As(III) adsorption on Fe-Mn binary oxides: are manganese and iron oxides synergistic or 1 antagonistic for arsenic removal?

by Zhen, Q., Hou, J., Hartley, W., Ren, L., Wang, M., Tu, S. and Tan, W.

Copyright, publisher and additional Information: This is the author accepted manuscript. The final published version (version of record) is available online via Elsevier.

This version is made available under the CC-BY-ND-NC licence: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Please refer to any applicable terms of use of the publisher

DOI: https://doi.org/10.1016/j.cej.2020.124470

Zhen, Q., Hou, J., Hartley, W., Ren, L., Wang, M., Tu, S. and Tan, W. 2020. As(III) adsorption on Fe-Mn binary oxides: are manganese and iron oxides synergistic or 1 antagonistic for arsenic removal? *Chemical Engineering Journal.*16 February 2020

1 2 antagonistic for arsenic removal?

Qian Zheng,¹ Jingtao Hou,^{1,*} William Hartley,² Lu Ren³, Mingxia Wang,¹ Shuxin Tu,^{1,*} Wenfeng Tan¹

¹College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.

² Crop and Environment Sciences Department, Harper Adams University, Newport, Shropshire, TF10

3

4

5

6 8NB, United Kingdom. 7 ³School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215009, China 8 ABSTRACT. Fe-Mn binary oxides are ubiquitous in the natural environment and have attracted 9 increasing interest due to their high removal capacity for As(III), as well as their important role in the 10 natural cycling of arsenic. Although numerous studies have characterized the respective roles of Fe and 11 Mn oxides in As(III) removal, the relationship between different Fe-Mn binary oxides for As(III) removal 12 has not been fully explored. In this study, three Fe-Mn binary oxides containing either ferrihydrite, 13 hematite or goethite, were used to evaluate their adsorption capacities for As(III) in comparison with 14 their corresponding single Fe and Mn oxide forms. We utilized spectroscopic techniques of *in situ* flow 15 ATR-FTIR and XPS combined with a Donnan reactor, where Fe and Mn oxides were isolated by a semi-16 permeable membrane through which arsenic could pass, to investigate the dynamics and speciation 17 transformation of As(III) within mixed Fe and Mn oxides systems. The result showed that the synergistic effect, as well as antagonistic effects, between Fe and Mn oxides, was present in Fe-Mn binary oxides 18 19 for As(III) removal. An obvious increase in As(III) removal with hematite, containing Fe-Mn binary 20 oxides, and a decrease in ferrihydrite, containing Fe-Mn binary oxides, was attributed to As(III) oxidation 21 mediated by Mn oxides as well as the difference in arsenic adsorption affinity in Fe oxides, evidenced 22 by ATR-FTI R and XPS analyses. The findings of this work provide a new understanding of the fate of 23 arsenic within mixed systems, which is very important for targeted application of Fe-Mn binary oxides

24 in treating real arsenic contaminated groundwater.

25 INTRODUCTION

26 Arsenic (As) is a common metal(loid) element that has gained much concern due to its high toxicity 27 and carcinogenicity [1, 2]. In order to reduce the associated health risks, a guideline limit of 10 μ g L⁻¹ As 28 in drinking water was set by the World Health Organization (WHO) [3]. In the natural environment, As 29 is mainly present as inorganic forms, existing in two predominant species, arsenite [As(III)] and arsenate 30 [As(V)] [1]. Arsenite is the major As species in reduced environments, possessing greater toxicity, but 31 having a weaker affinity to metal oxides compared to As(V). Arsenate mainly exists in well-oxygenated 32 environments [1, 4]. The strategy for oxidation of As(III) coupled with sorption of the formed As(V), 33 using metal binary oxides as adsorbents, has been intensively investigated for treating As contaminated 34 groundwater [2].

35 The reported binary oxides include Ce-Mn [5-7], Zr-Mn [8, 9], Ti-Mn [10-12], Fe-Mn [13-16] and Al-36 Mn [17, 18] etc. Among the series of binary oxides, Fe-Mn binary oxide, which is inexpensive and 37 environmentally benign, has attracted much interest as a promising adsorbent for As removal, especially 38 for As(III). Arsenite removal on Fe-Mn binary oxides reportedly follows an oxidation/adsorption 39 mechanism, in which As(III) is oxidized to As(V) by manganese oxides, and the formed As(V) 40 subsequently being adsorbed by the iron oxides [19-22]. Therefore, the existence of synergistic effects 41 between manganese oxides (oxidants) and iron oxides (adsorbents) in Fe-Mn binary oxides, for As(III) 42 removal, is widely accepted. However, several studies have reported that some iron (hydr-)oxides 43 demonstrated lower adsorption capacities toward As(V) than As(III) [23-25]. For example, Zhang et al 44 evaluated As(III) and As(V) adsorption capacities on amorphous ferrihydrite, and revealed that adsorption performance of As(III) on amorphous ferrihydrite was 2.15 times greater than that of As(V) 45

46 [24]. Wen et al also observed that iron hydroxide colloids showed As(III) adsorption capacity to be higher 47 than that of As(V) [25]. Therefore, oxidation of As(III) by manganese oxides may be detrimental for 48 As(III) removal. In principle, the type and content of iron (e.g., ferrihydrite, goethite, and hematite) 49 and manganese oxides in both naturally occurring and synthesized Fe-Mn binary oxides are rather 50 different, which depend on the natural environment as well as their preparation conditions. Although the 51 respective roles of Fe and Mn oxides in As(III) removal have been characterized in previous studies [19, 52 22, 24, 26-28], the working relationship between Fe and Mn oxides with different Fe-Mn binary oxides 53 is not fully understood. It is still unclear whether antagonistic and/or synergistic effects occur in Fe-Mn 54 binary oxides during As removal. Elucidating these effects is very important for targeted application of 55 Fe-Mn binary oxides in treating real As contaminated groundwater.

In this study, three Fe-Mn binary oxides containing either ferrihydrite, goethite or hematite, were synthesized using a superficial co-precipitation reaction. Arsenite adsorption capacities of the different Fe-Mn binary oxides were tested for comparison with their corresponding single Fe and Mn oxides. To illustrate the possible working relationships between Fe and Mn in the different binary oxides, we examined As(III) dynamics using a Donnan reactor composed of two reaction cells separated by a semipermeable membrane, where Fe and Mn oxides were placed in two chambers, respectively.

62

63 MATERIALS AND METHODS

Materials. As₂O₃ and Na₃AsO₄·12H₂O were used to prepare As(III) and As(V) stock solutions,
respectively. The As(III) and As(V) working solutions were prepared by diluting the corresponding stock
solutions using deionized water. Manganese oxide samples used in this study were purchased from
Sinopharm group chemical reagent co., LTD, China. All reagents were of analytical grade. A

68 polycarbonate semi-permeable membrane with a diameter of 100 mm was used in the Donnan reactor69 (Kenker Co., USA).

