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Abstract 

During the process of ecological succession on bauxite residue disposal areas (BRDAs), 

nutrients accumulate as a result of microbial activity. Over time the residue is converted 

into a soil-like material, and as this ecosystem gradually stabilizes, plant establishment 

begins. The role of microorganisms in nutrient cycling however remains elusive on 

bauxite residue. Carbon (C), nitrogen (N) and phosphorus (P) ecological stoichiometry 

is a critical indicator of nutrient cycling in an ecosystem. In this study, we measured C, 

N, and P contents and microbial biomass carbon (MBC), nitrogen (MBN), and 

phosphorus (MBP) contents in bauxite residue in chronological stacks of residue, 

analyzing their ecological stoichiometric characteristics to investigate changes in 

nutrients following long-term natural weathering process. Results revealed that organic 

carbon (OC), total nitrogen (TN) and available phosphorus (AP) significantly increased 

with time, but total phosphorus (TP) decreased.  Bauxite residue C/P and N/P 

increased significantly with an increase in stacking age. MBC/MBN decreased 

significantly whilst MBC/MBP and MBN/MBP increased significantly with stacking 

age.  Carbon, N, P and MBC, MBN, MBP in bauxite residue correlated significantly, 

indicating that microbial biomass can be used as a biological indicator to evaluate 

bauxite residue quality.  This study revealed that BRDA ecosystem development 

reaches homeostasis gradually, whilst CNP substrate ratio and microbes can be used as 

an effective tool to gain insight into nutrient cycling.  
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Introduction 

Bauxite residue is a highly alkaline solid hazardous waste produced from bauxite 

processing for alumina production. It has a high salt content, poor nutrient status and is 

a potential threat to the surrounding environment (Zhu et al. 2018). Plant growth is 

hindered on bauxite residue because of its poor physical condition and chemical 

properties, as well as the associated nutrient deficiencies. Spontaneous colonization of 

bauxite residue disposal areas (BRDAs) by vegetation can stabilize the surface against 

wind and water erosion, increase organic matter and promote aggregation of the residue 

(Zhu et al. 2016a; Kong et al. 2017a).  A number of studies have revealed that natural 

weathering processes can ameliorate the residues, to the extent that a suitable 

environment is created for plant establishment (Zhu et al. 2016b; Santini and Peng 

2017).  Freshly stacked residues, having a high bulk density, low porosity and poor 

aggregate stability, were transformed into soil-like material through long-term natural 

processes, and this transformation supports the growth of herbaceous plants (Santini 

and Martin 2013). Plant growth reduced pH and exchangeable sodium percentage 

(ESP), increased organic matter, possibly due to the interaction of their roots and 

associated rhizosphere microorganisms (Zhu et al. 2016a). Recent research has 

demonstrated that it’s possible for surface revegetation by Bermuda grass (Cynodon 

dactylon) combined with arbuscular mycorrhizal fungi and giant reeds (Arundo donax 

L.) ( Babu and Reddy 2011; Alshaal et al. 2013; Kong et al. 2017). 

During the ecological restoration process, microorganisms are sensitive to 

environmental change and therefore can be an indicator to some degree (He et al. 2003). 

Microorganisms participate in biochemical processes such as decomposition, formation 

of humus and conversion of nutrients in ecosystems. They are the driving force for the 

transformation of plant nutrients and have key effects in the process of material 

circulation and energy flow (Zhao et al. 2016). Carbon (C), nitrogen (N) and 

phosphorus (P) are the basis of the chemical compositions of all life on the earth. They 

are the core of geochemical nutrient cycle and are extremely important ecological 



factors in an ecosystem. On the ecosystem scale, the composition of C, N and P in the 

environment determines the main processes, such as energy flow and material 

circulation (Elser et al. 2000; Peri et al. 2008; Christine et al. 2015). Microbial biomass 

is a reservoir of active soil nutrients, and although it accounts for only a small part of 

the soil organic matter, microbial biomass has a great effect and the nutrients are highly 

available. Therefore, it is part of the dynamic organic matter in soil, as well as the 

“source” and “library” of nutrient elements such as nitrogen and phosphorus which 

include bacteria, fungi, actinomycetes and protozoa, but excludes plants (Mazzarino et 

al. 1993; Jia et al. 2016). Microbial biomass is an important parameter for characterizing 

material circulation and energy flow in ecosystems. The greater the value, the more 

active the microorganisms are, and to some extent, the stronger the material circulation 

capacity of the ecosystem (Zhao et al. 2013).  

