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Abstract: 12 

Polygonum perfoliatum L. is a Mn-tolerant plant having the potential to grow in mine wasteland with elevated 13 

manganese concentrations. The physiological changes of P. perfoliatum grown in different Mn concentrations (5, 14 

500, 1000, 2000, 5000, 10000 μmol·L-1) were investigated in glasshouse study to evaluate its tolerance and 15 

physiological response to accumulated manganese. A hydroponic study was carried out in order to study the 16 

changes in ultrastructure with increasing Mn concentrations (5, 1000, and 10000 μmol·L-1). Absorption bands of 17 

P. perfoliatum differed greatly in lipids, proteins and carbohydrates. With elevated levels of Mn (5-2000 μmol·L-18 

1), absorbance changed little, which demonstrated that lower Mn concentrations had a negligible influence on 19 

transport functions. With Mn concentrations in excess of 2000 μmol·L-1, absorbance increased slightly but then 20 

eventually decreased. Lower Mn concentrations (5 and 1000 μmol·L-1) had no breakage function to the 21 

ultrastructure of P. perfoliatum. However, as Mn concentration increased to 10000 μmol·L-1, visible damage 22 

became evident, the quantity of mitochondria in root cells increased and the grana lamellae of leaf cell 23 

chloroplasts revealed a disordered state.  Compared with controls, black agglomerations were observed in cells of 24 

P. perfoliatum grown with  1000 and 10000 μmol·L-1 Mn for 30 days. As the Mn concentration reached 10000 25 

μmol·L-1, a novel acicular substance developed in leaf cells and intercellular spaces, possibly indicating a  26 

tolerance mechanism in P. perfoliatum. These results confirm that P. perfoliatum shows potential for the 27 

revegetation of abandoned Mn tailings. 28 
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30 



Introduction 31 

Large areas of metalliferous ore from mining and smelting contain highly toxic metal concentrations, e.g. 32 

lead, zinc and manganese, which are phytotoxic to many plant species, and therefore restrict vegetation 33 

establishment (Wu et al. 2016; Kong et al. 2017). Plants that have evolved to colonize heavy metal contaminated 34 

soils may be classified into two basic strategies, exclusion mechanisms and accumulation (Baker et al. 1989). 35 

Metal hyperaccumulating plants are less susceptible to the toxicity of heavy metals, and demonstrate tolerance 36 

which has become valuable for phytoremediation of contaminated soils (Hao et al. 2013; Wu et al.2017). It has 37 

been reported that more than 500 hyperaccumulators have been discovered, but less than 30 are applicable to 38 

manganese (Mn) tolerance (Fernando et al. 2013). 39 

Generally, heavy metals with high concentration would induce damage of cellular ultrastructures in plants; 40 

such damage is mainly towards alterations of cellular organelles, e.g. chloroplast, mitochondria and vacuole 41 

(Weng et al. 2013; Liu et al. 2017; Chen et al. 2017). Additionally, the extent of damage was closely related to 42 

exposure time and concentration of the heavy metal (Keller et al. 2015). For example, the ultrastructure of 43 

Sargassum pallidum cells were irregular and abnormal following exposure to excessive concentrations of Cu, As, 44 

and Pb, whereas Cd particularly destroyed the ultrastructure of chloroplasts and inhibited Chl synthesis (Miao et 45 

al. 2014). Elevated Pb concentrations have been shown to adversely affect the cellular structure of Caenotus 46 

canadensis L. roots (Li et al. 2016) whilst Zn is sequestered in metallo-organic compounds located in leaf 47 

vacuoles of Thlaspi caerulescens to prevent Zn toxicity (Kupper et al. 1999). Physiological parameters of damage 48 

include decreased chlorophyll a production indicating less photosynthetic efficiency, an increase in lipid 49 

peroxidation and electrolyte conductivity indicating cell membrane injuries (Majumder et al. 2013). Zayneb (2015) 50 

discovered that superoxide dismutase, ascorbate peroxidase and catalase increased following exposure to 51 

excessive concentrations of Cd in Trigonella foenum-graecum (Zayneb et al. 2015). 52 

