Transcriptome analysis of hepatic gene expression and DNA methylation in methionine- and betaine-supplemented geese (Anser cygnoides domesticus

by Yang, Z., Yang, H.M., Gong, D.Q., Rose, S.P., Pirgozliev, V., Chen, X.S. and Wang, Z.Y.

Copyright, Publisher and Additional Information: This is the author's accepted manuscript. The final published version (version of record) is available online via Cambridge University Press

Please refer to any applicable terms of use of the publisher.

DOI: https://doi.org/10.3382/ps/pey242

Yang, Z., Yang, H.M., Gong, D.Q., Rose, S.P., Pirgozliev, V., Chen, X.S. and Wang, Z.Y. 2018. Transcriptome analysis of hepatic gene expression and DNA methylation in methionine- and betainesupplemented geese (Anser cygnoides domesticus). *Poultry Science*

Transcriptome analysis of hepatic gene expression and DNA methylation in methionine- and betaine-supplemented geese (Anser cygnoides domesticus)

Journal:	Poultry Science
Manuscript ID	PS-18-07613.R1
Manuscript Type:	Full-Length Article
Key Words:	methionine, betaine, transcriptome, DNA methylation, geese

1	Running head: Transcriptome Analysis of Geese
2	
3	Transcriptome analysis of hepatic gene expression and DNA methylation in methionine-
4	and betaine-supplemented geese (Anser cygnoides domesticus)
5	
6	Z. Yang ^{*†1} , H.M. Yang [*] , D.Q. Gong [*] , S.P. Rose [†] , V. Pirgozliev [†] , X.S. Chen [*] and Z.Y. Wang ^{*2}
7	
8	[*] College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province,
9	P.R. China 225000
10	[†] The National Institute of Poultry Husbandry, Harper Adams University, Edgmond, Newport,
11	UK TF10 8NB
12	
13	¹ Z. Yang was a visiting researcher in Harper Adams University funded by the China Scholarship
14	Council (CSC)
15	
16	² Corresponding author: Z.Y. Wang, E-mail: dkwzy@263.net
17	College of Animal Science and Technology, Yangzhou University,
18	Wenhui East Road 48#, Yangzhou City, Jiangsu Province 225009, P.R. China
19	Tel: +86-514-87979045
20	Fax: +86-514-87990256
21	Paper section: Genetics and Genomics

22

23 ABSTRACT

24 Dietary methionine (Met) restriction produces a coordinated series of transcriptional responses in 25 the liver that limits growth performance and amino acid metabolism. Methyl donor 26 supplementation with betaine (Bet) may protect against this disturbance and affect the molecular basis of gene regulation. However, a lack of genetic information remains an obstacle to 27 28 understand the mechanisms underlying the relationship between Met and Bet supplementation 29 and its effects on genetic mechanisms. The goal of this study was to identify the effects of 30 dietary supplementation of Met and Bet on growth performance, transcriptomic gene expression 31 and epigenetic mechanisms in geese on a Met-deficient diet. One hundred and fifty 21-day-old 32 healthy male Yangzhou geese of similar body weight were randomly distributed into 3 groups 33 with 5 replicates per treatment and 10 geese per replicate: Met-deficient diet (Control), 34 Control+1.2 g/kg of Met (Met) and Control+0.6 g/kg of Bet (Bet). All geese had free access to 35 the diet and water throughout rearing. Our results indicated that supplementation of 1.2 g/kg of 36 Met in Met-deficient feed increased growth performance and plasma homocysteine (HCY) levels, 37 indicating increased transsulfuration flux in the liver. Supplementation of 0.6 g/kg Bet had no 38 apparent sparing effect on Met needs for growth performance in growing geese. The expression 39 of many genes critical for Met metabolism is increased in Met supplementation group. In the 40 Bet-supplemented group, genes involved in energy production and conversion were up-regulated. 41 Dietary supplementation with Bet and Met also altered DNA methylation. We observed changes 42 in the methylation of the LOC106032502 promoter and corresponding changes in mRNA 43 expression. In conclusion, Met and Bet supplementation in geese affects the transcriptional

44 regulatory network and alters the hepatic DNA methylation of LOC106032502.

45

46 Key words: methionine; betaine; transcriptome; DNA methylation; geese

to per period

47 **INTRODUCTION**

Methionine (Met), which is the first limiting amino acid (AA) in a corn- and 48 49 soybean-based diet, is an indispensable nutrient for poultry. Met is crucial for protein synthesis 50 in poultry and is essential for optimal muscle accretion, feather synthesis, and other biochemical 51 processes that utilize a methyl group donor. The intake of a Met-deficient diet produces a 52 coordinated series of transcriptional, endocrine, and biochemical changes across multiple tissues, 53 but the underlying mechanisms linking Met restriction to its metabolic phenotype are poorly understood. Betaine (Bet) is a common term for trimethylglycine, a substrate for 54 55 betaine-homocysteine methyl transferase (BHMT) in the liver and kidneys. The formation of 56 Met from homocysteine can occur either through the transfer of a methyl group from Bet by the 57 enzyme BHMT to produce dimethylglycine or via 5-methyl tetrahydrofolate (Alirezaei et al., 58 2011). Prior studies have demonstrated that Bet can replace Met in diets that are moderately 59 deficient in Met due to its function as an essential AA and because it is as effective as Met in 60 improving the performance and carcass quality of growing birds (Zhan et al., 2006; Yang et al., 61 2017). However, the Met-replacing and fat-distribution effects of Bet on transcriptional 62 responses remain poorly understood.

The liver plays a central role in whole body lipid metabolism, participating in the regulation of lipid and glucose metabolism through lipogenesis, fatty acid oxidation, glycogenesis and glycogenolysis (Bechmann et al., 2012). The dependent effects of nutritional additives are most likely linked to transcriptional variations in the liver. Some studies have begun to focus on the DNA methylation on cytosines with guanine as the next nucleotide, which are

68	known as CpG sites and are commonly present in high concentrations in the promoter regions of
69	genes. These epigenetic marks are modulated by environmental stimuli such as stress (Paternain
70	et al., 2011), drugs (Yoo and Jones, 2006) or nutritional status (Lomba et al., 2010). Recently,
71	several examples of dynamic changes in transcriptomes due to nutritional interventions have
72	been reported in rats, including the effect of Met restriction on transcriptomic and metabolomic
73	readouts as well as specific gene promoter methylation (Cordero et al., 2013b; Ghosh et al.,
74	2017). Other studies have described different dietary habits that influence the epigenetic profile
75	such as a protein-restricted diet (Kalhan, 2009) and methyl donor supplementation (Cordero et
76	al., 2013a). In this sense, the effect of methyl donor supplementation on metabolic and genetic
77	processes has been studied in both humans (Waterland et al., 2008; Boeke et al., 2012) and
78	animal models (Cordero et al., 2013a) during pregnancy and adulthood. However, the
79	transcriptional effects of Met and Bet supplementation on sulfur amino acid metabolism in geese,
80	which have a strong capacity to digest crude fiber, has not yet been reported.
81	In this study, we determined the effects of dietary supplementation with Met and Bet on
82	the growth performance and serum biochemical parameters of geese. Furthermore, we
83	investigated the transcriptomic and epigenetic mechanisms in the liver after consuming a
84	Met-restrictive diet and the potential protective effect of methyl donor supplementation with Bet.
85	With this purpose, we performed a transcriptome evaluation using Illumina technology as well as
86	assessed gene expression via RT-qPCR and conducted specific promoter methylation analyses of
87	interleukin 4-induced gene 1 (IL4I1) and LOC106032502. These comparisons provided new
88	insights into the sensing and signaling mechanisms mediating the effects of dietary Met and Bet

89	supplementation in geese.
90	
91	MATERIALS AND METHODS
92	
93	Ethics Statement
94	All bird-handling protocols were approved by the Yangzhou University Ethics Committee
95	on Animal Experiments under permit number SYXK (Su) IACUC 2012-0029. All experimental
96	procedures with geese were performed in accordance with the Regulations for the Administration
97	of Affairs Concerning Experimental Animals, approved by the State Council of the People's
98	Republic of China.
99	
100	Animals, Experimental Design, and Sampling
101	This study was conducted using 150 healthy male Yangzhou geese at 21 d of age from
102	Jiangsu Yangzhou Tiange Husbandry Co., Ltd. All of the geese had similar body weights (1.02 \pm
103	0.13 kg) and were randomized into three groups that included five replicates per treatment and
104	ten geese per replicate. Basal corn-soybean meal diet was formulated mainly according to the
105	NRC (1994) for geese and prior research results from our laboratory (Shi et al., 2007; Wang et al.,
106	2010). The crude protein and metabolizable energy of basal diets were 16.16 %, 10.90 MJ/kg,
107	respectively. The nutrition requirements have already meet or exceed the recommended
108	nutritional needs of geese in China except for Met. The ingredient and nutrient compositions of
109	the experimental diets are shown in Table 1. The source of Met used in the feed was <i>DL</i> -Met.

https://mc04.manuscriptcentral.com/ps

110	The control group (Control) received only the basal diet (Met restriction diet) from 21 d to 70 d,
111	Met-treated group (Met) received the basal diet supplemented with an additional 1.2 g/kg of Met,
112	and the Bet-treated group (Bet) was fed the basal diet supplemented with an additional 0.6 g/kg
113	of Bet. Geese were raised in separate plastic-floor pens with 2 cm ² square holes, set 70 cm above
114	the floor. All manure was removed from underneath the wire-floor at the end of the experiment.
115	All geese were fed and watered ad libitum throughout rearing. Water was provided in a half-open,
116	plastic, cylindrical water tank, and pelleted feed was provided in feeders on one side of each pen.
117	The geese were subjected to closed indoor rearing, without outdoor access, under similar
118	environmental conditions (temperature: $26.0^{\circ}C \pm 3.0^{\circ}C$; relative humidity (RH): $65.5 \pm 5.0\%$;
119	photoperiod: 16L:8D; light intensity: 20 lux; type of light: fluorescent lamps; stocking density:
120	$0.5 \text{ m}^2/\text{gander}$).
121	Sample Collection and Measurements
122	Sample Collection and Measurements
123	The feed intake per pen was measured on a daily basis, and body weight (BW) was
124	recorded by electronic platform scale (acs-30 Shanghai Yousheng Co., Ltd, Shanghai, China)
125	with the accuracy of 1 g to 6 000 g at 21 and 70 d of age. The average daily feed intake (ADFI),
126	average daily gain (ADG), and feed-to-gain ratio (F/G) were calculated at the end of the
127	experiment, and mortality was recorded as it occurred. When the geese reached 70 d of age, two

- 128 geese from each treatment replicate were randomly selected (5 replicates per treatment; n = 30
- 129 geese) to have blood drawn from their wing veins. Additionally, three geese were randomly
- 130 selected form the ten ganders who were drawn blood of each group (n = 9 geese) were

131 slaughtered via exsanguination to obtain liver samples. Liver samples were rapidly collected 132 from the right side of the liver in each gander, wrapped in freezing tubes, frozen in liquid 133 nitrogen, and stored at -80°C. The samples were used for the transcriptome, qRT-PCR and DNA 134 methylation analyses.

