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ABSTRACT 15 

BACKGROUND: Saddle gall midge, Haplodiplosis marginata (von Roser) (Diptera: 16 

Cecidomyiidae), is a pest of cereal crops in Europe.  Outbreaks are difficult to predict and 17 

effective monitoring tools are required to ensure the effectiveness of pest management 18 

options.  The female sex pheromone, (R)-2-nonyl butyrate, provides the basis of a highly 19 

effective lure for this insect.  Here, we demonstrate how the success of this lure can be 20 

influenced by parameters such as trap location, lure age, and interference between traps fitted 21 

with these lures.   22 

RESULTS:  A pheromone lure containing (R)-2-nonyl butyrate attracted male midges for at 23 

least 9 weeks under field conditions.  Pheromone-baited traps performed best when situated 24 
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away from field margins and below the height of the crop.  Interference between nearby traps 25 

was evident at distances less than 20 m.   26 

CONCLUSION: The results here offer new insights into the behavioural responses of male 27 

H. marginata to the female sex pheromone and provide practical recommendations for the 28 

use of H. marginata pheromone traps in the field.  29 

 30 
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 50 

1 INTRODUCTION 51 

Saddle gall midge, Haplodiplosis marginata (von Roser) (Diptera: Cecidomyiidae), is a pest of 52 

cereal crops in Europe that has exhibited a sporadic pattern of outbreaks for several decades.  53 

The species is univoltine, with adults emerging in May following a larval overwintering stage.  54 

After mating, H. marginata females oviposit on the leaves of cereal plants and wild grasses.  55 

Upon hatching larvae begin to feed on the stem of the host plant from beneath the leaf sheath.  56 

Larval feeding causes the formation of saddle-shaped galls on the stem which can affect plant 57 

development and cause yield loss.1 - 3  Spring crops of wheat and barley are most at risk from 58 

this pest,4,5 particularly where damage coincides with stem extension.6  Regular crop rotations 59 

can reduce H. marginata numbers through removal of the host crop,5 but as the overwintering 60 

stage can survive in the soil for several years the population may still persist.7  The biology 61 

and ecology of this pest have been reviewed in detail in recent attempts to consolidate the 62 

existing information on this insect.8,9  Such reviews have highlighted the need for more 63 

effective detection and monitoring tools given the sporadic and often inconspicuous nature of 64 

the pest.  This is also of importance for application of chemical controls which need to be timed 65 

to coincide with the vulnerable egg-laying stage to be effective.10,11  Currently, farmers and 66 

agronomists must regularly check the crop for adults and eggs which is time-consuming and 67 

risks missing the early stages of pest outbreaks. 68 

Pheromone traps are regularly used for detection of pest species and their sensitivity means 69 

that insects can be detected even when population density is low, such as the onset of adult 70 

emergence.12  The sex pheromones of pest species of gall midges are relatively well-studied 71 

13 and have been successfully applied to in-field monitoring and detection in a range of species 72 

such as Hessian fly, Mayetiola destructor (Say);14 orange wheat blossom midge, Sitodiplosis 73 

mosellana (Géhin);15,16 and apple leaf midge, Dasineura mali (Keiffer).17,18  Pheromone 74 

monitoring of swede midge (Contarinia nasturtii (Keiffer)) has been recommended for use in 75 

combination with a predictive model to determine the time of emergence.19  Censier et al. 76 
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(2014)20 identified the major component of the female sex pheromone of H. marginata as 2-77 

nonyl butyrate.  More recently, an effective lure for this pest has been developed, based on 78 

the optimised blend and loading of pheromone and dispenser type.21 For this information to 79 

be of practical benefit however, more information is needed on how best to deploy traps baited 80 

with these pheromone lures. 81 

The longevity of a pheromone lure is dependent on the initial loading and the subsequent rates 82 

of release and degradation of the compound, which are in turn influenced by the pheromone 83 

dispenser and by environmental conditions such as temperature and UV light.22 Ideally a lure 84 

should exhibit a constant rate of release and last for the duration of the insect flight season.  85 

In previous work, polyethylene vials loaded with 0.5 mg (R)-2-nonyl butyrate were identified 86 

as effective dispensers for the H. marginata pheromone, lasting for at least four weeks under 87 

laboratory conditions.21 Here we determine the effectiveness of the lure over time under typical 88 

field conditions.  This information has implications for catch interpretation and the need to 89 

refresh lures if they are in use over the entire flight period of H. marginata. 90 

