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Abstract  

Experiments assessing the efficiency of natural antioxidants rosemary (ROS), small red bean 

(SRB), sunflower seeds (SFS) and ginger (GGR) extracts compared to the synthetic 

antioxidant (BHT) on characteristics of chicken meat were studied. The initial experiment 

evaluated the effect of the addition of antioxidants at 10 and 20 mg to lipids extracted from 

different tissues (breast, thigh, adipose and skin tissue) during the Schaal oven test 62.8 oC. 

Antioxidants at 10 and 20 mg significantly reduced TBARS, CD and CT values in all 

extracted lipids compared to the non-treated samples. However, no significant differences 

were found between both levels. Among the antioxidants, ROS significantly reduced 

TBARS values in fat from all the chicken portions over 7 days.  

In the subsequent experiments, the impact of antioxidants on physical and chemical 

characteristics of raw and freshly cooked meat was investigated. In addition, the impact of 

the application of natural antioxidants on warmed-over characteristics in cooked chicken 

meat was evaluated. Raw meat samples treated with SFS had the lowest TBARS values, 

while in meat freshly cooked, ROS treatment had the lowest TBARS values. The addition 

of antioxidants reduced the degradation of phospholipids and formation of CDs and CTs in 

both raw and freshly cooked meats compared to the non-treated samples. Antioxidant 

treatments had a significantly lower drip loss and pH values, but did not affect cooking loss 

and shear force. Natural antioxidants significantly increased the colour stability and yielded 

more fatty acids in chicken meat. Natural antioxidants significantly reduced (p ≤ 0.05) the 

formation of TBARS, CD and CT in both LTLO and HTHO samples, while their effect was 

much greater in LTLO samples compared to HTHO meat samples. Reheating process had a 

significant an effect on TBARS, CD and CT accumulation of most treatments either cooked 

by LTLO or HTHO methods (p ≤ 0.05). In conclusion, the results suggest that natural 

antioxidants may have the ability to inhibit the lipid oxidation and enhance meat quality. The 

impact of natural antioxidants was similar to that of BHT. 
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Chapter 1 

Literature Review 

1.0 Introduction  

Autoxidation of lipids is of primary concern in many lipid-rich foods because it negatively 

affects the rheological characteristics of meat (Byrne et al., 2001), through the formation 

of hydroperoxides, malondialdehyde, 4-hydroxynonenal, and volatile compounds during 

the lipid oxidation process which are responsible for undesirable tastes, flavours and 

discolouration of meat (Frankel, 1980; Min and Boff, 2002) and cause a reduction in the 

nutritional value (Min et al., 2008). The discolouration of meat during storage takes place 

by oxidation of oxymyoglobin, resulting in the appearance of an undesirable colour in 

meat (Nerin et al., 2006). This formation of abnormal colour and off-odours in meat is 

due to susceptible lipids and proteins being attacked by free radicals (Nanke et al., 1998; 

Ahn et al., 2001). Unsaturated fatty acids are considered more prone to oxidation (Min 

and Ahn, 2008). Poultry meat is susceptible to oxidation due to the particularly high 

proportion of polyunsaturated fatty acids compared to most other meat types (Hayes, 

2000). Moreover, meat processing methods such as cooking can accelerate the oxidation 

rate in beef, pork and chicken (Min et al., 2008); grinding and deboning meat also plays 

a role in the lipid oxidation progress (Laak, 1994). This is because these processes disrupt 

the cell membranes and facilitate the lipid compounds to come into direct contact with 

oxygen and compounds that have the ability to catalyse meat lipid oxidation (Bragagnolo, 

2009). Lipid oxidation has an association with warmed-over flavour (Erickson, 2002). 

Warmed-over flavour is defined as unpleasant odours and flavours (Estevez et al., 2009). 

Warmed over flavour is commonly described as a grassy, cardboard-like, rancid, stale, 

and painty that occurred in cooked, refrigerated and reheated meat (Pegg and Shahidi, 
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2007; Colindres and Brewer, 2010). Several studies have reported that warmed over 

flavour is strongly correlated with the development of thiobarbituric acid reactive 

substances (TBARS) in meat (Lanari et al., 1995; Byrne et al., 2001; Nute, 2009). Hence, 

in the study conducted by Sato et al. (1971) reported that the warmed-over flavour is 

rapidly produced in cooked meat during the post-cooking storage time. The process of 

lipid oxidation can be terminated or minimised by the presence of free-radical scavenging 

compounds (e.g. antioxidants) (Erickson, 2002; Velasco and Williams, 2011). The use of 

antioxidants to prevent and delay the oxidation of lipids in meat and meat-derived 

products has been the focus of a number of studies (Erickson, 2002; Mielnik, et al., 2003; 

Naveena et al., 2004). Some reports have focused on the use of synthetic antioxidants 

such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tertiary 

butyl hydroquinone (TBHQ) and have been employed in various food industries to retard 

and reduce lipid oxidation (Erickson, 2002; Velasco and Williams, 2011). More recently, 

the focus of research has been on the use of natural antioxidants. This is mainly because 

consumers prefer, and place increasing demands on, foods containing natural antioxidants 

instead of synthetic ones because of the perceived health benefits, improved nutritional 

value and the enhanced quality of meat (Velasco and Williams, 2011). A further reason 

for the move towards natural antioxidants is to avoid reported carcinogenic side effects 

associated with long-term consumption of some synthetic antioxidants (Gharavi et al., 

2007). Several studies have pointed out that rosemary, small red bean, sunflower and 

ginger contained several compounds that have high antioxidant activity (Shan et al., 2005; 

Luthria et al., 2006; Amakura et al., 2013). Hence, given the move towards the role of 

natural antioxidants, there is a little research focussing on the impact of these natural 

antioxidants on broiler chicken meat. Although information about the effect of extraction 

of natural antioxidants from plant origins such rosemary and ginger on the oxidation of 

lipids, degradation and sensory properties of meat is well documented, there is no research 
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related to investigate the impact of the application of both small red bean and sunflower 

seeds to chicken meats on their meat quality. Furthermore, most of the research has 

demonstrated the efficiency of sunflower seed extract and small red bean in in vitro tests. 

Until now, to our knowledge, application of this antioxidant to chicken meat post-

slaughter has not been well-documented. Therefore, to explore and evaluate the 

effectiveness of small red bean and sunflower seeds in chicken meat is important. Hence, 

this study conducted to evaluate the effect of post-slaughter natural antioxidants 

application on the physical and chemical characteristics of raw and cooked chicken meat. 

1.1 Fatty Acid Composition of Chicken Meat 

The lipids in meat are present at various locations, such as subcutaneous (directly under 

the skin); intermuscular fat surrounding the muscle cells, including cell membranes); and 

intramuscular (fat surrounding muscle tissue, but within cuts of meat and as such is 

responsible of the marbling in specific cuts) (Huff-Lonergan, 2010). However, meat 

contains various types of lipid compounds. There are two noteworthy types of lipids 

present in meat, namely neutral lipids (triglycerides) and polar lipids (phospholipids) 

(Belitz et al., 2009). Triglycerides represent the greatest proportion of lipids. All 

triglycerides are composed of one molecule of glycerol and three fatty acids that are 

connected via ester bonds (Figure 1.1). Triglycerides are typically synthesised as either 

visceral fat that surrounds vital organs as a protective layer, or as adipose fat that is laid 

down when excess nutrients are converted as an energy dense stores. The adipose stores 

can then be accessed to provide energy to the body through the lipolysis process. Lipolysis 

is the breakdown of triglyceride into free fatty acids and glycerol (Belitz et al., 2009).  

Phospholipids are lipids that are found in cell membranes and the membranes of 

organelles where they play an important role in the fluidity of the membrane and 

functioning of cells. Phospholipids are composed of two fatty acids bound via ester bonds 
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to a glycerol. The glycerol is also bound to a phosphate group that links the lipid moiety 

to a polar molecule such as choline (Figure 1.1). Hence, structurally phospholipids are 

composed of a hydrophilic head group (the polar moiety) and a hydrophobic tail (the lipid 

moiety). (Erickson, 2002).  

Fatty acids (FA) are formed of a hydrocarbon chain with a methyl group (CH3) at one 

side and a carboxylic acid group (COOH) at the other end. The vast majority of fatty acids 

consists on an even number of carbons, due to the principal means of synthesis (Belitz et 

al., 2009). The relative frequency of fatty acids of varying length varies from source to 

source. For example, chocolate, cottonseed and coconut that contain a high level of short 

chain fatty acids; while flaxseed, soybean oil, fish, milk and meat contain a high level of 

long chain fatty acid (Abedi and Sahari, 2013). Fatty acids predominantly exist in a 

saturated form (all carbon carries the maximum number of hydrogens that can surround 

them while in a chain of carbons); these are referred to a saturated fatty acids (SFA). 

Alternatively, some fatty acids might contain one or more double bonds between carbons 

in the chain; these are referred to as monounsaturated (MUFA) containing a single double 

carbon bond; or polyunsaturated fatty acids (PUFA) containing multiple double carbon 

bonds. Depending on the position of double bonds the unsaturated fatty acids can be 

assigned a specific nomenclature (e.g. n-3, n-6 or n-9), with the numbers indicating the 

first carbon in a double bond that is closest to the methyl end of the fatty acid (O’Keefe, 

2002).  
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Figure 1. 1 Structures of the main lipid compounds. Top, triglycerides; Bottom, 

phospholipids. (Adapted from Blake, 2010). 

In general, fat of food stuff and particularly meat is made out of a mix of different sorts 

of lipids and at different quantities. The combination of which is commonly referred to 

as fatty acid profile. The typical fatty acid profile of chicken muscle and tissues are shown 

in Table 1.1. Both saturated and monounsaturated fatty acids make up the main proportion 
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of fatty acids in chicken tissues, while polyunsaturated unsaturated fatty acids are present 

in much lower quantities (Waldroup and Waldroup 2005; Feddern et al., 2010; Zhang et 

al., 2013; Ahmed et al., 2015).  

