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ABSTRACT: Bauxite residue disposal areas (BRDAs) are typically bare of vegetation with high 

salinity and alkalinity. However, spontaneous encroachment of vegetation indicated that natural 

weathering processes had transformed the residue tailings into a soil-like material. Here we investigate 

the development of bacterial communities and their geochemical drivers in bauxite residue, using 

Illumina high-throughput sequencing technology. Bauxite residue from weathered sites had lower pH 

and exchangeable sodium percentages (ESP), but greater organic carbon and nitrogen concentrations. 

Following natural processes, the diversity of the bacterial community significantly increased and 

hierarchical clustering separated un-weathered from older weathered sites. Taxonomic analysis 

revealed that long-term weathering processes encouraged populations of Proteobacteria, Chloroflexi, 

Acidobacteria and Planctomycetes, whilst reducing populations of Firmicutes and Actinobacteria. 

LEfSe analysis revealed that the biomarker changed considerably in older weathered residues 

compared with that of un-weathered residue. Amongst all the residue properties, variation in total 

organic carbon (TOC), total nitrogen (TN), available phosphorus (AP) and pH, showed significant 

effects on the diversity and structures of the bacterial community. The results have demonstrated that 

natural weathering processes stimulate the dynamic development of bacterial communities in bauxite 

residue, and may provide a hypothetical basis for the application of microbes at disposal areas to 

improve soil conditions.  

 

HIGHLIGHT: 

► Development of microbial communities in bauxite residue disposal areas following long-term 

natural processes was investigated. 

► Natural processes promoted the diversity of bacterial communities in bauxite residue. 

► Bacterial community structure significantly differed in weathered disposal areas  

► pH, TOC, TN and AP may be the most important factors influencing bacterial community structure 

in bauxite residue. 

 

KEY WORD: Bauxite residue; Weathering; Bacterial diversity; Bacterial community; Illumina 

high-throughput sequencing 



 

 

1 Introduction 

Bauxite residue, an industrial waste produced during the production of alumina, represents a large 

and increasing global problem (Gomes et al., 2016). Currently, the worldwide inventory reached an 

estimated 4.2 billion tons, increasing by approximately 200 million tons per annum (Xue et al., 2019). 

Bauxite residue is rarely recycled and is frequently stored in bauxite residue disposal areas (BRDAs) 

(Power et al., 2011). Therefore, the growing mass of stored bauxite residue highlights the need for 

strategies to manage this growing problem, and in situ revegetation may be a promising way towards 

this (Xue et al., 2016). 

Bauxite residue often presents high alkalinity and salinity, as well as a lack of nutrients, which 

largely hinder plant growth (Jones and Haynes, 2011). Currently, various amendments are applied prior 

to vegetation establishment to render the residue more hospitable to plants (Courtney and Harrington, 

2012; Courtney and Kirwan, 2012; Fuller et al., 1982; Wong, 1993). However, no study has 

documented long-term successful revegetation on BRDAs.  

Successful revegetation must involve the development of microbially-driven nutrient cycling for 

the long-term provision of plant nutrients (Grandlic et al., 2008; Rashid et al., 2016). Different 

microbes perform diverse functions during soil nutrient cycling such as, decomposition of organic 

matter and leaf litter (Schweinsberg-Mickan and Muller, 2009), mobilization and translocation of 

inorganic mineral nutrients (Nassal et al., 2018) and fixation of atmospheric carbon and nitrogen (Lynn 

et al., 2017). In addition, many plant species benefit from symbiotic associations with soil 

microorganisms such as mycorrhizal fungi and rhizobia (Kuiper et al., 2004). Studies on mine tailings 

have emphasized a strong association between the establishment of a stable plant community and the 

abundance and composition of soil microbiota (Chen et al., 2008; Dhawi et al., 2016; Mendez and 

Maier, 2008). For instance, arbuscular mycorrhizal fungi (AMF) commonly assist in the recovery of 

soil organic carbon and nitrogen in coal mine districts. Plant growth-promoting bacteria (PGPB) are 

also successful in promoting the establishment of vegetation on metallic mine tailings.  

