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Summary - The hatching and emergence of juveniles from cysts of Heterodera schachtii in 

response to various stimuli is well understood. These responses relate to means of optimising 

the chances of successful reproduction and survival of populations. However, the effect of 

different cultivars of host species is not so well understood. To gain a further understanding of 

any differences between cultivars of host species, we conducted a number of experiments using 

root leachates obtained from a range of cultivars of sugar beet (Beta vulgaris), radish 

(Raphanus sativus) and white mustard (Sinapis alba). Heterodera schachtii cysts were exposed 

to root leachate solutions in in vitro laboratory assays during which juvenile emergence from 

cysts was monitored weekly. Significant differences in the stimulation of hatch of juveniles 

were found in response to different sugar beet cultivars and these differences may be driven by 

differing growth habits of such varieties.  However, results obtained from experiments using 

brassica varieties showed contrasting responses to each other. In one experiment, root leachates 

appeared to inhibit hatch of juveniles. However, two experiments did show a stimulation of 

hatch of juveniles and also significant differences in hatch responses due to the age of the plant. 

These findings may help develop future screening procedures for brassica trap crops and help 

identify those that show the greatest potential for H. schachtii control.  

 

Keywords - Beta vulgaris, hatch stimulation, integrated pest management, Raphanus sativus, 

Sinapis alba. 
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The beet cyst nematode, Heterodera schachtii (Schmidt), is a major pest of sugar beet 

(Beta vulgaris L.) crops around the world (Müller, 1999) and can cause yield losses of up to 

60% in susceptible varieties (Cooke, 1987; Blok et al., 2018). It also has a wide host range 

(CABI, 2018) and can also cause damage to brassica crops such as oilseed rape (Brassica 

napus)  (Kakaire et al., 2012). Careful management is required to monitor and limit yield losses 

caused by the nematode and prevent spread of infested soil to new fields.  

The use of tolerant varieties of sugar beet in the management of H. schachtii infestations 

has become popular.  Tolerant varieties are able to limit the yield losses caused by the feeding 

nematodes, although these varieties do not limit population multiplication (Hauer et al., 2016; 

Reuther et al., 2017). Varieties with tolerance are now widely available across European 

markets and are recommended for use in H. schachtii infested fields (BBRO, 2018). Tolerant 

varieties are favoured by growers since they yield better than H. schachtii resistant (ones that 

actively lower H. schachtii populations) cultivars of sugar beet, which experience a yield drag 

(Märländer et al., 2003; Dewar & Cooke, 2006). Another popular method of control is the use 

of a resistant trap crop (Cooke, 1985; Müller, 1999; Hauer et al., 2016). Trap crops for control 

of H. schachtii consist of varieties of radish (Raphanus sativus) or white mustard (Sinapis 

alba), which are commonly planted in infested fields during the summer prior to sugar beet 

cultivation (usually immediately after harvest of the previous crop) and are intended to reduce 

the populations of H. schachtii in the soil, ahead of the sugar beet planting. These trap crops 

are tested using bioassays to determine their resistance characteristics using hatched second-

stage juveniles (J2) of H. schachtii (Bundessortenamt, 2014; Hauer et al., 2016). Therefore, 

the ability of these varieties to stimulate the hatch of J2 is not typically assessed. This study 

aimed to assess the hatching dynamics of a range of these brassica trap crop varieties.   

Hatching in cyst nematodes is a complex process that varies between species of 

nematodes and their host plants. A thorough review of this topic has recently been made 
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(Masler & Perry, 2018). With regard to H. schachtii hatching responses, four distinct types of 

dormancy have been found (Zheng & Ferris, 1991). This dormancy delays the hatch of the J2 

within a cyst and these increase the chances of some of the juveniles finding a suitable host and 

then reproducing. Perry (2002) classified H. schachtii as possessing a hatch response that 

results in very large numbers of J2 reacting to  host root leachates but also having a large level 

of hatch in response to water only. This is in contrast with other cyst nematode species, such 

as the potato cyst nematodes (Globodera pallida and G. rostochiensis), where hatching is 

modulated by a variety of hatching factors associated with the root leachates of potatoes with 

very few J2 hatching in response to water (Evans, 1983; Perry, 2002). In the case of H. 

schachtii,  the various hatch responses cause some J2 to hatch soon after developing and others 

remain dormant until a suitable host is detected and, as a result, approximately 50% of a cyst’s 

contents hatch every year (Jones, 1956; Zheng & Ferris, 1991). It is for this reason that a period 

of approximately 5 years between a host species being grown in an infested field can keep H. 

schachtii populations below damaging levels in sugar beet crops (Koch & Gray, 1997; BBRO, 

2009). Where cultivation of sugar beet is required to be more frequent than recommended, or 

growers’ rotations include other host species, the use of the resistant brassicas may be a useful 

tool in controlling H. schachtii damage to future crops.  

It is also important to consider whether different varieties of sugar beet stimulate 

significantly different amounts of hatch of H. schachtii J2 as a cultivar that results in  reduced 

initial levels of hatch may be less prone to damage from invading J2. Previous studies usually 

have included just one or two examples of commercial varieties of host species being 

investigated (Steele et al., 1982; Cooke, 1985; Kakaire et al., 2015). Therefore, differences that 

may exist between the different variety types have not been investigated in detail. Different H. 

schachtii hatching responses to various cultivars of the same species have previously been 
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identified in oilseed rape (Fatemy & Abootorabi, 2002) and we hypothesise that different 

cultivars of other host crops may also vary in their ability to stimulate juvenile hatch.  