The highest levels of SFA are typically found in breast, thigh and drumstick meat with 

values of 35.57, 33.32 and 31.26 g/100 g fat respectively; while skin and adipose tissue 

typically contain a lower proportion of SFA (Table 1.1). Palmitic acid (C16:0) is the most 

prominent SFA in all types of chicken tissue. The amount of MUFA can vary from 39.00 

g/100 g fat in the skin tissue to 46.17 g/100 g fat in thigh muscle, with oleic acid being 

the most abundant among the monounsaturated fatty acids, closely followed by 

palmitoleic acid (Table 1.1) (Waldroup and Waldroup, 2005; Feddern et al., 2010; Zhang 

et al., 2013; Ahmed et al., 2015). Skin tissue tends to be rich in PUFAs at 30.6 g/100 g 

fat compared to the amount of PUFA in thigh meat, adipose tissue. The most abundant 

PUFA is linoleic acid (C18:2 n-6), which ranges from 14.30 g/100 g fat in breast meat to 

28.23 g/100 g in skin tissue.   

As mentioned before, the principal lipid components are triglycerides and phospholipids. 

In the two main types of chicken tissue (breast and thigh), the triglycerides carry the 

largest proportion of fatty acids (Table 1.2). Relatively the highest proportion of SFAs 

are typically found in the phospholipid portion of breast tissue followed thigh tissue with 

values of 33.7 and 32.6 % respectively; while the triglycerides from thigh tissue typically 

contain a lower proportion of SFAs of 18.76 % followed by breast tissue of 21.1 % (Table 

1.2). Palmitic acid (C16:0) is the most prominent SFA among both phospholipids and 

triglycerides from breast and thigh tissue (Betti et al., 2009). The amount of MUFA can 

vary from 25.1 % in phospholipid thigh tissue to 29.3 % in breast tissue; while the 

proportion triglycerides in MUFA are very similar to 48.5 % in breast tissue and 49.1 % 

in thigh tissue with oleic acid being the most abundant among the MUFAs, closely 
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followed by cis-vaccenic acid (Table 1.2) (Betti et al., 2009). The highest proportion of 

PUFAs are typically found in the phospholipid portion of thigh tissue followed breast 

tissue with values of 42.3 and 36.9 %, respectively; while the triglycerides from breast 

tissue typically contain a lower proportion of PUFAs 30.3 % (Table 1.2). Linoleic acid 

(C18:2 n-6) followed by arachidonic acid (C20.4 n-6) is the most prominent PUFAs 

among both phospholipids and triglycerides from breast and thigh tissue (Betti et al., 

2009). 

Table 1.1 Fatty acid composition (g/100 g fat) in chicken muscle and fat tissue.  (Adapted 

from Waldroup and Waldroup 2005; Feddern et al., 2010; Zhang et al., 2013; Ahmed et 

al., 2015)  

Structure Name Breast Thigh Drumstick Skin Adipose 

C14:0 Myristic 0.4 1.1 0.9 0.5 1.9 

C14:1 n-5 Myristoleic - 0.3 - - - 

C15:0 Pentadecanoic - - 0.0 - - 

C16:0 Palmitic 24.0 25.0 23.6 23.5 21.5 

C16:1 n-7 Palmitoleic 4.4 6.2 5.7 4.2 5.0 

C17:1 Heptadecaenoic - 0.2 - - - 

C18:0 Stearic 10.7 6.1 6.3 6.1 7.2 

C18:1 n-9 Oleic 37.4 39.2 38.7 34.8 39.8 

C18:2 n-6 Linoleic 14.3 15.6 15.4 28.2 19.9 

C18:3 n-3 ɑ-linolenic 1.4 1.7 - 2.4 1.8 

C20:0 Arachidic 0.4 1.1 0.4 - - 

C20:1 n-9 Eicosenoic 0.9 0.1 0.8 - - 

C20:2 n-6 Eicosadienoic - 0.2 0.1 - - 

C20:3 n-6 Eicosatrienoic - 0.2 - - - 

C20:3 n-3 Eicosatrienoic 1.2 - - - - 

C20:4 n-6 Arachidonic 2.2 1.0 0.2 - - 

C20:5 n-3 EPA1 0.2 0.2 - - - 

C22:1 n-9 Erucic - - 0.7 -  

C22:5 n-3 DPA2 - - - - - 

C22:6 n-3 DHA3 1.2 1.7 - - - 

C24:1 n-9 Nervonic 1.3 0.2 - - - 

SFA4  35.6 33.3 31.3 30.2 23.4 

MUFA5  43.9 46.2 44.0 39.0 44.8 

PUFA6  19.2 20.5 17.2 30.6 21.7 

∑n-3 PUFA7  2.7 3.5 - 2.4 1.8 

∑n-6 PUFA8  17.7 17.0 15.7 28.2 19.9 
1Eicosapentaenoic acid EPA cis, 2Docosapentaenoic acid DPA, 3Docosahexaenoic acid DHA; 4SFA, 

saturated fatty acids; 5MUFA, monounsaturated fatty acids; 6PUFA, polyunsaturated fatty acids. ∑ n-3 

PUFA7 = C18:3 n-3 + C20:3 n-3 + C20:5 n-3 + C22.5 n-3 + C22.6 n-3. ∑n-6 PUFA8 =    C18:2 n-6 + 

C20:2 n-6 + C20:3 n-6 + C20:4 n-6.  
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Table 1.2 Fatty acid composition (mg/100 g meat) of phospholipids and triglycerides in 

chicken breast and thigh meat. (Adapted from Betti et al., 2009) 

Structure Name 
Breast Thigh 

PL1 TAG2 PL1 TAG2 

C14:0 Myristic 1.0 5.5 1.1 14.5 

C16:0 Palmitic 66.6 239.4 63.7 588.7 

C16:1n-7 Palmitoleic 1.9 45.3 2.7 165.3 

C18:0 Stearic  33.1 62.1 60.3 91.3 

C18:1 n-7 Cis-vaccenic 17.3 44.6 16.5 111.7 

C20:0 Arachidic - 1.3 - 2.5 

C18:1 n-9 Oleic  68.3 617.5 76.8 1548.0 

C18:2 n-6 Linoleic  68.6 361.8 101.2 977.5 

C18:3 n-3 ɑ-linolenic  2.8 70.7 5.6 195.0 

C18:3 n-6 Gamma-linolenic  - 1.9 - 5.0 

C20:2 n-6 Eicosadienoic 1.2 2.4 1.6 5.4 

C20:3 n-6 Eicosatrienoic - 1.3 2.0 2.4 

C20:4 n-6 Arachidonic  20.6 2.2 30.6 4.8 

C20:5 n-3 EPA3 3.1 0.4 2.2 1.2 

C22:4 n-6 Adrenic - - 3.6 - 

C22:1 n-9 Erucic - 1.0 - - 

C22:5 n-3 DPA4 8.7 1.1 9.0 2.1 

C22:6 n-3 DHA5 5.0 ND 6.3 ND 

SFA6  100.7 308.3 125.1 697.0 

MUFA7  87.4 708.3 96.0 1825.0 

PUFA8  110.1 441.7 162.1 1193.0 

∑n-39  19.6 72.2 23.1 198.3 

∑n-610  90.4 369.5 139.1 990.1 
1 Phospholipids, 2Triglycerides; 3Eicosapentaenoic acid EPA cis, 4Docosapentaenoic acid DPA, 
5Docosahexaenoic acid DHA; 6SFA, saturated fatty acids; 7MUFA, monounsaturated fatty acids; 8PUFA, 

polyunsaturated fatty acids. 9∑ n-3 PUFA= C18:3 n-3 + C20:3 n-3 + C20:5 n-3 + C22.5 n-3 + C22.6 n-

3. 10∑n-6 PUFA8 =    C18:2 n-6 + C20:2 n-6 + C20:3 n-6 + C20:4 n-6.  

 

1.2 Lipid Oxidation 

Fat and fatty acid composition in meat are considered important for consumers due to 

their health benefit and nutritional value (Wood et al., 2008). However, some of these 

components are susceptible to oxidation during processing such as cooking, grinding and 

possible post-cooking storage periods (Sampaio et al., 2012; Humada et al., 2014). 

Sensitivity to oxidation is mainly dependent on the composition of lipids. Lipids that 

contain high levels of unsaturated fatty acids are more prone to oxidation compared to 

lipids high in saturated fatty acids (Min et al., 2008). Unsaturated fatty acids are 

https://en.wikipedia.org/wiki/Dihomo-gamma-linolenic_acid
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susceptible to oxidation by photo-oxidation, enzymatic oxidation and autoxidation 

(Gordon, 2001; Yanishlieva-Maslarova, 2001; Zhuang et al., 2002). Photo-oxidation is 

produced when lipids are exposed to light. However, photo-oxidation of lipids in meat is 

not considered a significant issue as suitable protection can reduce the absorption of light 

unless the meat is exposed to fluorescent light or direct sunlight, which might occur when 

meat is presented in a retail display cabinet (Gordon, 2001). During enzymatic lipid 

oxidation, enzymes such as lipoxygenases are a major initiator of oxidation process in 

lipids (Min and Ahn, 2005), which have ability to catalyse the oxygenation of fatty acids 

containing one or more double bonds (MUFAs and PUFAs respectively) and produce 

hydroperoxides (Shahdi and Wanasundara, 2002). However, enzymatic lipid oxidation in 

cooked meat is not considered a significant issue, due to the thermal inactivation of the 

most meat-related lipoxygenases at 60 oC (Yanishlieva-Maslarova, 2001).  

Lipid autoxidation is of primary concern in many lipid-rich foods, which negatively 

affects the physical and chemical characteristics of meat (Cortinas et al., 2004; Naveena 

et al., 2008; Selani et al., 2011), its nutritional value (Byrne et al., 2001; Min et al., 2008), 

and it produces undesirable tastes, flavours and discolouration of meat (Frankel, 1980; 

Min and Boff, 2002). Mechanisms of lipid oxidation and the development of rancidity 

can be categorized into three main steps (Figure 1.2).  
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Figure 1. 2 Mechanisms of lipid oxidation (Adapted from Erickson, 2002). Where: RH is 

a fatty acid, H is a hydrogen atom, R is a lipid free radicals, ROO is a peroxyl free 

radical, ROOH is lipid hydroperoxide and ROOR is non-radical.  