For rehabilitation on bauxite residues, microbial communities also appear to be essential. Fe 

example, the addition of organic amendments increased soluble organic C, microbial biomass C, basal 

respiration and promoted enzyme activities (Jones et al., 2010; Jones et al., 2011). The diversity of 

bacterial and fungal communities developed rapidly and was similar to that in a coastal sand analog 

(Banning et al., 2011). In addition, long-term restoration also created diverse soil-like microbial 

communities as environmental conditions became less extreme indicating the potential for feedback to 

exist between microbial communities and their environment which may be exploited in the 

development of microbially-driven remediation strategies (Schmalenberger et al., 2013). However, we 

know of no published studies investigating the successional development of microbial community 

structure and function in bauxite residue following weathering over time. Recently, spontaneous 

vegetation growth on abandoned BDRAs suggested that natural weathering processes could improve 

bauxite residue and support vegetation establishment. Although natural weathering processes improved 

the properties of bauxite residue and promoted plant establishment (Kong et al., 2017b; Zhu et al., 

2016), microbial diversity and functional community structure remained elusive. In this study we use 

high-throughput sequencing and real-time quantitative PCR technology in an attempt to identify the 

microbial community structure and functional genes involved in C and N cycling within bauxite 

residue at their different stages of weathering.  



 

 

We hypothesize that natural weathering processes have changed the diversity and structural 

composition of the microbial communities and in doing so have improved the properties of bauxite 

residue over time in order to support plant establishment. Thus, the objectives of this investigation were 

to, (a) investigate the effect of weathering processes on bacterial community diversity, 2) identify the 

changes in bacterial community structure at the weathered disposal area and, 3) reveal potential 

influencing factors which affect bacterial community structure in bauxite residue. 

2 Materials and methods 

2.1 Site description and sampling 

The selected bauxite residue disposal area (BRDA) is located in Central China (35°24′N, 113° 

25′E) and was in operation for 20 years from 1993 to 2013. The climate is temperate continental 

monsoon, with an average temperature of 12.8-14.8 ℃ and average precipitation of 874 mm. Residue 

samples were collected during October, 2018. Based on the time of deposition and vegetation cover, 

four sampling sites were selected; unweathered site (UW), young weathered site (YW), old weathered 

site (OW) and old weathered site with grass (OWV). These locations were used to evaluate the 

influence of natural regeneration on the bacterial community (Table 1). The OWV sites were mainly 

dominated by Cynodon dactylon. For each site, residue samples were collected to a depth of 0–20 cm 

in triplicate using an auger with a 10 cm diameter (Fig. 1). 

All samples were brought back to the laboratory and divided into two parts. One part was dried at 

room temperature and then sieved (<2 mm) for physicochemical analyses. The second part was 

prepared under −80 °C in the laboratory for microbial analyses. 

 

Fig. 1. The effect of weathering on bauxite residue at different temporal stages following disposal. 

UW: unweathered residue; YW: young weathered residue; OW: old weathered residue; OWV: old 

weathered residue covered with vegetation. 



 

 

2.2 Determination of residue properties 

pH and EC were analyzed by water extraction with a ratio of 1:5 (w/w, solid/liquid) using a pH 

detector and a conductivity meter, respectively (Rayment and Higginson, 1992). Exchangeable Ca, Mg, 

K, and Na were extracted with 1 M ammonium acetate and analyzed by ICP-AES (Rayment and 

Higginson, 1992). Exchangeable sodium percentage (ESP) was calculated by the proportion of 

exchangeable sodium in the total exchangeable bases. Total organic carbon (TOC) was determined by 

low-temperature external-heat potassium dichromate oxidation colorimetric method. Total nitrogen 

(TN), ammonium and nitrate concentrations were determined by an automated flow injection analyzer 

after extraction of the soil samples with 2 M KCl. Available phosphorus was extracted with 0.5 M 

NaHCO3 (pH 8.5) (1:100 w/v ratio for 16h) and measured using UV spectrophotometry by the 

molybdenum blue method. 

