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Abstract 

Swarm robotics has the potential to radically change the economies of size in agriculture and 

this will impact farm size and structure in the UK. This study uses a systematic review of the 

economics of agricultural robotics literature, data from the Hands Free Hectare (HFH) 

demonstration project which showed the technical feasibility of robotic grain production, and 

farm-level linear programming (LP) to estimate changes in the average cost curve for wheat 

and oilseed rape from swarm robotics. The study shows that robotic grain production is 

technically and economically feasible. A preliminary analysis suggests that robotic production 

allows medium size farms to approach minimum per unit production cost levels and that the 

UK costs of production can compete with imported grain. The ability to achieve minimum 

production costs at relatively small farm size means that the pressure to “get big or get out” 

will diminish. Costs of production that are internationally competitive will mean reduced need 

for government subsidies and greater independence for farmers. The ability of swarm robotics 

to achieve minimum production costs even on small, irregularly shaped fields will reduce 

pressure to tear out hedges, cut infield trees and enlarge fields. 
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1.  Introduction 

Robotic agriculture is widely predicted by researchers, academics and business (see for 

example, Robotic Business Review, 2016; Shamshiri et al., 2018; Duckett et al., 2018), but 

rigorous economic analyses of the economic feasibility of robotic farms are rare. One common 

element of most visions of robotic agriculture is that removing human equipment operators will 

lead to a radical redesign of agricultural mechanization. With no human operator, the economic 

motivation for the ever-increasing size of farm equipment almost disappears and farming with 

swarms of smaller robots become an attractive alternative. Economic analysis of crop robotics 

is rare primarily because it is early days for this technology. Most public sector research on 

crop robotics is at most in the prototype stage without out enough field experience to make 

credible economic estimates. Private sector crop robots are proprietary technology and little 

information is released. This economic analysis is made possible through the experience of the 

Hands Free Hectare (HFH) demonstration project at Harper Adams University which showed 

that small to medium scale conventional equipment would be retrofitted for autonomous field 

crop production (Gough, 2018).  The HFH model is swarm robotics in the sense that it 

potentially uses multiple smaller machines to accomplish what a single large machine on 

conventional farms does.  The overall objective of this study is to identify the implications of 

swarm robotics for farm size and structure in the UK. The methodology of this study uses 

information gathered in a systematic review of the economics of agricultural robotics literature, 

data from the HFH demonstration project which showed the technical feasibility of robotic 

grain production, and farm-level linear programming (LP) to estimate changes in the average 

cost curve for wheat and oilseed rape from swarm robotics. A timely ex-ante economic analysis 

is needed to: 1) help engineers and entrepreneurs identify the most profitable crop automation 

alternatives, 2) guide farmers in their decisions about using crop robotics, and 3) inform policy 

makers about the costs and benefits of crop robotics.  

Farm LP models have long been used as a means for identifying the portfolio of enterprises 

and technologies that are the best way of using the farm resources (see e.g. Heady, 1954).  This 

approach has distinct advantages over partial budgeting because (a) it can select a single plan 

that produces maximum net returns, and (b) it allocates the scarce resources (land, labour, 

machinery) of the farm so as to use them as efficiently as possible in the economic sense and 

(c) for complex farming operations it can quickly and efficiently sort through thousands of 

alternatives.  Numerous books have addressed the subject (e.g. Hazell and Norton, 1986; Kaiser 

and Messer, 2011), and these models can be adapted for use with farms that include both crop 
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and livestock enterprises (e.g. Morrison, et al., 1986).  A survey of applications of these types 

of models can be found in Glen (1987).   

Similar farm planning models have been widely used to determine the potential of crop and 

livestock technology options worldwide. McCarl et al. (1974) describe a model used to help 

US farmers sort through the genetic, mechanical and chemical technologies that became 

available in the 1960s and 1970s. Audsley (1981) developed a UK farm LP for evaluation of 

new machines and farming techniques. Audsley and Sandars (2009) summarize the use of LP 

and other operations research models in analysis of UK agricultural systems. In recent years 

farm LP has been used in the UK mainly to identify the most cost-effective environmental 

management options (e.g. McLeod et al., 2010; Williams et al., 2003; Annetts and Audsley, 

2002). Brandao et al. (1984) used LP in analyzing cropping options in Brazil in the 1970s and 

1980s.  In Africa they have been used to identify likely agricultural development pathways 

(e.g. Abdoulaye and Lowenberg-DeBoer, 2000).  Sanders and students analyzed technology 

and crop alternatives for cotton producers in West Africa (Coulibaly et al., 2015; Baquedano 

et al., 2010; Cabanilla et al., 2005; Vitale and Sanders, 2005; Vitale et al., 2008).  Other 

applications have used these techniques to evaluate management options for dairy farming in 

Costa Rica (Herrero, Fawcett and Dent, 1999) and for evaluating cattle production systems in 

Venezuela (Nicholson et al., 1994).   