In the initiation step, lipid free radicals (R) are formed after a hydrogen atom is removed 

from an allylic methylene group of unsaturated fatty acids (RH) in the presence of 

initiators such as heating, iron, transition metals or free radicals. Lipid free radicals (R) 

react with molecular oxygen which exists in the atmosphere and this leads to the 

production of peroxyl free radical (ROO). Meanwhile, the latter promotes oxidation by 

reacting with unsaturated fatty acid and obtaining a hydrogen atom. The results of this 

reaction are the formation of the primary products, lipid hydroperoxide (ROOH) and a 

new lipid free radical. This lipid hydroperoxide is odourless and tasteless (Estevez et al., 

2009). Although hydroperoxide has no effect on the meat quality further decomposition 

causes off-odours and off-flavours (Erickson, 2002). The hydroperoxide decomposes and 

generates secondary products such as pentanal, hexanal, 4-hydroxynonenal, and 

malonaldehyde which do have noticeable off-odours and flavours. These compounds are 

extremely volatile and detectable at very low levels (parts per billion), and are also 

considered indicators of rancidity and warmed over-flavour (Estevez et al., 2009). During 

the termination step, two peroxyl free radicals interact with each other and produce non-

radical products such as lipid peroxide (ROOR). Lipid oxidation development in chicken 
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meat post-slaughtering is affected by several factors such as processing, storage 

conditions, oxygen availability, temperature, lipid composition, anti-oxidative content 

and the presence of pro-oxidants (Min and Ahn, 2005; Ma et al., 2007). 

1.3 Factors Affecting Lipid Oxidation 

Lipid oxidation in meat usually begins immediately post slaughter, which can be 

facilitated through various factors. The degree of processing is associated with intrinsic 

factors such as animal species, fatty acid composition, pH, meat content, and the presence 

of metals and extrinsic factors such as storage time and conditions, processing operations 

and conditions, light and exposure to oxygen (Min and Ahn, 2005).  

1.3.1 The Influence of Fatty Acid Composition on Lipid Oxidation. 

The rate of lipid oxidation is mainly influenced by the molecular geometry, position and 

number of the double bonds in the fatty acids (Nawar, 1996). During the propagation step, 

hydrogen atoms that are adjacent to the double bonds are most prone to abstraction. For 

that reason, fatty acids that carry multiple double bonds in their structure (i.e. 

polyunsaturated fatty acids) are more susceptible to oxidation compared to 

monounsaturated and unsaturated fatty acids (Huang et al., 2012). In addition, oxidation 

more readily occurs in cis compared to trans isomers of unsaturated fatty acids (Nawar, 

1996). The fat and its composition in muscle tissue depend on animal species, genetic 

origin, diet, and muscle position. For example, chicken thigh meat has higher levels of 

lipids and unsaturated fatty acids compared to the beef and pork meat; and chicken thigh 

meat contains lower levels of lipids than in chicken breast meat (Erickson, 2002). The 

rate of fatty acid oxidation is more related to fat composition than the amount of fat (Min 

et al., 2008). For instance, the oxidation rate is relative to the amount of unsaturated fatty 

acids and degree of unsaturation in individual fatty acids (Estevez et al., 2009).  
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1.3.2 The Influence of Storage Conditions on Lipid Oxidation 

The impact of storage conditions such as: time in storage, temperature, oxygen, light and 

type of packaging on acceptability properties of meat have been well documented (Nam 

and Ahn, 2002; Sanchez-Escalante et al., 2011; Muela et al., 2010; Zhou et al., 2010; 

Haile et al., 2013). Throughout the storage time, meat can undergo several undesirable 

changes such as lipid and protein oxidation, which can negatively affect the sensorial and 

rheological characteristics of meat (Frankel, 1980; Byrne et al., 2001; Min and Boff, 

2002; Leygonie et al., 2012). Changes in the flavour profile are often observed when meat 

is stored for extended periods. These flavours are usually described as undesirable “off” 

flavours or rancid flavours (Vieira et al., 2009), which are strongly correlated with the 

generation of various volatile compounds that are associated with lipid oxidation 

(Erickson, 2002).  

The storage (chilly and frozen) temperature is considered an important factor that can 

affect the quality and the shelf life of meat (Zhou et al., 2010). The longer meat and its 

products are exposed to elevated storage temperatures; the more the lipid is prone to 

oxidation (Flavia et al., 2014). McKee (2007) reported that pork meat kept at temperature 

above 7 oC had a higher off-odour and discolouration as compared to those kept at -4, 0 

or 3 oC. Low temperature can protect the properties of meat and prolongs its shelf life 

(Sebranek, 1995). This is probably due to the combined reduction in enzymatic activity 

and associated hydrolytic reactions and a reduction in the rate of chemical reactions that 

yield oxidative rancidity (Zhou et la., 2010). Low temperature storage such as freezing 

and refrigeration is widely used to limit oxidative deterioration of meat and hence increase 

its shelf life (Miller, 1994; Zhou et al., 2010; Leygonie et al., 2012). Frozen storage 

reduces the rate of lipid oxidation more than refrigerated storage (Miller, 1994). While 

freezing has the ability to reduce the rate of lipid oxidation, however it does not arrest the 



13 

 

process (Leygonie et al., 2012). The lipid oxidation can be minimised if the products 

stored at temperature -18 oC, well packaged and minimal the fluctuation of temperature 

(Sebranek, 1995). The development of lipid oxidation could be prevented in full just if 

oxygen will be totally wiped out and stored at low temperature -55 oC (Zhou et al., 2010).  

1.3.3 The Influence of Light and Water Activity (aw) on Lipid Oxidation  

Light is considered pro-oxidative factor that may affect the display life of meat (Gordon, 

2001). Light exposure can stimulate and increase the rate of lipid oxidation in meat by 

photo-oxidation (Gordon, 2001; Yanishlieva-Maslarova, 2001; Zhuang et al., 2002). 

Photo-oxidation occurs when lipids are exposed to fluorescent light or direct sunlight 

(254-546 nm) (Anderson and Skibsted, 1992), which might occur when meat is presented 

in a retail display cabinet (Gordon, 2001). The rate of lipid oxidation is mostly dependant 

on lighting conditions such as wavelength range, light intensity and meat-surface exposed 

to the light (Anderson and Skibsted, 1992; Min and Boff, 2002). Erickson (2002) 

identified that the longer meat is exposed to light, the higher its susceptibility to lipid 

oxidation and discolouration. This due to the ability of light to stimulate haem-containing 

proteins and activating them as sensitizers. Photoactivated sensitizers can react directly 

with oxidisable products and yield free radicals that can promote oxidation (Decker, 

2002). Huang et al. (2005) reported that in the presence of light and photosensitizers, 

singlet oxygen can be formed and react with unsaturated fatty acid and ultimately produce 

hydroperoxides (Reische et al., 2002). For instance, the exposure to light will reduce the 

redness of ham meat over time (Haile et al., 2013). Furthermore, Sanchez-Escalante et al. 

(2011) found that beef meat stored under light sources such as standard fluorescent (TF/36 

w) and low-UV (L36 w; 254 nm) lamps had a higher amount of TBARS and 

metmyoglobin than those stored at dark conditions. The discolouration of meat during 
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storage is related to the oxidation of oxymyoglobin (ferrous Fe2+) to metmyoglobin (ferric 

Fe3+) which turns meat colour from red to brown (Mancini and Hunt, 2005). 

Water activity (aw) of raw meat (at 25°C) is 0.99 and 0.6 for frozen meat at -18°C. At a 

range of water activity between 0.6-0.8, haem pigments initiate the oxidation of lipid 

(Rogers, 2007). Freeze-dried meat was found to have a greater lipid oxidation at aw ranged 

from 0-0.33 and stored at 49 oC as compared to those stored at 25 oC and aw < 0.33, while 

the degradation of protein solubility was higher when meat stored at 49 oC and aw ranged 

from 0.33-0.66 compared to aw < 0.33 and > 0.66, respectively (Sun et al., 2002). Laack 

(1994) reported that the oxidation of meat during the frozen storage time is associated 

with a lowering in the water activity.  

1.3.4 The influence of Meat Myoglobin Content on Lipid Oxidation  

Lipid oxidation is also strongly correlated with myoglobin content (Min and Ahn, 2009; 

Thiansilkul et al., 2011). Min and Ahn (1998; 2009) showed that myoglobin contains 

several compounds such as ferryl-myoglobin, hematin and free ionic iron that have the 

ability to catalytically promote lipid oxidation. More specifically, both haem and non-

haem iron have the ability to decompose the lipid hydroperoxide and generate off-odours 

and off-flavours in meat (Erickson, 2002). Thiansilakul et al. (2011) found that the 

addition of myoglobin to fish meat accelerated the oxidation rate of lipids as evidenced 

by higher thiobarbituric acid reactive substances (TBARS), peroxide value (PV) and 

volatile compounds. Oxidation of myoglobin occurred during the frozen storage and the 

consequent formation the amount of metmyoglobin which was probably produced during 

the combination of fluctuation of temperature and defrosting. Leygonie et al. (2012) 

reported that both freezing and defrosting of meat caused a rapid increase of thiobarbituric 

acid reactive substances (TBARS) which this attributed to the disruption of cell 
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membranes during the formation of a large crystal of ice and leading to release existing 

pro-oxidants particularly the haem iron.  

1.3.5 The Influence of Non-Meat Additives on Lipid Oxidation  

Lipid oxidation is affected by sodium chloride (Rhee and Ziprin, 2001). The addition of 

salt to meat and meat product has been commonly used to enhance the flavour, shelf-life, 

tenderness, drip loss and juiciness of meat (Min and Ahn, 2005). It has been reported that 

sodium chloride can act as a pro-oxidant and accelerate lipid oxidation in meat and meat 

products, however the accelerating rate is dependent on its concentration (Rhee and 

Ziprin, 2001; Min and Ahn, 2005). Rhee and Ziprin (2001) reported that the rate of lipid 

oxidation increased with elevating levels of sodium chloride in beef and chicken. Their 

study also found that non-haem iron increased with increasing sodium level in both types 

of meat. This was supported by the findings of Min and Ahn (2005) who reported that 

sodium chloride supports the release of ionic iron from haem proteins, which in turn 

induces autoxidation in meat. Moreover, addition of sodium chloride to ground pork meat 

increased both lipid oxidation products (TBARS and lipid peroxide) with increasing the 

concentration. Their study also found that sodium chloride reduced the activities of 

antioxidant enzymes such as glutathione peroxidase, catalase, and superoxide dismutase 

in pork meat, which could be responsible for the acceleration of lipid oxidation in the 

meat tissue (Lee et al., 1997). In the study conducted by Rhee et al. (1983) found that the 

application of sodium chloride at levels of 0, 0.5, 1, 2 or 3 % (w/w) to raw ground beef 

and stored at 4 °C for 3 or 6 days increased TBARS values with increasing salt 

concentration up to 2 %. When the level of salt increased from 2 to 3 % it resulted in 

decreased TBARS values. This suggests that sodium chloride is responsible for inducing 

the oxidation of lipid in meat and meat products, which could have limited the shelf-life 

of meat and its products.   
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1.3.6 The Influence of Molecular Oxygen on Lipid Oxidation  

Oxygen is one of the major factors that has a negative effect on lipid oxidation in both 

raw and cooked meat (Min and Ahn, 2005). In the presence of oxygen, lipids that contain 

high levels of unsaturated fatty acids are prone to oxidation (Min et al., 2008). 