2.3 DNA extraction and PCR amplification 

DNA extraction was carried out using the Ultra Clean Soil DNA extraction kit from MoBio 

(Carlsbad, CA) according to the manufacturer’s instructions. Extracted DNA was quantified using a 

Nano Drop ND-1000 (Thermo Scientific, Waltham, MA). The V4 region of the bacterial 16S rRNA 

gene was amplified with the primers 338F and 806R. 

All PCRs were conducted in a G-Storm GS2 thermo-cycler (Somerset, UK) with primers obtained 

from Metabion (Munich, Germany). DNA was amplified via PCR using established protocols with 0.5 

U of Dreamtaq polymerase, 1× buffer with 2 mM Mg, 0.2 mM dNTP each (all Fermentas, Germany) 

and 0.4 μM primer each in a total volume of 25 μL. The PCR was performed under the following 

conditions: 94 °C (180s); 28 cycles of 94°C (30 s), 53 °C (40 s), and 72°C (60 s); and 72 °C (300 s). 

Amplicon products were purified using the Agencourt AMPure PCR Purification system (Beckman 

Coulter, Indianapolis, IN). Briefly, 180 mg of residue was incubated with 1 M CaCO3 solution for 1 hr 

and subsequently extracted by the phenol‐chloroform method. DNA extracts were purified using a 

GenecleanTurbo Kit (Biogenic), following the manufacturer's instructions, and the replicates of each 

sample were pooled together and stored in −20 °C before further use. 

2.4 Data analysis and statistical procedures 

Sequence reads were first analyzed using the Qiime pipeline. Briefly, operational taxonomical 

units were clustered with a similarity cut off at 97% and diversity analysis was calculated, resulting in 

alpha and beta diversity analysis based on sequences that exceeded 54,000 reads in total.  

The estimation of microbial diversities of the bauxite residue sites were conducted via QIIME 

platform. Taxonomic analysis of sequences was implemented with a combination of BLAST 30 against 

the 16S-specific SILVA database (version 100) and MEGAN 431 with a bit-score cutoff of 86. 

Sequences of selected families were exported into Mega 532 for alignment and import of related 

sequences using the BLAST tool. Realigned sequences were used for maximum likelihood tree 

generation (Jukes-Cantor).  

Statistical analysis of fungal community profiles was performed using the STAMP software 

(Parks et al., 2014) following the Two-sided Welch’s t-test. Alpha-diversity and beta-diversity of 

fungal communities were calculated on the R statistical platform, using the ‘vegan’ package. 

Alpha-diversity included observed OTU number, Chao1, Shannon diversity index (H), Simpson index 

of diversity (1/D) and Pielou evenness index (J). Beta diversity of comparing fungal community 

structure in different treatments including correspondence analysis (CA), Nonmetric Multidimensional 



 

 

Scaling (NMDs) and analysis of similarity (ANOSIM) were carried out based on the Bray-Curtis 

distance matrix. Canonical correspondence analysis (McCarthy and Williams) was employed to reveal 

the relationship between soil properties and the fungal community. LEfSe (Linear discriminant analysis 

Effect Size) for detecting biomarkers was performed on the online Galaxy platform. Student t-test was 

performed to compare the significant difference between two groups using Minitab software. A p 

value of less than 0.05 was considered as significant. 

3 Results 

3.1 Residue properties 

Residue sample properties significantly differed during the natural weathering processes (Table 1). 

The unweathered residue (UW) presented high alkalinity and salinity, as well as a lack of nutrients. 

Values of pH, EC, and ESP significantly decreased as weathering time increased (P< 0.05), whereas 

the contents of TOC, TN, and AP significantly increased as weathering time increased (P < 0.05, Table 

1).  

Table 1 Characteristics of residue samples from the different stages of weathering 

Samples  UW YW OW OWV 

pH  11.03±0.11D 10.6±0.07C 10.1±0.09B 9.4±0.10A 

ECb mS·cm-1 3.65±0.57D 2.28±0.49C 0.92±0.16B 0.34±0.02A 

ESPc % 72.51±0.32D 49.65±1.98C 34.72±1.36B 28.99±1.19A 

TOCd g·kg-1 5.71±0.26A 8.00±0.30B 9.24±0.25C 10.81±1.15D 

TNe g·kg-1 0.039±0.008A 0.150±0.06B 0.729±0.07C 1.532±0.28D 

APf mg kg−1 5.32±0.25A 10.48±0.25B 22.74±5.44C 34.94±5.44D 

UW: unweathered site; YW: young weathered site; OW: old weathered site; OWV: old weathered with vegetation covert; 

EC = electrical conductivity; ESP = exchangeable sodium percentage; TOC= total organic carbon; TN= total nitrogen;  

AP= available phosphorus; mS = milli Siemens; abc= significantly different (P < 0.05); ±= standard deviation. 