Farm LP models can also be used to understand the role of risk in farm decision 

making.  Research with mathematical programming models found a limited role for risk 

aversion in Midwest U.S. agriculture (Brink and McCarl, 1978).  Rather than account for risk 

aversion directly, it has been common practice to handle these through chance constraints for 

available good field time (Charnes and Cooper, 1959; Kaiser and Messer, 2011). The HFH-LP 

uses this good field days approach to modeling risk.  

While robotics is well established in industrial livestock production, particularly dairy, the 

use and the economic analysis of autonomous machines for crop production is at its early stages 

(Lowenberg-DeBoer et al., 2018). Most studies of the economics of crop robotics use partial 

budgeting methods and focus on automation of one crop operation (e.g. weeding, harvesting). 

Lowenberg-DeBoer et al. (2018) found only three studies that attempted to consider a systems 

analysis of the economics of crop robotics. The most successful systems analysis is by 

Shockley et al. (2019) who employed an LP model to analyse the economics of using 

autonomous equipment for maize and soybean production in Kentucky USA. They assumed 

that all in-house field operations are potentially autonomous, but assumed that contractors 

would undertake phosphorous and potassium fertilizer application, lime spreading and harvest 
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with conventional equipment operated by human drivers. Parameters for autonomous 

equipment was based on prototypes developed and tested by their colleagues in the Department 

of Biosystems and Agricultural Engineering at the University of Kentucky. The analysis 

compared net returns from using autonomous equipment to the best complement of 

conventional equipment for a given farm size. The conventional tractor options range from 105 

hp to 400 hp. The conventional sprayer alternatives in the model ranged from 8.2 m to 36.6 m. 

Because autonomous equipment for grain production is not yet on the market and the cost of 

this equipment is unknown, Shockley and Dillion (2018) argue that they cannot determine if 

autonomous machines would be more cost effective than conventional mechanization. They 

reported their key results in terms of the breakeven price of computerized controls that would 

convert conventional tractors to autonomous. The analysis suggested that relatively small 

autonomous equipment would have economic advantages for a wide range of farm sizes, but 

especially for small farms.  

This analysis is able to go beyond Shockley et al. (2019), mainly because the HFH showed 

that it is possible to use commercially available Global Navigation Satellite Systems (GNSS) 

and drone autopilot software to retrofit conventional medium scale farm equipment for 

autonomous operation. The cost and reliability of GNSS, drone software and conventional farm 

equipment is known and consequently it is possible to estimate the cost of autonomous field 

crop equipment. This estimate is particularly relevant because in the transition from 

conventional to robotic field crop production retrofitted equipment would probably be used 

initially. Specially designed autonomous equipment would come later. The HFH analysis also 

goes beyond Shockley and Dillon to automate all production activities, including fertilizer and 

lime application, and harvesting. 

The overall objective of this study is to identify the implications of swarm robotics for farm 

size and structure in the UK. The specific objectives are to: 

1) Estimate the economic feasibility of field crop robotics for UK agriculture, 

2) Show how field crop robotics shift the shape of the UK wheat production cost curve, 

and  

3) Identify the implications of this cost curve change for the size and structure of farms in 

the UK.  

