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Abstract 18 

1. The last three years have seen a global outbreak of media headlines predicting a global insect 19 

apocalypse and a subsequent collapse of natural ecosystems, a so-called “ecological armageddon” 20 

resulting in the demise of human civilization as we know it. Despite the worrying implications of 21 

these papers, all studies on global insect extinction to date clearly reflect the Prestonian shortfall, 22 

the general lack of knowledge on the abundance of species and their trends in space and time. 23 
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2. Data currently available concerning global insect abundance trends invariably suffer from 24 

phylogenetic, functional, habitat, spatial and temporal bias. Here we suggest that to follow the 25 

real global changes in insect (and all other taxa) communities, biases or shortcomings in data 26 

collection must be avoided. 27 

3. An optimized scheme would maximize phylogenetic, functional, habitat, spatial and temporal 28 

coverage with minimum investment. Standardized sampling would provide primary data, on a 29 

first step in the form of abundance and biomass. Individuals would then be identified to species 30 

level whenever possible, with a morphospecies approach or genetics serving as intermediate 31 

steps, complementing or even final steps for non-described species. 32 

4. If standardized abundance and ecological data can be readily made available, biodiversity trends 33 

can be tracked in real time and allow us to predict and prevent an impending global insect 34 

apocalypse. 35 

 36 

 37 

The last three years have seen a global outbreak of media headlines predicting a global insect apocalypse 38 

and a subsequent collapse of natural ecosystems, a so-called “ecological armageddon” resulting in the 39 

demise of human civilization as we know it. The stimulus for this has been the publication of a number 40 

of papers highlighting dramatic declines in insect abundance or biomass (Halmann et al., 2017, Sánchez-41 

Bayo & Wyckhuys, 2019). Despite the worrying implications of these papers, all studies on global insect 42 

extinction to date clearly reflect not only the Prestonian shortfall, the general lack of knowledge on the 43 

abundance of species and their trends in space and time (Cardoso et al., 2011) but also the Linnaean 44 

shortfall, our ignorance of exactly how many species there are (Brown & Lomolino, 1998).. This is in 45 

part due to the extreme species richness of insects, conservative estimates suggest at least five million 46 
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extant species (Hamilton et al., 2013), their ubiquity across space and time, and the consequent dearth of 47 

information concerning their evolutionary history and ways-of-life. As the dominant form of living 48 

organisms, the state of insect populations can be closely equated with that of biodiversity and the fate of 49 

humanity. 50 

Data currently available concerning global insect abundance trends invariably suffer from phylogenetic, 51 

functional, habitat, spatial and temporal bias. They often focus on the better-known taxa, representing a 52 

relatively small proportion of the tree of life (Leather, 2018), with consequent phylogenetic and 53 

functional bias. Pollinators for example, mainly represented by bees (Apoidea), have been the target of 54 

numerous funding initiatives which have generated an exponential increase in the number of studies over 55 

the last decade and probably have far more data than any other insect group. Forests and agricultural 56 

areas, Europe and the Nearctic, are often overrepresented (Sánchez-Bayo & Wyckhuys, 2019). Often 57 

conclusions are based on short-term data and/or data with two or very few points that do not allow us to 58 

disentangle true decline from natural fluctuations. 59 

 60 

After collection, the data extracted from the samples are often not uniform. Many of the recently found 61 

trends in insect decline are based on abundance or biomass, the simplest forms of quantifying some 62 

variable of interest with direct implications in ecosystem function. Yet, species identification, or when 63 

not possible due to the Linnaean shortfall, as is common for the richest regions in the planet, 64 

morphospecies or genetic species delimitation, is needed to allow understanding the many facets of 65 

community change. The loss of individuals and biomass of rare or unique species might be masked by 66 

the increase in common or invasive taxa. Finally, sampling and the data derived from it are often not 67 

standardized, making it difficult to confirm the suspected changes. 68 

 69 
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Here we suggest that to follow the real global changes in insect (and all other taxa) communities, biases 70 