Sample Preparation. Ferrihydrite-containing Fe-Mn binary oxides were synthesized according to Zhang et al [29], using co-precipitation but with the addition of MnCl₂. Typically, Fe(NO₃)₃·9H₂O (0.1 M) (500 mL) and MnCl₂ (0.5 M) (60 mL) were thoroughly mixed together with NaOH (1M) (330 mL) using a magnetic stirrer until the solution pH reached 7 ~ 8. After stirring for 2 h, the precipitates were washed several times with deionized water until conductivity was lower than 20 mS cm⁻¹. The samples were then freeze-dried and subsequently stored at 4 °C until required.

Goethite-containing Fe-Mn binary oxides were prepared using a similar method [30]. Typically, Fe(NO₃)₃·9H₂O (1 M) (100 mL) and MnCl₂ (0.5 M) (60ml) were thoroughly mixed. NaOH (5 M) (180 mL) was then added and constantly stirred using a magnetic stirring. The suspension was diluted to a volume of 2 L with distilled water, sealed with plastic wrap, and then placed in an oven at 70 °C for 60 h. The precipitate was washed with deionized water, dried at 60 °C for 1 day, and subsequently stored at 4 °C until required.

Hematite-containing Fe-Mn binary oxides were prepared according to the method of Connell and
Schwertamnn, except for the addition of MnCl₂ [31]. Typically, Fe(NO₃)₃·9H₂O (40 g) was added to 500
mL of 90 °C deionized water in a 1000 mL beaker with constant magnetic stirring. MnCl₂ (0.5 M), (60mL),
KOH (1 M) (300 mL) and NaHCO₃ (1 M) (50 mL) were preheated to 90 °C and subsequently added to
the above suspension. The beaker was sealed with plastic wrap and transferred to a 90 °C oven . After 48
h, the precipitate was washed with deionized water several times, dried at 60 °C, and stored at 4 °C until
required.

89 Preparation of the single ferrihydrite, goethite and hematite samples were the same as their

 $90 \qquad \mbox{corresponding binary oxides but with the exception of no $MnCl_2$ addition.}$

91	Sample Characterization. X-ray diffraction (XRD) patterns for the different iron oxides and manganese
92	oxides were tested on a Bruker D8 ADVANCE X-ray diffractometer using Ni-filtered Cu Ka radiation.
93	Scanning electronic microscopy (SEM) images and energy dispersion spectrum (EDS) data were
94	obtained using a QUANTA FEG 450 electron microscope. Nitrogen adsorption-desorption isotherms
95	were obtained using a Micromeritics ASAP 2000 surface area analyzer. The spectra generated by X-ray
96	photoelectron spectrometry (XPS) spectra of the samples before and after reaction with As(III) in Donnan
97	experiments were collected using a VG Multilab 2000 X-ray photoelectron spectrometer with Mg Ka
98	radiation. Some selected samples were freeze-dried before being characterized by XPS.
99	As(III) Oxidation Experiment. As(III) oxidation on manganese oxide was performed on a thermostatic
100	shaker with a velocity of 200 rpm at 25 °C. The initial As(III) solution was 1.33 μ M with an ionic strength
101	of 0.1 M NaNO ₃ and a pH of 7.0 ± 0.1 adjusted by adding appropriate HCl or HNO ₃ . To start, 0.01 g of
102	manganese oxide were rapidly added into 1.33 μ M of As(III) working solution in a 150 mL Erlenmeyer
103	flask. At set specific time intervals, the suspensions were filtered through a 0.22 μ m membrane filter.
104	The concentration of total As and As(III) species were tested on an atomic fluorescence spectrometer
105	(AFS-9700) according to the detection method reported by Hong et al [32]. The As(V) concentration in
106	solution was obtained by subtracting the As(III) concentration from the total As concentration.
107	Arsenic Adsorption Experiment. The arsenic adsorption performance of Fe (hydr-)oxide, Mn oxide,
108	the Fe-Mn binary oxides, and mixed Fe and Mn oxides, were investigated using adsorption isotherms at
109	pH 7.0 in a dark environment. All adsorption experiments were performed on a thermostatic shaker with
110	a velocity of 200 rpm at 25 °C for 24 h. The ion strength in all bath experiments was adjusted to 0.1 M
111	using NaNO ₃ . Typically, 0.01g of Fe oxide, Mn oxide, or Fe-Mn binary oxide were added into 100 mL

112 of arsenic solution with a series of concentrations ranging from 0.13 to 133.3 μ M in a 150 mL Erlenmeyer 113 flask. During the adsorption experiment, solution pH was adjusted every 6 h using HCl and NaOH to 114 7.0 ± 0.1 . After 24 h, the suspensions were withdrawn and filtered through a 0.22 µm membrane filter. 115 Arsenic adsorption performance of the mixed Fe and Mn oxides was also tested using the same treatment 116 as that of single Fe oxide except for the addition of 0.01 g of Mn oxide. The amount of adsorbed As on 117 iron oxide surfaces was obtained by subtracting the residual As concentration from the initial As 118 concentration divided by the weight of Fe oxide adsorbent. All batch adsorption experiments were carried out in triplicate. 119

120 Donnan Experiment. The Donnan reactor used in this study was composed of two reaction cells 121 separated by a semi-permeable membrane (Figure 1) [30]. The reaction cells were constructed using 122 acrylic pipes. A 0.1µm polycarbonate filter was used as the semi-permeable membrane. Before the 123 experiment, the Donnan reactor was carefully tested for leakages by adding water into the two reaction 124 cells. To start, 0.2 g of Fe oxide and 0.2 g of Mn oxide were placed into two reaction cells, respectively 125 (Figure 1). To determine the relationship between Fe and Mn oxides for As(III) removal, two experiments 126 were designed. For the first experiment, only As(III) was added into the Fe oxide chamber (Figure S1A, 127 see supporting information), and the second only As(III) was added into the Mn oxide chamber (Figure 128 S1B). Considering that the two iron oxides have different adsorption capacities for As removal, 129 evidenced from the adsorption experiment, the initial As(III) concentration in ferrihydrite-Mn oxide and 130 hematite-Mn oxide systems was set as 133.3 and 26.7 µM, respectively. The initial pH in all reactions 131 was set to 7.0 ± 0.1. Following the reaction, pH was monitored and adjusted using HCl and NaOH. The 132 ionic strength in the two cells was adjusted to 0.1 M using NaNO₃. The aqueous As concentration (c) at 133 a given time in the Donnan reactor was calculated according to the following formula.

$$c = \frac{c_1 + c_2}{2}$$
(1)

136 Where c_1 and c_2 represent the As concentration in Fe and Mn oxide chambers, respectively (µmol L⁻¹).

138	In situ Flow Attenuated Total-reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)
139	Experiments. In-situ flow ATR-FTIR was used to measure the adsorption/oxidation of As(III) on single
140	Fe oxides and mixed Fe and Mn oxides, thereby explaining the respective roles of Fe and Mn oxides in
141	different Fe-Mn binary oxides for As(III) removal. Typically, 0.05 g of iron oxide was added to 1 mL of
142	deionized water for ultrasonic dispersion for ~ 5 min. The obtained suspension was covered on ZnSe
143	crystals and dried at room temperature for 12 h. Before the experiment began, 0.1 M of NaNO3 solution
144	with pH of 7.0 was used as a background electrolyte, to pump through the iron oxide covered ZnSe
145	crystals at a flow rate of 1.0 mL min ^{-1} , thereby balancing the functional groups on iron oxides. After 90
146	min, 1 mM of As(III) solution (pH = 7.0) was continuously pumped through the iron oxide covered ZnSe
147	crystals at a flow rate of 0.5 mL min ⁻¹ . In-situ flow ATR-FTIR experiments of the mixed iron and
148	manganese oxides reacted with As(III) were performed using the same treatment as that of the iron oxide
149	except for the addition of 0.05 g Mn oxide. As(III) adsorption/oxidation was monitored by a DTGS
150	detector with an infrared spectrum acquisition. The scanning range, IR resolution, and scanning times
151	were set to $4000 \sim 600 \text{ cm}^{-1}$, 4 cm ⁻¹ , and 512, respectively. The OPUS software was employed for data
152	processing.
153	
154	
155	