The hypothesis is that with swarm robotics the UK grain production cost curve would 

change in two key ways: 1) the cost curve would fall more rapidly for smaller farms and arrive 

at minimum cost at a smaller farm size than is currently the case, and 2) the UK grain cost 

curve minimum cost would be closer to (and perhaps below) the import substitution price level.  
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2.  The Model 

The HFH-LP model was based on a well tested and particularly flexible system for model 

farming operations known as the Purdue Crop/ Livestock Linear Program (PC/LP) (Preckel et 

al., 1992; Dobbins et al., 1990; Dobbins et al., 1992; Dobbins et al., 1994).  This model 

accommodates both crop and livestock production, taking into account the use of crop outputs 

as feedstuffs.  Crop modeling allows for sole crops, multi-year crop rotations, and multiple 

cropping – the raising of more than one crop on the same piece of land within the same 

year.  Categories of resources can be distinguished including owned and hired labour, plots of 

land with different soil types, and different types of livestock facilities.  This system was used 

from the mid-1990s through to about 2010 as an analytical tool for Purdue’s Top Crop Farmer 

Workshop.  Farmers from across the Midwestern United States came to Purdue each summer 

and developed linear programming models for their farms to evaluate alternative technologies 

and resource investments. An updated version of the PC/LP system has been developed in the 

General Algebraic Modelling System (GAMS, 2019) modeling language. This GAMS version 

was used by the Purdue University Orinoquia Initiative to help the government of Colombia 

evaluate proposals for agricultural development in the Orinoco River basin. Orinoquia LP 

model is described at by Preckel et al. (2017) and Fontanilla (2017). The HFH-LP model is a 

modified version of the PC/LP model using the GAMS, software. In many ways the HFH-LP 

is similar to the Audsley (1981) UK farm LP, but taking advantage of more recent software.  

The HFH-LP model can be expressed in the standard summation notation used by Boehlje 

and Eidman (1982) as: 


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where: 

Xj = the level of the jth production process or activity, 

cj = the per unit return (gross margin) to fix resources (bi’s) for the jth activity, 

aij = the amount of the ith resource required per unit of the jth activity 

bi = the amount of the ith resource available. 
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The gross margin (cj’s) is total crop sales revenue minus total direct costs, and can be 

considered returns to fixed costs.  In other words net returns from the operation equals gross 

margin minus fixed costs. Government subsidies are not included in this calculation. In the 

HFH-LP analysis, the objective function was to maximize gross margin for each set of land, 

operator labour and equipment. This is a computationally simpler formulation than the integer 

programming employed by Shockley and Dillon (2018) who include equipment selection 

within the model.  Fixed costs are land, farm facilities, equipment, and compensation for 

management, risk taking and labour provided by the operator. 

Because crop yields depend on the crop grown the previous season, and timing of planting 

and harvest, the production activities are modelled as rotations with specific plant and harvest 

time combination. For instance, a two crop rotation activity (an Xj) might have both crops 

planted and harvested at their optimal times. Another activity might have both crops planted 

and harvested later than optimum. Yet another activity might have one crop planted early and 

the other late. The model uses a simplifying assumption of “steady state” in that it assumes the 

selected rotations are repeated indefinitely.  

Because agricultural activities are often seasonal, the choice of time step is crucial. The 

HFH-LP assumes a monthly time step. This is a compromise between accurate modelling of 

the seasonal pattern of work and need to keep the model relatively simple. A quarterly time 

step would be too coarse; there is an important difference between harvesting oilseed rape 

(OSR) in July and October, or planting wheat in September or November. 

Because of rain and inclement weather, crop activities are constrained to the number of days 

each month when field work is possible, which is substantially less than the number of calendar 

days in the month. In each month the number of good field days can be estimated based on 

meteorological data. The primary mechanism for modelling risk aversion in the model is the 

level of probability assumed for the good field days. The standard PC/LP assumption was to 

use the good field data available in the 17th worst year out of 20 (McCarl et al., 1974). This 

would be the number of good field day available 85% of the time. The Agro Business 

Consultants (2018) provide estimates of the number of good field days available in 4 years out 

of 5 (i.e. 80%). Conventional machine scenarios assume that most field operations occur during 

daytime (i.e. on average about 10 hours per day). The robotic scenarios assume that the 

autonomous tractors can work 22 hours per day with 2 hours for repair, maintenance, and 

refuelling, however, grain harvesting is limited by nightime dew to 10 hours per day. 
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The primary constraints are: 

 Land – The sum of land used in production activities is less than or equal to the arable 

land available. If q crops are in a given rotation, the land used for a unit of a rotation is 

the fractional unit 1/q of each crop. For example, one hectare of a wheat-oilseed rape 

rotation is equal to half a hectare of wheat and half a hectare of OSR. 