With the same weathering time, the values of pH, EC, and ESP were significantly higher at 

unvegetated sites (OW) compared to vegetated areas (OWV) (P< 0.05). At the same time, the 

concentrations of TOC, TN, and AP were significantly lower in unvegetated sites (OW) than those in 

vegetated areas (OWV) (P< 0.05). 

3.2 Diversity of bacterial community 

In order to investigate the diversity and structure of the microbial communities, Illumina 

high-throughput sequencing technology was used to sequence the 16S rRNA. In total, 509,008 

effective sequences were obtained from all residue samples. At the 97% similarity level, all effective 

sequences were assigned to 5,490 OTUs and each sample contained 642 to 1733 OTUs. Furthermore, 

the coverage of effective sequences in each sample was higher than 98%, and all rarefaction curves 

tended to approach the saturation plateau. The rarefaction curve showed that a deeper sequencing depth 

would not cause an obvious increase in observed OTU number, which indicated that the sequencing 

depth was adequate for further analysis (Fig.2a). 

Natural weathering processes promoted bacterial diversity in bauxite residue. The number of 

OTUs and parameter indices (Chao1, Shannon and Shannoneven) of microbial communities increased 

significantly from unweathered to old weathered sites (P < 0.05), but the indices were not significantly 

different between those of unweathered and young weathered locations (except Chao) (Fig.2). 
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Fig. 2. Alpha diversity of bauxite residue during weathering process. (a) Observed OTUs, (b) Shannon diversity 

(c) Shannoneven evenness diversity, (d) Chao richness. 
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Fig. 3. Principal coordinate analysis (PCoA) of bacteria community composition for bauxite residue from 

different stages of weathering.  

Principal coordinate analysis (PCoA) (Fig. 3) revealed that the bacterial communities in UW and 

YW clustered closely and grouped separately from those in OW and OWV. Coordinate axes 1, 2, and 3 

(PC1, PC2, and PC3) can explain 79.73%, 10.03% and 3.98% of the variation. The high explanation 

(PC1) in the first principal-coordinate axis revealed that the bacterial structure of residue samples was 

significantly changed.  



 

 

3.3 Composition of bacterial community 

Microbial composition at the phylum level (relative abundance > 0.1%) is shown in Fig. 4. A total 

of 31 phyla were identified across all residue samples. Firmicutes (6.18%-33.8%), Actinobacteria 

(8.9%-32.3%), Chloroflexi (6.8%-25.3%), Proteobacteria (10.9%-19.5%), Acidobacteria (<1%-18.8%), 

Planctomycetes (1.0%-13.7%) and Deinococcus-Thermus (2.3%-5.6%). These seven phyla accounted 

for 89.9–92.9% of the effective sequences. Bacterial community distribution pattern also differed 

between residue samples from the different locations (Fig. 4). In unweathered residue (UW) samples, 

the most abundant phyla were Firmicutes and Actinobacteria, accounting for 29.5% - 53.7% and 

26.2%-40.5% of all the sequences. Following Actinobacteria, the phyla were dominanted by 

Chloroflexi and Proteobacteria, accounting for a low abundance with a prevalence of 8.1% and 9.2%, 

respectively. Other phyla that existed in UW residue samples were Deinococcus-Thermus (1.8-5.3%), 

Gemmatimonadetes (1.1%-2.8%) and Bacteroidetes (0.7%-1.5%). Natural weathering processes 

significantly changed the structure of bacterial communities in bauxite residue. Natural weathering 

processes significantly decreased the abundance of Firmicutes and Actinobacteria, whereas they 

increased the abundance of Chloroflexi (YW 17.4%, OW 27.9%). Furthermore, several new taxonomic 

groups including Acidobacteria (OW 9.5 %) and Planctomycetes (YW 1.3%, OW 9.8%), which are 

typical bacterial populations in soils, were found to be enriched. During long-term weathering 

processes, spontaneous vegetation encroachment occurred randomly at some sites. The vegetation 

colonization further increased the abundance of Acidobacteria (OWV 13.7 %) and Planctomycetes 

(OWV 18.8 %) and Proteobacteria (OWV).  