157 RESULTS AND DISCUSSION

158 Characterization of Fe (hydr-)oxides, Mn oxide and Fe-Mn binary oxides. The X-ray diffraction 159 (XRD) patterns of the Fe (hydr-)oxides, Mn oxide and Fe-Mn binary oxides are revealed in Figure S2. 160 XRD analysis revealed that Fe oxides used in this study were indexed to the pure structure of 2-line 161 ferrihydrite [14], hematite [JCPDS 13-0534], and goethite [JCPDS 02-0282], respectively (Figure S2A). 162 Mn oxide was typical of the manganite phase [JCPDS 42-1316]. Fe oxide phases in different Fe-Mn 163 binary oxides were ferrihydrite, hematite, and goethite, respectively (Figure S2B). No Mn oxide phase 164 was observed in all Fe-Mn binary oxides due to the low initial MnCl₂/Fe(NO₃)₃ reactant molar ratio in 165 all reaction systems. The EDS data revealed that both Fe and Mn elements coexisted (Table S1, see 166 supporting information), suggesting Mn oxide was successfully incorporated into all Fe-Mn binary 167 oxides. SEM images revealed that the surface of ferrihydrite-containing Fe-Mn binary oxides (denoted 168 as Fh-MnO_x) was very rough, containing bumps and hollows, relative to that of hematite-containing Fe-169 Mn binary oxides (denoted as Hem-MnO_x) (Figure S3A and C), suggesting that the former may supply 170 more active sites than the latter for As adsorption. Goethite-containing Fe-Mn binary oxides (denoted as 171 Goe-MnO_x) showed typical needle-like morphology, indicating that goethite had successfully been 172 incorporated into Goe-MnO_x samples (Figure S3B). The BET surface areas of the samples, determined 173 by fitting their N₂ adsorption/desorption curves, are displayed in Table S1. Ferrihydrite showed a specific 174 surface area (247.0 m² g⁻¹) far greater than goethite (143.3 m² g⁻¹) and hematite (38.9 m² g⁻¹). The high 175 surface area of ferrihydrite was attributed to its low crystallinity compared to both goethite and hematite, 176 which had been observed in previous work. The specific surface areas of Fh-MnO_x, Goe-MnO_x, and Hem-MnO_x samples were 266.4, 213.3, and 32.8 m² g⁻¹, respectively. 177

178	
-----	--

179	Arsenic adsorption in single Fe oxide and mixed Fe and Mn oxides. Figure 2 exhibits the adsorption
180	isotherm profiles of Fe oxides, Mn oxide, and mixed Fe and Mn oxides for As removal. The Langmuir
181	and Freundlich models were used to describe the adsorption isotherms and the corresponding fitting
182	results are displayed in Table S3. We used a maximum adsorption amount calculated from the Langmuir
183	model for comparing adsorption capacities. As shown in Figure 2 and Table S3, three iron oxides
184	ferrihydrite, goethite, and hematite, which exist extensively in terrestrial environments, showed obvious
185	differences in their adsorption capacities for both As(III) and As(V) [23, 24, 33]. Ferrihydrite possessed
186	the greatest adsorption capacity for both As(III) and As(V), followed by goethite and hematite.
187	Interestingly, the three iron oxides exhibited different affinities for As(III) and As(V) species. For single
188	hematite, its maximum As(III) adsorption capacity (51.2 µmol g ⁻¹) was lower than that of As(V) (65.3
189	μmol g ⁻¹) (Figure 2a). For goethite, its maximum As(III) adsorption capacity (112.8 μmol g ⁻¹) was slightly
190	greater that of As(V) (102.7 µmol g ⁻¹) (Figure 2b). However, for ferrihydrite, the maximum As(III)
191	adsorption capacity ($871.5 \ \mu mol \ g^{-1}$) was much greater than that of As(V) (493.8 mg g^{-1}) (Figure 2c).
192	Compared to iron oxides, manganese oxide possessed very low adsorption capacity for both As(III) and
193	As(V) removal (Figure S4), but extremely high oxidation activity for As(III) (Figure S5), suggesting that
194	manganese oxide mainly acts as an oxidant for oxidation of As(III) to As(V), rather than as an adsorbent
195	[34-37]. Therefore, based on the above results, we speculated that the working relationships between Fe
196	and Mn oxides in Fe-Mn binary oxides for As(III) removal, exist either synergistically, or antagonistically
197	in some cases. However, this observation was not clear in previous work, and still needs further
198	clarification.

199 In order to confirm our assumption, As(III) adsorption capacities of the mixed Fe and Mn oxides was

200	investigated for comparison with corresponding single Fe and Mn oxides (Figure 2). For mixed hematite
201	and Mn oxides, As(III) adsorption capacity was 90.9 µmol g ⁻¹ (Figure 3d), which was clearly greater than
202	those of single hematite (51.2 μ mol g ⁻¹) and Mn oxides (9.5 μ mol g ⁻¹), suggesting that the synergistic
203	effect between hematite and Mn oxide was present in promoting As removal in this case. For the mixed
204	goethite and Mn oxide, its As(III) adsorption capacity increased slightly to 116.3 µmol g ⁻¹ relative to
205	single goethite and Mn oxide, indicating that the additive effect between goethite and Mn oxide was
206	observed with a slight enhancement in As(III) removal. Remarkably, for mixed ferrihydrite and Mn oxide
207	an obvious decrease in As(III) adsorption capacity (694.4 µmol g ⁻¹) was evident, relative to that of single
208	ferrihydrite (871.5 µmol g-1), suggesting antagonistic effects between ferrihydrite and Mn oxide at
209	decreasing As(III) removal. This result demonstrated that the synergistic effect, as well as antagonistic
210	effects, between Fe and Mn oxides, was present in Fe-Mn binary oxides for As(III) removal, which was
211	in agreement with our assumption.

212 The question is therefore, why do antagonistic effects between Fe and Mn oxides occurr in mixed 213 ferrihydrite and Mn oxide systems? There are two factors that affect As(III) removal. Firstly the change 214 in As species mediated by Fe or Mn oxides, thus altering the adsorption affinity of As to iron oxides. 215 Secondly, the Mn oxide adsorbed onto ferrihydrite surfaces, which occupies active sites for As(III) 216 adsorption. We examined the As(V) adsorption capacity of the mixed ferrihydrite and Mn oxide for comparison with its corresponding single ferrihydrite (Table S2). The As(V) adsorption capacity of the 217 mixed ferrihydrite and Mn oxide was 452.0 mg g⁻¹, which was slightly lower than that of single 218 ferrihydrite (493.8 mg g⁻¹). This result suggested that Mn oxide adsorbed onto iron oxide surfaces has a 219 220 'littering effect' on the active sites which could be used for As(III) adsorption, and the transformation of 221 As species within the mixed Fe-Mn oxides system may play a vital role in As(III) removal.