 Human Labour – the sum of the labour needed in each month for each crop in the 

rotation multiplied by the fractional unit (1/q) of each crop in a given rotation. The sum 

of the human labour required must be less than the labour available from the operators, 

permanent farm labour, and temporary farm labour on the number of good field days. 

Based on HFH experience, human supervision of robotic labour is assumed to require 

10% of the machine time in the field. 

 Machine Time – In some cases, the time per day available for certain crop machine 

operations may be more limited than human operator time. For example, in good 

weather tillage or plant activities might continue around the clock if humans work in 

shifts, but, because of dew in the UK, combine harvesting of small grains and oilseeds 

can usually occur only from mid-morning to dusk. The machine time constraint is that 

the sum of machine time per crop in a given month on good field days, weighted by the 

rotation fraction (i.e. 1/q), must be less than or equal to the amount of machine time 

available. In the analysis of robotic crop production the machine time is robot time 

required for each crop rotation in each month. 

 Cashflow – sum of the variable costs for each crop in a rotation in a given month 

multiplied by the rotation fraction must be less than or equal to the working capital 

available. In the baseline analysis this constraint is not binding. 

To focus on the essentials the initial HFH-LP is specified with a very simple crop rotation 

and using standard cost estimates from the Nix Pocketbook (Redman, 2018) and The 

Agricultural Budgeting & Costing Book (Agro Business Consultants, 2018). The primary 

rotations modelled were winter wheat-oil seed rape (OSR) with a range of timeliness of 

planting and harvesting. Spring barley-OSR rotations with several timeliness alternatives were 

included to give the model some flexibility in the timing of field operations. Field operation 

timing is drawn from Finch et al. (2014) and Outsider’s Guide (1999). Equipment timeliness 

estimates and other machine relationships are from Witney (1988). All crops are assumed to 

be direct drill. Key baseline assumptions are described by Lowenberg-DeBoer et al. (2019). 
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3.  Baseline Results 

To help explore the implications of the baseline model results solutions were generated for 

each of the following farm sizes assuming all are 90% arable: 

 A 66 ha farm - This is the average farm size in the West Midlands of the UK (DEFRA, 

2018a). 

 A 159 ha farm - This is the average size of cereals farms in England (DEFRA, 2018b). 

 A 284 ha farm– This is the average size of cereals farms over 100 ha in England 

(DEFRA, 2018b).  

 A 500 ha farm - This is an arbitrary larger farm size. 

And equipment sets: 

 HFH sized equipment (38 hp tractor) with human drivers.  

 HFH autonomous equipment (38 hp tractor).  

 Smaller conventional equipment (150 hp tractor).  

 Large conventional equipment (300 hp tractor). 

 

Summaries of the initial solutions are presented in Table 1. The solutions listed plant the 

entire arable area because in normal circumstances farmers will prefer a plan that uses their 

entire resource base. The solutions assume one full time operator, temporary labour available 

on an hourly basis, and that conventional equipment is typically operated at up to 10 hours per 

day. The “X2, X3, X4” in the scenario name indicates the number of equipment sets that are 

needed to farm the specified area. For example, “AutonomousX3” means that it requires three 

sets of the HFH equipment to farm the 450 arable ha under the assumptions used.  

Table 1 shows that under the assumptions used, the small conventional equipment is quite 

profitable, but it requires substantial amounts of hired labour. While tractor drivers are easier 

to hire in the UK than workers for hand weeding, vegetable harvesting or other farm manual 

labour, it is not obvious that the amount of labour needed could be hired at the average wage 

of £9.75/h assumed in this analysis. Because grain production is already highly mechanised it 

may be converted to robotic production more easily than horticulture where many production 

processes are still manual.  
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Table 1 

Summary of Initial HFH-LP Solutions for Representative Farm Sizes with Temporary 

Labour Available 

Scenario 

Arable 

Area  

(ha) 

Labour 

Hired 

(days) 

Operator 

Time 

(days) 

Gross 

Margin 

(£/yr) 

Return to 

Operator 

Labour, 

Management 

and Risk 

Taking (£/yr) 

Wheat cost of 

production 

with Operator 

Labour Cost 

Allocated 

(£/MT) 