 

Fig. 4. Relative abundance of bacterial community in residue samples with different weathering histories at the (a) 

phylum level , (b) class level and (c) genera level 

 

At the class level, a total of 61 classes were obtained across all residue samples (Table S4). 14 

classes including Bacilli, Actinobacteria, Acidobacteria, Alphaproteobacteria, Thermomicrobia, 



 

 

KD4-96, Planctomycetacia, Gemmatimonadetes, Gammaproteobacteria, Deinococci, Phycisphaerae, 

Gitt-GS-136, Anaerolineae and Betaproteobacteria (defined as >2% of the total effective sequences), 

accounted for 82.5 to 95.4 % in each sample. The relative abundances of Actinobacteria, Bacilli and 

Deinococci were significantly higher at the unweathered (UW) and young weathered (YW) sites 

compared to the old weathered (OW and OWV) sites (P <0.05; Table S5). The relative abundances of 

Acidobacteria, Alphaproteobacteria, KD4-96, Planctomycetacia, Phycisphaerae, Gitt-GS-136, 

Anaerolineae, and Betaproteobacteri were however significantly higher in the two old weathered sites 

(OW and OWV) compared to the unweathered (UW) and young weathered (YW) sites (P < 0.05). 

Bacterial composition at the class level revealed significant differences between OW and OWV sites 

(Table S4). The relative abundances of Actinobacteria, Bacilli, KD4-96, Thermomicrobia, Gitt-GS-136, 

and Gemmatimonadetes were significantly higher in OW sites than in OWV sites, whereas the relative 

abundances of Acidobacteria, Alphaproteobacteria, Planctomycetacia, Phycisphaerae, and 

Betaproteobacteria were significantly higher in OWV sites than those at OW sites.  

For a more detailed analysis, a hierarchically clustered heat map based on the Bray-Curtis 

similarity index was generated to exhibit the hierarchical relationships of the top 30 genera among the 

12 residue samples (Fig. 4c). The heat map revealed that the most often detected bacterial genera and 

the distribution characteristics of the higher abundance genera were different in residue samples with 

different weathering histories. In UW and YW residue, the most abundant genera were Lactococcus 

followed by norank_f__Euzebyaceae, Bacillus, Nitrolancea, norank_f__Nitriliruptoraceae, Truepera, 

Egicoccus, Oceanobacillus, unclassified_f__Rhodobacteraceae, and Carnobacterium. The abundance 

of these groups was significantly higher than those in OW and OWV sites (P< 0.05). However, the 

abundant genera changed following long-term weathering. In OW and OWV sites, the most abundant 

genera were norank_c__KD4-96, followed by norank_c__Acidobacteria, Lactococcus, 

norank_c__Gitt-GS-136, Sphingomonas, norank_f__Anaerolineaceae, norank_o__AKYG1722, 

norank_f__Blastocatellaceae and norank_f__Tepidisphaeraceae. The abundance of these groups was 

significantly higher than those in UW and YW sites (P< 0.05). 

Linear discriminant analysis (LDA) effect size (LEfSe) was used to detect groups or species 

causing significant differences in bauxite residue with different weathering histories. As shown in Fig. 

5(a), 23 bacteria classes exhibited statistically significant differences among the different weathered 

residue sites with an LDA threshold of 4.0 (Fig. 5b). Specifically, Bacilli (class), Firmicutes (phyla), 

Actinobacteria (class), Actinobacteria (phyla), Lactobacillales (order) were enriched in UW. 

Acidobacteria (phyla), Acidobacteria (class), Proteobacteria (phyla), Planctomycetes (phyla), 

Blastocatellaceae__Subgroup_4_ (family) were enriched in OW (Fig. 5c).  