Ecological stoichiometry mainly studies the energy balance of ecosystems and the 

proportional relationships between chemical elements. At present, most research 

focuses on the link between carbon, nitrogen and phosphorus, and their ecological 

stoichiometry can reflect nutrient cycling in this system (Anderson et al. 2004). The 

earliest studies of ecological stoichiometry have mainly been carried out in aquatic 

ecosystems, but there are biological and environmental differences between aquatic 

systems and terrestrial systems. These differences have hindered analyses of 

community and ecosystem structure of diverse habitats. Ecological stoichiometry 

provides an integrated approach to this type of analysis, because all organisms are 

composed of the same major elements (C, N, P). In summary, ecological stoichiometry 

provides a novel idea for studying the biogeochemical cycles and ecochemical 

processes of C, N, P and other major elements, and is an important ecological indicator 

in the biogeochemical cycle (Elser et al. 2000). So far, research on ecological 

stoichiometry of MBC, MBN and MBP has focused on successional changes in soil 

stoichiometry on abandoned lands, the influence of soil saline-alkali stress on nutrient 

homeostasis and nutrient stoichiometric ratio changes during ecological restoration of 

copper mine tailings (Jiao et al. 2013; Li et al. 2018; Wang et al. 2018). These analyses 

are helpful to understand the biological processes and nutrient cycling in terrestrial 



ecosystems (Yuan et al. 2011).  

In this study, bauxite residue from different stacking years on a BRDA in 

Zhongzhou, Henan Province, was selected to study changes in nutrient concentrations 

and ecological stoichiometry as a result of natural weathering processes. Our objectives 

were to: (1) examine C, N, P and their stoichiometric characteristics from different aged 

residues; (2) examine how ecological stoichiometric characteristics of MBC, MBN, and 

MBP vary according to stacking age and depth; (3) characterize the relationships 

between these parameters examined in (1) and (2). Based on these three objectives, we 

also analyze the homeostasis of the ecosystem on BRDAs, in an attempt to provide a 

theoretical basis for vegetation restoration. 

 

Materials and methods 

Sample preparation 

Residue samples were collected from an aluminum enterprise in Central China. The 

climate is warm temperate continental monsoon, with an average annual precipitation 

of 600-1200mm and an annual average temperature of 12.8-14.8 °C. There is abundant 

rainfall, although its distribution between seasons varies, but mainly concentrated 

during the summer months. 

According to field investigations, five zones related to disposal age were selected, 

including 1-year-old residue (BR1), 5-year-old residue (BR5), 10-year-old residue 

(BR10), 15-year-old residue (BR15), and 20-year-old residue (BR20). Natural 

colonization of herbaceous plants appeared on the 20-year-old residue, and soil near the 

BRDAs was collected as a control (CK). At each zone, three sub-samples with a 

distance of 5 m were collected to form a representative sample. The residues were 

sampled to three depths, 20 m, 40 m, and 60 m, at each location. Samples were then 

stored in polyethylene bags, returned to the laboratory, air dried for 1 week, and 

subsequently sieved (<2 mm) prior to analysis. 



Chemical analysis 

pH and electrical conductivity (EC) were determined using residue:water = 1:5.  

Organic carbon (OC) was determined by low-temperature external-heat potassium 

dichromate oxidation colorimetric method. OC was oxidized by potassium dichromate 

(100 ℃, 90 min), and part of Cr6+ was reduced to Cr3+, then the absorbance of Cr3+ 

was determined by colorimetry. For total nitrogen (TN), samples were diluted with 

sulfuric acid, then determined by the semi-micro-Kjeldahl method. Available 

phosphorus (AP) was extracted using 0.5 mol﹒l-1 NaHCO3, and then determined by 

molybdenum antimony anti-colorimetry. 

 

Biological analysis 

MBC, MBN and MBP were determined by chloroform fumigation extraction (Brookes 

et al. 1982; Brookes et al. 1985). MBC and MBN were extracted with potassium sulfate. 