Manganese is an essential trace element for plants. Nevertheless, plants exposed to increased Mn 53 

concentrations often suffer from Mn poisoning. Plants have developed various mechanisms, including 54 

compartmentalization, chelation, avoidance and exclusion, antioxidation, and ion interaction, to overcome Mn 55 



toxicity (Fernando et al. 2015). The exudation of organic acid mainly contributes to Mn detoxification, both 56 

internally and externally. Phytolacca acinosa may enhance its tissues tolerance to Mn by the exudation and 57 

transportation of organic acid following lower Mn treatments (Xue et al. 2011). Absorption bands of Phytolacca 58 

americana differ greatly in carbohydrates and proteins, largely because of the exudation and transportation of 59 

organic substances (Ren et al. 2007).  Mn2+ release from soils was critical to elucidate the formation of Mn oxides 60 

and to assess the biotoxicity of excess Mn2+ to plants in an acid soil. The ability of organic acids to promote Mn2+ 61 

followed the order: citric acid ＞pyritic acid ＞tartaric acid ＞malic acid ＞lactic acid (Yang et al. 2011). The 62 

conversion of Mn2+ to a metabolically inactive compound by the Mn-oxalate complex, was a key detoxification 63 

mechanism (Dou et al. 2009); Mn can be sequestered into a large, metabolically inert intracellular compartment, 64 

and is one of the main mechanisms of Mn tolerance and accumulation (Xu et al. 2015). 65 

P. perfoliatum is a Mn tolerant plant found in manganese wasteland tailings in Southern China. It can 66 

tolerate Mn concentrations of approximately 41400 mg·Kg-1. In this paper P. perfoliatum was grown 67 

hydroponically in order to investigate if its chemical composition and ultrastructure were affected following 68 

exposure to varying Mn concentrations up to 10000 μmol·L-1.  We also attempt to understand the plants response 69 

mechanisms for reducing elevated Mn concentrations in its tissues. 70 

 
71 

Materials and methods 72 

Hydroponics culture  73 

Seeds of P. perfoliatum collected from wasteland tailings in Southern China were spread on sand-filled pots. 74 

Following germination (~14 days), plants of the same size were selected and their roots thoroughly washed. 75 

Hoagland’s nutrient solution (Xue et al. 2004) was used as the culture, which included 2.5mM Ca(NO3)2, 1mM 76 

MgSO4, 0.5 mM KCl, 0.5mM (NH4)H2PO4, 2×10-4 mM CuSO4, 1×10-3 mM ZnSO4, 0.1mM EDTA Fe Na, 2×10-2 77 

mM H3BO3, 5×10-6 mM (NH4)6Mo7O24, 1×10-3mM MnSO4. After a 7-day culture in 1/4 Hoagland’s nutrient 78 

solution and an 8-day culture in 1/2 Hoagland’s nutrient solution, plants were grown on in different Mn 79 

concentrations (5, 500, 1000, 2000, 5000, 10000 μmol·L-1), added as MnCl2 (AR).  Each treatment was replicated 80 



three times. The process of collection and pretreatment of P. perfoliatum followed the standard procedure of 81 

Wang et al. (2016). 82 

 83 

Plants, using pattern of solution culture (Full strength of Hoagland nutrient solution, , which included 2.5mM 84 

Ca(NO3)2, 1mM MgSO4, 0.5 mM KCl, 0.5mM (NH4)H2PO4, 2×10-4 mM CuSO4, 1×10-3 mM ZnSO4, 0.1mM 85 

EDTA Fe Na, 2×10-2 mM H3BO3, 5×10-6 mM (NH4)6Mo7O24, 1×10-3mM MnSO4),  86 

 87 

Mn content analysis 88 

Electricity plate digestion was used with ICP-OES in the determination of manganese in subsamples of dried 89 

plant tissue (c. 0.1g). The experiment was repeated three times. The acid medium was 20 mL of aqua regia (HCl 90 

(AR, mass fraction=36-38%) : HNO3 (AR, mass fraction=65%) =1:3) and 2 mL of HClO4(AR, mass fraction=70-91 

72%). Sample scouring time was 30s replicated three times. The wavelength of manganese was 2576 nm. 92 

 93 

FTIR analysis 94 

The spectral information of various tissues and organs were investigated using Fourier Transform Infrared 95 

(FTIR) spectroscopy in the mid-IR range with a Nicolet IS10 infrared spectrometer. The characteristic wavelength 96 

was 4000 to 400 cm-1 with a resolution of 1 cm-1. Plant samples were finely blended with KBr (0.5/50mg) using 97 

an agate mortar.  98 

 99 

Cellular ultrastructure analysis 100 

Subsamples of fresh plant tissue were cut into approximately 1-2 mm pieces with a scalpel and subsequently 101 

subjected to fixation and embedding protocols. Pretreatment of samples followed the procedure of Xue et al. 102 