 



 

 

 

Fig. 5. LEFSe analysis of bacterial community in UW and OW residue sites. Yellow circles represent 

non-significant differences in abundance between UW and OW soils. Taxa enriched in UW samples with a 

positive LDA score (red), and taxa enriched in OW samples have a negative score (green). 

 

3.4 Correlation between bacterial community and residue property  

In this study, six parameters, including pH, EC, ESP, TOC, TN and AP were taken into 

consideration to investigate the relative contributions to bacterial communities. The Shannon index was 

significantly positively correlated with the contents of TOC, TN and AP, whilst negativley correlated 

to residue pH, EC and ESP (Fig. 6).  

The RDA results showed that physico-chemical properties of bauxite residue had significant 

effects on the bacterial community. Overall, the first two axes explained 88.85% of the variation 

of microbial composition, and the correlation of species-environment of both axes was > 95% 

(pseudo-canonical correlation). It suggested that there were remarkable correlations between 

microbial community composition and environmental properties. 

For a more detailed analysis, linear-regression analysis was conducted to reveal the 

relationships between residue properties and bacterial taxa. High alkalinity and salinity showed 

significant influence on bacterial communities. The relative abundance of Fimicutes and 

Actinobacteria were positively correlated with pH, EC, and ESP (P< 0.001), while Acidobacteria, 

and Planctomycetes were negatively correlated with residue pH (P< 0.001). The species from 

Chloroflexi and Proteobacteria showed a weak correlation with pH, EC, and ESP. The relative 

abundance of Chloroflexi were positively correlated with pH, EC, and ESP (P= 0.03, P=0.02, 

P=0.03, respectively). The Proteobacteria showed a weaker correlation with EC compared to pH 

and ESP.  



 

 

 

Fig .6. Redundancy analysis (RDA) of the microbial community and environmental parameters across all 

residue samples with different weathering histories.  

Except for the high alkalinity and salinity, the variation in nutrient concentrations in bauxite 

residue also significantly influenced its bacterial communities. The relative abundances of 

Acidobacteria and Planctomycetes revealed significant positive correlations with the 

concentrations of TOC, TN and AP (all P < 0.05), whilst those of Firmicutes and Actinobacteria 

were significantly negatively correlated with the concentrations of TOC, TN and AP (P < 0.05).  

4. Discussion 

4.1. Effect of natural process on residue properties 

The long-term weathering process caused significant changes to the properties of bauxite residue. 

pH and EC of residues at the weathered sites were significantly lower than at the unweathered sites, 

which may be caused by wind erosion and water leaching. Kong et al. (2017a) reported that long-term 

natural weathering processes decreased the alkalinity and salinity of bauxite residue through the 

leaching of free hydroxides, carbonates and aluminates, and dissolution of alkalinity solids including 

sodalite, hydrogarnet and calcite. In addition, some bacterial communities may secrete organic acids, 

which benefit the reduction of alkalinity in bauxite residue (Hamdy and Williams, 2001). The contents 

of TOC, TN, and AP at the weathered sites were predominantly higher than those at the unweathered 

sites (Table 2); indicating that natural weathering processes enhanced the concentrations of nutrients in 

bauxite residue. Zhu et al. (2016) found that long-term weathering processes could promote the 

accumulation of organic carbon and aggregate formation in bauxite residue. This may be caused by the 

shift from haloalkaliphile-dominated assemblages to diverse soil species with diverse functions such 

as C/N fixation (Santini et al., 2015). 



 

 

4.2. Effect of natural process on bacterial community  

The abundance (16S gene abundance) of bacterial communities was higher in weathered sites than 

those in unweathered sites. Similar results were also observed in bacterial diversity indexes, indicating 

that natural weathering processes increased the bacterial diversity in bauxite residue. This has been 

demonstrated previously in the restoration of mine tailings (Li et al., 2015; Wu et al., 2018). At the 

weathered site, the establishment of vegetation generally promoted the development of bacterial 

communities by creating a nutrient enriched environment, with root exudates and organic acids. On the 

other hand, microorganisms were involved in the degradation of organic substances, C/N fixation and 

the mobilization of mineral nutrition (Bao et al., 2019; Courty et al., 2010; Uroz et al., 2011), which 

were all beneficial to plant growth. Plant-microbe interactions at the restored site were conducive to the 

establishment of plants and improvement of soil quality, and finally promoted ecosystem 

reconstruction (Wu et al., 2018).  