We set out to understand how a range of modern cultivars of sugar beet, radish and one 

cultivar of white mustard may differ in their ability to stimulate hatch of J2 of H. schachtii and 

whether these differences could be related to their reported tolerance, resistance or 

susceptibility to H. schachtii. To achieve these aims we performed a series of in vitro 

experiments, which are reported in this manuscript.  

 

Materials and methods 

 

A total of four experiments were conducted to test the influence of leachates obtained from 

different varieties of sugar beet, radish and mustard (Table 1) upon the hatching dynamics of 

H. schachtii. Experiment 1 assessed the level of hatch stimulated from twelve varieties of 

radish, nine of which are resistant to H. schachtii. It also included one resistant variety of white 

mustard. Experiment 2 tested H. schachtii hatching responses to nine varieties of sugar beet, 

which varied in their susceptibility to H. schachtii. Experiment 3 combined both brassica and 

sugar beet treatments again to investigate hatching responses. Three resistant varieties of 

radish, the resistant mustard and a susceptible radish were grown alongside six varieties of 

sugar beet. Some of the sugar beet varieties had been used in Experiment 2 and some were 

newer varieties (BBRO, 2015). All brassica treatments had been previously grown in 

Experiment 1. Experiment 4 replicated only the brassica treatments from Experiment 3. 

However, the plants were grown for 5, 6 and 7 weeks to investigate the effect of age of the 

plants upon the stimulation of hatch 
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 1 
 2 
 3 
 4 

 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
* Resistance classes are measured under controlled tests in Germany before approval for cultivation (Bundessortenamt, 2014). Resistance class of 1 ≥ 90% 30 
resistance and class 2 = 70 to 90% resistance to H. schachtii.  31 
+ Sugar beet varieties can be classed as Resistant (R), Tolerant (T), Light tolerant (LT) or Susceptible (S) to H. schachtii when tested in recommended list trial 32 
(BBRO, 2018)33 

Radishes (R. sativus)  Sugar Beet (B. vulgaris) 

Treatment  Variety  Resistance 
class* 

Experiments Treatment Variety Variety 
Type+ 

Experiments 

1  ‘Colonel’  1  1,3,4  14  ‘Sanetta’  R  2 
2  ‘Decapo’  2  1  15  Coded Variety  R  3 
3  ‘Defender’  2 1,3,4 16 ‘Aurora’ T 2,3

4  ‘Melotop’  2  1  17  ‘Thor’  T  2,3 
5  ‘Compass’  2  1  18  ‘Mongoose’  T  2 
6  ‘Baracuda’  2  1  19  ‘Pamina’  T  2 
7  ‘Bokito’  2  1,3,4  20  ‘BTS 755’  T  3 
8  ‘Anaconda’  2 1 21 ‘Maddox’ LT 2,3

9  ‘Romessa’  2  1  22  ‘Sentinel’  LT  2 
10  ‘Siletina’  N/A  1  23  ‘Cayman’  S  2 
11  ‘Silletta Nova’  N/A  1  24  ‘Pasteur’  S  All 
12  ‘Early 

Mino’ 
N/A  1,3,4   

Controls

    Treatment  Type    Experiments 

Mustard (S. alba)  25  Sand  All 

Treatment  Variety  Resistance 
class* 

Experiments 26 Deionised Water    All

13  ‘Accent’   2  1,3,4         

Table 1 – List of treatments used in the hatch experiments. Radish and mustard treatments are listed with their corresponding resistance class, 
and sugar beet treatments with their reported variety type as recommended by their breeders.  
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ROOT LEACHATE COLLECTION 

 

For all experiments, seeds of each variety were planted into 9cm diam., 350 ml plastic 

plant pots filled with sterilised coarse sand. The plants were grown in triplicate at 20°C day, 

16°C night with a 16 h photoperiod in a controlled environment room (CER).  Plants were 

evenly watered using a dripper irrigation system and nutrition was provided using a complete 

fertiliser (Hortifeed standard 15-7-30, diluted 1 g to 1 l water).  Root leachates were collected 

from the plants after they had grown for 6 weeks (Experiments 1, 2 and 3). In Experiment 4, 

plants were grown for either 5, 6 or 7 weeks. Leachates were collected from the pots using a 

modified method of Shepherd (1970). The irrigation was removed and the pots were saturated 

with deionised water 24 h prior to leachate collection and conditions in the CER changed to 

12°C in continuous dark. This was to allow the leachates to diffuse into the water and also 

reduce transpiration by the plants. The next day the pots were placed into a glass funnel over a 

beaker and then into the pot a further 200 ml of deionised water was applied, which was passed 

through the pot three times, being topped up with extra water if necessary. As a result, 600 ml 

of root leachate for each treatment was collected from the three replicates and they were 

combined to make one sample. A proportion of each sample was then filtered using a funnel 

and filter paper (Whatmann 113). Filtered leachate solution was then diluted 1:1 with additional 

deionised water and 100 ml of each root leachate solution retained for use in the experiments. 

The diluted samples were stored at 3°C until needed for the hatching assay. For Experiment 1, 

the leachates were stored for 8 weeks before starting the hatching assay. All of the other 

hatching assays began within 1 week of the root leachate solution (RLS) collection and 

preparation. Fresh RLS were prepared for each experiment.  