Two pre-cultured residue samples (25 g) were dried and then extracted with 0.5 mol/L 

K2SO4 solution. The samples were shaken at 300 r/min for 30 min. The remaining two 

portions were fumigated with chloroform in a vacuum desiccator for 24 h, and then 

chloroform was removed for extraction immediately. An equal amount of the extract 

was mixed with 2% sodium hexametaphosphate and measured by a total organic carbon 

(TOC) analyzer. TN in the extract was determined by a Kjeldahl digestion-automatic 

nitrogen analyzer.  

Bauxite residue MBC was calculated by multiplying the difference between OC 

extracted by fumigated and non-fumigated residues with the conversion coefficient KC 

(2.22). MBN is the same as MBC (KN (2.22)). MBP was determined by sodium 

carbonate extraction-molybdenum antimony anti-colorimetry. After drying, 4 g of each 

pre-cultured residue was either directly extracted with 0.5 mol/L NaHCO3 (pH 8.5), or 

fumigated with chloroform in a vacuum desiccator for 24 h, and then extracted with 

chloroform. The phosphorus in the extracted solution was then determined by 

colorimetry, and the extraction recovery of phosphorus was determined by adding 



inorganic phosphorus. MBP was calculated by multiplying the difference between 

extracted P from fumigated and non-fumigated residues, which was then corrected 

using the conversion coefficient KP (2.5). 

Statistical analysis 

Data were statistically treated with Microsoft Excel 2003, IBM SPSS r. 19.0 and 

OriginLab® Origin® r. 8.0. Stacking samples with different chronosequences were 

individually determined using one-way ANOVA (analysis of variance) and 

homogeneity of variance tests. Pearson correlation coefficient was carried out to 

determine the relationships between C, N, P and MBC, MBN, MBP in different 

chronosequences. 

 

Results and discussion 

Characteristics of chemical and microbial biomass indices in bauxite residue  

During natural weathering, the composition and concentrations of C, N and P in bauxite 

residue from the different storage ages, can reflect changes in nutrients. Natural 

weathering significantly increased the chemical properties of bauxite residue (P<0.05). 

At the depth of 0-20 cm, OC, TN and AP, were 5.7~10.8 g/kg, 0.05~0.87 g/kg and 

0.005~0.024 g/kg, respectively (Fig. 1). These increases over time revealed that natural 

weathering was beneficial to the accumulation of nutrients. During disposal, alkaline 

mineral phases gradually change with the reduction in pH, and the acid-base 

environment suitable for microbial survival is gradually reached (Santini and Martin 

2013). Previous studies have found that natural weathering of bauxite residue is 

conducive to the formation of residue aggregates, which improves porosity and water 

content, and therefore its overall physical condition, which therefore increases 

microbial diversity (Zhu et al. 2016a). The increase in species richness and quantity of 

microorganisms can promote carbon sequestration and nitrogen fixation. Some 



microorganisms can convert CO2 in the atmosphere into carbohydrates, whilst 

biological nitrogen fixation may enhance nitrogen content and its long-term 

accumulation (Zhang et al. 2012). Plant growth has been observed on BRDAs that have 

been stored for 20 years. Vegetation coverage, decomposition of plant litter and animal 

debris, is more conducive to carbon and nitrogen accumulation, which also provides a 

comfortable living environment for microbial activity. 

 

 

 

Fig. 1 OC, TN and AP contents of bauxite residues in different stacking ages. Different lowercase letters indicate 

significant differences (P<0.05). 

 

Microbial biomass reflects the retention of C, N and P; a reduction in biomass 

leads to mineralization of nutrients, and an increase leads to nutrient retention (McGill 

et al. 1986). When describing the influence of natural weathering processes on nutrient 

ecological stoichiometry, effective nutrients (C, N and P) are better predictors than total 

nutrients. MBC, MBN and MBP reflect the absorption and transformation of nutrients 

by microorganisms. During disposal, changes in MBC, MBN and MBP were similar to 

OC, TN and AP; all of them increased significantly with stacking time (P<0.05), 

illustrating the impact of natural weathering on microbial biomass ecological 

stoichiometry. MBC and MBN increased significantly with stacking age (P<0.05), 

MBC stabilized at 167.57 mg/kg and MBN reached 37.37 mg/kg in BR20. While MBP 

increased significantly during storage from 1 to 10 years (P<0.05), it then remained 

stable for 10 to 15 years, followed by a significant increase (P<0.05). This indicates an 

improvement in microbial activity, thus in the presence of microorganisms, the nutrients 



were efficiently transformed and accumulated. As there is minimal human disturbance 

at the BRDAs, with no material migration or removal, OC and TN contents in BR20 

were the greatest, as well as C and N sequestered by microbes. In the bauxite residue 

stockpiled for 20 years, MBP reached the greatest value, 5.92 mg/kg. This may be 

because BR20 contains the most abundant OC and the greatest microbial activity, so 

microbes were able to dissolve inorganic phosphorus and improve its retention. 