In the development of many pheromone trap systems, trap position has been found to have a 91 

considerable influence on trap catch.23 - 25 Pheromones disperse in the form of plumes, which 92 

insects detect and follow upwind to the source of the odour.  Pheromone plume structure and 93 

the ability of the insect to navigate to the source are both influenced by external factors such 94 

as wind speed and direction, landscape features, pheromone concentration, and signal 95 

interference from other sources.  The positioning of a trap in relation to the surrounding 96 

environment and the insect itself is therefore of importance.  Pheromone plumes of the same 97 

compound have been shown to interact causing disruption of the catch in a particular trap.26  98 

Given that several traps are often deployed within an area to increase confidence in the 99 

numbers caught, it is essential to know the minimum inter-trap distance at which interference 100 

occurs to ensure optimum catch in all traps.27  This information would also help evaluate the 101 

suitability of this lure for use in mass trapping strategies if traps have a considerable range of 102 

attraction.  Haplodiplosis marginata, like many Cecidomyiidae, are not thought to be strong 103 
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flyers and may be particularly influenced by factors affecting the pheromone plume.  We 104 

therefore aimed to determine the optimal positioning of H. marginata pheromone traps in 105 

relation to height, distance from the field margin and proximity to other traps. 106 

 107 

2 EXPERIMENTAL METHODS 108 

2.1  Field sites 109 

Three sites with existing populations of H. marginata located in Oxfordshire (51°55"N, 1°10"W); 110 

Buckinghamshire (51°37"N, 0°48"W) and Wiltshire (51°2"N, 1°57"W) were used.  Pheromone 111 

dispensers were placed in standard red delta traps (Agralan, Wiltshire, UK) containing a 112 

removable sticky insert (15 cm x 15 cm).  Polyethylene vials (26 mm x 8 mm x 1.5 mm thick, 113 

Just Plastics Ltd., London, UK) containing (R)-2-nonyl butyrate (0.5mg; 98% enantiomeric 114 

excess) synthesised as described in Rowley et al., 2017,21 were used as lures for all 115 

experiments.  Traps were hung from fibreglass canes and positioned at the height of the ear 116 

of the wheat crop unless otherwise stated.  Mean wind speed and direction data for each site 117 

were obtained by pooling data for the three nearest weather stations to each field site from 118 

the Met Office MIDAS dataset.28  Adult H. marginata were identified based on antennal and 119 

genital morphology29 and counted using a bifocal microscope.  All statistical analyses were 120 

done in R 3.3.1.30 Linear mixed effects models were fitted with the lme function from the nlme 121 

package31 and post-hoc multiple comparisons (Tukey’s Contrasts) were performed using the 122 

glht function from the multcomp package.  Residual plots were used to check for violations of 123 

model assumptions.  124 

 125 

2.2  Field experiments  126 

2.2.1 Lure longevity 127 

Traps were positioned in two fields of winter wheat: one each at the site in Oxfordshire and 128 

Buckinghamshire, between 3 May – 1 July 2016.  Winter wheat growth stages were 129 
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approximately 37 at the start of the experiment and 69 by the end.32 Traps were positioned at 130 

the height of the ear along two parallel transects 20 m apart. Four traps were placed at 131 

intervals of 40 m along each transect. Traps placed at the same distance along the two 132 

transects represented a pair, each trap baited with either a pheromone lure that remained in 133 

the trap throughout the season or a lure that was replaced weekly.  New lures were replaced 134 

on days 6, 13, 20, 29, 34, 43, 50 and 59 of the experiment at which time the sticky inserts of 135 

all traps were renewed and the positions of traps within a pair were switched to reduce 136 

positional effects.  The height of traps was adjusted each week to match the growth of the 137 

crop. At the end of the experiment aged lures were retained.  The remaining pheromone was 138 

extracted from each lure individually in hexane (5 ml) containing dodecyl acetate (1 mg) as 139 

the internal standard.  Extracts were analysed by GC with FID on a capillary column (30 m x 140 

0.32 mm i.d. x 0.125 μ film thickness) coated with DB5 (Agilent) with splitless injection (220°C) 141 

and the oven temperature held at 50°C for 2 min and then programmed at 10°C/min to 250°C.  142 