 

HATCHING ASSAY SET-UP 
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The hatching assays were set up using a modified method of Danquah et al. (2011). 

Plastic multi-well plates (with either 12 or 24 wells depending on the number of treatments for 

the experiment) were used. A blocked design was used with each plate used representing a 

block, with one replicate of each treatment per block. Into one well in each plate 2 ml of the 

RLS was pipetted to which ten cysts were added inside baskets created from the wide end of 1 

ml pipette tips onto which plastic netting (250 µm aperture) was fused using a heat plate and 

when filled the plates were then sealed with parafilm. Details of which varieties were used in 

each experiment can be seen in Table 1. The hatching assays ran for 6 weeks and during this 

time, the plates were kept in the dark inside a plastic box on the benchtop in the laboratory.  A 

temperature logger (Tiny Tag Ultra 2, Gemini Data Loggers Ltd) was placed alongside the 

plates for the duration of the experiment to monitor temperature. For all experiments, 

temperatures were measured to be in the range of 20 ± 4°C. Each week the RLS was removed 

so that the number of hatched juveniles could be counted under a stereomicroscope (Leica 

M80, Leica Microsystems GmbH) and 2 ml of fresh RLS solution pipetted into the correct 

corresponding well. 

After the 6 weeks had elapsed, the cysts were removed from the baskets and crushed to 

release the eggs and J2. The contents of the 10 cysts were diluted in 50 ml of water. The water 

was then thoroughly agitated using a 10 ml glass pipette and pipette controller (Powerpette, 

VWR International) and then 1 ml of this solution was extracted and counted using the 

microscope to allow for the percentage J2 hatch to be determined.  

All experiments contained five replicates of each treatment, except for the final 

experiment, which contained four replicates. The cysts used in the experiments had been 

recently cultured on oilseed rape (B. napus) for Experiments 1-3 and susceptible sugar beet (B. 

vulgaris) for Experiment 4. Cysts were obtained from the infested soil using a Wye Washer 
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column elutriator (Winfield et al., 1987). Prior to extraction, the soil containing the cysts was 

stored at 3°C and kept moist. After extraction all of the cysts were cleaned in deionised water 

prior to being placed into the plates. Only cysts that appeared viable were used in the 

experiments with damaged, small or empty cysts being discarded. The population used for the 

cultures originated from a H. schachtii infested field site near Thetford, Norfolk, UK (52° 24' 

22.2156'' N 0° 51' 4.3992'' E). 

 

DATA ANALYSIS 

 

All data were analysed using ANOVA in GenStat 17th Edition (VSN international, 

Hemel Hempstead, UK). Genstat was also used for calculation of least significant difference 

(LSD) values and also to conduct Duncan’s multiple range test, both at 5% significance. Data 

were then presented in graphical format using GraphPad Prism v.7 (GraphPad Software Inc. 

La Jolla, CA, USA). 

Curve fitting was performed also using GraphPad Prism v.7.  One phase association 

exponential curves were fitted to work out the hatching dynamic for each sample over time, t, 

using the following equation:  

 

ܻ ൌ ܻ0  ሺ݈ܲܽݑܽ݁ݐ െ ܻ0ሻ ൈ ሺ1 െ expሺെܭ ൈ  ሻሻݐ

 

where Y is the proportion of hatched J2, and Y0 denotes the number of hatched J2 at t0, i.e., 

zero. Plateau is point at which Y becomes static and therefore hatching ceases. K is the reaction 

rate constant, which is expressed in inverse days and is derived from the slope of the curve, 

and can be considered the hatching rate constant, hereby referred to as HR, of the response of 

the nematodes to the RLS. Faster hatching reactions to the RLS have a lower HR than slower 
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nematode hatching reactions to the RLS. The HR value of each sample was then analysed by 

ANOVA. All curves were found to have an R2 value of ≥0.9. Curves with ambiguous fits and 

that did not follow expected one phase association exponential curves were detected by the 

analysis software and excluded from further analysis (this occurred for fewer than 1% of the 

curves analysed). 

 

Results  

 

EXPERIMENT 1 – BRASSICA HATCH RESPONSES 

 

Exposure of H. schachtii to deionised water resulted in the greatest HR, which was 

significantly higher than treatments R10 and R5. RLS treatment R7 (Table 2), which had the 

lowest observed level of hatch of any treatment (Fig. 1), was not significantly different to the 

deionised water control.  

Hatching of all treatments increased each week, with the greatest hatch occurring during 

the first half of the bioassay (Fig. 1). When the combined total hatch were compared, the 

deionised water control clearly stimulated the greatest levels of hatch at 30% (P < 0.001). Mean 

hatch for all brassica RLS treatments was 10.9% and all treatments were similar to each other 

except for a significant difference detected between R12 (19.3%) and R7 (3.8%). The sugar 

beet treatment (SB S 24) resulted in a total hatch of 20.4%, which was similar to the deionised 

water control. The sand leachate control was found to have a significantly lower level of hatch 

than the deionised water.  

As similar HR values were observed between almost all of the treatments (Table 2), 

Radish variety 5, had the lowest HR and was significantly lower than brassica RLS treatments 

1, 2, 4, 9 and 11 (P < 0.05). However, all of the other brassica RLS treatments had HR similar  
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Fig. 1. Results of experiment using brassica treatments after 6 weeks of exposure to root 

exudate solutions. Treatments are either of radish (Raphanus sativus) [R] or mustard (Sinapis 

alba) [M] and are labelled with their treatment number (Table 1). Control treatments of 

susceptible sugar beet (Beta vulgaris), sand leachate and deionised water are also included. 