 

 

Fig. 2 MBC, MBN and MBP contents of bauxite residues in different stacking ages. Different lowercase letters 

indicate significant differences (P<0.05). 

 

Depth also affects nutrient accumulation, with nutrient cycling being more 

efficient at the surface. In residue stocked for 20 years, OC, TN, TP and MBC, MBN, 

MBP changed significantly from the surface to the base of the stack (Table 1, P<0.05). 

As depth increases, OC and TN revealed similar distribution trends. They decreased 

from 10.81 to 3.88 g/kg and 0.87 to 0.16 g/kg, whilst TP increased from 0.45 to 0.61 

g/kg. Among the different depths, MBC, MBN and MBP demonstrated similar depth-

related patterns, with the greatest values of 167.6, 37.4 and 5.9 mg/kg on the surface of 

BR20, respectively. This may be due to improved aeration at the surface. Additionally, 

carbon and nitrogen fixation by microorganisms will promote the accumulation of OC 

and TN. Furthermore, microorganisms can secrete organic acids to dissolve phosphorus, 

which may then be washed down to the lower layers with rainwater runoff, so the TP 

content in the residue is low. 

 



Ecological stoichiometric characteristics of chemical and microbial biomass 

indices in bauxite residue 

Ratios of C, N and P are susceptible to soil formation factors such as the rate of parent 

material weathering, and this is the same for bauxite residue. Therefore, the ratio can 

be used to evaluate the nutrient status and quality of bauxite residue (Santini and 

Banning 2016). In this study, the C:N ratio in bauxite residue from the different stacking 

years varied from 12.41 to 101.45, the C:P from 8.81 to 24.28, and N:P from 0.08 to 

1.96. The C/N of bauxite residue was high, whilst C/P and N/P were comparatively low. 

Results showed that there was a significant difference in C/N, C/P and N/P between 

BR1 and BR20, indicating the influence of natural weathering on the ecological 

stoichiometry of nutrients in residues. The mean range of C/N is 10-12 in China. The 

value of C/N was as high as 101.45 in BR1, but fell significantly after 5 years of storage, 

and then gradually decreased to 12.41 after being stacked for 20 years; close to the 

average range of soil C/N (P<0.05) (Wang and Yu 2008). This may be attributed to the 

low inputs of nitrogenous substances in the production of alumina, so nitrogen content 

is very low. However, with increasing duration following disposal, nitrogen gradually 

accumulates. Bauxite residue that had been stored for 20 years showed evidence of 

plant establishment. Plant litter, root exudates and decaying roots can effectively 

promote the accumulation of OC and N, whereas P requires weathering processes to 

release it. As microorganism numbers increase, organic acid will be secreted to dissolve 

phosphorus , which they require to produce adenosine triphosphate (ATP) for cellular 

respiration (Moore et al. 2011). Almost all microbes are capable of utilizing inorganic 

phosphates, so inorganic phosphorus may be dissolved by mineralization, then organic 

phosphorus is released. This phenomenon may lead to a decrease in total phosphorus 

content and an increase in available phosphorus content. Further research is required to 

determine the drivers which directly or indirectly influence the variation of phosphorus 

availability and stacking age. 

Redfield (1958) discovered that the C:N:P ratio is almost constant in marine 

plankton (106:16:1), and that the ratio of N:P in plankton is similar to deep seawater. 