Conv. 38hp 59.4 0 79 47048 16888 166 

Conv. 38hpX2 143.1 72 118 107759 38424 149 

Conv. 38hpX3 255.6 195 144 187237 68043 139 

Conv. 38hpX4 450.0 411 186 302920 103481 136 

Autonomous 59.4 0 26 47048 16149 133 

Autonomous 143.1 8 54 112691 50739 122 

AutonomousX2 255.6 50 62 198587 86036 119 

AutonomousX3 450.0 121 76 347015 153479 115 

Conv.150hp 59.4 0 28 47048 -26001 212 

Conv.150hp 143.1 0 68 112243 8142 157 

Conv.150hp 255.6 31 89 200017 54178 136 

Conv.150hp 450.0 108 104 331989 63017 140 

Conv.300hp 59.4 0 16 47048 -70973 288 

Conv.300hp 143.1 0 39 113343 -35731 182 

Conv.300hp 255.6 1 69 202371 11560 152 

Conv.300hp 450.0 35 87 353677 90743 131 

       
The small scale conventional equipment also requires the operator to spend a substantial 

amount of time driving a tractor or combine. If full time work is about 220 days per year, then 

the 450 arable hectare farm would require the operator to spend 85% of his or her time 

operating equipment, leaving very little time for management, marketing and other farm tasks.  

With the assumption that supervision of the autonomous equipment requires about 10% of 

the equipment field time, the total operator time commitment to crop operations is roughly 

similar to that of the scenarios with large conventional equipment. Experience will show 

whether the 10% supervision time based on HFH experience is typical of other robotic farms.  

For the robotic farming scenario the bulk of the human time is devoted to hauling grain from 

the field to the farmstead or market during harvest in July, August and September. For example, 

in the 284 ha robotic farm scenario, 45% of the annual operator time and all of the hired labour 

is devoted to grain hauling from the field to the farmstead or market. This hired labour 

represents a cash cost of £7724, but even more important than the expense is the difficulty of 
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filling this harvest time spike in labour demand. This suggests that one technical priority for 

robotic farming should be to develop a system in which either the grain transport from field to 

farmstead/market is automated (i.e. self-driving lorries), or where grain is stored in the field 

until it is used or goes to market.  

While most of the discussion of the economics of crop robotics has been focused on reducing 

the human labour requirements and cost, this analysis suggests that there may be an equally 

important impact on equipment investment costs. The equipment investment for the large 

conventional farm is estimated at £723,500 and for the conventional farm with the 150 hp 

tractor £389,500. This assumes the purchase of new equipment. The estimated new equipment 

investment for one set of the robotic equipment is £64,750, with £4850 of that being the RTK 

GNSS and modified drone software. For the 450 ha farm, the equipment investment for the 

robotic farm is £194,250 (three sets of the HFH equipment) or only 27% of the estimated 

investment for the 296 hp tractor conventional farm, which provides the minimum wheat 

production cost among conventional alternatives. By more intensively using smaller equipment 

the robotic farm is able to substantially reduce capital costs.  

Because the direct costs and yields are assumed to be the same across all scenarios, the gross 

margins are similar at each farm size. For the smallest farm, gross margins are identical for 

each equipment scenario (i.e. £47,048) because all four equipment scenarios are able to plant 

and harvest the wheat/OSR rotation in the optimal period. For the larger farms the gross margin 

differences occur because: 1) some planting and harvesting occurs in non-optimal months, 2) 

equipment and labour constraints force less profitable spring barley into the crop mix (see the 

Autonomous scenario for the 255.6 ha arable farm), and 3) some solutions use more temporary 

labour. 

In this analysis the return to operator labour, management and risk taking is highest for the 

autonomous equipment, except for the small scale conventional equipment on the smallest 

farm. This occurs because the operator is assumed to be full time on the farm (i.e. operator 

compensation is not deducted from the return estimate) and because of the added investment 

to retrofit the equipment for autonomous operation. For the larger farms the autonomous 

scenario has the highest return to the operator.  

The cost of wheat production is estimated because much of the debate in economics about farm 

economies of size is in terms of cost of production (Miller et al., 1981). Economic theory 

indicates that farms which operate at the farm size with the lowest unit cost of production will 

be more successful and over time the structure of the farming industry will tend toward that 

lowest unit cost of production farm size (Miller et al., 1981; Hallam, 1991; Duffy, 2009). 
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Economic research in the 1960s and 1970s in North America suggested that for many farm 

products the long run average cost curve is “L” shaped. Unit costs are high on small farms. 