The bars show the cumulative percentage hatch counted every 7 days ( 7, 14, 21, 28, 

35 and 42 days). Significant differences were found (P < 0.001) between the treatments. 

The error bar shows LSD at 5% significance for the total percentage hatch recorded. 

Treatments with different letters show differences at 5% significance according to Duncan’s 

Multiple range test. 
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Table 2 – Hatching rate (HR) for the responses of the hatching H. schachtii juveniles from 
cysts in response to root leachate solutions from brassicas (Experiment 1), sugar beet 
(Experiment 2) and a combination of brassicas and sugar beet (Experiment 3).   

 

Treatment  Treatment name  Species  Experiment 1  Experiment 2  Experiment 3 

1  ‘Colonel’ R. sativus  0.08346  bc
‐  0.1789   d 

2  ‘Decapo’ R. sativus  0.07242  bc
‐  ‐   

3  ‘Defender’ R. sativus  0.06282  abc
‐  0.1608   cd 

4  ‘Melotop’ R. sativus  0.07121  bc
‐  ‐   

5  ‘Compass’ R. sativus  0.02839  a
‐  ‐   

6  ‘Baracuda’ R. sativus  0.05631  abc
‐  ‐   

7  ‘Bokito’ R. sativus  0.05675  abc
‐  0.1352   bcd 

8  ‘Anaconda’ R. sativus  0.05536  abc
‐  ‐   

9  ‘Romessa’ R. sativus  0.06619  bc
‐  ‐   

10  ‘Siletina’ R. sativus  0.04969  ab
‐  ‐   

11  ‘Silletta Nova’ R. sativus  0.08555  bc
‐  ‐   

12  ‘Early Mino’ R. sativus  0.05758  abc
‐  0.1363   bcd 

13  ‘Accent’ S. alba  0.05233  abc
‐  0.1349   bcd 

14  ‘Sanetta’ B. vulgaris ‐    0.02276   a  ‐   

15  ‘Coded Variety’ B. vulgaris ‐    ‐    0.0841   ab 

16  ‘Aurora’ B. vulgaris ‐    0.02665   a  0.0631   a 

17  ‘Thor’ B. vulgaris ‐    0.04302   a  0.0746   ab 

18  ‘Mongoose’ B. vulgaris ‐    0.02736   a  ‐   

19  ‘Pamina’ B. vulgaris ‐    0.03915   a  ‐   

20  ‘BTS 755’ B. vulgaris ‐    ‐    0.0866   ab 

21  ‘Maddox’ B. vulgaris ‐    0.03078   a  0.1025   abc 

22  ‘Sentinel’ B. vulgaris ‐    0.04697   a  ‐   

23  ‘Cayman’ B. vulgaris ‐    0.02826   a  ‐   

24  ‘Pasteur’ B. vulgaris 0.08215   bc  0.02525   a  0.066   a 

25  Sand   0.07272   bc  0.1751   c  0.1367   bcd 

26  Deionised water 0.08844   c  0.07148   b  0.1393   bcd 

LSD      0.03212  0.02123  0.05786 
P      0.012 <0.001 0.001 
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to each other. These data imply that the varieties had similar HR responses to the RLS 

but had different levels of maximum hatch that they could achieve (Fig. 1), while all RLS 

treatments appeared to inhibit hatch compared to the deionised water control.  

 

EXPERIMENT 2 – SUGAR BEET HATCH RESPONSES  

 

The sugar beet RLS caused a similar HR response in H. schachtii, although this was 

significantly lower than both the water and sand controls, which themselves were different to 

each other (P < 0.001) (Table 2). 

As seen in Experiment 1, the greatest proportions of hatch occurred in the first 3 weeks 

of the experiment, although hatching increased each week during the first half of the 

experiment in most treatments (Fig. 2). At week three it was clear that sugar beet RLS 

treatments were stimulating greater hatch of H. schachtii than the control treatments. 

Significant differences were found between the total hatch of H. schachtii in response to RLS 

from different varieties of sugar beet (Fig. 2, P < 0.05). Within the tolerant sugar beet varieties 

there was significant variation in total hatch of J2 observed after 6 weeks exposure to the RLS, 

with SB T 18 (18.2%) being significantly lower than SB T 19 and SB T 17 (35.8 and 30.8% 

respectively). However, there were no significant differences between the other varieties (P > 

0.05). The resistant variety RLS (SB R 14) elicited a significantly lower hatch (21.2%) than 

SB T 19 and both the light tolerant varieties (SB LT 21 and 22) but was not different to any of 

the other treatments (P < 0.001).  

