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Abstract 
Methane is one of the greenhouse gases that causes global warming and has been listed for 

reduction within the UK. Under the UK climate change act (2008), the UK is committed to 

reducing GHG emissions by 80% against the 1990 baseline by the year 2050 with a minimum of 

34% reductions to be achieved by the year 2020. This thesis presents results of assessments of 

various dietary manipulations including use of starch sources, use of oil sources and grazing with 

or without supplementation on methane production and productivity and the impact on milk 

fatty acid profile in dairy cows. 

The in vitro study was initiated to assess the effects of starch and oil source on in vitro 

fermentation characteristics and methane production. Results showed that the three starch 

sources, wheat, barley and maize differed in their cumulative and rate of gas production. Wheat 

produced the highest and maize the lowest cumulative and rates of gas production. Methane 

production did not differ among the starch sources. Among the oil sources, carvacrol, linseed oil 

and fish oil when added at the same level of supplementation differed in fermentation 

characteristics and on methane production. However, when methane production was expressed 

per time of incubation, variations in methane production were observed when compared to the 

control. Carvacrol reduced methane production by 50-80% at all time periods while linseed oil 

only reduced methane production by 20% at 36-48 hrs of in vitro incubation and fish oil either had 

no effect or increased methane production. Results of the in vitro study were used to establish 

the treatments for the first in vivo study. 

The effects of starch and oil source on methane production, productivity and milk fatty acid 

profile in dairy cows were examined in a 4X4 Latin square design. Wheat and maize based 

concentrates were used as starch sources and Megalac and sunflower oil were used as oil sources. 

Sunflower oil was not effective at reducing methane production in cows, but did alter the milk FA 

profile by increasing the PUFA content and reduced the palmitic acid content. Maize based 

concentrates were effective in reducing methane output when results were expressed as g/d and 

g/kg milk yield and improved the energy balance of the cows as evidenced by the positive 

condition score change, and also reduced plasma 3-OHB concentration. The starch and oil source 

acted independently, with no interaction observed on methane production and milk FA profile.  

The third experiment was a grazing trial which examined the effect of time of pasture access with 

or without TMR supplementation on methane production, productivity and milk fatty acid profile 

of high yielding dairy cows. Grazing, regardless of the time of access, reduced methane 

production when expressed as g/kg DM intake and g/kg milk yield. Productivity of cows that 

grazed during the day with access to TMR was similar to continuously housed animals, while in 

the rest of the grazing groups, milk production was lower. Grazing also increased the long chain 

FAs in milk fat and reduced concentration of palmitic acid. 

In conclusion, a variety of dietary manipulations can have a significant impact in reducing 

methane emissions. Conclusions drawn from the project are that, maize as opposed to wheat 

based concentrates reduce methane production and improves condition score of the cows. 

Purified sunflower oil supplementation reduces intake, does not reduce methane production but 

improves the fatty acid profile of the milk. When grazing high yielding cows, grazing during the 

day with TMR supplementation is recommended as this does not compromise milk production. 

Methane production per unit of DM intake and per unit of milk yield is lowered regardless of the 

time of grazing. 
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CHAPTER 1. Introduction 

1.0 Introduction 

Methane is produced during normal rumen metabolism as a by-product of feed 

fermentation (Moss et al., 2000). However its production is undesirable as it represents a 

loss of energy to the animal (Popova et al., 2011) and is a potent greenhouse gas (Zhang 

et al., 2008). Methane was therefore listed as a target for emission reduction because 

when compared to the other major greenhouse gasses, carbon dioxide and nitrous oxide 

which have 100 and 120 years atmospheric half-life respectively, methane has a very 

short atmospheric half-life of only 12-15 years (Moss et al., 2000). Additionally methane 

has a high global warming potential (GWP) some 21 times more effective in trapping heat 

than carbon dioxide (Intergovernmental Panel on Climate Change, 2007) over a 100 yr. 

period. According to the UK greenhouse gas (GHG) inventory, 2010 report, the United 

Kingdom agricultural sector was responsible for 7.1% of the total national greenhouse gas 

(GHG) emissions in 2010 of which 33% of the emissions were from livestock production. 

Table 1 shows methane emissions by different livestock categories in England in 2010. 
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                Table 1. Emissions of methane from agricultural livestock sources in  
               England in 2010 

Livestock Category KtCO2 emissions 

  

Rumen fermentation   

Cattle  6, 674 

Sheep 1, 383 

Goats 8.2 

Pigs 114 

Horses 81 

Poultry - 

Deer 3.8 

Subtotal 8, 264 

  

Manure management  

Cattle 1,079 

Sheep 41 

Goats 0.21 

Pigs 416 

Horses 6.3 
Poultry 201 

Deer - 

Subtotal 1, 743 

Source: GHG inventories for England, Scotland, and Wales and Northern  
Ireland-2010 report 

It is clear from Table 1 that in 2010, cattle rumen fermentation was the biggest 

contributor of methane followed by sheep. Methane from manure management is 

considerably less but again cattle contribute the most. According to Odegard and van der 

Voet (2014), by the year 2050, the global demand for beef and milk will more than double 

resulting in the number of animals being expected to increase to cope with the demand. 

As a consequence, the environmental impact of methane production associated with 

livestock expansion will worsen if corrective measures are not taken now (Moss et al., 

2000; Reynolds et al., 2011).  
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1.1 Mitigation of methane emissions policy background 

The UK is party to the United Nations Framework Convention on Climate Change 

(UNFCCC), a treaty constituted in 1994. The treaty requires member states to correctly 

report greenhouse gas emissions and to give information about compliance, best 

practices and policies they have adopted to mitigate climate change. The principle 

objective of the formation of the treaty is to stabilise the GHG emissions in the 

atmosphere. The UNFCC treaty is not legally binding so the Kyoto protocol was ratified in 

2005 which became legally binding; it commits member states to set individual targets for 

GHG emission reductions (Monteny et al., 2006). The first commitment period for the 

Kyoto protocol was the period 2008 to 2012. 

Following ratification of the Kyoto protocol, the UK Climate Change Act (2008) was passed 

which committed the UK to a legally binding long term frame work of cutting carbon 

emissions by reducing the GHG emissions by 12.5% below the 1990 levels between the 

periods 2008-2012 (Lovett et al., 2003). Under this act, the UK has a target of lowering the 

GHG emissions by 80% against the 1990 baseline by the year 2050 with a minimum of 

34% reductions to be achieved by the year 2020. Fig 1 shows the trend in total methane 

emissions within the UK during the period 1990 to 2011. 
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Figure 1. Changes in calculated total methane emissions (Mt, CO2 equiv) from 1990 to 2011 within the UK 
Source UNFCCC, 2011 report, 1990-2011 methane inventory emissions 
Source: National Atmospheric emission inventory website: http://naei.defra.gov.uk/overview/ghg-overview 
 

As shown in Fig 1, in 1990 methane emissions were 99.1 (metric tonnes of CO2 equivalent) 

while in 2011, emissions had reduced to 42 (metric tonnes of CO2 equivalent). This 

indicated that the total methane emissions had declined by 58% when compared to the 

1990 levels (UNFCC report, 2011). The main sources of methane are coal mines, 

agriculture, waste disposal and gas leakage from distribution systems (Knapp et al., 2014). 

According to the UNFCC report, (2013) all the sources of methane in the UK had reported 

reductions in methane emissions since 1990 with the agricultural sector recording 20.6% 

reduction between 1990 and 2011. The decline in agricultural methane emissions was 

attributed to a combination of reduced livestock numbers and improvements in diet 

quality (Milne et al., 2014; UNFCC report 2013). In order to meet the emission reduction 

targets for 2050, further improvements are required including manipulation of feed. 

Methane has a high energy value, heat of combustion of 55 MJ/kg (Eckard et al., 2010). 

The loss in energy through methane production indicates a large inefficiency in the 

production system, therefore knowledge of how feed influences rumen methane 

http://naei.defra.gov.uk/overview/ghg-overview
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production can help identify mitigation strategies both at a national and farm level 

(McGinn et al., 2004). Reducing methane losses by improvements in feed conversion 

efficiency may result in increased milk production with the consequence that reduction 

strategies can bring about more rapid economic and environmental benefits (Mao et al., 

2010). According to Martin et al., (2009) dietary manipulation and improved production 

efficiency appear to be the most viable options to reduce methane production from 

ruminants. Studies conducted to date indicate that a variety of dietary manipulations can 

have a significant impact in reducing the emissions.  
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CHAPTER 2 Literature Review 

2.1. Stoichiometry of methane production in the rumen 

Understanding how various biochemical processes lead to production of methane in the 

rumen is important for identification of mitigation strategies (Ominski and Wittenberg, 

2004). Rumen microorganisms are adapted to live in an environment with a pH of 5.5 to 7 

with a temperature range of 39°C to 40°C (Hungate, 1966). Production of methane starts 

with the action of different ruminal microorganisms, bacteria, protozoa and fungi when 

they hydrolyse and ferment complex feed components such as proteins and 

polysaccharides into simple products including amino acids, sugars and alcohols (Moss et 

al., 2000). The products are further fermented to volatile fatty acids (VFAs), hydrogen (H2) 

and carbon dioxide (CO2) (Iqbal et al., 2009) which are products of rumen fermentation.  

Proportions of the 3 main VFAs produced, propionate, acetate and butyrate vary with the 

composition of the basal diet and once produced, get absorbed across the ruminal wall 

into the blood system for subsequent metabolism (Moss et al., 2002). Ruminants derive 

70% of the metabolisable energy from VFAs (Tagang et al., 2010). According to Kumar et 

al., (2013), the rumen microbial population comprises of 1010-11 bacteria, 108-9 

methanogens, 106 ciliate protozoa and 106 fungi/ml. Methane (CH4) is produced by the 

methanogens, the main organisms being Methanobacterium ruminatium (Hungate, 1966) 

which act at the terminal stages of fermentation and reduce CO2  to CH4 (Popova et al., 

2011). Entodinium spp make up approximately 95% of the total protozoa count (Hristov et 

al., 2009). M ruminantium, are also the dominant methanogen species in the rumen (Mao 

et al., 2010). Two types exist, one which lives in close association with the protozoa and 

the other is free living. Usually supplements or additives that target protozoa also result 

in elimination of the methanogens that are associated with the protozoa and may or may 

not affect the free living methanogens. 
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The main substrates for methane production are CO2 and H2, although others can include 

acetate and formate (Janssen and Kirs, 2008). Methanobacterium species are known to 

effectively utilise hydrogen in methane formation (Hungate, 1966). Equations (i) to (iii) 

show the biochemical pathways that lead to production of CO2 and H2. Equation (iv) 

shows the terminal stage of metabolic reaction where the methanogens act to produce 

methane. 

i) C6H12O6 + 2H2O → 2C2H4O2 (acetate) + 2CO2 + 8H 

ii) C6H12O6 + 4H → 2 C3H6O2 (propionate) + 2H2O 

iii) C6H12O6 → C4H8O2 (butyrate) + 2CO2 + 4H 

iv) CO2 + 4H2 → CH4 + 2H2O  

v) 4 Formate → CH4 + 3CO2 + 2H2O  

vi) Acetate → CH4 + CO       (Moss et al., 2000; Martin et al., 2010). 

The patterns of fermentation dictate the concentrations of hydrogen produced. With 

fibrous diets, the simple sugars are fermented via the pyruvate pathway and are 

converted into acetate, CO2 and H2 (Dohme et al., 2001). From equations (i)  and (iii) it is 

apparent that microbes that produce acetate and butyrate also produce hydrogen and 

once produced, hydrogen is immediately utilised by methanogenic archaea to produce 

methane (Moss et al., 2000; Martin et al., 2010). Methanogenic removal of hydrogen 

allows the rumen to function optimally while its accumulation slows ruminal 

fermentation processes (Janssen and Kirs, 2008). Therefore one of the objectives of 

dietary manipulation is to re-channel the hydrogen produced during normal ruminal 

fermentation from methane production to either go to propionate production or re-

channel it to be used by alternative hydrogen acceptors (McGinn et al., 2004).   



                                                                             8 

2.1.1 Effect of dietary manipulation on ruminal microbe populations and methane 

production 

A number of studies have examined how diet impacts on microbial populations in the 

rumen. From these studies, it is clear that to effectively reduce methane production, diets 

usually have an effect on either protozoa or on the methanogens or both. The effects of 

the diets on ruminal microbial populations vary from diet to diet (Mao et al., 2010). Table 

2 shows how various dietary manipulations impact on rumen microorganisms. 

Table 2. Examples of how dietary manipulation impact on ruminal microbial populations 

    
Basal diet 
TMR     

Hassanat et al., (2013)       
 Starch level in TMR (60:40) 17% 22.8% 30% 

 Total protozoa (× 105/mL) 4.85b 4.75b 3.35a 

 Entodiniomorphs(× 105/mL) 4.83b 4.68b 3.29a 

 Holotrichs (× 103/mL) 1.94b 4.03a 3.8a 

 CH4, g/d 440a 483a 434ab 

 
CH4, g/kg DM intake 20.3b 20.7b 17.7a 

 
    

 
    

Basal diet 
(TMR) 

    

Hristov et al., (2009)       
 

Oil addition to TMR 
    

CT(stearic 
acid) 

   Lauric acid       Coconut oil 
 

Total protozoa, x104/ml 138.2a  27.2b 22.9b 
 

Entodiniomorphs, x104/ml 132.6a 25.8b 20.9b 
 

CH4 g/h  6.5a  7.1a 2.5b 
 

     

    
Rye + conc 

(3:2)     

Mao et al., (2010)       CT 
       Tea  

saponins Soybean oil 
    TS + 
soybean oil 

 
        

*Methanogens  0.34a 0.36a 0.20b 0.24b 

*Protozoa 9.71a 5.72b 4.71b 5.42b 

*Fungi, X 10-2 5.43 4.03 3.49 4.20 

*R. flavefaciens, ×10−1 1.43a 0.70ab 0.28b  0.76ab 

CH4, L/kg DM intake 26.2a 19.0c 22.6b 21.2b 

a,b  Within each row, means with different superscripts significantly differ; TS= tea saponins, CT= control  
* presented as percent of total microbial population 
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As seen in Table 2, Hassanat et al., (2013) showed that varying starch levels in the total 

mixed ration (TMR) fed to cows has different impacts on ruminal microbes depending on 

starch levels in the diets. At 30% starch supplementation, there were significant 

reductions in methane output as a result of reductions in total protozoa counts, 

particularly the Entodiniomorphs spp were significantly reduced. At 17 and 22.8% starch 

supplementation, methane output was unchanged and at the same time there was no 

effect on the total protozoa count. Though Holotrich spp were significantly lowered at 

17% starch level, this did not have an effect on methane output. What was established in 

this experiment was that Holotrich spp are less important in methane mitigation and that 

high levels of starch in the diet deplete Entodiniomorphs spp. According to Williams 

(1986), both Entodiniomorphs and Holotrich spp are ruminal protozoa spp but the 

Entodiniomorphs spp are the most abundant. This is the reason 100% starch 

supplementation is considered a possible defaunating strategy. In a study by Mao al., 

(2010), a basal diet of wild ryegrass and concentrate was supplemented with either tea 

saponins, soybean oil, or a combination of tea saponins plus soybean oil. In the rumen, 

methanogen populations were reduced only by the soybean oil treatment while the 

saponins treatments had no effect. However protozoa numbers were reduced by both 

the saponins and the soybean oil treatments. When the methane output was examined, it 

was observed that all the 3 supplements significantly reduced methane output when 

compared to the control despite each one of them showing varied effects on protozoa 

and methanogens numbers. A study by Hristov et al., (2009) used coconut oil, lauric acid 

and stearic acid to determine the impact on ruminal microbial populations and methane 

production. Coconut oil and lauric acid reduced total protozoa counts by 80% while 

stearic acid was ineffective. Methane output was reduced only by coconut oil and 

unchanged by lauric and stearic acid supplementation. What was established in the study 
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was that though lauric acid reduced the Entodiniomorphs spp, methane output was not 

reduced most probably because lauric acid had no effect on the methanogens. According 

to Hristov et al., (2009) Entodiniomorphs are the most common protozoa species in the 

rumen and account for 80% of the total protozoa count. It is therefore expected that an 

effective defaunating agent would act on these species of protozoa.  

2.2 Dietary mitigation strategies that reduce methane output in ruminants 

Manipulation of the ruminant diet can have a great impact on methane output (Moss et 

al., 2000). Changes in forage to concentrate ratio, dietary fibre content, physical and 

chemical characteristics of feed, feeding level, supplementation with additives such as 

fats and plant based compounds such as saponins, tannins and essential oils and 

antibiotics such as monensin have all been reported to alter ruminal fermentation 

patterns and influence methane output (Lovett et al., 2003; Reynolds et al., 2011). Figure 

2 shows a summarised overview of the different dietary manipulations that can be used 

to reduce methane production. 
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Figure 2. Summary of various dietary manipulations that can be used to mitigate methane 
production (Source: Eckard et al., 2010). 

2.3 Use of fat supplementation to mitigate methane output 

Oil supplementation has been identified as one of the most promising ways of reducing 

methane output from ruminants (Dohme et al., 2001; Reynolds et al., 2011).  Most 

studies have confirmed the potential of oils in reducing methane production (Martin et 

al., 2008) both in vivo and in vitro, but the effects on methane output vary with the 

presentation of the oil (Martin et al., 2008), level of the oil, fatty acid profile of the oil and 

composition of the basal diet (Dong et al., 1997; Machmuller et al., 2001). 

2.3.1 Mode of action of fats 

Supplemental oils reduce methane production by multiple modes of action. In the rumen, 

fats are hydrolysed to fatty acids by microbial lipases (Toral et al., 2009) and it is the fatty 

acids that exert their effects on the ruminal environment either through bio-

hydrogenation (Mao et al., 2010), reduction of organic matter fermentation (Martin et al., 
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2010) or by a direct toxic effect on protozoa and methanogens (Mao et al., 2010). Oils 

and fats reduce protozoa numbers and consequently the methanogens that live on the 

surface of protozoa die off and this results in a reduction in methane production because 

interspecies hydrogen transfer between protozoa and methanogens is reduced or 

terminated (Lovett et al., 2003).  Protozoa are involved in fibre fermentation in the rumen 

so elimination of protozoa tends to slow down fermentation (Lovett et al., 2003). The 

presence of oil in the rumen also serves as an alternative hydrogen sink, via 

hydrogenation of the oil. 

2.3.2 Influence of fats on methane production 

Most studies on the effects of supplemental fats on methane production have been 

conducted using medium chain fatty acids (MCFAs),  the C8-C16, long chain fatty acids (C18) 

and omega 3 fatty acids (Fieves et al., 2003). Table 3a and b summarise some previous 

studies on effects of various fats on methane production.  
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Table 3a. Summary of in vitro studies on effects of oil supplementation on methane production 

Study Basal Diet Oil Supplement level of supply % methane  reduction 

Dohme et al., (2000) Forage:conc 50:50 coconut oil 53  g/kg DM 21% mmol/d 

  
palm kernel oil ‘’ 34% mmol/d 

  
palm oil  ‘’ 20% mmol/d 

     Dong et al., (1997) 100%  grass hay canola oil 10% wt/wt 26% mmol/g DM 

 
‘’ cod liver oil ‘’ 29% mmol/g DM 

 
‘’ coconut oil ‘’ 59% mmol/g DM 

Dong et al., (1997) 90% wheat, 10% grass hay canola oil 10% wt/wt 31% mmol/g DM 

  cod liver oil ‘’ 47% mmol/g DM 

  coconut oil ‘’ 85% mmol/g DM 

     

Fievez et al., (2003) hay/conc (65/35) eicosapentanoic acid 75,  100 & 125 mg 74%  mmol/mol 

  
docosapentanoic acid  75,  100 & 125 mg 36%  mmol/mol 

  
soybean oil ‘’ 56%  mmol/mol 

     Machmuller et al., (2001) High conc or high forage diet coconut oil  0.58 g/d 62%  on conc  diet (mmol/d) 

 
High conc or high forage diet lauric acid 0.74 g/d 78%  on av on both diets (mmol/d) 

     Zhang et al.,  (2008) wild rye and corn meal (1:1) stearic acid 35 g/kg DM 4% mmols 

 
wild rye and corn meal (1:1) oleic acid ‘’ 9% mmols 

 
wild rye and corn meal (1:1) linoleic acid  ‘’ 3% mmols 

 
wild rye and corn meal (1:1) linolenic acid  ‘’ 5% mmols 

     

 
wild rye and corn meal (1:1) stearic acid 70 g/kg DM 4%  mmols 

  
oleic acid ‘’ 16% mmols 

  
linoleic acid ‘’ 42%  mmols 

  
linolenic acid ‘’ 62%  mmols 
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Table 3b. Summary of in vivo studies on effect of oil supplementation on methane production 

Study Basal Diet Oil Supplement level of supply % methane  reduction 

Beauchemin et al., (2009) 45% barley & 33% barley grain crushed sunflower seeds 3.1-4.2% DM   10% on DM intake 

Beauchemin & McGinn (2006) 75% barley silage, 25% barley  canola oil 4.60% DM 32%  g/d, 21 % GE intake 

     Chung et al., (2011) barley silage  ground linseed 150 g/kg DM 33%  g/kg DM intake 

 
grass hay ground linseed 150 g/kg DM no effect 

Eugene et al., (2011) 
 

Forage / starch + extru. linseed oil  20% L/kg DM intake 

     Martin et al., (2008) 59% corn silage,  35% conc crude linseed 5.7% DM 12% g/d, 15%GE intake 

  
extruded linseed ‘’ 38 % g/d, 28% GE intake 

  
linseed oil ‘’ 64% g/d, 55% GE intake  

     Machmuller et al., (2000) maize silage, grass hay & conc coconut oil 6% DM 26 %  GE intake 

  
rapeseed oil ‘’ 19 % GE intake 

  
sunflower oil  ‘’ 27% GE intake 

  
linseed oil ‘’ 10% GE intake 

     Machmuller et al., (2001) 60:40 forage:conc ratio coconut oil  60 g/kg DM no effect 

     Mao et al., (2010) 60 % forage, 40% conc soybean oil     30 g/kg DM 13%  (daily) 

Moate et al., (2011) TMR (60:30, F:C) brewers grain 51  g/kg DM 5%  g/kg DM intake 

  
hominy meal +canola 52  g/kg DM 4.8%  g/kg DM intake 

  
hominy meal 65  g/kg DM 11.6 %  g/kg DM intake 

     Odongo et al., (2007) TMR myristic acid 5% 36%  L/d 
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Significant reductions in methane output have been observed with fats that contain 

medium chain fatty acids (MCFA; Soliva et al., 2004). Most MCFAs have been found to 

effectively reduce methane emissions by as much as 50% both in vitro and in vivo as can 

be seen in Tables 3a and 3b. For example, in an in vitro study by Dong et al., (1997) 

coconut oil supplementation at 10% wt/wt DM reduced methane by 59% on a hay based 

diet and by 85% on wheat concentrate based diet, while in a study by Machmuller et al., 

(2001) addition of coconut oil and lauric acid at 0.58 g/d and 0.74 g/d in a Rusitec 

fermenter reduced methane production by 62 and 74 % respectively. The effect of MCFAs 

on methane output is attributed to their potent effect on protozoa. Protozoa produce 

hydrogen that is utilised by methanogenic bacteria to synthesise methane (Zhang et al., 

2008). Therefore reductions in protozoa numbers tend to reduce methane production. 

For example, Hristov et al., (2009) observed an 80% reduction in protozoa numbers with 

coconut oil supplementation which subsequently resulted in significant reductions in 

methane production. However, even among the fatty acids, the effects on methane 

output have been extremely variable. For example Dohme et al., (2001) examined seven 

MCFAs with C8 – C14 fatty acids and compared them with long chain fatty acids C16, C18 

and C18:2n-6 on their effects on methane output in dairy animals and observed that only 

C12:0, C14:0 and C18:2n-6 reduced methane output by 18% (C12, C14) and 25% (C18:2n-6), while 

the rest were ineffective. In the same study, C8 and C10 increased methanogen numbers 

while C12:0 only reduced protozoa numbers. 

A study by Soliva et al., (2004) has shown that oils that have a combination of MCFAs tend 

to have a greater inhibitory effect on methane production and proposed that when fatty 

acids interact, the synergistic effect on methane production is usually greater than when 

any of them are used separately. For example, Soliva et al., (2004) demonstrated a 

synergy between lauric and myristic acids when used at ratios of 4:1 and 4:2 respectively, 
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which produced 70 and 60 % reductions in methane output, but when used separately, 

myristic acid had no effect and lauric acid produced only a 45 % reduction in methane 

output. Odongo et al., (2007) also observed only a 36% reduction in methane output with 

myristic acid.   

The long chain FAs of the C18 group includes oleic, linoleic and α-linolenic acid. Common 

sources are rapeseed, sunflower, and linseed oil respectively (Ueda et al., 2003). Like the 

MCFAs, Zhang et al., (2008) observed that among the C18 FAs, effects on ruminal 

microorganisms differ between individual FAs. Both linoleic and α-linolenic acid reduce 

protozoal numbers, but greater effects are observed with α-linolenic acid (Zhang et al., 

2008). With the C18 group of FAs, the degree of unsaturation was observed to influence 

methane output (Zhang et al., 2008). In Table 3b, this was evident when the FAs were 

added to the basal diet at the same level of 70 g/kg, α-linolenic acid suppressed methane 

production more than stearic, oleic or linoleic acid. The variable effects of oils on rumen 

fermentation characteristics can be attributed to differences in FA composition of the oil, 

the level of supplementation and composition of the basal diet (Toral et al., 2009). 

Studies on the very long chain omega 3 fatty acids eicosapentanoic acid and 

decosapentanoic acid are limited. The few studies that have been conducted (Boeckaert 

et al., 2006; Fievez et al., 2003) show that very long chain omega 3 fatty acids have strong 

methane inhibition effects ranging from 60-80%, and inhibition is linked to the amount of 

unesterified DPA. For example Fievez et al., (2003) observed that when used at increasing 

concentrations of 0.5 to 5 mg/l, in vitro methane suppression by eicosapentanoic acid and 

decosapentanoic acid was found to be proportional to the degree of unsaturation and to 

the amount of PUFA added in the incubation media.  
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Finally, Table 3a and 3b show that effects of oils on methane production are also 

influenced by the basal diet. Only a few studies for example, Machmuller et al., (2001) 

and Chung et al., (2011) examined the interaction between supplemental oils and basal 

diets in influencing methane output. Machmuller et al., (2001) examined the effects of 

coconut oil and lauric acid on a high forage and a high concentrate diet in a Rusitec study. 

Coconut oil reduced methane production by 62% (mmol/d) on a high concentrate diet but 

had no effect on a high forage concentrate diet. On the other hand, lauric acid reduced 

methane production by an average of 78 % (mmol/d) on both the high forage and high 

concentrate diet. In the same study, when coconut oil was tested in vivo by 

supplementing sheep fed a diet with 60:40 forage to concentrate ratio at 60 g/kg DM, it 

did not have any effect on methane production. Chung et al., (2011) also examined the 

effects of linseed oil on methane production on two basal diets. Dairy cows were fed 

either a barley silage diet or a hay based diet were supplemented with ground linseed at 

150 g/kg DM. Cows fed the silage based diet produced 33% (g/kg DM intake) lower 

methane production when compared to the un-supplemented control while methane 

production in cows fed a hay based diet was unaffected.  

2.3.3 Challenges of fat supplementation 

Fat supplementation of ruminant diets is associated with a number of challenges. Dietary 

fat supplementation of more than 5-6 % is often accompanied by reductions in DM intake 

and milk production due to reduced fibre fermentation (Boadi et al., 2004). Fibrolytic 

bacteria in particular are very sensitive to inhibition by dietary fats (Hristov et al., 2009). 

Beauchemin and McGinn (2006a) observed a 15 % depression total tract digestibility 

when canola oil was supplemented to the diet at 4.6% DM in beef cattle. However the 

effects of oils on fibre digestibility are not conclusive. For example, when using the 

Rusitec technique, Soliva at al., (2004) reported inhibition of fibre degradation only in the 
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first 10 days of the 25 day experimental period, suggesting the negative effect may be 

temporal. Cieslak et al., (2006) also reported no effect on fibre degradability when plant 

oils where used at 7% supplementation. Toral et al., (2009) observed a lack of effect on 

neutral detergent fibre (NDF) degradability when sheep on a high concentrate diet were 

supplemented with a combination of fish oil and sunflower oil at 30 g/kg DM, and 

suggested that microorganisms may have adapted to the oil in the feed resulting in 

normal NDF digestibility to occur. 

To date only a few studies have evaluated the persistence of effects of different 

supplemental fats on methane production. Table 4 shows details of some previous 

studies that were conducted to assess persistency of the effects of oils on methane 

production. Grainger et al., (2010) reported increasing reductions in daily methane 

outputs of 13% and 23% in weeks 3 and 12 respectively following whole cotton seed 

supplementation of dairy animals at 3.5% DM. When methane production was expressed 

per kg DM intake, methane production was reduced by 5% in week 3 and 15% in week 12.  

Similarly, Jordan et al., (2006) also observed methane reduction of 19% (L/d and kg/DM 

intake) during the period 14-18 and 70-74 days of the experiment when beef heifers 

where supplemented with refined coconut oil at 250 g/d (8% DM intake). In a study by 

Moate et al., (2011), supplementation of cold pressed canola meal at 52 g/kg resulted in 

methane suppressing effects to last for 7 weeks.  
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Table 4. Studies examining persistency of effects of oil supplementation on methane production 

  Methane production       Methane production  

  
  g/d 

 
g/kg DM  intake 

1Grainger et al., (2010) Sampling CTR  Diet 
 

   CTR Diet 

       

 
Week 3 592a 512b 

 
 35.4a 33.6b 

 

Week 6 600a       505b 

 

 
36.3a 32.8b 

 
Week 10 600a       505b 

 

 
36.2a 32.8b 

 
Week 12 625a       480b 

 

 
37.2a 31.8b 

       
2Moate et al., (2011) Week 3 500a 461b 

 
  25a   23.3ab 

 
Week 7 500a 460b 

 
25a 22.9b 

 
Week 10 500a 467ab 

 
25a        23.4ab 

a,b within each row for a particular unit of measure, means with different superscripts significantly differ 
1CTR diet contained wheat grain and cotton seed meal (92% and 8% respectively; 2% total fat content), Diet  

  contained wheat grain and whole   cotton seed (52% and 48% respectively; 5.3% total fat content).  
2Basal diet was a TMR composed of alfalfa hay, ryegrass silage, wheat grain and canola meal, diet composed of hay, 

ryegrass silage, wheat grain and cold pressed canola meal with total fat content of the diet at 5.2%. 

2.4 Use of concentrates to mitigate methane output 

According to Johnson et al., (1994), the quality of feed an animal consumes determines 

the quantities of methane produced. Concentrates are considered high quality feeds and 

are commonly used in dairy farming and in beef intensive feedlot systems (Beauchimin 

and McGinn, 2005) primarily to improve productivity. However recent studies provide 

evidence that concentrate addition to ruminant diets may help to reduce methane 

emissions. 

2.4.1 Effects of dietary starch concentrate on methane production 

The nature and fermentation characteristics of carbohydrates found in concentrates 

influence the proportion of volatile fatty acids (VFA) produced and consequently the 

amount of methane produced (Boadi et al., 2004). With starch addition to the diet, 

propionate as opposed to acetate production is favoured which leads to less hydrogen 

available for methane formation (Moss et al., 2000). The VFAs produced also lower the 

ruminal pH and subsequently negatively affect methane production (McGeough et al., 
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2010; Beauchemin and McGinn, 2005) as a lower pH inhibits the growth of methanogens 

and protozoa (Boadi et al., 2004), while structural carbohydrates reduce fermentation 

rates and promote production of acetate. A number of studies have reported an 

increased feed intake with concentrate supplementation which is accompanied with 

either reductions (Beauchemin et al., 2009), no change (Beauchemin and McGinn, 2006) 

or increase in daily methane output (Beauchemin and Mc Ginn 2006; Lovett et al., 2005). 

Several factors contribute to the variations in methane output with concentrate 

supplementation, with the two most important factors being the forage to concentrate 

proportion and the composition of the concentrates in the diet (Eugene et al., 2011; 

Benchaar et al., 2001).  

2.4.2 Concentrate proportion and methane production 

Several studies have reported reduced methane output with increased concentrate 

supplementation particularly when results are expressed as a proportion of gross energy 

(GE) intake. For example, Lovett et al., (2003) observed that decreasing the forage to 

concentrate ratio from 2:3 to 1:9 reduced methane output by 33% of GE intake. In  a 

study by Aguerre et al., (2011),  a progressive increase in F:C ratio in the diet of cows from 

47:53, 54:46, 61:39 and 68:32 did not have any effect on DM intake but progressive 

increase in methane production was observed with values of 26, 28, 29 and 32 g/kg DM 

intake methane respectively. Changes in methane production were due to a progressive 

increase in NDF fraction of the diet when the forage levels were gradually increased. 