Data for the first two weeks of the experiment at the Bucks site and the first week at the Oxon 143 

site were removed due to low catches in all traps unduly influencing the model fit.  Numbers 144 

of H. marginata caught per day for each trap were log(x+1) transformed to improve the 145 

homoscedasticity of the data.  The effect of field, days elapsed and lure type (old or new) on 146 

catch were analysed using a linear mixed model with pair as a random effect and all other 147 

terms as fixed effects. 148 

2.2.2 Trap height 149 

Traps were positioned at the site in Oxfordshire between 13 – 19 May 2016 in two adjacent 150 

fields. One field was winter wheat and the other spring wheat, which were at growth stages 151 

45-47 and 29-31 respectively over the experimental period.  Traps were deployed in two 4 x 152 

4 Latin squares, one in each field with at least 200 m between the two squares.  Four height 153 

treatments were used, measured from the ground to the base of the trap: 0 cm, 40 cm, 80 cm 154 

and 120 cm.  Treatment 0 cm was below the height of the crop in both fields.  Treatment 40 155 

cm was at the height of the ear in the field of winter wheat, and above crop height in the field 156 
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of spring wheat.  Treatments 80 cm and 120 cm were above crop height in both fields.  Sticky 157 

trap inserts were renewed and trapped insects counted on day three and at the end of the 158 

experiment.  Treatments within each Latin square were re-randomised on day three.  Both 159 

sets of counts were used in the analysis.  Numbers of H. marginata caught in each trap were 160 

log(x+1) transformed to improve the homoscedasticity of the data and were analysed using a 161 

two-way analysis of variance (ANOVA).   162 

2.2.3 Distance from field margins 163 

Traps were positioned at all three sites in fields of winter wheat between 19 May – 1 June 164 

2016.  The crop was at growth stage 47 at the start of trapping and 59 at the end.  Three traps 165 

were positioned at 20 m intervals on a transect perpendicular to the field margin, with the first 166 

trap placed in the margin itself.  Transects were placed on field margins of each aspect (north, 167 

south, east and west facing) in each field giving 12 transects in total. Each transect was later 168 

classified as upwind, downwind or crosswind according to the prevailing wind direction for the 169 

trapping period.  Sticky inserts were changed weekly.  Count data were pooled over the entire 170 

trapping period and the effects of trap position in relation to field, wind direction and distance 171 

from the field margin on catch were analysed using a linear mixed model with transect as a 172 

random effect and all other variables as fixed effects.  Distance was treated as a categorical 173 

variable and multiple comparisons of means were used to test for significant differences in 174 

catch between traps at different distances from the field margin.   175 

2.2.4 Range of interference 176 

Traps were positioned in a field of winter wheat at each of the three sites between 1 – 22 June 177 

2016.  The crop was at growth stage 59 at the start of trapping and 65 at the end.  In each 178 

field were positioned four hexagonal arrays of traps with an additional central trap, so that all 179 

traps were equidistance apart with at least 80 m between arrays.33,34  Each array had a 180 

different inter-trap distance (treatment): 5 m, 10 m, 20 m and 40 m, with each treatment 181 

occurring once per field.  The sticky inserts of all traps were changed three times at an interval 182 

of one week. On each occasion the treatments were re-randomised within each field.  The 183 
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design gave three replicates of each inter-trap distance at each timepoint.  The central trap 184 

remained in the same location regardless of the inter-trap distance.  The relationship between 185 

inter-trap distance and mean catch of the outer and central traps was analysed using a linear 186 

mixed effects model with array as a random effect and all other variables as fixed effects, with 187 

distance treated as a continuous variable. Significant outliers were found in both downwind 188 

traps of one of the 20 m arrays over one particular trapping period.  As these traps were 189 

determined to be unduly influencing the fit of the models, it was decided that these should be 190 

removed prior to analysis. 191 

 192 

3 RESULTS 193 

3.1 Field experiments 194 

3.1.1 Lure Longevity 195 

Over the entire experimental period, traps baited with old lures caught fewer male H. 196 

marginata than traps baited with new lures (F1,94=50.65, P<0.001) but the difference in catch 197 

between the two types of lure did not change significantly over time (F1,93=0.91, P=0.34)  (Fig. 198 

1).  There were clear differences between the numbers of insects caught in all traps at each 199 

field site (F1,6=43.95, P<0.001) and fewer insects were caught in all traps as the experiment 200 

progressed (F1,94=466.54, P<0.001) (Fig.1).  Analysis of the old lures (N = 4) revealed that 201 