(2016b). Specimens were sliced into ultrathin sections (80 nm slices), and the specific ultrastructures were 103 

characterized under a transmission electron microscope (JEOL TEM-1230EX). 104 

 105 

 106 



EDS analysis 107 

Serial ultrathin sections (120 nm slices) of plant tissue were photographed for their electron cloud density 108 

distribution, followed by X - ray spectrum analysis with an EDAX-PHOENIX energy spectrum analyzer. 109 

The working condition of the energy spectrum analyzer was as follows: acceleration voltage 80kV, spot size 80 110 

nm diameter, sample table dip 35°, CPS 1500, test time 100s. 111 

 112 

Statistical analysis 113 

All analyses were performed in quintuplicate. The data were statistically analyzed with Microsoft Excel 114 

2016, SPSS version 22.0 and Origin 9.1.  115 

 116 

Results and discussion 117 

 118 

Effect of Mn concentration on biomass of P. perfoliatum 119 

The total biomass of P. perfoliatum varied inversely with Mn concentration (Table 1). With elevated 120 

concentrations of Mn, biomass of P. perfoliatum significantly showed an overall reduction, but a slight increase 121 

was found at 2000 μmol·L-1 Mn. In comparison to controls, fresh leaf biomass from 10000 μmol·L-1 Mn 122 

decreased by 60%, and fresh root biomass decreased by 83.33%. Plant growth was not affected at low 123 

concentrations, but differences were revealed at high concentrations such as slow growth and a significant 124 

reduction in biomass; the plants life cycle was nevertheless still completed. Furthermore, the ratio of leaf to root 125 

fresh biomass was related to Mn treatment. 126 

 127 

Mn uptake and accumulation characteristics 128 

Manganese translocation was found to be in the order: leaves> roots>stems (Table 2).  Manganese content in 129 

P. perfoliatum tissues increased with increasing Mn concentration.  In leaves, Mn reached 13138 mg·kg-1 when 130 

grown in 500 μmol·L-1 Mn.  At 10000 μmol·L-1, Mn content in stems and leaves reached its maximum, 16077 and 131 

41400 mg·kg-1, respectively. Manganese was an essential trace element for plants in the range of 20-500 mg·kg-1, 132 

http://www.baidu.com/link?url=MDOLMGhvTep4Hi_iij5_6ruPt91alwX2hB1l7NV8FjQVPynhaOrf7SKzz3K5bDYYMHm0m5FjL1-Na9I1H37TZCASZpU2BPa5RJxLIpbWLvWZzGWLeI84HilHr-DIE2QOzg1r2DcSUanxM_nbikDq_4TNNvEfb91J9eqC3tfe73eSpB5tLo6vEfrgcXpUqJYAuDao61I5igIr1OxmhKSQSa


but plants exposed to over 1500 mg·kg-1 Mn often suffer from Mn toxicity (Xue et al. 2010). P. perfoliatum 133 

showed stronger uptake and enrichment at low Mn concentrations as well as at high levels. 134 

Translocation factor (hereafter referred to as TF) reflects the transportation and distribution of metals in 135 

plants from below to above ground. Manganese mainly accumulates in the leaves, which therefore increases its 136 

transportation. Plants can chelate Mn, which is then accumulated in the leaves and stems and is one of the 137 

important mechanisms by which its toxicity is reduced (Fernando et al. 2013).  However, the TF between leaves 138 

and roots reached a maximum at 2000 μmol·L-1 Mn.  A possible reason for this may be chelation and the results 139 

support P. perfoliatum as a Mn tolerant plant. 140 

 141 

Effect of Mn treatments on the chemical composition of P. perfoliatum 
142 

There was no distinguishing peak displacement, and shoulder peak varied little. Changes of absorbance 
143 

were not obvious at Mn concentrations below 2000 μmol·L-1, which shows that the exudation and transportation 
144 

were little influenced during lower Mn treatments. Above 2000 μmol·L-1 Mn, absorbance slightly increased but 
145 

then decreased (Figure 1). This suggested that low concentrations of Mn stimulated the plants to produce 
146 

organic acids and other exudates to overcome Mn toxicity, but high concentrations affected physiological process 
147 

in cells.  
148 

The stretching vibration peak of 3420 cm-1 (free hydroxyl) is mainly reflected in root carbohydrate 
149 

(cellulose, hemicelluloses, and polysaccharides) (Ren et al. 2008). The band height initially declined but then 
150 

increased (Figure 1), probably because a large number of hydroxyls from root epidermal cell walls reacted with 
151 