Some studies have also reported either no changes or an increase in methane production 

with increased concentrate supplementation. For example, in a study by Beauchemin and 

McGinn (2006), cows fed a high forage diet (comprising of 70% barley silage and 30% 

barley based concentrate) had a 1.3 kg/d lower DM intake when compared to those fed a 

high concentrate diet (comprised of 70 % maize based concentrate and 30% barley 
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silages) but methane production when expressed as g/d, g/kg DM intake, % of GE intake 

was similar between the two groups. The results of the studies conducted by Beauchemin 

and McGinn, (2006) show that to effectively mitigate methane output with concentrates, 

the most effective strategy would be to feed animals above energy maintenance 

requirements, as doing so results in an improvement in feed conversion efficiency and 

greatly reduces the proportion of GE lost as methane. This is clearly demonstrated in a 

study by McGeough et al., (2010) in Table 5 

Table 5. Differences in methane output produced by whole crop wheat silage  
differing in grain: forage ratio, grass silage (GS) and ad libitum concentrate (ALC) 
supplementation in beef cattle 

 
  Whole crop wheat silage     

 Diet type I II II IV   

Grain: forage ratio ( 11:89)  (21:79)  (31:69) (47:53) GS ALC 

Total DM intake, kg/d 10.6 11.4 11.4 11.0 9.20 10.9 

CH4  g/d 295 315 322 273 312 180 

CH4    g/kg DM intake 30.1 27.5 28 25.9 35.6 15.3 

CH4   % GE intake 8.9 8.24 8.52 6.79 9.72 3.71 

CH4   g/kg carcass gain 534 432 412 325 443 182 

   GS=grass silage, ALC= ad libitum concentrate feeding (McGeough et al., 2010) 

It is clear from Table 5 that greater reductions in methane output were observed with ad 

libitum concentrate feeding regardless of the unit of expression. The DM intake did not 

differ much among the treatments yet methane emissions were lowest in the ad libitum 

concentrate treatment. The study demonstrated the effectiveness of ad libitum 

concentrate feeding in reducing methane emissions, whereas grass silage produced the 

highest methane emissions in terms of DM intake and GE loss. Additionally, increasing the 

grain proportion within whole crop wheat silage produced a quadratic response in 

methane output (g/d). Therefore it is evident that increasing concentrate content of the 

wheat silage increased the starch content of the diet which in turn reduced methane 

emissions relative to DM intake and carcass gain. Reductions in methane output with 

whole crop wheat silage are associated with the presence of starch in the silage which 
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favours propionate production in the rumen (Lovett et al., 2003). According to Benchaar 

et al., (2014), an increase in the grain proportion in the diet increases the starch levels 

and this greatly affects how much methane is produced. This was clearly illustrated in a 

study by Hassanat et al., (2013) who examined the effects of replacing alfalfa silage with 

corn silage in the TMR on methane production. In their study, corn silage in the TMR was 

replaced at 3 levels of 0, 50 and 100% formulated to provide 17, 22.8 and 30% starch 

content in the TMR respectively (Hassanat et al., 2013). A quadratic response in methane 

output was observed with production of 20.3, 20.7 and 17.7 g/kg DM intake methane 

production respectively. Methane output was significantly reduced only with the diet that 

supplied 30% starch. 

Methane losses of 3.7% GE intake observed by McGeough et al., (2010) with ad libitum 

concentrate feeding is consistent with findings from many previous studies (Lovett et al., 

2003; Whitelaw et al., 1984) where it was observed that diets comprising 90% 

concentrates when given at ad libitum levels produced consistent results of 2-4% of GE as 

methane losses regardless of the grain source in the concentrate portion of the diet.  One 

of the reasons ad libitum concentrate reduces methane production is because it results in 

defaunation of animals. For example Whitelaw et al., (1984) observed marked differences 

in methane output between defaunated and faunated cattle (4% vs 8.1% of GE intake 

respectively).  

2.4.3 The influence of concentrate and forage composition on methane output 

Composition of the concentrate also influences methane production (Lovett et al., 2005) 

Methane emissions from carbohydrate rich diets tend to be highly variable depending not 

only on the level of inclusion but also on the composition of the carbohydrate 

(Hindrichsen et al., 2005). For example, replacing a fibrous concentrate of sugar beet pulp 
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with a barley concentrate did not reduce DM intake, but methane output was reduced by 

24% of GE intake in a simulation study by Benchaar et al., (2001). Variations in methane 

output were due to differences in the starch sources. In a study by Benchaar et al., (2014), 

replacing barley silage portion of the TMR with maize silage increased DM intake of the 

cows and reduced methane production when expressed as g/kg DM intake and GE intake. 

Results of the study by Benchaar et al., (2014) are shown in Fig 2 
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Figure 2. Effect of starch source in the silage on DM intake and methane production (Benchaar et 

al., 2014) 

 

It is clear from Fig 2 that maize based silages when supplied at the same levels as barley 

silages reduce methane production when compared to barley silage regardless of the unit 

the results are expressed. Previous studies have shown that corn silage when supplied at 

the same level as barley silage tend to have higher starch levels (Beauchemin and 

McGinn, 2005). The high starch content in corn silage may have lowered the ruminal pH 

more than barley silage making the rumen environment unfavourable to the 

methanogens which are bacteria responsible for methane production. In another study 
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by Hart et al., (2012), cows were supplemented with the same amounts of concentrates 

that differed in starch levels of either 58 or 320 g/kg DM. The cows that received high 

starch concentrates produced 9.5% lower methane output (% GE intake) when compared 

to those that received the low starch concentrates. 

2.4.4 Impact of concentrate supplementation on production parameters. 

Several areas of research (McGeough et al., 2010) have demonstrated  that increasing the 

grain content of the concentrate portion of the diet  has economic benefits as evidenced 

by increased rate of carcass gains, increase in milk yields and milk constituents (Lovett et 

al., 2005) and shorter time to market. This is because with concentrate supplementation, 

gross energy losses are low and the retained energy is used to enhance productivity. A 

study by Fitzgerald and Murphy (1999) demonstrated that increasing concentrate 

supplementation from 4 to 8 kg/d in cows that were fed either grass silage or low starch 

maize increased fat, protein and lactose contents of milk and also the milk yield. Benchaar 

et al., (2013) fed cows a TMR with increasing levels of distillers’ grain. The proportion of 

the grain in the diet ranged from 0-30% DM of total TMR ration. Results showed that DM 

intake, milk production and daily weight gains increased linearly with increasing 

proportion of distillers’ grain in the diet. Methane output as a unit of gross energy intake 

also decreased linearly with increasing grain content (Benchaar et al., 2014).  

2.4.5 Challenges of concentrate supplementation 

Ominski and Wittenberg (2004) noted that grain supplementation has a limited effect on 

methane output when good quality forage is used. For example, Table 6 compares 

methane outputs from 4 previous studies. McCaughey et al., (1997) observed methane 

losses of 4.4% of the GE intake in grazing cattle while Lovett et al., (2003) observed similar 

amounts with 90% concentrate supplementation. A comparative study by O’Neill et al., 



                                                                             25 

(2011) observed that the methane output of cows on grass was low at 5.7 % GE intake 

compared to 6.5 % GE intake emitted by cows fed a TMR that was composed of 35% 

maize silage and 45% maize concentrate. This showed that it is possible for cows on 

pasture to emit lower methane outputs when compared to those fed TMR which are 

considered high quality feeds. In a study by Beauchemin and McGinn (2006b), methane 

losses of 6% GE intake were reported in heifers which remained unchanged even when 

high forage diets comprising 70 % whole barley silage were replaced with a high 

concentrate diet comprising 70% corn based concentrate.            

  

                Table 6. Effects of basal diet on methane production 

Study  Basal diets Total DM intake     CH4 output 

             (kg/d)  % GE intake 

McCaughey et al., (1997) alfalfa/grass           14.9           4.0 

 

Pasture   

    Lovett et al., (2003) Forage: conc 
  

 

    65:35 6.9            6.1 

 

    40:60 8.4            6.6 

 

    10:90 8.2            4.4 

    O' Neill et al., (2011) Rye grass 14.3            5.7 

 
    TMR 19.7            6.5 

 
Beauchemin and McGinn 
(2006b) 

70% barley silage 21.6            6.0 

 
70% corn based 
concentrate 

20.0            6.0 

TMR= total mixed ration; Conc= concentrate 

The other challenge with concentrate supplementation is that the feeding management 

practised by farmers tends to influence methane output. Hindrichsen et al., (2006) 

simulated a real life scenario in which four feeding regimes commonly practised on dairy 

farms were compared for their milk production and methane outputs. Table 7 shows the 

results of the study by Hindrichsen et al., (2006). 
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              Table 7. Impact of feeding management on methane output of dairy  
              cows (Hindrichsen et al.,  2006) 

Production level Low Medium Medium High 

Milk/day 10kg  20kg 20kg 30kg 

Diet type 1 2 3 4 

DM intake kg/d 13.5b 19.6a 14.3b 20.9a 

Milk yield 11.3c 21.9b 25.3ab 31.7a 

CH4 g/d/cow 323b 414a 369ab 414a 

CH4 g/kg DMI 23.9ab 21.2b 25.9a 21.1b 

CH4 g/kg milk 35.8a 19.6b 18.9b 14.4b 

CH4   % GE intake 7.14ab 6.31b 7.4a 6.14b 
a,b With each row, means with different superscripts significantly differ 
Diet 1= low quality hay & grass silage 1.5:1 ratio,  
Diet 2 = mixture of diet 1 and conc in the ratio 1:1 
Diet 3 = mixture of maize silage and grass silage in the ratio 1:1.  
Diet 4 was a mixture of Diet 3 with concentrate in the ratio 1:1 

 

Low yielding cows producing about 10 kg milk/d/cow or less were fed diet 1 composed of 

only low quality hay and grass silage in the ratio 1.5:1; the medium milk producers, that 

were producing on average 20 kg milk/d/cow were divided into 2 groups and were fed 

diets 2 or 3 which were composed of a mixture of diet 1 and concentrate in the ratio 1:1 

for diet 2 or diet 3 which was a forage only diet composed of maize and grass silage in the 

ratio 1:1. The high producers were grouped as cows producing on average 30 kg 

milk/d/cow. This group were fed diet 4 which was a mixture of diet 3 and concentrate in 

the ratio 1:1. Milk and methane output results are presented in Table 7 which shows that 

DM intake, milk production and methane were all predicted to be influenced by the 

quality of the feed given to the cows. Dry matter intake was low with the forage based 

diets, diets 1 and diets 3, which had no concentrate portion in them. Methane output 

(g/kg DM intake) reduced with increased DM intake, and when expressed as a unit of milk 

yield. Methane output was highest with diet 1 which was an all forage diet of poor 

quality, while diets 2, 3 and 4 produced similar amounts of methane. Diet 3 was an all 

forage diet composed of maize and grass silage in the ratio 1:1; the maize in the diet was 
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predicted to increase the starch supply to the cows which resulted in a lower methane 

output. Hindrichsen et al., (2006) established that increasing productivity by using high 

quality feeds has the potential to reduce methane output when methane output is 

expressed per unit of animal product. The results of Hindrichsen et al., (2006) agree with 

Reynolds et al., (2011), who stated that methane output in dairy cows when expressed 

per unit of milk yield reduces with an increase in milk yield and that considerable 

increases in methane output are observed when milk yield is below 20 L/d.   

2.5 Use of organic acids to mitigate methane output 

There is renewed interest in the use of organic acids as methane inhibitors following the 

ban of antibiotic use as growth promoters (Boadi et al., 2004). Organic acids, also called 

propionate enhancers, are intermediates of ruminal carbohydrate digestion particularly 

the propionic acid pathway (Castillo et al., 2004). 

2.5.1 Mode of action of organic acids in reducing methane production 

Commonly studied natural organic acids include fumarate, malate and aspartic acids. 

Their use in ruminant diets stimulates production of propionic acid which is a hydrogen 

competitor for methane (Jouany and Morgavi, 2007). Fumaric acid is reduced by H2 or 2H 

to succinate, which is then converted to propionic acid (Wood et al., 2009). Organic acids 

stimulate growth of Selenomonas ruminantium bacteria (Khampa and Wanapat, (2007).  

S. ruminantium bacteria ferments soluble carbohydrates and utilises lactate as an energy 

source, therefore organic acids stimulate lactate utilisation by S ruminantium (Khampa 

and Wanapat, 2007; Castillo et al., 2004). As a consequence, organic acids help to 

regulate the pH of the rumen and therefore prevent lactic acidosis (Castillo et al., 2004). 
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2.5.2 Previous studies on organic acids and their limitations 

Previous studies (Jouany and Morgavi, 2007) have indicated that high volumes of organic 

acids are needed to reduce methane production and such high volumes of acids would 

predispose animals to a risk of acidosis. For example to reduce methane production by 

10%, 2.9 kg/d of sodium fumarate was required (Jouany and Morgavi, 2007). Foley et al., 

(2009) and Beauchemin and McGinn, (2006a) reported a lack of effect on methane 

production when dairy cows were supplemented with malate and fumaric acid at 480 g/d 

and 175 g/d respectively. Due to these limitations, there have been few studies on the 

use of organic acids as feed supplements. According to Shibata and Terada (2010), organic 

acids need to be tested under various feeding conditions to understand how they work. 

However recent studies by Wallace et al., (2006) and Wood et al., (2009) used 

encapsulated fumarate at 100 g/kg feed in vitro and in growing lambs respectively and 

reported reduced methane production by 75% without any negative effects on ruminal 

pH. The studies by Wallace et al., (2006) and Wood et al., (2009) offer hope of the ability 

of  fumaric acid to reduce methane production without risks of acidosis.  

Since the European Union banned the use of ionophores such as monensin and lasalocid 

as animal feed additives, efforts are being made to find alternatives (Jouany and Morgavi, 

2007). According to Castillo et al., (2004), there is great potential for organic acids to 

replace monensin as ruminant feed additives owing to the advantages that organic acids 

have which are, the ability to regulate rumen pH, the potential to lower methane 

production and the safety to use in meat animals without worrying about residues. 

However one major limitation to the use of organic acids is the cost, as currently organic 

acids are still very expensive. Persistence of the effects of organic acids in vivo is also 

another aspect that has never been assessed to date (Jouany and Morgavi, 2007). Organic 
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acids also remain to be tested in vivo on a range of diets to assess their potential as feed 

additives (Boadi et al., 2004).  

2.6 Use of nitrates, nitro compounds and sulphates in mitigating methane production  

2.6.1 Mode of action of nitrates in reducing methane production 

Nitrate and sulphate salts in the rumen act as strong sinks for hydrogen produced during 

ruminal fermentation (Nolan et al., 2010). With nitrate supplementation, reduction of 

nitrate to ammonia becomes more favourable in the rumen than reduction of CO2 to CH4 

(VanZijderveld et al., 2010). 

NO3 + 2H   H2O+ NO2                   

NO2 + 6H   H2O+ NH3     

According to VanZijderveld et al., (2010), every mole of nitrate that is reduced results in 

reduction of methane production by one mole. In other words, according to 

VanZijderveld et al., (2010), for every 100 g of nitrate that is fed to animals, there is a 25.8 

g reduction in methane production. Studies on nitrate and sulphate supplementation in 

ruminants are few (Bozic et al., 2009; Van Zijderveld et al., 2010; Zhang and Young, 2011) 

but have produced encouraging results of methane reductions of between 32-98.5% as 

shown in Table 8 which is a summary of previous studies on nitrate, sulphates and nitro-

compounds. 
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Table 8. Effects of nitrates, sulphates and nitro-compound supplementation on methane 

production in vitro and in vivo 

Study Basal diet Additive % methane reduced 

In vitro studies     Compared to control 

Bozic  et al., (2009) 

   1. nitro-ethane  Alfalfa 1 mg/ml 92% (μmol/ml) 

2. sodium nitrate Alfalfa 1 mg/ml 63% (μmol/ml) 

    
Anderson et al., (2008) 

   
Nitrocompounds ryegrass      12 (μmol) 

 
1. 2-nitro-1-propanol 

 
 

41% (μmol/ml) 

2. 3-nitro-1-propionic acid 
  

97% (μmol/ml) 

3. Nitroethane 
  

97% (μmol/ml) 

4. 2-nitroethanol 

 
 

97% (μmol/ml) 

  
  

Zhang and Yang (2011) 

   
Nitrocompounds 

Chinese rye grass: 
maize (4:1) 

0,5,10,15 milimolar     79.4-98.5% 

1. Nitroethane 
 

0,5,10,15 milimolar  67, 75, 83% (mol/100 mol) 

2. 2-nitroethanol 
 

0,5,10,15 milimolar 80, 90, 62%  (mol/100 mol) 

3. 2-nitro-1-propanol 
 

0,5,10,15 milimolar 68, 68, 81% (mol/100 mol) 

    
In vivo studies 

   
van Zijderveld et al., (2011) 

 
  Nitrate source TMR (F:C 66:34) 21 g/kg DM 16% g/kg DM and GEI 

 
   Van Zijderverld et al., (2010) 

   1. nitrate Maize silage 2.6% of DM 32% L/d 

2. Sulphate Maize silage 2.6% of DM 16% L/d 

3. Nitrate and sulphate Maize silage 2.6% of DM 47% L/d 

    
Nolan et al., (2010) 

   
1. nitrates chaffed oaten hay 4% DM of KNO3     23% L/kg DM intake 

TMR = total mixed ration; F: C = forage to conc ratio 

 

As seen in Table 8, animal based studies are few. For example, in a study by Van 

Zijderveld et al., (2010), supplementation of lambs with either a nitrate, sulphate or a 

combination of the two salts at 2.6% DM resulted in methane reductions (L/d) of 32, 16 

and 47% respectively. At a ruminal microbe level, it was observed that methanogen 

numbers were greatly reduced with supplementation. In a more recent study, Nolan et 
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al., (2010) supplemented sheep with 4% DM of potassium nitrate (KNO3) and reported a 

23% reduction in methane output when expressed as L/kg DM intake. In all the studies 

with nitrate supplementation, DM intake was unaffected by supplementation which is a 

good attribute for a supplement.   

Nitro-compounds have also been assessed as potential supplements for methane 

mitigation. Studies by Bozic et al., (2009), Anderson et al., (2008) and Zhang and Yang, 

(2011) demonstrated the potential of the nitro-compounds, nitro-ethane, 2-nitroethanol 

and 2-nitro-1-propanol to reduce methane production by 80% in vitro with no adverse 

effects on digestibility. However, the nitro-compounds are yet to be tested in vivo for 

their ability to reduce methane output. 

Persistence of the effect of nitrates, nitro-compounds and sulphates on methane 

production still remains to be tested. Only one study by Van Zijderveld et al., (2011) 

assessed the persistence of nitrate supplementation on methane production in dairy 

cows. Cows were supplemented with 21 g of nitrate/kg of DM and methane production 

was reduced by 16% when expressed as either g/kg DM intake or per unit of gross energy, 

and effects persisted for a total of 89 days without negative effects on milk production. 

2.6.2 Limitations of nitrate, nitro-compounds and sulphate supplementation 

Nitrates and sulphates in ruminant diets need gradual introduction for animals to get 

adapted. According to Van-Zijderveld et al., (2010), if animals are un-adapted, 

consumption of nitrates results in accumulation of nitrites in the rumen. The nitrites are 

intermediate products which get absorbed across the ruminal wall and result in the 

formation of methemoglobinemia, a condition which restricts oxygen supply to the 

tissues and in severe cases can be fatal (Nolan et al., 2010). However from the previous 
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studies conducted, it can be established that nitrates do not compromise DM intake and 

do not present a health risk if managed correctly.  

2.7 Use of secondary plant metabolites to mitigate methane production in ruminants  

The interest in plant and secondary plant metabolites such as tannins, saponins and 

essential oils has grown following the ban of antibiotic as additives in animal production 

within the European Union (Jouany and Morgavi, 2007).  In 2006, a large EU sponsored 

project called ‘RUMEN UP’ examined plant materials and assessed how they can be used 

to mitigate methane production in ruminants. The project was helpful in identifying plant 

species that have the potential to be used as dietary supplements in ruminants (Wallace, 

2004) and brought to light several ways by which dietary manipulation and improved 

productivity can benefit both the animals and the environment. Fig 3 explains how dietary 

manipulation and improved productivity can benefit both the animals and the 

environment. 
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Figure 3. Beneficial effects of dietary manipulation on ruminant performance, welfare and the 

environment (Wallace, 2004). 
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As seen in Fig 3, increased use of natural products like essential oils (Jouany and Morgavi, 

2007) saponins (Holtshausen et al., 2009), may result in less chemicals and antibiotics 

entering the food chain and there will be increased diversity of plants. Feed supplements 

such as essential oils and yeasts can increase ruminal pH preventing sharp declines in pH 

which occur due to sudden introduction of high amounts of concentrates thus help to 

prevent bloat and subsequent laminitis which compromises animal welfare (Wallace, 

2004). Saponins and essential oils may reduce nitrogen and methane losses to the 

environment causing less environmental pollution (Jouany and Morgav, 2007). 

2.7.1 Use of essential oils to mitigate methane production  

Essential oils are secondary plant metabolites which reduce methane production by their 

toxic effect on ruminal bacteria, but optimal doses vary from compound to compound. 

Some authors (Jouany and Morgavi, 2007) have indicated optimal doses are influenced by 

the pH and diet type. There is however a considerable number of essential oils and very 

little is known about how they work. A study by Agarwal et al., (2009) showed that some 

essential oils like peppermint exert their effect by inhibiting ruminal bacteria, fungal 

organisms and methanogens.  

Currently there are very few studies that have examined the effects of essential oils on 

methane production and most studies have been in vitro. A review by Benchaar and 

Greathead (2011) and a study by Agarwal et al., (2009) indicated that  the challenge still 

remains of identifying essential oils that are able to modify rumen fermentation towards 

less methane output without compromising feed digestibility and animal productivity. A 

study by Macheboeuf et al., (2008) showed that the effects on methane output depend 

on the type of essential oil and dosage used. For example, Macheboeuf et al., (2008) 

observed 98% methane inhibition with carvacrol supplemented at 400 mg/40 ml of 
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rumen fluid. Agarwal et al., (2009) observed 20, 46 and 76% methane inhibition when 

peppermint Mentha piperita was supplemented at 0.3, 1 and 2 µl /ml of incubation media 

respectively. On the other hand, supplementation of an essential oil, Crina ruminants® at 

1 g/d had no effect on daily methane emissions of beef heifers (Beauchemin and McGinn, 

2006a) probably due to the low dose given. This is the major limitation in the use of 

essential oils as the effective dosage for methane mitigation varies from oil to oil and is 

also greatly influenced by the environmental conditions under which the plants are 

grown. Another limitation is the negative effect on fibre digestibility; for example a study 

by Beauchemin and McGinn, (2006a) in which only 1 g/d/heifer of Crina ruminants® 

essential oil was used reported that DM digestibility was reduced by 7%. 

2.7.2 Use of saponins to mitigate methane production 

Saponins are glycosides which have a sugar moiety linked to either triterpene (30 carbon 

atoms) or a steroidal aglycone (like cholesterol and phytosterols) (Wallace, 2004). 

Saponins exert their effects by being toxic to protozoa (Mao et al., 2010; Hart et al., 

2008). Some authors have suggested that saponins may also have a direct effect on the 

methanogens (Patra and Saxena, 2010). Effects of saponins on methane production have 

been variable (Xu et al., 2010), being dependent on the type of basal diet, with positive 

results exerted when high concentrate based diets have been used (Patra and Saxena, 

2010). Like other supplements, effects also depend on the concentration of the saponins 

(Hart et al., 2008). Effects are also optimal when ruminal pH is around 5.5 (Jouany and 

Morgavi, 2007). Other studies (Benchaar et al., 2008) have suggested that high dosage 

levels are needed to have an effect on protozoa.  

Some studies (Holtshausen et al., 2009) have observed that a reduction in methane 

production due to saponins was due to the negative effects of saponins on NDF 

digestibility. For example, in a study by Holtshausen et al., (2009) Yucca schidigera and 
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Quillaja saponaria saponins supplemented to dairy cows at increasing doses of 15, 30 and 

45 g/kg DM reduced NDF digestibility in a dose dependant manner which correlated with 

the reduction in methane production, and when a lower dosage of 10 g/kg DM was used, 

whole tract digestibility and methane production were unaffected by supplementation.  

Intra ruminal infusions of Yucca schidigera and Quillaja saponaria given at 14 ml twice 

daily in adult sheep failed to reduce methane production (Pen et al., 2007). Xu et al., 

(2010) also studied the effects of Yucca schidigera saponins on a wide range of basal diets 

ranging from forage only to high concentrate diets in a 24 h in vitro study, and reported 

that the saponin lowered methane production in all the basal diets without any adverse 

effects on fibre digestibility, although further studies with animals were required. The 

study contradicts the assertion by Patra and Saxena, (2010) that saponins lower methane 

production only when used on high concentrate diets. On a 40% concentrate diet tea 

saponins supplementation at 3 g/d were able to reduce methane production by 28% (L/kg 

DM intake) in adult sheep (Mao et al., 2010).  

2.7.3 Use of tannins to mitigate methane production 

Tannins are water soluble polyphenolic polymers of two types, hydrolysable and 

condensed (Rochfort et al., 2008; Patra and Saxena, 2010). Tannins inhibit growth of 

methanogens and reduce protozoa numbers (Tan et al., 2011). Supplementation of 

tannins to ruminant diets should only be at 5% of the total diet as high inclusion rates 

negatively affect intake and digestion (Patra and Saxena, 2010). Two benefits of tannins 

are that they reduce incidence of bloat when certain legumes such as Lucerne and white 

clover are consumed, by forming complexes with dietary proteins and thus protect 

proteins from microbial ruminal degradation and so increase the flow of proteins to the 

duodenum which is beneficial to animals particularly high producing dairy cows (Patra 

and Saxena, 2010; Sinclair et al., 2009).  
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Previous studies have shown that effective tannin concentrations needed to reduce 

methane production vary with the basal diet used. A study by DeOliveira et al., (2007) 

found that sorghum containing 0.2 g/kg DM of condensed tannins when supplemented 

with concentrates reduced methane emissions in beef cattle while a higher concentration 

of 1 g/kg DM of condensed tannins when supplemented with urea was not effective. 

Supplementation of quebracho (91% tannin level) was not effective in reducing methane 

output in the study of Beauchemin et al., (2007a). Under grazing conditions, Lotus 

corniculatus and Sulla and the herb Chicory are reported to be effective in reducing 

methane emissions (Ramírez-Restrepo and Barry, 2005). Extracts of condessed tannins 

and saponins are commercially available but are still very expensive (Eckard et al., 2010) 

which may limit uptake by farmers. The major concern with tannins and saponin 

supplementation is the adaptability of the ruminal organisms to the compounds, although 

this has never been tested in vivo (Hart et al., 2008; Patra and Saxena, 2010).  

2.8 Use of ionophores to mitigate methane production 

Ionophores have previously been used in dairy animals in the European Union as feed 

additives to improve nitrogen and energy efficiency (Martineau et al., 2007). The 

common ionophores used were monensin and lasalocid. In 2006, under regulation EC 

1831/2003, the European Union affected a ban on ionophores and to date, ionophores 

are not used as feed additives (Jouany and Morgav, 2007). According to RUMA 

(Responsible Use of Medicines in Agriculture, 2005) guidelines, in the UK, monensin has 

been licensed to be used in growing cattle but not in milking and dry cows. However, in 

most countries including USA, Australia and Canada, some ionophores have been 

approved for use in food animals (Odongo et al., 2007). Canada and USA approved 

monensin for use in lactating dairy cows for the purpose of improving milk production 

and controlling subclinical ketosis (Erasmus et al., 2008).  
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2.8.1 Mode of action of ionophores 

Ionophores are believed to produce positive effects to both the animals and the 

environment by altering rumen fermentation (Guan et al., 2006). Of particular 

importance is their effect on energy balance which subsequently affects methane 

production (RUMA, 2005). The mode of action of ionophores like monensin is that they 

promote proliferation of gram negative bacteria in the rumen by altering the ion 

transport system across the membrane of gram positive bacteria which then result in cell 

death (Odongo et al., 2007). According to Ipharraguerre and Clark, (2003), gram negative 

bacteria eg Selemonas, acetic acid bacteria and E coli, result in greater production of 

propionate and succinate thus helping to reduce methane production, with the gained 

energy being channelled to increase productivity. Furthermore lactate producing bacteria 

like Streptococcus bovis are very sensitive to ionophores, so in some cases the ionophores 

are used in preventing lactic acidosis (Odongo et al., 2007).  

2.8.3 Effects of monensin supplementation on methane production and productivity 

Monensin has been widely used as a feed additive to improve feed conversion efficiency 

and to control bloat (Grainger et al., 2008) but very few studies have focused specifically 

on the use of monensin to mitigate methane production (Grainger et al., 2010b). To date 

effects of monensin on animal performance are not clearly established. For example, 

contrary to the expectations of improving milk production in dairy animals, a number of 

studies (Grainger et al., 2008; Grainger et al., 2010b) have reported a lack of effect. When 

supplied at the recommended supplementary levels of 24 mg/kg DM intake and above 

(Alzahal et al., 2008) milk production did not improve. Only a few studies Arieli et al., 

(2008) and Phipps et al., (2000) have shown that milk production is improved when cows 
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are supplemented with monensin in early lactation. The disparities in results led Erasmus 

et al., (2008) to suggest that effects of monensin on milk production may be diet related.  

Results of effects of monensin on methane production are also conflicting. McGinn et al., 

(2004) and Odongo et al., (2007) reported a 7% reduction in methane output (g/d) and 

persistent effects after 6 months of supplementation. In another study, Guan et al., 

(2006) supplemented steers with either monensin at 33 mg/kg DM or by a two week 

rotation of two ionophores, monensin and lasalocid with lasalocid supplied at 36 mg/kg 

DM, and observed that methane output was reduced by 25% (L/kg DM intake and % GE 

intake) at 2 and 4 weeks of supplementation, but effects were not sustained, and by 8 

weeks of supplementation, methane production was unaffected. From this finding Guan 

et al., (2006) established that effects of ionophores on methane production may be 

temporal. On the other hand, Grainger et al., (2010b) supplemented grazing cows with a 

high dosage of monensin at the rate of 471 mg/cow/d added to the concentrate portion 

of the diet and reported no effect on methane production, milk production or DM intake. 

The persistence of effects was tested and results after 12 weeks of supplementation 

remained unchanged. According to Grainger et al., (2010b), the result could have been 

influenced by the way monensin was delivered which was by top dressing of the basal 

diet causing a single dose supply, while most previous studies supplied monensin as a 

rumen controlled release capsule. Grainger et al., (2010b) therefore concluded that 

monensin supplementation cannot be used as a strategy for reducing methane 

production in grazing cows. In another grazing trial by Grainger et al., (2008), cows were 

given a monensin releasing capsule with a release rate of 240 mg/d or 14.5 mg/kg DM 

intake, and it was observed that methane production and milk production were 

unchanged with monensin supplementation.  
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2.9 Grazing ruminants to reduce methane output and impact on productivity 

Allowing ruminants to graze may improve their welfare (Charlton et al., 2011) and 

pastures are considered a cheap source of nutrients (Bargo et al., 2003). Currently there 

has been renewed interest to understand effects of grazing on productivity and methane 

production. However animals on pasture tend to have low productivity and according to 

Bargo et al., (2003), the low productivity of ruminants on pasture is attributed to the low 

DM intake which cannot support high yielding cows. The management practices adopted 

by farmers may also have an impact on milk yield and possibly on methane output 

(Hindrichsen et al., 2006). One factor that may influence yield is the pasture allowance. 

Table 9 shows results of a study by O’Neill et al., (2012) which examined the effect of 

grazing cows on pastures with varying pasture allowance on productivity and methane 

production.  

Table 9. Effect of pasture allowance with or without supplementation on milk yield  
and methane production (O’Neal et al., 2012) 

       Low PA + PMR Low PA    High PA 

Pasture allowance, kg DM/cow                  15 15 19 

Grass DM intake, kg/d 12.5a 13.9b 14.9b 

PMR DM intake, kg/d                  3.9 0 0 

Total DM intake, kg/d 16.5a 13.9b 14.9b 

Milk yield, kg/d 17a 13.1b 14.6c 

CH4 output, g/d                 406a 349b 384c 

CH4 output, g/kg DM intake                   25 25 26 

CH4 output, g/kg milk yield                  23.9 24.9 24.5 
a,b Within a row, means with different superscripts significantly differ 
Low PA= low pasture allowance, High PA= high pasture allowance, PMR= Partial mixed ration 
 

As shown in Table 9, cows were allocated to grazing fields that had either low or high 

pasture allowance of 15 and 19 kg DM/cow respectively.  Cows on low pasture allowance 

were grazed with or without 4 kg/cow/d of partial mixed ration (PMR), while those on 

high pasture allowance were un-supplemented. Milk yield and daily methane output (g/d) 

increased with an increase in total DM intake. However when methane output was 
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expressed as g/kg DM intake and g/kg milk yield, no differences were found among the 

three treatments. Pasture allowance had no effect on methane output. What was 

established by O’Neill et al., (2012) was that pasture allowance with or without PMR 

supplementation had no effect on methane production when expressed as unit of DM 

intake or g/kg milk yield.  

Another study by O’Neill et al., (2011) compared the productivity of cows under two 

management systems; a grazing system and total TMR based system. One group of cows 

was kept indoors and had access to TMR throughout the study period while the other was 

grazed on pastures on a rotational basis with a pre-grazing herbage mass of 1400 kg 

DM/ha. The TMR fed cows performed better in terms of DM intakes (19.7 vs. 14.3 

kg/cow/d), and milk yields (29.5 vs. 21.1 kg/cow/d). Subsequently TMR fed cows 

produced higher methane emissions (397 vs. 251 g/d and 20.3 vs. 18.1 g/kg DM intake 

and 6.5 vs. 5.7 % GE intake) regardless of the unit of expression when compared to the 

grass fed group. The methane results further emphasis the point that methane output is 

driven by DM intake, as increasing DM intakes increases intake of fermentable material 

which result in increased volumes of methane output. Due to the difference in DM intake 

between treatments, it is not possible to determine whether grass has an inherent ability 

to reduce methane production. In the study by O’Neill et al., (2011), the crude protein 

content of grass was 240 g/kg DM while that of TMR was 160 g/kg DM and OM 

digestibility was also 98 g/kg higher in the grass than in the TMR which could have 

contributed to differences in methane production.  

2.9.1 Influence of herbage mass on methane production 

Good grazing management can help to mitigate methane production. One factor is the 

herbage mass. A study by Wims et al., (2010) examined the impact of varying herbage 
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mass on productivity and methane output in mid lactation dairy cows. Cows were 

allocated to two treatments of either low herbage mass of 1000 kg DM/ha or high 

herbage mass of 2 200 kg DM/ha.  

              Table 10. Effects of varying herbage mass on DM intake, milk yield  
             and methane production in dairy cows (Wims et al., 2010) 

  Low High 

Herbage mass, kg DM/ha 1000 2200 

CP levels, g/kg dry matter 275 211 

NDF levels, g/kg dry matter 479 497 

Dry matter intake, kg/d 14.6 14.6 

milk yield, kg/cow/d 18 17 

CH4  output, g/d 278a 320b 

CH4  output, g/kg DM intake 19.2a 22.3b 

CH4  output, g/kg milk yield 16.4a 19.9b 

CH4  output, % GE intake 6.4a 7.4b 

                       a,b within a row, means with different superscripts significantly differ 

From Table 10, it is clear that DM intake of the cows was unaffected by the herbage mass. 

Methane output regardless of the unit of expression was lower on the low herbage mass 

principally because the grass was of higher quality when compared to the high herbage 

mass. This is evidenced by the higher CP levels (275 g/kg DM) and low NDF levels 

associated with the low herbage mass when compared to 211 g/kg DM CP levels 

associated with the high herbage mass.  According to Wims et al., (2010), high grazing 

intensity results in low herbage mass because grass tend to be less mature and more 

digestible and decreases methane production.   