or shortcomings in data collection must be avoided (Fig. 1). It is impossible with the resources available 71 

to us to identify and follow the trends of every single species of insect across even moderately sized 72 

areas. As we are probably arriving late to the game, it is important that existing data, from multiple 73 

sources such as museum collections and citizen science projects, must be unearthed and linked  to 74 

schemes currently being mobilized (Cardoso et al., 2011).  It is also blindingly obvious, that existing 75 

studies should continue to be fully supported and new studies funded  (Leather, 2018). After appropriate 76 

measures to avoid biases (e.g., careful selection of comparable data, spatial/environmental thinning) have 77 

been taken, these can used as a first approximation to the problem. A more robust monitoring system is, 78 

however, badly needed. 79 

 80 

Standardizing and optimizing the sampling methods and target taxa to cover the maximum phylogenetic 81 

and functional diversity is possible (Cardoso et al., 2016). At national levels, a number of schemes 82 

already exist. For example, the Environmental Change Network (http://www.ecn.ac.uk/ ) collects biotic 83 

and abiotic data, including many insect groups, from 57 different sites across the UK using identical 84 

protocols (Rennie, 2016). Setting up a global and long-term monitoring scheme covering all major habitat 85 

types will not require mega-funding, but only if the distribution of available resources is optimized, 86 

maximizing the return for the investment. As a first step, measuring abundance and biomass should be 87 

prioritized. They are easily quantifiable and provide valuable data on their own, and, importantly, their 88 

collection is relatively inexpensive and easy to standardize. On their own however, these data are of 89 

limited value. Extra value can be gained by species level identification, so that, for example, changes at 90 

the community level can be  tracked properly. This will, however, require more expertise and training, 91 

and inevitably, more expense. For megadiverse regions or taxa, species are often undescribed, hence a 92 

morphospecies approach might be needed, particularly useful if framed within a cyberdiversity platform 93 
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that allows comparability between projects and teams (Miller et al., 2014). Alternatively, the definition 94 

of putative species based on genetic markers, namely barcodes, might allow such comparability for 95 

species still without a name or help in the identification of described species. The resulting data can then 96 

be fed to a central repository that allows real-time tracking of changes as they happen, even if data input 97 

is not simultaneous across regions. 98 

 99 

Several schemes already exist from which one could learn from experience of what works and what does 100 

not, thus avoiding past pitfalls. The Living Planet Index (Loh et al., 2005) successfully builds on multiple 101 

vertebrate monitoring schemes at a global level. Multiple Long-Term Ecological Research projects track 102 

different facets of ecosystems in different ways (Magurran et al., 2010). In fact, the LTER network, if 103 

expanded to a global scale, could be the natural framework to make our proposal feasible, possibly 104 

through a targeted step change in funding (Thomas et al., 2019). 105 

 106 

A globally coordinated scheme and database such as the one envisaged, would facilitate multiple joint 107 

scientific project proposals and publications targeting different questions, and would encourage experts 108 

from across the world to participate in a common endeavor (Hudson et al., 2017, Dornelas et al., 2018). 109 

Legacy species distribution data are currently centralized using global standards within the Global 110 

Biodiversity Information Facility, and are freely available for analysis. If standardized ecological data 111 

can be added to this or similarly valuable resources, biodiversity trends can be tracked in real time and 112 

allow us to predict and prevent an impeding global insect apocalypse. 113 

 114 
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Fig 1 – Proposal for a monitoring system. An optimized scheme would maximize phylogenetic, 156 

functional, habitat, spatial and temporal coverage with minimum investment. Standardized sampling 157 

would provide primary data, on a first step in the form of abundance and biomass. Individuals would 158 

then be identified to species level whenever possible, with a morphospecies approach or genetics serving 159 

as intermediate steps, complementing or even final steps for non-described species. All these data would 160 

feed into a common database, allowing an alert system in real-time. 161 
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