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Abstract: Acanthopanax sessiliflorus (Rupr. & Maxim.) Seem. (Araliaceae) is one of the most
abundant species of genus Acanthopanax. The fruits of A. sessiliflorus are used in traditional medical
protocols as an analgesic, tonic, antidiabetic, antihypertensive, anti-inflammatory, antitumor, and
immune-stimulating agent. In this work, we carried out a comprehensive investigation into the
anthocyanin components in the fruits of A. sessiliflorus. The anthocyanin content in the fresh
fruits of A. sessiliflorus was determined by high performance liquid chromatography-diode array
detection (HPLC/DAD), and the anthocyanin component was isolated from these using high-speed
counter-current chromatography (HSCCC) and elucidated by electro-spray ionization-mass
spectrometry (ESI/MS), 1H- and 13C-NMR. Its antioxidant activity was evaluated by ferric-reducing
antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). We found that A. sessiliflorus
contained a gross anthocyanin content of 121.35 mg/100 g. HSCCC was successfully used for
separation and purification of the primary anthocyanin component, cyanidin 3-xylosyl-galactoside.
The antioxidant and radical scavenging tests indicated that cyanidin 3-xylosyl-galactoside is a
potent antioxidant.

Keywords: anthocyanin; Acanthopanax sessiliflorus (Rupr. & Maxim.) Seem.; high-speed
counter-current chromatography (HSCCC); antioxidant activity

1. Introduction

Acanthopanax sessiliflorus (Rupr. & Maxim.) Seem. (Araliaceae) (Figure 1) is one of the most
abundant species of genus Acanthopanax, which is a perennial plant native to the northeast region
of China, Japan, and Korea. The roots, stems, and leaves of A. sessiliflorus elicit a range of biological
functions, including antipancreatic lipase, antiplatelet aggregation, and anti-inflammatory effects [1–4].
Various parts from the plant are used in a wide range of traditional medical applications, including
the roots, shoots, bark, leaves, and fruits [2,5–10]. The fruits of A. sessiliflorus are used in traditional
medical protocols as an analgesic, tonic, antidiabetic, antihypertensive, anti-inflammatory, antitumor
and immune-stimulating agent [5–7].
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Many different compounds were extracted and identified from the dried materials of A. 

sessiliflorus fruits for their biological functions, identified as seopoletin, isofraxidin, hyperin, 

scoparone, protocatechuic acid, ursolic acid, oleanic acid, chiisanogenin, sesamin, daucosterol, β-

sitosterol, etc. [11–15]. While most of the above-mentioned compounds provide potential health 

benefits in terms of analgesic, anticoagulant, or anti-inflammatory actions, only very few antioxidant 
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antioxidative profile and characterized as both an O2− inhibitor and scavenger was described [16]. Up 
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scale-up separation with minimum sample preparation and permits both normal- and reversed-

phase operation [18]. HSCCC is a support-free liquid–liquid partition chromatographic technique 

shown to be a useful tool for the purification of compounds from natural products [19–23]. As such, 
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pressure method) technology and has a relatively low cost of operation due to its use of technical-
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Figure 1. Fruits from Acanthopanax sessiliflorus (Rupr. & Maxim.) Seem.

Many different compounds were extracted and identified from the dried materials of A. sessiliflorus
fruits for their biological functions, identified as seopoletin, isofraxidin, hyperin, scoparone,
protocatechuic acid, ursolic acid, oleanic acid, chiisanogenin, sesamin, daucosterol, β-sitosterol,
etc. [11–15]. While most of the above-mentioned compounds provide potential health benefits in terms
of analgesic, anticoagulant, or anti-inflammatory actions, only very few antioxidant compounds were
identified. An unidentified compound (AE-7-CII) from A. sessiliflorus possessing an antioxidative
profile and characterized as both an O2− inhibitor and scavenger was described [16]. Up to now, few
reports exist regarding anthocyanin analysis in fresh A. sessiliflorus fruits. Anthocyanins provide the
skins of fruits with colors varying from purple to black and possess a multitude of biological properties,
e.g., antidiabetic, anti-inflammatory and antitumor properties [17].