Those costs fall as farm size grows until the long run average cost curve levels out at minimum 

cost. This research argues that a range of farm sizes are observed because the bottom of the 

cost curve is nearly flat. It has been hypothesized that the cost curve would eventually rise for 

very large farming operations because of diseconomies of scale, but in practice that has not 

been widely observed with conventional crop technology. The key empirical issue is at what 

farm size is that minimum cost achieved? The hypothesis is that autonomous equipment would 

allow a farmer to achieve minimum cost at a smaller scale than conventional equipment would. 

In terms of the cost curve, this means that the robotic farm cost curve would arrive at a 

relatively flat bottom at a smaller scale than the conventional cost curve. 

The wheat production cost estimate includes all direct costs and indirect costs for machinery, 

farm infrastructure and operator compensation prorated to the time devoted to field activities, 

plus 20%. The extra 20% is assumed to be needed for management and marketing. The operator 

compensation estimate is from the 2016 Farm Manager Survey (Redman, 2018, p. 166). That 

estimate is £52,238 in monetary compensation, plus £12,530 in non-cash benefits including 

rent free accommodation, mobile phone and use of a motor vehicle. The sum is a total of 

£64,768.  

A chart of the wheat production costs estimated using HFH-LP takes an approximate “L” 

shape (Figure 1) with the cost curve for autonomous equipment below the conventional cost 

curve. That figure assumes that for conventional equipment, farmers will choose the equipment 

size that minimizes the cost, so the conventional curve is at the minimum cost over the three 

equipment scenarios. The conventional and autonomous equipment cost curves have similar 

shapes, but that may be because of costs are estimated for a very limited number of equipment 

scenarios. If there were more equipment scenarios, the estimate would be more likely to pick 

up differences in the cost curve shape. Assumptions about allocation of farm operator time and 

costs may also affect the shape.  
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Figure 1. Wheat Unit Production Cost (£/ton) for Farms Equipped with Conventional or 

Autonomous Machines across a Range of Farm Sizes and with Operator Labour Cost 

Allocated 

International comparisons of agricultural costs of production are fraught with difficulties 

because of exchange rates, explicit and implicit government subsidies, differing production 

practices, quality differences and other factors, but the agri benchmark cash crop network 

(http://www.agribenchmark.org/home.html) has attempted to estimate comparable costs for 

major production countries. Balieiro (2016) presented wheat production costs for 2008-2015 

eight countries that, except for Russia and Ukraine, range from £123-£192/ton (GBP=US$1.30) 

with UK costs of production at the upper end of that range. Estimates for Russia and Ukraine 

are as low as £62-£77/ton. Most of recent UK wheat imports were from Canada, Germany and 

France with costs of production estimated between about £123 and £154/ton. With wheat cost 

of production on the robotic farm under £120/ton, UK wheat would be much more competitive 

with imported wheat than the conventional farm product. Analysis is needed to determine if 

other UK farm products would be more internationally competitive with robotic production. 
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The HFH-LP also provides information on the marginal values or “shadow prices” of the 

various farm resources. For example, the HFH-LP for the Autonomous scenario for the 284 ha 

farm shows that tractor time is binding in October and November during drilling of winter 

crops. The maximum number of eight hour tractor work days available in October is 52.25 

(=19 good field days x 2.75 workdays per field day if working 22 hours per day). The maximum 

number of eight hour tractor work days available in October is 41.25 (=15 good field days x 

2.75 workdays per field day if working 22 hours per day). The shadow value of tractor time is 

£623.72/work day; that means the gross margin could be increased by £625.72 if one more 

eight hour day of autonomous tractor time would be found. The shadow value of November 

tractor time is lower; it is only £41.81/workday reflecting the lower average yields and profits 

if wheat is planted in November rather than October.  

Similarly, combine time is binding in July and August for the Autonomous scenario for the 

284 ha farm. The shadow value of combine time in July is £1486.64/work day and in August 

£1377.96/workday. As with the tractor, the units are eight hour work days. Shadow prices can 

help technology developers target the highest value innovations. 

 

4.  Limitations 

The HFH LP is a preliminary model of how robotics would affect field crop decisions in the 

UK. The analysis depends on several non-technical assumptions: 

1) The ownership model of acquiring farm equipment services is relevant for autonomous 

machines. Service provider, rental and leasing approaches are widely discussed by 

robotics researchers and entrepreneurs. 