Unsaturated fatty acids are susceptible to oxidation by reacting with molecular oxygen 

that exists in the atmosphere and this leads to the production of unpleasant flavour and 

volatile compounds (Estevez et al., 2009). Oxygen can rapidly promote oxidation of meat 

during processing such as cooking, grinding and deboning (Min et al., 2008). This is 

because cooking, grinding and deboning processes disrupt the cell membranes in muscle 

tissue and facilitate the lipid compounds to come into direct contact with oxygen and 

compounds that have the ability to catalyse meat lipid oxidation (Bragagnolo, 2009). Min 

and Ahn (2005) suggested that the potential for lipid oxidation in meat depends more on 

the availability of oxygen and its concentration in modified atmospheres. As such, turkey 

breast meat stored under aerobic conditions was found to have a higher lipid oxidation 

compared to those stored in the absence of oxygen under refrigerated conditions over a 

two-week period (Nam and Ahn, 2002). Jääskeläinen et al. (2016) found that the beef 

meat stored at higher oxygen modified atmospheres had a higher amount of volatile 

compounds compared to those stored under vacuum condition. When oxygen is present, 

myoglobin is also prone to oxidation and produce metmyoglobin. Thus, metmyoglobin is 

formed when the ferrous iron (Fe2+) in the myoglobin is oxidised and is converted to the 

ferric (Fe3+) state (Mancini and Hunt, 2005). The formation of metmyoglobin can take 

place slowly after oxygen penetration into the meat commences (Feiner, 2006). 

Metmyoglobin in beef meat stored at 4 °C under high oxygen level increases with 

increasing storage time (Faustman and Cassens, 1991). Several studies have demonstrated 

that packaging meat in modified atmospheres containing different mixtures of gas can 

inhibit the oxidation of lipid (O'Grady et al., 2000; Fraqueza and Barreto, 2011). 
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According to the results reported by O'Grady et al. (2000), meat stored at the following 

air mixtures (60 % O2 + 20 % N2 + 20 % CO2) and (80 % O2 + 20 % CO2) had the highest 

level of lipid oxidation when compared to those stored at a much lower oxygen level of 

(20% O2 + 60% N2 + 20% CO2). Min and Ahn (2005) argued that cooked turkey meat 

stored under vacuum condition was only slightly affected by the presence of pro-oxidants 

such as haemoglobin, sodium chloride, lipid content and free ionic iron. 

1.3.7 The Influence of Metals on Lipid Oxidation  

Various metals such as (Fe, Cu, Mn, Cr, Ni, V, Zn, Al) are considered major factors 

accelerating the lipid oxidation process. Metals can promote oxidation by two 

mechanisms. Metals can react with hydroperoxide ROOH and form peroxy radicals and 

alkoxy radicals ROO and RO (Erickson, 2002). Metals also have the ability to react 

with unsaturated fatty acid (RH) directly, resulting in the formation of alkyl free radicals 

(R) (Reische et al., 2002). Authors such as Frankel (1980) and Min and Boff (2002) 

showed that metals can interact with oxygen and produce singlet oxygen; this oxygen 

later promotes the oxidation of lipids. It was observed that singlet oxygen has the ability 

to promote photo-oxidation of unsaturated fatty acid and produce hydroperoxides 

(Reische et al., 2002).  

1.3.8 The Influence of Heating and Reheating on Lipid Oxidation  

Lipids in meat are susceptible to oxidation during meat processing, cooking and post-

cooking storage (Min et al., 2008). Meats with elevated levels of polyunsaturated fatty 

acids are more prone to develop off odours and warmed-over flavour owing to oxidation 

of these polyunsaturated fatty acids (Hayes, 2008). Warmed over flavour is rapidly 

produced in cooked meat during the post-cooking storage time (Mielnik et al., 2006). The 

onset of warmed over flavour is argued to be due to thermal processes that disrupt the cell 

membranes and release pro-oxidants (Min and Ahn, 2005); the latter leading to increased 
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lipid oxidation. As mentioned before, Bragagnolo (2009) reported that the cooking 

process facilitates the lipid compounds to react with oxygen and compounds that have the 

ability to catalyse meat lipid oxidation. The warmed-over flavour can be determined by 

measuring volatile compounds, thiobarbituric acid reactive substances (TBARS) and 

sensory analysis (rancid, grassy, cardboard-like, rancid, stale, and painty characteristics) 

(Lanari et al., 1995; Byrne et al., 2002; Nute, 2009). As mentioned before, during the 

oxidation of PUFAs different volatile compounds can be generated in meat products 

(Estevez et al., 2009). These oxidation products of PUFAs in meat have been identified 

as acids, alcohols, aldehydes, ketones, sulphur-containing compounds and pyrazines 

(Byrne et al., 2002; Jääskeläinen et al., 2016). Among them, are oxidation products that 

commonly used as indicators of warmed-over flavour are particularly volatile aldehydes 

such as propanal, hexanal and 4-hydroxy-2 nonenal (Estevez et al., 2009). One of the 

major oxidation products attributed to the warmed-over flavour is hexanal, which is 

predominantly derived from the oxidation of linoleic and arachidonic fatty acids (Meynier 

et al., 1998). It has been found that increasing warmed-over flavour in reheated, cooked 

chicken meat correlates with increasing amounts of hexanal (Kerler and Grosch, 1997). 

Mielnik et al. (2006) investigated cooked turkey meat to determine the volatile 

compounds contributing warmed-over flavour and found that hexanal, followed pentanal, 

contributed significantly to the development of warmed-over flavour and TBARS during 

storage. The incidence of warmed over flavour has been shown to coincide with the 

development of thiobarbituric acid reactive substances (TBARS) (Lanari et al., 1995; 

Byrne et al., 2001; Nute, 2009). St. Angelo et al. (1987) pointed out that both hexanal and 

2,3-octanedione had a strong negative correlation with sensory evaluation scores in 

cooked beef and reheated. Byrne et al. (2001) also reported that polyunsaturated fatty 

acids decreased after warmed-over flavour developed; while Lanari et al. (1995) and Nute 

(2009) found that warmed over flavour becomes noticeable when TBARS values range 
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between 0.6 to 2 mg MDA/kg beef meat. It was reported that TBARS increased 

significantly in cooked meat (Min et al., 2008). The development of warmed over flavour 

is a significant issue and causes undesirable sensory changes in meat. The most noticeable 

sensorial attribute that indicates warmed-over flavour in first-cooked and then-

refrigerated chicken meat is a decrease in the meaty sensorial attribute and an increase 

rancid, roasted and sulphur/rubber sensorial attributes (Byrne et al., 2002). It can be 

concluded that lipid oxidation is considered to be of concern and induces unpleasant 

attributes in meat and its products can be measured by TBARS. These products are highly 

linked with warmed over flavour.    

1.3.9 The Influence of pH on Lipid Oxidation 

The pH value of breast and thigh chicken meat is approximately 5.7 and 6.3 respectively 

(Gong et al., 2010), however, the pH value is variable and heavily depends on post-

slaughter conditions (Feiner, 2006). Chicken meat has a higher pH than turkey meat, 

which is reported to be linked to higher levels of myoglobin in chicken meat than in turkey 

meat (Saucier et al., 2000). Several studies have been suggested that the lipid oxidation 

is linked to pH of meat (Love, 1987; Buaneow et al., 2008; Sharedeh, et al., 2015). Lipid 

oxidation products (TBARS) increased in meat after adjusting pH to 5.0 compared to 

those at pH 6.0 or 7.0 (Love, 1987). Similar findings were reported by Sharedeh, et al. 

(2015), who found that lipid oxidation in beef meat significantly increased with 

decreasing pH from 6.5 to 4.3, the highest formation of TBARS was detected at pH 4.3. 

This is argued to be due to pH decreases that can release pro-oxidants from iron 

containing proteins (ferritin) such as iron. This iron can react with hydrogen peroxide and 

produce hydroxyl radicals (OH•); the later leading to accelerate the lipid oxidation 

(Sharedeh, et al., 2015). It was shown that the oxidation process occurs more at low pH 

values in comparison with higher pH values. 
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1.4 Phospholipids Oxidation  

Phospholipid are known as a natural component of the fat in many foods (Gordon, 2001). 