The slower HR responses, despite greater levels of total hatch, show that the sugar beet 

treatments produced a more prolonged hatching period for H. schachtii than the water and sand 

controls.   
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Fig. 2. Results of experiment using sugar beet treatments after 6 weeks of exposure to root 

exudate solutions. Sugar beet (Beta vulgaris) varieties grown were wither resistant (R), 

Tolerant (T), Light tolerant (LT) or susceptible (S) to Heterodera schachtii. Treatments are 

also labelled with their treatment number (Table 1). Control treatments of sand leachate and 

deionised water were also included.  The bars show the cumulative percentage hatch counted 

every 7 days (  7,  14,  21,  28,  35 and  42 days). Significant differences were found 

(P < 0.001) between the treatments. The error bar shows LSD at 5% significance for the total 

percentage hatch recorded. Treatments with different letters show differences at 5% 

significance according to Duncan’s multiple range test. 
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EXPERIMENT 3 – BRASSICA AND SUGAR BEET HATCH RESPONSES  

 

The sugar beet varieties resulted in similar responses in terms of HR by the H. schachtii 

J2 (Table 2), with SB LT 21, SB T 20, SB T 17 and SB R 15 resulting in similar HR to the 

water and sand controls (P > 0.05). The HR response of the J2 induced by the brassica 

treatments tested were also similar to one another, and the same as the sand and water controls 

(therefore indicating no effect on HR) but resulted in much greater HR responses than sugar 

beet treatments SB T 16 and SB S 24 (P = 0.001).  

Different levels of cumulative hatch of H. schachtii J2 were found between the sugar 

beet RLS (P < 0.001), but there were no significant differences between the radish RLS (Fig. 

3), which had a mean hatch level of 37.2% (P > 0.05). All RLS treatments caused much greater 

levels of hatch than the deionised water or sand controls (mean of 5.0%), most resulting in 

significantly higher levels of hatch. All radish RLS except R1, and all sugar beet RLS except 

SB R 15, resulted in significantly greater levels of J2 hatch and emergence than the sand control 

and only SB R 15 did not have greater levels of hatch than the deionised water.  

Within the sugar beet treatments, the RLS of the resistant sugar beet (SB R 15) caused 

the lowest level of hatch (24.6%). SB R 15 resulted in significantly lower hatch of J2 than the 

light tolerant variety treatment (SB LT 21) (P < 0.001), which caused the greatest level of hatch 

at 50%. All of the other sugar beet RLS did not cause a significantly different hatch levels than 

either the resistant or light tolerant varieties tested (Fig. 3, P > 0.05). 
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Fig. 3. Results of the combined experiment with brassica and sugar beet treatments after 6 

weeks of exposure to root exudate solutions. The bars show the cumulative percentage hatch 

counted every 7 days (  7,  14,  21,  28,  35 and  42 days). Significant differences 

were found (P < 0.001). The error bar shows LSD at 5% significance for the total percentage 

hatch recorded. Treatments are labelled R, M or SB for radish (Raphanus sativus), white 

mustard (Sinapis alba) or sugar beet (Beta vulgaris), respectively, and with their treatment 

number (Table 1). Sugar beet treatments are also labelled with their designation as Resistant 

(R), Tolerant (T), Light tolerant (LT) or susceptible to H. schachtii. Control treatments of sand 

leachate and deionised water were also included. Treatments with different letters show 

differences at 5% significance according to Duncan’s Multiple range test. 
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EXPERIMENT 4 – HATCH OF H. SCHACHTII IN RESPONSE TO ROOT LEACHATES FROM PLANTS OF 

DIFFERING AGES 

 

In most cases, RLS from the radish, mustard and sugar beet varieties had a stimulatory 

effect on the total hatch of H. schachtii J2 after 6 weeks and a significant interaction between 

age and variety of plant was found (P < 0.001; Fig. 4).  

With regard to the H. schachtii resistant radishes, RLS of R1 and R3 caused the greatest 

total hatch of H. schachtii when the leachates were collected from 6 week old plants. In the 

case of the R3 treatment, there was a significant decrease in H. schachtii hatch response to root 

leachates from the 7 week old plants (P < 0.05). For treatment R7, RLS from the 5 week old 

plants caused the greatest hatch, and then this significantly reduced with RLS from 6 week old 

plants. However, the response of the nematodes to RLS from the 7 week old plants was not 

significantly different to either of the 6 or 5 week old treatments (P > 0.05). RLS from radish 

R12, which is susceptible to H. schachtii, had a significant effect on stimulating J2 emergence 

regardless of the age of the plant when the leachates were collected.  

The sugar beet variety control treatment RLS, susceptible to H. schachtii, was only seen 

to have a stimulatory effect on the hatch of H. schachtii when the RLS were collected at 7 

weeks (P < 0.001), with the other two ages of plant resulting in similar hatch responses to the 

sand and water controls.  

When the cumulative weekly hatch results were analysed (Table 3), a range of 

responses from the various treatments were found. Significant interactions between age of the 

plants and plant type were found each week (P < 0.001 for all weeks). At 7 days (after the start 

of the experiment) clear differences were observed between the treatments. For example, RLS 

from the 5 week old R7 treatment induced very high hatch (59.1%), which was greater than 

many of the other treatments. These distinct differences remained throughout the experiment,  
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Fig. 4. Total hatch and emergence of Heterodera schachtii second-stage juveniles (J2) 

following exposure to root exudate solutions. This experiment tested whether the age of the 

plant has an effect on the levels of hatch and emergence of H. schachtii J2. Root exudates were 

collected from radish, mustard or sugar beet plants (see Table 1) at 5 , 6  or 7  weeks 

after sowing. Sand and deionised water controls  were also included. Cysts of H. schachtii 

were then exposed to the root exudate solutions for 6 weeks and emerged J2 were counted at 

weekly intervals. Significant differences were found (Age × plant type interaction P < 0.001) 

and the error bar shows LSD at 5% significance for the total percentage hatch observed. 
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Table 3 – Cumulative weekly percentage hatch and emergence of juveniles of H. schachtii in response to exudates of radish, mustard and sugar beet grown for either seven, 1 
six or five weeks in a controlled environment room. The experiment also included sand and deionised water controls. Different letters adjacent to the results indicate 2 
significant differences at 5% probability according to Duncan’s multiple comparison test. 3 
 4 