High-speed counter-current chromatography (HSCCC) is an innovative technique used for
scale-up separation with minimum sample preparation and permits both normal- and reversed-phase
operation [18]. HSCCC is a support-free liquid–liquid partition chromatographic technique shown to
be a useful tool for the purification of compounds from natural products [19–23]. As such, HSCCC has
some major advantages over more traditional liquid–solid chromatography by eliminating the various
complications caused by the solid support matrix, such as adsorptive loss and deactivation of samples,
tailing of solute peaks, contamination, etc. It is a relatively simple (low-pressure method) technology
and has a relatively low cost of operation due to its use of technical-grade solvents [24]. Finally, it has
an excellent yield capacity with a phenomenal sample recovery.

In this study, the anthocyanin content in the fresh fruits of A. sessiliflorus was determined by
HPLC/DAD, and the anthocyanin component was isolated from these using HSCCC and elucidated
by ESI/MS, 1H- and 13C-NMR. Antioxidant activity was evaluated by 2,2-diphenyl-1-picrylhydrazyl
(DPPH) and ferric-reducing antioxidant power (FRAP).

2. Results and Discussion

2.1. Total Anthocyanin Determination

The gross anthocyanin content was 121.35 mg/100 g, expressed as milligrams of cyanidin
3-glucoside per 100 g of fresh weight by HPLC-DAD. The primary peak (Figure 2) occupied 95.4%
of the total peak area and other anthocyanin components were present at trace levels only. Based on
the UV-Vis spectrum of the primary peak, the maximum absorbance was 520 nm, which is typical of
anthocyanins [25,26]. The absorbance between 310 and 360 nm (Figure 2) suggested that the compound
might not be acylated [27]. The absorbance ratio at 440 nm to the absorbance of the visible maximum
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wavelength for the primary peak (A440 nm/Aλmax ratio) was found to be 30.08%, indicating that this
compound is very likely glycosylated at the C-3 position of the C-ring [28,29].Molecules 2020, 25, x 3 of 14 
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Figure 2. UV-Vis spectrum of the primary peak. The maximum absorbance at 520 nm. The lack of
absorbance in the region between 310 and 360 nm (horizontal bar) indicates that the compound might
not be acylated.

2.2. Selection of Two-Phase Solvent System for Purification

A suitable two-phase solvent system is essential for successful separation by HSCCC. Nonpolar
solvents are favored for the isolation of nonpolar target compounds, while polar solvent systems are
favored for the isolation of polar compounds. In order to realize efficient separation of the typically
hydrophilic anthocyanin compounds, a system of polar solvents was examined. Separation by HSCCC
is expressed as its partition coefficient (K), which is usually between 0.4 and 2.5 [20]. A smaller K-value
elutes the solute closer to the solvent front at a reduced resolution, while a larger K value tends to
yield a better resolution but with broader, more dilute peaks due to a longer elution time [20].

The biphasic solvent system used in this study was composed of methyl tert-butyl
ether/n-butanol/acetonitrile/water/trifluoroacetic acid, which is commonly used for the separation of
anthocyanins [30–32]. Since the volume ratio of methyl tert-butyl ether and n-butanol has a marked
influence on the polarity differential of the two phases, the optimal solvent system was optimized by
changing the volume ratio of methyl tert-butyl ether and n-butanol. The results demonstrated that
methyl tert-butyl ether/n-butanol/acetonitrile/water/trifluoroacetic acid (3.5:0.5:1:5:0.01, v/v) was suitable
for separation of the main anthocyanin components from crude A. sessiliflorus anthocyanins (CAA).

2.3. HSCCC Separation

The HPLC detection of CAA at 280 nm indicated that it contained several compounds (Figure 3).
While no attempts were made to identify all peaks in Figure 3A, the peak that eluded at approximately
20 min was subsequently identified as cyanidin 3-xylosyl-galactoside (see Figures 3B and 4). The
relative concentration of anthocyanin compounds in the crude sample was 13.9%. Figure 4 shows
the result obtained from 100 mg of the crude sample by semi-preparative HSCCC. The compounds
that eluded between 80 and 90 min, as seen in Figure 4, possessed no color and were therefore not
considered to be anthocyanins. The eluent associated with the shaded part of the peak was collected
and concentrated. This separation yielded 13.1 mg of anthocyanins at 96.1% purity based on HPLC
analysis, with a mass recovery greater than 90%.
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Figure 3. HPLC chromatograms at 280 nm. (A) Chromatogram of the Acanthopanax sessiliflorus
acidified methanol extract; (B) cyanidin 3-xylosyl-galactoside from Acanthopanax sessiliflorus following
purification by means of high-speed counter-current chromatography (HSCCC) (Figure 4).
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Figure 4. HSCCC chromatogram of the extract from Acanthopanax sessiliflorus (Rupr. & Maxim.) Seem.
The shaded peak represents the fraction of cyanidin 3-xylosyl-galactoside.