The major constituents of phospholipids in meat are phosphatidylcholine and 

phosphatidylethanolamine, while phospholipids components that present in minor 

amounts are phosphatidylserine and sphingomyelin (Toldra, 2006). The proportion of 

phospholipids, as the percentage of total fat content in muscle tissue is about 40 % (Ruiz 

et al., 2009). However, chicken contains approximately ⅔ of its phospholipids in the 

chicken breast fat and ⅓ of its phospholipids in the leg fat (Pikul, 1984; 1985). The 

proportion of phospholipids in red meat is higher than in white muscle tissue (Chamul, 

2007). Phospholipids, similar to triglycerides, are prone to oxidation, however, 

phospholipids are more susceptible (Igene et al., 1980). Igene et al. (1980) reported that 

the oxidation process in muscle tissue typically initiates in the phospholipids. The 

sensitivity of phospholipids to the oxidation process would be due to the structural 

phospholipids (i.e. those in cell membranes) that contain high levels of PUFAs (Ruiz et 

al., 2009), particularly PUFAs that possess three or more double bonds, which are more 

prone to oxidation than PUFAs with two double bonds (Mottram, 1998). The breakdown 

of phospholipids and generation of volatile compounds that correlated with warmed-over 

flavour have been reported (Meynier et al., 1998; Carr, 2007). Warmed-over flavours can 

be generated during the cooking process and post-cooking storage time (Erickson, 2002 

and Pearson and Gray, 2009). Furthermore, among the phospholipids fractions, as 

mentioned before, phosphatidylethanolamine appears to play a major role in the 

development of warmed-over flavour; while phosphatidylcholine has only a minor role 

to play in the development of warmed over flavour (Pearson and Gray, 2009). This could 

be due to the ability of phosphatidylethanolamine to trap ferrous ion and precluding it 

from oxidised to ferric ion. This would be responsible for oxidisability of 

phosphatidylethanolamine (Kawakatsu, et al., 1984). Mottram et al. (1998) reported that 
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warmed over flavour compounds slightly increased when triglycerides have been 

removed from cooked beef, while these compounds were markedly increased after 

removing both triglycerides and phospholipids. Similar findings were shown in pork meat 

after removed total intramuscular lipids (Huang et al., 2010)  

1.5 Colour Oxidation 

Colour is one of the attributes of most interest to consumers in assessing and purchasing 

meat, because colour is the first noticeable quality attribute and as such it is often used to 

evaluate meat quality either in the home or at retail (Velasco and Williams, 2011). The 

variation of meat colour from different animal species is due to the presence of pigments. 

The main pigments responsible for giving meat colour are haemoglobin and myoglobin. 

The degree of meat colour is predominantly dependent upon the concentration and 

chemical state of component within these compounds and light reflectance (Totosaus et 

al., 2007).   

Myoglobin is the main pigment present in meat and meat products. However, 

haemoglobin is a pigment present at low concentration. Myoglobin is a major globular 

protein and recognized as a rich source of iron. The iron structure and its chemistry have 

an effect on the interaction and alteration of colour (Guid and Castigliego, 2010). Meat 

myoglobin undergoes oxidation by interaction with oxygen and forms oxymyoglobin 

(Fe2+), which gives meat its desirable bright red colour. Discolouration of meat under 

storage conditions is related to the oxidation of oxymyoglobin (ferrous Fe2+) to 

metmyoglobin (ferric Fe3+) which turns meat colour to brown (Mancini and Hunt, 2005). 

In general, meat colour is strongly affected by amount of myoglobin, although it is also 

influenced by storage conditions, pH, oxygen available, and temperature. Colour of meat 

has high association with pH value of meat. Hence, lightness of breast meat colour 

decreases with an increase in pH (Fletcher et al., 2000). As mentioned before, 



22 

 

discolouration of meat through a period of refrigeration is related to producing 

metmyoglobin (Laak, 1994). At low pH, the formation of methaemoglobin and 

deoxyhaemoglobin increased rapidly during the autoxidation of haem pigment in the meat 

(Richards and Hultin, 2000). Oxidation of myoglobin in fish meat at pH 6.0 was combined 

with reducing the redness and increasing the metmyoglobin content (Thiansilakul et al., 

2011).  

1.6 Oxidation Status Determination  

At the commencement of the oxidation process unsaturated fatty acids undergo oxidative 

degradation and results in the formation of lipid hydroperoxides and conjugated dienes, 

which are referred to as primary lipid oxidation products (Gordon, 2001). During the 

subsequent stages of the lipid oxidation process elevated levels of secondary oxidation 

products, but relatively low levels of primary oxidation products can be observed 

(Estevez et al., 2009). The progress of lipid oxidation in meat can be monitored by 

following the progressive development of conjugated dienes, conjugated trienes and 

TBARS values. Conjugated dienes are indicators of primary oxidation; while conjugated 

trienes and TBARS value are indicators of secondary oxidation (Mensink and Plat, 2002; 

Gordon, 2001; Estevez et al., 2009). 

1.6.1 Formation of Primary Lipid Oxidation Products 

The principal site of oxidation in (poly)unsaturated fatty acids are the double bonds 

(Feiner, 2006). During the early stages of the oxidation process of polyunsaturated fatty 

acids, the double bonds migrate along the carbon chain and yield unconjugated dienes, 

which are relatively unstable compounds (Figure 1.3). These unconjugated dienes will 

chemically stabilize, yielding conjugated dienes (Estevez et al., 2009). The latter can be 
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measured and quantified by using spectrophotometric UV measurement at wavelength 

232 nm (Pegg, 2005). 

1.6.2 Formation of Secondary Lipid Oxidation Products 

As an index of lipid oxidation, monitoring of secondary lipid oxidation products is often 

more appropriate instead of monitoring primary lipid oxidation products. Primary lipid 

oxidation products are less stable compared to secondary lipid oxidation products, and 

are colourless, odourless and tasteless (Estevez et al., 2009). Further decomposition of 

primary lipid oxidation products (such as fatty acid hydroperoxides) leads to the 

generation of secondary lipid oxidation products such as malondialdehyde and pentanal, 

hexanal, 4-hydroxynonenal, which do have noticeable and distinctive off-odours and 

flavours (Erickson, 2002). These secondary lipid oxidation compounds are extremely 

volatile and observable at very low levels (parts per billion) and considered indicators of 

rancidity and warmed over flavour (Estevez et al., 2009). Malondialdehyde (MDA) is an 

oxidation product produced from the breakdown of polyunsaturated fatty acids 

particularly those with three or more double bonds in their structure which can be 

measured by the TBARS test utilizing thiobarbituric acid as a reagent. The amount of this 

product can be measured by reacting one mole of MDA with two moles of thiobarbituric 

acid to produce a pink condensation product which absorb light at a wavelength range of 

532-538 nm and the values are expressed as mg of MDA/kg sample. Byrne et al. (2001) 

reported that secondary lipid oxidation products provided a strong correlation with 

negative sensory attributes of meat.  
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Figure 1. 3 Formation of primary and secondary lipid oxidation products. MDA is a 

malondialdehyde and HNE is a 4-hydroxynonenal (Adapted from Mensink and Plat, 

2002). 

Conjugated trienes are a by-product of secondary lipid oxidation products. The presence 

of conjugated trienes in fat is indicative of advanced lipid oxidation, where fatty acids 

containing three or more double bonds in their structure have undergone the conjugation 

process of multiple diene moieties (Wrolstad et al., 2005). Conjugated trienes are formed 

from the reduction of hydroperoxides produced from the PUFA oxidation as illustrated 

in Figure 1.4 (Gordon, 2001). Conjugated trienes have a substantial absorbance at 268 

nm, which can be utilised to quantitate them. Foods containing high levels of 

polyunsaturated fatty acids are more likely to accumulate high levels of conjugated trienes 

when the lipids oxidise (Pegg, 2005). 
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Figure 1. 4 Formation of conjugated triene from polyunsaturated fatty acids (Gordon, 

2001).  

Understanding, measuring and controlling of lipid oxidation in meat and meat products 

are of primary importance, because consumer demand for good quality products has 

increased within a world of rapid development of innovative processes and products 

(Bostsoglou et al., 1994). Several methods, such as vacuum packaging, freezing and 

refrigeration have been used to control and enhance the oxidative stability of food 

products.  These methods can reduce lipid oxidation, but do not terminate the oxidation 

process (Laack, 1994). This inability to completely halt the lipid oxidation process is most 

likely due to the reality that trace amounts of oxygen are retained in the food during these 

processes which still leads to autoxidation. Therefore, it is of interest to also utilise 

chemical additives (natural or synthetic) to reduce the oxidation process and protect the 

quality of meat and its products. These additives are commonly known antioxidants.  
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1.7 Antioxidant Capacity Determination 

The capacity of antioxidants cannot be determined directly but rather by the impact of a 

particular antioxidant on an oxidant (Gordon, 2001; Huang et al., 2005; Apak et al., 2013). 

There are various methods available to measure antioxidant capacity (Gordon, 2001). 

However, these methods vary from each other by using different substrate, oxidant, and 

conditions of reaction and means of quantification (Huang et al., 2005). The methods of 

measuring antioxidant capacity can be categorised based on the chemical reaction into 

two main groups: hydrogen atom transfer based methods and single electron transfer 

based methods (Gordon, 2001; Wu et al., 2004; Huang et al., 2005; Charles, 2013; Apak 

et al., 2013).  

The mechanisms of hydrogen atom transfer based methods determine the capacity of 

antioxidants by the capability of antioxidant to quench free radicals such as peroxyl 

radicals by donating a hydrogen atom. Generally, these methods utilise antioxidants, 

synthetic free radicals and florescent probes (Huang et al., 2005; Apak et al., 2013), where 

the competition kinetics that occurs during the reaction between both antioxidants and 

fluorescent probe with peroxyl free radicals are observed and the antioxidant capacity can 

be quantified accordingly. Common hydrogen atom transfer based methods include: 

oxygen radical absorbance capacity (ORAC); crocin bleaching method; total radical 

trapping antioxidant parameter (TRAP); and β-carotene bleaching method. Among these, 

the ORAC method is widely applied for antioxidant quantification in research studies, 

food laboratories, and clinical applications (Charles, 2013), and is compatible to 

determine the capacity of both lipophilic and hydrophilic antioxidants (Wu et al., 2004).    

Electron transfer reaction based methods are known colourimetric methods that can 

determine the capacity of antioxidant through the change in colour that occurred during 

the reduction of oxidising agents (oxidant) in the presence of antioxidants. The resultant 
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colour intensity is predominantly dependent upon the concentration of antioxidants 

(Huang et al., 2005; Charles, 2013; Apak et al., 2013). The most commonly employed 

electron transfer reaction based methods include electron acceptors such as: 2,2-azinobis-

(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS); 6-hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid in the Trolox-equivalent antioxidant capacity 

(TEAC) method; 2,2-diphenyl-1-picrylhydrazyl (DPPH); a mixture of 

phosphomolybdate and phosphotungstate used in the Folin-Ciocalteu reagent; ferric ions 

in the ferric reducing antioxidant power (FRAP); and cupric reducing antioxidant 

capacity (Hall, 2001; Huang et al., 2005; Shan et al., 2005; Ghasemzadeh et al., 2010; 

Singh et al., 2014).  

It has been suggested that these methods are suitable for screening only antioxidants and 

not useful for measuring the antioxidant capacity in food (Gorden, 2001). Hence, the 

antioxidant capacity can be measured by quantifying the amount of primary and 

secondary lipid oxidation products through methods such as TBARS values, peroxide 

value, conjugated dienes and trienes and fatty acids composition (Antolovich et al., 2002). 