Mn thereby forming stable compounds. However, elevated exogenous Mn treatments appeared to damage this 
152 

mechanism. Carboxylic acid O-H and methyl stretching vibration peaks overlapped near 2920 cm-1, mainly as a 
153 

result of vitamins, membrane and cell wall components. With elevated concentrations of Mn, the band height first 
154 

decreased then increased. It may be that the production and transportation of organic compounds were associated 
155 

with Mn treatments. Also, organic acids released from root cells chelated excessive Mn2+. The peak in 1380 cm-1 
156 

is produced by the C=O stretching mode of carbonyl compounds in aliphatic ketones. Band height first decreased 
157 

then increased (Figure 1). These results indicated that elevated exogenous Mn treatments increased soil cation 
158 



exchange capacity by demethylation of pectin in cell walls, which may increase the tolerance to Mn toxicity. The 
159 

stretching vibration peak of 1060 cm-1 is mainly reflected in alcohol and ether-based ester or phenol group C-O 
160 

bond. With elevated concentrations of Mn, the absorption peak first decreased then increased.  The products of 
161 

membrane lipid peroxidation accumulated in roots played the leading role in peak variation at Mn concentrations 
162 

below 2000 μmol·L-1, but excess Mn2+ damaged the process. 
163 

There was no distinguishing peak displacement, and shoulder peak varied little in stems of P. perfoliatum 
164 

(Figure 2). With elevated Mn (5-500 μmol·L-1), absorbance did not alter. Above 500 μmol·L-1 Mn, absorbance 
165 

increased slightly then decreased, which appears to show that Mn2+ promoted carbohydrate production. The peak 
166 

near 1735 cm-1 is a methyl absorption band (membrane and cell wall) found in oil containing compounds. With 
167 

increasing Mn concentration, the absorption peak initially decreased then increased, and the peak reached a 
168 

maximum at 1000 μmol·L-1. Early lipid peroxidation thereby reducing lipid content and production of aliphatic 
169 

ketone compounds containing a carbonyl group which gradually increased may explain the increase in peak. 
170 

Above 1000 μmol·L-1 Mn, absorbance decreased. Results showed that carbohydrate increased following low Mn 
171 

exposure, and P. perfoliatum strengthened the tolerance by adjusting its osmotic potential, membrane lipid 
172 

peroxidation was enhanced with lipid and carbohydrate production decreasing at high levels. 
173 

Absorption spectra (FTIR) in leaves revealed that the absorption peaks were forced to shift and shoulder 
174 

peaks had shrunk (Figure 3). With elevated Mn (5-1000 μmol·L-1), absorbance increased dramatically, which 
175 

indicated that lower Mn2+ had promoted the production and transportation of organic compounds. There was no 
176 

significant change in absorbance from 2000 to 5000 μmol·L-1. Above 5000 μmol·L-1, absorbance decreased 
177 

dramatically, indicating that excess Mn2+ clearly had an impact on the production and transportation of 
178 

carbohydrates and other organic substances in leaves of P. perfoliatum. 
179 

 
180 

Effect of Mn treatments on the ultrastructure of P. perfoliatum 
181 

P. perfoliatum was grown under glasshouse conditions in order to study its ultrastructure following supply of 182 

nutrient solutions supplemented with increasing Mn concentrations (5, 1000, and 10000 μmol·L-1). Lower Mn 183 

concentrations with 5 and 1000 μmol·L-1 had no breakage function to the ultrastructure of P. perfoliatum (Fig 4A, 184 



Fig5A, Fig 6A, Fig 4B, Fig5B and Fig 6B). However, with an increase in Mn concentration of up to 10000 185 

μmol·L-1, visible damage was evident (Fig 4C, Fig 5C and Fig 6C), the quantity of mitochondria in root cells 186 

increased and the grana lamellae of leaf cell chloroplasts became disorganized (Fig 4C, 7C). While chloroplast 187 

structure and function had obvious damage under excess Mn2+, P. perfoliatum still survived, suggesting that P. 188 

perfoliatum has a higher tolerance to excessive Mn concentrations.  189 

Generally, excess Mn2+ has direct cytotoxicity such as to inhibit the uptake and activity of Ca2+, Fe2+ and 190 

Mg2+ whilst inducing oxidative stress, leading to decreased chlorophyll and rubisco contents, damaged chloroplast 191 

ultrastructures, reduced photosynthetic rate, and even death.  However, certain plant species have evolved in 192 

heavy metal contaminated soils which can tolerate excess Mn2+ especially in the plant shoot (Blamey et al. 2015). 193 

In the present study, lower Mn concentrations with 5 and 1000 μmol·L-1 had no breakage function to the 194 

ultrastructure of P. perfoliatum, and the effects on photosynthesis were minimal as observed by FTIR and TEM. 195 

