71(10):1397-421.	7.233	1170	<i>JJ</i> .1
3	Frémont L. Minireview: Biological effects of resveratrol. Life Sci 2000;66(8):663-73.	3.234	1119	62.2
4	Adlercreutz H, Mazur W. Phyto-oestrogens and western diseases. Ann Med 1997;29(2):95-120.	3.007	1029	49.0
5	Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of	1 865	985	70.4
	cancer: Preclinical and clinical studies. Anticancer Res 2004;24(5 A):2783-840.	1.005	905	/0.4
6	Clifford MN. Chlorogenic acids and other cinnamates - nature, occurrence and dietary burden. J Sci Food Agric 1999;79(3):362-	2 2 70	206	47.2
	72.	2.579	890	47.2
7	Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 1995;18(4):339-	5 /15	896	30.0
	55.	5.715	890	59.0
8	Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, Brighenti F. Total antioxidant capacity of plant foods,	4 308	873	50 0
	beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr 2003;133(9):2812-9.	т.570	075	50.2

9	Prior RL, Cao G, Martin A, Sofic E, McEwen J, O'Brien C, Lischner N, Ehlenfeldt M, Kalt W, Krewer G, Mainland CM.			
	Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J Agric	3.412	867	43.4
	Food Chem 1998;46(7):2686-93.			
10	Lindström J, Tuomilehto J. The diabetes risk score: A practical tool to predict type 2 diabetes risk. Diabetes Care 2003;26(3):725-	12 207	817	56 5
	31.	13.397	047	50.5
11	Wang SY, Lin H Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and	3 / 1 2	812	45.1
	developmental stage. J Agric Food Chem 2000;48(2):140-6.	J. 4 12	012	43.1
12	Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem	3 412	798	44 3
	2000;48(8):3597-604.	5.412	170	
13	Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health:			
	Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 2013;18(14):1818-	6.530	777	155.4
	92.			
14	Halvorsen BL, Holte K, Myhrstad MCW, Barikmo I, Hvattum E, Remberg SF, Wold A-, Haffner K, Baugerød H, Andersen LF,	4 398	740) 162
	Moskaug O, Jacobs Jr. DR, Blomhoff R. A systematic screening of total antioxidants in dietary plants. J Nutr 2002;132(3):461-71.	н. 576	/+0	40.5
15	Kähkönen MP, Hopia AI, Heinonen M. Berry phenolics and their antioxidant activity. J Agric Food Chem 2001;49(8):4076-82.	3.412	678	39.9
16	Sivapalasingam S, Friedman CR, Cohen L, Tauxe RV. Fresh produce: A growing cause of outbreaks of foodborne illness in the	1 5 1 0	662	17 1
	United States, 1973 through 1997. J Food Protection 2004;67(10):2342-53.	1.310	003	47.4
17	Adlercreutz H. Western diet and western diseases: Some hormonal and biochemical mechanisms and associations. Scand J Clin	1 /08	627	22.4
	Lab Invest 1990;50(s201):3-23.	1.470	027	22.4

18	Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE. Anthocyanins, phenolics, and antioxidant capacity in diverse small	3.412	625	39.1
	fruits: Vaccinium, Rubus, and Ribes. J Agric Food Chem 2002;50(3):519-25.			
19	Rauha J-, Remes S, Heinonen M, Hopia A, Kähkönen M, Kujala T, Pihlaja K, Vuorela H, Vuorela P. Antimicrobial effects of	3.451	619	34.4
	Finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol 2000;56(1):3-12.			
20	Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. Sci World J 2013;2013:162750.	No IF	618	123.6
21	Herman C, Adlercreutz T, Goldin BR, Gorbach SL, Hockerstedt KAV, Watanabe S, Hamalainen EK, Markkanen MH, Makela	4.200	57 0	05.1
	TH, Wahala KT, Hase TA, Fotsis T. Soybean phytoestrogen intake and cancer risk. J Nutr 1995;125(3 SUPPL.):757S-70S.	4.398	5/8	25.1
22	Spayd SE, Tarara JM, Mee DL, Ferguson JC. Separation of sunlight and temperature effects on the composition of Vitis vinifera	1.765	535	33.4
	cv. merlot berries. Am J Enol Vitic 2002;53(3):171-82.			
23	Reid KE, Olsson N, Schlosser J, Peng F, Lund ST. An optimized grapevine RNA isolation procedure and statistical determination	3.930	530	44.2
	of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 2006;6:27.	5.750		
24	Puupponen-Pimiä R, Nohynek L, Meier C. Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol	2.160	520	30.6
	2001;90(4):494-507.			
25	Adlercreutz H. Phytoestrogens: Epidemiology and a possible role in cancer protection. Environ Health Perspect 1995;103(SUPPL.	8.309	504	21.9
	7):103-12.			
26	Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D. Berry anthocyanins as novel antioxidants in human	5.151	497	45.2
	health and disease prevention. Mol Nutr Food Res 2007;51(6):675-83.			
27	Häkkinen SH, Kärenlampi SO, Heinonen IM, Mykkänen HM, Törronen AR. Content of the flavonols quercetin, myricetin, and	3.412	488	25.7
	kaempferol in 25 edible berries. J Agric Food Chem 1999;47(6):2274-9.			