136 Clinical Blood Parameters

Blood drawn from wing veins was cooled in ice water and centrifuged for 10 min at 4,500 rpm to obtain plasma for measuring biochemical indexes. Plasma was stored at -20°C until analysis. Plasma concentrations of total protein (TP), albumin (ALB), and globulin (GLOB) were measured using an automatic biochemical analyzer (UniCel DxC 800 Synchron, Beckman Coulter, CA, USA). A cyclic enzymatic method was used to measure homocysteine (HCY) production in peripheral blood (Refsum et al., 2004).

143

144 Preparation of cDNA Libraries and Illumina Sequencing for Transcriptome Analysis

Liver samples were extracted to obtain total RNA using TRIzol (DP405-02, Tiangen Biochemical Technology Co., Ltd, Beijing, China) as per the manufacturer's protocol. Total RNA was treated with DNase I to avoid genomic DNA contamination. The concentration and RNA integrity was confirmed using a 2100 Bioanalyzer (Agilent Technologies, Beijing, China). Samples for transcriptome analyses were prepared according to the instructions provided with the Illumina kit. Using the fragmentation buffer provided in the kit, the mRNA was fragmented into sequences of approximately 200 bp, and the first strand of cDNA was synthesized using

random hexamers as primers and the mRNA fragments as templates. Buffer, dNTPs, RNase H, and DNA polymerase I were then added to synthesize the second strand of cDNA. Double-stranded cDNAs were purified with the QiaQuick PCR Extraction Kit (No. 51504, Beijing Biomarker Biotechnology Co., Ltd., Beijing, China) and eluted with EB buffer for end repair and A-tailing. Sequencing adapters were ligated to the 5' and 3' ends of the fragments. Fragments were purified via agarose gel electrophoresis and enriched via PCR amplification to create a cDNA library.

159 The cDNA library was subsequently sequenced on the Illumina sequencing platform 160 (Illumina HiSeq 4000, Tiangen Biochemical Technology Co., Ltd, Beijing, China), and 150-bp 161 paired-end reads were generated. Raw reads were generated from the obtained images. After 162 removal of low-quality reads, the processed reads showing an identity value of 95% and a 163 coverage length of 100 bp were assembled using SOAP2 *de novo* software (Li et al., 2010). 164 Clean reads were assembled using Trinity (Grabherr et al., 2011), and the Trinities were clustered 165 into unigenes using TGICL tools (Pertea et al., 2003). The unigenes were subjected to BLAST 166 searches and annotation against the NCBI non-redundant database using an E value cut-off of 10⁻⁵. Functional annotations based on gene ontology (GO; http://www. geneontology.org) were 167 168 analyzed with Blast2GO software. Cluster of Orthologous Groups (COG) and Kyoto 169 Encyclopedia of Genes and Genomes (KEGG) pathway annotations were performed via BLAST 170 searches against the COG and KEGG databases.

Differentially expressed gene (DEG) libraries (control vs. Met-treated, control vs.
Bet-treated, and Met-treated vs. Bet-treated) were constructed as transcriptome libraries. Only

one adaptor was used as a sequencing primer (single-read). Each tunnel generated millions ofraw tags with a length of 50 bp.

175 To map the DEG reads, sequenced raw data were filtered to remove "dirty" raw reads that 176 contained the adapter sequences, reads with more than 10% unknown bases, and low-quality 177 reads (which were defined as reads with more than 50% of bases showing a quality value \leq 5). 178 To annotate the reads, the clean reads were mapped to our transcriptome reference database, 179 allowing no more than a two-nucleotide mismatch. Clean tags were designated unambiguous 180 clean tags. For gene expression analyses, the number of unambiguous clean tags for each gene 181 was calculated and normalized to the reads per kilobase transcriptome per million mapped reads 182 (RPKM) value.

183 Statistical analysis of the frequency of each read in the different cDNA libraries was 184 performed to compare gene expression between the different treatment groups. Statistical 185 comparisons were performed with custom-written scripts using a previously described method 186 (Livak and Schmittgen, 2001). The false discovery rate (FDR) was used to determine the 187 threshold of *P*-values in multiple tests and analyses. We employed an FDR of 0.05 as the 188 threshold to judge the significance of differences in gene expression. For the GO and pathway 189 enrichment analyses, we mapped all DEGs to terms in the KEGG and GO databases and then 190 searched for significantly enriched terms. GO determination of the significance of enrichment 191 was based on the KS test, while KEGG enrichment analysis was based on P-values. In both 192 instances, the lower the KS or *P* value, the greater the likelihood of enrichment.

193

194 Quantitative Reverse Transcription PCR (qRT-PCR) Validation

195 Total RNA was extracted from livers using TRIzol reagent (DP405-02, Tiangen 196 Biochemical Technology Co., Ltd., Beijing, China), and then preserved at -80°C until used. The 197 sequences of the specific primer sets are listed in Table 2. qRT-PCR was performed using the 198 SYBR Premix Ex Taq Kit (KT201-02, Tiangen Biochemical Technology Co., Ltd., Beijing, 199 China) as per the manufacturer's protocol. The results were normalized to the expression level of 200 the constitutively expressed β -actin gene. All samples were analyzed in triplicate, and the average cycle threshold (Ct) values were employed for quantification using the $2^{-\Delta\Delta CT}$ method 201 202 (Livak and Schmittgen, 2001; Tao et al., 2012).

203

204 DNA Extraction and Bisulfite Modification

205 DNA methylation levels in the promoter regions of IL411 and LOC106032502 were 206 quantified using bisulfite sequencing PCR. Methyl Primer Express v1.0 was employed to 207 identify effective dense CpG island sequences according to GenBank. Genomic DNA was 208 extracted from liver tissues using the Rapid Animal Genomic DNA Isolation Kit (SK8224, 209 Sangon, Shanghai, China) as per the manufacturer's instructions. The concentration and purity of 210 the DNA were measured using a NanoDrop ND-1000 spectrophotometer (Thermo Scientific, 211 USA). DNA samples (200 ng) were bisulfated using the EZ DNA Methylation-Gold Kit 212 (SK8161, Sangon, Shanghai, China). Three separate bisulfite modification treatments were 213 performed for each DNA sample, and three replicates were performed for each group.

214

215 Bisulfite Sequencing PCR (BSP)

216	Predicted CpG islands were identified in gene promoter regions (approximately 2,000 bp
217	upstream of the transcriptional start site), and bisulfite sequencing PCR primers were designed
218	using online MethPrimer software (Li and Dahiya, 2002). The bisulfite sequencing PCR primers
219	for IL4I1 and LOC106032502 are listed in Table 2. The 50-µL PCR mixture contained the
220	following: 5 μ L of 10× Taq Buffer with Mg ⁺² [100 mM Tris-HCl (pH 8.8 at 25°C), 500 mM KCl,
221	15 mM MgCl ₂ , and 0.8% (v/v) Nonidet P40]; 1 μ L of the forward primer (10 μ M); 1 μ L of the
222	reverse primer (10 μ M); 1 μ L of dNTPs; 0.8 μ L of Taq DNA polymerase (5 U/ μ L); 38.2 μ L of
223	double-distilled water; and 3 μ L of bisulfite-modified DNA. PCR amplification was performed
224	in a thermal cycler (Bio-Rad Laboratories, Hercules, CA, USA). The cycling parameters were as
225	follows: 98°C for 4 min; 20 cycles of 94°C for 45 s, 66°C for 45 s, and 72°C for 60 s; 20 cycles
226	of 94°C for 45 s, 56°C for 45 s, and 72°C for 60 s; and 72°C for 8 min. The PCR products were
227	then separated in 2% agarose gels and purified using Universal DNA Purification Kits. The
228	purified PCR products were subcloned using the pUC18-T vector and transformed into
229	chemically competent E. coli cells. For each DNA sample, ten positive clones were selected for
230	sequencing (Augct, Beijing, China). The sequences from the bisulfite PCR assays were analyzed
231	for methylation using Methylation Analysis software (Kumaki at al., 2008).

232

Data are expressed as the mean ± standard deviation (SD) and after KS testing to confirm
 normality. SPSS 17.0 (SPSS, Shanghai, China) was used to perform Student's t-tests or one-way

²³³ Statistical Analyses

236	ANOVA to determine statistically significant differences between or among the different
237	treatment groups. The differences between the group means were analyzed with Duncan's
238	multiple range test. Over-presentation of the DEGs was determined in specific pathways. The
239	level of enrichment was indicated by the enrichment factor, and the P-value was used to
240	calculate the significance of enrichment. Furthermore, statistically significant differences
241	between treatment groups were tested with Fisher's exact test for the methylation levels of each
242	CpG site and with the Mann-Whitney U test for the methylation level of the entire CpG site.
243	Differences were considered statistically significant when $P < 0.05$.
244	
245	RESULTS AND DISCUSSION
246	
246 247	Supplementation with Met and Bet Affects Growth Performance and Plasma Biochemical
	Supplementation with Met and Bet Affects Growth Performance and Plasma Biochemical Indexes
247	
247 248	Indexes
247 248 249	<i>Indexes</i> The effects of Met and Bet on the growth performance and plasma biochemical indexes
247 248 249 250	<i>Indexes</i> The effects of Met and Bet on the growth performance and plasma biochemical indexes of Yangzhou geese are shown in Table 3 and Table 4. No mortality was observed during the
247248249250251	Indexes The effects of Met and Bet on the growth performance and plasma biochemical indexes of Yangzhou geese are shown in Table 3 and Table 4. No mortality was observed during the experiment. The BW of the Yangzhou geese at 70 d of age and the ADG in the Met-treated group
 247 248 249 250 251 252 	Indexes The effects of Met and Bet on the growth performance and plasma biochemical indexes of Yangzhou geese are shown in Table 3 and Table 4. No mortality was observed during the experiment. The BW of the Yangzhou geese at 70 d of age and the ADG in the Met-treated group were increased significantly compared with those of the geese in the control group and the
 247 248 249 250 251 252 253 	<i>Indexes</i> The effects of Met and Bet on the growth performance and plasma biochemical indexes of Yangzhou geese are shown in Table 3 and Table 4. No mortality was observed during the experiment. The BW of the Yangzhou geese at 70 d of age and the ADG in the Met-treated group were increased significantly compared with those of the geese in the control group and the Bet-treated group ($P < 0.05$). The results of several previous studies led to the hypothesis that