     Time of cysts' exposure to root leachate solutions 

Treatment     Plant age (weeks)  7 Days  14 Days  21 Days    28 Days  35 Days  42 Days 

R1    5  35.3   cdef  51.6   defg  55.2   cde  55.7   cde  56.0   cde  56.1   cdef 

    6  39.5   defg  68.8   gh  73.2   ef  74.0   ef  74.3   ef  74.7   fg 

    7  46.0   efgh  63.7   efgh  67.4   def  68.5   def  68.7   def  68.7   defg 

R3    5  22.6   abcd  36.3   bcd  39.4   abc  40.2   abc  40.5   abc  40.6   abc 

    6  49.4   fgh  64.2   efgh  68.3   def  69.0   def  69.4   def  69.9   efg 

    7  29.9   bcde  43.6   cde  47.0   bcd  47.8   bcd  47.9   bcd  48.0   bcd 

R7    5  59.1   h  77.2   h  79.8   f  80.1   f  80.6   f  80.6   g 

    6  44.7   efgh  55.5   defg  58.0   cdef  58.8   cdef  59.0   cdef  59.1   cdefg 

    7  43.0   efgh  64.9   fgh  67.7   def  68.8   def  69.3   def  69.4   defg 

R12    5  48.9   efgh  65.7   fgh  74.4   ef  76.0   ef  76.6   ef  76.7   fg 

    6  42.4   efgh  59.7   efgh  62.2   def  62.6   def  62.8   def  62.9   defg 

    7  54.9   gh  65.9   fgh  67.2   def  67.6   def  67.8   def  68.1   defg 

M13    5  54.6   gh  68.5   gh  73.2   ef  74.4   ef  74.6   ef  74.7   fg 

    6  19.6   abc  30.7   abc  34.6   ab  34.8   ab  34.9   ab  34.9   ab 

    7  38.8   defg  55.0   defg  58.6   cdef  59.4   cdef  60.8   cdef  61.4   cdefg 

SB S 24    5  13.8   ab  21.3   ab  22.6   a  23.4   a  23.8   a  23.9   a 

    6  11.0   a  19.3   ab  22.9   a  24.0   a  24.8   a  24.9   a 

    7  33.1   cdef  46.5   cdef  49.6   bcd  49.8   bcd  50.0   bcd  50.0   bcde 

Sand      13.9   ab  20.6   ab  22.5   a  22.6   a  22.6   a  22.6   a 

Deionised H2O    5.6   a  13.3   a  18.9   a  20.9   a  21.6   a  21.7   a 

P      <0.001  <0.001  <0.001    <0.001  <0.001  <0.001 

LSD      16.31  18.05  18.37    18.46  18.43  18.46 

SED      8.15  9.01  9.17    9.22  9.20  9.22 

% CV      32.6  25.7  24.4    24.2  24.0  23.9 

5 
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with the brassica RLS all stimulating more hatch than the water control (P < 0.05), except M 

13 at 6 week old, and R 3 at 5 week old (P > 0.05).  

Differences were also found between the HR of the different treatments, and again an 

interaction between the age of the plants and plant type was found (P = 0.037; Fig 5). The 5 

week old mustard (M 13) had a significantly greater HR than the 6 week old mustard and the 

7 week old R 12 caused HR greater than the other two R 12 treatments. Other varieties, such 

as R 1 and R 3, did not differ in their HR due to age of the plants. R 7 had the greatest HR at 6 

week old and this was greater than the 7 week old plants. HR was reduced at 5 weeks but not 

significantly when compared to the 6 week old treatment (P > 0.05). The control treatments 

did not differ from each other in their HR. The sugar beet treatment (SB S 24) at 7 weeks had 

a greater HR than the water control but the remaining SB S 24 treatments were not different to 

the water (P > 0.05).  

Biomass of the plants was found to increase with age in all of the treatments (P = 0.002), 

except for the mustard. The mustard plants at 5 and 7 weeks showed high levels of growth; 

however, the 6 week old plants did not show such vigorous growth (Fig. 6). RLS from the 6 

week old white mustard had no significant impact on J2 emergence when compared to the 

control treatments (P > 0.05); however, leachates from the 5 and 7 week old plants did cause 

significant increases in H. schachtii emergence (P < 0.001; Fig 4). 
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Fig. 5. Effect of brassica root leachates obtained from plants 5 , 6    or 7  weeks old upon 

the hatching rate (HR) of Heterodera schachtii second-stage juveniles from cysts after 6 weeks 

exposure to the root leachate solutions. The error bar shows LSD at 5% significance (Age × 

plant type interaction P = 0.037). Sand leachate and deionised water controls  were also 

included.  
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Fig. 6. Biomass measurements of shoot material harvested on the day of exudate collection. 