The composition of bacterial communities significantly changed during natural weathering 

processes (Figure 3). Bacterial communities in unweathered sites were dominated by Firmicutes and 

Actinobacteria. This finding contradicted a previous study with fresh bauxite residue which showed 

that Proteobacteria was the predominant bacterial phylum (Krishna et al., 2014; Santini et al., 2015). 

Firmicutes and Actinobacteria are considered to have strong metabolic capacities and are frequently 

found in alkaline lakes and hypersaline mats. However, long-term weathering dramatically changed the 

bacterial communities, which were dominated by Chloroflexi, Acidobacteria, Planctomycetes and 

Proteobacteria in old weathered sites. This partially coincides with the results from Schmalenberger 

(Schmalenberger et al., 2013), in which restoration resulted in the accumulation of Acidobacteria. 

Acidobacteria are generally acidophilic, and ubiquitous in various ecosystems, especially soils. The 

abundance of Acidobacteria in soils is correlated with soil pH (Jones et al., 2009). Acidobacteria can 

make up 20% of all bacteria in soils with a pH ranged from 7−8 (Lauber et al., 2009). Acidobacteria is 

divided into 26 subgroups (Barns et al., 2007), and the subgroups of Gp1, Gp2, Gp3, Gp4 and Gp6 are 

abundant in soil environments (Barns et al., 1999). In this study, the high abundances of Gp4 and 

norank_c_Acidobacteria dominated the weathered sites (Table S5). However, Wei et al. (Wei et al., 

2019) reported that Gp1, Gp2 and Gp3 were abundant in the restored tailings (pH=4.5 - 4.8). Griffiths 

et al. (Griffiths et al., 2011) found that low pH (pH= 4.3), medium pH (pH= 6.1) and high pH (pH=8.2) 

soils were dominated by Gp1, Gp1 + Gp6 and Gp6, respectively.  

Proteobacteria is another abundant bacterial phylum at weathered residue sites (Fig. 2 and Table 

S2). These results were consistent with many previous studies. For example, Santini et al. (Santini et al., 

2015) found that the relative abundance of Proteobacteria ranged from 40-80% of all the sequences in 

bauxite residue. Proteobacteria often plays an important role in nitrogen cycling (Rick and Thomas, 

2001). Proteobacteria may play a key role in phylogenetic, ecological and pathogenic values and 

participate in energy metabolism, such as the oxidation of organic and inorganic compounds and 

obtaining energy from light (Bryant and Frigaard, 2006). Proteobacteria often consist of four classes 

including Alpha-, Beta-, Gamma- and Deltaproteobacteria. In this study, Alphaproteobacteria and 

Betaproteobacteria increased whereas Gammaproteobacteria decreased during the natural weathering 

process. These results corresponded to the report of Liu et al (Liu et al., 2014). The relative abundance 

of Gammaproteobacteria increased with increasing soil pH, while Alphaproteobacteria showed the 

opposite pattern. Shen et al. (Shen et al., 2013) also found a similar negative relationship between 

Alphaproteobacteria and soil pH in Changbai Mountain soils, while Lauber et al. (2009) and Chu et al. 

(2010) reported that the population of Alphaproteobacteria was positively correlated to soil pH.  



 

 

4.3. Relationship among bacterial community and residue properties 

Natural weathering processes improved residue properties and changed bacterial community 

structure at the disposal area. RDA analysis showed that residue properties including pH, organic 

carbon, total nitrogen and available phosphorus were the major drivers of microbial community 

diversity (Fig. 3).  

 Many studies have demonstrated pH is the primary factor affecting soil microbiota in various 

types of soils (Fierer and Jackson, 2006; Shen et al., 2013; Griffiths et al., 2011), and have proposed 

that pH is a universal factor determining soil microbiota (Chu et al., 2010; Liu et al., 2014; Nacke et al., 

2011). A decrease in pH, such as soil acidification, may enhance the release of mineral nutrients for 

microbial growth and subsequently influence microbial community composition (Carson et al., 2007). 