257	growing birds (Park et al., 2017). Similarly, no improvement in BW gain or the feed conversion
258	ratio following Bet supplementation was observed by Yang et al., (2017) or Esteve-Garcia and
259	Mack (2000), which is consistent with our results.
260	Dietary Met levels significantly affected the concentrations of HCY in Yangzhou geese at
261	70 d of age. Specifically, the concentration of HCY in the Met-treated group increased
262	significantly compared with that of the geese in the Bet-treated and control groups ($P < 0.05$). TP,
263	ALB, and GLOB levels were not significantly different between the three groups of geese. It has
264	been shown that hepatic BHMT activity increases when Met-deficient diets containing adequate
265	or excess choline and Bet are fed to chicks and rats (Emmert et al., 1996). Furthermore, Bet
266	supplementation was found to elicit maximal hepatic BHMT activity when rats consumed diets
267	with adequate choline, Met, and cysteine (Finkelsteinet al., 1983). In agreement with these
268	previous studies, we observed that supplementation of the basal feed of geese 1.2 g/kg of Met
269	resulted in increased plasma HCY levels, indicating an increased transsulfuration flux in the liver.
270	Whether changes in the flux through BHMT and Met synthesis occurred in our study is unknown,
271	and further work is needed to study the effects of Met and Bet supplementation on Met
272	metabolism.
273	
274	Liver Transcriptome Analysis
275	
276	Illumina Transcriptome Sequencing and Read Assembly. To obtain a global view of the
277	goose hepatic transcriptome and identify genes regulated by nutritional factors, cDNA libraries

278	were constructed from hepatic tissues of Yangzhou geese and sequenced using the Illumina
279	HiSeq 4000 sequencing platform. Hepatic tissue samples (T1-T9) were used to build nine
280	libraries for high-throughput sequencing. After cleaning and quality checks, we obtained 69.42
281	Gb of clean sequencing data. The percentages of Phred quality scores > 30 (Q30) were 96.25%,
282	95.87%, 95.83%, 95.80%, 95.78%, 96.32%, 95.34%, 95.52%, and 95.36% for the nine libraries.
283	The guanine-cytosine (GC) percentages in the libraries were 54.88%, 54.04%, 54.21%, 52.40%,
284	54.38%, 53.45%, 53.26%, 54.59%, and 54.16%. Assembly of the reads resulted in 114,460
285	transcripts and 86,683 unigenes with mean sizes of 1,394 and 1,086 bp, respectively. These reads
286	were assembled using Trinity software. Low-complexity and low-quality reads were filtered out,
287	which resulted in 228,563 trinities.

288

289 Functional Annotation of the Transcriptome. Due to the lack of available genomic 290 resources for geese, goose mRNAs with a full-length CDS from GenBank were considered the 291 "gold standard" reference in the present study. The mean lengths of our unigenes were longer than those previously reported (Ozsolak et al., 2010). We hypothesized that this was primarily 292 293 due to different assembly procedures. Our sequencing data were assembled using Trinity, a new 294 *de novo* transcriptome assembly package that can produce transcripts of > 200 bp (Grabherr et al., 295 2011). The assembly results suggested that the unigene data were highly reliable and covered 296 most of the transcriptome sequences. To determine the function of DEGs, all DEGs were mapped 297 to terms in the GO database. A total of 17,324, 17,387, and 17,494 differentially expressed 298 unigenes were annotated between the control and Met-treated groups, the control and Bet-treated

299 groups, and the Met- and Bet-treated groups, respectively. These findings suggested that the 300 transcriptome of the goose liver contains a large amount of new and useful transcript information, 301 as shown in Figure 1. 302 GO is an international standardized gene functional classification system that involves 303 three ontology algorithms: molecular functions, cellular components, and biological processes 304 (Ashburner et al., 2000). Based on the obtained GO assignments, 49,467 unigenes were 305 categorized into 50 functional groups (Figure 2): 23.4% of the unigenes (n = 11,586) were categorized as cellular components; 28.5% of the unigenes (n = 14,097) were classified as 306 307 showing molecular functions; and 48.1% (n = 23,784) of genes were categorized as being 308 involved in biological processes. To further categorize biochemical pathways, we performed a 309 BLASTX search against the KEGG protein database. Pathway analysis with KEGG annotations 310 indicated that these unigenes were involved in 282 pathways (Figure 2). The COG database is 311 based on the phylogenetic relationships among bacteria, algae, and eukaryotic organisms. The 312 COG database can be used to directly classify gene products from these groups. Highly 313 represented genes were classified in the "general function" category, followed by the "signal 314 transduction mechanism" and "posttranslational modification, protein turnover, and chaperones" 315 categories.

316

317 *Analysis of Differential Gene Expression.* An FDR ≤ 0.05 and an absolute value of the 318 log₂ fold change (log₂ FC) ≥ 1 served as the criteria for screening DEGs. Although only small 319 differences in gene expression were found among the groups, potential nutritional mechanisms in

320	goose liver were revealed. We identified 89 DEGs in geese that received Met supplementation
321	(Figure 3), and these genes were predicted to be involved in "the metabolism of amino acids."
322	Among these genes, the 64 up-regulated DEGs included key enzymes are involved in glycine,
323	serine, threonine, cysteine, and Met metabolism (e.g., histone deacetylase (HDAC7), L-threonine
324	3-dehydrogenase (TDH), pantetheinase-like (LOC106032502), and interleukin 4-induced 1
325	(IL4I1). Additionally, the 25 down-regulated DEGs included key genes are involved in fatty acid
326	metabolism (e.g., fatty acid elongase (ELOVL2) and protein tyrosine phosphatase (PTPRF),
327	which is involved in carbon metabolism). The up-regulated and down-regulated DEGs
328	cooperatively promoted the effect of dietary Met supplementation. It would be of interest to
329	investigate whether the substantial increases in gene expression observed in the livers of
330	Met-supplemented geese affect protein synthesis in Yangzhou Geese. Peñagaricano et al., (2013)
331	found that 276 of 10,662 analyzed genes showed significant differences in response to maternal
332	Met supplementation. One of these genes, BCL2A1, encodes a member of the BCL2 protein
333	family that plays a critical role in the regulation of oocyte and early embryo survival (Boumela et
334	al., 2011). Another DEG, HDAC7, is expressed in B-cell precursors, where it interacts with the
335	transcription factor MEF2C and is recruited to the promoters of non-B-cell genes. Furthermore,
336	TDH is the first enzyme in the biochemical pathway involved in the conversion of L -threonine,
337	via 2-amino-3-ketobutyrate, to glycine (Table 5, Table 6, and Table 7). Consistent with their
338	findings, our mRNA profiling analysis revealed the involvement of similar pathways.
339	Furthermore, these DEGs play a key role in the development of the goose liver.
340	In geese that received dietary Bet supplementation, 45 DEGs were identified: 24 genes

17 https://mc04.manuscriptcentral.com/ps

341	were up-regulated, and 21 genes were down-regulated when the Bet-treated group was compared
342	with the control group. These 45 genes were characterized as being involved in "energy
343	production and conversion," "replication, recombination, and repair," and "carbohydrate
344	transport and metabolism." The up-regulated DEGs included an L-gulonolactone oxidase-like
345	gene (LOC106049515), while the down-regulated DEGs included apelin receptor (APLNR),
346	acidic mammalian chitinase-like (LOC106045865), and stabilin 1 (STAB1). Previous studies
347	have concluded that a diet supplemented with Bet protects rats against high-fat diet-induced liver
348	injury (Deminice et al., 2015) and alleviates carbon tetrachloride-induced liver injury in chickens
349	(Tsai et al., 2015). Based on a meta-analysis, Sun et al., (2016) reported that choline and Bet
350	consumption lowers the incidence of cancer. Choline can offer the one-carbon unit when
351	oxidized to Bet, Just like 5-methyl tetrahydrofolate. Therefore, if this pathway of one-carbon
352	metabolism is disrupted, it will affect processes such as DNA synthesis and repair as well as
353	genes regulated by methylation, and consequently promotes carcinogenesis (Mentch and
354	Locasale, 2016). We found that genes involved in "energy production and conversion" were
355	up-regulated by Bet supplementation, which may be related to the prevention of hepatic cancer.
356	Further studies are warranted to verify these results.

Comparison of the Met- and Bet-supplemented groups led to the identification of six DEGs, three of which were up-regulated, while three were down-regulated. These genes were predicted to be involved in "cell wall/membrane/envelope biogenesis" and "carbohydrate transport and metabolism". The up-regulated DEGs included an inhibin beta C chain-like gene (LOC106049823), which is a key gene involved in signal transduction. In contrast,

362	pantetheinase-like (LOC106032502), a key gene involved in amino acid transport and
363	metabolism, was down-regulated. We speculate that the difference between Met and Bet
364	supplementation is that Bet can up-regulate LOC106049823 and down-regulate LOC106032502.
365	Pathway analysis of the DEGs indicated that genes involved in "amino acid transport and
366	metabolism" and "posttranslational modification, protein turnover, and chaperones" showed
367	differences between Bet-treated group and the control group. The transcriptome landscape
368	shifted to genes required for "transcription", "replication, recombination, and repair", and
369	"carbohydrate transport and metabolism" when the Met-treated group was compared with the
370	control group. Furthermore, genes involved in "carbohydrate transport and metabolism" and
371	"cell wall/membrane/envelope biogenesis" (in the KEGG category of metabolism) were
372	significantly enriched in Bet-treated animals compared with Met-treated animals. Detailed
373	information is shown in Figure 3, Figure 4, and Figure 5.
374	
375	Validation of DEGs Identified Using RNA-Seq
375 376	Validation of DEGs Identified Using RNA-Seq As shown in Figure 6, five DEGs were randomly selected for validation via qPCR.
376	As shown in Figure 6, five DEGs were randomly selected for validation via qPCR.
376 377	As shown in Figure 6, five DEGs were randomly selected for validation via qPCR. Although the exact fold change of the DEGs at several data points varied between the RNA-Seq
376 377 378	As shown in Figure 6, five DEGs were randomly selected for validation via qPCR. Although the exact fold change of the DEGs at several data points varied between the RNA-Seq and qPCR analyses, the differential expression trends detected using the two approaches were
376377378379	As shown in Figure 6, five DEGs were randomly selected for validation via qPCR. Although the exact fold change of the DEGs at several data points varied between the RNA-Seq and qPCR analyses, the differential expression trends detected using the two approaches were largely consistent. Discrepancies with respect to ratios may be attributed to the different

383

LOC106032502 Promoter Regions

384	The methylation levels at individual CpG sites are shown in Figure 7 and Figure 8. No
385	significant difference was observed in the total methylation level in the IL4I1 promoter region as
386	Met exposure increased (Figure 7) ($P = 0.744$). In the Bet-treated group compared with the
387	control group, we observed increased methylation of IL4I1 CpG sites ($P = 0.016$) and
388	up-regulated gene expression (Figure 6), but with no significant difference in expression level
389	between the two groups ($P > 0.05$).
390	Our data also showed that the methylation of the promoter region of LOC106032502
391	decreased as Met and Bet exposure increased (Figure 8) ($P = 0.014$). The percentage of DNA
392	methylation in the control group was 51.3%, which was significantly higher than that observed
393	in either the Met- or Bet-treated group. In comparison, as in figure 6, the mRNA level of
394	LOC106032502 in the control group was significantly lower than that in Met-treated geese ($P =$
395	0.01).