Material was dried until constant weight and then weighed. Plants were grown in a controlled 

environment room for either 5 , 6  or 7  weeks. Error bar shows LSD at 5% significance 

(Age × plant type interaction P = 0.002).  
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Discussion 

 

The stimulation of hatching of cyst nematode J2 is due to a number of physical, chemical 

and biological factors (Sharma & Sharma, 1998). Important in the hatching process is the 

recognition of chemicals in host root leachates that stimulate hatch and emergence at an 

optimum point in the growth of the plant. These chemicals, known as hatching factors, are 

important as they lead to hatching of the J2 from the eggs inside the cysts. This is due to binding 

of calcium to the eggshells, resulting in a change in their permeability and subsequent 

movement of solutes, notably trehalose, from the egg fluid and thus the J2 is able to take up 

water and their hatch is stimulated (Perry, 2002). Hatching factors are produced in trace 

amounts (Masler & Perry, 2018) and the response by the nematodes can be very specific to the 

age of the plant. For example, H. goettingiana has been shown to hatch in response to leachates 

from host pea plants between 4 and 6 weeks old (Perry et al., 1980) and H. carotae restricts its 

hatch to carrots aged between 5 to 7 weeks old (Greco & Brandonisio, 1986). Age of brassica 

host plants has also been shown to influence the hatching activity of nematodes in H. 

cruciferae. Bowen (1988) showed that, despite continued growth of oilseed rape in both field 

and glasshouse experiments, the most stimulating point for hatching of H. cruciferae J2 was 

from plants 14 and 10 weeks old, respectively. In addition to the stimulation of hatch by host 

plants, they can also inhibit hatch (Masler & Perry, 2018). Chemicals produced by the plants 

when they are immature and less suitable hosts for nematodes are detected by J2, which they 

interpret as a signal to delay hatch until the plant is better established, and therefore a more 

suitable host, resulting in greater fecundity of the nematode.  

 

BRASSICA HATCH RESPONSES 
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The wider understanding of responses observed in other nematode species may help 

elucidate our observations, especially in response to the brassica varieties evaluated. Results 

from our first experiment investigating the response of H. schachtii hatching to brassica 

leachates were different to Experiments 3 and 4.  Experiment 1 showed clear inhibition of 

hatching of J2 in response to the root leachates compared to the water control. This effect was 

clear in all of the brassica treatments when compared to the water control, with the most 

extreme inhibition being caused by treatment R7. However, Experiments 3 and 4 found 

enhanced hatch of H. schachtii J2 when exposed to brassica RLS. The results from the first 

experiment may be due to the extended storage of the leachates compared to the other 

experiments; activity of potato root leachates has been found previously to decline rapidly in 

the first 2 months (Widdowson, 1958) and this may have happened with our brassica root 

leachates. It is also possible that, despite being grown in the same CER for the same period of 

time, the plants instead produced inhibitory chemicals at the point of RLS collection. The 

different responses found may also be due to contamination with microbes during RLS storage, 

which may have degraded the compounds in the RLS and caused the responses observed.  

However, whilst we cannot fully explain this disparity between the experiments, the consensus 

of our findings in Experiments 3 and 4 shows that brassica root leachates do stimulate hatch of 

H. schachtii J2.  

Experiment 4 highlights the influence of age of the plant on hatch of H. schachtii J2. 

Some varieties have shown to have an optimum age at which hatching is stimulated, and the 

HR that is stimulated can be influenced by the age of the plant when the RLS was collected, 

such as radish R 3, where the peak in hatch stimulation occurred in the 6 week old plants 

compared to the 5 and 7 week old plants. This agrees with the findings of Bowen (1988) that, 

regardless of the continued growth of the plants, their stimulatory effect is not increased. Other 
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varieties, such as R7 and R 12 showed similar hatch stimulation regardless of plant age and 

size.  

Our findings shed more light upon the hatching tactics of H. schachtii and future 

methods for control of field infestations. Understanding varieties that cause earlier and greater 

hatch of J2 could allow for varieties with the most prolonged hatch period to be selected by 

growers. Varieties such as R3, with their limited peak hatch period, may be less preferable to 

a variety such as R1 that shows more prolonged hatch. A variety that continues to stimulate H. 

schachtii hatch into the autumn would be of most benefit, especially in field conditions, where 

water availability may be limited in dry summers.  

Brassica treatments R1 and M13 have recently been found to lower H. schachtii 

populations significantly in experiments in infested field (Wright et al., 2018). Populations 

were reduced by 30-40%, which is lower than reported control levels of these varieties 

(Bundessortenamt, 2014). Other treatments, R3 and R7, also included in the field experiments, 

however, did not show significant population reductions. The findings from the current in vitro 

experiments may explain why these results occurred. The treatments that did not show control 

may have had limited peak hatch periods, or occurred at the wrong point in time to deliver a 

significant population reduction. Despite these results, it is also important to consider how a 

laboratory assay, using plants grown under controlled conditions and recently cultured cysts, 

may differ from field conditions. In the field, the conditions are less conducive to plant growth 

due to limited water availability, fluctuating temperatures, and pest and disease pressures. The 

interaction between these variations, the climate and weather conditions experienced in the 

field, soil type and age of the cysts in a field are far more complex than we could simulate in 

the laboratory. Studies using field cysts would be useful to validate our conclusions.  

Variation in the responses could be a result of the different batches of cysts used from 

different cultures of H. schachtii. If in vitro tests were to be developed to further test H. 
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schachtii hatching responses and evaluate future cultivars of sugar beet and brassica trap crops, 

the source of the cysts and their response to the biotic variations need to be standardised to 

ensure repeatable results and conditions. 