28	Zheng W, Wang SY. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries.	3.412	471	31.4
29	Boss PK, Davies C, Robinson SP. Analysis of the expression of anthocyanin pathway genes in developing <i>Vitis vinifera</i> L. cv	5 949	458	20.8
	shiraz grape berries and the implications for pathway regulation. Plant Physiol 1996;111(4):1059-66.	5.777	450	20.0
30	Heinonen IM, Meyer AS, Frankel EN. Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome	3.412	456	22.8
	oxidation. J Agric Food Chem 1998;46(10):4107-12.			
31	Ozgen M, Reese RN, Tulio Jr. AZ, Scheerens JC, Miller AR. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid			
	(ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power	3.412	446	37.2
	(FRAP) and 2,2'-diphenyl-1- picrylhydrazyl (DPPH) methods. J Agric Food Chem 2006;54(4):1151-7.			
32	Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, Heber D. Blackberry, black raspberry, blueberry, cranberry, red			
	raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem	3.412	440	36.7
	2006;54(25):9329-39.			
33	Wu X, Gu L, Prior RL, McKay S. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and	3 412	435	31.1
	Sambucus and their antioxidant capacity. J Agric Food Chem 2004;52(26):7846-56.	5.112	135	51.1
34	Kennedy JA, Jones GP. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess	3 412	429	25.2
	phloroglucinol. J Agric Food Chem 2001;49(4):1740-6.	5.112	12)	20.2
35	De La Lastra CA, Villegas I. Resveratrol as an anti-inflammatory and anti-aging agent: Mechanisms and clinical implications.	5 1 5 1	416	32.0
	Mol Nutr Food Res 2005;49(5):405-30.	0.101	110	52.0
36	Häkkinen S, Heinonen M, Kärenlampi S, Mykkänen H, Ruuskanen J, Törrönen R. Screening of selected flavonoids and phenolic	3.520	400	21.1
	acids in 19 berries. Food Res Int 1999;32(5):345-53.	0.020		1

37	Wu X, Prior RL. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: Fruits and berries, J Agric Food Chem 2005:53(7):2589-99.	3.412	396	30.5
38	Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, Poutanen K. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 2010;11(4):1365-402.	3.687	395	49.4
39	Attele AS, Zhou Y-, Xie J-, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan C Antidiabetic effects of <i>Panax</i> ginseng berry extract and the identification of an effective component. Diabetes 2002;51(6):1851-8.	7.273	391	24.4
40	Gautier-Hion A, Duplantier J-, Quris R, Feer F, Sourd C, Decoux J-, Dubost G, Emmons L, Erard C, Hecketsweiler P, Moungazi A, Roussilhon C, Thiollay J Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia 1985;65(3):324-37.	3.127	389	11.8
41	Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, Moen J, Bengtsson J. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 2013;4:1340.	12.353	383	76.6
42	Downey MO, Dokoozlian NK, Krstic MP. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. Am J Enol Vitic 2006;57(3):257-68.	1.765	377	31.4
43	Pantelidis GE, Vasilakakis M, Manganaris GA, Diamantidis G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and cornelian cherries. Food Chem 2007;102(3):777-83.	4.946	370	33.6
44	Wang SY, Jiao H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radical's, and singlet oxygen. J Agric Food Chem 2000;48(11):5677-84.	3.412	367	20.4
45	Mikkilä V, Räsänen L, Raitakari OT, Pietinen P, Viikari J. Consistent dietary patterns identified from childhood to adulthood: The cardiovascular risk in young finns study. Br J Nutr 2005;93(6):923-31.	3.657	361	27.8