222	We also evaluated the As(III) adsorption capacities of three Fe-Mn binary oxides containing
223	ferrihydrite (Fh-MnO _x), goethite (Goe-MnO _x), and hematite (Hem-MnO _x), respectively (Figure S6). The
224	three Fe-Mn binary oxides showed specific surface areas different from their corresponding single Fe
225	and Mn oxides. Specific As(III) adsorption capacities (per unit surface area of absorbent), representing
226	the intrinsic adsorption ability of Fe-Mn binary oxides, were therefore compared. As shown in Figure
227	S6a, the specific As(III) adsorption capacity of binary Hem-MnO _x samples (3.12 μ mol m ⁻²) was greater
228	than that of single hematite (1.32 μ mol m ⁻²). For binary Goe-MnO _x samples, the specific As(III)
229	adsorption capacity (0.62 μ mol m ⁻²) was slightly lower than that of single goethite (0.78 μ mol m ⁻²)
230	(Figure S6b). For binary Fe-MnO _x samples, specific As(III) adsorption capacity (3.31 μ mol m ⁻²) was
231	lower than that of single ferrihydrite (3.53 μ mol m ⁻²) (Figure S6b). This further demonstrates that both
232	synergistic and antagonistic effects between Fe and Mn oxides in binary oxides exist for As(III) removal.
233	It is therefore very important to select suitable Fe-Mn binary oxides for treatment of real arsenic
234	contaminated groundwater.

235 In situ flow ATR-FTIR. To reveal the sorption and redox behaviors of As(III) within single iron oxide 236 and mixed Fe-Mn oxide systems, an in situ flow ATR-FTIR experiment was investigated (Figure 3). 237 Figure S7 reveals the FTIR spectra of pure As(III) and As(V) standards, where the IR absorption peak at ~ 798 cm⁻¹ corresponds to As(III) species, and those at ~ 817 and ~ 865 cm⁻¹ are attributed to As(V) 238 239 species [38-40]. For single ferrihydrite reacted with As(III), the IR adsorption peak was approximately 240 789 cm⁻¹, which was assigned to As(III) species, and appeared to become stronger with increasing 241 reaction time (Figure 3a). However, the characteristic adsorption peak of As(V) was not obviously 242 observed in the entire reaction time, suggesting that As(III) had not transferred to As(V) by ferrihydrite 243 in this case. For single hematite reacted with As(III), As(III) was also the main As species adsorbed, 244 evidenced by the IR adsorption peak around 802 cm⁻¹ (Figure 3b). However, the intensity of As(III) 245 characteristic adsorption peak in hematite was not as strong as that in ferrihydrite, suggesting that the 246 affinity of As(III) in ferrihydrite was stronger than that in hematite, which was in agreement with 247 adsorption isotherm data. Interestingly, for mixed Fe and Mn oxide systems, two IR adsorption peaks at 248 ~ 817 and ~798 cm⁻¹, which were assigned to As(III) and As(V) species, respectively, were observed 249 simultaneously and became stronger with increasing reaction time (Figure 3c and d). This result revealed 250 that Mn oxide led to the rapid transformation of As(III) to As(V), which may play an indirect role in 251 controlling As adsorption on iron oxides.

252 Aqueous arsenic dynamics within Donnan reactor. To further illustrate the different working 253 relationships between Fe and Mn oxides in Fe-Mn binary oxides for As(III) removal, we used a Donnan 254 reactor, where the oxides were placed in two chambers separated by a semi-permeable membrane, to 255 examine As adsorption kinetics by adding As(III) to one side of chamber (Figure S2). Ferrihydrite and 256 hematite, which showed opposite adsorption affinities to both As(III) and As(V), were used to perform 257 the Donnan experiment. Considering that As(III) oxidation by dissolved oxygen is very slow, the 258 dissolved oxygen in this study was not further removed by introducing an inert gas [4, 41]. Arsenic 259 concentration in the ferrihydrite chamber rapidly decreased after addition of As(III), whilst with Mn 260 oxide there was a slight increase (Figure 4a), suggesting that most of the As(III) species may be rapidly 261 adsorbed by ferrihydrite without further diffusion into the Mn oxide chamber. After 10 h, As 262 concentration reached equilibrium in the two chambers (Figure 4a). However, As concentration in the 263 Mn oxide chamber decreased slowly after addition of As(III) (Figure 4b). The decrease in As 264 concentration in the Mn oxide chamber mainly depended on As diffusion transport between the 265 neighboring chambers. Arsenite had undergone oxidation, diffusion, and adsorption, which was more 266 complex than when it was applied to the ferrihydrite chamber. Equilibrium was reached after ~ 36 h 267 (Figure 4b). Addition of As(III) to the manganese oxide chamber reached an As concentration of 29.2 268 μ mol L⁻¹, whereas in the ferrihydrite chamber only 20.0 μ mol L⁻¹ was reached (Figure S8a). This result 269 indicates that the antagonistic effect between ferrihydrite and Mn oxide in Fe-Mn oxide systems may be 270 attributed to pre-treatment of As(III) by Mn oxide.

271 In the hematite chamber, the decrease in As concentration was not as rapid as that in the ferrihydrite 272 chamber (Figure 4c). This may be due to the weak adsorption of As(III) on hematite and the slow 273 diffusion of As(III) into the Mn oxide chamber. Arsenite, in the Mn oxide chamber, had undergone 274 oxidation, diffusion, and adsorption processes, and equilibrium was reached after ~ 24 h. Pretreatment 275 of As(III) by Mn oxide also increased As removal in the hematite-Mn oxide system (Figure S8b). 276 However, the aqueous As concentration in the Donnan reactor was close to each other with increasing 277 reaction time. This observation could be explained by the high affinity of As(V) in hematite compared to 278 As(III), which will be discussed further in XPS analysis (see XPS analysis section).

279 Surface analysis of Fe and Mn oxides in Donnan experiments. To reveal the evolution of surface 280 speciation of Fe, Mn and As during the processes of As(III) sorption and redox in the Donnan reactor, 281 the surface compositions of Fe and Mn oxides in the chambers were investigated by analyzing their XPS 282 spectra. Figure 5 reveals Fe2p spectra of the iron oxides before and after reaction with As in the chambers. 283 As shown in Figure 5c, Fe(III) was the dominant Fe species that existed on ferrihydrite surfaces, 284 evidenced by the peak shape and the binding energy of ~ 711.0 eV [19, 42]. There was no obvious change 285 of binding energy in Fe2p spectra when As(III) was added into ferrihydrite and Mn oxide chambers 286 (Figure 5a and b). However, a decrease in Fe2p spectra intensity appeared after reaction with As (Figure 287 5a and b). This observation also appeared when As(III) was added into hematite and manganese oxide chambers (Figure 5d and e), suggesting the existence of a strong interaction between Fe oxide and As
species [19, 29, 43].