2.9.2 Increasing sugar content of grass and the impact on productivity and methane 

production 

Research involving ways of improving the water soluble carbohydrate content of grass is 

receiving a lot of attention due to the potential positive impact it can have on reducing N 

losses into the environment (Ellis et al., 2012). Miller et al., (2001) demonstrated that 

feeding cows a high water soluble (WSC) grass improved utilisation of protein in the 
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rumen and consequently resulted in less N being released into the environment, and milk 

yield also increased by 2.7 kg/cow/d. Lee et al., (2001) examined the impact of increasing 

WSC content on live weight gain in growing lambs and observed that lambs that were 

grazed on pastures with 33 g/kg DM higher WSC content gained an average of 34 g/d 

extra weight. In another study, Trevaskis et al., (2004) allocated cows to two grazing 

times, in the morning or in the afternoon to optimise WSC concentration. The afternoon 

pastures were 52 g/kg DM higher in WSC concentrations than the morning pastures. 

Cows that grazed in the afternoon produced 2.1 kg/d more milk and had a higher milk 

protein yield and higher live weight change when compared to those that were grazed in 

the morning (Trevaskis et al., 2004). 

The impact of WSC on methane production is unclear. Most studies have focused on 

improving WSC content of grasses with the subsequent aim of improving intake and 

productivity and reducing N losses into the environment. Taweel et al., (2005) 

hypothesised that an increase in WSC content of grass has the potential to shift 

fermentation patterns in the rumen towards propionate production and thus would 

result in less methane production. Ellis et al., (2012) used a mechanistic model to predict 

that CH4 production tended to increase with an increase in WSC levels in grass. However 

when results were expressed as a unit of milk yield, variable results were observed and in 

some cases, reductions in methane output were observed. According to Molle et al., 

(2008), the WSC content of grass is normally in the range 50-200 g/kg DM depending on 

species and variety. New breeding techniques can produce grass varieties with WSC 

contents of between 200–400 g/kg DM (Lee et al., 2001). Only a few previous studies 

have examined the effect of grazing ruminants on pastures containing high WSC 

concentrations on methane production and results are not conclusive. For example, in a 

study by Kim et al., (2011), growing lambs fed grass containing a high WSC content of 42 
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g/kg DM higher than the control produced 17% (L/kg DM) and 25% (L/kg live-weight gain) 

lower methane production when compared to those fed a control diet. Studies conducted 

in dairy cows showed that high WSC concentrations may not be effective in reducing 

methane production. For example, in a study by Staerfl et al., (2012), methane production 

expressed as g/d and g/kg DM intake did not differ when two groups of dairy cows fed 

grass that differed in WSC concentrations by 90 g/kg DM.  

2.9.3 Grazing and the impact on the fatty acid profile of cow’s milk 

It is widely known that pasture grass contains high levels of unsaturated fatty acid 

(PUFAs), particularly α-linolenic acid although the composition varies with harvest date 

(Atti et al., 2006). According to Clapham et al., (2005), the diet of ruminants is reflected in 

the fatty acid profile of the product so the diet of ruminants can be manipulated to 

produce milk and meat which is healthier for human beings. Table 11 shows the 

variations in fatty acid profile of perennial ryegrass at 3 different harvest dates. 

Table 11. Concentration of fatty acids in perennial ryegrass at 3 harvest times (Clapham et al., 
2005) 

          mg/g of DM       

harvest  lauric myristic  Palmitic palmitoleic stearic  oleic  
  

linoleic  α-linolenic  Total 

                    

 6 weeks 0.027 0.62 6.99 0.94 0.30 1.46 6.76 34.7 51.8 

 9 weeks 0.046 0.62 6.35 0.74 0.32 1.01 5.74 31.5 46.3 

12 weeks 0.072 0.61 5.91 0.56 0.28 0.71 5.47 26.8 40.5 

Harvest dates were calculated from the day of seeding  

As can be seen from Table 11, α-linoleic acid contributes on average 60% of the total fatty 

acids in ryegrass. It is clear that FA composition decreases with increasing maturity of the 

grass. For example, the α-linolenic acid content was highest at 6 weeks after seeding with 

34.7 mg/g DM, reduced to 31 mg/g DM at 9 weeks and reduced further to 26.8 mg/g DM 

by 12 weeks. When ruminants have access to fresh grass, there is increased availability of 
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polyunsaturated fatty acids from the grass that make up the FA composition of milk 

(Bauman and Griinari, 2003). For example, a study by Renna et al., (2012) examined the 

milk FA profile of goats when they were abruptly moved from an indoor hay and 

concentrate based diet to a total grazing system where they had access to fresh grass 

only. The α-linolenic acid composition in hay was 33% of the total FAs while the 

concentrate was composed of 57% linoleic acid FA and the fresh grass had 63% of α-

linolenic acid. Grazing caused the short and medium chain fatty acids in milk to decrease 

in concentration by 17 and 33% respectively while C18:2 cis-9, trans-11, C18:2 trans-7, cis-9 

and C18:2 trans-8, cis-10 CLA increased by an average of 260% and α-linolenic acid 

concentration increased by 93%. In another study by Atti et al., (2006), cows that were 

grazed on either green barley grass or rye grass were compared to those confined to a 

feedlot. The milk fatty acid profile of the three groups was such that no change was 

observed in the short chain fatty acid profile (C4:0 to C10:0). The medium chain fatty acid 

C12:0 and C14:0 concentrations were higher in the feedlot group when compared to 

concentrations in those that were grazed. The long chain fatty acids C18:0, CLA’s and α-

linolenic acid were increased in the grazing groups when compared to the feedlot group. 

The cis-9, trans-11 C18:2 content was 2.4 g/kg in the feedlot group compared to 7.3 and 

10.3 g/kg in the two grazing groups, while α-linolenic acid concentrations were increased 

from 2.7 g/kg in the feedlot cattle to 4.7 and 4.4 g/kg in the grazing groups. Fig 4 shows 

the metabolic pathways of the C18 fatty acids in the rumen. Unsaturated fatty acids in 

grass undergo extensive hydrogenation in the rumen to form C18 FAs and their 

intermediate products (Gomez-Cortes et al., 2009). The conjugated linoleic acids are 

transported to the mammary gland where they inhibit de novo synthesis of short and 

medium chain fatty acids, C8:0 to C16:0 (Bauman and Griinari 2003). 
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Figure 4. Impact of diet on milk fatty acid profiles (Collomb et al., 2006) 

According to Kay et al., (2004), concentrate diets and plant oils such as sunflower oil that 

have high concentrations of  linoleic acids produce cis-9, trans-11 CLA, trans-10, cis-12 

CLA and vaccenic acid as intermediate products of ruminal bio-hydrogenation while bio-

hydrogenation of α-linolenic acid from pasture produces vaccenic acid as the main 

product. The important source of cis-9, trans-11 CLA in grazing cows is via desaturation of 

vaccenic acid in the mammary gland through the action of Δ9 desaturase. 

2.10 Other methane mitigation measures that can be applied at farm level 

Other mitigation measures that can be applied on a dairy farm in order to reduce 

methane production include; genetic selection for high milk production, improved fertility 

rates and health, lower culling rates, reduced age at first calving  which can subsequently 
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reduce on the replacement rates and eventually lead to reduced methane production 

(Wall and Moran, 2010; Knapp et al., 2014). According to Knapp et al., (2014), within the 

United Kingdom, replacement stocks account for about 25% of the whole herd.  

Therefore, reductions in culling from 35% to 30%, coupled with reduction in age at first 

calving from 26 to 24 month has potential to reduce herd methane emissions by 4.6%. 

Similarly, Wall et al., (2010) using a prediction model showed that increasing number of 

lactations in a dairy herd has potential to reduce methane emissions by 4.4%. 

Beauchemin et al., (2011) did a whole life cycle assessment study using a whole farm 

model. The study was conducted over a period of 8 yrs. The impact of increased longevity 

and improved reproductive performance on greenhouse gas emissions was assessed. 

Increasing longevity of cow herds by a year and increasing calf survival rates from 85 to 

90%, increased CH4 emissions because more calves were born and an increase in weaning 

rates also increased CH4 emissions, but in both cases GHG intensity was lowered by 1% 

and 4% respectively.  Another study by Vellinga et al., (2011) using a dairy farm simulation 

model, analysed data from 70 dairy farmers in order to assess impact of various farm 

mitigation strategies on methane production. It was observed that reducing the dairy cow 

replacement rate by 5 to 9% reduced GHG emissions by 20-30 g CO2 per kg of milk.  

Increasing heat detection rates among dairy cows can also reduce methane emissions at 

farm level. A Defra study (Chadwick et al., 2007) on the implications of mitigation 

measures on long term national methane emissions highlighted a number of stratergies 

using a model and reported that among other measures, an increase in heat detection 

rates was able to reduce methane emissions by 7%. Similarly, a simulation study by Del 

Prado et al., (2010), observed that increased cattle fertility rates through genetic 

improvement was able to reduce GHG emissions per litre of milk by 5%. Garnsworthy 
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(2004) using a model also predicted that when dairy cow fertility rates are improved to 

1995 levels, methane production would reduce by 11%. 

It may also possible to select for animals that have a high feed efficiency. A review study 

by Waghorn and Hegarty, (2011) highlighted the importance of improving feed 

conversion efficiency as it can lower total herd methane emissions as less feed is used to 

produce animal products and thus less amount of methane per animal product.  

2.11 Measurement of methane emissions from ruminants 

Approximately 87% of rumen methane emitted by ruminants is belched out, while 13% 

comes through the hindgut (Munoz et al., 2012). To reduce methane emissions from 

ruminants, it is important to accurately measure methane production under different 

management strategies. Two widely used methods of estimating methane output from 

ruminants are respiratory chambers and sulphur hexafluoride (SF6) tracer techniques 

(Boadi and Whittenberg, 2002). 

2.11.1 Respiratory chambers 

Respiratory chambers measure the rate of methane emission from the animal which 

comes from both rumen and hind gut fermentation. The chamber technique has been 

the common technique to measure methane missions (Boadi et al., 2002).  According to 

Boadi et al., (2002), animals have to be confined and the eructated gas and the gas 

produced by hindgut fermentation quantified and an indirect method is used to 

determine methane production. The respiratory chamber technique has its limitations. It 

requires large capital costs to set up and maintain and also requires prior training of the 

animals (Bhatta et al., 2007). The major limitations with the chamber technique are that 

for measurements to be taken, animal movements are restricted as they are put in a 
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confined environment which tends to affect feed intake and methane output 

(Beauchemin and McGinn, 2005; Johnson and Johnson, 1995). Beauchemin and McGinn, 

(2005) observed reductions of 22 and 31% in DM intake during the period feedlot cattle 

were in the chambers. Losses were attributed to the stress associated with sampling and 

the decreased energy expenditure. Beacheuchemin and McGinn, (2006) also observed 

15-25% reductions in DM intake with beef cattle when using respiratory chambers. 

2.11.2 The SF6 tracer technique  

The SF6 tracer technique (Johnson et al., 1994; McGinn et al., 2006) measures respired 

and eructated methane but does not account for the losses through the rectum (Munoz 

et al., 2012). The method involves placing a small permeation tube of known permeation 

rate of SF6 in the rumen. Gas samples are then collected through a capillary tube 

connected to a collection canister on the neck or back of the animal and the methane 

levels are calculated using the known rate of SF6 release (Johnson and Johnson, 1995). 

The technique allows animals to be housed or grazing in their normal environment and a 

large number of animals can be sampled at the same time (Boadi and Whittenberg, 

2002). The SF6 tracer technique is a relatively new procedure which has advantages when 

compared to the respiratory chamber technique, including being cheaper and easier to 

use. The SF6 tracer technique was validated first by Johnson et al., (1994) and later by 

Boadi et al., (2002). Boadi et al., (2002) reported no difference in mean daily methane 

production (L/d) when the SF6 tracer technique and the respiratory chamber technique 

were both tested on beef heifers.  

Previous studies have indicated that the SF6 tracer technique may have some limitations. 

A study by Munoz et al., (2012) compared the SF6 tracer and the respiratory chamber 

techniques by measuring methane output of cows using both techniques simultaneously 
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and found that methane output was similar with both techniques. However, the 

correlation of the results obtained in the two techniques varied with the units of 

expression of methane output. When methane output was expressed as g/d there was a 

correlation of 0.69 and when expressed as g/kg DM intake, the correlation was only 0.64. 

A strong correlation of 0.88 was obtained when results were expressed as g/kg milk yield. 

According to Munoz et al., (2012), the variation in results was as a result of the reduction 

in the release rate of the SF6 in the rumen over time. In the study, the SF6 permeation 

tubes were recovered from the rumen of the cows and the post-experimental released 

rates were determined and compared with the pre-experimental SF6 release rate. Results 

showed that release rates decreased to as low as 66% of the initial release rates. Due to 

this, calculated methane output increased with time. Pinares-Patino et al., (2011) also 

reported variation in methane output results when they compared the SF6 tracer 

technique to the respiratory chamber technique. Emission rates of the SF6 permeation 

tubes also decreased with time and resulted in overestimation of methane output 

results. 

The other limitation with the SF6 tracer technique is that SF6 is released intermittently in 

the breath of an animal, and confined animals are the most affected (Pinares-Patino et 

al., (2011). The variations in SF6 are noticed when hourly sampling of gas is done and less 

noticed when sampling is done in periods of 24 h. Finally, the SF6 technique does not 

measure post-ruminal methane production which the chamber technique accounts for. 

McGinn et al. (2006) compared the chamber and SF6 techniques on cattle kept in similar 

environments and found that they produced comparable results, however the SF6 

technique was found to underestimate methane emissions by 4%, thought to be the 

result of post ruminal fermentation.  
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2.10.3 Indirect measurement of methane production from milk fatty acid profiles 

Several previous studies have attempted to establish a relationship between 

concentrations of FAs in milk and amounts of methane released by cows with the 

objective of being able to use milk FA concentration to predict methane output. Dijkstra 

et al., (2011) observed that milk FAs are potential indicators of amounts of methane 

produced by ruminants. Chilliard et al., (2009) produced predictive regression equations 

which can be used to determine amounts of methane output from FA concentrations in 

milk. The predictive equations failed to address concerns where supplementation 

changes milk FA profiles without any changes in methane output. Dijkstra et al., (2011) 

used data from 3 experiments and examined the relationship between milk FA 

concentrations with amounts of methane released. In their studies, four fatty acids, C8:0, 

C10:0, C15:0 and C16:0 were found to have positive correlation with methane output. In 

another study (Chilliard et al., 2009), the FAs C8:0 and C16:0 showed positive correlation 

with methane production with R2 values of 0.81 and 0.82 respectively, while the FA C18:0 

showed negative correlation with methane production and had an R2 value of 0.88. The 

equation by Chilliard et al., (2009) is as follows: 

CH4 output (g/d) = –100.8 (±22.0) × milk trans-16+cis-14 C18:1 (% of total FA) + 6.78 (±1.75) × milk 

C16:0 (% of total FA) + 13.1 (±3.86) × forage intake (kg of DM/d) – 80.1 (±60.9) (Chilliard et al., 2009) 

 

Mohammed et al., (2011) supplemented dairy cows with crushed oil seeds of sunflower, 

flax or canola at 3.3% DM and used the feed intake data, milk FA concentrations and 

rumen fermentation parameters to formulate predictive equation for determining 

methane production. The best regression equation (R2=0.90) that was produced 

incorporated concentrations of cis-9 C17:1 and iso-C16:0 and the total entodiniomorphs 

count. The equation was  
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CH4 (g/d) = −910.8 (±156.7) × milk cis-9-C17:1 + 331.2 (±88.8) × milk C16:0 iso + 0.0001 (±0.00) × total 

entodiniomorphs count + 242.5 (±39.7). 

A comparison of equations predicted by Chilliard et al., (2009) and Mohammed et al., 

(2011) show that both recognised concentrations of the FA C16:0 to be correlated to daily 

methane production. The notable difference was that while Chilliard et al., (2009) used 

forage DM intake, whereas et al., (2011) used total entodiniomorphs count as part of the 

equation. Mohammed et al., (2011) was of the view that milk FAs concentrations cannot 

be used singly to determine methane production. Major challenge of the predictive 

equations is the lack applicability of the equations across a range of dietary conditions. 

2.10.4 Summary of literature review 

Methane emissions from ruminant animals are dependent on the quantities of feed 

consumed and the composition of the diet. Dietary manipulation of feed is therefore one 

of the most promising ways of reducing emissions and a number mitigation measures 

have been reviewed. From previous studies, oil supplementation and increasing 

concentrate levels have shown great potential to reduce methane emissions while having 

a positive impact on productivity which is desirable. Additionally the inclusion of grass 

which is high in WSC and α-linolenic acid offers the potential to reduce methane 

production although few studies have been reported in this area. 

2.10.5 Hypothesis and Objectives of the current project 

The hypothesis to be tested is that manipulation of the ruminant diet will result in 

reductions in methane emissions and improvement in animal performance.  The aims 

and objectives of the study are to determine the effects of manipulating the diet 

including altering the concentrate starch levels, different starch sources, 

supplementation with oils and inclusion of grazed grass in the diet on rumen 
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fermentation and methane production in vitro and in vivo. The second objective was to 

determine the effect of feed manipulation on animal performance, milk fatty acid profile 

and to determine the relationship between fatty acid concentrations in milk with the 

amount of methane produced. 
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CHAPTER 3 General materials and methods 

3.1 Proximate analysis of samples 

3.1.1 Dry matter determination 

Dry matter content of the basal diets and faecal samples was determined according to 

Association of Official Analytical Chemists (AOAC, 2000; 934.01). Subsamples were 

accurately weighed and then dried in an oven (Binder, Cole-Palmers, UK) at 105°C 

overnight. Samples were cooled in a desiccator and reweighed. Dry matter (DM) was 

calculated as follows 

DM (g/kg) = (Weight (g) of sample after oven drying)    x 1000                      Equation 3.1.1 
                      (Weight (g) of sample before oven drying)                             
 

3.1.2 Organic matter and ash determination 

Samples of dried feed and faecal samples were analysed according to Association of 

Official Analytical Chemists (AOAC, 2000) for ash (942.05). Approximately 5 g of 

previously dried samples was accurately weighed into labelled porcelain crucibles. 

Samples were ashed in a muffle furnace (Carbolite® AAF 1100, Hope Valley, UK) for 4 h at 

550°C, cooled in a desiccator and reweighed. Ash content was calculated as: 

Ash content g/kg DM = {           Weight (g) of ash                            } X 1000       Equation 3.1.2 
                                          {Weight (g) of dry sample before ashing}               
                                                                                                

Organic matter (OM, g/kg DM) was calculated as 1000 minus ash content (g/kg DM).    

3.1.3 Crude protein (CP) determination 

Samples were analysed according to Association of Official Analytical Chemists (AOAC, 

2000) for crude protein (AOAC, 988.05) by use of a Leco FP 528 auto analyser (Leco Corp, 

Stockport, UK). Samples of dried feed were milled with a Delongh KG 79 (Freemans PLC, 
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Sheffield, UK) to pass through 1 mm mesh and 0.5 g of sample accurately weighed into 

aluminium foil and placed into the auto analyser. Crude protein (CP) levels in samples 

were calculated as 

 CP (g/kg DM) = Nitrogen content (g/kg DM) X 6.25                                           Equation 3.1.3   

3.1.4 Neutral detergent fibre determination 

Samples of dried feed were analysed for neutral detergent fibre (NDF) according to the 

method by Van Soest et al., (1991). The working standards were; neutral detergent 

solution prepared by adding 93 g of di-sodium ethylene diamine tetra acetic acid 

dehydrate (EDTA), 34 g sodium tetraborate (Na2B407.10H2O), 150 g sodium dodecyl 

suphate (SDS), 50 ml of tri-ethylene glycol, 22.8 g anhydrous disodium hydrogen 

phosphate (Na2HPO4)  to make 5 L solution with distilled water and pH adjusted to 

approximately 6.9-7.1. Alpha amylase solution was prepared by dissolving 2 g of α-

amylase (α-1, 4-glucan 4-glucanohydrolase, Enzyme # 3.2.1.1, ~80EU/mg) from Bacillus 

subtilis spp in 90 ml distilled water followed by addition of 10 ml of tri-ethylene glycol. To 

determine NDF, 0.4 to 0.6 g each of previously dried samples was accurately weighed into 

ceramic crucibles. Crucibles were tightly fitted onto the Fibertech® 1020 hot and 1021 cold 

extractor (Foss UK Ltd, Cheshire, UK) making sure valves were in the closed position. Cold 

neutral detergent reagent (25 ml) and a few drops of Octanol, reagent grade (Sigma 

Aldrich, Dorset, UK) were added to each of the samples. The heat control knobs were 

turned to full and as the samples started boiling, heat was reduced. Samples were 

digested for 30 min after which the heat was switched off. Another 25 ml of cold neutral 

detergent reagent and 2 ml of α-amylase solution were added and samples brought to the 

boil and digested for a further 30 min. Samples were then filtered and washed with 20-30 

ml of hot distilled water (80°C) to remove all neutral detergent reagent. A further 2 ml of 
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α-amylase solution and 25 ml of hot distilled water (80°C) were added to the samples and 

allowed to stand for 15 min before filtering and washing 3 times with hot distilled water. 

Crucibles were removed from the Fibertec® hot and cold extractor and dried overnight at 

105°C. Crucibles were then cooled in a desiccator and weighed. The samples were then 

ashed in a muffle furnace (Carbolite® AAF 1100, Hope Valley, UK) at 550 °C or 4 h, cooled 

and reweighed. The weight of NDF in the sample was calculated as;  

NDF (g/kg DM) = {Weight (g) of oven dried sample - Weight (g) of ash } X 1000         Equation 3.1.4                    
                                                                  {Weight (g) of sample}       
 
 

3.1.5 Determination of whole tract digestibility by the acid insoluble ash method  

Whole tract digestibility was determined according to the method described by Van 

Keulen and Young, (1977). Duplicate samples of 5 g of previously dried feed and faecal 

samples were weighed into ceramic crucibles. Samples were oven dried overnight at 

105°C, reweighed and ashed in a muffle furnace (Carbolite® AAF 1100, Hope Valley, UK) 

for 4h at 550°C, cooled and reweighed. The ash residue was transferred into kjeldahl 

digestion tubes (Foss Tecator Digestor Unit, Hilleroed, Denmark) and 100 ml of 2M 

hydrochloric acid (Fisher Scientific Ltd, Leicestershire, UK) was added. Samples were 

boiled at 150°C for 5min on the digester unit. After cooling, the hydrolysate was filtered 

(Whatman® No 41 filter paper, Fisher Scientific Ltd, Leicestershire, UK) and washed with 

hot distilled water. The filter papers with ash residues were transferred back into the 

crucibles and ashed for 4h at 550°C. After cooling the crucibles were re-weighed and acid 

insoluble ash (AIA) calculated as:  

% AIA = {Weight (g) of crucible +ash- Weight (g) of crucible}    X 100              Equation 3.1.5 
                                    {Weight (g) of dry sample} 
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Digestibility (g/kg) of the dry matter of feed was calculated as: 

 

Digestion coefficient of DM =1000-1000 X (g/kg DM indicator in feed )          Equation 3.1.6 
                                                                            (g/kg DM indicator in faecal) 
                     

3.2 Milk sample analysis 

3.2.1 Milk compositional analysis 

Milk compositional analysis (protein, fat and lactose contents) was conducted using a 

Milkoscan Minor 78110 auto analyser (Foss Electric, Denmark) that had been calibrated 

using standard samples (Eurofins®, Wolverhampton, UK). Milk samples were prepared for 

composition analysis by gently shaking the samples and warming to 40°C for 15 min in a 

water bath (Clifton® Nickel Electro Ltd, Weston super mare, UK) prior to analysis. 

3.2.2 Milk fatty acid profile determination 

Milk fatty acid profile determination was conducted by first separating lipids from the 

milk by centrifugation, followed by trans-methylation process which produced methyl 

esters for GC analysis. Separation of the lipid layers in milk samples was done using 

method B as described by Feng et al., (2004). Milk samples from individual cows were 

bulked by correcting for am and pm yields to produce 30 ml from individual cows and 

placed into 50ml conical plastic tubes. The bulked milk samples were centrifuged 

(Beckman, AvantiTM 30 Centrifuge, Harbor Boulevard, California) at 17,800 X g for 30 min 

at 4°C. After centrifugation, milk samples were separated into 3 layers i.e., the top lipid 

layer, middle protein layer and the bottom water layer. An aliquot about 1g of the top 

lipid layer was transferred into clear labelled 2.5 ml eppendorf tubes (Fisher Scientific Ltd, 
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Leicestershire, UK) for subsequent methylation. Methylation of lipids was done according 

to the procedure by Christie (1982) with a few modifications according to a method by 

Chouinard et al., (1999). Two standard reagents were used for this procedure; 

methylation reagent and termination reagent. Methylation reagent was prepared by 

mixing 1.75 ml of methanol (Sigma Aldrich, Dorset, UK) with 0.4 ml of 30% sodium 

methoxide solution (Sigma Aldrich, Dorset, UK). Termination reagent was prepared by 

weighing 1g of oxalic acid into a 50 ml reagent bottle and 30 ml of diethyl ether added to 

the bottle and shaken. Approximately 40 mg of previously extracted lipid sample was 

weighed into labelled 10 ml extraction tubes. To this 2 ml of hexane and 40 μl of methyl 

acetate (Sigma Aldrich, Dorset, UK) was added.  The tubes were vortexed (FB 15013 

Topmix®, Fisher Scientific Ltd, Leicestershire, UK) for 30 sec and 40 μl of methylation 

reagent was added to each tube. Tubes were then tightly capped and vortexed for 2 min. 

Samples were left to stand for a further 8 min. Termination reagent (60 μl) was added and 

the tubes vortexed for another 30 s. Approximately 200 mg of calcium chloride was 

added to each sample, the tubes votexed again and left to stand for 1 h. The samples 

were then centrifuged (Rotina 46R, Hettich Lab tech, Tuttlingen, Germany) at 2600 X g for 

30 min at 5°C. The solvent layer containing the methyl esters was transferred into labelled 

GC tubes and stored at -20°C for subsequent analysis.  

Fatty acid analysis was conducted using a gas chromatograph (HP 6890, Germany) fitted 

with an automatic sampler (Agilent 6890 injector), integrator and FID detector (Agilent 

Inc. Wilmington, DE),  equipped with a CP-Sil 88 fused silica capillary column 100 m x 0.25 

mm (i.d), 0.2 µm film thickness column (Varian Inc., Walnut Creek, CA). Peaks were 

routinely identified by comparison of retention times with FAME standards (Sigma-

Aldrich, Dorset, UK). Oven temperature was set at  a maximum of 225°C, starting with a 

temperature of 70°C held for 2 min, followed by an increase of 8°C/ min to 110°C, then 
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increased by 5°C/min to 170°C and finally increased at 4°C/min to 225°C which was 

maintained until all peaks were analysed.   

3.3 Determination of fatty acid content of TMR, grass and concentrate samples 

The diets used in the two cow based studies and the grass samples in study 2 (Chapters 5 

and 6) were analysed for fatty acid profiles by a method described by Sukhija and 

Palmquist (1988) using nonadecanoic (C19:0) as an internal standard. The standard 

solutions used to methylate the samples were 10% methanolic HCl (20 ml acetyl chloride/ 

100ml methanol) and 2 mg/ml nonadecanoic acid solution (200mg C19:0/100 ml heptane). 

Dried feed and grass samples (0.5 g each) were accurately weighed into duplicate into 15 

X 150 mm test tubes. The C19:0 standard solution (2 ml) was added to each sample using a 

pipette, then 3 ml of 10% methanolic HCl was added. The test tubes were tightly capped, 

vortexed and heated in a 90°C water bath (Clifton, Nickel ElectroTM, UK) for 2 h while 

shaking very 30 min.  After 2 h samples were left to cool and 1 ml heptane was added to 

each sample. Potassium carbonate (K2CO3, 10 ml) was slowly added to the test tubes and 

vortexed again. The test tubes were then centrifuged (Rotina 46R, Hettich Lab tech, 

Tuttlingen, Germany) for 5 min at 500 X g at 4°C to separate the layers. The organic 

solvent layers from each tube were transferred into 13 x 100 mm culture tubes, and 

approximately 1g of sodium sulphate and 0.5 g of activated charcoal added. The solvent 

layers were transferred into labelled GC tubes and stored at -20°C for subsequent GC 

analysis. The GC was programmed as described in section 3.2.2  

FA were quantified from the chromatograms by removing the standard (C19) 

True % fatty acid =      {Fatty acid % in data X100}                                              Equation 3.2.1                      
                                           {100 - % C19 in data} 
     

The FAs (mg per 100g of feed) was calculated as:  
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Weight of total FA (mg/100 g feed) = (100)     X (Weight C19 (mg)                   Equation 3.2.2 
                                                                  (%C19)       (Weight of sample) 
 

3.4 Determination of starch content in feed samples 

Starch content of feed samples was determined using a Megazyme starch assay kit 

(Megazyme International, Ireland). The starch kit had the following standards; 

Thermostable α-amylase, amyloglucosidase, GOPOD reagent buffer, GOPOD reagent 

enzymes, D-glucose standard solution and standardised regular maize starch control. 

Feed samples for analysis were milled to pass through a 0.5 mm screen (Endecotts Ltd, 

London, UK). Approximately 100 mg of sample was accurately weighed into glass test 

tubes (16 x 120 mm). The test tubes were tapped to ensure that the entire sample 

dropped to the bottom of the tube. To each sample, 0.2 ml of aqueous ethanol (80 % v/v) 

was added to wet the sample and aid dispersion. Samples were then stirred on a vortex 

mixer. Immediately 3 ml of thermostable α-amylase (contents of bottle 1 diluted 1:30 in 

Reagent 1; 100 mM sodium acetate buffer, pH 5.0) were added to the tubes and the 

samples boiled for 6 min. (with vigorous stirring after 2, 4 and 6 min). Amyloglucosidase 

(0.1 ml) was added, samples vortexed and incubated in a water bath (Clifton®, Nickel 

Electro, Manchester, UK) set at 50°C for 30 min. After incubation, the volume of the 

samples was adjusted to 10 ml with distilled water and the tubes centrifuged (Rotina 46R, 

Hettich, Tuttlingen, Germany) at 3,000 X g for 10 min. An aliquot of 1.0 ml from each 

sample was diluted to 10 ml with distilled water. Duplicate aliquots (0.1 ml) of the diluted 

solution were transferred to glass test tubes (16 x 100 mm) and 3.0 ml of GOPOD reagent 

added to the samples, D-glucose controls and reagent blanks. Tubes were then incubated 

in a water bath (Clifton®Nickel Electro, UK) at 50°C for 20 min. After 20 min, absorbance 

was read on a Jenway 6305 spectrophotometer (Bibby Scientific Ltd, Dunmow, UK) set at 

610 nm wavelength and readings compared against reagent blanks. The starch content of 
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the samples was generated by the Mega-Calc® automatically by supplying absorbance and 

dilution values in the spread sheet using the following formular 

Starch (g/kg) = (∆E x (F/W) x 90) x 100                                                                  Equation 3.4.1           

Starch (g/kg, dry weight basis) = starch (g/kg) x (100/100 – moisture content g/kg) 

                                                                                                                                      Equation 3.4.2 

Where ∆E =absorbance read against reagent blank, F = (µg glucose)/absorbance 100 µg 

glucose; W= weight (mg) of sample, 90= adjustment from free glucose to anhydrous 

glucose 

3.5 Determination of water soluble carbohydrate content of grass samples 

Water soluble carbohydrate concentration in grass samples was determined as described 

by Thomas (1977). The working standard solution was anthrone reagent which was 

prepared by slowly adding (with constant stirring) 380ml of concentrated sulphuric acid 

(Fisher Scientific®, Loughborough, UK) to 165 ml distilled water  followed by the addition 

of 0.5 g of thiourea and 0.5 g of anthrone.  The solution was stirred until dissolved and left 

to cool before storage in a tightly stoppered bottle in a fridge at 4°C and was used within 

four days of preparation. Glucose working standards were prepared by dissolving pure 

glucose in distilled water to provide four different concentrations of 0.04, 0.08, 0.16 and 

0.2 mg/ml glucose. Grass samples were collected by cutting the top 2/3 of the grazing 

horizon using a pair of scissors. A total of four am and four pm samples were collected. 

Samples were frozen and kept at -18°C until analysis. Before analysis, samples were freeze 

dried (Edwards 4K Modulyo freeze dryer, UK) at –50°C for 5 d and milled to pass through a 

1 mm sieve (Endecotts Ltd, London, UK). The samples were pooled according to the am 

and pm sampling times. The milled samples (0.2 g each) were accurately weighed into 250 
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ml Duran bottles and 200 ml of distilled water added to each sample bottle and capped. 

The contents were then shaken on a digital laboratory shaker (HS 501 digital, IKA® 

labortechnik, Staufen, Germany) for 1 h and filtered through a Whatman No 1 filter paper 

(Fisher Scientific Ltd, Loughborough, UK). Approximately 50 ml of extract from each 

sample was retained for the determination of water soluble carbohydrate concentration. 

From each sample 2 ml was pipetted into labelled 50 ml culture tubes and then stood in 

ice water for 10 min. Anthrone reagent (10 ml) was slowly added down the side of each 

tube making sure a layer was formed under each sample. The tubes were stoppered and 

vortexed. The tubes were heated for exactly 20 min using a hot plate (VWR® 375 Hot plate 

stirrer, Henry Troemner LLC, USA) set at 300°C. After 20 min of boiling, samples were 

removed from the hotplate and immediately placed on ice for a few seconds to reduce 

the temperature. After cooling, absorbance reading was read using a Jenway 6305 

spectrophotometer (Bibby Scientific Ltd, Essex, UK) set at 620 nm. A straight line plot was 

drawn using absorbance readings of the four standard glucose concentrations. A 

regression equation was derived from the plot and was used to calculate concentrations 

of water soluble carbohydrate in the grass samples as follows: 

Y=0.0049 X + 0.0074 (R2=0.9993)                                                                                Equation 3.5                                                                    

                                                                                                                                                              

Where Y values are the concentration of WSC (g/kg DM) in samples and X values the absorbance 

readings of the test samples 

3.6 Determination of metabolisable energy content of grass using modified acid 

detergent (MAD) fibre  

Metabolisable energy (ME) content of fresh grass was determined according to Givens et 

al., (1990). Metabolisable energy (ME) content of grass samples cut at 9am and 4pm 

during the grazing trial (Chapter 6) was determined indirectly using the MAD fibre 
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method. The working standard used was Cetyltrimethylammoniumbromide (CTAB)-acid 

solution prepared by dissolving 10g of CTAB in 1L of 0.5M H2SO4. Dried and milled grass 

samples (1g) were accurately weighed into clean filter crucibles (Wo) and 100ml of CTAB-

acid solution added. Samples were then boiled gently for 2 h on a Fibertech® 1020 hot and 

1021 cold extractor (Foss UK Ltd, Cheshire, UK). Samples were then filtered and residues 

washed with 3 x 50ml of hot distilled water. Samples were then dried in an oven at 105°C 

overnight. Crucibles with samples were again weighed (W1) before ashing for 6h at 500°C. 