2) Continuous on-site human supervision not required for the robotic farm. Currently, on-

site human supervision of agricultural robots is required in some EU countries (e.g. 

Germany) and is required in the UK for drones. An on-site supervision requirement 

removes much of the cost savings for the robotic farm. 

3) Insurance is available for the robotic farm at comparable cost to conventional farms. 

4) Commercial manufacturing and sale of robotic equipment achieves economies of scale.  

The HFH LP could be improved in many ways, including: 

 Adding potatoes, sugar beets, field beans, peas, silage maize and other field crops 

commonly grown in the UK and including tillage options. Currently, only direct drill 

planting is modelled. 
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 Including annual vegetables (e.g. broccoli, cabbage, carrots, parsnips, lettuce). This 

would require information on the robotic harvesting equipment that is currently in 

prototype stage. 

 Developing forage and grazing livestock activities. While milking robots and other 

autonomous machines are being used by intensive dairy farms, there is relatively little 

experience with robotics for grazing based livestock enterprises. 

 Creating a model with organic field crop, vegetable and livestock activities. One of the 

primary constraints to expansion of organic production in the UK and other parts of the 

industrialized world is labour. The hypothesis is that robotics would reduce the cost of 

organic production substantially. This would require information on automated 

mechanical weeding equipment that is now being commercialized. 

 Exploring the impact of field size and shape on cost of production with conventional 

equipment and swarm robotics. The current analysis assumes a 70% field efficiency for 

both conventional and robotic equipment, but the hypothesis is that robots could operate 

more efficiently than large conventional equipment on small irregularly shaped fields. 

 Estimating the impact of automation for large scale farm equipment. The current model 

assumes large scale farm equipment without GNSS. The hypothesis is that GNSS 

guidance systems can improve field efficiency for conventional equipment even with 

small irregularly shaped fields. Semi-autonomous master-slave technologies (e.g. 

Zhang et al., 2010), autonomous chaser bins (Smart Ag, 2019) and other automation 

has the potential to improve productivity and reduce costs for large scale equipment.  

 Revisiting the question of good field days. The field days used in the model were 

estimated in the 1960s and 1970s assuming large scale conventional equipment. Even 

with conventional equipment, climate change may have affected the number of days 

per month when equipment can be operated in the UK. The hypothesis is that with 

smaller, lighter autonomous machines it may be possible to do field work under slightly 

wetter conditions and cause less damage to the soil. 

 Working with engineers to estimate the reliability, maintenance costs and useful life of 

small and medium sized farm equipment under autonomous use. Currently, most small 

and medium farm equipment is designed for relatively light duty on small and medium 

scale farms. Round the clock operation in autonomous mode may entail higher 

maintenance costs and shorter useful life.  
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 Testing scenarios in which driverless lorries or automated tractors with trailers can 

transport grain from the field to the farmstead or market. 

 Estimating the economic potential for robotic individual plant or other intensive 

management schemes, including micro-dosing of pesticides and fertilizers.  

 Refining modelling assumptions and parameter estimates as on-farm experience with 

autonomous equipment grows. Initial parameters that should be calibrated include: 

human supervision time requirements, field efficiency under different soil, field shape 

and field size.   

 

5.  Conclusions 

This study provides the first rigorous economic analysis that supports the hypothesis that 

swarm robotics will dramatically alter the economic environment in which UK arable farms 

operate. The ability to achieve minimum production costs at relatively small farm size and with 

a modest equipment investment means that the pressure to “get big or get out” will diminish. 

This provides the opportunity for modest size grain enterprises to become profitable instead of 

being a lifestyle choice. With reducing the need for labour and equipment investment, those 

modest sized grain enterprises could be combined with livestock, on-farm value added 

activities or off farm employment to provide enough income for family needs. Costs of 

production that are internationally competitive will mean there is a reduced reliance on 

government subsidies for survival and greater independence for farmers. The ability of swarm 

robotics to achieve minimum production costs, even on small, irregularly shaped fields, will 

reduce the environmental impacts of grain production. It will reduce the pressure to tear out 

hedges, to cut infield trees and to enlarge fields, as well as maintain better soil structure and 

fertility. 
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