39.4% ± 0.7 of the pheromone from site 2 (Bucks) and 36.1% ± 1.4 of the pheromone at site 202 

3 (Oxon) remained in the lures after the 59-day trapping period.  Mean air temperatures during 203 

this time were 13.43  ± 0.10°C and 13.36 ± 0.11°C at sites 2 and 3 respectively; with the 204 

maximum air temperature not exceeding 25°C at either site. 205 

3.1.2 Trap Height 206 

Catch numbers differed between heights (F3,30 =110.33, P<0.001), and catches at 0 cm and 207 

40 cm heights differed between fields (F9,24 =5.78, P<0.001) (Fig. 2).  This difference was 208 

accounted for by trap height in relation to crop height.  Post hoc tests revealed that field 1 in 209 

spring wheat (crop height of approximately 10 cm) had far higher numbers of insects trapped 210 
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at 0 cm than 40 cm (P<0.001).  Field 2 in spring wheat (crop height of approximately 40 cm) 211 

had no difference in catches at these two heights and had a higher number of insects caught 212 

at 40 cm compared to field 1 (P<0.001).  Both fields therefore showed high catches in traps 213 

positioned below crop height and low catches in traps positioned above crop height (Fig. 2).  214 

Numbers of male H. marginata caught in each field were nearly identical: 49% were caught in 215 

field 1 and 51% in field 2. The fewest insects were caught at 80 cm and 120 cm; catches at 0 216 

cm and 40 cm accounted for 98.3% of the total 3,100 trapped over the period of the 217 

experiment.   218 

3.1.3  Distance from field margins 219 

The distance of the trap from the field margin had a significant effect on trap catch (F2,22 =8.19, 220 

P<0.01) (Fig. 3).  Post hoc testing revealed lower catches in traps positioned in the field margin 221 

compared to those positioned 20 m (P<0.05) and 40 m (P<0.001) into the crop.  There was 222 

no difference in catch between the traps placed 20 m and 40 m into the crop (P=0.54).  223 

Transect direction in relation to prevailing wind direction had no effect on catch (F2,9 = 0.29, 224 

P=0.75). 225 

3.1.4 Range of interference 226 

The number of male H. marginata caught per day in outer traps of the hexagonal array was 227 

higher compared to central traps (F1,49=22.58, P<0.001) and was higher overall (all traps 228 

combined) in arrays with a greater inter-trap distance (F1,6=49.21, P<0.001).  Differences 229 

between the catch of outer and central traps reduced with increasing inter-trap distance 230 

(F1,49=12.93, P<0.001) (Fig. 4). 231 

 232 

4 DISCUSSION 233 

The results presented here provide new insights into factors affecting the performance of 234 

pheromone-baited traps for H. marginata that will contribute to design of protocols for use of 235 

the traps for monitoring and potentially control of this pest.   236 
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Pheromone lures still attracted male H. marginata adults up to and including nine weeks in the 237 

field.  This is comparable to similar commercially available lures for other pest species35,36 and 238 

longer than the recommended usage time of six weeks for Sitodiplosis mosellana lures.15,16  239 

Lures replaced each week consistently caught more midges than lures maintained 240 

continuously, even at the beginning of the experiment.  Release of pheromone from the 241 

polyethylene vials is first order, i.e. proportional to the amount remaining, and it seems unlikely 242 

that the small decrease in release rate during the first two weeks would have resulted in a 243 

significant decrease in catches.  Lures for the experiment were stored in sealed aluminium foil 244 

bags, and it is possible that, after removal from the bags and installation in the traps, there 245 

was an initial “burst” of pheromone from the surface of the lures that may have given 246 

consistently higher catches during the first day.37   247 

In the final week of trapping, old lures trapped 45% of the number of insects caught by new 248 

lures which is to be expected from the finding that 35 – 40% of the pheromone remained in 249 

the old lures at the end of the experiment.  This concurs with earlier experiments where 6-250 

week old field aged lures containing 1 mg of racemic 2-nonyl butyrate had 0.41 ± 0.02 mg of 251 

the compound remaining.21  Thus these lures are likely to remain attractive over the entire 252 

flight period of H. marginata, which is typically 8 – 10 weeks.8  This will reduce the cost and 253 

time required to operate this system in the field.  There is some decrease in attractiveness 254 

during this period and further work is required to relate catches directly to population levels, 255 

but it is anticipated that population peaks may be reliably identified mid-season relative to 256 

catches in the previous weeks, alerting the farmer to a potential increase in oviposition activity.   257 