After ashing samples were cooled and re-weighed (W2). The MAD fibre (g/kg DM) was 

calculated as follows: 

MAD fibre (g/kg DM) = (W1-W2)   X 1000 
                                             (Wo)                                                                                 

Metablisable energy (ME) was then calculated using the following equation  

ME (fresh grass) MJ/kg DM =16.20 - 0.0185*MAD fibre (g/kg DM)      Givens et al., (1990)    

3.7 Determination of forage DM intake of grazing cows using the n-alkane technique 

Pasture DM intake of cows was measured indirectly using the n-alkane method as 

described by Meyes et al., (1986). Samples of 0.1 g of dried faeces and 0.2 g of grass and 

TMR samples were accurately weighed (Mettler Toledo, XS205 dual range Leicester, UK) 

in duplicate into 4-ml glass screw-cap GC vials. To this was added 0.11 g of n-docosane 

(C22) solution and n-tetratriacontane (C34) in n-decane (0.3 mg/g) as internal standards. To 

the faecal samples, 1.5 ml of ethanolic KOH (1M) was added and 0.2 ml of ethanolic KOH 

added to the forage samples. The vials were capped and shaken gently, and the samples 

heated for 16 h at 90°C on a dry heat block heater (Dri-Block®, Cambridge, UK). After 16 h, 

the temperature was reduced to 60°C and 1.5 or 2 ml of heptane was added to the faecal 

and forage samples, respectively. Samples were gently shaken and 0.4 ml and 0.6 ml of 

water was added to the faecal and forage samples respectively. The tubes were then 
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shaken vigorously and let to stand for about 5 min. After separation into 2 liquid layers, 

the non-aqueous layer (top) was transferred into a second 4 ml GC vial using a Pasteur 

pipette. Another aliquot of 1.5 or 2ml of heptane was then added to the sample tubes and 

the extraction method repeated with the aqueous layer being transferred to the same 

vial. All the extracts collected in the second vial were then dried on a dry block heater 

fitted with a sample concentrator blowing air into the individual vials. The extracts were 

then re-dissolved in 0.3 ml heptane with warming and samples were applied gently to 

small columns containing 1 ml of silica gel bed. The hydrocarbons were eluted into the 

third 4ml GC vial by addition of 2 x 1.5 ml of n-heptane to the column. Heptane was 

removed by evaporation to dryness on a dry block heater. The extracts were again re-

dissolved with warming (60°C) into GC auto sampler vials and capped for gas 

chromatography. Alkane analysis was done on a gas chromatograph model Phillips PU 

4500  (Phillips, Surrey, UK) apparatus equipped with a flame ionisation detector and  a  30 

m X 0.32 mm i.d, 0.25 μm fused silica capillary column (Restek Corporation, Bellefonte, 

USA). Oven temperature was programmed 190°C for 3min; 6°C/min to 316°C. The carrier 

gas was helium with a flow rate of 9 ml/3ml n-dodecane and immediately transferred to 

the min. 

Herbage DM intake for individual animals in each period was calculated using C32 as a 

dosed alkane and C33 as a natural herbage alkane as described by Mayes et al., (1986) and 

shown in the equation below: 

Herbage intake (kg DM/d) = Fi/Fj*{Dj +Ic *Cj} - Ic*Ci 
                                            Hi – {Fi/Fj* Hj} 
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Hi, Ci, Fi = concentrations (mg/kgDM) of the natural odd chain alkane in herbage, TMR 

and faeces. 

Hj, Cj, Fj = concentrations (mg/kgDM) of the even chained alkane in herbage, TMR and 

faeces.  

Ic = intake of TMR (kg DM/d) 

Dj = amount of alkane j dosed (mg/d) 

3.8 Determination of methane concentrations in gas samples 

Gas samples for methane analysis were collected from the first experiment which was an 

in vitro experiment and from the two in vivo trials using dairy cows. Gas samples from the 

in vitro and in vivo experiment were prepared differently. 

3.8.1 Determination of methane concentration in gas samples from in vitro study 

Gas samples collected every 12 h from each treatment in the in vitro study were 

collected in labelled Tedlar® gas sampling bags (Sigmal Aldrich, Dorset, UK).  Analysis of 

gas samples was done according to a method described by Purcell et al., (2011). Prior to 

analysis, the gas chromatograph was calibrated using standard gas which contained 99% 

pure methane gas (Puris®, Sigma Aldrich, Dorset, UK). This was done by manually 

injecting the gas chromatograph with 10 ml of the standard methane gas which was 

diluted with air to make 25%, 50%, 75% and 100% methane concentration. Area units 

were recorded on the GC for each level of methane concentration. A straight line plot of 

percent methane concentration vs. area units was plotted.  A regression equation was 

derived from the results of the standard gas and this was used to determine the 

concentration of methane gas in the test samples.  

Y=0.00002x (R2=0.9985)                                                                                      Equation 3.8.1 

Where Y= % methane level of the gas sample x= area units of test sample on the GC 
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Methane volume (mls) at each time period was then determined by multiplying the 

percent methane and gas (ml) released during in vitro fermentation at each time period. 

Gas samples from the treatments were analysed by manually injecting duplicate samples 

of 10 ml each using Leur-lock® syringes (Fisher Scientific, Loughborough, UK) and area 

readings taken. The gas chromatograph (GC) settings were GC model (7890A Agilent 

technologies, Buckinghamshire, UK) equipped with a 80/100 mesh Porapak N column 1.8 

m long, 2.1 mm i.d (Sulpeco, Bellafonte, USA)  and flame ionisation detector (FID). 

Temperatures settings were 170, 200 and 300°C in column, injector and detector 

respectively. The carrier gas (N2) flow, H2 flow and air flow were adjusted to 34 ml/min, 

30 ml/min and were 400 ml/min respectively.  

3.8.2 Determination of methane concentration in gas samples from the in vivo studies 

Prior to the start of the two in vivo experiments, brass permeation tubes (bolus) weighing 

approximately 50g and containing SF6 (Agri Food and Bioscience Institute, Hillsborough, 

UK) were inserted in the rumen of individual cows using a balling gun (Nasco®, 

Wimsconsin, USA).  The SF6 permeation rates of the individual boluses were determined 

three weeks before inserting in the cows. The permeation tubes were kept in an 

incubator set at 39oC. The weights of the permeation tubes were recorded three 

times/week in order to determine the daily change in weight. Data of the individual 

boluses were fitted in a regression equations in excel (R2>0.99) and permeation rate per 

day for each bolus was determined. The canisters used in the experiment were designed 

to half fill over a 24-h period were evacuated to -97 kPa and strapped on the backs of 

individual cows. Representative breath samples from each cow were collected into the 

pre-evacuated canisters by means of Teflon tubing fitted to a halter. Canisters were 

changed every day after morning milking at around 10:00h. Canisters containing air 

samples were taken to the laboratory and pressurised with nitrogen gas (N2) to 17 kPa. 
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Subsamples of air were taken from each canister using 50 ml Leur-lock® syringes (Fisher 

Scientific, Loughborough, UK). Concentrations of SF6 and CH4 in respired air and ambient 

air samples were determined by gas chromatograph model 7890A (Agilent Technologies, 

California, USA) fitted with an electron capture detector (350°C) to determine SF6 and 

flame ionisation detector (300°C) to determine CH4 concentrations. The GC was fitted 

with 2 columns, a 1.8 m 80/100 mesh Porapak N column (Sulpeco, Bellafonte, USA) and a 

3 m 40/60 mesh molecular sieve 5A column (Resteck corporation, Bellefonte, USA). 

Injector temperature was set at 100°C. Nitrogen was used as carrier gas at a flow rate of 

60 ml/min. Chromatographic analyses were performed after calibration with standard 

gases (Scott-Marrin Inc, Riverside, USA) for SF6 and CH4. Standard concentrations were 

357 ppmv±1% CH4 and 1036 pptv ± 5% SF6. Standards were run at the beginning of each 

day and after every 10 samples.  The CH4 and SF6 concentrations in the samples were 

determined from the peak areas and amounts relative to the known standards. Daily CH4 

production by each animal was calculated using the known permeation rate of SF6 for 

each tube as follows 

CH4 (g/d) = SF6 permeation rate (g/d) x (CH4)                                                     Equation 3.8.2 
                                                                      (SF6)   
(Johnson and Johnson, 1995) 
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CHAPTER 4.  Effects of starch source and oil source on fermentation characteristics and 
methane production in vitro 

4.1 Introduction 

An in vitro study is a cheaper and quicker method of determining rumen fermentation 

characteristics and methane production of various ruminant feeds (Purcell et al., 2011). 

Previous studies have shown that in vitro fermentation and methane production can be 

altered by addition of supplements to a basal diet (Getachew et al., 2005).  Different 

supplements such as fats, essential oils and saponins have been evaluated and each one 

can alter fermentation characteristics in different ways (Castro-Montoya et al., 2012).   

Carvacrol is an essential oil classified as a phenolic monoterpenoid which has 

antimicrobial properties (Busquet et al., 2006). The chemical structure is 2-methyl-5-

isopropyl-1-phenol (Macheboeuf et al., 2008) as shown in Fig 5. 

 

                                Figure 5. Chemical structure of carvacrol 

 

Carvacrol is found in high concentrations in oregano and thymol essential oils (Benchaar 

and Greathead, 2011). Concentrations in oregano are on average 600 mg/g (Castillejos et 

al., 2008). The phenolic group helps carvacrol to carry out its antimicrobial activities 

(Macheboeuf et al., 2008). Carvacrol inhibits both gram positive and gram negative 

bacteria (Benchaar and Greathead, 2011).  According to Macheboeuf et al., (2008), 

carvacrol works by increasing permeability of cells leading to loss of fluids and eventual 
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cell death. A review by Patra and Saxena (2010) indicated that carvacrol can inhibit 

methane production by 13-98% depending on the dosage used.  

Linseed oil is a vegetable oil that is rich in C18:3n-3 (Zhang et al., 2008). Linseed oil reduces 

methane production by either a reduction in organic matter fermentation (Chung et al., 

(2011), hydrogenation or by direct toxic effect on the methanogens and protozoa (Vargas 

et al., 2011). Effects of linseed oil on methane production vary with the level of 

supplementation (Zhang et al., 2008). For example, addition of 50 g/kg of linseed oil to a 

TMR in a rusitec technique reduced methane production by 25% (mmol/g) when 

compared to the un-supplemented control. In a study by Zhang et al., (2008) 

supplementation of linolenic acid at 35 and 70g/kg DM reduced methane production by 

45% and 62% respectively. At higher levels of supplementation, linseed oil tends to 

reduce DM fermentability (Eugene et al., 2011). 

Fish oil mediates effects on methane production through two FAs; eicosapentanoic acid 

(EPA) and docosahexanoic acid (DHA) whose concentrations vary according to the type of 

fish oil (Castro-Montoya et al., 2012). Reduction in methane production with fish oil 

supplementation is thought to be due to a direct toxic effect on methanogens (Fieves et 

al., 2007). Reductions of up to 80 % in methane production have been observed in 

studies by Fieves et al., (2003) and Fieves et al., (2007).  

Various in vitro studies have been conducted to determine effects of oil supplementation 

on methane production but few (Lovett et al., 2003) have compared the effect of starch 

source and oil source on fermentation characteristics and methane production in vitro.  

According to Castro-Montoya et al., (2012), the effectiveness of a supplement to alter 

fermentation characteristics depends on the basal diet. For example, Castro-Montoya et 

al., (2012) compared effects of oil sources on 3 basal diets, concentrate, maize silage and 
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grass silage and established that the effects of the oil sources varied with the basal diet, 

and that interactions were observed between the basal diet and oil sources which also 

influenced methane production.  

4.2. Hypothesis, aims and objectives 

The hypothesis to be tested was that starch source and oil source can alter in vitro rumen 

fermentation characteristics and reduce methane production. The objectives of the 

experiment were to determine the effects of starch source and oil source and the 

interaction between the two on in vitro gas fermentation kinetics, methane production, 

rumen fluid pH and NDF digestibility. 

4.3. Materials and Methods  

4.3.1 Experimental design, basal diets and treatments 

The study was conducted using an in vitro batch culture technique as described by 

Sinclair et al., (2005). The experimental design was a 3x3x2 factorial design with a 

control. The 3 starch sources; wheat (W), barley (B) and maize (M) and 3 oil sources; 

carvacrol (Cv), linseed oil (LO) and fish oil (FO) were included at two dosage levels of 

either 4% or 8% of DM. The starch sources were mixed with dried grass (Emerald green 

feeds®, Lincoln, UK) to provide approximately 25 % starch level in the basal diet. Each of 

the basal diets had 6 treatments which were the three oil sources at 2 dosage levels. 

Therefore, the treatments for each of the basal diets were Cv1 (carvacrol supplied at 4% 

of DM), Cv2 (carvacrol supplied at 8% of DM), LO1 (linseed oil supplied at 4% of DM), LO2 

(linseed oil supplied at 8% of DM), FO1 (fish oil supplied at 4% of DM), FO2 (fish oil 

supplied at 8% of DM). The CT diets were the W, B, and M that had no added oil 

supplements. The basal diets were milled to pass through a 2 mm screen. The dietary 

combinations were chosen to represent a range of forage and starch source 
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combinations used in dairy rations in the United Kingdom. The experiment was replicated 

3 times, one week apart, to provide 3 replicates per treatment.  Chemical composition of 

the basal diets is presented in Table 12. 

                          Table 12. Chemical composition of the basal diets, grass and  
                           wheat (W), grass and barley (B), grass and maize (M) used in 
                           the in vitro study 

  W B M 

Dry matter, g/kg DM 932 931 939 

Organic matter, g/kg DM 919 917 914 

Crude protein, g/kg DM 155 150 158 

Ash, g/kg DM 76 77 81 

NDF, g/kg DM 337 336 344 

Starch, g/kg DM    240        230  270 

     

4.3.2 Oil sources and inclusion levels  

The three oil sources used in the experiment were menhaden fish oil, linseed oil and 

carvacrol all purchased from Sigma Aldrich (UK) and were of 98-99% purity. The densities 

were 0.93 g/ml, 0.93 g/ml and 0.976 g/ml for menhaden fish oil, linseed oil and carvacrol 

(488 mg/L of rumen fluid for carvacrol), respectively. Either 0.1 ml or 0.2 ml of the oil 

sources were used to make 4 or 8% DM oil supplementation, respectively. Menhaden fish 

oil and linseed oil were in form of triglycerides and their FA composition is presented in 

Table 13. 
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            Table 13. Fatty acid composition of Menhaden fish oil (FO), Linseed  
             oil (LO) and Carvacrol (Cv) used in the in vitro study 

  FO  LO             Cv* 

FA g/100g 
   C14:0 8.27 -               - 

C16:0 19.04 6.00 - 
C16:1 9.64 - - 
C18:0 3.51 2.50 - 
C18:1 9.05 19.0 - 
C18:2n-6       2.27 24.1 - 
C18:3n-3       1.35 47.4 - 
C20:0 2.94 0.50 - 
C20:1 2.34 - - 
C20:5n-3 11.54 - - 
C22:6n-3 6.20 - - 

0thers 23 0.50 - 
              *Cv is an essential oil with no fatty acid content 

4.3.3 Donor animals and Inocula 

Two male rumen cannulated sheep of average weight 65±3.2 kg live weight were fed a 

vitamin and mineral free diet for 15 days prior to rumen fluid collection. Animals were 

cared for according to the Harper Adams University policy on Research Ethics. The 

animals were fed in one meal of 2.8 kg/d per animal of a commercial coarse diet (S.C 

Feeds Ltd, Stafford, UK; Table 14) at 8:00 h, and both animals had unlimited access to 

water and grass hay throughout the experimental period.  

            Table 14. Ingredient composition (g/kg DM) of the commercial diet fed 
             to sheep 

Ingredient          Amount  

Barley cooked/rolled 200   

Peas micronized 50 
 Maize micronized 50 
 Soybeans micronized 50 
 Wheat feed 60 
 Soypass 25 
 Soya hipro 50 
 Sugar beet 150 
 Molasses  80 
 Protein pellets1 250 
 Oat feed 35   

1Contained (50% rape meal, 25% sunflower meal,20% palm kernel, 5% molasses) 
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4.3.4 Rumen fluid and media solution 

On the first day of each experimental period, rumen fluid was collected from the 

cannulated sheep 4 h after morning feeding into a previously warmed Erlenmeyer flask. 

The collected rumen fluid was strained using four layers of cheese cloth. Culture fluid was 

prepared according to the procedure of Theodorou et al., (1994) by mixing 1.5 L of 

strained rumen fluid with 6.0 L media solution at 39°C under continuous flushing with 

CO2.  The media solution was prepared 24 hours before the experiment and autoclaved 

at 121 °C for 15 minutes to remove dissolved gases. All chemicals used in constituting the 

media solution were purchased from Sigma Aldrich®, UK. The pH readings of the medium 

solution were taken before and after 48 h of in vitro incubation at 39°C using a pH meter 

(Mettler Tolledo, Manchester, UK). Tables 15 and 16 show the media composition.  

                          Table 15. Solution composition of the media used in  
                         the in vitro study 

Ingredient Amount (ml) 

Microminerals solution 0.1 
Buffer solution 200 

Macromineral solution 200 
Reducing solution  40.0 
Indicator solution 1.0 
Deionised water  559 
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           Table 16. Chemical composition of the individual solutions that made the media  
            solution 

  Amount 

Micro-mineral solution (g/100ml) 

     Calcium chloride  (CaCl2.H2O)   13.2 

    Manganese chloride (MnCl2.6H2O) 10 

    Cobalt chloride (CoCl2.6H2O) 1 

    Iron Chloride (Fe Cl3. 6H2O)    8 

Buffer Solution g/1000ml  

      Ammonium hydrogen carbonate (NH4CO3) 4 

      Sodium hydrogen carbonate  NaHCO₃ 35 

Macro-mineral Solution (g/ 1000ml)  

     Di- sodium hydrogen orthophosphate (Na2HPO4.12H2O 9.45 

     Potassium di-hydrogen orthophosphate (KH2PO4)                  6.2 

     Magnesium sulphate 7-hydrate (MgSO4. 7H2O)   0.6 

Reducing Solution (g/100ml)  

       Cystein HCl 0.625 

Anaerobic indicator (g/100ml  

       Resazurin   0.1 

 

4.3.5 In vitro gas production 

The in vitro gas production technique was based on the procedure of Theodorou et al., 

(1994) using 21 X 307 ml Doran fermentation bottles as modified by Sinclair et al., (2005). 

The experimental design had 21 fermentation bottles with each of the 3 basal diets, W, 

B, M which were also referred to as the CTR diets. Each of the starch sources had 7 

treatments each comprising Cv1, Cv2, LO1, LO2, FO1, FO2 and CTR (no additive). Table 17 

shows the experimental design used. 

                               Table 17. Experimental design of the in vitro study 

Starch source   W B M 

Oil source Dosage 
   Cv 1 X X X 

 
2 X X X 

LO 1 X X X 

 
2 X X X 

FO 1 X X X 

 
2 X X X 

          CTR No additive W B M 

                        Dosage 1= added at 4% DM; Dosage 2= added at 8% DM;  
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Approximately 2.5 g DM of each basal diet was weighed into the Duran fermentation 

bottles. In addition, 3 blanks containing only rumen fluid and buffer were included. Either 

0.1 ml or 0.2 ml of the oil sources Cv, LO or FO were dispensed into the bottles. To each 

of the bottles, 200 ml of the freshly prepared buffer solution was dispensed, the bottles 

tightly capped, gently shaken and incubated for a total of 48 h at 39°C. Head space 

pressure readings were taken every 3 hours at 0, 3, 6, 9, 12, 15, 18, 21 and 24 h on the 

first day and every 6 hours on the second day of incubation at 30, 36, 42 and 48 h using a 

pressure transducer (Tracker 220, Bailey and Mackey Ltd, Birmingham, UK). Gas 

produced during incubation was collected into labelled gas bags. Gas collected every 12 h 

was pooled and put into separate bags labelled 0-12h, 12-24h, 24-36h, 36-48h for 

subsequent methane analysis. After 48 h of incubation, bottles were uncapped, the 

contents swirled on ice to stop fermentation and the pH measured immediately using a 

pH meter (Mettler Tolledo, Manchester, UK). The fermentation contents in each bottle 

were filtered through 50 ml sintered glass crucibles (porosity P1) using a pump and 

residues dried at 60°C for 48 h. The fermentation contents were used for the 

determination of NDF. Collected gas samples were subsampled for subsequent methane 

analysis by GC.  

4.4 Laboratory analyses 

Samples of the basal diets were analysed for DM, OM, CP, NDF and ash as described in 

Sections 3.1.1 to 3.1.4. Starch concentration in the basal diets were determined using 

Megazyme starch essay kit (Megazyme International Ireland Ltd,  Wicklow, Ireland) as 

described as in Section 3.4. Methane concentration in the gas samples collected from the 

in vitro study were analysed by GC (7890A Agilent technologies, Buckingham, UK) as 

described in Section 3.8.1.  
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NDF digestibility was calculated using the equation of Hall and Mertens, (2003) as follows; 

NDF dig (g/kg DM) = (NDF in sample - NDF post fermentation )  x 1000 
                                                  (NDF sample) 
 

Gas pressure data were converted to gas volume (ml) using the equation of Purcell et al., 

(2011) as: 

Gas production (ml) = (Vh) X Pt.                                      
                                        (Pa)      
 

Where Vh equals head space volume (107.55ml), Pa equals the atmospheric pressure 

(101.4 kPa) and Pt the pressure transducer reading (kPa).  

Gas samples from the treatments collected during the 4 incubation periods 0-12 h, 12-

24h, 24-36 h and 36-48 h were injected manually into the GC as described in Section 

3.8.1. The volume of methane gas (ml) in the sample was calculated according to Kumar 

et al., (2013) using the equation 

Methane production (ml) = Total gas (ml) X methane content (%) in treatment.  

4.3.5 Statistical Analyses 

Data were subjected to a general analysis of variance as a 3x3x2 factorial design with a 

control (CT) using GenStat model, 13th edition (VSN International Ltd, 2010). The starch 

sources (S) were wheat, barley and maize. The oil sources (O) were Cv, LO or FO which 

were added at two levels of 4% DM (1) or 8% DM (2). The CTR diets were the starch 

sources W, B and M without any added oil. Effects of starch source (S), oil source (O), 

dosage (D), time of incubation (T), and the interactions of starch source and oil source 

(SxO) on gas production, methane output, pH, NDF were analysed. Significant differences 
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between individual means were identified using the Tukey’s multiple range test. Mean 

differences were considered significant at P<0.05 and trends were identified at P<0.1. 

4.6 Results 

4.6.1 Chemical composition 

The chemical composition of the 3 basal diets used in the study were similar, but NDF 

content was slightly higher in M with a concentration of 344 g/kg DM when compared to 

concentration of 337 and 336 g/kg DM found in W and B, respectively (Table 12).  Linseed 

oil and fish oil differed in FA composition (Table 13). Carvacrol is an essential oil 

comprised of 98% carvacrol with no FA content. Linseed oil was composed of 47% C18:3n-3, 

24% C18:2n-6 and 19% C18:1 while menhaden fish oil was composed of 12% eicosapentanoic 

acid (EPA), 6% docosahexanoic acid (DHA), 2% linoleic acid, 19 % palmitic acid, 10% 

palmitoleic acid and 9% oleic acid. 

4.6.2 Cumulative and rate of gas production 

The three starch sources, wheat (W), barley (B) and maize (M) exhibited differences in 

cumulative and rates of gas production (P<0.001; Figs 6 and 7). Cumulative gas 

production was higher in W, intermediate in B and lowest in M with mean values of 175, 

158 and 120 ml/g DM, respectively. Rate of gas production followed a similar trend with 

mean values of 9.2, 8.1 and 5.5 ml/g DM/h in W, B and M respectively. Cumulative gas 

production also varied with oil source, dosage and time of incubation (P<0.001; Fig 6). 

There were interactions between starch source and oil source (SXO), starch source and 

dosage (SXD), starch source and time (SXT), starch source, oil source and dosage, (SXOxD) 

(P<0.001; Tables 18 and 19).  
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Figure 6. Cumulative gas production (ml/g DM), of the three starch sources, W, B and M during 

the 48h of in vitro incubation at 39°C. 
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Figure 7. Rate of gas production (ml/g DM/h) of the three starch sources, W, B and M during the 

48 h of in vitro incubation at 39°C 

 

Among the oil sources, Cv suppressed cumulative and rate of gas production more than 

LO and FO particularly at the highest rate of inclusion. When compared to the CTR diets, 

Cv suppressed cumulative gas production by 21, 30 and 28% in W, B and M based diets 
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respectively (Tables 18 and 19). Rate of gas production (ml/g DM/h) followed a similar 

trend, it was highest in W, medium in B and lowest in M based diet at 7.2, 5.2 and 4.1 

ml/g DM/h respectively.  

Effects of LO on cumulative gas production varied with basal diet and dosage used. When 

compared to the respective CTR diets, LO1 did not have any effect on cumulative gas 

production in W and B based diets, but increased gas production by 40% in the M based 

diets. At a higher dosage, LO2 increased gas production in W, B and M based diets by 8, 

19 and 40% respectively when compared to the respective CTR diets. 

Fish oil at a lower dosage (FO1) increased gas production by 18 % in the W and M based 

diets and had no effect in B based diets when compared to the respective CTR diets. At a 

higher dosage, FO2 had no effect on gas production in W and B based diet and increased 

gas production by 61% in M based diets (Tables 18 and 19).  
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Figure 8 . Cumulative gas production (ml/g DM) of the treatments, Cv, LO and FO at the two dose levels, 1 

and 2 on  Wheat (W),  Barley (B) and Maize (M)  based diets during 48 h of in vitro incubation at 39°C
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Table 18. Effect of starch and oil source on fermentation characteristics following in vitro incubation in buffered rumen fluid at 39°C 

Starch source       W             B             M     

Oil source CTR Cv1 Cv2  LO1 LO2  FO1 FO2 
 

CTR Cv1 Cv2  LO1 LO2  FO1 FO2 
 

CTR Cv1 Cv2  LO1 LO2  FO1 FO2 

Cum gas, ml/g DM 175 138 30.4 162 189 208 169 
 

158 110 16.5 146 188 165 171 
 

120 86.9 8.70 169 169 142 193 

Rate, gas production 9.2 7.2 1.9 8.0 9.7 11.0 8.5 
 

8.1 5.2 1.2 7.8 9.9 8.3 8.9 
 

5.5 4.1 0.6 8.9 8.5 6.6 10.3 

NDF dig, g/kg 744 553 572 724 710 708 717 
 

708 529 182 752 701 696 690 
 

733 587 320 739 771 825 719 

Initial pH. 6.93 6.93 6.93 6.93 6.93 6.93 6.93  6.93 6.93 6.93 6.93 6.93 6.93 6.93  6.93 6.93 6.93 6.93 6.93 6.93 6.93 

Final pH. 5.76 6.35 6.77 5.82 5.77 5.78 5.83 
 

5.77 6.44 7.00 5.70 5.73 5.84 5.77 
 

5.69 6.44 7.0 5.72 5.74 5.84 5.80 

pH. Change 1.17 0.58 0.16 1.11 1.16 1.15 1.10 
 

1.16 0.49 0.07 1.23 1.20 1.09 1.16 
 

1.24 0.49 0.07 1.21 1.19 1.09 1.13 

Rate of gas production; ml/g DM/h; W, B or M are wheat, barley or maize based treatments with no added oil   

 
 

 

Table 19. SED and P-values of main effects and interactions of starch, oil and dosage on fermentation characteristics of carvacrol, 
 linseed oil and fish oil following 48 h of in vitro incubation at 39°C 

  
 

   SED           P- values 

Variables  S SXO SXD SXOXD SxT 
 

S SxO    SxD  SXT SxOxD 

Cum gas, ml/g DM 6.06 6.87 7.93 7.93 27.45   <0.001 <0.001 <0.001 <0.001 <0.001 

Rate of gas prod. 0.500 0.500 0.500 0.500 1.731 

 

<0.001 <0.001 <0.001 <0.001 <0.001 

NDF dig, g/kg DM 28.9 32.7 37.8 37.8 NA 

 

0.531 <0.001 <0.001 NA <0.001 

Final pH. 0.077 0.087 0.100 0.100 NA 

 

0.583 <0.001 <0.001 NA <0.001 

pH change 0.080 0.091 0.105 0.105 NA   0.593 <0.001 0.047 NA 0.005 

S= starch source; O= oil source; D= dosage; T=time of incubation; NA= not applicable; SED= standard error of difference of the mean 
 Rate of gas production, ml/g DM/h 
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Table 20. Effect of starch and oil source on in vitro methane production (ml/g DM) at 0-12, 12-24, 24-36 and 36-48 h incubation in buffered rumen fluid at 39°C 

Starch source       W             B             M     

Oil source CTR Cv1 Cv2  LO1 LO2  FO1 FO2 
 

CTR Cv1 Cv2  LO1 LO2  FO1 FO2 
 

CTR Cv1 Cv2  LO1 LO2  FO1 FO2 

Time of incubation                        

0-12 h 4.5 3.3 0.2 7.2 10.8 11.6 7.1  6.7 0.78 0.1 4.2 9.8 9.8 10.7  2.5 2.7 0.0 10.3 8.3 2.0 10.6 

12-24 h 11.7 6.4 0.2 15.5 16.0 20.2 20.1  14.4 2.2 0.1 14.9 16.5 21.3 15.2 
 

14.2 5.2 0.0 20.8 15.4 12.9 16.8 

24-36 h 16.1 8.3 0.2 18.2 19.9 25.0 20.8  18.8 2.9 0.1 20.5 20.3 24.3 20.1 
 

16.0 7.3 0.0 20.7 18.9 19.1 20.2 

36-48 h 6.8 1.3 0.1 6.0 5.6 5.7 5.1 
 

5.7 0.5 0.0 6.7 5.5 6.0 4.9 
 

5.5 1.3 0.0 4.8 4.0 3.6 3.2 

Total CH4 output 39.0 18.4 0.7 45.0 50.3 62.5 43.1  45.5 6.4 0.2 35.6 49.9 50.1 45.0  34.9 16.5 0.0 48.4 44.2 36.4 47.5 

CH4 production, ml/g DM 

 
 
 
 

Table 21. SED and P-values of main effects and interactions of starch, oil and dosage on methane production following 48 h of 
 in vitro incubation at 39°C 

  
 

    SED           P- values 

Variable      S SXO SXD    SXOXD 
 

S SxO SxD    SxOxD 
 

           

0-12 h 1.474 1.671 1.930 1.930    0.153 <0.001   0.138   <0.001  

12-24 h 2.407 2.729 3.151 3.151  0.422 <0.001 0.266 0.102  

24-36 h 2.628 2.980 3.441 3.441  0.658 <0.001 0.109 0.279  

36-48 h 0.515 0.584 0.675 0.675  0.286 <0.001 0.006 0.891  

Total CH4 output 8.03 9.10 10.5      10.5  0.496 <0.001 0.354 0.186  

S= starch source; O= oil source; D = dosage; SED= standard error of the difference of the mean; CH 4 production, ml/g DM 
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4.6.3 Methane production  

In the current study, methane production (ml/g DM) was expressed as methane output 

produced  per 12 h of incubation at four time periods, 0-12, 12-24, 24-36 and 36-48 h and  

as  total methane output produced during the whole 48 h of in vitro incubation (Tables 20 

and 21). Methane production varied with the time of in vitro incubation. Interactions 

between starch source and oil source (SXO) were observed at all time periods (P<0.001), 

while a dosage effect (SXD) and (SX0XD) was only observed at 36-48 h and at 0-12h of in 

vitro incubation respectively. 

Generally, highest amounts of methane output (ml/g DM) were produced during the 

periods 24-36 h of in vitro incubation in all treatments, while the least amounts were 

produced during the last 12 h between 36-48 h of in vitro incubation. The 3 oil sources, 

Cv, LO and FO behaved differently in the basal diets and effects varied with the time of in 

vitro incubation. 

At 0-12 h of in vitro incubation, Cv reduced methane production only in B diet by an 

average of 94% and was ineffective in M and W. LO had no effect on methane production 

in B but increased methane production in M and W by 278 and 96 % respectively. FO 

increased methane production in B, M and W by 54, 155 and 100% respectively 

At 12-24 h of in vitro incubation, Cv reduced methane production in all the starch sources 

W, B and M by 92, 82 and 72 % respectively while LO had no effect on methane 

production in all the 3 starch sources.  FO increased methane production by 73% in W and 

had no effect in B and M.  

Between 24-36 h of in vitro incubation, Cv reduced methane production in all the starch 

sources by 74, 92 and 77% in W, B and M respectively. FO only increased methane 
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production in W based diet by 42% and had no effect in B and M. LO completely had no 

effect in all the 3 starch sources.  

At 36-48 h of in vitro incubation, Cv reduced methane production in the 3 starch sources 

by 96, 88 and 90 % in B, M and W based diets. FO only reduced methane production by 

38% and 21% in M and W based diets respectively and was ineffective in B based diets. LO 

only reduced methane production by 20% in M based diet and was ineffective in B and W. 

A dosage effect (P<0.05) was observed only during 36-48 h of in vitro incubation. All the 3 

oil sources Cv, LO and FO. Cv reduced methane production by 91, 76 and 81% in B, M and 

W respectively at a lower dosage, while at a higher dosage fermentation was inhibited.  

FO also reduced methane production by 34 and 16% in M and W based diets respectively 

at a lower dosage while at a higher dosage methane production was reduced by 43 and 

26% in M and W. There was no dosage effect observed with LO.  