The Redfield ratio compares the chemical processes in the oceans with biological 

processes that are organically linked and have important implications for terrestrial 

ecosystems (Moore et al. 2011). Subsequently, Cleveland and Liptzin (2007) found that 

soil carbon, nitrogen and phosphorus ratios also have significant stability, with a ratio 

186:13:1, indicating that C, N and P in different ecosystems have homeostatic 

characteristics (Jiao et al. 2013). Overall, the C/N of bauxite residue revealed a 

descending trend, whilst C/P and N/P showed a rising trend, with an increase in storage 

period. The average range of soil C/N is 10-12 in China, and the C/N of bauxite residue 

for 20 year old stacks is close to this value (Wang and Yu 2008), but the C/P and N/P 

is much smaller than soil C/P and N/P (Cleveland and Liptzin 2007; Tian et al. 2010). 

Besides, there is a very significant positive correlation between C and N in bauxite 

residue (P<0.01), indicating that changes in C and N are relatively consistent, and they 

are almost synchronous in stacking age, reaching homeostasis. So far, the lack of C and 

N in bauxite residue may lead to the low C/P and N/P, so that nutrient cycling may be 

limited by carbon and nitrogen content. 

 

Fig.3 Ecological stoichiometry of bauxite residues in different stacking ages 

 

In bauxite residue, MBC/MBN has a range of 4.52~6.75, MBC/MBP varies from 

23.74 to 59.16, and MBN/MBP ranges from 4.52 to 6.32. Soil MBC/MBN was 



6.67~8.00. In this study, this value reached a maximum of 6.75 in BR5, which was in 

the range of soil microbial biomass carbon-nitrogen ratio (Wright and Coleman 2000). 

The MBC/MBN was 5.25 in BR1 and 4.52 in BR20. For 5-year-old stacks it was 

significantly higher than that of residue from 1-year stacks. This ratio gradually 

decreased in the following 15 years, but it reached 9.4 on BRDAs with long-term 

storage and plant colonization, which was in the range for soil MBC/MBN. With 

increasing stacking years, MBN/MBP and MBC/MBP increased in bauxite residue, and 

both have significant differences between BR1 and BR20 (P<0.05). However, 

MBC/MBP did not change significantly in bauxite residue that was stored for 5 or 20 

years. There was no significant difference in MBN/MBP between BR15 and BR20. 

Overall, there were no obvious changes between microbial biomass stoichiometric 

characteristics, illustrating that the system was homeostatic. Huang and other 

researchers (Wardle 1998) believe that MBC/MBN can be analyzed to reflect the 

microbial species and fauna. The C/N ratio of bacteria is ~ 5:1, actinomycetes ~ 6:1, 

and fungus ~10: 1. Bacteria in bauxite residue stored for 1 year and 20 years were the 

greatest among the total number of microorganisms. The number of actinomycetes in 

bauxite residue stored for 5 years and 10 years was the greatest among the total number 

of microorganisms. Fungi in bauxite residue where plants were established was the 

highest among the total number of microorganisms, and this may be related to the 

mycorrhiza of the plant rhizosphere. 



 

Fig.4 MBC, MBN and MBP ecological stoichiometry of bauxite residues in different stacking ages 

 

The ratios between C, N and P from different depths in BR20 are presented in 

Table 1. The C/N of bauxite residue for 20 years was minimized at a depth of 20-40 cm, 

and there was no significant difference between the surface and at a depth of 20-40 cm 

(P<0.05). C/P and N/P decreased with depth, and reached the greatest value in the 

surface of the residues. The effect of depth on microbial biomass ecological 

stoichiometry in BR20 is revealed in Table 1. MBC/MBN consistently declined with 

depth from a maximum of 9.4 between 0-20 cm to a minimum of 4.6 between 40-60 

cm. The MBC/MBP and MBN/MBP ratios between 0-20 cm significantly exceeded 

those of the respective ratios between 40-60 cm by 6.3 and 59.2.  

 

Relationship between chemical properties and microbial biomass indices  

In residue samples, MBC, MBN and MBP were positively correlated with OC and TN 

(P<0.01), but negatively correlated with TP (r=-0.899, -0.946 and -0.928, respectively; 

P<0.01), revealing that MBC, MBN and MBP are closely related to C, N and P contents 

in bauxite residue. Therefore, MBC, MBN and MBP can be used as indicators to 

evaluate nutrient contents in bauxite residue, and organic matter, as important factors 



in accumulating microbial carbon and nitrogen. There was a negative correlation 

between MBC and MBC/MBN (r=-0.270, P<0.01), but a positive correlation with 

MBC/MBP and MBN/MBP (r=0.731, P<0.01). Otherwise, there was no correlation 

between MBN and MBC/MBN. This means that the change in MBC/MBN of bauxite 

residue is mainly related to MBC. In addition, MBP was positively correlated with 

MBC/MBP and MBN/MBP (r=0.792 and 0.858, P<0.01). 