46	Häkkinen SH, Törrönen AR. Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: Influence of	3.520	361	20.1
	cultivar, cultivation site and technique. Food Res Int 2000;33(6):517-24.			
47	Harikumar KB, Aggarwal BB. Resveratrol: A multitargeted agent for age-associated chronic diseases. Cell Cycle 2008;7(8):1020-	3.304	356	35.6
	37.			
48	Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K. Loss of anthocyanins in red-wine grape under high temperature. J Exp	5.354	356	32.4
	Bot 2007;58(8):1935-45.			
49	Alarcón De La Lastra C, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications.	3.394	355	32.3
	Biochem Soc Trans 2007;35(5):1156-60.			
50	Montonen J, Knekt P, Järvinen R, Aromaa A, Reunanen A. Whole-grain and fiber intake and the incidence of type 2 diabetes. Am	6.549	353	23.5
	J Clin Nutr 2003;77(3):622-9.			
51	Halvorsen BL, Carlsen MH, Phillips KM, Bøhn SK, Holte K, Jacobs Jr. DR, Blomhoff R. Content of redox-active compounds (ie,	6.549	349	29.1
	antioxidants) in foods consumed in the united states. Am J Clin Nutr 2006;84(1):95-135.			
52	Bell S-, Henschke PA. Implications of nitrogen nutrition for grapes, fermentation and wine. Austr J Grape Wine Res	1.913	347	26.7
	2005;11(3):242-95.			
53	Dimitrios B. Sources of natural phenolic antioxidants. Trends Food Sci Technol 2006;17(9):505-12.	6.609	342	28.5
54	Bergqvist J, Dokoozlian N, Ebisuda N. Sunlight exposure and temperature effects on berry growth and composition of cabernet	1 765	333	196
	sauvignon and grenache in the central San Joaquin valley of California. Am J Enol Vitic 2001;52(1):1-7.	11,00	555	1710
55	Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR. Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J			
	Agric Food Chem 2004;52(15):4713-9.	3.412	327	23.4

56	McGhie TK, Walton MC. The bioavailability and absorption of anthocyanins: Towards a better understanding. Mol Nutr Food	5.151	325	29.5
	Res 2007;51(6):702-13.			
57	Mattivi F, Guzzon R, Vrhovsek U, Stefanini M, Velasco R. Metabolite profiling of grape: Flavonols and anthocyanins. J Agric	3.412	323	26.9
	Food Chem 2006;54(20):7692-702.	0	020	2019
58	Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP. White grapes arose through the mutation of two similar	5 775	319	29.0
	and adjacent regulatory genes. Plant J 2007;49(5):772-85.	5.775	517	29.0
59	She Q, Bode AM, Ma W, Chen N, Dong Z. Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-	0 130	317	18.6
	signal-regulated protein kinases and p38 kinase. Cancer Res 2001;61(4):1604-10.	9.130	517	18.0
60	Määttä-Riihinen KR, Kamal-Eldin A, Törrönen AR. Identification and quantification of phenolic compounds in berries of	2 412	212	<u></u>
	Fragaria and Rubus species (family Rosaceae). J Agric Food Chem 2004;52(20):6178-87.	5.412	512	22.3
61	Bishayee A. Cancer prevention and treatment with resveratrol: From rodent studies to clinical trials. Cancer Prev Res	4.021	211	24.6
	2009;2(5):409-18.	4.021	511	34.0
62	Downey MO, Harvey JS, Robinson SP. The effect of bunch shading on berry development and flavonoid accumulation in shiraz	1.012	210	22.1
	grapes. Austr J Grape Wine Res 2004;10(1):55-73.	1.915	510	22.1
63	Maisuthisakul P, Suttajit M, Pongsawatmanit R. Assessment of phenolic content and free radical-scavenging capacity of some thai	4.046	200	2 0 1
	indigenous plants. Food Chem 2007;100(4):1409-18.	4.940	309	28.1
64	Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M. Effects of plant hormones and shading on the accumulation of	2 712	200	22.1
	anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci 2004;167(2):247-52.	3./12	309	22.1
65	El Ghaouth A, Arul J, Ponnampalam R, Boulet M. Chitosan coating effect on storability and quality of fresh strawberries. J Food	2 0 1 0	207	
	Sci 1991;56(6):1618-20.	2.018	307	11.4