When methane output was expressed as total methane production, there was no starch 

source and no dosage effect on methane production (P>0.1), but an interaction SXO 

(P<0.001; Tables 20 and 21) was observed. When compared to the CTR, only Cv1 reduced 

total methane production in all the 3 basal diets. Reductions of 53, 86 and 53% were 

observed in W, B and M based diets respectively. At a higher dosage, Cv halted 

fermentation. When compared to the CTR, LO did not have any effect on methane 

production in all the three basal diets. On the other hand, FO at a lower dosage (FO1) 

stimulated a 60 % increase in methane production in the W based diets, but did not have 

any effect on methane production in B and M based diets (Tables 20 and 21).  
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4.6.4   pH of incubation media 

All treatments had the same initial pH of 6.93 (Tables 18 and 19). After 48 h of in vitro 

incubation in buffered rumen fluid at 39°C, the final pH differed in the treatments 

(P<0.001; Tables 18 and 19). There was no starch source effect (P>0.1) observed on final 

pH or on pH change. The M diet showed a numerically higher final pH of 5.69 when 

compared to 5.76 and 5.77 of the W and B based diets respectively. The interaction 

(P<0.001) between starch source and oil source (SXO) and starch source, oil source and 

dosage (SXOXD) showed that the oil sources behaved differently in the starch based diets 

and effects varied with dosage. Cv1 lowered the pH of the media from 6.93 to an average 

of 6.40, which is a reduction of 0.54 pH units. When compared to the CTR diet, pH 

change was lower in the Cv1 based diet while a higher dosage (Cv2) only reduced pH by 

0.1-0.3 pH units (Table 18). The final pH in the Cv treatments ranged from 6.35 to 7.0. All 

the LO and FO treatments reduced the final pH of the media by an average of 1.1 pH 

units, with the pH in the LO and FO treatments ranging from 5.70 to 5.84. When 

compared to the CTR diets, pH change in the LO and FO based diets did not differ from 

that of the CTR diets. 

4.6.5 In vitro NDF digestibility  

Neutral detergent fibre (NDF) digestibility (g/kg) in the treatments ranged from 182 g/kg 

in Cv supplemented diets to 825 g/kg in the FO supplemented diets (P<0.001; Tables 18 

and 19). The NDF digestibility of the startch sources did not differ (P>0.1) from each 

other. W, B and M control diets had digestibilities of 744, 708 and 733 g/kg DM 

respectively. Interactions (P<0.001) were observed between SXO, SXD, SXOXD. Generally, 

Cv suppressed NDF digestibility more than LO and FO. Cv1 suppressed NDF digestibility to 

the same extent in all 3 basal diets producing a mean value of 550 g/kg. When compared 
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to the CTR diets, reductions in NDF digestibility with Cv1 supplementation were 26, 25 

and 20 % in W, B and M based diets respectively. At the higher dosage, Cv did not have 

further effect on digestibility in the wheat based diets, while in B and M based diets NDF 

digestibility was reduced to 182 and 320 g/kg respectively. 

Linseed and fish oil supplementation resulted in a similar NDF digestibility of 

approximately 700 g/kg which did not differ from that of the CTR diets. The only 

exception was with FO1 which increased digestibility by 13% when compared to the CTR 

in the maize based diets while at the higher dosage, NDF digestibility was unaffected by 

supplementation.   

4.7 Discussion 

In the current study, the hypothesis that was tested was that starch source and oil source 

are able to alter in vitro fermentation and result in changes in gas production and rate of 

fermentation, pH, NDF digestibility and subsequently reduce methane production. The 

second hypothesis that was tested was that there would be interactions between starch 

sources and oil source that would affect fermentation characteristics. In the study, 

changes in fermentation characteristics were observed with changes in cumulative and 

rates of gas production, the pH of the incubation media was lowered by the oil sources 

and NDF digestibility was reduced by carvacrol. Methane production was also reduced by 

the oil sources at different incubation times thus the hypothesis is accepted. 

4.7.1 Cumulative and rate of gas production 

In the current study, cumulative and rate gas production varied with the basal diet with 

W producing the highest cumulative and rate of gas production, B was intermediate and 

M was lowest. This agrees with findings from previous studies. For example, Chaves et 
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al., (2009) observed that barley underwent rapid fermentation when compared to maize. 

A review by Reynolds (2006) also stated that the starch sources wheat and barley 

undergo rapid degradation in the rumen when compared to maize.  

The interaction between SXO, SXD and SXOXD resulted in the oil sources producing 

effects that varied with the basal diets. Cv1 decreased cumulative and rate of gas 

production in all the 3 basal diets when compared to the CTR diets. In contrast, effects of 

LO and FO varied in the 3 basal diets. LO1 increased gas production by 40% in the M 

based diet but had no effect in the W or B based diets, while a higher dosage increased 

gas production by 8, 19 and 40% in the wheat, barley and maize based diets respectively 

when compared to the CTR diets. Similarly, FO1 had varied effects in the 3 basal diets, a 

lower dosage increased gas production by 18% in wheat and maize based diets and 

higher dosage increased gas production by 61% in the maize based diets. 

In the current study, Cv1 reduced mean gas production by 21, 30 and 28 % in the W, B 

and M based respectively diets when compared to the CTR. This agrees with findings 

reported in previous studies which show that carvacrol reduces gas production in a dose 

dependent manner. For example, in a study by Macheboeuf et al., (2008), in vitro 

supplementation of carvarcol at 1.5, 2, 3 and 5 mmol/L reduced gas production by 19, 39, 

56 and 75 % respectively when compared to the un-supplemented control. Similarly, in 

the current study a dose response with carvacrol supplementation was observed, at 4% 

DM supplementation, carvacrol suppressed gas production by 21, 30 and 28% in the W, B 

and M based diets while at a higher dosage of 8% DM, fermentation was completely 

inhibited. In a study by Araujo et al., (2011), the addition of carvacrol at 667 mg/L to a 

concentrate/hay diet in an in vitro study reduced gas production by 66 %.  
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Previous studies have also reported varied effects of linseed and fish oils on gas 

production. For example, Zhang et al., (2008) reported 21 and 27 % suppression in gas 

production when α-linolenic acid (the main FA in linseed oil) was supplemented at 35 and 

70 g/kg DM. In contrast, Vargas et al., (2011) reported that linseed oil supplemented at 

5% DM did not have any effect on gas production when using a Rusitec system. In 

another study by Patra and Yu, (2013), supplementation of fish oil at 3.1 and 6.2 ml/L in 

an in vitro study did not have any effect on gas production. Reasons were not given.  

4.7.2 Methane production 

In the current study, methane production (ml/g DM) was examined at four different time 

periods; 0-12 h, 12-24 h, 24-36 h and 36-48 h of in vitro incubation in buffered rumen 

fluid at 39°C. It was observed that from 0-36 h, there was a progressive increase in 

methane production with incubation time. Highest amounts of methane were produced 

between 24-36 h of in vitro incubation in all the treatments. This may be due to fibrous 

material which produces a high amount of methane being degraded during this time. 

Getachew et al., (2005) observed that the highest amount of methane (ranging from 20-

23 ml/g DM) was produced during 6-24 h of an in vitro incubation.  

In the current study, carvacrol had no effect on methane production in the W and M 

diets in the first 12 h of incubation, but reduced methane production at all the other time 

periods when compared to the CT diets. Very few previous studies have examined the 

effects of carvacrol on methane production in vitro. Results obtained from those studies 

that have been conducted have indicated that carvacrol greatly suppresses methane 

production. For example, Macheboeuf et al., (2008) examined carvacrol supplementation 

at 0, 1.5, 2, 3, 4 and 5 mmol/L in vitro on a mixed basal diet composed of corn grain, 

soybean meal and hay, and reported a dose dependent response with methane 
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production reduced by a range of 13-95%.  A similar finding was reported in the current 

study, Cv supplementation at 4% DM suppressed methane production by 52-80% while 

at 8% supplementation microbial fermentation was completely inhibited. In a study by 

Araujo et al., (2011), addition of carvacrol at 667 mg/L to a concentrate/hay diet in an in 

vitro study reduced methane production by 95 %.  A more recent study by Hristov et al., 

(2013) tested 3 levels of oregano at 250, 500 and 750 g/d in dairy cows and reported  

decreased methane production by 9, 36 and 25% (g/kg DM intake) respectively when 

compared to the un-supplemented control.  

In the current study, linseed oil (LO) generally either did not affect or increased methane 

production depending on the time of incubation. Reductions in methane production 

were only observed during the period 36-48 h in the M diet, with a value of 20 % when 

compared to the CTR. Few studies have compared the effects of oil source on methane 

production using a range of basal diets. Most previous studies have used a single basal 

diet. For example in a study by Vargas et al., (2011), linseed oil supplied at 5 g/kg DM to a 

TMR in a rusitec fermentation reduced methane production (mmol/g fermented OM) by 

28% when compared to the un-supplemented control. Zhang et al., (2008) used a 

mixture of cornmeal and wild rye meal and supplemented with α-linolenic acid at 0, 35, 

and 70 g/kg DM and reported that methane production (mmols) was reduced by 46 and 

62% respectively.   

In the current study, when compared to the un-supplemented CT diets, fish oil either 

increased methane production or had no effect on methane production. The only 

exception was a 35 and 42 % reduction at low and high dosage respectively in the M diet 

at 36-48 h when compared to the CTR. Total methane production with fish oil 

supplementation also did not differ from that of the CT diets with the exception of a 60 % 

increase in methane production in the W diet. Very few previous studies have examined 
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effects of fish oil on methane production in vitro. The effects of fish oil supplementation 

on methane production are influenced by the composition of the oil. This was clearly 

demonstrated by Fieves et al., (2003) who used two types of fish oil that differed in FA 

composition. Fish oil A was composed of 19% EPA and 12% DHA, while fish oil B was 

composed of 6% EPA and 7% DHA. Fish oil A reduced methane production by a maximum 

of 75% while fish oil B suppressed methane production by a maximum of only 37%.  In 

the current study menhaden fish oil was composed of 11.5 % EPA and 6% DHA, a similar 

composition to fish oil B which suppressed methane production by 37 % in the study of 

Fieves et al., (2003). In contrast to this, other studies have reported no differences in 

methane production when fish oil was compared with other oils. For example, Patra and 

Yu (2013) compared the effects of fish oil to that of coconut oil at 3.1 and 6.2 ml/L in 

vitro and reported that both fish oil and coconut oil reduced methane production to the 

same extent (9%) when supplied at 3.1 ml/L and no further decrease in methane 

production was observed at the 6.2 ml/L dosage.  

Effects of fish oil may also be influenced by the composition of the basal diet. This was 

demonstrated by Castro-Montoya et al., (2012) when they compared the effects of fish 

oil on methane production on 3 basal diets; a standard concentrate diet, grass silage and 

maize silage. Fish oil supplemented at 100-200 g/kg produced a high amount of methane 

on standard concentrates and grass silage with amounts averaging 40 mmol/mol while 

only 30 mmol/mol of methane was produced on a maize silage diet. There was an 

interaction between fish oil and the basal diets which resulted in a higher suppression of 

methane production in the maize silage than the other two basal diets.   
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4.7.3 In vitro pH 

The final pH of the CTR diets though statistically similar, numerically had different values. 

W and B had a slightly higher final pH of 5.77 while that of M was lower at 5.69. A 

previous study by Chaves et al., (2009) that reported that barley when compared to 

maize undergoes rapid fermentation in the rumen and consequently reduces the pH 

more than the maize. This contradicts the finding in the current study. Change in the pH 

of the fermentation contents in the current study was mediated by the oil source and 

dosage, and no starch source effect was observed. Carvacrol supplementation reduced 

the pH of the media by 0.5 units while linseed oil and fish oil supplementation reduced 

the pH by a larger margin of 1.1 pH units. When compared to the CTR diets, carvacrol 

effectively reduced pH of the media at the two dose levels while effects of linseed oil and 

fish oil did not differ from the CTR diets. 

Previous studies show that effects of carvacrol on pH have been consistent. For example, 

in a study by Macheboeuf et al., (2008), in vitro supplementation of carvacrol at 0, 1.5, 2, 

3, and 5mmol/L resulted in the pH of the media of 6.1, 6.3, 6.5, 6.90 and 7.0 respectively. 

In another in vitro study by Busquet et al., (2006), the addition of carvacrol at 0, 3 and 30 

mg/L of fermentation fluid did not change the pH of the media which remained at pH 5.9, 

while a high dosage of 300 and 3 000 mg/L increased the pH to 6.3 and 7.2 respectively. 

It was concluded by Busquet et al., (2006) that although carvacrol altered the pH of the 

media with increasing dosage, the pH remained consistently high at around pH 6, a 

finding in agreement with that of the current study. In another study by Chaves et al., 

(2009), carvacrol supplemented at 0.2 g/kg DM to either barley or corn based diets did 

not change the pH of the media when compared to their respective CTR. The pH 

remained at 6.23 and 6.09 for barley and corn based diets respectively.  
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In the current study, the pH of the incubation media was reduced from 6.93 to an 

average of 6.35 at a lower dosage while at a higher dosage, fermentation was halted and 

pH in the fermentation vessels increased to 7.0. It can therefore be concluded that 

carvacrol mediates its effects by decreasing pH of the media. At a higher inclusion level, 

carvacrol was toxic and pH increased to 7.  

Previous findings on the effects of linseed oil or α-linolenic acid on pH have been 

variable. For example, in a study by Zhang et al., (2008), α-linolenic acid supplementation 

at 35 and 70 g/kg increased the pH of the media from 6.37 to pH 6.52 and 6.56 

respectively. In a Rusitec technique used by Vargas et al., (2011), addition of linseed oil to 

a TMR at 50 g/kg did not change the pH of the media which remained at pH 6.67. 

The effects of fish oil on pH have also been variable. In an in vitro study by Patra and Yu, 

(2013), the addition of fish oil to a hay diet at 3.1 and 6.2 ml/L did not alter methane 

production and in vitro pH remained unchanged at 6.21. In contrast, in a study by Fievez 

et al., (2003), the two types of fish oils used reduced methane production by 75 and 37% 

while the pH of the media remained unchanged with supplementation, within the range 

at 5.70 to 5.78 and 5.77 to 5.88. In the current study, fish oil reduced pH of the media 

from 6.9 to a range of 5.78-5.84, a similar change observed in the CTR diet. 

Methane production in vitro or in vivo is also influenced by the pH of the rumen 

environment (Bhata et al., 2006). A low pH suppresses methane production because 

cellulolytic and methanogenic bacterial activity is inhibited in such environments (Moss 

et al., 2000; Chung et al., 2011). This was demonstrated by Bhata et al., (2006), when a 

basal diet comprising hay, corn and soybean meal was incubated in a Rusitec fermenter, 

DM digestibility reduced from 60 to 42 % and a reduction in methane production of 59 % 

was observed when pH of the fermentor was reduced from pH 7 to pH 6. 
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In the current study, in vitro final pH environment ranged from 6.44-6.77 in the carvacrol 

supplemented treatments and 5.72-5.84 in the LO and fish oil supplemented treatments. 

Although methane production was lowest in the carvacrol treatment, principally it was 

due to a toxic effect on microbial metabolism.  

4.7.4 NDF digestibility 

Oil supplementation has been known to induce reductions, have no effects or even 

increase fibre digestibility (Sinclair et al., 2005). In the current study, when compared to 

the CTR, Cv1 reduced NDF digestibility in all the 3 basal diets, linseed oil did not have any 

effect in all the basal diets while fish oil increased NDF digestibility by 13% only in the 

maize based diets and did not have any effect in any other diets. The digestibility of NDF 

in the carvacrol based diets ranged from 182-572 g/kg which is lower when compared to 

that observed in LO and FO based diets that had a digestibility of above 690 g/kg. The 

lack of effect of linseed oil and fish oil on NDF digestibility agrees with earlier work of  

Beauchemin et al., (2009) and Cieslak et al., (2006) on supplementation of 4.2% crushed 

canola seed and 7 and 9% oilseed supplementation respectively in dairy cows and in 

vitro. Another study by Vargas et al., (2011) reported no change in NDF digestibility when 

linseed oil was supplemented at 5% DM to a TMR. The lack of effect of oils on NDF 

digestibility in the current study could have been either due to the oils not having an 

effect on the cellulolytic bacteria or that certain species of cellulolytic bacteria were 

inhibited and other species multiplied (Toral et al., 2009). 

Some studies have reported reduced NDF digestibility due to oil supplementation. 

Beauchemin et al., (2008) reported a reduced DM fermentability with 3.2% sunflower and 

flaxseed supplementation, while Patra and Yu (2013) reported 10 and 15% reductions in 

NDF degradability when fish oil was supplied at 3.1 and 6.2 ml/L in vitro. Vafa et al., 
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(2009) also reported an average of 3.3% reduction in DM digestibility with fish oil 

supplemented at 2, 4 and 6% DM on alfalfa hay diet.  

An increase in NDF digestibility following oil supplementation has been reported in 

previous studies. In the current study, only FO1 increased NDF digestibility in the maize 

based diet while linseed oil had no effect in any of the 3 basal diets. For example, Ueda et 

al., (2003) observed a 3% increase in NDF total tract digestibility with 3% linseed oil 

supplementation when compared to the un-supplemented control diet. 

The digestibility of NDF gives an estimate of how digestible feed is and may be closely 

related to methane formation (Boadi and Wittenberg, 2002; Dohme et al., 2000). 

Reductions in NDF digestibility is also one of the ways in which oil supplementation 

mediate reductions in methane production (Johnson et al., 2002; Beauchemin et al., 

2006). In the current study, Cv1 supplementation reduced methane output and this was 

accompanied with severe reductions in NDF digestibility. Many studies have also 

reported similar results. For example, in a study by Chung et al., (2011), supplementation 

of dairy cows on silage based diets with ground linseed at a rate 150 g/kg DM reduced 

NDF digestibility by 20% while methane production (g/kg DM intake) was reduced by 33% 

and was associated with a reduction in protozoa numbers. 

4.8 Conclusions 

The current study has shown that oil sources carvacrol, linseed oil and fish oil when 

added at the same level of supplementation, differed in fermentation characteristics. The 

three starch sources, wheat, barley and maize differed in fermentation characteristics, 

with wheat producing a high fermentation rate and maize producing a lower 

fermentation. Methane production among the starch sources varied with time of 

incubation. Within each treatment, methane production when expressed as ml/g DM 



                                                                             94 

varied with time of incubation and the basal diet used. Carvacrol reduced methane 

production more than linseed oil and fish oil, but the effects were mediated by a severe 

reduction in NDF digestibility. Linseed oil and fish oil had no effect on total methane 

production when compared to the CTR diet, except at a lower dose of fish oil (FO1) which 

increased methane production by 60% in the wheat based diet. 
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CHAPTER 5: The effect of starch source and oil source on the performance, methane 

production and milk fatty acid profile of Holstein dairy cows 

5.1 Introduction 

Loss of energy in cattle through methane output has been a source of concern due to its 

impact on climate change (Moss et al., 2000). The energy losses through methane 

production when expressed on the basis of gross energy intake vary between 2-12% (Van-

Ziljderveld et al., 2010). The dietary composition of cattle feed has a major influence on 

the amount of methane released from the rumen into the environment. A number of 

previous studies (e.g. Zhang et al., 2008; Beauchimin et al., 2009; Eugene et al., 2011) 

have indicated that lipid and starch supplementation of ruminant diets appear to be some 

of the most effective strategies to reduce ruminant methanogenesis.  

Dietary fats mediate reduced methane output in two main ways; by reducing fibre 

fermentability and by being toxic to protozoa (Ivan et al., 2001) and methanogenic 

bacteria (Moss et al., 2000). Additional beneficial effects of fats are that they increase the 

energy density of ruminant diets and therefore enhance milk production and can be used 

to modify the milk fatty acid composition (Odongo et al., 2007). A study by Beauchemin et 

al., (2009) indicated that processed oilseeds composed of long chain FAs have 

considerable potential to reduce methane production of ruminants. Several studies have 

reported improved animal performance following oil addition to the diet which may in 

part be explained by the reduction in methane production which is channelled towards 

improving productivity (Jordan et al., 2006).  

Oil supplementation of ruminant diets can also be employed to alter the milk fatty acid 

profile (Kazama et al., 2010). A study by Collomb et al., (2004) showed that sunflower oil, 
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being rich in linoleic acid (C18:2n-6), can reduce the proportion of short chain fatty acids (C6-

C14) and increase the C18 FAs, which are beneficial to human health. Studies by Colomb et 

al., (2004) and Kazama et al., (2010) have also shown that the monounsaturated fatty 

acid (C18:1) content of milk can be increased by 50 to 80% by feeding lipids such as flax oil 

which is rich in 18-carbon fatty acid. Palmitic acid (C16:0) content of milk fat can also be 

reduced by 20 to 40% by addition of mono or polyunsaturated fatty acids unless the 

supplemented lipid is rich in C16:0 (Odongo et al., 2007). Sunflower oil was chosen based 

on the potential benefit of reducing methane production and ability to increase the long 

chain fatty acids in milk. A rumen protected fat, megalac was also chosen since it is has 

small or no effects on rumen metabolism and its fatty acid profile differs from that of 

sunflower oil.  

Concentrate supplementation mediates reduced methane output by promoting ruminal 

propionate production and reducing ruminal pH, creating an unfavourable environment 

for methanogenic bacteria (Lovett et al., 2005).  A number of previous studies (Lovett et 

al., 2005; McGeogh et al., 2010) have recorded reduced methane output with 

concentrate supplementation particularly if the concentrate contains starch levels of 30% 

or more (McGeough et al., 2010; Hart et al., 2012).  With concentrate supplementation, 

retention time of feed in the rumen is reduced which also reduces the methane output 

(Moss et al. 2000). Considerable reductions in methane output are observed with ad 

libitum concentrate supplementation or with diets containing >80 concentrate 

supplementation which result in a decrease of 2-4% units of methane on a gross energy 

intake basis (Moss et al., 2000; McGeough et al., 2010). 

To date there is limited information (Beauchimen et al., 2009) on the combined effects of 

oil supplementation and starch source on methane output for a range of dietary 

conditions. Only one previous study by Eugene et al., (2011) examined the combination of 
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oil and starch type on methane output of bulls using linseed oil supplemented at 1.2 % 

DM and starch supplemented at 33% DM. In the study by Eugene et al., (2011), methane 

production in the bulls when expressed as L/d and L/kg LW gain was reduced by 20 and 

24 % respectively when compared those that were fed a high fibrous diet. The reduction 

in methane production was as a result of the reduced DM intake associated with oil 

supplementation. 

The objective of the current study was to determine the impact of feeding cows with 

concentrates high in wheat or maize while supplementing with a fat source high in 

saturated or unsaturated fatty acids on the methane production, productivity, blood 

metabolites and milk fatty acids in dairy cows. The hypothesis that was tested was that a 

combination of starch source and oil source would reduce methane production and that 

the effects on methane production would be additive. 

5.2 Materials and Method 

The work described in this paper was conducted in accordance with the requirements of 

the UK Animals (Scientific Procedures) Act 1986 (Her Majesty’s Stationery Office, 2000) 

and was approved by the Harper Adams University Ethics Committee.   

5.2.1 Animals, experimental design and treatments 

Sixteen multiparous Holstein cows that were approximately 60-100 days in lactation and 

yielding 38 (±3.9) kg of milk/d at the beginning of the study were used in a 4x4 Latin 

square design with a 2 X 2 factorial arrangement of treatments. Each period consisted of 

23 days of adaptation to the diets followed by a 7 d sampling period. Based on recordings 

in the week prior to commencing the study, animals were blocked and allocated to one of 

four  treatments according to calving date, milk composition, body condition score and 
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live weight. The four treatments were; Maize based concentrates and rumen protected 

fat (MP); Wheat based concentrate and rumen protected fat (WP); Maize based 

concentrate and sunflower oil (MS); Wheat based concentrate and sunflower oil (WS). All 

the cows received a basal total mixed ration (TMR) based on maize and grass silage (2:1 

DM basis) with added rapeseed meal, distillers grains, urea and molasses as shown in 

Table 22. The rumen protected fat (Megalac®, Volac International Ltd, Lampeter, Wales) 

and sunflower oil (KTC edible Ltd, Wednesbury, UK) were added to the basal total mixed 

ration (TMR) to supply approximately 29 g/kg DM of Megalac® or 25  g/kg DM of 

sunflower oil to provide a similar supplementary fat level. Cows also received one of two 

concentrates in pellet form that were formulated to be isonitrogenous and isoenergetic 

and to contain approximately 290 g/ kg DM starch from either maize or wheat, 

respectively (Table 23). The concentrates were fed at 7.5 kg /cow/d as fed via out of 

parlour feeders in three equal meals of 2.5 kg separated by a minimum of 6 h between 

meals. The out of parlour feeders were calibrated to ± 0.1 kg at the beginning of each 

collection period. 
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                      Table 22. Diet composition (g/kg DM) and chemical composition  
                    (g/kg DM) for a basal total mixed ration that contained Megalac 
                     (Meg) or sunflower oil (Sun) 

 Meg Sun 

Maize silage 645 648 
Grass silage 275 276 
Rapeseed meal 
Maize distiller dark grains 

24 
24 

24 
24 

Urea 

Megalac 

3 

29 

3 

--- 

Sunflower oil --- 25 

   

Chemical composition   
   Dry matter, g/kg 323 317 
   Ash 56 50 
   Organic matter,  
   Crude protein 

944 
104 

950 
104 

   NDF 357 373 
   Starch 221 231 
   Fatty acids 66 63 
   Fatty acid, g/100g FA   
    C16:0 
    C18:0 
    C18:1n-9 
    C18:2n-6 

31 
2.5 
31 
28 

14 
2.3 
31 
47 

    C18:3n-3 4.7 4.6 
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                        Table 23. Ingredient composition (kg/t) and chemical composition 
                          of the wheat and maize based concentrates 

 

 

 

 

 

 

 

 

 
                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Contained protein 0.1%, ash 81.6%, sodium 23.9%, calcium 4.8%, phosphorus 0.1%, 
 magnesium 5.9%, copper 4 mg/kg 
2 Contained calcium 21%, phosphorus P 3%, sodium 10%, sodium 5%, sodium  
selenite 30 mg/kg, selenium (from  saccharomyces cerevisiae), 10 mg/kg, 
 cobalt carbonate, 70 mg/kg, manganese 5000 mg/kg, zinc oxide 4000 mg/kg,  
 zinc chelate 2000 mg/kg, copper sulphate 1 500 mg/kg, copper chelate 1000 mg/kg,  
vit A 500 000 iu/kg,  vit D3,100 000 iu/kg vit E 4000 iu/kg, vit B12 2 500 mcg/kg 

 

The grass silage was from a first cut sward consisting predominantly of ryegrass and both 

the grass and maize silage were ensiled in a roofed, concrete clamp. The forages and 

straight feeds were mixed using a Keenan compact forage mixer (Richard Keenan & Co. 

Ltd, Carlow, Ireland) calibrated to ± 1 kg and fed through Insentec roughage intake 

feeders (RIC feeders) fitted with an automatic animal identification. The forage weighing 

  Wheat Maize 

Wheat 400 --- 
Maize                --- 400 
Maize distillers dark grains 121 121 
Soybean meal 165 165 
Rapeseed meal 150 150 
Propass1 50 50 
Vegetable oil 13 13 
Molasses 68 68 
Calcined magnesite 1 1 
Limestone 20 20 
Rock salt 5 5 

Dicalcium phosphate 5 5 
Minerals and vitamins2 3 3 
Total 1000 1000 

   Chemical composition 
     Dry matter 876 863 

   Crude protein 259 247 
   NDF 126 124 
   Ash 83 86 
   Starch 290 332 
   Fatty acids 49 46 
Fatty acid, g/100g FA 

      C16:0 24 25 

    C18:0 2.2 2.6 
    C18:1n-9 31 33 
    C18:2n-6 38 35 

    C18:3n-6 0.5 0.7 
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system was calibrated to ± 0.1 kg (Sinclair et al., 2005; Sinclair et al., 2007). Fresh feed 

was offered daily after morning milking at approximately 0900h at the rate of 1.05 of ad 

libitum intake, with refusals collected twice weekly on a Tuesday and Friday. Each of the 

experimental cows had a transponder fitted around their neck to allow access to the out 

of parlour feeders and forage bins. 

5.2.2 Housing  

Cows were housed in super comfort cubicles fitted with rubber mattresses and bedded 

with sawdust and lime twice weekly. The loafing area was scraped four times daily using 

automatic scrapers. All cows had continuous access to water throughout the 

experimental period.  

5.2.3 Sampling procedure 

Cows were weighed and condition scored (Lowman et al., 1976) after the morning milking 

in the week before the start of the first period and at the end of each period. The cows 

were milked twice daily at approximately 05:30 and 15:30 h with milk yield recorded at 

each milking. Milk samples were taken in duplicate on four occasions during the final 7 

days of each period (Mon pm, Tue am, Thurs pm, Fri am). Milk samples were preserved 

with 2-bromo-2-nitropropane-1, 3-diol (Sigma Aldrich, Dorset, UK) and stored at 4°C for 

subsequent composition analysis to determine fat, protein and lactose contents and a 

second set of milk samples were immediately centrifuged by a method described by Feng 

et al., (2004), and the fat layer collected and stored at -20oC prior to subsequent fatty acid 

analysis. Feed intakes were recorded daily and forage and concentrate samples collected 

twice during each sampling period and frozen at -20°C prior to subsequent analysis. 

Faecal samples were collected every day during the sampling period between 07 30h and 

08 30h and between 14 30 and 15 00h. Fresh voided samples were collected either from 
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the floor of the housing unit or grabbed as cows stood up on being approached. Samples 

were frozen at -20°C prior to subsequent analysis. Blood samples from the jugular vein 

were collected in duplicate at 08:00 h and at 12:00 h on the 2nd day and at 10:00 h and 

14:00 h on the 4th day of each sampling period. The blood samples were collected into 

sodium heparinised vacutainers for subsequent urea and β hydroxybutyrate (3-OHB) 

determination and into vacutainers containing potassium oxalate for glucose 

determination. Blood samples were immediately centrifuged (Avanti 30, Beckman, 

Beckman Laboratories, USA) at 3000 g  for 15 min and the plasma collected and stored at 

-20°C prior to subsequent analysis of urea, 3-OHB and glucose. 

Sampling of respired air from the cows was done using evacuated canisters which were 

being changed everyday at 10:00 hrs during the 5 day sampling period. From the respired 

air, rumen methane production was measured using the sulphur hexafluoride (SF6) tracer 

technique according to the method described by Johnson and Johnson (1995) as 

described in Section 3.8.2. Calibrated brass permeation tubes weighing approximately 58 

g were inserted into the rumen of each cow. The permeation rate of SF6 from the tubes 

was determined prior to insertion in the rumen and averaged 5.5 ± 0.0005 mg/d. Respired 

gas from each animal was sampled into pre-evacuated (85 to 97 kPa) canisters as 

described by Johnson and Johnson (1995; Fig 9). The collection devices were changed 

every 24 h at approximately 1000 h. The canisters containing the respired gas samples 

were immediately transported to the laboratory and pressurised with N2 gas to 17 kPa. 

Subsamples of eructated air were collected for subsequent analysis of SF6 and CH4 as 

described in section 3.8.2. Background concentrations of the gases were also measured 

by collecting air samples at ambient conditions around the dairy unit during the 5 d 

sampling period. This was done by placing the evacuated cylinders, one just outside the 

housing unit and the other one in the central part of the housing unit near the out of 
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parlour feeding area. The two cylinders were being changed everyday at same time as 

those attached on the animals.  

 

                             Figure 9. Cow wearing a full gas collection pack 

5.2.4. Laboratory analyses 

The TMR and concentrate samples were freeze dried (Edwards freeze dryer Modulyo, 

Bristol, UK) at -50°C for 5 days and milled in a Delonghi KG79 grinder (Freemans PLC, 

Sheffield, UK) to pass through a 1 mm screen (Endecotts Ltd, London, UK). The milled 

samples were analysed in duplicate for DM, OM, N, according to the Association of 

Official Analytical Chemists (AOAC, 2000) for DM (934.01), CP (988.05) and ash (942.05) 

as described in sections 3.1.1 to 3.1.3. Neutral detergent fibre (NDF) was analysed 

according to Van Soest et al., (1991) as described in section 3.1.4. Milk compositional 

analysis was conducted using a Milkscan Minor 78110 (Foss Electric, Hillerod, Denmark) 

as described in section 3.2.1. Milk samples for fatty acid analysis were centrifuged by the 

method of Feng et al., (2004) as described in section 3.2.2. Methylation of the lipids 

collected was done according to the procedure by Christie (1982) with modifications 
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according to Chouinard et al., (1999) as described in section 3.2.2. Fatty acid content in 

TMR and concentrate samples were analysed according to Sukhija and Palmquist (1998) 

using nonadecaenoic acid (C19:0) as an internal standard as described in section 3.3.  

Samples of eructated air from the cows and the ambient air samples were analysed for 

concentrations of SF6 and CH4 by gas chromatography as described in section 3.8.2. Daily 

CH4 production by each animal was calculated using the known permeation rate of SF6 for 

each tube and the concentrations corrected for background levels of SF6 and CH4 in the 

breath samples using the equation: 

CH4 (g/d) = SF6 permeation rate (g/d) x [CH4] 
                                                                      [SF6] 
 

Where CH4 (g/d) is the emission rates of the individual cows, SF6 permeation rate (g/d) is 

the known release rate of SF6 before boluses were inserted in the rumen and [CH4] and 

[SF6]  are sample concentrations corrected for background levels expressed in micrograms 

per cubic meter  (Johnson and Johnson, 1995). Faecal samples were oven dried at 60°C 

for 48h, milled and acid insoluble ash determined using the method described by Van 

Keulen and Young (1977) using 2M hydrochloric acid as described in section 3.1.5. 

Concentrate and TMR samples were also analysed for acid insoluble ash and dry matter 

digestibility of the samples was determined as described in section 3.1.5. Plasma samples 

were analysed for glucose, 3-OHB and urea concentration using commercial diagnostic 

kits (Catalogue nos. GL 1611, RB 1007 and UR220 respectively, Randox Laboratories, 

London, UK) using a Cobas-Mira Plus auto-analyser (ABX diagnostics, Montpellier, France)  

5.2.5 Statistical analyses  

The mean values of the data from the individual cows i.e. methane output (g/d), feed 

intake data (kg/d), and milk performance (kg/d) was determined by calculating the 
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average values collected during the 5 day sampling period for each individual animal. 