290 Mn2p spectra of Mn oxides before and after reaction with As(III) in the chambers is shown in Figure 291 S9. With addition of As(III) into the Mn oxide chamber, the binding energy of Mn2p3/2 spectra decreased 292 from 642.5 to 642.1 eV relative to fresh Mn oxide (Figure S9b and c). This may be explained by an 293 increase in the fraction of reduced Mn species relative to Mn(IV) originating from As(III) oxidation by 294 Mn oxide [44-46]. Addition of As(III) into the ferrihydrite chamber also decreased the binding energy 295 of Mn2p3/2 spectra, indicating that there was partial diffusion of As(III) species into the Mn oxide 296 chamber which subsequently reacted with Mn oxide to reduce the oxidation state of Mn species (Figure 297 S9a). A decrease in binding energy, but with no obvious intensity change of Mn2p spectra in Mn oxide, 298 was observed when addition of As(III) was added into both hematite and Mn oxide chambers (Figure 299 S9d and e), suggesting that Mn oxide mainly responds to oxidation of As(III), rather than adsorption in 300 this case.

301 Spectra for As3d species adsorbed by Fe and Mn oxides is shown in Figure 6. With addition of As(III) 302 in the ferrihydrite chamber, As3d binding energy was ~ 44.3 eV (Figure 6a) [45, 46]. With As(III), the 303 As3d binding energy significantly increased from ~ 44.3 to ~ 45.5 eV (Figure 6b). According to previous 304 literature, As3d binding energy at $45.2 \sim 45.6$ eV in arsenic oxide is attributed to As(V) species [19, 43, 305 44, 46]. This indicated that As(III) was rapidly oxidized to As(V) by Mn oxide, subsequently diffusing 306 into the ferrihydrite chamber, followed by adsorption onto ferrihydrite. The main As species adsorbed 307 by Mn oxide was As(V), evidenced by the As3d binding energy of ~ 45.5 eV (Figure 6a and b) [45]. 308 However, the As3d spectra intensity of As species adsorbed by Mn oxide was lower than that of 309 ferrihydrite, suggesting that Mn oxide was not responsible for As adsorption, which was consistent with

310 both adsorption isotherm data and Mn2p XPS spectra analysis. In the hematite chamber, As3d binding 311 energy was ~ 45.5 eV (Figure 6c). Arsenic species adsorbed by hematite were mainly As(V) (Figure 6a). 312 Unlike ferrihydrite, hematite adsorbed only a small amount of As(III). Unadsorbed As(III) slowly 313 diffused into the Mn oxide chamber and may subsequently have been oxidized to As(V). Total As 314 adsorbed by hematite was the same after the reaction reached equilibrium no matter which chamber 315 As(III) was added to, and was confirmed by As3d spectra intensity. This phenomenon also explained 316 why residual As concentrations were the same in the two Donnan experiments (Figure 4b). From the 317 above discussion, it may be concluded that As(III) oxidation mediated by manganese oxide in Fe-Mn 318 oxides is not suitable for all Fe-Mn binary oxides.

319 Environmental Implications. Fe-Mn binary oxides have been widely used as highly efficient absorbents 320 for application of As removal due to low-cost and environmental affability [47, 48]. Previous works have 321 suggested that synergistic effects between iron oxide as an absorbent and manganese oxide as an oxidant 322 are responsible for increasing As(III) removal [14, 19-22, 29]. However, in this study, we have revealed 323 both synergistic and antagonistic effects, in Fe-Mn binary oxides during As(III) removal. Arsenic-324 synthesized Fe-Mn binary oxides under laboratory conditions usually have specific surface areas greater 325 than those of their corresponding single Fe and Mn oxides, and may exhibit more active sites for As 326 adsorption, consequently unintentionally masking the antagonistic effect of As(III) removal [24, 29]; this 327 phenomenon was confirmed in this study. Amorphous ferrihydrite is abundantly present in the natural 328 environment and has a high reactivity [23], which makes it an important adsorbent for As immobilization in naturally reducing groundwater, sediment, and soil systems. As such the effect of Mn oxide on arsenite 329 330 adsorption on ferrihydrite should not be ignored, because both Fe and Mn oxides usually coexist in a 331 reducing environment. This potentially explains why As species are not completely adsorbed by iron (hydr-)oxide in reduced groundwater. In addition, this finding provides a new insight into the working
relationships between Fe and Mn oxides for As removal, which should aid in the rational design and
adequate selection of highly efficient absorbents of Fe-Mn binary oxides for treating real As
contaminated groundwater.

336 ASSOCIATED CONTENT

337 S Supporting Information.

- 338 XRD, EDS data, SEM images, Langmuir and Freundlich isotherm parameters for As(III) and As(V),
- 339 specific surface areas, FTIR spectra, aqueous arsenic concentration in Donnan reactor, Mn2p XPS spectra
- 340 profiles of the samples are available free of charge via the Internet at http://pubs.acs.org.

341 AUTHOR INFORMATION

342 Corresponding Author

- 343 *Jingtao Hou; Email: <u>houjt87@163.com</u>
- 344 *Shuxin Tu; Email: stu@mail.hzau.edu.cn
- 345 Notes
- 346 The authors declare no competing financial interest.

347 ACKNOWLEDGMENT

- 348 This work was supported by National Natural Science Foundation of China (41571229,
- 41977022), National Key Research and Development Program of China (2018YFC1800305), Hubei
- Provincial Natural Science Foundation of China (2018CFB627), and the Fundamental Research
- 351 Funds for the Central Universities (No. 2662017QD013).

352 **REFERENCES**

- 353 1. Smedley, P. L.; Kinniburgh, D. G., A review of the source, behaviour and distribution of arsenic
- in natural waters. Appl. Geochem. 2002, 17, (5), 517-568.
- 2. Choong, T. S.; Chuah, T.; Robiah, Y.; Koay, F. G.; Azni, I., Arsenic toxicity, health hazards and
- removal techniques from water: an overview. Desalination 2007, 217, (1-3), 139-166.
- 357 3. Edition, F., Guidelines for drinking-water quality. WHO chronicle 2011, 38, (4), 104-8.
- 4. Gorny, J.; Billon, G.; Lesven, L.; Dumoulin, D.; Made, B.; Noiriel, C., Arsenic behavior in
- river sediments under redox gradient: A review. Sci. Total Environ. 2015, 505, 423-434.
- 5. Gupta, K.; Bhattacharya, S.; Chattopadhyay, D.; Mukhopadhyay, A.; Biswas, H.; Dutta, J.; Ray,
- 361 N. R.; Ghosh, U. C., Ceria associated manganese oxide nanoparticles: Synthesis, characterization
- 362 and arsenic(V) sorption behavior. Chem. Eng. J. 2011, 172, (1), 219-229.
- 363 6. Gupta, K.; Bhattacharya, S.; Nandi, D.; Dhar, A.; Maity, A.; Mukhopadhyay, A.;
- 364 Chattopadhyay, D. J.; Ray, N. R.; Sen, P.; Ghosh, U. C., Arsenic(III) sorption on nanostructured
- 365 cerium incorporated manganese oxide (NCMO): A physical insight into the mechanistic pathway. J.
- 366 Colloid Interface Sci. 2012, 377, 269-276.
- 367 7. Chen, J.; Wang, J. Y.; Zhang, G. S.; Wu, Q. Y.; Wang, D. T., Facile fabrication of nanostructured
- 368 cerium-manganese binary oxide for enhanced arsenite removal from water. Chem. Eng. J. 2018,
- 369 334, 1518-1526.
- 8. Zhang, G. S.; Khorshed, A.; Chen, J. P., Simultaneous removal of arsenate and arsenite by a
- 371 nanostructured zirconium-manganese binary hydrous oxide: Behavior and mechanism. J. Colloid
- 372 Interface Sci. 2013, 397, 137-143.
- 9. Yin, Y. W.; Zhou, T. T.; Luo, H. J.; Geng, J. J.; Yu, W. Y.; Jiang, Z. J., Adsorption of arsenic by