In roots, the exudation of organic acids mainly contributes to Mn detoxification (both internally and externally), 196 

uptake and transport. The storage of Mn in the root cell walls may keep the ion sequestered from the root 197 

cytoplasm.  In leaves, Mn preferentially accumulated in leaf epidermal cells which may be an avoidance 198 

mechanism to prevent damage to photosynthetic cells; epidermal cells lack chloroplasts. The conversion of Mn2+ 199 

to a metabolically inactive compound by organic acid or phenolic compounds, such as the Mn-oxalate complex, is 200 

an important detoxification mechanisms (Deng et al. 2010). Further understanding of the molecular mechanisms 201 

of Mn tolerance in plants requires further investigation. 202 

P. perfoliatum had a high Mn tolerance, and it may be a result of its detoxification storage form in its cells. 203 

The metal transporters involved in removing Mn from the cytosol or moving it to the vacuolar membrane, where 204 

Mn can be sequestered into a large and relatively metabolically inert intracellular compartment, play important 205 

roles in Mn uptake, transportation and accumulation at the whole plant level (Zhang et al. 2010). Manganese 206 

accumulated in the supernatant part, accounting for 74%-82% of the total Mn in the leaves (Xu et al. 2009). 207 

Compared with controls, black agglomerations were found in cells of P. perfoliatum after treatment with 1000 208 

and 10000 μmol·L-1 Mn after 30 days; these became obvious at higher Mn concentrations (Fig 5C and Fig 7C). 209 

Black agglomerations were found in cells of Mn tolerant plants, indicating that they were possibly manganese 210 



oxides (Dou et al. 2009, Papadakis et al. 2007 and Xue et al. 2016b). This is consistent with our results in that 211 

black agglomerations appeared in the high Mn treatments but this still requires further research. 212 

 213 

Acicular substances analysis in leaves of P. Perfoliatum 214 

At 10000 μmol·L-1, Mn content in leaves reached a maximum, 41404 mg·kg-1 indicating that P. perfoliatum 215 

strongly accumulates Mn after either long or short-term treatments. To avoid metal toxicity, plants have evolved 216 

mechanisms including efflux of metal ions from cells and sequestration into internal cellular compartments (Kim 217 

et al. 2004). At a Mn concentration of 10000 μmol·L-1, a novel acicular substance developed in leaf cells and 218 

intercellular spaces, possibly indicating a tolerance mechanism in P. perfoliatum.  219 

Through energy spectrum analysis Mn concentrations in acicular crystals were significantly greater than in other 220 

locations (Figure 8) and it might be a result of the compartmentation of Mn in the cells, possibly indicating a 221 

tolerance mechanism in P. perfoliatum. 222 

Overexposure to Mn appears to be the basis of a more active extracellular covalent POD bound to the cell 223 

wall, being involved in the lignification process (Blamey et al. 2015). Manganese toxicity was also observed with 224 

reactions with other elements including phosphorus, calcium and ferrum. (Esteban et al. 2013). Manganese 225 

accumulation in epidermal cells suggests that the root endodermis hinders transportation of Mn, protecting the 226 

normal physiological processes of cells (Dučićet al. 2012). Phosphate contents in acicular substances by EDS 227 

were 7.92% and 11.46%. Phosphate may consume and precipitate Mn reducing its biological activity, but it 228 

should be stressed that although it is confirmed that phosphate may play a major role in heavy metal tolerance 229 

mechanisms and phytoremediation, the role of phosphate on manganese accumulation in P. perfoliatum still 230 

requires further research (Kochian et al. 2004; Hauck et al. 2003).  231 

 232 

Conclusions 233 

The growth of P. perfoliatum was not affected by low concentrations of Mn, whilst differences were 234 

revealed at high concentrations, such as slow growth and a significant reduction in biomass.   Manganese 235 



distribution was as follows: leaves> roots>stems, with a translocation factor >1. Effects of Mn on the plants 236 

chemical composition revealed that P. perfoliatum reduces Mn stress through a number of mechanisms including 237 

production and transportation of organic substances, organic acid complexation, and membrane lipid 238 

peroxidation. Lower Mn concentrations with 5 and 1000 μmol·L-1 had no breakage function to the ultrastructure 239 

of P. perfoliatum. However, as Mn concentration increased to 10000 μmol·L-1, visible damage began to appear in 240 

cells of P. perfoliatum, the quantity of mitochondria in root cells increased and grana lamellae of leaf cell 241 

chloroplasts became disorganized. An unknown acicular substance was also found in the intercellular space and 242 

cells, which might be through fixation and precipitation of Mn with phosphate. 243 
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