Data was analysed as a Latin square design using Genstat 13.1 (VSN International Ltd, 

Hemel, Hempstead, UK) with a 2X2 factorial arranegement of treatments. The statistical 

model included main effects of starch source and oil source, starch sources being wheat 

or maize and oil sources were either Megalac or sunflower. The period effect was the row 

and cow effect taken as the column. Interaction between starch source and oil source 

was also determined. Plasma data calculated as mean values at each particular time 

period was analysed using repeated measures of analysis of variance. Multiple 

comparisons among treatment means were performed by the Tukey's method. Results 

were presented as treatment means with SED, and significance considered at P<0.05. 

5.3 Results 

5.3.1 Feed analysis 

The two TMR rations had a similar DM, organic matter, crude protein, NDF, starch and 

total fatty acid content (Table 22). However, there were differences in the FA 

composition. The TMR containing Megalac was higher in C16:0 (31 g/100g fatty acids) 

whereas the TMR containing sunflower oil was high in C18:2n-6 (47 g/100g fatty acids). The 

two concentrates had a similar DM, crude protein, ash and total fatty acid content, and 

had a similar fatty acid profile (Table 23). The concentrates only differed in the starch 

content, wheat based concentrates supplied 290 g/kg DM starch, while the maize based 

concentrates supplied 332 g/kg DM starch. The oil intake was 2.0% of total DM intake for 

megalac based diets and 1.6 % of total DM intake for sunflower oil based diets. 

5.3.2 Intakes and animal performance 

 

Cows when fed the sunflower based diets (WS and MS) ate 2.5 kg/d (total DM) less than 

those fed the Megalac based diets (P<0.001; Table 24). Mean total DM intake was 18.5 kg 
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DM/cow/d for cows offered the sunflower based diets and 21 kg DM/d for those fed the 

Megalac based diets, representing a 12% reduction in feed intake with the sunflower oil 

based diets. There were no starch source effects on DM intake and no interaction 

between starch and oil source on DM intake was observed. There was no effect (P>0.05) 

of dietary treatment on daily milk yield, which averaged 33.2 kg/d, but milk fat levels 

were 3 g/kg lower (P<0.01) in cows when fed a sunflower oil based diet when compared 

to those fed a Megalac based diet, and also tended (P=0.051) to be lower when fed the 

maize compared to the wheat based concentrate. When corrected for fat content, 

average daily milk yield was 2.3 kg lower (P<0.05) in cows when fed sunflower oil based 

diets than those fed Megalac based diets. There was no effect (P>0.05) of dietary 

treatment on milk protein content or yield.  

Nutrient intakes differed among the treatment groups. Cows fed the sunflower oil based 

diets had lower N intakes (0.20 vs. 0.24 kg/d; Table 24) when compared to those fed the 

Megalac based diets. Though all the cows were fed 7.5 kg/d each on as fed basis, of either 

wheat or maize based concentrates, it was observed that cows that received the wheat 

based concentrates had a higher N intake of 1.70 kg/d/cow when compared to the ones 

that received maize based concentrates with N intakes of 1.61 kg/d/cow (P<0.001). 

Similarly, total N intakes differed. Cows that were fed the wheat based diets had on 

average 1.93 kg/d of total N intake when compared to 1.83 kg/d N intake in cows fed the 

maize based diets (P<0.001). Total N intakes also varied with oil source (P<0.001). Intakes 

were lower when cows were fed sunflower oil based diets (1.85 kg/d) when compared to 

those fed Megalac based diets with total N intakes of 1.90 kg/d.  

Starch intakes were 0.2 kg/d higher in cows fed the maize based concentrates when 

compared to intakes in cows fed the wheat based concentrates (P<0.05; Table 24). 

However total starch intakes were similar in all the treatment groups (P>0.1). 
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Neutral detergent fibre (NDF) intakes also varied among the treatment groups. NDF 

intakes were 0.02 kg/d higher in cows fed the wheat based diets when compared to those 

fed the maize based diets (P<0.001) and where also 0.60 kg higher in cows fed the 

Megalac based diets when compared to those fed the sunflower oil based diets. Total 

NDF intake followed a similar trend, and were 0.70 kg higher in cows fed Megalac based 

diets when compared to those fed the sunflower oil based diets.  

There was also no effect (P>0.05) of starch or oil source on live weight change but final 

condition score tended (P=0.06) to be higher in cows when fed the wheat compared to 

the maize based concentrate. There was a starch source effect (P<0.05) on condition 

score change; cows lost on average 0.06 body condition score when receiving the wheat 

based concentrate and gained 0.01 condition when receiving the maize based 

concentrate. 
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Table 24. Intakes (kg/d) and performance in dairy cows fed concentrates high in wheat or maize 
and supplemented with either Megalac (Meg) or Sunflower oil (Sun) 

Starch in concentrate 
 

Wheat Maize     P-values 

Oil  Meg Sun Meg Sun s.e.d Starch (S) Oil (O) S x O 

TMR DM intake, kg/d 14.7 12.0 14.4 12.2 0.544 0.872 <0.001 0.576 

Total DM intake, kg/d 21.3 18.4 20.8 18.6 0.559     0.670 <0.001 0.324 

N TMR intake, kg/d 0.25 0.20 0.24 0.20 0.007 0.724 <0.001 0.325 

N conc intake, kg/d 1.70 1.70 1.61 1.61 0.0004 <0.001 0.913 0.691 

Total N intake, kg/d 1.95 1.90 1.85 1.81 0.006 <0.001 <0.001 0.304 

         

Conc starch intake, kg/d 1.90 1.90 2.01 2.17 0.070 0.012 0.256 0.252 

TMR starch intake, kg/d 3.26 2.73 2.99 2.79 0.111 0.329 0.002 0.136 
Total starch intake, kg/d 5.16 4.63 4.99 4.96 0.164 0.650 0.092 0.133 

Conc NDF intake, kg/d 0.83 0.83 0.81 0.81 0.0002 <0.001 0.915 0.692 

TMR NDF intake, kg/d 5.27 4.41 5.07 4.50 0.145 0.721 <0.001 0.317 

Total NDF intake, kg/d 6.10 5.24 5.88 5.31 0.145 0.637 <0.001 0.316 

         

Milk yield, kg/d 32.6 32.9 33.6 33.6 0.761 0.111 0.793 0.760 

Fat corr. milk yield, kg/d 30.5 27.9 28.9 27.0 1.460 0.248 0.037 0.776 

Milk fat, g/kg 37.4 34.3 35.1 32.3 0.151 0.051 0.008 0.881 

Fat yield, kg/d 1.22 1.12 1.16 1.08 0.058 0.249 0.037 0.774 

Milk protein, g/kg 32.1 32.3 32.5 32.1 0.034 0.840 0.612 0.214 

Protein yield, kg/d 1.04 1.05 1.08 1.07 0.027 0.134 0.997 0.671 

Final Lwt, kg/d      668 670 673 671 5.320 0.406 0.977 0.608 

Lwt change, kg/d 0.32 0.30 0.47 0.20 0.176 0.827 0.245 0.312 

Final condition score 2.65 2.63 2.54 2.56 0.062 0.057 0.945 0.704 

Condition score change -0.08 -0.05 0.09 0.10 0.090 0.019 0.798 0.830 

   Lwt = live weight. Concentrate DM intake was on average 6.5 kg/d/cow 

5.3.3 Methane production 

Cows when fed the maize based diets produced 18.5 g/d less methane output when 

compared to those that fed wheat based diets (362 vs. 380.5 g/d respectively) 

representing a 5.8% difference in methane output between the two starch sources 

(P<0.05; Table 25). Oil source had no effect (P=0.485) on daily methane output and there 

was no interaction observed between oil and starch source (P=0.456).  When methane 

output was expressed per unit of DM intake (g/kg DM intake), oil source had an effect 

(P<0.001) with cows fed diets containing Megalac producing 2.3 g/kg DM less methane 

when compared to those fed diets containing sunflower oil, representing a 12.8% 

increase in methane output with the sunflower oil based diets. When methane output 

was expressed per unit of milk yield (g/kg of milk), cows fed the maize based diets 
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produced a lower methane output (11.3 g/kg milk yield) than those fed the wheat based 

diets (12.3 g/kg milk; P=0.023), representing an 8.1% difference in methane output 

between the two starch sources. There was no interaction observed between the oil 

source and starch source on methane output when expressed as g/day, g/kg DM intake or 

g/kg milk (Table 25). 

Table 25. Methane production in dairy cows fed concentrates high in wheat or maize and 
supplemented with a saturated fat source (Megalac: Meg) or sunflower oil (Sun) 

Starch in conc   Wheat    Maize     P-values   

Oil Meg Sun Meg Sun s.e.d Starch (S) Oil (O) S x O 

         
CH4,  g/d 386 375 362 362 11.3 0.027 0.485 0.456 

CH4, g/kg DM intake 18.3 20.7 17.7 19.8 0.690 0.127 <0.001 0.744 

CH4,  g/kg milk yield 12.7 11.8 11.3 11.3 0.549 0.023 0.231 0.267 

CH4, g/kg fat yield1 13.7 14.3 13.1 14.8 1.080 0.928 0.130 0.479 
1fat corrected yield 

5.3.4 Blood metabolites 

There was a starch source effect on plasma urea concentrations (P<0.001) with cows fed 

the maize based concentrates having 0.5 mmols/L lower concentration than those fed the 

wheat based concentrate (Table 26). This difference was evident at all sampling times (Fig 

10). There was a trend (P<0.10) for cows fed the maize based concentrate to have lower 

plasma concentrations of 3-OHB (Fig 11). 

Table 26. Plasma metabolites in dairy cows fed concentrates high in wheat or maize and 
supplemented with  saturated fat source (Megalac: Meg) or sunflower oil (Sun) 

Starch in conc   Wheat   Maize   
 

P-values    

Oil Meg Sun Meg Sun s.e.d Starch (S) Oil (O) SXO 

Urea, mmol/L 4.42 4.390 3.81 4.00 0.138 <0.001 0.390 0.276 

3-OHB, mmol/L 0.589 0.569 0.534 0.557 0.0281 0.097 0.959 0.281 
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Figure 10. Mean plasma urea concentrations in dairy cows fed concentrates high in wheat (W) or 

maize (M) and supplemented with a saturated fat source (Megalac:P) or sunflower oil (S) 

 

 

 

Figure 11. Mean plasma 3-OHB concentrations in dairy cows fed concentrates high in wheat (W) 

or maize (M) and supplemented with a saturated fat source (Megalac:P) or sunflower oil (S). 
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5.3.5 Milk fatty acid profile  

There was no effect of starch or oil source on the milk fatty acid content of the short 

chain fatty acids (C4-C10; Table 27). Among the medium chain FAs, C16:0 was lower by 3.8 

g/100g in cows when fed the sunflower oil based diets (P<0.001) which was a reduction of 

12.4%. The long chain FA C18:0 was increased by 1 g/100g in cows when fed sunflower oil 

compared to Megalac (P<0.001) which was a 9.8% increase. Cows fed sunflower oil based 

diets (WS or MS) also had increased (P<0.05) concentrations of the trans-fatty acids trans-

9 C18:1, trans-11 C18:1, cis-9, trans-11 CLA and trans-10, cis-12 CLA by 0.08 g/100g, 1.3 

g/100g, 0.25 g/100g and 0.01 g/100g, thus representing increases of 8, 46, 25 and 8.3% 

respectively. Feeding the maize based concentrates also increased (P<0.05) the 

concentrations of all the trans-fatty acids. There was no effect (P>0.005) of sunflower oil 

on cis-9, cis-12 C18:2 or cis-9, cis-12, cis-15 C18:3. There was an interaction between starch 

and oil source (P<0.05) due to increased C18:0 concentrations in cows fed the wheat based 

concentrates and sunflower oil but C18:0 concentrations decreased in cows fed the maize 

based concentrates and sunflower oil. Feeding sunflower oil decreased (P<0.001) milk 

saturated fatty acids and increased (P<0.001) monounsaturated fatty acids and 

polyunsaturated fatty acids (P<0.05). 
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Table 27. Milk fatty acid profile in dairy cows fed concentrates high in wheat or maize and supplemented 
with a saturated fat source (Megalac: Meg) or sunflower oil (Sun) 

    Wheat     Maize     P - values 

 
Meg Sun 

 
Meg Sun s.e.d Starch (S) Oil (O) SXO 

Milk FAs (g/100g)                   

C4:0 2.50 2.34 
 

2.45 2.40 0.070 0.968 0.037 0.284 

C6:0 1.42 1.34 
 

1.35 1.35 0.052 0.473 0.235 0.265 

C8:0 0.70 0.66 
 

0.62 0.63 0.055 0.172 0.667 0.474 

C10:0 1.96 1.91 
 

1.80 1.88 0.084 0.130 0.773 0.258 

          

C12:0 2.60 2.58 
 

2.42 2.51 0.088 0.063 0.560 0.417 

C14:0 9.71 9.94 
 

9.56 9.66 0.178 0.105 0.206 0.617 

C15:0 0.78 0.81 
 

0.77 0.77 0.024 0.099 0.578 0.349 

C16:0 30.9 27.2 
 

30.4 26.4 0.505 0.103 <0.001 0.696 

cis-9 C16:1 1.48 1.43 
 

1.54 1.43 0.093 0.736 0.234 0.664 

C17:0 0.39 0.40 
 

0.38 0.40 0.007 <.001 0.062 0.722 

          

C18:0 10.38 11.4 
 

9.97 11.0 0.245 0.963 <0.001 0.021 

cis-9 C18:1 24.8 25.7 
 

25.6 26.1 0.536 0.125 0.083 0.565 

trans-11 C18:1  2.67 3.81 
 

3.02 4.37 0.223 0.006 <0.001 0.516 

trans-9 C18:1 0.95 1.08 
 

1.05 1.09 0.034 0.034 0.002 0.066 

C18:2n-6 2.39 2.43 
 

2.53 2.45 0.061 0.058 0.631 0.226 

cis 9,trans 11CLA 0.69 0.96 
 

0.81 1.04 0.055 0.019 <0.001 0.584 

trans11,cis12CLA 0.12 0.13 
 

0.12 0.13 0.007 0.911 0.048 0.751 

C18:3n-3 0.50 0.50  0.45 0.50 0.021 0.054 0.114 0.055 

          

ΣSFA 61.7 58.8  60.2 58.1 0.796 0.069 <0.001 0.456 

ΣMUFA 31.2 33.9  32.6 34.5 0.780 0.067 <0.001 0.449 

ΣPUFA 3.50 3.65  3.62 3.72 0.077 0.079 0.028 0.666 

ΣSFA=sum of saturated fatty acids; C4:0; C6:0; C8:0; C10:0; C12:0; C14:0; C16:0  
ΣMUFA=sum of monounsaturated fatty acids; cis-9 C18:1; trans-11 C18:1; trans-9 C18:1 
ΣPUFA= sum of polyunsaturated fatty acids; C18:2n-6; cis-9, trans-11 CLA; trans-11, cis-12 CLA; C18:3n-3. 

5.3.6 Whole tract digestibility 

The DM digestibility of all the diets was high and was not affected by dietary treatment, 

although there was a trend (P=0.07) to be lower in cows when fed the maize compared to 

the wheat based concentrates (Table 28).  

Table 28. Whole tract digestibility in dairy cows fed concentrates high in wheat or maize and 
supplemented with a saturated fat source (Megalac: Meg) or sunflower oil (Sun) 

Starch in conc   Wheat    Maize     P-values    

Oil Meg        Sun Meg Sun s.e.d Starch (S) Oil (O) SXO 

DM, g/kg 0.77 0.74 0.75 0.74 0.009 0.067 0.256 0.505 
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5.4. Discussion 

The current study examined the effect of starch source and oil source on methane 

production, productivity and milk FA profile of Holstein dairy cows. Megalac was used as 

an inert source of fat high in palmitic acid (C16:0) as it was assumed to have minimal effect 

on methanogenesis (Rabiee et al., 2012). Sunflower oil was added to the diets at 1.6% DM 

basis in order to avoid negative effects on digestibility and feed intake, and maize starch 

was compared against wheat starch as it has a slower rate of release in the rumen and a 

lower rumen degradability (Moss et al., 2000; Chaves et al., 2009; Reynolds 2006). 

5.4.1 Intakes and animal performance 

Dry matter (DM) intake influences methane output in ruminants (Moss et al., 2000; 

Reynolds et al., 2011). In the current study, the addition of sunflower oil reduced total 

DM intake by 2.5 kg/cow/d or by 12%. A reduction in DM intake following oil addition to 

ruminant’s diet has been reported in several previous studies. For example McGinn et al., 

(2004) reported a 6.6% reduction in DM intake following a 5% sunflower oil 

supplementation. In the current study both the sunflower oil and Megalac based diets 

were high forage diets with a similar composition. Both diets were composed of maize 

and grass silage in the ratio 3:1 with the silages making up 90% of the total TMR ration. 

Similar to Jordan et al., (2006), the reduction in DM intake with sunflower oil may have 

been as a result of reduced palatability. According to VanZijderveld et al. (2010), fats and 

oils indirectly lower methane outputs by reducing DM intake which occurs due to a 

reduction in DM digestibility of feed in the rumen, although in the current study, DM 

digestibility was unaffected by oil source. In a study by Petit et al., (2004), cows on a TMR 

ration when supplemented at 3.6 % DM with either Megalac or whole sunflower seeds 

had a similar DM intake which averaged 21 kg/d. Petit et al., (2004), however used whole 

sunflower seeds, unlike in the current study where refined sunflower oil was used. 
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Nutrient intake varied with dietary treatment. In the current study, though CP contents of 

the Megalac and sunflower based diets were similar at 104 g/kg DM, the N intake were 

higher in cows fed the megalac based diets at 0.24 kg/d when compared to intakes of 

0.20 kg/d observed in cows fed the sunflower based diets. The higher intakes were as a 

result of the high TMR DM intakes observed in cows fed on this diet. Total N intakes 

followed a similar trend. On the other hand, N intakes of cows fed the wheat based 

concentrates was 0.09 kg/d higher than those fed the maize because the wheat based 

concentrates had a higher CP content of 259 g/kg DM when compared to 247 g/kg DM 

found in the maize based concentrates.  

In the current study, cows fed the maize based concentrates gained 0.1 condition score 

while those that fed the wheat based concentrates lost 0.06. The increase in condition 

score with maize based concentrates can be attributed to the reduction in daily methane 

output associated with this diet in association with the greater predicted content of by-

pass starch (Doreau et al., 2011). 

5.4.2. Milk yield and components 

In the current study, milk yield averaged 33.2 kg/d and was unaffected by dietary 

treatment but fat corrected yield was 2.2 kg/d lower when sunflower based diets were 

fed. The result is similar to findings by Beauchemin et al., (2009) who reported no change 

in milk yield following supplementation of dairy cows with sunflower seeds at 3.7% DM. 

However, some previous studies have reported either reduced or improved milk yields 

with sunflower oil supplementation. For example in a study by Johnson et al., (2002) both 

milk and 3.5% fat corrected milk (FCM) yields were greater when cows were fed the 

oilseeds.  In a study by Petit et al., (2004), a 3.6 % supplementation of either Megalac or 

whole sunflower seeds resulted in cows fed the Megalac based diets producing 5.6 kg/d 
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more milk than those fed the sunflower seed based diets. According to Petit et al., (2004), 

cows on the Megalac based diet had a 4.4 Mcal/d higher digestible energy intake which 

could have influenced the increase in milk yield. In the current study, the lower fat 

corrected yield reported when cows were fed sunflower based diets could have been due 

to the lower DM intake on this diet.  

It is well established that milk fat content can be modified by fat supplementation 

(Chilliard et al., 2009). In the current study, both milk fat content (g/kg) and fat yield 

(kg/d) were reduced by 3 g/kg and 0.09 kg/d respectively with sunflower oil addition.  The 

trans-fatty acids absorbed as a result of ruminal bio-hydrogenation are thought to be 

responsible for depressed milk fats (Bauman and Griinari, 2001). A meta-analysis by 

Rabiee et al., (2012) associated milk fat depression to an increase in trans-10, cis 12 CLA 

concentrations in milk fat. In the current study, cows fed sunflower oil based diets had an 

8% higher concentration of trans-10, cis 12 CLA in the milk fat when compared to those 

fed Megalac based diets. The high trans-10, cis 12 CLA concentration may have 

contributed to the low milk fat content reported in the current study. Consistent with 

findings in the current study, some previous studies have also reported reduced milk fat 

content following oil supplementation. For example, in a study by Rego et al., (2009), 

supplementation of grazing cows with 0.5 kg/d of sunflower oil reduced the milk fat 

content by 0.5% and the fat yield by 0.12 kg/d when compared to the un-supplemented 

control. In another study, Petit et al., (2004) observed no changes in milk fat 

concentration, but a 0.17 kg/d lower fat yield was reported in cows supplemented with 

3.6% whole sunflower seeds when compared to those fed a Megalac based diet. 

 On the other hand, it is possible that oil supplementation may fail to have an effect on 

milk fat yield and milk fat concentration. According to Chilliard et al., (2009), this may 

happen when the supplemented fats have a slow release of FAs in the rumen, a common 
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phenomenon with rumen inert fats and whole oil seeds, and consequently results in low 

concentrations of trans-fatty acids. For example, in a study by Beauchemin et al., (2009), 

supplementation with sunflower seeds at 3.7% had no effect on any of the milk 

component concentrations.  

5.4.3 Methane production 

In the current study, daily methane output was 18.5 g lower in cows receiving the maize 

compared to those that received the wheat based concentrates. Similarly, methane 

output when expressed per kg of milk yield was 1 g/kg lower in cows fed the maize based 

concentrates. A literature search found that no previous study has been conducted to 

compare the effects of feeding dairy cows maize or wheat based concentrates on 

methane production. However, a few review studies have highlighted that maize is more 

effective in reducing methane production when compared to wheat. For example, a 

review by Doreau et al., (2011) stated that compared to wheat, maize degradation in the 

rumen is low and hence maize escapes into the small intestine where it is digested to a 

greater extent. Some studies have examined the effects of maize and barley based silages 

on methane production. For example, in a study by Benchaar et al., (2014), cows when 

fed TMR composed of 54% barley silage produced 6.6 % GE intake as methane output 

when compared to 5.1% of GE intake produced when cows were fed a TMR diet 

composed of 54% maize silage. In the current study, though wheat and maize based 

concentrates were supplied at the same level, the maize based concentrates contained a 

higher starch content of 332 g/kg compared to 290 g/kg in the wheat based concentrates. 

Similarly starch intakes were 0.2 kg/d/cow higher in cows fed maize based diets when 

compared to those fed the wheat based diets. The higher starch content in the maize 

based concentrates therefore were responsible for the lower methane output.  The total 

starch intake (kg/d) was similar in all the cows and only showed a tendency to be higher 
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in cows fed the Megalac based diet probably due to the high total DM intake observed on 

this diet.  

In the current study, methane output when expressed per kg of DM intake was influenced 

by oil source, with cows fed the sunflower oil based diets producing 2.3 g/kg DM higher 

methane output when compared to those fed the Megalac based diets. The increase in 

methane output observed with the sunflower oil based diet was unexpected considering 

that DM intake was reduced on this treatment and the expectation was that methane 

output would also be reduced. In previous studies, reductions in methane output were 

observed when high concentrations of sunflower oil were used. For example, McGinn et 

al., (2004) used 5% sunflower oil supplementation and observed a 21 % reduction in 

methane output (g/d and GE intake). Similarly, Beauchemin et al., (2007b) reported a 

reduction of 15% of GE intake in methane output following 3.4% sunflower oil 

supplementation. Machmuller et al., (2000) also reported a 27% reduction in methane 

output (g/kg live weight) when lambs receiving a maize silage diet were supplemented 

with sunflower seeds at 60 g/kg DM. A study by Beauchemin et al., (2009) reported a 10% 

reduction in daily methane production (g/d) in dairy cows when crushed sunflower seeds 

were supplied to a TMR (composed of silage and barley grain) at 3.3% DM. However 

when methane output was expressed on the basis of DM intake and GE intake, no 

changes in methane output were observed.  

According to Beachemin et al., (2009), the effects of oils on methane production vary with 

presentation of the oil and the composition of the basal diet. In the case of sunflower oil, 

this has not been fully investigated. Only one previous study examined how the 

presentation of sunflower oil affects methane production, and results showed that whole 

sunflower seeds are more effective in reducing methane output when compared to 

refined sunflower oil. For example, in a study by Beauchemin et al., (2007b), heifers were 
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fed whole crop barley silage supplemented with either sunflower oil or sunflower seeds 

at 59 g/kg DM. Heifers fed sunflower oil based diets produced 12% and 16 % less 

methane when expressed on the basis of DM intake and GE intake respectively, while 

heifers fed sunflower seed based diets produced 23% (DM intake) and 25% (GE intake) 

reductions in methane output when compared with the un-supplemented controls.  It is 

clear from this study that sunflower oil supplemented at the same level had a 

considerably less effect on methane production. Sunflower seeds were more effective in 

reducing methane production due to the reduction in fibre fermentation which 

consequently resulted in reduced feed intake and thus reduced methane production.  

5.4.4 Milk fatty acid profile 

The FA profile of the oils used in the current study were reflected in the milk FA profile, a 

finding which is consistent with other studies by Collomb et al., (2004) and Van-Zijderveld 

et al., (2011). According to Odongo et al., (2007) and Halmemies-Beauchet-Filleau et al. 

(2011), the effects of seed oils on milk FA profiles tend to be variable and depend greatly 

on the FA profile of the oil and type of basal diet. A review by Woods and Fearon, (2009) 

noted that processed oilseeds such as sunflower are easily digested by animals and this 

enhances their effect on milk FA profile. Sunflower oil is rich in linoleic acid (C18:2n-6) which 

makes up approximately 70% of the FA content, while Megalac is composed of 48% 

palmitic acid (C16:0) and 36% oleic acid (C18:1) fatty acids, the profiles which are expected 

to reflect in the milk FA profile of cows fed the respective diets (Beauchemin et al., 2009; 

Petit et al., 2004).  

In the current study, sunflower oil did not have any effect on the C4-C14 FAs while palmitic 

acid (C16:0) was reduced by 12.7%. The reduction or no change in short and medium chain 

FAs in milk fat following sunflower oil supplementation of dairy cows has been reported 
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in previous studies. For example, in a study by Rego et al., (2009), supplementation of 

grazing cows with 0.5 kg/d of sunflower oil reduced C4:0, C6:0, C8:0, C12:0, C14:0  and C16:0  by 

26, 38, 45, 46, 35 and 25% respectively when compared to the un-supplemented control. 

In another study by Martinez-Marin et al., (2012), supplementation of dairy goats with 

sunflower oil at increasing doses of 0, 30, 48, 66 g/d did not change the concentrations of 

C4-C14 milk FAs, while C16:0 was reduced by 7, 20 and 35% when sunflower oil was supplied 

at 30, 48 and 66 g/d respectively. Similarly, in a study by Petit et al., (2004), cows on a 

TMR ration and supplemented with either Megalac or whole sunflower seeds at 3.6% did 

not differ in concentrations of C10:0, C12:0 and C14:0 in the milk fat, but C16:0 concentration 

was 36% higher in the Megalac supplemented cows.   

Sunflower oil supplementation also increases the long chain fatty acid (LCFA) profile of 

milk fat. A previous study by Halmemies-Beauchet-Filleau et al., (2011) showed that 

feeding oil seeds to ruminants reduced the C4-C16 milk FAs and increased the C18 FA 

profile which is consistent with the current finding. Previous studies also show that 

supplementation with sunflower oil increased the long chain FA profile of milk. For 

example, in a study by Rego et al., (2009), 0.5 kg/d of sunflower oil supplementation 

increased the C18:0 and cis-9 C18:1 level by 18 and 34% respectively. In a study by Petit et 

al., (2004), supplementation of cows with whole sunflower seeds at 3.6% increased C18:0 

and cis-9 C18:1 concentration in milk by 54 and 20 % respectively.  

Sunflower oil supplementation also increases concentrations of trans-fatty acids in milk 

fat. In the current study, feeding sunflower oil increased the trans-fatty acids trans-9 C18:1, 

trans-11 C18:1, cis-9, trans-11 CLA and trans-10, cis 12 CLA being increased by 8, 46, 25 and 

8.3% respectively. Increased concentrations of trans-fatty acids following 

supplementation with sunflower oil was expected and is consistent with that reported by 

Collomb et al., (2004), who attributed it to ruminal bio-hydrogenation of the C18:2n-6 FA in 
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the rumen. According to Machmuller et al., (2000), hydrogenation of C18:2n-6 and C18:3n-3 in 

the rumen lies in the range between 0.83 and 0.89 and may explain why in the current 

study trans fatty acid concentrations increased in the milk FA profile. Halmemies-

Beauchet-Filleau et al., (2011) also reported a 42% increase in trans-9 C18:1 with sunflower 

oil supplementation. In a study by Toral et al., (2010), addition of 20 g/kg DM of 

sunflower oil to the TMR increased concentrations of trans-fats, trans-9 C18:1, trans-11 

C18:1 and cis-9, trans-11 C18:2 by 107, 270 and 260% respectively. Rego et al., (2009) also 

reported an increase in concentration of trans-9 C18:1 , trans-11 C18:1,  and cis-9, trans-11 

CLA by 140, 23 and 35% respectively while  trans-10, cis-12 CLA decreased by 75%. In 

another study by Martinez-Marin et al., (2012), dairy goats supplemented with refined 

sunflower oil at increasing dosage of 0, 30, 48 and 66 g/d had milk trans-fatty acids trans-

9 C18:1, trans-11 C18:1, and cis-9 trans-11 CLA increased in a dose dependent manner. 

Trans-9 C18:1 increased linearly to a maximum of 200%, trans-11 C18:1 increased to 635% 

and cis-9 trans-11 CLA to 354%. Another study by Petit et al., (2004) reported increased 

concentration of the milk fat trans-fatty acid trans-9 C18:1 by 160% when whole sunflower 

seeds where supplemented at 3.6% DM compared to milk fat of cows supplemented with 

Megalac at the same level.  

A review by Niwinska et al., (2011) examined factors that influence increased 

concentrations in milk of cis-9, trans-11 C18:2 and trans-11 C18:1 also referred to as rumenic 

acid and vaccenic acid respectively. The two trans-fatty acids are formed alongside each 

other in the rumen as a result of bio-hydrogenation of polyunsaturated fatty acids linoleic 

or α-linolenic acids. While trans-11 C18:1 is only synthesised in the rumen, cis-9, trans-11 

C18:2 can be synthesised within the mammary gland by Δ9 desaturation of trans-11 C18:1. 

Niwinska et al., (2011) also pointed out that in the presence of linoleic acid, ruminal 

bacteria produce trans-11 C18:1 while others act on trans-11 C18:1 and bio-hydrogenate it to 



                                                                             121 

stearic acid (C18:0). This explains the increased concentration of C18:0 and trans-11 C18:1 in 

milk fat of cows that were fed the sunflower oil based diets compared to those that were 

fed the Megalac based diets in the current study. It is therefore highly likely from the 

current study that considerable ruminal bio-hydrogenation of linoleic acid in sunflower oil 

led to an increased concentration of C18:0 and an increased concentration of the trans-

fatty acids trans-11 C18:1 and cis-9, trans-11 C18:2 consistent with the finding of many 

previous studies.  

In the current study, concentrations of C18:2n-6 and C18:3n-3 remained unchanged with 

sunflower oil supplementation. Similarly, Martinez-Marin et al., (2012) observed no 

changes in milk fat C18:2n-6 and C18:3n-3 concentrations of dairy goats when supplementation 

of sunflower oil was increased in a dose dependent manner from 0, 30, 48 and 66 g/d. 

This contrasts findings with other studies. For example, Rego et al., (2009) reported a 12% 

increase in C18:2n-6 concentration and a 30% decrease in C18:3n-3 concentration following 

sunflower oil supplementation. According to Kazama et al., (2010), an increased 

concentration of C18:2n-6 in milk occurs when dietary sources of C18:2n-6 escape ruminal 

fermentation.  

5.4.5 Plasma metabolites  

Plasma β hydroxybutyrate (3-OHB) levels can be used to assess ketosis, with normal levels 

in cows expected to be below 1.0 mmol/L (McNamara et al., 2003; Zhang et al., 2011). In 

the current study 3-OHB varied with time and was in the range 0.49 and 0.70 mmol/L, a 

normal range observed in healthy animals. The highest levels of 3-0HB of 0.6 and 0.7 

mmol/L were observed at 12 pm and at 2 pm respectively. Plasma glucose levels ranged 

between 3.54 and 3.68 and were within normal range, and Chimonyo et al., (2002) cited 

2.5 mmol/L as the minimum plasma glucose level expected in normally fed cattle.  It was 
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observed that blood glucose levels were inversely proportional to the 3-OHB level, i.e. 

when blood glucose levels increased, there was a proportionate decrease in 3-OHB levels. 

High urea levels in plasma are indicative of a high dietary protein intake or excessive 

mobilisation of muscle (Chimonyo et al., 2002) with normal levels in cattle of 3.4-7.3 

mmol/L (McGeough et al., 2011).  McNamara et al., (2003) observed that blood urea level 

varied with type of diet being higher in a high concentrate diet (5.4 mmol/l) than in a low 

concentrate diet (5.2 mmol/l). McGeogh et al., (2010) observed urea levels of 8.73 and 

6.54 mmol/L in plasma of cows fed diets comprising 11:89 and 21:79 concentrate to 

forage ratios respectively which reduced to 4.2 mmol/L when concentrate levels were 

increased to 31:69 and 47:53. The plasma urea levels in the current study fall within this 

range, and this shows that the diets used in the study had adequate levels of protein. 

However, cows fed the maize based concentrates had 0.5 mmols/L lower plasma urea 

concentrations when compared to those fed the wheat based concentrates. The lower 

plasma urea levels associated with the maize based diets could have been due to an 

increase in tissue N retention as a result of maize starch escaping rumen digestion thus 

being a readily available in form of glucose or energy for tissue synthesis as protein or fat 

(Reynold et al., 2001). Contrary to the findings in the current study, Johnson et al., (2002) 

reported increased N concentrations in serum by 9 and 15% when plant oils were 

supplemented at 4.0 and 5.6% DM respectively. The increase was attributed to an 

increased N absorbtion from the rumen.  