To measure these oxidation products, oxidation substrates such as oil, animal fats and 

meat have been used (Khan and Shahidi, 2001: Zhang et al., 2010; Tavasalkar et al., 2012; 

Naveena et al., 2013; El-Shourbagy and  El-Zahar, 2014). The following chapter 

(materials and methods) will provide more details about the above methods will be used 

in this work, TBARS values (section 2.2.3.4.1); conjugated dienes and conjugated trienes 

(section 2.2.3.4.2) and fatty acids (section 2.2.3.4.4).  
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1.8 Antioxidants  

1.8.1 Definition of Antioxidants  

Antioxidants are chemical compounds that have the ability (at low concentrations) to 

delay and impede the oxidation process by scavenging the free radicals, binding metal 

and/or quenching singlet oxygen that would otherwise enable the oxidation process 

(Reische et al., 2002; Huang et al., 2005). Antioxidants are used to protect against the 

oxidation-induced deterioration of rheological characteristics, rancidity and 

discolouration of food, including meat as a result of oxidation (Velasco and Williams, 

2011). Antioxidants can occur naturally in foods or can be added during the manufacture 

of products. The role of antioxidants is not only to maintain the quality of the meat, but 

also to extend its shelf life and protect the nutritional value (Reische et al., 2002). The 

incorporation of the natural antioxidants in the diet has potential health benefits for 

consumers because they have the ability to reduce the attack of reactive oxygen species 

on the components of cells such as DNA, proteins, and membrane lipids in order to protect 

them (Su et al., 2007). 

1.8.2 Classification of Antioxidants   

1.8.2.1 Synthetic Antioxidants 

Synthetic antioxidants are compounds that are chemically synthesized with the purpose 

to produce highly effective antioxidants that remain stable under a wide range of pHs, 

processing conditions, often at a lower cost compared to natural antioxidants (Fasseas et 

al., 2008; Rowe et al., 2007; Karre et al., 2013). These compounds have been widely used 

for inhibition the lipid oxidation in food for a very long time (Che Man and Tan, 1999; 

Sasse et al., 2009). The introduction of synthetic compounds into food industries were 

started in the 1940s, and BHA, BHT and gallates were the first compounds introduced 
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for preservation purposes (Kraybill et al., 1949; Gearhart and Stuckey, 1955; Yanishlieva-

Maslarova, 2001).  

There are various synthetic antioxidants that have been approved for application in food 

include butylated hydroxyl toluene (BHT), butylated hydroxyl anisole (BHA), propyl 

gallate (PG), octyl and dodecyl gallate, ascorbyl palmitate, ethoxyquin, and tertiary butyl 

hydroquinone (TBHQ) (Che Man and Tan, 1999; Middleton et al., 2001; Martinez et al., 

2013; Taghvaei, et al., 2014; Javidipour et al., 2015). Among these, BHT, BHA, PG and 

TBHQ have been extensively employed in various food industries (Che Man and Tan, 

1999; Reische et al., 2002; Sasse et al., 2009; Carocho and Ferreira, 2013). Despite the 

many positive attributes, several reports have pointed out that the application of synthetic 

antioxidants in food have negative attributes (Chen et al., 1992; Kahl and Kappus, 1993; 

Reische et al., 2002; Cordova et al., 2011).  

1.8.2.2 Natural Antioxidants 

More recently, the focus of research has been on the use of natural antioxidants. This is 

mainly because consumers prefer, and place increasing demands on, foods containing 

natural ingredients instead of synthetic ones because of the perceived health benefits 

(Fasseas et al., 2008), improved nutritional value and the enhanced quality of meat 

(Velioglu et al., 1998; Velasco and Williams, 2011), and a greater general ecological and 

environmental awareness. In addition, the natural sources used as antioxidants have been 

used widely whether in folk medicine or employed as traditional food ingredients and 

additives in various recipes (Chan et al., 2011; Shahidi and Ambigaipalan, 2015). A 

further reason for the move towards natural antioxidants is to avoid reported carcinogenic 

side effects associated with long-term consumption of some synthetic antioxidants 

(Altmann et al., 1986; Van, 1986; Chen et al., 1992; Gharavi, et al., 2007). 
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The term “natural antioxidants” means that these antioxidative compounds are obtained 

from natural sources such as vegetables, fruits, seeds, spices and herbs. Most natural 

antioxidants are phenolic compounds, flavonoids, and also some vitamins that contain a 

suitable molecular structure that is chemically able to scavenge free radicals, reduce ferric 

/antioxidant power (FRAP) and chelate metal (Shan et al., 2005; Velasco and Williams 

2011; Liang et al., 2012). Phenolic compounds in plants have various biological functions 

such as antioxidant, anti-inflammatory, anti-cancer and anti-bacterial properties 

(Manthey and Grohmann, 2001). Antioxidants obtained from natural sources have the 

ability to enhance meat quality, minimize unwanted changes that occur during storage 

and retain nutritional value (Velasco and Williams, 2011). As such, natural antioxidants 

can perform similar or better than synthetic antioxidants (Selani et al., 2011; Naveena et 

al., 2008) 

1.8.3 Mechanisms of Antioxidants’ Action 

The ability of antioxidants to retard oxidation is mediated through three different 

mechanisms: [1] scavenging of free-radical; [2] quenching singlet oxygen; and [3] 

chelating metals (Reische et al., 2002). The antioxidant substances can retard lipid 

oxidation in the initiation and propagation steps by reacting with lipid free radicals and 

free radicals to form stable and non-free-radical products (Huang et al., 2005). As 

mentioned before in section 1.8.1, Reische et al. (2002) reported that antioxidants donate 

hydrogen atoms to the peroxy- and oxy- free radicals, which are produced during the 

autoxidation propagation phase. Furthermore, antioxidants have the ability to react 

directly with lipid radicals that are formed during the initiation phase and convert these 

into non-radical products as illustrated in Figure 1.5. On the other hand, Huang et al. 

(2005) reported that the antioxidant radical (A) formed can react with lipid but only very 

slowly.   
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Figure 1. 5 Mechanisms of controlling lipid oxidation by antioxidants (Adapted from 

Reische et al., 2002). Where: AH is antioxidant, ROO is a peroxyl free radical, A is 

antioxidant radical, ROOH is lipid hydroperoxide, and RO
 is alkoxy radical, R is a 

lipid free radicals, and RH is a fatty acid.  

The ability of antioxidants to retard oxidation is their ability to quench singlet oxygen. 

Singlet oxygen is a form of oxygen which possess a high energy and highly reactive 

(Frankel, 1980), which can be generated either chemically, photo-chemically, or through 

the reduction of hydroperoxides (Min and Boff, 2002). As mentioned before in section 

1.2 and 1.3.3, singlet oxygen can be formed by various means: in the presence of light 

and photosensitizers (Huang et al., 2005). It has been shown that the generation of a 

singlet oxygen is at the source of photo-oxidation of unsaturated fatty acid and ultimately 

produce hydroperoxides (Reische et al., 2002). Antioxidants could quench or inactivate 

singlet oxygen by both physical and chemical means (Decker, 2002). Quenching can be 

defined as a process of transferring and reducing energy or stopping a chemical reaction 

between a molecule in a chemically exited state (i.e. singlet oxygen) and a receptive 

recipient molecule (i.e. PUFA) (Decker, 2002), By physical means singlet oxygen can be 

quenched by absorbing or shifting its excitation energy to antioxidant molecules 

producing endo-peroxides (Huang et al., 2005). β-carotene is considered an excellent 

quenchers of singlet oxygen, which has ability to receive the energy from singlet oxygen 

(Decker, 2002). Singlet oxygen can be quenched by chemical means particularly in the 

presence of tocopherol, ascorbic acid and β-carotene. For instance, tocopherol can 
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inactivate singlet oxygen by chemical means in reactions that lead to produce tocopherol 

epoxides and peroxides (Decker, 2002). 

Yet another mechanism by which antioxidants are believed to act is by chelating metals 

(Reische et al., 2002). Some metals that can occur in two (or more) distinct oxidation 

stages, and the more oxidised stage can induce lipid oxidation through a redox-based 

interaction in which the metal becomes reduced and the lipid becomes oxidised (Decker, 

2002). Antioxidants can prevent oxidation of lipids through reducing the metal’s redox 

potential and preventing the interaction of metals with the lipid’s hydroperoxide by 

forming a metal-antioxidant complex. Furthermore, several non-conventional 

antioxidants, such as citric acid and phosphoric acid, have the ability to inactivate metals 

(Reische et al., 2002). These compounds can reduce the ability of metals to oxidize lipids 

through binding metals through their multiple carboxylic acid groups and as such forming 

an organometallic complex.  

1.8.4 Phenolic Compounds  

Phenolic compounds are defined as substances that possess an aromatic ring with one or 

more hydroxyl groups (Johnson, 2001). The main phenolic compounds from plants are 

phenolic acids, flavonoids and, tannins, and complex compounds such as 

diferuloylmethane (curcumin) (Figure 1.6) (Han et al., 2007).  
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Figure 1. 6 Chemical structures of the main phenolic compounds 

Phenolic acids are a major class of phenolic compounds (Ghasemzadeh et al., 2010), 

which are classified into two main groups, i.e. hydroxybenzoic and hydroxycinnamic 

acids. These compounds can be found in various natural sources such as vegetables, fruits, 

seeds, spices and herbs. Several studies have identified the phenolic compounds in 

rosemary, ginger, small red bean and sunflower seed extracts (Luthria et al., 2006; Lin et 

al., 2008; Hernandez-Hernandez et al., 2009; Baker et al., 2012; Amakura et al., 2013; 

Varakumar et al., 2017). The main phenolic compounds isolated from these extractions 

are shown in Table 1.3. Of these compounds, some are present as a lipophilic or 

hydrophilic form and other compounds are clearly amphiphilic (e.g. naringin and 

catechin) (Baker et al., 2012; Varakumar et al., 2017). The major phenolic compounds in 

rosemary, sunflower seeds and ginger extracts are lipophilic. Indicating that many of 

these compounds can be found in their essential oils (Hernandez-Hernandez et al., 2009; 

Baker et al., 2012; Amakura et al., 2013; Varakumar et al., 2017), which would be likely 

to have a more lipophilic antioxidant capacity. In contrast, small red bean contains more 

hydrophilic antioxidative compounds (Luthria et al., 2006; Lin et al., 2008). Wu et al. 