Soil MBC/MBN, MBC/MBP is closely related to soil organic matter, and they are 

important indicators in reflecting organic matter content and nitrogen supply capacity. 

Previous studies showed that the lower the soil MBC/MBN and MBC/MBP, the more 

abundant of soil available nitrogen and phosphorus (Breuer et al. 2006). The 

MBC/MBN in BR5 increased significantly compared with BR1, but then it gradually 

decreased, indicating an increase in nitrogen content after 5 years of storage. 

MBC/MBP increased gradually with stacking time, whilst AP in this study also 

increased (Fig. 1). This may be due to the absorption conversion efficiency of microbes 

being so high that the value of MBP is also high. This illustrates that microorganisms 

have a tendency to assimilate phosphorus in the residue, therefore playing a crucial role 

in phosphorus fixation. When plants establish, competition for effective phosphorus 

absorption by microorganisms and plants may occur (Zhao et al. 2013). During 

weathering, residue properties are improved, microbial flora changes, and finally these 

processes promote the ecological succession on BRDAs. 

 

 

 

 

 

 

 

 

 

 



Table 2 Correlation analysis of MBC, MBN, MBP and C, N, P in bauxite residue with different stacking years 

Parameters OC TN TP C/N C/P N/P MBC MBN MBP 

TN 0.914**         

TP -

0.948** 

-

0.910** 

       

MBC 0.874** 0.737** -

0.899** 

-

0.872** 

0.840** 0.669**    

MBN 0.931** 0.859** -

0.946** 

-

0.836** 

0.919** 0.804** 0.956**   

MBP 0.902** 0.816** -

0.928** 

-

0.856** 

0.885** 0.761** 0.962** 0.990**  

MBC/MBN -0.550* -

0.624** 

0.492 0.103 -0.583* -0.628* -

0.270** 

-0.500 -0.435 

MBC/MBP 0.894** 0.959** -

0.890** 

-

0.708** 

0.929** 0.962** 0.731** 0.831** 0.792** 

MBN/MBP 0.892** 0.775** -

0.885** 

-

0.750** 

0.870** 0.709** 0.907** 0.909** 0.858** 

 

Conclusions 

In summary, freshly stacked bauxite residue at the BRDA in Central China was 

observed to be in poor condition, having low OC, TN and AP.  Following disposal, 

and with time, vegetation begins to naturally colonize on the residue, and natural 

process improve the nutrient content. Furthermore, the ecological stoichiometry of C, 

N and P indicates that this ecosystem tends to become more stable with disposal time. 

We reveal that microbes are important in ecological restoration of bauxite residue. The 

ecological stoichiometry of MBC, MBN and MBP are important indexes in evaluating 

the quality of bauxite residue. 
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Table 1 C, N, P content and their ecological stoichiometry at different depths of BR20 

Depth

（cm

） 

OC 

（g/kg） 

TN 

（g/kg） 

TP 

（g/kg） C/N C/P N/P 

MBC 

(mg/kg) 

MBN 

(mg/kg) 

MBP 

(mg/kg) MBC/MBN MBC/MBP MBN/MBP 

0-20 10.81a±0.43 0.87a±0.08 0.45c±0.02 12.4b±1.11 24.3a±1.78 2.0a±0.19 167.6a±13.9 37.4a±3.43 5.9a±0.67 9.4a±0.2 6.3a±0.1 59.2a±1.3 

20-40 6.29b±0.16 0.53b±0.06 0.52b±0.01 11.8b±1.07 12.1b±0.31 1.0b±0.12 94.5b±12.3 24.7b±1.39 4.7b±0.43 7.6b±0.1 5.3b±0.4 40.3b±2.5 

40-60 3.88c±0.16 0.16c±0.02 0.61a±0.02 25.3a±4.25 6.3c±0.48 0.3c±0.02 23.6c±4.4 8.38c±0.97 1.94c±0.29 4.6c±0.1 4.3c±0.2 19.8c±1.1 

Different lowercase letters (a, b, c) mean significant difference (P<0.05) among the same indexes in the same lines. 
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