The height of a pheromone trap relative to the height of the crop can strongly affect trap 258 

catch.38  Cecidomyiidae are typically not strong fliers39 and H. marginata appears to be no 259 

exception:  the furthest flight distance recorded for males is just 120 m.4    Cecidomyiidae 260 

males also tend to exhibit a lack of vertical movement during flight.40  An earlier trapping study 261 

of H. marginata using passive traps placed at the same heights used in the present experiment 262 

found that 9.8 – 17% of males were caught in traps at 80 cm or above, compared to 25 – 33% 263 
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of females.4  Here, we found traps at heights of 80 cm and above accounted for just 1.7% of 264 

the total insects caught.  This may be a consequence of using active rather than passive traps, 265 

wind conditions during the experiments, and the absence of females caught as they generally 266 

fly at greater heights.4,5  The effect of the lower trap heights varied between fields as a 267 

consequence of crop type.  In the field of spring wheat, 92% of insects were caught at ground 268 

level which was the only trap below crop height.  In the field of winter wheat only 43.7% of 269 

insects were caught at ground level while 54.4% were caught at 40 cm which was at the height 270 

of the ear of crop.  As with most midge species, adult H. marginata are often found close to 271 

the soil surface as this is the location of emergence and mating.5  The results indicate that the 272 

adults are relatively evenly dispersed within the crop, although not above, even though the 273 

pheromone plume from traps above the crop level would have extended into the crop.  This is 274 

in contrast to results with several other midge species.13  For apple leaf midge, catches in 275 

traps at 0.5 m above ground were only 30% of those at ground level, even though the canopy 276 

was much higher.17 A similar effect of the interaction between habitat and trap height was 277 

observed in lesser grain borers (Rhyzopertha dominica (F.)) responding to an aggregation 278 

pheromone.41  The presence of volatiles from the crop may also enhance mate seeking 279 

behaviour in this insect, as is the case with males of the brassica pod midge Dasineura 280 

brassicae (Winnertz).42  A study of codling moth in orchards recommended that trap height be 281 

considered relative to the tree height rather than in absolute terms.43  While the height of wheat 282 

crops may not vary to the same extent, this study supports the idea that the crop is important 283 

in standardising catches in monitoring traps between fields.  Based on these findings, it would 284 

be most practical for farmers to position pheromone traps at the height of the ear, as is 285 

recommended for pheromone traps of S. mosellana.44  This height not only gives a good level 286 

of performance but also makes them easier to find than traps placed at ground level. 287 

Catches of H. marginata declined when pheromone traps were situated in field margins.  Of 288 

the total number of insects caught, 22% were in the field margin traps compared to 35% and 289 

43% caught in traps 20 m and 40 m into the field respectively.  This result may be a function 290 
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of the reduced area from which H. marginata could be attracted to the traps, given that most 291 

margins were not adjacent to areas with H. marginata populations.  There were no differences 292 

in catch in traps positioned 20 m and 40 m into the crop, yet there was a trend towards 293 

increased catch with increasing distance from margins at two out of three study sites.  The 294 

third site had the lowest catch with just 14% of the total insects trapped, which may account 295 

for the lack of a similar trend.  Couch grass (Elymus repens) and other wild grasses have been 296 

shown to be excellent host plants for H. marginata 4,45 and weeds can increase pest 297 

populations by acting as alternate host plants46.  The presence of weed species in field 298 

margins here did not appear to increase numbers of H. marginata in these areas, possibly 299 

because the in-field populations were substantial.  Obstacles such as hedgerows and trees 300 

adjacent to the margins may have impeded dispersion of the pheromone plume and the flight 301 

of insects, but the direction of the transect in relation to wind direction had no effect on catch 302 

which suggests this was not the case.  There were signs of predation on traps and, although 303 

not surveyed here, it is possible that natural enemy populations associated with the field 304 

margins could have affected H. marginata counts in these areas.  Field margins can augment 305 

natural enemy populations in arable fields,47 but any suppressive effect may be reduced with 306 

increasing distance into the crop.48  In a study on European corn borer, Ostrinia nubilalis 307 