- 374 activated charcoal coated zirconium-manganese nanocomposite: Performance and mechanism.
- 375 Colloid Surf. A-Physicochem. Eng. Asp. 2019, 575, 318-328.
- 376 10. Cai, X. J.; Li, Y.; Guo, J. W.; Liu, S.; Na, P., Mn(IV) promotion mechanism for the
- photocatalytic oxidation of arsenite by anatase-TiO2. Chem. Eng. J. 2014, 248, 9-17.
- 378 11. Zhang, W.; Zhang, G. S.; Liu, C. H.; Li, J.; Zheng, T.; Ma, J.; Wang, L.; Jiang, J.; Zhai, X. D.,
- 379 Enhanced removal of arsenite and arsenate by a multifunctional Fe-Ti-Mn composite oxide:
- 380 Photooxidation, oxidation and adsorption. Water Res. 2018, 147, 264-275.
- 381 12. Zhang, W.; Liu, C. H.; Zheng, T.; Ma, J.; Zhang, G. S.; Ren, G. H.; Wang, L.; Liu, Y. L.,
- 382 Efficient oxidation and sorption of arsenite using a novel titanium(IV)-manganese(IV) binary oxide
- 383 sorbent. J. Hazard. Mater. 2018, 353, 410-420.
- 13. Li, X.; He, K.; Pan, B. C.; Zhang, S. J.; Lu, L.; Zhang, W. M., Efficient As(III) removal by
- 385 macroporous anion exchanger-supported Fe-Mn binary oxide: Behavior and mechanism. Chem.
- 386 Eng. J. 2012, 193, 131-138.
- 387 14. Zhang, G. S.; Liu, H. J.; Qu, J. H.; Jefferson, W., Arsenate uptake and arsenite simultaneous
- sorption and oxidation by Fe-Mn binary oxides: Influence of Mn/Fe ratio, pH, Ca2+, and humic
- acid. J. Colloid Interface Sci. 2012, 366, (1), 141-146.
- 390 15. Zhu, J.; Baig, S. A.; Sheng, T. T.; Lou, Z. M.; Wang, Z. X.; Xu, X. H., Fe3O4 and MnO2
- assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions. J.
- 392 Hazard. Mater. 2015, 286, 220-228.
- 16. Xu, F. N.; Chen, H. X.; Dai, Y. X.; Wu, S. L.; Tang, X. J., Arsenic adsorption and removal by
- a new starch stabilized ferromanganese binary oxide in water. J. Environ. Manage. 2019, 245, 160-
- **395** 167.

- 396 17. Wu, K.; Liu, T.; Xue, W.; Wang, X. C., Arsenic(III) oxidation/adsorption behaviors on a new
- bimetal adsorbent of Mn-oxide-doped Al oxide. Chem. Eng. J. 2012, 192, 343-349.
- 398 18. Wu, K.; Zhang, N.; Liu, T.; Ma, C.; Jin, P. K.; Zhang, F. R.; Zhang, J.; Wang, X. C., Competitive
- adsorption behaviors of arsenite and fluoride onto manganese-aluminum binary adsorbents. Colloid
- 400 Surf. A-Physicochem. Eng. Asp. 2017, 529, 185-194.
- 401 19. Zhang, G. S.; Qu, J. H.; Liu, H. J.; Liu, R. P.; Li, G. T., Removal mechanism of As(III) by a
- 402 novel Fe-Mn binary oxide adsorbent: Oxidation and sorption. Environ. Sci. Technol. 2007, 41, (13),

403 4613-4619.

- 404 20. Zhang, G. S.; Liu, H. J.; Liu, R. P.; Qu, J. H., Adsorption behavior and mechanism of arsenate
- 405 at Fe-Mn binary oxide/water interface. J. Hazard. Mater. 2009, 168, (2-3), 820-825.
- 406 21. Ocinski, D.; Jacukowicz-Sobala, I.; Mazur, P.; Raczyk, J.; Kociolek-Balawejder, E., Water
- 407 treatment residuals containing iron and manganese oxides for arsenic removal from water -
- 408 Characterization of physicochemical properties and adsorption studies. Chem. Eng. J. 2016, 294,
- 409 210-221.
- 410 22. Bai, Y. H.; Yang, T. T.; Liang, J. S.; Qu, J. H., The role of biogenic Fe-Mn oxides formed in
- situ for arsenic oxidation and adsorption in aquatic ecosystems. Water Res. 2016, 98, 119-127.
- 412 23. Raven, K. P.; Jain, A.; Loeppert, R. H., Arsenite and arsenate adsorption on ferrihydrite:
- 413 Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol. 1998, 32, (3), 344-349.
- 414 24. Zhang, G. S.; Liu, F. D.; Liu, H. J.; Qu, J. H.; Liu, R. P., Respective Role of Fe and Mn Oxide
- 415 Contents for Arsenic Sorption in Iron and Manganese Binary Oxide: An X-ray Absorption
- 416 Spectroscopy Investigation. Environ. Sci. Technol. 2014, 48, (17), 10316-10322.
- 417 25. Wen, Z. P.; Zhang, Y. L.; Zhou, X. F.; Chen, R., Effective As(III) and As(V) immobilization

- 418 from aqueous solution by nascent ferrous hydroxide colloids (FHC). Sep. Purif. Technol. 2017, 176,
 419 395-401.
- 420 26. Kong, S. Q.; Wang, Y. X.; Hu, Q. H.; Olusegun, A. K., Magnetic nanoscale Fe-Mn binary
- 421 oxides loaded zeolite for arsenic removal from synthetic groundwater. Colloid Surf. A-Physicochem.
- 422 Eng. Asp. 2014, 457, 220-227.
- 423 27. Cui, H. J.; Cai, J. K.; Zhao, H.; Yuan, B. L.; Ai, C. L.; Fu, M. L., Fabrication of magnetic porous
- 424 Fe-Mn binary oxide nanowires with superior capability for removal of As(III) from water. J. Hazard.
- 425 Mater. 2014, 279, 26-31.
- 426 28. McCann, C. M.; Peacock, C. L.; Hudson-EdWards, K. A.; Shrimpton, T.; Gray, N. D.; Johnson,
- 427 K. L., In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil. J. Hazard. Mater.
- **428** 2018, 342, 724-731.
- 429 29. Zhang, G. S.; Qu, J. H.; Liu, H. J.; Liu, R. P.; Wu, R. C., Preparation and evaluation of a novel
- 430 Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Res. 2007, 41, (9), 1921-1928.
- 431 30. Ying, S. C.; Kocar, B. D.; Fendorf, S., Oxidation and competitive retention of arsenic between
- 432 iron- and manganese oxides. Geochim. Cosmochim. Acta 2012, 96, 294-303.
- 433 31. Redman, A. D.; Macalady, D. L.; Ahmann, D., Natural organic matter affects arsenic speciation
- 434 and sorption onto hematite. Environ. Sci. Technol. 2002, 36, (13), 2889-2896.
- 435 32. Hong, J.; Liu, L. H.; Luo, Y.; Tan, W. F.; Qiu, G. H.; Liu, F., Photochemical oxidation and
- dissolution of arsenopyrite in acidic solutions. Geochim. Cosmochim. Acta 2018, 239, 173-185.
- 437 33. Tang, W. S.; Li, Q.; Gao, S. A.; Shang, J. K., Arsenic (III,V) removal from aqueous solution by
- 438 ultrafine alpha-Fe2O3 nanoparticles synthesized from solvent thermal method. J. Hazard. Mater.
- 439 2011, 192, (1), 131-138.