2.4. Confirmation of Anthocyanin Compound

To confirm the chemical structure of the anthocyanin compound, the fraction purified by HSCCC
was subjected to both MS and NMR analyses.

The anthocyanin fraction shown as the greyed out area in Figure 4 was structurally analyzed by
ESI-MS. A clear mass spectrum was obtained where an ion at [M + H]+ m/z 583 indicated the molecular
weight of the entire molecule (Figure A1). Based on the m/z and fragmentation pattern in this study
and similar analysis from other studies [25], the anthocyanin was tentatively labeled as cyanidin
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3-xylosyl-galactoside. As the fragmentor voltage was increased, a decrease in the relative intensity of
the putative cyanidin 3-xylosyl-galactoside ion was observed (data not shown). However, the increase
in the fragmentor voltage did result in an increase in a mass ion of m/z 287, corresponding to the core
cyanidin structure of anthocyanidin [33,34]. This positively charged aglycone was most likely formed
by the loss of the putative disaccharide moiety (xylose and galactose) from Cya-3-Xyl-Gal.

In order to determine the sugar moiety and the linkage patterns between the cyanidin core
and the sugar groups, the purified primary anthocyanin (Figure 4) was further characterized by 1H-
and 13C-NMR analyses (Table 1 and Figures A2 and A3). With regard to the 1H-NMR analysis, the
compound showed a singlet at 8.88 and doublets at 6.63 and 6.95 for the flavone aromatic protons 4, 6,
and 8, respectively. The aromatic protons 2′, 5′, and 6′ were seen as two doublets and a double doublet
at 7.95, 6.86, and 8.23, respectively, with J values of 2.5 and 9 Hz. The anomeric protons associated
with the sugars at 5.39 and 4.71 appeared as doublets with a J value of 7.5 Hz, suggesting a diglycoside
moiety with β-configuration at the anomeric positions. Other protons corresponding to the diglycoside
group appeared as three triplets at 4.26, 3.79, and 3.03, consistent with one, two, and two protons,
respectively. The spectrum also contained two doublets at 3.98 and 3.84, along with three double
doublets at 3.91, 3.17, and 3.64. A multiplet was seen in the spectrum at 3.35. Many anthocyanins
contain glucose within the sugar moiety [25,26]. In our data analysis we favored galactose as the hexose
within the diglycoside because of the typical chemical shifts and coupling constants at 2”, 3”, and 4” in
Cya-3-Xyl-Gal [35,36] compared to the typical chemical shifts and coupling constants at 2”, 3”, and 4”
associated with glucose in Cya-3-Xyl-Glu [29]. Furthermore, our 13C-NMR spectral data revealed 15
carbons associated with the cyanidin aglycone portion and 11 carbons associated with the sugar moiety.
The 13C-NMR shifts correlatde very well with the 1H-NMR data, especially in regard to the aromatic
and carbohydrate carbon observations. The molecular mass of m/z 583 alongside the observed NMR
spectral data corresponded very closely to previously reported results [29,37,38]. As a result of the
combined MS and NMR data, the purified fraction was upheld to be cyanidin 3-xylosyl-galactoside
(Figure 5).
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In addition, the molar absorptivity (ε) of Cya-3-Xyl-Gal (MW = 583) was determined and calculated
to be 16,900 L/(mol·cm) from the slope of the plot between λmax (530 nm) over a concentration range of
0–0.05 mmol/L.
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Cya-3-Xyl-Gal was previously reported in A. sessiliflorus [25], the berries of the Angelica tree
(Aralia elata) and Spikenard (Aralia cordata) [39], and black carrot (Daucus carota L.) [40,41]. In black
carrot, Cya-3-Xyl-Gal was typically the second most abundant anthocyanin, while it appeared to be
the dominant anthocyanin in the berries [25,39].