5.4.6 DM digestibility 

In the current study, DM digestibility was unaffected by dietary treatment, therefore the 

reduction in total DM intake associated with sunflower oil based diets was probably due 

to reduced palatability. Similar to the finding in the current study, Beauchemin et al., 

(2007) reported no changes in DM digestibility which remained at 60% when heifers on a 
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whole crop barley silage where supplemented with sunflower oil at 5.9 % DM. The DM 

digestibility in the current study was 74% with sunflower oil supplementation and higher 

than that reported by Beauchemin et al., (2007). Difference in digestibility was probably 

due to differences in basal diets used. In the current study, a TMR basal diet with 2:1 

ration of maize silage: grass silage was used while a ratio of 2:1 ratio of barley silage: 

barley grain was used in a study by Beauchemin et al., (2007). According to Woods and 

Fearon, (2009), processing of oil seeds increases their digestibility therefore refined oils 

tend to have higher digestibility than oil seeds. In the same study by Beauchemin et al., 

(2007), DM digestibility was unaffected by sunflower oil supplementation but was 

reduced by 6.6% by sunflower seeds when supplemented at the same level. Similarly, in 

the current study sunflower oil supplementation had no effect on DM digestibility.  

Several studies have also reported changes in diet digestibility following sunflower oil 

supplementation. For example, Machmuller et al., (2000), observed a 21% reduction in 

NDF digestibility with sunflower seed supplementation at 6% DM. Beauchemin et al., 

(2009) also observed a 20% reduction in DM digestibility when crushed sunflower seeds 

were supplemented at 3.7%. Similarly Beauchemin et al., (2007) observed a 7% reduction 

in DM digestibility when sunflower seed were supplemented at 59 g/kg. However, 

sunflower oil supplied at the same level did not have any effect on DM digestibility 

suggesting that the presentation of the oil may have an impact on DM digestibility.  

 According to Chung et al., (2011), the effect of oils on whole tract digestibility is 

influenced by the type of forage in the basal diet. Chung et al., (2011) demonstrated that 

when a hay based or a barley silage based diet were supplemented with the same level of 

ground linseed at 150 g/kg DM,  DM digestibility was reduced by 7% with the barley silage 

based diets and only by 3% with the hay based diets. In the current study, the Megalac 

and sunflower based diets had similar composition of maize and grass silage in the ratio 
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2:1 and the NDF content similar. The high DM digestibility of 74 to 77% onserved in the 

current study was unexpected and higher than that observed by Beachemin et al., (2007) 

and most previous studies. Some previous studies have also reported a lack of an effect of 

sunflower on digestibility. For example, in a study by Petit et al., (2004), Megalac and 

whole sunflower seeds when supplemented to dairy cows at 3.8% DM did not alter DM 

digestibility, which averaged 65 %.  

5.6 Conclusions 

Sunflower oil was not effective at reducing methane production in cows, but did alter the 

milk FA profile of the cows by increasing the polyunsaturated fatty acid content and 

reducing the palmitic acid content. Maize based concentrates were effective in reducing 

methane output when expressed as g/d or g/kg milk yield and improved the energy 

balance of the cows as evidenced by the positive condition score change and reduced 

plasma 3-OHB concentrations. From the current study, the starch and oil source acted 

independently, with few interactions between starch X oil observed on methane 

production or milk fatty acid profile. From the current study we accept the hypothesis 

that maize based concentrates when compared to wheat based concentrates reduce 

methane production and that oil source particularly sunflower oil supplementation of 

TMR has the potential to alter milk FA profile of dairy animals. 
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CHAPTER 6: The effect of time of grazing with or without TMR supplementation on 

performance, methane production and milk fatty acid profile of Holstein dairy cows 

6.1 Introduction  

Grazing can be applied in ruminant production as a management programme to reduce 

methane production and improve welfare of the animals (O’Neill et al., 2011; Chapinal et 

al., 2010).  In grazing systems, methane production can be reduced when pasture is of 

high quality (less mature) which makes it to be highly digestible and consequently results 

in less methane being produced in the rumen (O’Neill et al., 2011). Ruminant grazing has 

the advantage of being a less expensive way of utilising fibrous material to produce meat 

and milk (Buddle et al., 2011; Taweel et al., 2006). The impact of grazing on the welfare of 

the ruminant is well established (Chapinal et al., 2010) and allowing cows to pasture is 

beneficial for the welfare of the cow as pasture is considered a natural environment 

(Charlton et al., 2011). Given a choice and under favourable weather conditions, cows 

prefer to be at pasture than indoors, and according to Legrand et al., (2009), incidences of 

mastitis and lameness are reduced when cows are at pasture. Hernandez-Mendo et al., 

(2007) demonstrated that when lame cows were allowed to graze, the gait improved and 

cows recovered within a short period of time and the lying times of the cows also 

increased. However, maintaining productivity at pasture remains a challenge in grazing 

systems (Buddle et al., 2011). In contrast to the welfare benefits of grazing, when given 

only access to pasture, cows fail to maintain productivity because dry matter intake tends 

to be low (Charlton et al., 2011). For example, in the study by Hernandez-Mendo et al., 

(2007), cows that were grazed compared to those fed indoors lost 2.6 kg/week of body 
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weight while cows housed indoors gained 0.5 kg/week. Milk production of cows at 

pasture also decreased at a rate of 1 kg/week when compared to the cows fed indoors. 

A number of previous studies have also examined the impact of time of grazing on intake 

and productivity, and variable results have been recorded although the impact on 

methane production has not been assessed. For example, in a study by Chapinal et al., 

(2010), allowing cows to be at pasture overnight did not reduce the DM intake or milk 

production when compared to those that were kept indoors throughout the study. In 

another study by Soriano et al., (2001), dairy cows were grazed for 8 hours either during 

the day or at night and compared against those kept indoors and fed a TMR ration 

throughout the study. Dry matter intake was highest in the cows fed TMR only and lowest 

in the cows grazed at night. Milk production differed among the 3 groups, was highest in 

the cows kept indoors and averaged 29 kg/d, and was 1.5 kg/d lower in cows grazed 

during the day and 1 kg/d lower in cows grazed during the night when compared to the 

amount produced by the indoor cows. The impact of time of grazing on methane 

production was not determined.  

Grass contains water soluble carbohydrates (WSCs) whose concentrations vary during the 

day (Tresvaskis et al., 2004; Taweel et al., 2006).  Concentrations of WSCs tend to be high 

in the evening and at night and are low in the mornings and during the day. Previous 

studies (Staerfl et al., 2012; Taweel et al., 2006) have established that N (nitrogen) losses 

to the environment can be reduced when cows have access to high sugar grasses because 

the high levels of WSC improve grass N utilisation in the rumen. High levels of WSC 

concentrations in fresh grass have also been shown to improve productivity of animals. 

For example, Trevaskis et al., (2004) grazed cows either in the morning or in the 

afternoon, with morning and afternoon pasture differing in WSC concentration by 52 g/kg 

DM. Intake of DM did not differ between the two groups, but the cows grazed in the 
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afternoon produced 2.1 litres/cow/d more milk, 0.56 g more milk protein/cow/d and 

gained 0.36 kg live weight/cow/d more than those grazed in the morning. Kim et al., 

(2011) reported 20% higher live weight gains when growing lambs were fed a mix of grass 

varieties with high WSC concentration. However, some studies have reported no effect of 

WSC on productivity. For example, in a study by Taweel et al., (2005), cows that were fed 

fresh grass with 24-31 g/kg DM higher WSC concentrations did not show any 

improvement in milk yield, milk composition or DM intake possibly because the WSC 

concentration difference was not high enough to elicit a change in productivity.  

A number of previous studies on WSCs have focused on reducing nitrogen (N) losses to 

the environment and improving animal performance, while studies which link WSC to 

reduced methane production are scant. According to Buddle et al., (2011), the effects of 

high sugar grasses on methane production are not yet established. Ellis et al., (2012) used 

data from previous studies and predicted that grasses with a high WSC may produce high 

daily methane outputs when results are expressed as g/d and when expressed as a unit of 

DM intake, but when results are expressed as a unit of milk yield, methane output would 

be lower. Of the few studies that have examined the effect of WSC on methane 

production, results have not been conclusive. For example, in a study by Staerfl et al., 

(2012), dairy cows fed dried ryegrass with 90 g/kg DM higher WSC concentration 

compared to those fed ordinary grass did not reduce methane production when results 

were expressed as g/d, g/kg DM intake or g/kg milk. In contrast, Kim et al., (2011) fed 

growing lambs grass that differed in WSC concentration by 42 g/kg DM and observed that 

methane production when expressed as g/kg DM intake was 17% (L/kg DM) and 25% 

(L/kg live weight gain) lower in the lambs that were fed grass high in WSC concentration.  

Pasture is also a rich source of polyunsaturated fatty acids (Gomez-cortes et al., 2009) 

particularly α-linolenic acid (C18:3n-3) which is considered to be in the range 40- 50% of 
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total fatty acids. According to Chilliard et al., (2001), α-linolenic acid undergoes 

considerable hydrogenation in the rumen and so very little appears in the milk fatty acid 

profile. Hydrogenation of C18:3n-3 in the rumen may help to reduce methane output in 

ruminants. For example, Zhang et al., (2008) used a mixture of cornmeal and wild rye 

meal and supplemented the diet with α-linolenic acid at 35 and 70 g/kg DM and reported 

that methane production (mmols) was reduced by 46 and 62% respectively when 

compared to the un-supplemented control. 

A number of previous studies have examined the impact of grazing in general on milk 

fatty acid profile. According to Halmemies-Beauchet-Filleau et al., (2013), milk from cows 

fed fresh pasture has a high content of PUFA and low concentrations of SFAs when 

compared to cows fed conserved forages. Gomez-Cortes et al., (2009) also noted that one 

way of reducing the amounts of saturated fats and increasing levels of unsaturated fats in 

animal products is by allowing ruminants to graze fresh pastures.  

The hypothesis that was tested in the current study was that allowing cows’ access to 

pasture in the evening/night when grass WSC concentrations are at their highest would 

result in lower methane output, improve milk production and productivity and improve 

fatty acid profile of the milk, and that grazing would reduce methane production when 

compared to indoor housing. The objectives of the study were to determine the effects of 

timing of pasture access with or without TMR supplementation on the productivity, grass 

intake, methane production and milk fatty acid profile in high yielding dairy cows.  

6.2 Materials and methods 

6.2.1 Animals, experimental design and treatments 

The study was conducted in the summer of 2012 over a period of 4 months from May to 

August. Sixty early lactation Holstein dairy cows (71 ± 9.2 days into lactation) and yielding 
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39.3 ± 0.72 kg/d of milk were used. Cows were allocated to one of two periods each of 35 

d duration. In each period, thirty cows were randomly allocated to one of five treatment 

groups of six cows each, based on their milk yield, live weight and milk fat content 

measured in the week prior to allocation. Treatments groups were;  CT Cows kept indoors 

all the time and fed ad libitum TMR;  DGT  cows turned out to pasture after morning 

milking between 06:00h and 15:00 h with access to TMR at pasture; DG cows  turned out 

to pasture after morning milking between 06:00 h and 15:00 h but without access to TMR 

at pasture, NGT cows turned out to pasture after afternoon milking between 16:00 h and 

05:00 h milking, with access to TMR at pasture, NG cows turned out to pasture after 

afternoon milking between 16:00h and 05:00 h milking, but without access to TMR at 

pasture. CT cows were continually housed (no access to pasture) and had ad libitum 

access to a total mixed ration (TMR) composed of grass silage, maize silage and straight 

feeds, formulated to produce approximately 40 kg of milk per d according to Thomas, 

2004 (Table 29).  

                         Table 29. Composition of the total mixed ration (TMR) offered to dairy  
                         cows that were continuously housed (CT) or grazed during the day (DGT)  
                         or night (NGT) 

Ingredient g/kg DM 

Maize silage 409 
Grass silage 112 
Alkagrain 103 
Soyabean meal 76 
Rapeseed meal 76 
Wheat distillers dark grains 76 
Soya hulls 67 
Molasses 35 
Chopped straw 21 
Protected fat (Megalac) 13 
Minerals  6 
Limestone flour 4 
Acid buff1 2 

                         1AB vista, Wiltshire UK 

    TMR supplied at pasture had same composition as the one provided to the CT group. 

While indoors, TMR was accessed via electronic roughage intake bins (RIC bins; Insentec, 
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Marknesse, Netherlands; Chapinal et al., 2007; Fig 12), with fresh feed allocated daily at 

approximately 08:00h to provide 105% of ad libitum intake. After every morning milking, 

cows in treatment groups DGT and DG were taken out to pasture where they were able 

to loaf and graze from 06:00 h to 15:00 h. While at pasture treatment DGT had ad libitum 

access to the same TMR as the housed animals, available via individual Calan gates 

feeding system (American Calan, Inc., Northwood NH; Fig 13) placed in the grazing area 

and offered fresh daily at approximately 0800h. Treatments groups NGT and NG were 

kept indoors following morning milking, where they had ad libitum access to the TMR via 

the RIC bins. Following afternoon milking, treatment groups NGT and NG had access to 

pasture, with NGT group having ad libitum access to the TMR via the Calan gate feeding 

system while DG and DGT were indoors.  

 

                              Figure 12. Cow feeding from the Ric bin when indoors 

6.2.2 Indoor housing  

When housed, cows were in the same portion of a cubicle building containing super 

comfort cubicles fitted with rubber mattresses. The cubicles were scraped using 

automatic scrapers four times daily and limed twice weekly. When grazing, cows were in 
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the same area of a field consisting predominately of perennial rye grass (Lolilum perenne). 

All cows had continual access to water when indoors and at pasture. 

6.2.3 Grazing management 

The grazing area was located at Harper Adams University. The experimental grazing area 

of 1.75 ha was divided into 4 paddocks. Each paddock was further sub-divided into two 

sub-paddocks. Cows were grazed in a rotational system and were allocated fresh grass 

daily after the morning and afternoon milking, coinciding with the time treatment groups 

were swapped. Fresh grass was provided by moving a temporary electric fence with each 

paddock.  The excess herbage cover following grazing by the study cows was grazed down 

to approximately 1500 kg DM/ha using low yielding and dry cows. 

6.3 Measurements  

6.3.1 Pre-grazing herbage 

Allocation of the cows to the grazing area was determined from pasture mass, estimated 

daily prior to grazing using a rising plate meter (Jenquip, Feilding, New Zealand) as 

described by Earle and McGowan, (1979). Thirty random heights were recorded in each 

paddock, by walking the field in a zig-zag pattern. The animals were rotationally grazed 

and received fresh grass daily after the morning and afternoon milking. Cows entered the 

paddocks at a grass cover of 2750 (+/- 250) kg DM/ha and received a herbage allowance 

of approximately  10 kg DM/d. Herbage cover and allowance was managed by altering the 

area available to the cows and using low yielding cows to graze excess growth followed by 

mechanical topping. Herbage samples were collected during the final 5 day of each 

period. These comprised of grass samples obtained by cutting by scissors random samples 

(n=minimum of 30) of the grazing horizon approximately 4 cm above ground level at 

09:00 h and 16:00 h. Samples were stored at -20°C prior to subsequent analysis. 
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6.3.2 TMR and grass dry matter intakes 

In the final 12 d of each period, all cows received 56 g/cow/d, of an alkane 

(dotriacontane; C32) which was added to the total mixed ration (TMR). Feed, grass and 

faecal samples for analysis were collected in the final 5 d of each period. Faecal samples 

from each cow were collected four times a day at 04 30h, 10 00h, 14 30 h and 18 00 h 

during the final 5 d of each period and frozen at -20°C prior to analysis. The intake of TMR 

when cows were indoors was measured automatically using the electronic feed bins 

(Sinclair et al., 2005), while TMR intakes at pasture were measured using individual Calan 

bins placed in the grazing area. Pasture intake for each cow was calculated from the 

concentrations of a naturally occurring odd-chain tritriacontane (C33) and the dosed even-

chain dotriacontane (C32) n-alkane in the TMR, grass and faeces as described in section 

3.7 using the equation of Mayes et al., (1986). 

 

 

                           Figure 13. Calan gate feeding system in the field for TMR 
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6.3.4 Animal performance 

Milk yield was recorded at each milking during the final 7 days of each period, and sub-

samples taken on four occasions, twice at 06:00 and twice at 15:00 h for subsequent 

analysis of fat, protein and lactose. Additional milk samples were taken on 2 occasions on 

day 4 for subsequent milk fatty acid profile determination. Individual cow live-weight and 

body condition scores were recorded at the start and end of each 5 week treatment 

period.   

6.3.5 Methane production 

Enteric methane production was measured using the SF6 tracer technique using a method 

described by Johnson and Johnson (1995). Twenty-one days prior to the beginning of the 

study, each cow received a bolus each releasing known amount of sulphur hexafluoride 

(SF6) which was inserted in the rumen. The boluses were inserted using a balling gun. 

Methane production was measured over a 5 d period in the week prior to allocation to 

treatments and during the final week of each period. During the final 5 d of each period, 

all cows were fitted with head collars and back packs as described by Hart et al., (2009) 

(Fig 14) with the back pack cylinders replaced daily after the morning milking. The 

Figure 14. Cows grazing in the field 
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canisters were then pressurised with 17 kPa of pure nitrogen gas (BOC gas, Worsley 

Manchester, UK) and the gas samples collected into 20 ml leur lock syringes for 

laboratory analysis as described in Section 3.8.2. 

6.4 Laboratory analyses 

Grass and TMR samples collected during the 5 d sampling period were freeze dried 

(Edwards freeze dryer Modulyo, Bristol, UK) at -50°C for 5 days and milled (Delonghi KG 

79, UK) to pass through a 1mm screen. Milled samples of grass and TMR were analysed in 

duplicate for DM, OM, CP, NDF and ash as described in Sections 3.1.1 to 3.1.4. Milk 

samples for compositional analyses were analysed for fat, protein and lactose content 

using a Milkoscan Minor 78110 auto analyser (Foss electric, Hillerod, Denmark) as 

described in section 3.2.1. Milk samples for FA determination were centrifuged as 

described by Feng et al., (2004) with the lipid layer methylated according to Christie 

(1982) with modifications as described by Chouinard et al., (1999) as described in sections 

3.2.1 and 3.2.2.  The FA content of grass and TMR samples were analysed as described by 

Sukhija and Palmquist (1988) using nonadecanoic acid (C19:0) as an internal standard as 

described in section 3.3. Water soluble carbohydrate concentration and metabolisable 

energy content of the grass samples were determined as described as in sections 3.5 and 

3.6 respectively. Grass intake was estimated by the n-alkane method of Mayes et al., 

(1986) as described in section 3.7. Respired gas samples from individual cows were 

analysed for methane concentrations as described in section 3.8.2. 

6.5 Statistical analyses 

Mean values from the individual cows of milk yield, milk components, methane outputs, 

and milk fatty acid concentrations were evaluated by analysis of variance as a 2 x 2 

factorial design with a control. Treatment degrees of freedom were spilt into main effects 
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of grazing time (morning vs. evening) and access to TMR (with or without). The factorial 

design was compared to the control as Indoor vs outdoor (CT vs. all outdoor groups). 

Interaction between grazing time (morning vs. evening) and TMR access (with or without) 

was also assessed. All analyses were conducted using Genstat 13. 

6.6 Results 

6.6.1 Chemical analyses 

Grass samples collected at 1600 h had 111 g/kg DM higher WSC concentration and 125 

g/kg DM lower NDF content compared to samples collected at 0900 h (Table 30). The CP 

content of grass samples cut at 0900h and 1600h were similar and averaged 222 g/kg DM, 

while that of the TMR was 183 g/kg DM. Metabolisable energy content for am and pm 

grass samples were 12 and 12.5 MJ/kg DM respectively. The fatty acid content of the TMR 

and grass samples differed slightly, with the TMR having higher concentrations of C16:0, 

cis-9 C18:1 and C18:2n-6 while grass samples had the highest concentrations of C18:3n-3, 

averaging 45 g/100g. 

Table 30. Chemical composition (g/kg DM) of the total mixed ration 
(TMR) and grazed grass (sampled at 0900h and 1600h) offered to dairy 
 cows that were continuously housed or grazed during the day or night 

 
TMR Grass-am Grass-pm 

DM, g/kg 413 225 217 

ME, MJ/kg DM --- 12 12.5 

OM 924 908 914 

CP 183 223 221 

NDF 374 479 354 

WSC --- 157 268 

Fatty acids, g/100g 34.2 35.8 30.3 

FA g/100g FAME 
   C16:0 28.2 15.9 16.4 

C18:0   2.3   0.7   0.9 

C18:1n-9 25.4   1.5   1.0 

C18:2n-6 30.2   9.8   9.2 

C18:3n-3   7.4 49.2 40.2 

FAME = fatty acid methyl esters 
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6.6.2 Intake  

Cows in CT or DGT had the highest total DM intake of approximately 26 kg DM/d while 

total DM intake in all the other grazing groups were considerably lower(P<0.005; Table 

31). Among the grazing groups, daytime grazing (DGT and DG) increased total DM intake 

by 1.8 kg DM/cow/d compared to night time grazing (NGT and GT).  

Grass intake was affected by the grazing time (P<0.05), with cows grazed in the afternoon 

(NG) having a 1.8 kg/d higher grass intake compared to those grazed in the morning (DG) 

with no TMR supplementation. The interaction between grazing time and TMR 

supplementation (P<0.005) reduced grass intake in the cows grazed in the afternoon 

(NGT) by 1.9 kg/d while it did not have any effect on the grass intake of the cows grazed 

in the morning (DGT).   

6.6.3 Milk yield and composition and animal performance 

Milk yield was highest in cows receiving CT or DGT (38.6 and 38.0 kg/d respectively) and 

lowest in NG at 33.6 kg/d (P<0.05; Table 31).  Among the grazing groups, day time grazing 

increased milk yield by 1.9 kg/d (P<0.05) and TMR supplementation at pasture increased 

milk yield by 2.5 kg/d (P=0.005). Milk fat content and fat yields were unaffected by 

dietary treatment. Protein yield (kg/d) was highest in cows receiving CT or DGT with a 

mean of 1.28 kg/d, and was on average 0.15 kg/d lower in all the other grazing groups 

(P<0.005). Among the grazing groups, TMR supplementation increased protein yield by 

0.15 kg/d during the day and 0.08 kg/d at night. Protein concentration (g/kg) showed a 

tendency to be increased (P<0.1) by 1 g/kg with night time grazing when compared to day 

time grazing. Lactose yield (kg/d) was highest in cows receiving CT or DGT (approximately 

1.70 kg/d; P<0.05) and considerably lower in all the other grazing groups. TMR 
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supplementation during the day increased lactose yield by 0.14 kg/d while night time 

grazing with TMR supplementation increased yield by 0.13 kg/d. 

Cows receiving CT or NGT gained 1.1 kg/d of live weight, while DGT cows only gained 0.45 

kg/d. Without TMR supplementation, DG and NG lost 0.1 kg/d of live weight. A similar 

trend was observed with condition score; access to TMR at pasture increased condition 

score and condition score change (P<0.05), with cows receiving DGT or NGT cows gaining 

approximately 0.16 condition score, compared to a change of 0.04 and -0.01 by the DG 

and NG cows respectively. 

Table 31. Effect of grazing during the day with access to total mixed ration (TMR: DGT) or without 
access (DG), or at night with access to TMR (NGT) or without access (NG) compared to continuous 
housing (CT) on intake and performance in high yielding dairy cows 

 CT DGT DG NGT NG s.e.d. In vs. 
Out1 

Grazing 
time2 

TMR3 Int4 

           
Grass intake, kg/d 0.00  1.10 0.80 0.70 2.60 0.450 ------ 0.044  0.015 0.002 
TMR intake, kg/d 26.2 25.8 22.0 24.3 18.4 0.810 <0.001 <0.001 <0.001 0.059 
Total DM intake, kg 26.2 26.9 22.8 25.0 21.1 0.940 0.004 0.011 <0.001 0.817 
Milk yield, kg/d 38.6 38.0 35.3 35.9 33.6 1.21 0.003 0.033 0.005 0.838 
Fat, g/kg 37.0 37.9 35.4 35.8 37.6 2.68 0.876 0.973 0.866 0.264 
Fat, kg/d 1.42 1.45 1.23 1.27 1.27 0.097 0.126 0.337 0.119 0.123 
Protein, g/kg 34.1 32.8 31.5 33.2 33.4 0.950 0.063 0.085 0.426 0.275 
Protein, kg/d 1.30 1.25 1.10 1.18 1.12 0.046 <0.001 0.572 0.002 0.175 
Lactose, g/kg 44.1 44.3 44.1 44.3 43.4 0.790 0.855 0.523 0.321 0.581 
Lactose, kg/d 1.70 1.69 1.55 1.59 1.46 0.065 0.014 0.045 0.004 0.973 
Lwt, kg5 692 698 677 690 651 14.9 0.481 0.292 0.064 0.567 
Lwt change, kg/d 1.10 0.45 -0.11 1.10 -0.10 0.437 0.041 0.311 0.006 0.296 
Condition score 2.54 2.63 2.44 2.48  2.38 0.010 0.458 0.141 0.042 0.494 
CS change 0.15 0.17 0.04 0.15 -0.01 0.085 0.393 0.538 0.023 0.842 
1Inside cows vs. all cows at grass, 2Grazing at night vs. daytime, 3Grazing with or without access to TMR, 
4Interaction between grazing time and TMR provision, 5Lwt= live weight, CS= condition score 

6.6.4 Methane production 

When compared to the CT group, three grazing groups (DG, NGT, NG) produced 

significantly lower daily methane outputs (P<0.005; Table 32), while daily methane output 

by DGT was not different from CT. When expressed as g/kg milk yield, cows receiving CT 

produced 2 g/kg more methane when compared to the mean production of all the 

grazing groups (14.9 vs. 12.9 g/kg milk yield). Similarly, when expressed as g/kg fat 
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corrected yield, methane production was 3.2 g/kg higher in the CT group when compared 

to the mean production in the grazing groups (18 vs. 14.8 g/kg fat corrected yield; 

P<0.05). Methane production when expressed as g/d, g/kg milk yield or g/kg fat corrected 

yield was not affected by the grazing time or access to TMR at pasture, and no interaction 

was observed between grazing time and TMR provision.   

Table 32. Effect of grazing during the day with access to a total mixed ration (TMR: DGT) or 
without access (DG), or at night with access to a TMR (NGT) or without access (NG) compared to 
continuous housing (CT) on the methane production of high yielding dairy cows 

  CT DGT DG NGT NG s.e.d. In vs. 
Out1 

Grazing 
time2 

TMR3 Int4 

CH4, g/d5 524 474 447 458 425 28.4 0.003 0.363  0.148 0.883 
CH4, g/kg 
DMI 

20.1 17.2 19.4 18.6 20.6 0.461 0.019 0.036 <0.001 0.675 

CH4, g/kg 
milk5 

14.6 12.8 12.7 13.0 13.0 0.906 0.023 0.732 0.963 0.977 

CH4, g/kg  
FC yield 

18.0 14.8 14.5 14.9 14.8 2.00 0.048 0.896 0.906 0.969 

1Inside cows vs. all cows at grass, 2Night vs. daytime, 3With or without TMR, 4Interaction between 
grazing time and TMR provision, 5Based on 8 cows per treatment, DMI= dry matter intake 

6.6.5 Milk fatty acid profile 

The short chain fatty acid (C8) concentrations in milk were not affected by dietary 

treatment (P>0.1; Table 33). Grazing without TMR supplementation reduced (P<0.05) the 

concentrations of the medium chain fatty acids C10:0, C12:0 and C14:0 by 20, 20 and 10% 

respectively when compared to concentrations in the supplemented grazed cows. Cows 

receiving CT or DGT had the highest concentrations of C15:0, while in all the grazing 

groups, concentrations were lower (P<0.005) and TMR supplementations at pasture 

increased C15:0 concentrations in milk. The highest concentration of cis-9 C18:1 was in the 

milk FA of the cows grazed without TMR supplementation (P<0.001); cows receiving DG 

had a 21% higher concentration of cis-9 C18:1 than those receiving DGT, while the 

concentration in cows receiving NG was 1.4 g/100g or 6% higher than those receiving 

NGT. The time of grazing affected C18:2n-6 concentrations in milk (P<0.001), with cows 

grazed in the afternoon (NGT and NG) having mean concentrations of 2.6 g/100g, while 
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cows grazed during the day (DGT and DG) had mean concentration of 2.3 g/100g. The 

cows receiving CT had the lowest concentration of C18:3n-3 at 0.40 g/100g in milk and 

grazing increased concentrations in all the other treatment groups with levels ranging 

from 0.42 g/100g to 0.52 g/100g. Interactions were observed between time of grazing 

and TMR provision with cows offered TMR having low concentration of cis-9 C18:1 and 

C18:2n-6 during the day and higher concentrations during the night. Grazing tended 

(P=0.007) to decrease the SFA content of milk, but had no effect (P>0.1) on the MUFA 

content. The provision of TMR at grass increased the SFA content, particularly during day 

time. Provision of TMR at grass also decreased milk FA content of MUFA (P<0.001). Access 

to pasture also increased milk FA content of PUFA compared to continuously housed 

cows (P<0.01).   
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Table 33. Effect of grazing during the day with access to a total mixed ration (TMR: DGT) or 

without access (DG), or at night with access to a TMR (NGT) or without access (NG), compared to 

continuous housing (CT) on milk fatty acid profile of high yielding dairy cows 

 CT DGT DG NGT NG s.e.d. In vs. 
Out1 

Grazing 
time2 

TMR3 Int4 

g/100g           
C8:0

 0.95 1.00 0.96 0.92 0.86 0.104 0.922 0.194 0.438 0.870 
C10:0 2.56 2.78 2.09 2.35 2.21 0.243 0.313 0.374 0.020 0.115 
C12:0 3.11 3.46 2.50 3.03 2.68 0.255 0.344 0.498 <0.001 0.101 
C14:0 10.5 10.9 9.27 10.0 9.65 0.439 0.127 0.435 0.002 0.052 
           
C14:1c9 1.15 1.25 1.27 0.91 1.07 0.233 0.897 0.108 0.588 0.645 
C15:0 1.02 1.07 0.77 0.89 0.76 0.068 0.009 0.054 <0.001 0.088 
C16:0 31.0 31.5 29.0 29.0 29.5 0.830 0.070 0.089 0.092 0.014 
C16:1c9 1.53 1.47     1.45 1.35 1.62 0.146 0.636 0.806 0.251 0.167 
           
C17:0 0.44 0.50 0.48 0.49 0.47 0.035 0.112 0.675 0.431 0.999 
C18:0 8.01 8.01 8.38 8.82 8.11 0.397 0.314 0.350 0.540 0.062 
Cis-9 C18:1 22.7 21.5 26.0 23.8 25.2 0.950 0.060 0.288 <0.001 0.027 
C18:2n-6 2.45 2.25 2.37 2.72 2.50 0.119 0.912 <0.001 0.538 0.049 
           
trans-11C18:1 0.62 0.63 0.78 0.67 0.68 0.170 0.552 0.627 0.565 0.538 
*CLA 0.31 0.34 0.35 0.29 0.38 0.124 0.778 0.864 0.508 0.596 
C18:3n-3 0.40 0.42 0.51 0.52 0.51 0.056 0.042 0.223 0.334 0.255 
C20:5n-3 0.45 0.40 0.65 0.66 0.61 0.149 0.134 0.274 0.333 0.056 
           
ΣSFA 61.4 62.6 56.7 58.9 57.9 1.620 0.069 0.283 0.004 0.037 
ΣMUFA 26.1 25.1 29.6 26.9 28.7 1.100 0.111 0.554 <0.001 0.083 
ΣPUFA 3.60 3.41       3.83 4.15 3.99 0.226 0.182 0.007 0.424 0.074 
1Inside cows vs. all cows at grass, 2Night vs. daytime, 3With or without TMR, 4Interaction between 
grazing time and TMR provision; *CLA= cis-9, trans-11 CLA 
 

6.7 Discussion 

6.7.1 Diet chemical composition 

The current study established that WSC concentrations of Lolium perenne rye grass 

fluctuate throughout the day, with higher concentrations in the evening/night and lower 

concentrations in the morning/day time with a difference of 111 g/kg DM (157 vs. 268 

g/kg DM) in WSC concentrations between the morning and afternoon samples. Neutral 

detergent fibre (NDF) concentrations in grass were observed to be inversely proportional 

to the WSC concentration, with samples cut at 9am having higher levels (479 g/kg DM)  
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when compared to the samples cut at 4 pm (354 g/kg DM). According to Fulkerson and 

Donaghy (2001) and Trevaskis et al. (2001), WSC concentrations in ryegrass peak at 2–4h 

before sunset. Lee et al., (2002) also reported that the high levels of WSC in grass were 

combined with low levels of NDF, a similar finding to what was observed in the current 

study. The combination of high WSC content and low fibre content is assumed to be 

responsible for the high DM intakes associated with consumption of grass containing high 

amounts of WSCs (Ellis et al., 2012). It was therefore anticipated that grass DM intake 

would be higher in cows grazing at night.  

6.7.2 Intake and animal performance 

In the current study, total DM intake was highest in cows receiving CT or DGT, and among 

the grazing groups, intake increased with TMR supplementation. In terms of 

performance, live weight change was highest in cows receiving CT, and when cows were 

at pasture, live weight change increased with TMR supplementation. At pasture, the cows 

that were not supplemented (DG and NG) lost 0.1 kg/d of live weight, whereas all other 

groups gained condition. Similar results have been observed in previous studies. For 

example, in a study by O’Neill et al., (2011), cows fed TMR gained a body weight change 

of 0.5 kg/d and 0.4 of body condition score while those that were at pasture lost 0.5 kg/d 

body weight and 0.3 units of body condition score. Schroeder et al., (2003) also observed 

that when cows were fed a TMR, they gained a body weight of 23 kg and a condition 

score of 0.1 units over a period of 5 weeks when compared to those that were grazed and 

supplemented with concentrates and lost 6 kg body weight and 0.2 units of body 

condition score within the same period.  
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6.7.3 Milk yield and milk components 

Cows receiving CT or DGT produced the highest milk yield and among the grazing groups, 

milk yield increased with TMR supplementation at pasture and when grazed during the 

day than at night. Therefore milk yield in the current study increased with an increase in 

total DM intake. In the current study, TMR intake and milk yield increased when cows 

were grazed during the day when compared to those that were grazed at night. The 

finding supports previous studies that have established that milk yields when cows are at 

pasture are driven by DM intake.  In the current study, cows fed TMR at pasture produced 

2.5 kg/d higher milk yield compared to those that had no access to TMR. Similar findings 

have been reported in previous studies. For example, in a study by Lovett et al., (2005), 

increase in concentrate supplementation at pasture from 1 to 6 kg/cow/d increased milk 

yield by 5.2 kg/cow/d. Similarly, Bargo et al., (2003) reviewed the literature on grazing 

and supplementation and its impact on milk production and reported that milk 

production of high yielding dairy cows increased linearly with an increase in the amount 

of concentrate supplementation. The results in the current study are also similar to those 

observed by O’Neill et al., (2011) who reported a higher milk yield of 29.5 kg/d produced 

by cows when fed a TMR compared to 21.1 kg/d milk yield produced by cows that were 

on pasture. In the same study by O’Neill et al., (2011), DM intakes correlated with milk 

yields such that milk yields increased with an increase in DM intake with intakes of TMR 

and pasture fed cows being 27 and 19.6 kg/cow/d respectively. 