440	34. Manning, B. A.; Fendorf, S. E.; Bostick, B.; Suarez, D. L., Arseni	c(II	I) oxidation and arseni	c(V)
		· ·	/	· · ·	

- adsorption reactions on synthetic birnessite. Environ. Sci. Technol. 2002, 36, (5), 976-981.
- 442 35. Lafferty, B. J.; Ginder-Vogel, M.; Zhu, M. Q.; Livi, K. J. T.; Sparks, D. L., Arsenite Oxidation
- 443 by a Poorly Crystalline Manganese-Oxide. 2. Results from X-ray Absorption Spectroscopy and X-
- 444 ray Diffraction. Environ. Sci. Technol. 2010, 44, (22), 8467-8472.
- 445 36. Hou, J. T.; Luo, J. L.; Hu, Z. Q.; Li, Y. Z.; Mao, M. Y.; Song, S. X.; Liao, Q. L.; Li, Q. Z.,
- 446 Tremendous effect of oxygen vacancy defects on the oxidation of arsenite to arsenate on
- 447 cryptomelane-type manganese oxide. Chem. Eng. J. 2016, 306, 597-606.
- 448 37. Hou, J. T.; Xiang, Y. J.; Zheng, D.; Li, Y. Z.; Xue, S. G.; Wu, C.; Hartley, W.; Tan, W. F.,
- 449 Morphology-dependent enhancement of arsenite oxidation to arsenate on birnessite-type manganese
- 450 oxide. Chem. Eng. J. 2017, 327, 235-243.
- 451 38. Voegelin, A.; Hug, S. J., Catalyzed oxidation of arsenic(III) by hydrogen peroxide on the
- 452 surface of ferrihydrite: An in situ ATR-FTIR study. Environ. Sci. Technol. 2003, 37, (5), 972-978.
- 453 39. Parikh, S. J.; Lafferty, B. J.; Sparks, D. L., An ATR-FTIR spectroscopic approach for measuring
- 454 rapid kinetics at the mineral/water interface. J. Colloid Interface Sci. 2008, 320, (1), 177-185.
- 455 40. Lan, S.; Ying, H.; Wang, X. M.; Liu, F.; Tan, W. F.; Huang, Q. Y.; Zhang, J.; Feng, X. H.,
- 456 Efficient catalytic As(III) oxidation on the surface of ferrihydrite in the presence of aqueous Mn(II).
- 457 Water Res. 2018, 128, 92-101.
- 458 41. Hou, J. T.; Sha, Z. J.; Hartley, W.; Tan, W. F.; Wang, M. X.; Xiong, J.; Li, Y. Z.; Ke, Y. J.; Long,
- 459 Y.; Xue, S. G., Enhanced oxidation of arsenite to arsenate using tunable K+ concentration in the
- 460 OMS-2 tunnel. Environ. Pollut. 2018, 238, 524-531.
- 461 42. Wen, Z. P.; Zhang, Y. L.; Wang, Y.; Li, L. N.; Chen, R., Redox transformation of arsenic by

- 462 magnetic thin-film MnO2 nanosheet-coated flowerlike Fe3O4 nanocomposites. Chem. Eng. J. 2017,
 463 312, 39-49.
- 464 43. Zhang, Y.; Yang, M.; Dou, X. M.; He, H.; Wang, D. S., Arsenate adsorption on an Fe-Ce bimetal
- 465 oxide adsorbent: Role of surface properties. Environ. Sci. Technol. 2005, 39, (18), 7246-7253.
- 466 44. Nesbitt, H. W.; Canning, G. W.; Bancroft, G. M., XPS study of reductive dissolution of 7
- 467 angstrom-birnessite by H3AsO3, with constraints on reaction mechanism. Geochim. Cosmochim.
 468 Acta 1998, 62, (12), 2097-2110.
- 469 45. Lafferty, B. J.; Ginder-Vogel, M.; Sparks, D. L., Arsenite Oxidation by a Poorly-Crystalline
- 470 Manganese Oxide. 3. Arsenic and Manganese Desorption. Environ. Sci. Technol. 2011, 45, (21),
- **471** 9218-9223.
- 472 46. Hou, J. T.; Luo, J. L.; Song, S. X.; Li, Y. Z.; Li, Q. Z., The remarkable effect of the coexisting
- 473 arsenite and arsenate species ratios on arsenic removal by manganese oxide. Chem. Eng. J. 2017,
- 474 315, 159-166.
- 475 47. Chakravarty, S.; Dureja, V.; Bhattacharyya, G.; Maity, S.; Bhattacharjee, S., Removal of arsenic
- 476 from groundwater using low cost ferruginous manganese ore. Water Res. 2002, 36, (3), 625-632.
- 477 48. Chang, F. F.; Qu, J. H.; Liu, R. P.; Zhao, X.; Lei, P. J., Practical performance and its efficiency
- 478 of arsenic removal from groundwater using Fe-Mn binary oxide. J. Environ. Sci. 2010, 22, (1), 1-6.
- 479

480 Table and Figure Captions:

- 481 Figure 1. Schematic illustration of the Donnan reactor composed of two reaction cells separated by a
- 482 semi-permeable membrane, where Fe and Mn oxides were placed into two chambers, respectively.
- 483 Figure 2. Adsorption isotherms for As(III) and As(V) by hematite (a), goethite (b), ferrihydrite (c), the

- 484 mixtures of hematite and MnO_x (d), goethite and MnO_x (e), and ferrihydrite and MnO_x (f) with a 100
- 485 mg L^{-1} suspension at pH 7.0.
- 486 Figure 3. Time-dependence of in suit flow ATR-FTIR spectra of ferrihydrite (a), hematite (b), the
- 487 mixed ferrihydrite and MnO_x (c), and the mixed hematite and MnO_x (d) reacted with 1 mM of As(III)
- solution at pH 7.0.
- 489 Figure 4. The evolution of aqueous arsenic concentration in Fe and Mn oxide chambers as a function
- 490 of time within ferrihydrite-Mn oxide (a, b) and hematite-Mn oxide (c, d) systems at pH= 7. The dosage
- 491 of Fe and Mn oxides in chambers was 100 mg L⁻¹. The As(III) concentration added in ferrihydrite-Mn
- 492 oxide and hematite-Mn oxide systems was 133.3 and 26.7 μ M, respectively.
- 493 Figure 5. The Fe2p XPS spectra of the iron oxides in ferrihydrite-Mn oxide (a, b, c) and hematite-Mn
- 494 oxide (d, e, f) systems before and after adding As(III) in Fe or Mn oxides chambers.
- 495 Figure 6. The As3d XPS spectra of the arsenic species adsorbed by iron or Mn oxides in ferrihydrite-
- 496 Mn oxide (a, b) and hematite-Mn oxide (c, d) systems after adding As(III) into Fe or Mn oxide
- 497 chambers.
- 498
- 499
- 500

502 Figure 1. Schematic illustration of the Donnan reactor composed of two reaction cells separated by a

semi-permeable membrane, where Fe and Mn oxides were placed into two chambers, respectively.