(2004) determined the capacity of antioxidants based on lipophilic and hydrophilic 
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compounds in ginger and small red bean and found that ginger had three times the 

lipophilic antioxidant capacity compared to its hydrophilic antioxidant capacity; while 

small red bean had an almost 40 times higher hydrophilic antioxidant capacity compared 

to its hydrophilic antioxidant capacity. Lipophilic compounds (e.g. carnosic acid) 

extracted from rosemary have a higher antioxidant activity than hydrophilic compounds 

(e.g. rosmarinic acid) according to the DPPA and 2,2-azino-bis (3-ethylbenzothiazoline-

6-sulphonic acid) (ABTS) scavenging test (Erkan et al., 2008). Moreover, predominant 

phenolic compounds in ginger that act as antioxidants are zingiberene, (Baker et al., 2012) 

and 6-gingerol (Nile and Park, 2015). In the latter study, it was found that lipophilic 

compound (e.g. 6-gingerol) had a higher antioxidant capacity according to the DPPH, 

FRAP and H2O2 tests than the other lipophilic compound (e.g. 6-shogaol). These results 

indicate that the antioxidant capacity of lipophilic compounds is stronger than hydrophilic 

compounds and that the antioxidant capacity of particular compounds can be different 

from the others regardless of their hydrophilicity.  
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 Table 1. 3 Antioxidant compounds isolated from the extraction of natural sources 

Species and systematic 

names 

 Phenolic compounds 

Rosemary 

(Rosmarinus officinalis) 

Hydrophilic  rosmarinic acid  

Lipophilic  carnosic acid, carnosol, rosmanol, crsimaritin, 

genkwanin (Hernandez-Hernandez et al., 2009; 

Baker et al., 2012). 

Small red bean 

(Phaseolus vulgaris) 

Hydrophilic  Ferulic acid, cyanidin 3-O-glucoside, malvidin 

3-O-glucoside, pelargonidin 3-O-glucoside, 

cyanidin 3-O-(6-malonyl) glucoside, 

pelargonidin 3-O-(6-malonyl) glucoside, 

cyanidin, kaempferol 3-O xylosylglucoside, 

kaempferol 3-O-glucoside, kaempferol 3-O-(6-

O-malonyl) glucoside, kaempferol 3-O-

(malonyl) glucoside, pelargonidin.  

(Luthria et al., 2006; Lin et al., 2008). 

Lipophilic  p-coumaric acid, sinapic acid, kaempferol  

(Luthria et al., 2006; Lin et al., 2008). 

Sunflower seeds 

(Helianthus annuus) 

Hydrophilic  4-O-caffeoylquinic acid, 3-O-caffeoylquinic 

acid (Amakura et al., 2013). 

Lipophilic  caffeic acid, methyl caffeoate, chlorogenic acid, 

methyl chlorogenate, 3,5-di-O-caffeoylquinic 

acid, and eriodictyol 5-O-β-d-glucoside, benzyl 

alcohol β-d-apiofuranosyl-(1-6)-β-d-(4-O-

caffeoyl) glucopyranoside. 

 (Amakura et al., 2013). 

Ginger 

(Zingiber officinale) 

Amphiphilic naringin, catechin 

 (Baker et al., 2012; Varakumar et al., 2017) 

Lipophilic gingerol, zingiberene, α-curcumene, α-

farnesene, ß-sesquiphellandrene, shogaol, 6-

gingerol, 6-shogaol, 8-gingerol and10-gingerol. 

(Baker et al., 2012; Varakumar et al., 2017) 
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1.8.5 Extraction of Phenolic Compounds 

As mentioned before, antioxidants can be roughly divided into two groups: lipophilic and 

hydrophilic antioxidants (Wu et al., 2004). In most instances, both types can be found in 

the same source (Table 1.3). Extraction efficiency of phenolic compounds from different 

sources depends more on the solvent polarity (Akowuah et al., 2005), with many 

hydrophilic phenolic compounds being extracted at a greater efficiency in a water-based 

solvent; while lipophilic phenolic compounds being extracted at greater efficiency in 

lipophilic solvents (Puangsombat and Smith, 2010). Extraction of antioxidant compounds 

such as phenolic acids and flavonoids from plants has been conducted in several studies 

(Tavassoli and Djomeh 2011; Rodríguez-Rojo et al., 2012; Do et al 2014; Shah et al., 

2014). Total phenolic content extraction yield and antioxidant activity is strongly 

associated with the type of solvent used. For instance, the extraction of phenolic 

compounds from ginger was higher when polar solvents such as methanol and acetone 

were used compared a non-polar solvent (chloroform) Ghasemzadeh et al. (2010). In 

addition, polar solvents such as methanol has been used to extract polyphenols from 

several plants that have a lower molecular weight; while for the extracting of higher 

molecular weight flavanols, aqueous acetone is more efficient (Dai et al., 2010).  

The yield of extraction from plants depends more on technique, solvent type, pH, heating 

process, times of extraction and composition of the sample (Do et al., 2014). Hence, to 

obtain the highest yield of substances and recover antioxidants from natural sources, 

several techniques have been used such as soxhlet extraction (Tavassoli and Djomeh 

2011), microwave assisted extraction, conventional solvent extraction, ultrasound 

assisted extraction (Rodríguez-Rojo et al., 2012) and supercritical fluid extraction (Shah 

et al., 2014). The yield of rosemary extraction by ethanol was higher in the microwave-

assisted extraction method than by ultrasound or extraction with organic solvents 
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(Rodríguez-Rojo et al., 2012). Moreover, a variety of solvents either independently or in 

combination have been used to prepare the extraction from plants. Typically used solvents 

include ethanol, methanol, dimethyl sulfoxide, acetone and hexane (Shah et al., 2014), 

ethyl acetate and chloroform (Hall, 2001). Application of a specific solvent and plant-

solvent ratios appropriate for recovering all phenolic compounds from all plants have not 

been elucidated. However, according to Shah et al. (2014), ethanol is frequently used for 

extraction purposes, because it is a permitted solvent for additives and non-toxic for 

human consumption. The combination of water and organic solvent have been 

recommended in a range of research studies; this may facilitate the recovery of 

compounds that are soluble in solvent or in water (Sutivisedsak et al., 2010; Dai et al., 

2010; Puangsombat and Smith, 2010). Hence, utilization of a specific ratio of aqueous 

solvents depends predominantly on the type of plant, or the target compounds. As 

mentioned before, beans contain a considerably higher amount of hydrophilic antioxidant 

compounds than lipophilic (Wu et al., 2004). Therefore, in order to extract both 

hydrophilic and lipophilic fractions the correct ratio of ethanol and water is required 

Accordingly, Sutivisedsak et al. (2010) showed that extracts from several varieties of 

beans using aqueous ethanol, a ratio of ethanol: water at (50:50 v/v) had higher total 

phenolic compounds compared to 100 % ethanol or 100 % water. Solubility of phenolic 

compound either in water or solvent depends on the –OH and –COOH groups (Rodríguez-

Rojo et al., 2012). Anwar and Przybylski (2012) found that the amount of total phenolic 

compounds and highest free radical scavenging properties was observed in 80% ethanol 

extract. The highest reducing power and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical 

scavenging activity was found in an 80 % methanol extract followed by an 80 % ethanol 

extract (Shirin and Jamuna, 2010). Moreover, the amount of phenolic content correlated 

with the temperature, which at a higher extraction temperature had a higher total phenolic 

content (Sutivisedsak et al., 2010). However, the heating methanol extract of peanut hulls 
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at 185 oC for 30 min reduced the antioxidant activity by approximately 5 %, which may 

be due to the alterations of phenolic structure which decrease its ability to donate 

hydrogen (Hall, 2001). Furthermore, the increment of pH from 3 to 9 reduced the 

effectiveness of the methanol extract of peanut hulls, while at pH 7.0 antioxidant activities 

remained at around 80 %, at pH 9.0 it was entirely lost (Hall, 2001). 

1.9 The Effect of Natural Antioxidants Application on Lipid Oxidation and Meat 

Quality  

Rosemary, ginger, small red bean and sunflower seed extract contain elevated total levels 

of phenolic. These can slow down the rate of lipid oxidation, bind metallic compounds 

and scavenge free radical. The following sections will provide an overview of the natural 

antioxidant sources used in this work.  

1.9.1 Rosemary  

The rosemary plant (Rosmarinus officinalis) belongs to the Lamiaceae family. This plant 

is widely used in folk medicine and employed as a food ingredient and additive in various 

recipes and formulations due to its flavour or its health benefit (Yanishlieva-Maslarova, 

2001; Berdahl and McKeague, 2015). The antioxidant properties of rosemary are well 

known and as such rosemary is considered a protector of lipid oxidation, metal chelator 

and free radical scavenger (Yanishlieva-Maslarova, 2001). The application of rosemary 

has also been well documented as a natural antioxidant in meat and meat products either 

used in either an unprocessed form or in extracted form (Chen et al., 1999; Mielnik et al., 

2003; Rojas and Brewer, 2007). Extensive work has observed that rosemary and rosemary 

extract can inhibit the autoxidation of lipids and development of off-odour and off-flavour 

(including warmed-over flavour) in meat and meat products at concentrations from 0.02 

to 1 % (McCarthy et al., 2001; Ahn et al., 2002; Mielnik et al., 2003; Nissen, et al., 2004; 

Ahn et al., 2007; Abou-Arab et al., 2010; Colindres and Brewer, 2011; Lara et al., 2011; 
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Naveena et al., 2013). The effectiveness of the rosemary antioxidants is variable in terms 

of reducing the rancidity and maintaining the quality of meat. These most likely depend 

on the application methods being employed (Table 1.4).  

Rosemary slows down the oxidation of lipids during the storage period by reducing 2-

thiobarbituric acid (TBARS value) and hexanal formation when applied to beef and 

mechanically deboned turkey meat (Ahn et al., 2002; Mielnik et al., 2003; Ahn et al., 

2007). Rosemary also reduced the peroxide values in ostrich, chicken and buffalo meat 

(Abou-Arab et al., 2010; Naveena et al., 2013). TBARS values did not significantly (p > 

0.05) differ from control when adding rosemary at 0.02 % to beef and pork patties (Rojas 

and Brewer, 2007). Several studies have demonstrated that the effect of rosemary was 

concentration dependent (Ahn et al., 2002; Mielnik et al., 2003; Naveena et al., 2013). 