In the current study, milk protein and milk lactose yields increased with an increase in 

milk yield with concentrations being unaffected by dietary treatment. Therefore yields 

were highest in CT and DGT cows and also with TMR supplementation at pasture. 

Previous studies have also reported higher milk protein, fat and lactose yield with 

increased milk yield. For example, Atti et al., (2006) reported a 47 and 57% increase in 
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milk fat and milk protein yield respectively in ewes grazed on barley or ryegrass pastures 

compared to those kept in a feedlot which were associated with a higher milk yield. 

O’Neal et al., (2011) also reported a 34% higher fat and protein yield and a higher milk 

yield in TMR fed cows when compared to grass fed cows. Lovett et al., (2005) also 

reported an increase in both milk yield and fat and protein yield by concentrate 

supplementation at pasture. 

In the current study, milk protein concentration (g/kg) showed a tendency to increase 

with grazing time and with being indoors. Protein concentration was highest in cows that 

received CT and among the grazing groups, night time grazing increased protein 

concentration by 1.1 g/kg, perhaps as a result of the high WSC concentration in the grass 

at the time of grazing. This agrees with reports from some previous studies and according 

to Taweel et al., (2005), high WSC concentrations in grass stimulates an increase in 

propionate production in the rumen and supplies more energy to the cows. With 

increased energy, milk protein production is increased and plasma proteins are not 

oxidised. Taweel et al., (2006) indicated that an increase in WSC content in grass 

produces significant changes in productivity and milk production, but only when 

metabolisable protein in cows was deficient. In such situations, WSCs become beneficial 

because it stimulates an increase in microbial protein which in turn improves productivity. 

In the current study, the high WSC content of grass in the evening did not have any 

impact on milk yield. Findings in the current study are similar to those of Taweel et al., 

(2005) who fed two groups of cows with grass that varied in WSC by a range of 24-31 g/kg 

DM and observed that the differences in WSC concentration were too small to stimulate a 

difference in DM intake, milk yield or concentrations of any of the milk components. In 

the current study despite having a difference in WSC concentrations in grass of 111 g/kg 

DM, DM intake was similar at both grazing times. Reasons for this result are not clear. 
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However, according to Taweel et al., (2005), high concentration of WSC in the diet can 

lower the pH of the rumen and when this happens, fibre degradability is reduced, 

retention time is increased and consequently DM intake is also reduced. This may have 

occurred in the current study, but ruminal pH was not measured.  

6.7.4 Methane production 

Daily methane production was highest in cows receiving CT or DGT which had the highest 

total DM intakes. Several studies have reported links between daily methane production 

and DM intake. For example Dini et al., (2012) compared methane production of cows 

grazed on either high legume pastures or on high ryegrass pastures and observed that 

methane production did not differ between the two groups because DM intakes were 

similar. This agrees with Buddle et al., (2011) who stated that daily methane output is 

driven by DM intake. In another study by O’Neal et al., (2012), cows grazed pastures that 

differed in herbage allowance and observed that daily methane production was directly 

influenced by the total DM intake. In another study (Lovett et al., 2005), daily methane 

output increased with an increase in fibrous concentrate supplementation at pasture, but 

when methane output was expressed per unit of fat corrected yield, methane output was 

actually observed to be lower.  

When methane production is expressed per unit of animal product, variable results have 

been observed in previous studies. According to Wims et al., (2010), under grazing 

conditions, other factors besides DM intake play a role in determining methane 

production. In the current study, methane production per unit of milk yield and per unit 

of fat corrected yield was lower in all the grazing groups when compared to continuously 

housed cows. This was due to the grass being of better quality when compared to the 

TMR. The fresh grass in the current study had a high CP content of 220 g/kg DM and a 
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high amount of linolenic acid (C18:3n-3) averaging 45 g/100g compared to the TMR which 

had a CP content of 180 g/kg DM and 7 g/100g C18:3n-3. Similar result was reported by 

O’Neal et al., (2011) who observed that cows grazed perennial ryegrass pastures 

produced 12% less methane per unit of DM intake and 13 % less methane expressed as 

GE intake when compared to cows fed TMR due to the ryegrass being of better quality 

with a higher CP content and a higher OM digestibility than the TMR.  In a study by Wims 

et al., (2010) cows grazed on either low herbage or high herbage pastures had similar DM 

intakes but methane output when expressed per unit of milk yield and per unit of grass 

DM intake was higher in cows grazed on high herbage mass pastures because the grass 

was of poor quality and had a low CP content and a lower OM digestibility.  

High WSC concentrations in pm grass did not have any effect on methane production in 

the current study despite concentrations being 111 g/kg DM higher than in am grass 

samples. Similar findings were reported by Staerfl et al., (2012) who found no difference 

in methane production when expressed as g/d, g/kg DM intake or g/kg milk yield when 

cows were fed perennial ryegrass grass that had 90 g/kg DM higher WSC concentration 

compared to the control group. However one previous study reported a positive effect.  

Kim et al., (2011) fed growing lambs grass that differed in WSC concentration by 42 g/kg 

DM and observed that methane production when expressed as g/kg DM intake was 17% 

(L/kg DM) and 25% (L/kg live weight gain) lower in the lambs that were fed grass high in 

WSC concentration. Kim et al., (2011) used growing lambs whereas in our study dairy 

cows were used, the species differences could have contributed to the difference because 

ruminal microbial populations tend to vary with species. According to Staerfl et al., (2012) 

high WSC concentrations in grass tend to replace either the CP or NDF content or both. In 

the current study, pm grass with high WSC concentration had a low concentration of NDF 

when compared to the am grass.  
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6.7.5 Milk fatty acid profile 

In the current study, dietary treatment did not have any effect on the SCFA, C8:0 

concentrations in milk, while grazing with no supplementation decreased milk MCFAs 

concentrations of C10:0, C12:0 and C14:0. This was similar to what was reported in previous 

studies. For example, Gomez-Cortes et al., (2009), subjected cows to feeding regimes of 

either total grazing, grazing with oat grain supplementation or only fed TMR and 

observed that cows that were only grazed had reductions in milk fat concentrations of 

C10:0 and C12:0 of 6 g/100g and 3.4 g/100g respectively representing 50% and 29% 

reductions when compared to those fed the TMR. Halmemies-Beauchet-Filleau et al., 

(2013) also observed that the milk profile of cows fed fresh pasture had 31 and 19% lower 

concentrations of C12:0, and C14:0  respectively when compared to those fed only a hay 

based diet. Wales et al., (2009) tested the impact of increasing grain supplementation 

from 0 to 3 to 6 kg /cow/d at pasture on the milk FA profile in dairy cows and observed 

that C10:0 and C12:0 and C14:0 gradually increased in concentration and concluded that there 

was a proportionate increase in the concentrations of MCFAs in relation to the amount of 

concentrate consumed. Grazing causes reductions in SCFA and MCFA concentration in 

milk fat because the long chain FAs decrease de novo synthesis of short and medium 

chain fatty acids in the mammary gland (AbuGhazaleh, 2008). According to Gomez-Cortez 

et al., (2009) feeding pasture to ruminants results in ruminal bio-hydrogenation with 

production of C18 intermediate products such as CLA’s which can reduce de novo 

synthesis of milk fat. 

It is well established that pasture feeding increases cis-9 C18:1 concentration in milk 

(Chilliard et al., 2007). Similarly, in the current study, cis-9 C18:1 increased by 21 and 6 % in 

DG and NG cows when compared to DGT and NGT respectively. Grazed pastures had a 

low cis-9 C18:1 concentration of 1 g/100g, but milk fat of cows that grazed pastures 
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without TMR supplementation had high concentrations averaging 26 g/100g. According 

to  Gomez-Cortes et al., (2009) and Chilliard et al., (2007), the increased concentration in 

milk occurs first as result of hydrogenation of C18:3n-3 to C18:0 in the rumen, and a further 

desaturation via Δ9 desaturase in the mammary gland. Previous studies have also 

reported increased concentrations of the C18 fatty acids with grazing. For example, in a 

study, by Gomez-Cortes et al., (2009), pasture fed cows had an 86% increase in cis-9 C18:1 

when compared to TMR fed cows. Halmemies-Beauchet-Filleau et al., (2013) also 

compared the milk FA profiles of cows grazed on fresh pastures to those fed a hay based 

diet and reported that grazing increased C18:0 and cis-9 C18:1 concentration in milk by 35 

and 37% respectively. 

When cows are grazed, the impact on milk concentration of C18:2n-6 tends to vary from one 

study to another whereas most consistently reporting an increase in C18:3n-3 

concentrations. A review by Dewhurst et al., (2006) established that fresh forage 

increases concentrations of C18:3n-3 in milk while concentrations of other FAs are not very 

consistent. Halmemies-Beauchet-Filleau et al., (2013) also stated that with pasture 

feeding, concentrations of C18:2n-6 tend to be inconsistent. In the current study,  C18:2n-6 

concentrations in milk were affected by the time of grazing, with concentrations being 

low during the day and high during the night when compared to concentrations found in 

cows that were kept indoors throughout the study. It is not clear what could have caused 

the variability in milk concentrations of C18:2n-6 with time of grazing as grass 

concentrations were similar at both sampling times. Previous studies have also reported 

varying results of either no change, reductions or increase in concentration of C18:2n-6 

when cows are grazed. For example, Atti et al., (2006), compared the milk FA profiles of 

goats grazed on either barley or ryegrass pastures to those fed only a concentrate ration 

in the feedlot and reported no changes in the C18:2n-6 concentrations in the milk across the 
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treatment groups. In another study by Renna et al., (2012), goats were abruptly turned to 

pasture and there was a progressive increase in C18:2n-6 concentrations in milk from day 1 

day to day 3, with a maximum increase of 22% observed on day 3 and thereafter a 

progressive decline in concentration was recorded, with the highest decline of 32% 

recorded on day 18 of pasture feeding. Reasons for the variations in C18:2n-6 

concentrations were not clear. Halmemies-Beauchet-Filleau et al., (2013) reported 

increased milk concentrations of both C18:2n-6 and C18:3n-3 by 14 and 24 % respectively in 

cows grazed fresh pastures compared to those fed a hay based diet. In another study by 

Rego et al., (2008), a partial supplementation of grazing cows with 6 kg/cow/d of grass 

silage or soya bean meal did not change FA profile of milk. Milk cis-9, trans-11 CLA, 

vaccenic acid (trans-11 C18:1), and α-linolenic acid (C18:3n-3) concentrations were 

unaffected by supplementation at pasture (Rego et al., 2008). Finally, Couvreur et al., 

(2006) reported that cows fed a diet with increasing proportion of 0, 30, 60 and 100 % of 

fresh grass caused a linear increase in proportions of C18:3n-3 from 0.22g/100g to 0.7 

g/100g and proportions of cis-9 C18:1 from 19.4 to 21.1g/100g. 

Trans-fatty acids are intermediate products of PUFA bio-hydrogenation in the rumen and 

grazing cows tend to have high concentrations in milk fat (Gomez-Cortes et al., 2009). In 

the current study, the two main trans-fatty acids, trans-11 C18:1 and cis-9, trans-11 CLA did 

not show any notable increases following dietary manipulation. Only numerical increases 

were observed such that cows that were grazed with no supplementation at pasture had 

a slight increase of trans-11 C18:1 and cis-9, trans-11 CLA in their milk fat. This finding 

contrasts with Rego et al., (2008) who stated that grazing cows have persistently high 

concentrations of cis-9, trans-11 CLA, trans-11 C18:1, and C18:3n-3 in their milk. The milk 

fatty acid cis-9 trans-11CLA has been extensively studied (Bauman and Griinari, 2001; Kay 

et al., 2004; AbuGhazaleh, 2008) because of its anti-carcinogenic benefits in human 
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health.  According to AbuGhazaleh, (2008), cis-9, trans-11 CLA is formed either from 

ruminal bio-hydrogenation of linoleic acid or synthesised from trans-11 C18:1 in the 

mammary gland. Kay et al., (2004) established that about 90% of cis-9 trans-11CLA found 

in milk of cows fed fresh pasture is synthesised in the mammary gland by Δ9 desaturase 

using trans-11 C18:1 as the precursor. In the current study, high concentrations of trans-11 

C18:1 were found in cows receiving DG or NG that only had access to grazing with no TMR 

supplementation (av. 0.73 g/100g) while cows receiving CT had 0.62 g/100g of trans-11 

C18:1 concentrations. Some studies have also reported reduced CLA concentrations when 

cows are supplemented at grass. For example, in a study by Wales et al., (2009), 

increasing grain supplementation at pasture from 3 to 6 kg/cow/d did not have any effect 

on trans-11 C18:1, whereas cis-9, trans-11CLA concentration was decreased by 13%.  

In the current study, there was no treatment effect on eicosapentanoic acid (EPA), C20:5n-3 

concentrations, but the interaction between grazing time and TMR showed a tendency to 

reduce concentration when cows were grazed during the day, and increased 

concentrations when cows were grazed at night. According to Renna et al., (2012), EPA 

concentrations in milk are as a result of desaturation and elongation of C18:3n-3.   

6.7.6 Conclusions 

Grazing cows with or without TMR supplementation reduced methane production when 

expressed as g/kg milk yield and g/kg fat corrected yield. Having a high concentration of 

WSC in grass did not reduce methane production but increased protein concentration of 

milk. Grazing altered the milk fatty acid profile, with cows that had only pasture having 

high concentrations of cis-9 C18:1 and C18:3n-3 and lowered concentrations of C6:0, C10:0, C12:0, 

and C14:0. Grazing at night increased milk PUFA content, whereas provision of TMR at 

pasture increased the SFA content, and decreased the MUFA content. The beneficial 
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effect of grazing cows during the day with access to TMR on methane production without 

compromising performance warrants further investigation.
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CHAPTER 7 General discussion 

The overall hypothesis that was tested in the thesis was that a range of dietary 

manipulations can alter rumen fermentation and result in reduced methane output and 

at the same time increase or have no effect on productivity and improve the FA profile of 

milk.   

7.1 Effect of dietary manipulation on fermentation characteristics and methane 

production 

The objective of the first in vitro study was to determine the effect of starch and oil 

source on fermentation characteristics and methane production. The starch sources that 

were tested were wheat, barley and maize added to grass to supply 25 % starch to the 

whole diet, while the oil sources carvacrol, linseed oil and fish oil were assessed at two 

dosage levels of 4 and 8% of total DM. The three starch sources were reported to differ in 

fermentation characteristics and methane production. Wheat based diets produced the 

highest cumulative and rates of gas production and methane output and maize based 

diets produced the least amounts.  

The in vitro experiment also showed that of the three oil sources supplied at the same 

level, carvacrol was the most effective in reducing methane output. Linseed oil and fish oil 

showed dose dependent but non-significant effects on gas production and methane 

output when compared to the control. The in vitro experiment also demonstrated that 

methane production varied with time of incubation and oil source. Linseed oil (LO) and 

fish oil (FO) differed with each other in effects on methane production. LO was 

unsuccessful in reducing methane production at all time periods of in vitro incubation 
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while FO reduced methane production by 35% and 42% at 36-48 h of in vitro incubation 

when added at 4 and 8 % DM respectively.  

Another factor that was apparent from the in vitro study was that even when oil sources 

are supplied at the same dosage levels, effects on fermentation and methane production 

varied among the oil sources. For example, carvacrol when supplied at 8% completely 

inhibited microbial fermentation and the dose was toxic to the microbes. To date, no 

essential oil dosage level has been identified as effective for methane mitigation. Reasons 

for this could be that essential oils are too varied in composition, and even with exactly 

the same essential oil, effects tend to vary depending on the growing conditions of the 

plant, time of harvest etc (Benchaar et al., 2008). 

The digestibility of NDF of the basal diets showed that carvacrol supplied at 4% DM to the 

basal diets suppressed digestibility to an average of 53%, which was similar across the 

basal diets. At 8% supplementation, carvacrol further inhibited fibre digestion. On the 

other hand linseed oil (LO) and fish oil (FO) had no effect on NDF digestibility when 

compared to the control.  

The results of the in vitro study helped in designing the experiment for the first cow 

study. The in vivo experiment was a 4X4 Latin square with two starch sources wheat and 

maize, and two oil sources Megalac and sunflower oil. The aim of the experiment was to 

test the combination of starch and oil source on methane production, productivity and 

milk fatty acid profile. Starch sources were fed as wheat and maize based commercial 

feeds. The wheat based concentrates supplied 290 g/kg and maize based concentrates 

supplied 330 g/kg starch levels to the cows. Megalac is a commercial product used by 

farmers and was chosen since it assumed to have inert properties (composed of calcium 

salts of palm fatty acids), and therefore has minimal effects on rumen fermentation 
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(Rabiee et al., 2012). Megalac was composed of 48% palmitic acid and 36% oleic acid, 

while sunflower oil was composed of 48% linoleic acid. The study demonstrated that 

wheat and maize when supplied at the same level have different effects on methane 

production and productivity. Maize is slowly fermented in the rumen (Chaves et al., 2009) 

therefore produces less methane while wheat has a fast fermentation rate (Doreau et al., 

2011; Reynolds 2006) and therefore produced higher amounts of methane. The 

experiment demonstrated that maize based concentrates were more effective in reducing 

methane output when results were expressed as g/d and g/kg milk compared to the 

wheat based concentrates. Results of starch sources on methane production verified the 

findings of the in vitro study. When methane results were expressed as g/kg DM intake, 

an oil source effect was observed in which sunflower oil increased methane output when 

compared to the Megalac based diets principally due to a reduction in DM intake on this 

treatment. The reason for the higher methane outputs could have been due to the rumen 

microorganisms becoming acclimatised to the oil since it was supplied at a very low dose. 

The higher methane output with sunflower oil when compared to Megalac suggests that 

sunflower oil stimulated increased methane output.  

The interaction between starch source and oil source on methane production was also 

investigated in study 2. From the results it was established that there was no interaction 

between starch and oil source on methane production when results were expressed as 

g/d, g/kg DM intake, g/kg milk yield and g/kg fat corrected yield. It is possible that results 

of starch and oil source interaction may differ when other basal diets are fed 

(Beauchemin et al., 2009; Chung et al., 2011) and this needs investigation.  

The final experiment investigated the impact of time of grazing and TMR supplementation 

of high yielding dairy cows on methane production and productivity. Results of the study 

were that all the groups of cows that were allowed access to pasture produced a lower 
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methane output when results were expressed as g/kg milk yield compared to those fed 

only the TMR. Within the grazing groups, time of grazing did not have an impact on 

methane production. The reduction in methane output with grazing could have been due 

to the higher α-linolenic acid levels in grass, which are in the range 450-500 g/kg of the 

total fat acids in fresh grass compared to preserved forages in TMR which tend to have 

low concentrations of α-linolenic acid.  

Most previous studies have reported low methane outputs when grazing ruminants. For 

example in a study by O’Neal et al., (2011), cows that were grazed perennial ryegrass 

pastures produced 37 and 11 % less methane production when expressed on a g/d  or 

g/kg DM intake respectively when compared to those that were fed a TMR. The low 

methane production with grass was attributed to the high organic matter digestibility and 

high CP concentrations when compared to TMR. The dietary concentration of α-linolenic 

acid has also been linked with production of low methane output in ruminants and this is 

a potential area of investigation. For example, Martin et al., (2009) supplemented dairy 

cows fed a hay based diet with extruded linseeds at 3 dose levels of 2, 4 and 6% DM 

supplementation. Methane production was reduced by 15, 19 and 40% respectively. In 

another study by Zhang et al., (2008), supplementation with α-linolenic acid at 35 and 70 

g/kg DM reduced methane production by 46 and 62 % respectively when compared to 

the un-supplemented control. In the current study, it is suggested that α-linolenic acid 

could have played a role in reducing the methane output. The NDF levels in am grass 

samples were higher than those found in the TMR, so it is probable the low methane 

outputs in the grass fed cows could have been as a result of the higher α-linolenic acid 

concentration rather than an effect of fibre. 
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7.2 Effects of dietary manipulation on productivity  

The effects of dietary manipulation on productivity were also tested in the two cow based 

studies. Farmers can easily adopt dietary recommendations only if the changes are able 

to either improve productivity or have no effect on productivity but at the same time 

have an added advantage of reducing methane output. A comparison of the two cows 

studies show that in the first study with two starch and oil sources it was observed that 

the maize based diets increased the condition score change of the cows suggesting a 

positive energy balance. In contrast, cows that consumed wheat based concentrates were 

in negative energy balance and had a negative condition score change. These effects were 

due to maize based concentrates supplying a high level of starch to the cows. Starch 

intake in the cows fed maize based concentrates was 0.2 kg/d higher than those fed the 

wheat based concentrates. When compared to wheat, maize is slowly fermented in the 

rumen, so the starch from maize escapes fermentation and flows to the small intestine 

where it is absorbed and goes to the liver and is later utilised as a source of glucose for 

the cow (Reynolds, 2006). The higher glucose supply may therefore be the reason 

productivity was higher with the cows fed the maize based concentrates.  

In the second grazing study, milk yield was higher in the cows that were housed indoors 

and lower in all the grazing groups except those that were grazed during the day with 

access to TMR. The differences in milk production were associated with changes in DM 

intake. Milk yield increased with TMR supplementation at pasture hence justifying that 

DM intake is a major factor that limits productivity at pasture. In the grazing trial, 

afternoon and morning pastures differed in WSC concentrations, with afternoon pastures 

having a higher level than the morning pasture. This was however, unable to improve milk 

yield or condition score change. The higher level of WSC in grass did result in a higher 

protein concentration level in milk. Increased WSC concentrations also did not reduce 
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methane output. Previous studies that examined effects of high WSC concentration on 

methane production are few and results are inconclusive. For example, Staerfl et al., 

(2012) fed cows dried ryegrass which was 90 g/kg DM higher in WSC concentrations 

compared to the control and observed that this had no effect on methane production. 

While in a study by Kim et al., (2011), growing lambs fed grass which was 42 g/kg DM 

higher in WSC concentrations produced 17 % (L/kg DM) and 25% (L/kg live weight gain) 

lower methane production when compared to the control. The study by Kim et al., (2011) 

used growing lambs whose ruminal microorganisms at species level may have been 

different from those of dairy cows. In the current project, the study was carried out in 

dairy cows and may therefore explain the differences in results with those of Kim et al., 

(2011). 

What was established from the two cow studies was that altering the starch source 

particularly the inclusion of maize in the diet of cows reduces methane output and 

increases productivity i.e. results in an increase in milk yield and condition score change, 

while increasing WSC concentration in grass has no impact on methane production and 

productivity but higher WSC concentration in grass increased milk protein concentration. 

The impact of WSC on methane output is a new area of research and effects on methane 

production still remain inconclusive. This also requires further investigation. 

7.3 Effects of oil sources on milk fatty acid profile 

Effects of dietary manipulation on milk FA profile was tested in the two cow based 

studies. In both studies, dietary FA profiles were reflected in the milk FA profiles of the 

cows. Cows that were fed sunflower oil based diets in the first cow study and the cows 

that had access to pasture in the grazing study had higher levels of C18 FA concentrations 

in milk, where as the cows fed megalac based diet in the first trial and those housed 
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indoors through out in the second trial both had higher concentrations of C16 fatty acids. 

The greater concentration of C18 FAs is attributed to the greater intakes of either linoleic 

acid from sunflower based diets or α-linolenic acid from the fresh pastures. This is 

consistent with what has been reported in many previous studies in which oils composed 

of long chain fatty acids when added to ruminant diets tend to reflect their FA profile in 

the milk (Martinez-Marin et al., 2012). Bio-hydrogenation effects in the rumen tend to 

reduce longer PUFAs chains to SFAs (Sinclair et al., 2007, Chikunya et al., 2005). Martinez-

Marin et al., (2012) supplemented dairy goats with refined sunflower oil at increasing 

dosage of 0, 30, 48 and 66 g/d and reported an increase in milk trans-fatty acids trans-9 

C18:1, trans-11 C18:1, and cis-9 trans-11 CLA concentrations which increased in a dose 

dependent manner. Trans-9 C18:1 increased linearly to a maximum of 200%, trans-11 C18:1 

increased to 635% and cis-9 trans-11 CLA to 354%. 

The first cow study used Megalac and sunflower oil sources in the diet while the second 

cow study was a comparison between cows housed indoors and those that had access to 

fresh pasture. Fresh pasture is rich in α-linolenic acid and sunflower oil used in the first 

cow study is rich in linoleic acid. In both studies, the short chains FAs were unchanged 

with dietary manipulation with major changes being in the medium and long chain fatty 

acids. Cows fed sunflower oil had higher contents of trans-9 C18:1, trans-11 C18:1, cis-9, 

trans-11 CLA and trans-10, cis 12 CLA in the milk fat, while grazing with no TMR 

supplementation increased concentrations of cis-9 C18:1,  trans-11 C18:1 and cis-9, trans-11 

CLA in the milk FA profile. The results obtained were in agreement with a number of 

other studies. For example in a study by Renna et al., (2012), when goats were moved 

from indoor diet to total grazing, there was a gradual increase in the milk FA 

concentrations of C18:0, trans-11 C18:1 and α-linolenic acids and other long chain FA.  
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7.4 Predicting methane output from milk fatty acid profiles 

Previous research has attempted to predict methane production from milk fatty acid 

profiles. According to Mohammed et al., (2011), milk fatty acid have a common pathway 

with short chain fatty acids propionate, butyrate and acetate that are produced during 

rumen fermentation, therefore the milk fatty may be used to be predict methane 

production. In the current study, results of dry matter intake and milk fatty acid profiles 

from the two cow studies were used to predict methane output. The data set was drawn 

from the two different cow studies described in chapters 5 and 6 containing a total of 97 

individual observations. The test variables included total DM intake (kg/d) from the 

individual cows and the individual milk FA profile (g/100g of total). In the two studies 

variables used were similar but feeding conditions in the two studies differed. In the first 

study, the cows were fed a TMR basal ad libitum supplemented with either Megalac or 

sunflower oil and also had access to 7.5 kg/d/cow as fed of either wheat or maize based 

concentrates. The second cow study was a grazing trial where cows had access to TMR 

while housed indoors and had access to pasture either at night or during the day. The 

dependent variable are the methane (CH4, g/d) results in the experiments and the 

independent variables were total DM intake, kg/d and the milk fatty acids C14:1, C17:0, C18:0, 

C18:1n9t and C18:2n6. The independent variables were chosen based on the significance of 

the P-value of each regression coefficient (Figs 15a and 15b). The FA C16:0 was not 

included because its P-value was not significant. Analysis of data was done using 

multivariate regression in Excel 2013 Microsoft software. 
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Figure 15a.Correlation between selected milk FA concentrations (g/100g) and daily methane output (g/d).  
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Figure 15b. Correlation between selected milk FA concetrations (g/100g of total FA) and daily methane 

output (g/d).   

 

Table 34. Anova table showing multivariate regression analysis using data from  

the two cow studies  

  df SS MS F Significance F 

Regression 6 259360.3 43226.72 20.05172 9.44097E-15 

Residual 90 194018.5 2155.762 
  Total 96 453378.9       

       

                            Table 35. Regression analysis of parameters with methane output (g/d)  

                              using data from two cow studies 

 

 

 

 

                                                                                                             

 

From the above, the derived regression equation is  

CH4 (g/d) = 142.14+6.61*(Total DM intake, kg/d) + 54.7*(C14:1) + 166.7*(C17:0) +  

(-7.8*C18:0) + (-45.8*trans-9 C18:1) + 47.3*(C18:2n-6).   

Where milk fatty acids are represented as g/100g of total FA 

Variables Coefficients P-value n 

Intercept 142.13 0.173  

Total DM intake 6.61 0.000071 97 

C14:1 54.70 0.007 97 

C17:0 166.68 0.052 97 

C18:0 -7.79 0.084 97 

trans-9 C18:1 -45.79 0.003 97 

C18:2n-6 47.27 0.008 97 
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In the current study the correlation (R2= 0.54) of methane production and the test 

variables was not very strong. This could have been due to the varying dietary conditions 

in the two experiments. 

The previous study by Mohammed et al., (2011) came up with the following predictive 

equation. 

CH4 (g/d) = −910.8 (±156.7) × milk cis-9-C17:1 + 331.2 (±88.8) × milk C16:0 iso + 0.0001 

(±0.00) × total entodiniomorphs + 242.5 (±39.7). (R2 =90) 

The derieved equation differs from that of Mohammed et al., (2011) in that the measured 

fatty acids are different from the ones measured in the current study and total 

endodiniomorphs were not measured in the current study. The equation by Chillard et al., 

(2009) also differs from the derived equation in that the isomers trans-16 C18:1 and cis-14 

C18:1 were not measured in the current study and the FA C16:0 was found not to have a 

significant P-value. However, the evaluation does give hope of the potential to predict 

methane production from milk fatty acid concentrations under varying feeding 

conditions. In summary, the equation obtained cannot be tested using data obtained in 

previous studies because different fatty acid profiles were used.  

In summary, prediction of methane production from milk fatty acid profile and intake 

parameters is possible. The major limitation is that prediction equations prove difficult to 

be tested on previous studies because of varying dietary conditions and secondly, the 

milk fatty acid profiles chosen or used in one prediction equation may differ from those 

used in other studies. All in all, with refinement, milk fatty acid profile may be good 

predictors of methane production.  
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7.5 Conclusions 

Results obtained in the thesis support the hypothesis that was being tested of the ability 

of various dietary manipulations to alter fermentation characteristics, reduce methane 

production and alter milk FA profile. A range of dietary manipulations including addition 

of carvacrol, supplementation with maize based concentrates and grazing were effective 

strategies to reduce methane output. Addition of sunflower oil to the diet and an increase 

in WSC concentration in grass were not effective in reducing methane production. Milk FA 

profile was altered by sunflower oil addition and by grazing the cows i.e C16:0 was reduced. 

The long chain PUFA and trans-fatty acids were increased. 

7.6 Perspective 

The project has established that it is possible to mitigate methane production in 

ruminants through a range of dietary manipulations. What are needed are dietary 

manipulations that can reduce methane production without having negative effects on 

productivity. According to Beauchemin et al., (2008), farmers are most likely to adopt 

dietary recommendations that have a positive impact on productivity. Adoption of dietary 

strategies with negative effects on productivity especially a reduction in milk yields are 

unlikely to be embraced by farmers. The first cow study where sunflower oil was used 

resulted in cows having a low DM intake, but the sunflower oil changed the milk FA 

profile by reducing the C16:0 and increasing C18 FAs which are desirable for human health. 

From the study, the results can help farmers have options for the best management 

practice to adopt. When choosing between two starch sources, wheat or maize based 

concentrates; maize is more effective at reducing methane production and at the same 

time increases productivity. From the grazing trial, grazing as a whole reduces methane 

production. What farmers want are grazing options that do not compromise productivity. 
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Results of the grazing trial show that grazing during the day with supplementation 

produces similar levels of production i.e. milk yield, body condition score and live weight 

change as those cows kept indoors throughout but effectively reduces methane 

production when results are expressed as g/kg milk yield and g/kg fat corrected yield. 

Grazing cows also has an additional advantage of proving α-linolenic acid in fresh pasture 

effectively increased its concentration in milk which improves the health quality of milk 

for human consumption. Lastly grazing in considered a cheap strategy of feeding 

ruminants (Beauchemin et al., 2008).  

7.6.1 Cost implications of methane mitigation strategies 

Grain or concentrate feeding of ruminants though effective in reducing methane 

production are produced at great cost. According to Boadi et al., (2011) grain production 

is associated with use of fertilisers and transport costs which tend to increase cost of the 

grains. Therefore the need to reduce methane production should be weighed against the 

cost of the high quality feed. However grain or concentrate supplementation of dairy 

cows has shown to be effective in increasing milk production (Vellinga et al., 2011). 

Increase in milk production is a positive attribute which is desirable as methane 

emmisions per unit of milk yield tend to reduce.  

The cost of the oil supplements also has to be evaluated. Literature shows that processed 

oils like sunflower oil tend to be more expensive when compared to whole seeds 

(Beauchemin et al., 2007) because of added processing cost.  Main advantage is that they 

improve the FA profile of the milk by increasing the C18 fatty acids and reduce the medium 

chain FAS.  

The long chain FAs eg cis-9, trans-11 conjugated linoleic acid (CLA), cis-9 18:1, and 18:3 n-

3 have a potential beneficial to human health (Hristov et al., 2009). According to Del 
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prado et al., (2010), the high cost of the oils can be offset by the niche consumer 

population who opt to go for animal products like milk and meat that have a health 

benefit attached to the product and are willing to pay a premium price for such products. 

Another advantage of supplementing cows with refined oils is that they tend not to affect 

whole tract digestibility (Beauchemin et al., 2008). 

7.6.2 Need for whole system approach to methane mitigation strategies 

Before implementing methane mitigation strategies, consideration should be given to the 

impact of the strategies on the whole system. According to Eckard et al., (2010) a whole 

system assessment ensures that emission reduction strategies in one sector do not result 

in an increase in emissions in another part of the production system. For, example 

increase in concentrates or starch sources to dairy rations reduces methane production in 

cattle, but the production of grains involves clearing of land which tend to increase the 

GHG emissions through an increase in transport and processing emissions (Beauchemin et 

al., 2008). Therefore option of feeding grains should be balanced with the effect of grain 

production on the environment. According to Vellinga et al., (2011), a number of 

mitigation options may be carried out on one farm. Example, reducing replacement rates 

and improving fertility rate can be applied on the same farm whilst dietary changes are 

also implemented. A DEFRA modelling study (Chadwick et al., 2007) observed that at UK 

national level, a 30% increase in milk production per cow coupled with a reduction dairy 

cow numbers while maintaining a high milk production is able to reduce methane 

emissions at national level by 24%. All in all, cost effectiveness of the mitigation strategies 

is what will influence farmers to adopt the recommendations (Vellinga et al., 2011; 

Beauchemin et al., 2007). 
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