66	Jones GV, Davis RE. Climate influences on grapevine phenology, grape composition, and wine production and quality for	1.765	303	16.8
	bordeaux, france. Am J Enol Vitic 2000;51(3):249-61.			
67	Carlsen MH, Halvorsen BL, Holte K, Bøhn SK, Dragland S, Sampson L, Willey C, Senoo H, Umezono Y, Sanada C, Barikmo I,			
	Berhe N, Willett WC, Phillips KM, Jacobs DR, Blomhoff R. The total antioxidant content of more than 3100 foods, beverages,	3.568	300	37.5
	spices, herbs and supplements used worldwide. Nutr J 2010;9(1):3.			
68	Swanston-Flatt SK, Day C, Bailey CJ, Flatt PR. Traditional plant treatments for diabetes. Studies in normal and streptozotocin	6 023	300	10.7
	diabetic mice. Diabetologia 1990;33(8):462-4.	0.025	500	10.7
69	Szajdek A, Borowska EJ. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum Nutr	2 465	200	20.0
	2008;63(4):147-53.	2.405	2))	29.9
70	Seeram NP, Momin RA, Nair MG, Bourquin LD. Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and	3 610	200	17.6
	berries. Phytomedicine 2001;8(5):362-9.	5.010	299	17.0
71	Van Leeuwen C, Friant P, Choné X, Tregoat O, Koundouras S, Dubourdieu D. Influence of climate, soil, and cultivar on terroir.	1 765	208	21.3
	Am J Enol Vitic 2004;55(3):207-17.	1.705	290	21.3
72	Escudero A, Campo E, Fariña L, Cacho J, Ferreira V. Analytical characterization of the aroma of five premium red wines. Insights	2 412	205	26.8
	into the role of odor families and the concept of fruitiness of wines. J Agric Food Chem 2007;55(11):4501-10.	3.412	293	20.8
73	Katsube N, Iwashita K, Tsushida T, Yamaki K, Kobori M. Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus)	2 412	204	10.6
	and the anthocyanins. J Agric Food Chem 2003;51(1):68-75.	3.412	294	19.0
74	Miller HE, Rigelhof F, Marquart L, Prakash A, Kanter M. Antioxidant content of whole grain breakfast cereals, fruits and	2 175	204	1()
	vegetables. J Am Coll Nutr 2000;19:312S-9S.	2.173	294	10.3

75	Mazza G, Kay CD, Cottrell T, Holub BJ. Absorption of anthocyanins from blueberries and serum antioxidant status in human	3.412	293	18.3
	subjects. J Agric Food Chem 2002;50(26):7731-7.			
76	de Pascual-Teresa S, Santos-Buelga C, Rivas-Gonzalo JG. Quantitative analysis of flavan-3-ols in Spanish foodstuffs and	3 4 1 2	293	163
	beverages. J Agric Food Chem 2000;48(11):5331-7.	5.112	275	10.5
77	Kobayashi S, Ishimaru M, Hiraoka K, Honda C. Myb-related genes of the kyoho grape (Vitis labruscana) regulate anthocyanin	3 249	291	18.2
	biosynthesis. Planta 2002;215(6):924-33.	5.277	271	10.2
78	Waterhouse AL. Wine phenolics. Ann New York Acad Sci 2002;957:21-36.	4.277	291	18.2
79	Heinonen IM, Lehtonen PJ, Hopia AI. Antioxidant activity of berry and fruit wines and liquors. J Agric Food Chem	3 /12	280	14.5
	1998;46(1):25-31.	3.412	209	14.5
80	Chaves MM, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM. Grapevine under deficit	3 646	288	36.0
	irrigation: Hints from physiological and molecular data. Ann Bot 2010;105(5):661-76.	5.040	200	50.0
81	Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L. Effects of resveratrol on lifespan in drosophila melanogaster and	3 739	286	26.0
	Caenorhabditis elegans. Mech Ageing Dev 2007;128(10):546-52.	5.757	200	20.0
82	Aziz MH, Kumar R, Ahmad N. Cancer chemoprevention by resveratrol: In vitro and in vivo studies and the underlying	3 333	283	18.9
	mechanisms (review). Int J Oncol 2003;23(1):17-28.	5.555	205	10.9
83	Herwaldt BL, Ackers M An outbreak in 1996 of cyclosporiasis associated with imported raspberries. New Engl J Med	79 258	283	13.5
	1997;336(22):1548-56.	19.230	205	15.5
84	Bogs J, Jaffé FW, Takos AM, Walker AR, Robinson SP. The grapevine transcription factor VvMYBPA1 regulates	5 949	282	25.6
	proanthocyanidin synthesis during fruit development. Plant Physiol 2007;143(3):1347-61.	5.777	202	25.0