396 One of the most compelling findings of our study was the differential expression of IL4I1 397 and LOC106032502. IL4I1 belongs to the L-amino-acid oxidase (LAAO) family and catalyzes 398 the oxidation of L-phenylalanine and other amino acids (Boulland et al., 2007). The expression 399 of IL411 increased significantly when Met was added, which is consistent with the hypothesis of 400 an internal transport system. Previous studies have suggested that IL411 contributes to 401 immunoregulatory activities (Yue et al., 2015). We observed, for the first time, that IL4I1 plays a 402 critical role in cysteine and methionine metabolism. LOC106032502 is predicted to function as a 403 pantetheinase-like protein. The expression of LOC106032502, a component of the "pantothenate

404	and CoA biosynthesis" pathway, was increased in Met-supplemented geese. These are the first
405	data indicating that the addition of Met alters the gene expression of LOC106032502.
406	DNA methylation, an important epigenetic factor, is catalyzed by DNA
407	methyltransferases (Li et al., 2015). DNA methyltransferases mediate DNA methylation by
408	catalyzing the transfer of the methyl group from S-adenosylmethionine (SAM) to cytosine
409	during DNA replication. SAM concentrations depend on micronutrients such as Bet and Met.
410	Nutritional deficiency or dietary supplementation with Met and folic acid (FA) can induce
411	alterations in DNA methylation (Waterland, 2006; Shen et al., 2017). DNA methylation,
412	additional epigenetic modifications that can alter transcriptional activity (e.g. histone
413	methylation or acetylation), For some gene, the DNA methylation of gene promoters is inversely
414	associated with gene expression. However, The epigenetic effect on gene expression did not
415	apply to all genes, because methylation of the promoter region was different in any region
416	(Schlesinger et al., 2007). In the present study, we did not observe significant difference in
417	IL411expression level with increased methylation of IL411 CpG sites in Bet-treated goup,
418	suggesting that mechanism other other differential DNA methylation were responsible for
419	alterations in IL4I1 gene expression, although this remains to be empirically tested.
420	Given the observed global DNA hypomethylation and in an effort to determine whether
421	differential methylation patterns were related to increased gene expression, we detected
422	alterations in the DNA methylation pattern of the LOC106032502 promoter. The methylation of
423	the LOC106032502 promoter in the Met-supplemented and Bet-supplemented groups was
424	reduced, while LOC106032502 gene expression was increased. Met or Bet supplementation may

https://mc04.manuscriptcentral.com/ps

increase the concentration of SAM (Rowling et al., 2002) and decrease DNA methyltransferase

425

426 expression, which could result in decreased methylation at the LOC106032502 promoter and 427 subsequent changes in gene expression. We hypothesize that demethylation increases 428 LOC106032502 expression and the expression of LOC106032502 is inversely regulated by DNA 429 methylation, suggesting that dietary Met and Bet supplementation can alter the methylation 430 status of specific gene promoters leading to persistent changes in gene expression. This 431 promising new area of investigation could enhance our understanding of how nutrition 432 modulates biochemical and genetic mechanisms. 433 In the present study, the effects of dietary Met and Bet supplementation on the liver 434 transcriptome during gander growth were characterized. Our results indicated that 435 supplementation of 1.2 g/kg Met in Met-deficient feed increased growth performance and plasma 436 homocysteine (HCY) levels, indicating increased transsulfuration flux in the liver. 437 Supplementation of 0.6 g/kg Bet had no apparent sparing effect on Met needs for growth 438 performance in growing geese. The expression of many genes that are critical for methionine 439 metabolism was increased by Met supplementation. In the Bet-supplemented group, genes 440 involved in energy production and conversion were up-regulated. Dietary supplementation with 441 Bet and Met can also alter DNA methylation. We hypothesize that demethylation induces 442 LOC106032502 expression. These results expand our understanding of the epigenetic regulation 443 involved in goose nutrition. The findings of this study further highlight the importance of Met 444 metabolism in geese and its tremendous impact on goose core metabolism. Further studies are 445 needed to understand the physiological significance of the differential gene expression observed

446	in these geese. These future studies will be a useful resource for understanding the molecular
447	mechanisms regulated by dietary factors.
448	
449	
450	ACKNOWLEDGMENTS
451	We are grateful to Jiangsu Yangzhou Tiange Husbandry Co., LTD. for providing animal
452	samples. This work was financially supported by the Project of the National Modern Agricultural
453	Industry Technology System (CARS-42-11) of the People's Republic of China, the Sanxin
454	Project of Agriculture of Jiangsu Province (SXGC2017306) and the Scientific Research
455	Foundation of Graduate School of Yangzhou University.
456	Competing financial interests
457	The authors have no conflicts of interest to declare.
458	Conflicts of interest None.
459	None.
460	Data accessibility
461	The sequencing data have been deposited in the NCBI Sequence Read Archive database
462	(http://www.ncbi.nlm.nih.gov/sra/) (SRA accession: SRP115167). BioProject: PRJNA397116
463	BioSample:
464	T01 SAMN07448752, T02 SAMN07448750, T03 SAMN07448751, T04
465	SAMN07448753, T05 SAMN07449080, T06 SAMN07449079, T07 SAMN07449078, T08
466	SAMN07449082, T09 SAMN07449097; T01 SRR5922853, T02 SRR5922854, T03

- 467 SRR5922855, T04 SRR5922856, T05 SRR5922849, T06 SRR5922850, T07 SRR5922851, T08
- 468 SRR5922852, T09 SRR5922857.

to per period

409 KEFEKENCES	469	REFERENCES
-----------------------	-----	------------

- 470 Alirezaei, M., G. Jelodar, P. Niknam, Z. Ghayemi, and S. Nazifi. 2011. Betaine prevents
- 471 ethanol-induced oxidative stress and reduces total homocysteine in the rat cerebellum. J.

472 Physiol. Biochem. 67:605-612. doi:10.1007/s13105-011-0107-1.

- 473 Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K.
- 474 Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. I. Issel-Tarver, A.
- 475 Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G.
- 476 Sherlock. 2000. Gene Ontology: tool for the unification of biology. The Gene Ontology
- 477 Consortium. Nat. Genet. 25:25-29. doi:10.1038/75556.
- 478 Bechmann, L. P., R. A. Hannivoort, G. Gerken, G. S. Hotamisligil, M. Trauner, and A. Canbay.
- 479 2012. The interaction of hepatic lipid and glucose metabolism in liver diseases. J.

480 Hepatol. 56:952-964. doi:10.1016/j.jhep.2011.08.025.

- 481 Boeke, C. E., A. Baccarelli, K. P. Kleinman, H. H. Burris, A. A. Litonjua, S. L. Rifas-Shiman, L.
- 482 Tarantini, and M. W. Gillman. 2012. Gestational intake of methyl donors and global
- 483 LINE-1 DNA methylation in maternal and cord blood: prospective results from a
- folate-replete population. Epigenetics 7:253-260. doi:10.4161/epi.7.3.19082.
- 485 Boulland, M. L., J. Marquet, V. Molinier-Frenkel, P. Möller, C. Guiter, F. Lasoudris, C.
- 486 Copie-Bergman, M. Baia, P. Gaulard, K. Leroy, and F.Castellano. 2007. Human IL411 is
- 487 a secreted L-phenylalanine oxidase expressed by mature dendritic cells that inhibits
- 488 T-lymphocyte proliferation. Blood 110:220-227. doi:10.1182/blood-2006-07-036210.

489	Boumela, I., S. Assou, A. Aouacheria, D. Haouzi, H. Dechaud, J. De Vos, A. Handyside, and S.
490	Hamamah. 2011. Involvement of BCL2 family members in the regulation of human
491	oocyte and early embryo survival and death: gene expression and beyond. Reproduction
492	141:549-561. doi:10.1530/REP-10-0504.
493	Chen, Y. P., X. Chen, H. Zhang, and Y. M. Zhou. 2013. Effects of dietary concentrations of
494	methionine on growth performance and oxidative status of broiler chickens with different
495	hatching weight. Br. Poult. Sci. 54:531-537. doi:10.1080/00071668.2013.809402.
496	Cordero, P., A. M. Gómez-Úriz, J. Campion, F. I. Milagro, and J. A. Martinez. 2013a. Dietary
497	supplementation with methyl donors reduces fatty liver and modifies the fatty acid
498	synthase DNA methylation profile in rats fed an obesogenic diet. Genes Nutr. 8:105-113.
499	doi:10.1007/s12263-012-0300-z.
500	Cordero, P., J. Campion, F. I. Milagro, and J. A. Martinez. 2013b. Transcriptomic and epigenetic
501	changes in early liver steatosis associated to obesity: effect of dietary methyl donor
502	supplementation. Mol. Genet. Metab. 110:388-395. doi:10.1016/j.ymgme.2013.08.022.
503	Deminice, R., R. P. da Silva, S. G. Lamarre, K. B. Kelly, R. L. Jacobs, M. E. Brosnan, and J. T.
504	Brosnan. 2015. Betaine supplementation prevents fatty liver induced by a high-fat diet:
505	effects on one-carbon metabolism. Amino Acids 47:839-846.
506	doi:10.1007/s00726-014-1913-x.
507	Emmert, J. L., T. A. Garrow, and D. H. Baker. 1996. Hepatic betaine-homocysteine
508	methyltransferase activity in the chicken is influenced by dietary intake of sulfur amino
509	acids, choline and betaine. J. Nutr. 126:2050-2058. doi:org/10.1093/jn/126.8.2050.

510	Esteve-Garcia, E., and S. Mack. 2000. The effect of <i>DL</i> -methionine and betaine on growth
511	performance and carcass characteristics in broilers. Anim. Feed Sci. Tech. 87:85-93.
512	doi:10.1016/S0377-8401(00)00174-7.
513	Finkelstein, J. D., J. J. Martin, B. J. Harris, and W. E. Kyle. 1983. Regulation of hepatic
514	betaine-homocysteine methyltransferase by dietary betaine. J. Nutr. 113:519-521.
515	doi:org/10.1093/jn/113.3.519.
516	Ghosh, S., L. A. Forney, D. Wanders, K. P. Stone, and T. W. Gettys. 2017. An integrative analysis
517	of tissue-specific transcriptomic and metabolomic responses to short-term dietary
518	methionine restriction in mice. PIOS One. 12:1-22.
519	doi:org/10.1371/journal.pone.0177513.
520	Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, L.
521	Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind,
522	F. di Palma, B. W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, and A. Regev.
523	2011. Full-length transcriptome assembly from RNA-Seq data without a reference
524	genome. Nat. Biotechnol. 29:644-652. doi:10.1038/nbt.1883.
525	Kalhan, S. C. 2009. Metabolism of methionine in vivo: impact of pregnancy, protein restriction,
526	and fatty liver disease. Emerging Societies-Coexistence of Childhood Malnutrition and
527	Obesity, 63rd Nestlé Nutrition Institute Workshop, Pediatric Program, New Delhi,
528	March-April 2008. doi:10.1159/000209977.
529	Kumaki, Y., M. Oda, and M. Okano. 2008. Quma: quantification tool for methylation analysis.
530	Nucleic Acids Res. 36:W170-WW175. doi:10.1093/nar/gkn294.