504

505

506 Figure 2. Adsorption isotherms for As(III) and As(V) by hematite (a), goethite (b), ferrihydrite (c),

507 mixtures of hematite and MnO_x (d), goethite and MnO_x (e), and ferrihydrite and MnO_x (f) with a 100

508 mg L^{-1} suspension at pH 7.0.

509

Figure 3. Time-dependence of in suit flow ATR-FTIR spectra of ferrihydrite (a), hematite (b), mixed ferrihydrite and MnO_x (c), mixed hematite and MnO_x (d) reacted with 1 mM of As(III) solution at pH

Figure 4. Evolution of aqueous As concentration in Fe and Mn oxide chambers as a function of time within ferrihydrite-Mn oxide (a, b) and hematite-Mn oxide (c, d) systems at pH= 7. The dosage of Fe and Mn oxides in chambers was 100 mg L⁻¹. The As(III) concentration added in ferrihydrite-Mn oxide and hematite-Mn oxide systems was 133.3 and 26.7 μ M, respectively.

520 Figure 5. Fe2p XPS spectra of iron oxides in ferrihydrite-Mn oxide (a, b, c) and hematite-Mn oxide (d,

521 e, f) systems before and after adding As(III) in Fe or Mn oxide chambers.

522

519

546	Supporting Information
547	
548	As(III) adsorption on Fe-Mn binary oxides: Are manganese oxide and iron oxide synergistic
549	or antagonistic for arsenic removal?
550	Qian Zheng, [†] Jingtao Hou, ^{†,*} Mingxia Wang, [†] Shuxin Tu, ^{†,*} Wenfeng Tan [†]
551	College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
552	
553	
554	
555	
556	
557	
558	
559	
560	Pages: 4
561	Tables: 3
562	Figures: 6
563	*Corresponding author: *Jingtao Hou; Email: houjt87@163.com
564	*Shuxin Tu; Email: stu@mail.hzau.edu.cn
565	
566	
567	
568	
569	
570	
571	
572	
573	
574 575	
5/5	
5/0 577	
577	
570	
580	

	Elements								
Fe-Mn	Fe	K	Mı	n K	С	k	0	K	
binary	Weight	Atomic	Weight	Atomic	Weight	Atomic	Weight	Atomic	
oxides	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	
Hem-MnO _x	38.09	17.12	14.75	6.74	4.09	8.54	43.07	67.59	
Goe-MnO _x	69.66	56.29	20.59	16.91	0.58	0.93	9.17	25.87	
Fh-MnO _x	44.87	21.01	11.34	5.4	3.67	8	40.12	65.59	

583

Table S2. Specific surface areas (SSA) of the samples.

Samples	Specific surface areas (m ² g ⁻¹)	
Hematite	38.9	
Goethite	143.3	
Ferrihydrite	247.0*	
Manganese oxide	46.5	
Hem-MnO _x	32.8	
Goe-MnO _x	213.3	
Fh-MnO _x	266.4	

^{*}Data was cited from previous work reported by Zhang et al (J Hazard. Mater. 2009, 168, 820-825).

585

586 Table S3. Langmuir and Freundlich isotherm parameters for As(III) and As(V) adsorption on single

A a		Lang	Freundlich model				
As	Adsorbents	$q_{\rm m}$	b	R^2	$K_{\rm F}$	n	R^2
-1		(µmol g ⁻¹)	$(L mol^{-1})$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
	Hematite	51.2	1.4	0.892	2.2	0.5	0.942
	Goethite	112.8	0.1	0.988	10.1	0.4	0.991
	Ferrihydrite	871.5	2.1	0.993	40.3	0.3	0.917
	MnO_x	9.5	4.1	0.533	2.5	0.9	0.913
	Mixed Hem+MnO ₂	90.7	2.6	0.969	4.5	0.5	0.977
As(III)	Mixed Goe+MnO ₂	116.3	33.7	0.981	11.9	0.3	0.644
	Mixed Fh+MnO ₂	694.4	2.0	0.989	33.0	0.3	0.996
	Binary Hem-MnO _x oxide	102.3	4.3	0.989	6.8	0.4	0.996
	Binary Goe-MnO _x oxide	131.5	33.8	0.997	10.1	0.2	0.988
	Binary Fh-MnO _x oxide	883.1	2.3	0.980	44.1	0.3	0.983
	Hematite	65.3	2.6	0.930	3.5	0.4	0.934
$\mathbf{A} = (\mathbf{X}I)$	Goethite	102.7	81.2	0.997	9.2	0.2	0.946
As(v)	Ferrihydrite	493.9	1.4	0.976	23.3	0.2	0.963
	MnO _x	2.8	0.01	0.844	7.9	0.6	0.938

587 iron oxide, manganese oxide, Fe–Mn binary oxides, and mixed Fe and Mn oxides at pH 7.0.

590 Figure S1. Schematic illustration of addition of As(III) solution into Fe oxide (a) and Mn oxide (b)

 592
 2 Theta (degrees)
 2 Theta (degrees)

594 binary oxides (B).

chambers, respectively.

596 Figure S3. SEM morphology of ferrihydrite- (A), goethite-(B), and hematite-(C) containing Fe-Mn

597 binary oxides.

599 Figure S4. Adsorption isotherms for As(III) and As(V) by manganese oxide with a 100 mg L⁻¹ suspension

600 at pH 7.0.

Figure S5. Evolution of the aqueous concentration of arsenic species (a) and the As(III) oxidation rate

603 (b) with reaction time at pH 7.0. Initial As(III) concentration was 2.67 μmol L⁻¹; Manganese oxide dosage

604 was 100 mg L^{-1} .

605

Figure S6. Adsorption isotherms for As(III) by different Fe-Mn binary oxides with a 0.2 mg L⁻¹ dosage

Figure S7. FTIR spectra of As(III) (a) and As(V) (b) standards.

Figure S8. Evolution of aqueous arsenic concentration as a function of time in ferrihydrite-Mn oxide

620 Figure S9. Mn2p XPS spectra of the Mn oxides in ferrihydrite-Mn oxide (a, b, c) and hematite-Mn

621 oxide (d, d	e, f) systems before an	d after adding As(III)) in Fe or Mn oxide	chambers.
-----------------	-------------------------	------------------------	---------------------	-----------