85	Bhardwaj A, Sethi G, Vadhan-Raj S, Bueso-Ramos C, Takada Y, Gaur U, Nair AS, Shishodia S, Aggarwal BB. Resveratrol			
	inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-	15.132	281	25.5
	κB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood 2007;109(6):2293-302.			
86	Cacace JE, Mazza G. Mass transfer process during extraction of phenolic compounds from milled berries. J Food Eng	3 197	278	18.5
	2003;59(4):379-89.	5.177	270	10.5
87	Dragland S, Senoo H, Wake K, Holte K, Blomhoff R. Several culinary and medicinal herbs are important sources of dietary	4 398	278	18.5
	antioxidants. J Nutr 2003;133(5):1286-90.	ч. 9 70	270	10.5
88	Wolfe KL, Kang X, He X, Dong M, Zhang Q, Liu RH. Cellular antioxidant activity of common fruits. J Agric Food Chem	3 412	276	27.6
	2008;56(18):8418-26.	5.712	270	27.0
89	Bogs J, Downey MO, Harvey JS, Ashton AR, Tanner GJ, Robinson SP. Proanthocyanidin synthesis and expression of genes			
	encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant	5.949	276	21.2
	Physiol 2005;139(2):652-63.			
90	Castellarin SD, Matthews MA, Di Gaspero G, Gambetta GA. Water deficits accelerate ripening and induce changes in gene	3 7/10	275	25.0
	expression regulating flavonoid biosynthesis in grape berries. Planta 2007;227(1):101-12.	5.277	215	25.0
91	Seeram NP. Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health,	3 412	272	27.2
	performance, and disease. J Agric Food Chem 2008;56(3):627-9.	5.712	212	21.2
92	Singh M, Arseneault M, Sanderson T, Murthy V, Ramassamy C. Challenges for research on polyphenols from foods in			
	Alzheimer's disease: Bioavailability, metabolism, and cellular and molecular mechanisms. J Agric Food Chem 2008;56(13):4855-	3.412	270	27.0
	73.			

93	Castellarin SD, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, Di Gaspero G. Transcriptional regulation of anthocyanin	5.415	270	24.5
	biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ 2007;30(11):1381-99.			
94	Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR.	3.730	269	24.5
	Transcriptomic and metabolite analyses of cabernet sauvignon grape berry development. BMC Genomics 2007;8:429.			
95	Park EJ, Pezzuto JM. Botanicals in cancer chemoprevention. Cancer Metastasis Rev 2002;21(3-4):231-55.	6.081	269	16.8
96	Ojeda H, Andary C, Kraeva E, Carbonneau A, Deloire A. Influence of pre- and postveraison water deficit on synthesis and	1.765	269	16.8
	concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. shiraz. Am J Enol Vitic 2002;53(4):261-7.			
97	Mazur W. Phytoestrogen content in foods. Bailliere's Clin Endocrinol Metab 1998;12(4):729-42.	No IF	266	13.3
98	Adlercreutz H. Lignans and human health. Crit Rev Clin Lab Sci 2007;44(5-6):483-525.	6.481	265	24.1
99	Neto CC. Cranberry and blueberry: Evidence for protective effects against cancer and vascular diseases. Mol Nutr Food Res	5.151	264	24.0
	2007;51(6):652-64.			
100	Hannum SM. Potential impact of strawberries on human health: A review of the science. Crit Rev Food Sci Nutr 2004;44(1):1-17.	6.015	264	18.9