In addition, high concentrations of H+ or OH- in soil may restrict microbial community diversity by 

imposing stress on microbial colonization, and regulating the availability of nutrient elements 

(Cookson et al. 2007). Xiong et al. (2012) found that pH was an effective indicator to predict bacterial 

community structure in alkaline sediments. The results in our study also showed that residue pH could 

drive the development of bacterial communities. For instance, with the decrease of residue pH, the 

relative abundance of Acidobacteria increased. This was similar to the distribution patterns of 

Acidobacteria across the related pH gradient (Jones et al., 2009; Dimitriu and Grayston, 2010; Shen et 

al., 2013). Furthermore, the relative abundance of Alphaproteobacteria increased at a lower pH, which 

contrasted with the results in other studies (Shen et al., 2013). It was worth noting that these soils were 

weakly acidic or nearly neutral (3.5-6.5), whist the pH in residue samples ranged from 9.4 to 11.3. The 

different pH environments may result in different variations in abundance of Alphaproteobacteria.  

Besides pH, other environmental variances are also important for the geographic distribution of 

microbial communities in different environments (Freedman and Zak, 2015). Huang et al. (2013) 

demonstrated that bacterial communities in hot springs were predominantly correlated with temperature, 

sulfur, total nitrogen and calcium content. Azarbad et al., (2013) observed that the bacterial 

communities in heavy metal contaminated soils was driven by soil organic matter. In this study, 

long-term natural process accumulated nutrients in bauxite residue, including TOC, TN and AP (Table 

1). The relative abundances of six major phyla, including Proteobacteria, Acidobacteria, Firmicutes, 

Actinobacteria, Chloroflexi and Planctomycetes, had significant correlations with the contents of TOC, 

TN and AP. Among these groups, Actinobacteria and Firmicutes showed negative correlation with 

TOC, TN and AP in bauxite residue, whilst Acidobacteria, Proteobacteria, Chloroflexi and 

Planctomycetes showed positive correlation with these indexes (Fig. S5-S7). This was consistent with 

the findings from Schmalenberger et al. (2013). At the BRDA restored for 12 years, Schmalenberger et 

al. (2013) found that Verrucomicrobia, Acidobacteria, and Proteobacteria were closely related to the 

contents of TC and TN. In addition, the evolution of bacterial communities from 

haloalkaliphile-dominated assemblages may respond from the accumulation of Planctomycetes in 

bauxite residue (Santini et al., 2015). However, the significant relationship between Chloroflexi and 

nutrients here have not been found in other research (Schmalenberger et al., 2013). This may be caused 

by the unique bacterial communities in this study, from which Chloroflexi made a large contribution. In 

well-remediated bauxite residue, its abundance was quite low and therefore showed no significant 

correlation with residue proprieties.  

 



 

 

5. Conclusion 

This study has revealed the dynamic development of diversity and structure in microbial 

communities following natural weathering processes at bauxite residue disposal areas. Alkalinity and 

salinity decreased, whilst nutrient elements improved at the old weathered site. Both microbial 

diversity index and microbial community structure differed significantly following long-term residue 

weathering. The dominant phyla were Firmicutes and Actinobacteria at the unweathered site, whilst 

Proteobacteria, Chloroflexi, Acidobacteria and Planctomycetes dominated in the old weathered 

residues. Twenty-one biomarkers were found in the bauxite residue through a linear discriminate 

analysis (LDA) effect size (LEfSe) analysis. LEfSe analysis revealed that the biomarker changed 

significantly from Firmicutes (phyla) and Actinobacteria (class) in unweathered residues to 

Acidobacteria (phyla) and Planctomycetes (phyla) in old weathered residues. Soil microbial 

community composition and diversity were mainly regulated by soil nutrients (TOC, TN and AP) and 

pH, whilst soil nutrients were the major factors. This study has improved our understanding of 

microbial diversity in bauxite residue disposal areas and further studies should focus on functional gene 

prediction to reveal possible mechanisms of metabolic pathways of microorganisms on soil formation 

in bauxite residue disposal areas.  
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