- 531 Li, L. C., and R. Dahiya. 2002. Methprimer: designing primers for methylation PCRs.
- 532 Bioinformatics 18:1427-1431. doi:10.1093/bioinformatics/18.11.1427.
- 533 Li, R., H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan, K. Kristiansen, S. Li, H.
- 534 Yang, J. Wang, J. Wang. 2010. *De novo* assembly of human genomes with massively
- parallel short read sequencing. Genome Res. 20:265-272. doi:10.1101/gr.097261.109.
- 536 Li, J., R. Li, Y. Wang, X. Hu, Y. Zhao, L. Li, C. Feng, X. Gu, F. Liang, S. J. Lamont, S. Hu, H.
- 537 Zhou, and N. Li. 2015. Genome-wide DNA methylome variation in two genetically
- 538 distinct chicken lines using MethylC-seq. BMC Genomics 16:851-864.
- 539 doi:org/10.1186/s12864-015-2098-8.
- 540 Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time
- 541 quantitative PCR and the $2^{-\Delta\Delta CT}$ method. Methods 25:402-408.
- 542 doi:10.1006/meth.2001.1262.
- 543 Lomba, A., J. A. Martínez, D. F. García-Díaz, L. Paternain, A. Marti, J. Campión, and F. I.
- 544 Milagro. 2010. Weight gain induced by an isocaloric pair-fed high fat diet: a
- 545 nutriepigenetic study on FASN and NDUFB6 gene promoters. Mol. Genet. Metab.
- 546 101:273-278. doi:10.1016/j.ymgme.2010.07.017.
- 547 Mentch, S. J., and J. W. Locasale. 2016. One-carbon metabolism and epigenetics: understanding
- 548 the specificity. Ann. N. Y. Acad. Sci. 1363:91-98. doi:org/10.1111/nyas.12956.
- 549 NRC. 1994. National Research Council. Nutrient Requirements of Poultry. 9th ed. Natl. Acad.
- 550 Press, Washington, D.C.

551	Ozsolak, F., A. Goren, M. Gymrek, M. Guttman, A. Regev, B. E. Bernstein, and P. M. Milos.
552	2010. Digital transcriptome profiling from attomole-level RNA samples. Genome Res.
553	20:519-525. doi:10.1101/gr.102129.109.
554	Park, I., T. Pasquetti, R. D. Malheiros, P. R. Ferket, and S. W. Kim. 2017. Effects of supplemental
555	L-methionine on growth performance and redox status of turkey poults compared with the
556	use of <i>DL</i> -methionine. Poult. Sci. 0:1-8. doi:10.3382/ps/pex259.
557	Paternain, L., D. F. García-Diaz, F. I. Milagro, P. González-Muniesa, J. A. Martinez, and J.
558	Campión. 2011. Regulation by chronic-mild stress of glucocorticoids, monocyte
559	chemoattractant protein-1 and adiposity in rats fed on a high-fat diet. Physiol. Behav.
560	103:173-180. doi:10.1016/j.physbeh.2011.01.017.
561	Peñagaricano, F., A. H. Souza, P. D. Carvalho, A. M. Driver, R. Gambra, J. Kropp, K. S. Hackbart,
562	D. Luchini, R. D. Shaver, M. C. Wiltbank, and H. Khatib. 2013. Effect of maternal
563	methionine supplementation on the transcriptome of bovine preimplantation embryos.
564	PLOS One 8:e72302. doi:10.1371/journal.pone.0072302.
565	Pertea, G., X. Huang, F. Liang, V. Antonescu, R. Sultana, S. Karamycheva, Y. Lee, J. White, F.
566	Cheung, B. Parvizi, J. Tsai, and J. Quackenbush. 2003. TIGR Gene indices clustering
567	tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics
568	19:651-652. doi:10.1093/bioinformatics/btg034.
569	Refsum, H., A. D. Smith, P. M. Ueland, E. Nexo, R. Clarke, J. McPartlin, C. Johnston, F. Engbaek,
570	J. Schneede, C. McPartlin, and J. M. Scott. 2004. Facts and recommendations about total

- 571 homocysteine determinations: an expert opinion. Clin. Chem. 50:3-32.
- 572 doi:10.1373/clinchem.2003.021634.
- 573 Rowling, M. J., M. H. McMullen, D. C. Chipman, and K. L. Schalinske. 2002. Hepatic glycine
- 574 N-methyltransferase is up-regulated by excess dietary methionine in rats. J. Nutr.
- 575 132:2545-2550.
- 576 Schlesinger, Y., R. Straussman, I. Keshet, S. Farkash, M. Hecht, J. Zimmerman, E. Eden, Z.
- 577 Yakhini, E. Ben-Shushan, B. E. Reubinoff, Y. Bergman, I. Simon, and H. Cedar. 2007.
- 578 Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for *de novo*
- 579 methylation in cancer. Nat. Genet. 39:232-236. doi:10.1038/ng1950.
- 580 Shen, J., S. Wu, W. Guo, S. Liang, X. Li, and X. Yang. 2017. Epigenetic regulation of
- 581 pro-inflammatory cytokine genes in lipopolysaccharide -stimulated peripheral blood
- 582 mononuclear cells from broilers. Immunobiology 222:308-315.
- 583 doi:10.1016/j.imbio.2016.09.009.
- 584 Shi, S. R., Z. Y. Wang, H. M. Yang, and Y. Y. Zhang. 2007. Nitrogen requirement for
- 585 maintenance in Yangzhou goslings. Br. Poult. Sci. 48:205-209.
- 586 doi:org/10.1080/00071660701227519.
- 587 Sun, S., X. Li, A. Ren, M. Du, H. Du, Y. Shu, L. Zhu, and W. Wang. 2016. Choline and betaine
- 588 consumption lowers cancer risk: a meta-analysis of epidemiologic studies. Sci. Rep.
- 589 6:35547. doi:10.1038/srep35547.

590	Tao, X., Y. H. Gu, H. Y. Wang, W. Zheng, X. Li, C. W. Zhao, and Y. Z. Zhang. 2012. Digital gene
591	expression analysis based on integrated de novo transcriptome assembly of sweet potato
592	(<i>Ipomoea batatas</i> (L.) Lam). PLOS One 7 <mark>:e36234,</mark> doi:10.1371/journal.pone.0036234.
593	Tsai, M. T., C. Y. Chen, Y. H. Pan, S. H. Wang, H. J. Mersmann, and S. T. Ding. 2015. Alleviation
594	of carbon-tetrachloride-induced liver injury and fibrosis by betaine supplementation in
595	chickens. Evid. Based Complement. Alternat. Med. 2015:725379.
596	doi:10.1155/2015/725379.
597	Waterland, R. A. 2006. Assessing the effects of high methionine intake on DNA methylation. J.
598	Nutr. 136:1706S-1710S. doi:org/10.1093/jn/136.6.1706S.
599	Waterland, R. A., M. Travisano, K. G. Tahiliani, M. T. Rached, and S. Mirza. 2008. Methyl donor
600	supplementation prevents transgenerational amplification of obesity. Int. J. Obes.
600	supplementation prevents transgenerational amplification of obesity. Int. 5. Obes.
601	32:1373-1379. doi:10.1038/ijo.2008.100.
601	32:1373-1379. doi:10.1038/ijo.2008.100.
601 602	32:1373-1379. doi:10.1038/ijo.2008.100. Wang, Z. Y., S. R. Shi, Q. Y. Zhou, H. M. Yang, J. M. Zou, K. N. Zhang, and H. M. Han. 2010.
601 602 603	32:1373-1379. doi:10.1038/ijo.2008.100. Wang, Z. Y., S. R. Shi, Q. Y. Zhou, H. M. Yang, J. M. Zou, K. N. Zhang, and H. M. Han. 2010. Response of growing goslings to dietary methionine from 28 to 70 days of age. Br. Poult.
601602603604	32:1373-1379. doi:10.1038/ijo.2008.100. Wang, Z. Y., S. R. Shi, Q. Y. Zhou, H. M. Yang, J. M. Zou, K. N. Zhang, and H. M. Han. 2010. Response of growing goslings to dietary methionine from 28 to 70 days of age. Br. Poult. Sci. 51:118-121. doi:org/10.1080/00071660903431406.
 601 602 603 604 605 	 32:1373-1379. doi:10.1038/ijo.2008.100. Wang, Z. Y., S. R. Shi, Q. Y. Zhou, H. M. Yang, J. M. Zou, K. N. Zhang, and H. M. Han. 2010. Response of growing goslings to dietary methionine from 28 to 70 days of age. Br. Poult. Sci. 51:118-121. doi:org/10.1080/00071660903431406. Xie, M., S. S. Hou, and W. Huang. 2006. Methionine requirements of male white Peking ducks
 601 602 603 604 605 606 	 32:1373-1379. doi:10.1038/ijo.2008.100. Wang, Z. Y., S. R. Shi, Q. Y. Zhou, H. M. Yang, J. M. Zou, K. N. Zhang, and H. M. Han. 2010. Response of growing goslings to dietary methionine from 28 to 70 days of age. Br. Poult. Sci. 51:118-121. doi:org/10.1080/00071660903431406. Xie, M., S. S. Hou, and W. Huang. 2006. Methionine requirements of male white Peking ducks from twenty-one to forty-nine days of age. Poult. Sci. 85:743-746.

- 610 and hepatic composition. Anim. Feed Sci. Technol. 228:48-58.
- 611 doi:10.1016/j.anifeedsci.2017.04.003.
- 612 Yoo, C. B., and P. A. Jones. 2006. Epigenetic therapy of cancer: past, present and future. Nat. Rev.
- 613 Drug Discov. 5:37-50. doi:10.1038/nrd1930.
- 414 Yue, Y., W. Huang, J. Liang, J. Guo, J. Ji, Y. Yao, M. Zheng, Z. Cai, L. Lu, and J. Wang. 2015.
- 615 IL411 is a novel regulator of M2 macrophage polarization that can inhibit T cell activation
- via L-tryptophan and arginine depletion and IL-10 production. PLOS One 10:e0142979.
- 617 doi:10.1371/journal.pone.0142979.
- 618 Zhan, X. A., J. X. Li, Z. R. Xu, and R. Q. Zhao. 2006. Effects of methionine and betaine
- 619 supplementation on growth performance, carcase composition and metabolism of lipids
- 620 in male broilers. Br. Poult. Sci. 47:576-580. doi: 10.1080/00071660600963438.

621

Ingredients	0⁄0
Corn	62.20
Soybean meal	20.00
Alfalfa meal	14.37
Calcium hydrogen phosphate	1.10
Limestone	1.00
Salt	0.30
Vitamin and trace mineral premix ¹	1.00
Methionine	0.03
Total	100.00
Analyzed nutrient concentrations	
Metabolizable energy ² (MJ/kg)	10.90
Crude protein (%)	16.16
Crude fiber (%)	5.85
Calcium (%)	0.98
Available phosphorus (%)	0.40
Methionine (%)	0.28
Lysine (%)	0.88
Cysteine (%)	0.25
Threonine (%)	0.54
Arginine (%)	1.13
Histidine (%)	0.40
Leucine (%)	1.25
Isoleucine (%)	0.63
Valine (%)	0.66
Tryptophan ³ (%)	0.24
Phenylalanine (%)	0.74

622 ¹The premix was provided by the Yangzhou University Feed Company (Yangzhou, China). One

623 kilogram of premix contained 1, 200,000 IU, retinol, 400,000 IU rachitasterol, 1,800 IU D- α

- -tocopherol, 150 mg coagulation vitamin, 90 mg thiamine, 800 mg riboflavin, 320 mg pyridoxine,
- 1 mg cobalamin, 4.5 g nicotinic acid, 1,100 mg pantothenic acid, 65 mg folic acid, 5 mg biotin,
- 45 mg choline, 6 g Fe (ferrous sulfate), 1 g Cu (copper sulfate), 9.5 g Mn (manganese sulfate), 9
- 627 g Zn (zinc sulfate), 50 mg I (potassium iodide), and 30 mg Se (sodium selenite).
- ⁶28 ²Values are calculated from ingredient Apparent Metabolic Energy (AME) values for chickens.
- 629 ³This was a calculated value.