Table 1. 13C and 1H NMR spectral data (ppm) for cyanidin 3-xylosyl-galactoside.

Cyanidin 3-Xylosyl-Galactoside
13C (ppm)

Also Figure A2

1H (ppm)
Also Figure A3

aglycone
2 164.08
3 145.33
4 136.12 8.88 s
5 159.18
6 103.41 6.63 d2.0
7 170.34
8 95.00 6.95 d9.5
9 157.47

10 113.19
1′ 121.25
2′ 118.58 7.96 d2.5
3′ 147.29
4′ 155.78
5′ 117.39 6.86 d1.0
6′ 128.59 8.23 dd2.5,9.0

galactose
1” 102.10 5.39 d7.5
2” 80.02 4.26 t9.0
3” 75.10 3.91 dd3.5,9.5
4” 70.06 3.98 d3.0
5” 77.70 3.84 d9.0

6A” 62.33 3.81 d3.5
6B” 3.79 t5.5

xylose
1′′′ 106.01 4.71 d7.5
2′′′ 75.81 3.17 dd8.0,9.0
3′′′ 77.87 3.35 m
4′′′ 70.97 3.64 dd5.0,11.50
5′′′ 67.16 3.73 d2.0
6′′′ 3.03 t11.0

2.5. Antioxidant Activity of Cyanidin 3-Xylosyl-Galactoside

The antioxidant activity of Cya-3-Xyl-Gal was investigated and compared to an equimolar ascorbic
acid control using both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power
(FRAP).

The FRAP assay measures the reduction of ferric iron (Fe3+) to ferrous iron (Fe2+) due to the
presence of antioxidants and is commonly employed for the routine analysis of single antioxidants and
total antioxidant activity of plant extracts [42,43]. Figure 6 presents the results of the aging curve of the
ferric-reducing antioxidant power of Cya-3-Xyl-Gal and ascorbic acid at 0.1 mmol/L. After 40 min the
ferric-reducing reaction reached equilibrium, resulting in FRAP values of the tested Cya-3-Xyl-Gal and
standard ascorbic acid of 234.5 µmol/L and 368.0 µmol/L, respectively. Cya-3-Xyl-Gal showed higher
ferric-reducing power than the equimolar ascorbic acid control.
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Figure 6. The aging curve of ferric-reducing antioxidant power at 0.1 mmol/L (ascorbic acid and
Cya-3-Xyl-Gal).

The DPPH method is often used to reliably evaluate the free radical scavenging activity of a plant
extraction or antioxidant activity due to its stable character [43]. DPPH radical scavenging activity
increased with increasing molar concentrations of ascorbic acid and Cya-3-Xyl-Gal (Figure 7). The IC50

values (the antioxidant concentration at which 50% of the radical scavenging activity was achieved) of
Cya-3-Xyl-Gal and ascorbic acid were 0.63 mmol/L and 0.72 mmol/L, respectively, indicating that the
DPPH radical scavenging activity of Cya-3-Xyl-Gal was also greater than that of ascorbic acid.
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Figure 7. Relationship between the molar concentration of ascorbic acid and Cya-3-Xyl-Gal and DPPH
radical scavenging exhaustion for the determination of the IC50 values.

Both antioxidant activity assay methods revealed Cya-3-Xyl-Gal had higher antioxidant activity
compared to an equimolar ascorbic acid preparation, implying that Cya-3-Xyl-Gal may be a
potent antioxidant.
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3. Materials and Methods

3.1. Chemicals and Reagents

The fully mature fruits of Acanthopanax sessiliflorus (Rupr. & Maxim.) Seem. were handpicked
from all sides from a number of representative plants in Jilin Province in Northeast China during
the period of August to October and stored at −40 ◦C as soon as possible for subsequent chemical
analysis. These samples were authenticated by Prof. Liming Zhang at Ningxia Medical University and
a voucher specimen (No. Y201107001) deposited at the College of Bioengineering, Beijing Polytechnic.

All organic solvents used were of analytical grade and obtained from Beijing Chemical Factory
(Beijing, China). The methanol used for HPLC analysis was of chromatography grade and obtained
from Honeywell B&J (Beijing, China). The standard for cyanidin was obtained from Mansite biological
technology Co., Ltd. (Chengdu, China). AB-8 macroporous resin was obtained from Baoen adsorbent
material Technology Co., Ltd. (Cangzhou, China).