(Hübner) trap location, Derrick et al. suggest that in addition to increased catches, within-field 308 

trap placement is advantageous in that the uniform habitat of the crop results in a more reliable 309 

trapping system.49  It is therefore sensible to propose that H. marginata pheromone traps 310 

should be placed in an open space in an area of the field with known populations to maximise 311 

insect capture.  In practice, given that traps placed 40 m into the crop increase maintenance 312 

time with no appreciable gain in catch, we suggest that a position 20 m into the crop should 313 

be sufficient in most cases.  314 

Female Cecidomyiidae have been shown to produce sex pheromones that act as attractants 315 

over long distances rather than eliciting short-range behavioural effects.39  The high numbers 316 

of H. marginata caught in traps baited with (R)-2-nonyl butyrate support this however it raises 317 
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the possibility of interference occurring between lures of nearby traps.  The flight behaviour of 318 

H. marginata is not well studied, but M. destructor males exhibit plume following behaviour 319 

very similar to that of male moths when responding to female sex pheromones.50  The range 320 

of interference within moth pheromone trap systems has been studied based on the idea that 321 

pheromone traps in the centre of an array of traps will catch fewer individuals than traps on 322 

the outer edges if plumes are interacting.26,33,51,52  In the case of H. marginata, central traps 323 

caught fewer insects than the outer traps and this difference declined with increasing inter-324 

trap distance.  This indicates the occurrence of plume interactions, where the overlapping 325 

plumes from upwind lures divert the insect away from the central trap.26,53,54  On this basis, 326 

trap interference appears to occur primarily at inter-trap distances below 20 m based on the 327 

model described here (Fig. 4).  This should therefore be considered the minimum trap spacing 328 

to avoid pheromone plumes overlapping.   There was also an overall reduction in catches in 329 

the traps with decreasing inter-trap spacing and it is conceivable that this resulted from a 330 

trapping out of insects in the area.  Additional research is needed to relate trap catches and 331 

the potential for trap interference to H. marginata population densities.  In a detection or 332 

monitoring trap it would be advantageous to use larger inter-trap distances where possible to 333 

avoid the possibility of interactions occurring at higher wind speeds.  For mass trapping or 334 

pheromone disruption strategies, a minimum of 25 traps would need to be deployed per 335 

hectare to ensure coverage of the area at the current pheromone concentration.  However, far 336 

higher catches can be obtained by increasing the pheromone loading to 2.5 mg or more.21  337 

Further research would be required to determine the minimum distance between traps at a 338 

higher pheromone loading but it is likely to be large enough to offset the increased pheromone 339 

production costs in order to get complete coverage over an area.   340 

Future research into H. marginata pheromone traps should also focus on the relationship 341 

between trap catch and potential crop damage to provide farmers with vital information upon 342 

which to base pest management decisions.  The recommendations for use presented here 343 

describe not only aspects of practical consideration for growers which are important in 344 
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achieving reliable results from the product;55 but also provide insight into the flight of male H. 345 

marginata following emergence and their responses to pheromone lures.   346 
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Figure Legends 498 

Figure 1.  Catches of Haplodiplosis marginata males in traps baited with lures maintained 499 

continuously (old) or renewed at approximately weekly intervals (new) at two sites (3 May – 500 

16 July 2016; N = 4 at each site; points show log counts, lines show results of model fit) 501 

Figure 2. Mean catches (±SEM) of Haplodiplosis marginata males in traps positioned at 502 

different heights in fields of spring wheat (Field 1) and winter wheat (Field 2) at the Oxon field 503 

site (13-19 May 2016; N = 4 at each site and height; shaded areas represent traps at or below 504 

the height of the crop). Lowercase letters indicate significant differences between heights. 505 

Figure 3. Mean catches (±SEM) of Haplodiplosis marginata males in traps positioned at 506 

increasing distance from the field margin (19 May – 1 June 2016; three sites, N = 4 at each 507 

site). Lowercase letters indicate significant differences between distances. 508 

Figure 4. Interaction plot (± SE) from mixed effects model showing the interaction between 509 

trap location and inter-trap distance (lines).  Mean catch of Haplodiplosis marginata males in 510 

central and outer traps in hexagonal arrays of different inter-trap distances at all sites (points) 511 

(1-22 June 2016; N = 3). 512 
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