630 **Table 2** Primer sequences used in this study and comparison of RNA-Seq results and qRT-PCR

631 validation results.

	Name	Primer sequence $(5' \rightarrow 3')$	Product	Reference
			size (bp)	
	IL4I1-F	5'-GTGTTGGCTTGCACTGAGAA-3'	135 bp	XM_013202358.
	IL4I1-R	5'-ACCCCACTGGAGAAGTTGTG-3'		
	LOC106032502	5'-CTACCCGTACCTGGAGGACA-3'	275 bp	XM_013175488.
	LOC106032502	5'-GTGGTAACGAGCCACCAGTT-3'		
For relative	LOC106045865	5'-CTGGGCTGCTGGCTTACTAC-3'	292 bp	XM_013196611.
real-time	LOC106045865	5'-GACCAAGAGCGTTCTTCAGG-3'		
	LOC106049515	5'-CTCGAGGACCACCTGAAGAG-3'	287 bp	XM_013201866.
PCR	LOC106049515	5'-TCTTGTAGCTGATGGCAACG-3'		
	LOC106038129	5'-TGCTGTTGGAGAAGCAAATG-3'	235 bp	XM_013184417.
	LOC106038129	5'-ATGAGCTCAGCGTGAACCTT-3'		
	β -actin-F	5'-ACGTCCTCTCAGGTGGTACG-3'	159 bp	M26111
	β -actin-R	5'-GCCACCGATCCATACAGAGT-3'		
	IL4I1-F	5'-TGGTTGATTTAATGGGGTTGTTT-3'	362 bp	XM_013202358.
	IL4I1-R	5'-CTACTAACATCTATAATAACAACCCAC		
For bisulfite		AA-3'		
sequencing	LOC106032502	5'-GTAGTTTGTTGGTATTTTTGTTGTGA-3'	391 bp	XM_013175488.
	LOC106032502	5'-TATCCCTAAAAACTCAAACATCAAA-3'		

632 *P < 0.05, **P < 0.01. F, forward; R, reverse. qRT-PCR, quantitative reverse transcription

633 polymerase chain reaction.

Group	BW of 21 d/g	BW of 70 d /g	ADFI/g	ADG/g	F/G
Control	1006 ± 19	$3369~\pm~82^{a}$	212.3 ± 13.9	48.22 ± 1.91^{a}	$4.40~\pm~0.22$
Met	$1019~\pm~2$	$3475~\pm~143^{\rm b}$	210.6 ± 11.1	50.11 ± 2.89^{b}	$4.20~\pm~0.13$
Bet	1019 ± 2	$3239~\pm~151^a$	$201.4~\pm~5.5$	45.31 ± 3.11^{a}	$4.45~\pm~0.21$
P-value	0.178	0.042	0.267	0.045	0.142

Table 3 Effects of Met and Bet on growth performance in geese from 21 to 70 d of age¹.

636 Results are expressed as the mean \pm SD, traits BW and ADG n=50 and for ADFI and F/G n=5.

637 Values with different lowercase superscripts (a, b) in the same column indicate a significant

638 difference (P < 0.05), whereas values with the same or no superscripts indicate no significant

ADFI, average daily feed intake; BW, body weight; ADG, average daily gain; F/G, feed-to-gain

641 ratio;

The control group, Control, received only the basal diet; the Met group received the basal diet

icz

supplemented with an additional 1.2 g/kg of Met; and the Bet group was fed the basal diet

644 supplemented with an additional 0.6 g/kg of Bet.

⁶³⁹ difference (P > 0.05).

Group	TP (g/L)	ALB (g/L)	GLOB (g/L)	HCY (µmol/L)
Control	45.98 ± 4.43	15.26 ± 1.65	30.72 ± 2.92	52.89 ± 4.94^a
Met	49.16 ± 4.88	16.25 ± 0.62	32.91 ± 4.94	58.73 ± 6.20^{b}
Bet	47.63 ± 2.74	15.63 ± 0.60	32.00 ± 2.40	51.90 ± 4.63^{a}
<i>P</i> -value	0.249	0.109	0.427	0.014

645		1 • 1 • 1	• 1 •
645	Table 4 Effects of Met and Bet on serum	biochemical	indexes in geese
0.0	ruble i Elicets of file and Bet on Serain	oroenenieu	maches in Seese.

646 The data are presented as the mean \pm SD with n = 10 per treatment. Values with different

647 lowercase superscripts (a, b) in the same column indicate a significant difference (P < 0.05),

648 whereas values with the same or no superscripts indicate no significant difference (P > 0.05).

649 TP, total protein; ALB, albumin; GLOB, globulin; HCY, homocysteine.

650 Serum concentrations of TP, ALB, and GLOB were measured using an automatic biochemical

analyzer (UniCel DxC 800 Synchron, Beckman Coulter, CA, USA). A cyclic enzymatic method

652 was used to measure HCY production in peripheral blood.

- 653 **Table 5** Up-regulated or down-regulated goose liver DEGs. Livers were harvested from the
- 654 control group (Control) and Met-treated geese (Met) at 70 d of age. ^aFold change was calculated
- by dividing the expression level of the DEGs in the livers of the different groups.

Gene ID	Peak orientation	FDR	nr_annotation
ADAMTS8	up	2.04E-03	PREDICTED: A disintegrin and metalloproteinase with thrombospondin motifs 8 [<i>Haliaeetus leucocephalus</i>]
ALDH1A2	up	4.11E-02	PREDICTED: retinal dehydrogenase 2 isoform X1 [Manacus vitellinus]
B3GNT5	up	3.20E-02	PREDICTED: lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase isoform X1 [Anas platyrhynchos]
СР	up	3.58E-03	PREDICTED: ceruloplasmin isoform X1 [Anas platyrhynchos]
CRELD2	up	2.80E-04	cysteine-rich with EGF-like domain protein 2 precursor [Gallus gallus]
DIO2	up	3.49E-02	PREDICTED: LOW QUALITY PROTEIN: type II iodothyronine deiodinase [<i>Meleagris gallopavo</i>]
DSE	up	3.66E-03	PREDICTED: dermatan-sulfate epimerase isoform X1 [Anas platyrhynchos]
FAM69B	up	1.56E-02	PREDICTED: protein FAM69B isoform 2 [Gallus gallus]
GCNT4	up	8.56E-04	PREDICTED: LOW QUALITY PROTEIN: beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 4 [<i>Anas</i> <i>platyrhynchos</i>]
HSP90B1	up	1.11E-03	PREDICTED: LOW QUALITY PROTEIN: endoplasmin [<i>Picoides pubescens</i>]
HTR7	up	1.33E-02	PREDICTED: 5-hydroxytryptamine receptor 7 [Aptenodytes forsteri]
IL4I1	up	4.84E-02	PREDICTED: <i>L</i> -amino-acid oxidase-like [<i>Anas platyrhynchos</i>]
JCHAIN	up	1.64E-04	PREDICTED: immunoglobulin J chain [Anas platyrhynchos]
LOC106029693	up	3.73E-02	PREDICTED: epidermal differentiation-specific protein-like [<i>Pygoscelis adeliae</i>]
LOC106031222	up	6.28E-04	PREDICTED: WD repeat-containing protein 75 [Aptenodytes forsteri]
LOC106032502	up	6.28E-04	PREDICTED: pantetheinase-like [Anas platyrhynchos]

Page 39 of 57

Poultry Science

LOC106033532	up	3.06E-11	[<i>Columba livia</i>] Cytochrome P450 2W1, partial [<i>Anas platyrhynchos</i>]
LOC106033637	up	3.71E-02	PREDICTED: normal mucosa of esophagus-specific gene 1 protein [<i>Anas platyrhynchos</i>]
LOC106033760	up	1.86E-02	PREDICTED: alpha-1-antitrypsin [<i>Anas platyrhynchos</i>]
LOC106036370	up	4.38E-04	PREDICTED: serine protease inhibitor A3M-like isoform X1 [Anas platyrhynchos]
LOC106036393	up	1.46E-02	PREDICTED: avidin [Meleagris gallopavo]
LOC106037025	up	2.02E-03	PREDICTED: extracellular fatty acid-binding protein-like isoform X2 [<i>Anas platyrhynchos</i>]
TDH	up	1.18E-02	PREDICTED: L-threonine 3-dehydrogenase, mitochondrial-like [Anas platyrhynchos]
LOC106038135	up	1.80E-03	beta-defensin 9 [Anser cygnoides]
LOC106044832	up	1.65E-02	PREDICTED: basic leucine zipper transcriptional factor ATF-like 3 [<i>Pseudopodoces humilis</i>]
LOC106048078	up	8.88E-03	PREDICTED: alpha-2-macroglobulin-like [Anas platyrhynchos]
LOC106049456	up	1.47E-02	PREDICTED: C-type lectin domain family 17, member A-like [<i>Anas platyrhynchos</i>]
LOC106049853	up	1.51E-02	immunoglobulin light chain V-J region, partial [Anser sp. GIGLV2009]
LOC106049915	up	9.41E-03	Ig Y heavy chain (7.8S) - duck [Anas platyrhynchos]
LYPD6B	up	1.60E-02	immunoglobulin mu heavy chain constant region, partial [Anser anser domesticus]
NPAS2	up	8.56E-04	PREDICTED: neuronal PAS domain-containing protein 2 [Anas platyrhynchos]
NPAS2	up	5.07E-03	PREDICTED: neuronal PAS domain-containing protein 2 [Anas platyrhynchos]
NRAP	up	9.07E-04	PREDICTED: nebulin-related-anchoring protein, partial [Balearica regulorum gibbericeps]
NRAP	up	3.82E-02	Nebulin-related-anchoring protein, partial [Anas platyrhynchos]
PDCD7	up	2.91E-10	PREDICTED: programmed cell death protein 7 [<i>Anas platyrhynchos</i>]
PSTPIP2	up	6.92E-03	PREDICTED: proline-serine-threonine phosphatase-interacting protein 2 [<i>Anas platyrhynchos</i>]
SAA2	up	1.21E-02	serum amyloid A precursor [Anser anser domesticus]
			PREDICTED: stromal cell-derived factor 2-like protein
SDF2L1	up	6.92E-03	1 [Taeniopygia guttata]