3.2. Instruments and Apparatus

The semi-preparative HSCCC instrument used in this study was a TBE-300A high-speed
countercurrent chromatograph (Shanghai Tauto Biotech Co., Ltd., Shanghai, China), which was
fitted out and operated as described previously [32]. An HX1050 constant-temperature circulating
instrument (Beijing Boyikang Lab Instrument, Beijing, China) was used to maintain a constant
separation temperature. A model TBP-50A constant flow pump (Shanghai Tauto Biotech Co., Ltd.,
Shanghai, China) was employed to supply the solvent into the column, while the eluent was monitored
with a model TBD-23UV detector (Shanghai Tauto Biotech Co., Ltd., Shanghai, China).

The analytical HPLC equipment was an Agilent 1100 system [32] fitted with a Zorbax SB-C18
column (250 mm × 4.6 mm, i.d., 5 mm, Agilent Technologies Inc., Shanghai, China).

Electro-spray ionization mass (ESI/MS) analysis and nuclear magnetic resonance (NMR) analysis
were carried out by analysts at the Center of Analysis, Beijing University of Chemical Technology,
Beijing, China.

3.3. Total Anthocyanin Determination

The anthocyanins were thoroughly extracted from three independent 10 g samples of fresh
A. sessiliflorus fruits with methanol acidified with 0.1% HCl [32]. The extracts were then analyzed by
HPLC. A commercially available standard of cyanidin 3-glucoside was used to create a calibration
curve, which yielded a calibration equation of Y = 2233 × X + 13.38 (R2 = 0.9999). The content was
expressed as milligrams of cyanidin per 100 g of fresh weight.

3.4. Bulk Anthocyanin Extract of A. sessiliflorus

The fruits of A. sessiliflorus (1 kg fresh weight) were extracted with acidified methanol acidified
with 0.1% HCl at room temperature without continuous agitation for 24 h. This process was repeated
three times, after which the extracts were combined. The ratio of the extraction solvent to fruit was
10:1 (v/w). The combined extract was evaporated to form a syrup of about 200 mL. The syrup was
diluted to 500 mL with distilled water acidified with 0.1% HCl. This aqueous solution was subjected to
column chromatography (45 mm × 50 cm) using an AB-8 macroporous resin in order to separate the
anthocyanins. The anthocyanins were eluted under gravity with 1 L acidified distilled water followed
by 2 L acidified ethanol acidified with 0.1% HCl. The ethanol elution solution was first evaporated into
a syrup and then freeze-dried to yield crude A. sessiliflorus anthocyanins (CAA).

3.5. Preparation of Two-Phase Solvent Systems and Sample Solutions

The solvents were mixed in a separation funnel and thoroughly equilibrated by vigorous
shaking at room temperature, after which the two phases were allowed to separate. The two phases
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were subsequently degassed by sonication for 20 min before use. The sample solution for HSCCC
was prepared as described previously [32] by dissolving 100 mg of CAA into a 10 mL two-phase
solvent system.

3.6. Determination of Partition Coefficients (K)

The partition coefficients (K) were determined as described previously [44]. Briefly, a small
amount of CAA was dropped into a 10 mL test tube, to which 2 mL of each phase of the equilibrated
two-phase solvent system (methyl tert-butyl ether/n-butanol/acetonitrile/water/trifluoroacetic acid) was
added. The tube was shaken vigorously, after which the two phases were allowed to separate. A 1 mL
sample of each phase was removed and the solvents were removed by evaporation, after which the
residue of each phase was redissolved in acidified methanol. The resulting solutions were analyzed by
HPLC, as described in Section 3.3. The K-values were calculated by the ratio between the peak areas.

3.7. HSCCC Separation

HSCCC separation was carried out according to the method previously published [32]. Briefly,
we applied a head–tail elution mode with the organic phase as the stationary phase. To start with,
the multilayer coiled column was completely filled with the organic phase. The aqueous phase was
pumped into the head of the column at a flow rate of 2.0 mL/min while running at 850 rpm at 25 ◦C. The
UV detector was set at 280 nm. Samples were injected into the separation column after a hydrodynamic
equilibrium was established.