 

SUGAR BEET HATCH RESPONSES 

 

Our experiments have also shown consistent differences between the hatch of H. 

schachtii J2 in response to root leachates collected from different sugar beet varieties; however, 

further experimentation would be required to elucidate our findings and confirm these 

conclusions. It is interesting to consider that different batches of cysts appeared to respond 

differently to RLS obtained from the same varieties of plants, using the same methodology; 

enhanced standardisation is required, especially if this method is to be developed further. In 

Experiment 2, the sand and water controls resulted in similar final levels of hatch to the 

majority of the varieties, indicating that most varieties of sugar beet did not have a stimulatory 

effect on the hatch of J2. This was unexpected since H. schachtii juveniles have previously 

been shown to respond greatly to root leachates produced by suitable hosts (Perry, 2002). In 

Experiment 3 we observed clear stimulation of hatch, and therefore we hypothesise that 

differences in the age of the cysts between Experiments 2 and 3, may have caused these 

different responses seen to the RLS, with the RLS in Experiment 2 not resulting in hatching 

responses that were different to the water control, whereas in Experiment 3 a large response to 

RLS from the sugar beet was seen. Different responses in terms of HR have also been found 

between the experiments (Table 2). For example, the same cultivars of sugar beet resulted in 

much lower HR in Experiment 2 than in Experiment 3, supporting the hypothesis that different 

batches of cysts likely influence the differences found.  
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The differences we have found between the varieties may not be conclusive enough to 

support a hypothesis that the tolerance or resistance level of a variety to H. schachtii is directly 

related to that variety’s ability to stimulate hatch. It may be likely that other factors drive these 

differences instead. Wright et al. (2018) showed that light tolerant sugar beet varieties produced 

significantly greater root lengths when compared to resistant varieties grown in hydroponics. 

Therefore, the differences we have observed may be related to a physiological characteristic of 

a variety rather than its resistance or tolerance to H. schachtii.  

Sugar beet growers with H. schachtii infested fields would usually select a tolerant 

variety to grow to protect yields (BBRO, 2018).  From the information we have obtained from 

our investigations about the stimulation of hatching of tolerant sugar beet varieties, it appears 

that tolerance, and therefore maintenance of yield in H. schachtii infested situations, is not 

linked to reduced stimulation of hatching of H. schachtii J2. Therefore, tolerance is likely to 

be associated more with a reduced nematode hosting capacity of such varieties, as seen in other 

recent investigations (Hauer et al., 2016; Reuther et al., 2017). In addition, we have not found 

any clear distinction between the varieties in terms of the breeder who developed them, and  

cannot conclude that varieties from one breeder stimulate or reduce H. schachtii hatch 

differently when compared to varieties from other breeders. 

Age and viability of the sugar beet plants does, however, seem likely to influence the level 

of H. schachtii hatch and therefore damage to the growing plants. In Experiment 4, we observed 

significant differences between the responses of H. schachtii J2 to root leachates collected from 

sugar beet plants of different ages. The larger and more mature beet plants elicited greatest 

hatch, whereas the 5 and 6 week old plants did not cause increased hatch over the controls. 

This supports our hypothesis that there is a relationship between sugar beet growth and the 

hatch of H. schachtii J2. However, future investigations into the response of sugar beet variety, 
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age, development and subsequent stimulation of H. schachtii J2 hatch and emergence would 

be useful and may help with variety selection in the future. 

 

EXPERIMENTAL LIMITATIONS  

 

Whilst we have found differences in hatching in the experiments already described, it is 

worth noting that some of the responses are not as expected. For example, the cysts used in 

Experiments 1 and 2, produced much lower levels of hatching than the cysts used in later 

experiments. The response of these cysts differs from reported responses of H. schachtii to 

water and host plant root leachates (Perry, 2002), and was unexpected. This difference may 

therefore have caused the unexpected responses, especially the response to the brassica RLS in 

Experiment 1 and highlights the importance of repeating these experiments to obtain more 

conclusive results. In addition, increasing the number of replicates may help elucidate our 

findings and reduce the high levels of variation seen in these experiments. 

Additional and unknown variation can also be seen in the results obtained when comparing 

the control treatments used in the experiments. For example, in the first experiment, the sand 

and deionised water treatments resulted in significantly different levels of hatch stimulation, 

with the sand appearing to inhibit hatch. Therefore, different growing mediums may interfere 

with the hatching process of nematodes, and this area requires further investigation. 

Differences in HR were also observed between the sand and deionised water treatments in 

Experiment 2, despite not existing in the other experiments. Again further replication, using 

greater numbers of cysts, may produce more definite results and allow for clearer conclusions 

to be made about H. schachtii hatching. 

 

CONCLUSIONS 



29 
 

 

We have demonstrated that the hatching responses of H. schachtii in response to sugar beet, 

radish and white mustard are related to the variety being tested and can also be influenced by 

the age and development of the plant too. We have also highlighted the variability of working 

with cyst nematodes and suggest further replication of these experiments to clarify our findings. 

However, our results relating to root leachates from different sugar beet varieties show 

significant differences in the hatching dynamics of H. schachtii. Age and  vigour of different 

varieties all appear to influence hatch of H. schachtii juveniles,  although, variety type did not 

showing such definitive differences. 

Finally, our findings also support the use of resistant trap crops to stimulate hatch of H. 

schachtii and thus reduce in field populations. We have shown that some varieties of these trap 

crops can maintain their stimulatory effect on hatch of H. schachtii J2s regardless of age of the 

plants, whereas other varieties have a shorter peak hatch period.  
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