39

https://mc04.manuscriptcentral.com/ps

			platyrhynchos]
SLA2	up	1.18E-02	immunoglobulin light chain [Anser anser]
SLC2A13	up	3.66E-03	PREDICTED: proton myo-inositol cotransporter [Anas platyrhynchos]
SLC2A6	up	7.49E-03	PREDICTED: solute carrier family 2, facilitated glucose transporter member 6 [<i>Haliaeetus leucocephalus</i>]
SPI1	up	1.18E-02	PREDICTED: transcription factor PU.1 [<i>Pygoscelis</i> adeliae]
STOML3	up	2.04E-03	PREDICTED: stomatin-like protein 3, partial [<i>Phalacrocorax carbo</i>]
ZNF292	up	6.28E-04	PREDICTED: N-alpha-acetyltransferase 35, NatC auxiliary subunit [<i>Aptenodytes forsteri</i>]
ABHD3	down	1.37E-02	Abhydrolase domain-containing protein 3, partial [Nestor notabilis]
HDAC7	up	1.65E-02	PREDICTED: alanine aminotransferase 2-like isoform X2 [<i>Pseudopodoces humilis</i>]
ARRDC2	down	2.75E-02	PREDICTED: arrestin domain-containing protein 2 isoform X1 [<i>Haliaeetus leucocephalus</i>]
CAD	down	1.23E-03	PREDICTED: CAD protein [Haliaeetus leucocephalus]
CD93	down	3.49E-02	complement component C1q receptor precursor [Gallus gallus]
DIO3	down	3.29E-02	PREDICTED: LOW QUALITY PROTEIN: type III iodothyronine deiodinase [<i>Egretta garzetta</i>]
DNAJC12	down	5.07E-03	PREDICTED: dnaJ homolog subfamily C member 12 isoform X1 [<i>Anas platyrhynchos</i>]
ELOVL2	down	1.18E-02	PREDICTED: elongation of very long chain fatty acids protein 2 [<i>Anas platyrhynchos</i>]
FAM184A	down	2.27E-03	PREDICTED: negative elongation factor E [Meleagris gallopavo]
LOC106049424	down	3.57E-02	PREDICTED: prostasin isoform X1 [<i>Pelodiscus sinensis</i>]
MFAP2	down	4.85E-06	Microfibrillar-associated protein 2 [Anas platyrhynchos]
МҮОС	down	3.59E-02	PREDICTED: LOW QUALITY PROTEIN: myocilin, trabecular meshwork inducible glucocorticoid response [Anas platyrhynchos]
PPP4C	down	4.38E-03	PREDICTED: small integral membrane protein 24 [Aptenodytes forsteri]
PTPRF	down	4.31E-03	PREDICTED: receptor-type tyrosine-protein phosphatase F isoform X8 [<i>Ficedula albicollis</i>]
RAB25	down	3.15E-02	PREDICTED: ras-related protein Rab-25 [Nipponia nippon]
REG4	down	8.73E-06	regenerating islet-derived protein 4 precursor [Gallus gallus]

https://mc04.manuscriptcentral.com/ps

		1.105.00	PREDICTED: mitochondrial glutamate carrier 1
SLC25A22	down	1.19E-02	[Balearica regulorum gibbericeps]
			PREDICTED: sushi, von Willebrand factor type A, EGF
SVEP1	down	1.01E-03	and pentraxin domain-containing protein 1 [Gallus
			gallus]
THBD	down	4.69E-07	PREDICTED: thrombomodulin [Haliaeetus
ΙΠΟΟ	down	4.09E-07	leucocephalus]
TXNDC16	down	3.66E-03	PREDICTED: thioredoxin domain-containing protein 16
TANDCIO	uown	3.00E-03	isoform X1 [Anas platyrhynchos]

to per period

- 657 **Table 6** Livers were harvested from the control group (Control) and geese that received Bet
- 658 supplementation (Bet) at 70 d of age. ^aFold change was calculated by dividing the expression
- 659 level of the DEGs in the livers of the different groups.

Gene ID	Peak orientation	FDR	nr_annotation
LOC106049515	up	5.62E-04	PREDICTED: L-gulonolactone oxidase-like [Anas platyrhynchos]
LOC106049915	up	5.77E-04	immunoglobulin mu heavy chain constant region, partial [Anser anser domesticus]
GK	up	2.05E-03	hypothetical protein Anapl_12353 [Anas platyrhynchos]
LOC106048083	up	2.15E-03	PREDICTED: ovostatin-like [Anas platyrhynchos]
DSP	up	5.43E-03	PREDICTED: desmoplakin isoform X1 [Gallus gallus]
IL2RB	up	1.38E-02	PREDICTED: ovostatin-like [Anas platyrhynchos]
ADAMTS9	up	1.97E-02	PREDICTED: A disintegrin and metalloproteinase with thrombospondin motifs 9 isoform X1 [Meleagris gallopavo]
BCL2L15	up	2.21E-02	PREDICTED: bcl-2-like protein 15 [Anas platyrhynchos]
STXBP5L	up	2.74E-02	PREDICTED: neuronal acetylcholine receptor subunit alpha-5 [<i>Anas platyrhynchos</i>]
LOC106049456	up	4.36E-02	PREDICTED: C-type lectin domain family 17, member A-like [<i>Anas platyrhynchos</i>]
ANKRD66	down	6.35E-08	PREDICTED: ankyrin repeat domain-containing protein 66 isoform X1 [<i>Anas platyrhynchos</i>]
THBD	down	5.94E-05	PREDICTED: thrombomodulin [Haliaeetus leucocephalus]
CEMIP	down	3.04E-04	PREDICTED: protein KIAA1199 homolog isoform X1 [Anas platyrhynchos]
TIE1	down	3.04E-04	PREDICTED: tyrosine-protein kinase receptor Tie-1 isoform X1 [<i>Struthio camelus australis</i>]
PLA2G7	down	3.20E-04	PREDICTED: platelet-activating factor acetylhydrolase isoform X1 [<i>Anas platyrhynchos</i>]
TF	down	3.42E-03	Ovotransferrin [Columba livia]
STAB1	down	3.99E-03	PREDICTED: stabilin-1 [Aptenodytes forsteri]
CD93	down	3.99E-03	complement component C1q receptor precursor [Gallus gallus]

1	APLNR	down	6.59E-03	PREDICTED: apelin receptor [Aptenodytes forsteri]
]	EFNA3	down	6.73E-03	acidic mammalian chitinase precursor [Gallus gallus]
LOC	106045865	down	6.73E-03	PREDICTED: Anser cygnoides domesticus acidic mammalian chitinase-like
]	EFNA3	down	6.97E-03	PREDICTED: ephrin-A3 [Falco peregrinus]
	IL2RB	down	8.33E-03	PREDICTED: interleukin-2 receptor subunit beta isoform X1 [Anas platyrhynchos]
LOC	2106048083	down	1.54E-02	PREDICTED: progestin and adipoQ receptor family member 9 [Haliaeetus leucocephalus]
AI	DAMTS9	down	1.83E-02	PREDICTED: vascular endothelial growth factor receptor kdr-like [<i>Pygoscelis adeliae</i>]
Al	PCDD1L	down	2.74E-02	PREDICTED: protein APCDD1-like [<i>Picoides pubescens</i>]
K	CTD17	down	3.65E-02	PREDICTED: BTB/POZ domain-containing protein KCTD17 isoform X1 [Anas platyrhynchos]

- 661 **Table 7** Livers were harvested from 70-day-old Met-supplemented and Bet-supplemented geese.
- ^aFold change was calculated by dividing the expression level of the DEGs in the livers of the
- 663 different groups.
- 664 _

Item	Peak orientation	FDR	nr_annotation
GPR3	up	2.29E-04	PREDICTED: host cell factor 1 [Xenopus (Silurana) tropicalis]
LOC106049823	up	4.47E-04	PREDICTED: inhibin beta C chain-like [Falco peregrinus]
LOC106036023	up	6.80E-03	Interferon alpha-inducible protein 6 [Podiceps cristatus]
LOC106038129	down	2.91E-07	PREDICTED: L-threonine 3-dehydrogenase, mitochondrial-like [Anas platyrhynchos]
LOC106032502	down	2.29E-04	PREDICTED: pantetheinase-like [Anas platyrhynchos]
LOC106037025	down	4.93E-03	PREDICTED: extracellular fatty acid-binding protein-like isoform X2 [<i>Anas platyrhynchos</i>]

Library ^a	Read Number	Base Number	Q30 ^b (Q-score)
T01	32,525,600	9,665,660,890	96.25%
T02	27,709,798	8,253,106,330	95.87%
Т03	24,286,192	7,217,493,188	95.83%
T04	32,007,311	9,520,970,382	95.80%
T05	22,345,974	6,654,725,686	95.78%
T06	23,670,813	7,060,175,082	96.32%
T07	21,657,555	6,458,767,544	95.34%
T08	25,978,652	7,726,679,868	95.52%
T09	23,042,099	6,859,056,948	95.36%

665 **Table 8** Statistical summary of the clean reads in the nine libraries.

^aT01, T02 and T03 are the liver samples from the Control group at 70 days of age; T04, T05, T06

are the liver samples from the Met group, which were supplemented with an additional 1200

668 mg/kg of Met; T07, T08 and T09 are the liver samples from the Bet group, which were

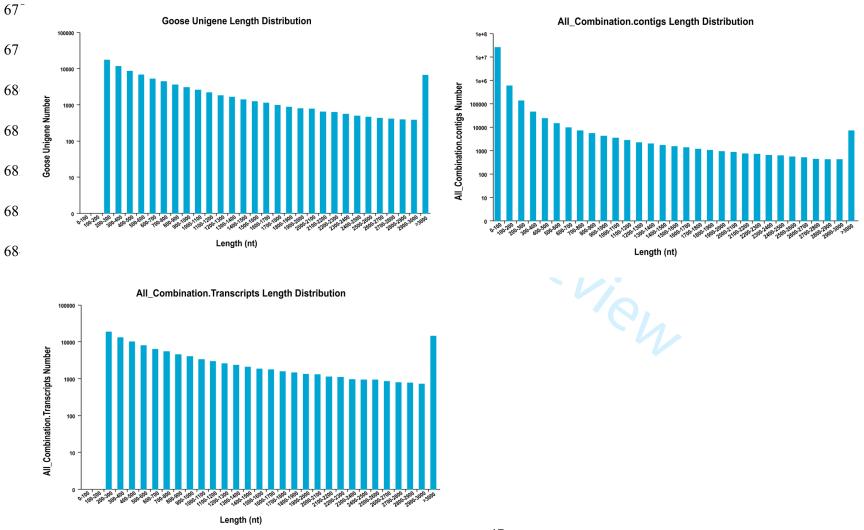
supplemented with an additional 600 mg/kg of Bet.

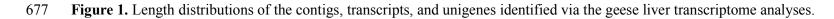
670 Group N = 3 for each group

^bDenotes the percentage of data with base calling accuracy higher than 99.9%.

Length range	Contigs	Transcripts	Unigenes
200-300 bp	26,049,302 (99.46%)*	18,746 (16.38%)	17,382 (20.05%)
300-500 bp	68,740 (0.26%)	22,955 (20.06%)	20,110 (23.20%)
500-1000 bp	40,678 (0.16%)	28,094 (24.54%)	22,915 (26.44%)
1000-2000 bp	17,896 (0.07%)	21,100 (18.43%)	14,591 (16.83%)
2000+ bp	12,813 (0.05%)	23,565 (20.59%)	11,685 (13.48%)
Total Number	26,189,429	114,460	86,683
Total Length (bp)	1,148,168,041	159,577,647	94,217,852
N50 Length (bp)	44	2,686	1,898
Mean Length (bp)	43.84	1394.18	1086.92

673 **Table 9** Sequence assembly statistics.