3.8. Analytical Controls and Structure Elucidation

Quantitative analysis of the anthocyanins by HPLC were as described previously [32]. UV-Vis
absorption spectra were recorded using a photodiode array detector. Spectral measurements were
made over the wavelength range 200~600 nm in steps of 2 nm. Anthocyanin components were detected
at both 280 nm and 520 nm.

The purified compound was identified by electron impact MS, 1H-NMR, and 13C-NMR
spectrometry carried out by analysts at the Center of Analysis, Beijing University of Chemical
Technology. NMR spectra were performed in CD3OD/CF3COOD (95:5 v/v) using a Bruker
high-resolution AV500NMR spectrometer at 500 MHz (Bruker Bio Spin Corporation, Billerica,
MA, USA).

3.9. Determination of Molar Absorptivity of Anthocyanin Component

The molar absorptivity (ε) of the anthocyanin component was determined by dissolving a series
of known quantities of purified anthocyanin in acidified methanol (0.1% HCl). The absorbance of
the anthocyanin in this dilution series was measured in a Cary 50 Bio UV-Visible spectrophotometer
(Varian, Inc., Palo Alto, CA, USA) at 530 nm using 1 cm path length quartz cells at λmax.

3.10. Evaluation of Antioxidant Activity

The antioxidant capacity of ascorbic acid as a standard reference compound and the purified
anthocyanin were determined using in vitro FRAP and DPPH antioxidant assays.

The FRAP assay employed 3 aqueous stock solutions, namely, 0.1 mol/L acetate buffer (pH 3.6),
10 mmol/L tripyridyl triazine, and 20 mmol/L ferric chloride, as described previously [45]. Just prior to
use, these solutions were combined (10:1:1, v/v/v) to form the FRAP reagent. The FRAP reagent and the
samples were mixed thoroughly, after which the absorbance of the reaction mixture was determined
at 593 nm using a Cary 50 Bio UV-Visible spectrophotometer (Varian, Inc., Palo Alto, CA, USA). The
total antioxidant capacity of anthocyanin samples and ascorbic acid was determined against a ferrous
sulphate standard of known FRAP value over a range of 0~500 µM.
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The DPPH assay employed a fresh methanolic DPPH solution as described previously [46]. The
freshly prepared DPPH solution was transferred into a plastic cuvette and anthocyanin sample, or
ascorbic acid was added. The solution was stirred and left to stand in the dark for 30 min, after
which the absorbance was measured at 515 nm. The radical scavenging activity was expressed as the
percentage of DPPH radical elimination, which was calculated according to the following equation:

R (%) = (A0 − A1)/A0 × 100%,

where R is the radical scavenging activity of a sample, A0 is the absorbance of the sample at the start of
the reaction, and A1 is the absorbance of the sample at the end of the reaction.

4. Conclusions

We identified the principle anthocyanin in Acanthopanax sessiliflorus (Rupr. & Maxim.) Seem as
Cya-3-Xyl-Gal. Confirmation of identity was based on ESI-MS, 13C-NMR, and 1H-NMR analyses. The
gross anthocyanin content of A. sessiliflorus was 121.35 mg/100 g. The application of HSCCC allowed
for the successful separation and purification of the primary anthocyanin, Cya-3-Xyl-Gal, which was
subsequently used for antioxidant and radical scavenging testing. Both the in vitro antioxidant and
radical scavenging tests (FRAP and DPPH, respectively) demonstrated that Cya-3-Xyl-Gal isolated
from A. sessiliflorus possesses potent antioxidant potential.

Author Contributions: Conceptualization, L.C. and X.X.; methodology, L.C. and H.F.; software, X.W.; validation,
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published version of the manuscript.

Funding: The authors acknowledge the Support Plan for the Construction of High-level Teachers in Beijing
Municipal Colleges and Universities (2019)-Youth Talent-Liang Chen, the Professional Innovation Team
Construction Project of Beijing Vocational College Teachers′ Quality Improvement Plan (2019)- Shuangshi
Li, the Program of Study of Biotransformation and Pharmacological Activity of Active Compounds in Forsythia
(2019Z002-015-KXB) of Beijing Polytechnic, and the Program of Beijing Municipal Natural Science Foundation
(2182019) for financial support.
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