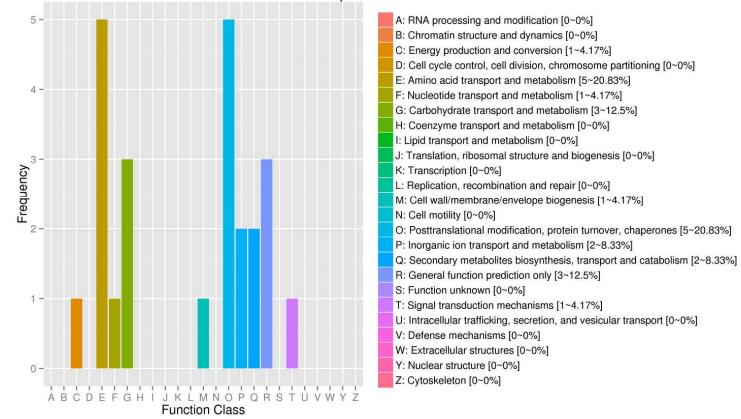

*The number refers to the quantity of contigs/transcripts/unigenes; the percentage refers to the

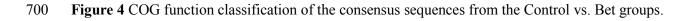

.Ziez

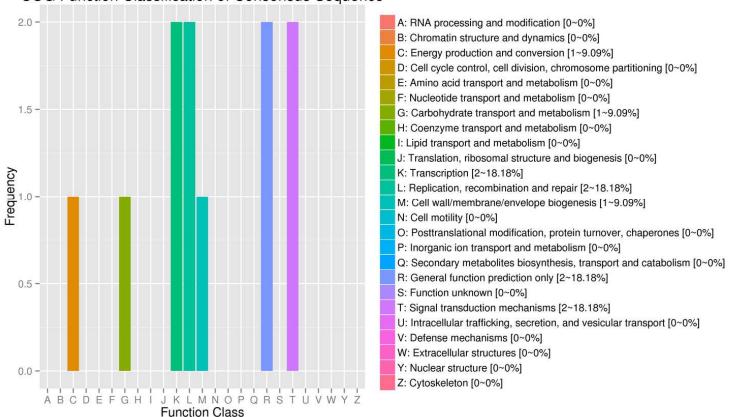
675 proportion of contigs/transcripts/unigenes in the corresponding length interval.

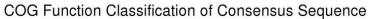
676 N50 Length, the length of N50 in the contigs/transcripts/unigenes.

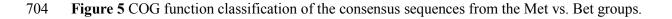
Poultry Science

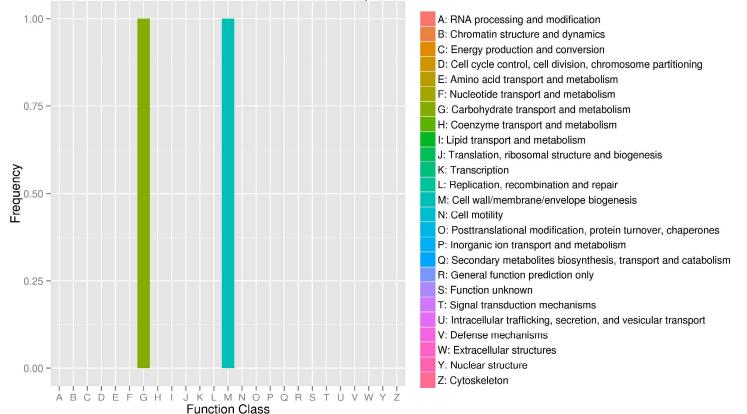



8444 100 10 844 Percentage of genes Number of genes 84 -0.1 extracellular organeme extracellular matrix part organeme membrane part synapse synapse - extracellular region collagen trimer ω aggregation nucleo membro: cell junc guanyi-nucleotide exchanteceure economic structural molecule actor ac transporter ac reproductive pro-biological adhe sigr membrane-extracellular macromolecular c. immune system metabolic electron carr_i morphog_t enzyme regulat receptor regulat single-organisr response t multi-organis translation react cellular component organization <u>c</u> - molecular trans channel re metallocha Protein binding transcri nucleic acid binding transcri cellular component molecular function biological process

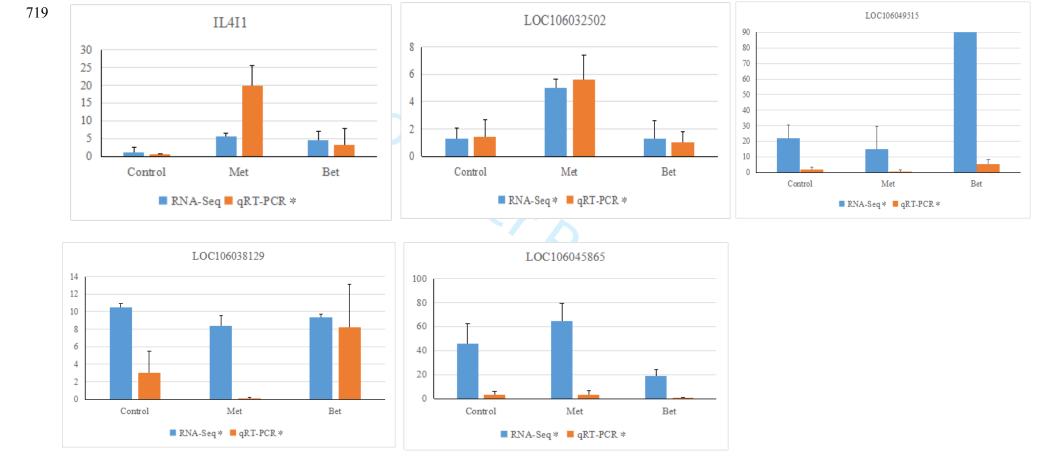

Figure 2 Gene ontology classification of the geese transcripts.


686 **Figure 3** COG function classification of the consensus sequences from the Control vs. Met groups.


COG Function Classification of Consensus Sequence



Poultry Science

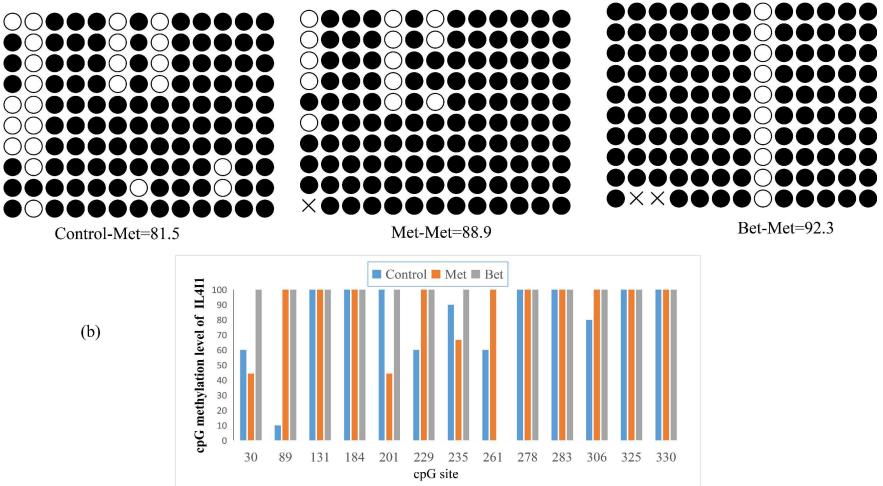


COG Function Classification of Consensus Sequence

716

717

Poultry Science



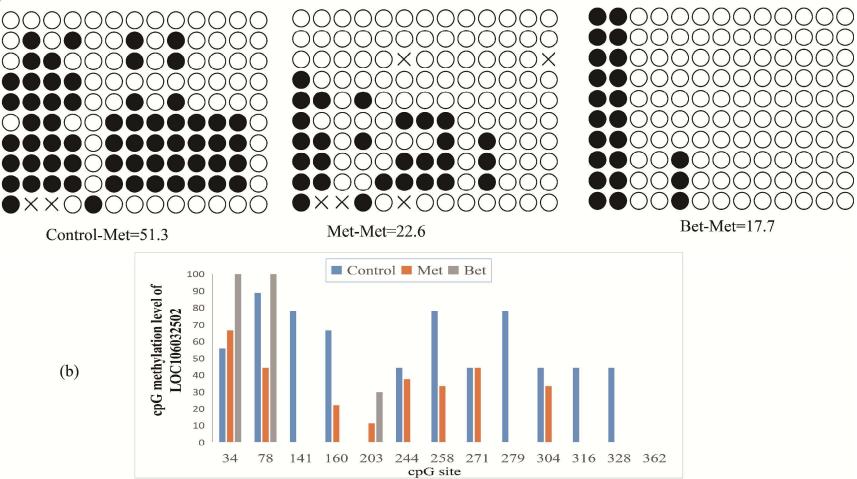
718 Figure 6 Comparison of the RNA-Seq and qRT-PCR validation results.

- (1) The control group, Control, received only the basal diet; the Met group received the basal diet supplemented with an additional 1.2 g/kg of Met;
- and the Bet group was fed the basal diet supplemented with an additional 0.6 g/kg of Bet. (2) Each genotype contains 3 individuals. The mean \pm SD
- is presented for each group (n = 3). * denotes P < 0.05 for t-tests. The differential expression trends detected using the two approaches were largely
- 723 consistent, supporting the reliability of the Illumina sequencing data.

724 Figure7: Effect of Met and Bet on DNA methylation levels of IL4I1.

(A) a

https://mc04.manuscriptcentral.com/ps


726 Methylation at each CpG site of the promoter region was calculated by analyzing ten clone (a) Each line represents one individual bacterial

clone, and each single CpG dinucleotide is represented by one circle. Closed and open circles represent methylated and unmethylated cytosines,

- respectively. (b) Each bar represents methylation level of each CpG site. (c) Control-Met represents CpG methylation level of liver from
- 729 Met-deficient diet (Control) geese; Met-Met means the methylation level of liver from the Control+1.2 g/kg of Met (Met) group; Bet-Met means
- 730
 the methylation level of liver from the Control+0.6 g/kg of Bet (Bet) group.

731 Figure 8 Effect of Met and Bet on DNA methylation levels of LOC106032502.

(B) a

56

- 733 Methylation at each CpG site of the promoter region was calculated by analyzing ten clones. (a) Each line represents one individual bacterial
- clone, and each single CpG dinucleotide is represented by one circle. Closed and open circles represent methylated and unmethylated cytosines,
- respectively. (b) Each bar represents methylation level of each CpG site. (c) Control-Met represents CpG methylation level of liver from
- 736 Met-deficient diet (Control) geese; Met-Met represents the methylation level of liver from the Control+1.2 g/kg of Met (Met) group; Bet-Met
- 737 represents the methylation level of liver from the Control+0.6 g/kg of Bet (Bet) group.