For instance, cooked beef pre-treated with different concentrations of rosemary in the 

range of 0.02, 0.05 and 0.10 % (w/w) reduced the formation of both TBARS and hexanal 

by approximately 25, 36 and 46 %, and 51, 62 and 73 %, respectively (Ahn et al., 2002). 

McCarthy et al. (2001) found that the addition of rosemary extract at 0.10 % to ground 

beef and pork and packaged in oxygen permeable film reduced TBARS values by 

approximately 50 % compared to control samples. However, in the study conducted by 

Baker et al. (2012), the application of antioxidant at lower dose of 0.05 % was found to 

have more antioxidant activity than both application levels (0.075 and 0.10 %) 

respectively in lamb meat. Furthermore, the formation of TBARS and PV values were 

decreased (p ≤ 0.05) in samples containing a combination of L-ascorbic acid + rosemary 

and α-tocopherol + rosemary compared with individual antioxidants (Abou-Arab et al., 

2010). Several studies found the effects of rosemary as natural antioxidant more efficient 

than synthetic preservatives (McCarthy et al., 2001; Colindres and Brewer, 2011; Lara et 

al., 2011). Lara et al. (2011) compared the natural antioxidant activities of rosemary 

extracts with synthetic antioxidants (BHT) in cooked pork patties, for which monitoring 
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TBARS and hexanal methods were used. The authors observed that the reduction of lipid 

oxidation in rosemary treatment was higher than synthetic antioxidant treatments. 

According to McCarthy et al. (2001), raw and cooked pork patties samples containing 

rosemary extract 0.10 % had a greater reduction of lipid oxidation than those containing 

BHA/BHT (0.01 %). Treated pork patties with 30 mg of rosemary extract /100 g meat 

before cooking reduced TBARS and hexanal by approximately 90.7 and 94.1 %, followed 

by BHT 76.3 % and 87.0 %, respectively (Lara et al., 2011). 

The effectiveness of antioxidants to reduce the discoloration of meat has been reported 

by Ahn et al. (2007), who found that beef meat samples treated with oleoresin rosemary 

had significantly higher lightness (L*), and yellowness (b*) values, but less redness (a*) 

value compared to the control. However, the variation of colour in meat may influence 

the perception of the consumer. Rosemary extract at 0.10 % was found more effective in 

protecting the redness of pork raw meat at day 9 of storage compared to the negative 

control but did not differ from control in cooked meat over storage time (McCarthy et al., 

2001). According to the study conducted by Colindres and Brewer (2011), rosemary 

extract and storage time had no effect on (L*), and (b*) values in cooked, frozen and 

reheated beef patties over 6 months of frozen storage time. Whilst rosemary had the 

ability to protect red colour (a*) value up to 3 months and no change was observed after 

6 months. These authors also mentioned that after the addition 0.2 g/kg of oleoresin 

rosemary extract reduced grassy, rancid odour and beef flavour of cooked, frozen and 

reheated beef patties compared to control. Over 6 months of the frozen storage period, 

rosemary and BHA had better preservation of beef flavour than BHT. The addition of 

rosemary markedly reduced the formation of metmyoglobin in ostrich and buffalo meat 

compared to the control over storage time (Abou-Arab et al., 2010; Naveena et al., 2013).    
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Table 1.4 Effect of applications of rosemary and ginger as natural antioxidants on the quality of meat and meat products 

Treatment  Concentration Meat products Fat % Storage conditions Results Reference 

Rosemary 

extract 

0.10 % Raw and cooked 

pork patties  

- Packaged in oxygen 

permeable film, 4 oC, FL 

(616 lux), 9 days 

Reduced TBARS values by approximately 50 % 

compared to control samples and was found to be 

higher effective than (BHA/BHT) (0.01 %). The 

redness a*  values in rosemary treatment >BHA/BHT.  

McCarthy et 

al. (2001) 

Oleoresin 

rosemary 

0.02, 0.05 and 

0.10 % 

Cooked, ground 

beef 

 4 °C for 3 days Reduced TBARS value and hexanal content (up to 25, 

36 and 46 %) and (up to 51, 62 and 73 %) 

Ahn et al., 

(2002) 

Guardian 

rosemary 

extracts GP 

flavour guard 

LO 

Herbalox W, 

Stabiloton WS 

Biolox HT-W 

0.2, 0.5 and 0.8 

g/kg 

 

 
 

0.8, 1.6 and 2.4 

g/kg 

Mechanically 

deboned turkey 

meat 

15.30 % Transparent PE cups, −25 

°C, 7 months 

Reduced both TBARS, hexanal values and total 

volatiles and the reduction was increased with 

increased doses. Biolox HT-W was more effective 

than ascorbic acid.   

Mielnik et al. 

(2003) 

Rosemary 

extract  

200 ppm Cooked pork 

patties 

 

 

25%  Packaged in PE film, 4.5 °C 

in the dark, 10 days 

TBARS values and hexanal values were reduced, and 

the effectiveness of antioxidants was in order: 

rosemary > grape skin > tea > coffee > control and 

maintained sensory eating quality 

Nissen, et al. 

(2004) 

Oleoresin 

rosemary 

(Herbalox) 

1 % Cooked beef 18%  Packaged in sterile plastic 

bags and stored at 4 °C for 9 

days 

TBARS and hexanal values were reduced (p ≤ 0.05) 

in samples contained oleoresin rosemary. Decreased 

the redness and increased the lightness and yellowness 

compared to control. 

 

Ahn et al. 

(2007) 
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Table 1. 4 (continued) Effect of applications of rosemary and ginger as natural antioxidants on the quality of meat and meat products 

Treatment Concentration Meat 

products 

Fat % Storage conditions Results Reference 

Rosemary 

(Herbalox 

Seasoning HT-

25) 

0.02 % Ground beef 

and pork 

30 % Vacuum packaged, -18 

°C, 4 months 

TBARS values, sensory attributes in meat treated with 

rosemary were not significantly differed (P>0.05) compared to 
the control 

Rojas and Brewer 

(2007) 

Rosemary 

powder 

0.05 % Ostrich 

steaks 

1.5 % Packaged in plastic film 

under vacuum, 4 oC, 21 

days 

The formation of TBARS and PV values were decreased (P≤ 

0.05) in samples contained a combination of L-ascorbic acid + 

rosemary and α-tocopherol + rosemary. α-tocopherol + 

rosemary had a significant lower formation of metmyoglobin. 

Abou-Arab et al. 

(2010) 

Oleoresin 

rosemary 

0.2 g/kg Beef patties 0.15 

g/kg 

WB 

Packaged in PVC film, 

−18 ◦C in the dark, 6 

months 

Rosemary reduced TBARS value cooked and reheated meat and 

observed more antioxidant activity than BHT and BHA. 

Colindres and Brewer 

(2011) 

 

Rosemary 

extract 

30 mg/100 g 
meat 

Cooked pork 
patties 

 PE/ethylvinylalcohol, 70 
% N+30 % CO2, 4 oC, 

600 lx, 6 days 

Rosemary was reduced TBARS of 90.7 followed BHT 76.3 %, 
and lemon balm extracts 74.8 % and hexanal 94.1, 87.0, 85.4 

%. Rosemary treatment had a lower protein oxidation, with 

lower pH and less cooking loss, higher a* values observed in 

rosemary treatments than control and BHT. 

Lara et al. (2011) 

Rosemary 

extract 

0.05, 0.075, 

0.1% 

Lamb patties  PE film, 4 oC, 7 days TBARS was reduced significantly in meat treated with 

rosemary extract compared to the control, 0.05 % had a highest 

antioxidant effect. 

Baker et al. (2012) 

Carnosic acids 22.5 and 130 

ppm 

Cooked 

chicken and 

buffalo 

patties 

 4 oC, 9 days for raw and 

28 for cooked 

Reduced TBARS values in raw and cooked meat, 130 mg had 

a highest reduction effect. Reduced the formation PV reduced 

while free fatty acids were reduced only in cooked buffalo meat. 

Reduced metmyoglobin formation in raw buffalo meat 

compared to the control. 

Naveena et al. (2013) 
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Table 1. 4 (continued) Effect of applications of rosemary and ginger as natural antioxidants on the quality of meat and meat products 

Treatment Concentration Meat 

products 

Fat % Storage conditions Results Reference 

Ginger 

extract 

1 ml of extract / 

10 g meat 

Raw and 

cooked pork 

patties 

 4 oC for 7 days and - 18 
oC, 6 months 

TBARS values were reduced significantly in raw and cooked 

pork meat treated with ginger extract stored under both storage 

conditions. 

El-Alim et al. (1999) 

Ginger 

extract 

0.5, 0.75 and 1 % Lamb patties  PE film, 4 oC, 7 days TBARS and metmyoglobin formation was reduced 

significantly in meat treated with ginger extract at different 

concentrations compared to the control, 0.5 % had a highest 

antioxidant effect. 

Baker et al. (2012) 

Ginger 

extract 

3 % extract Raw chicken 

meat 

 4 oC, 9 days Reduced the formation of free fatty acids, peroxide and 

TBARS values over 9 days of storage period 

Singh et al. (2014) 

PVC, Polyvinyl chloride film; PE, polyethylene; FL, fluorescent light; WB, weight basis; PV, peroxide value
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1.9.2 Ginger  

Ginger (Zingiber officinale) is one of the plants which have been widely used as a spice 

and flavouring agent in food processing and traditional medicine (Chan et al., 2011). 

Ginger has been shown to contain a total phenolic content of 3.17 mg gallic acid 

equivalent (GAE)/g dry weight (Wu et al., 2004). The antioxidant capacity of ginger 

extracts correlates strongly with total phenolic content (Chan et al., 2011). The 

antioxidant compounds that are found in ginger are both lipophilic and hydrophilic in 

nature, with values of 218.67 and 69.44 µmol trolox equivalents/g, respectively (trolox is 

a measure for lipophilic antioxidants) (Wu et al., 2004). Indicating a significantly greater 

proportion of lipophilic antioxidant power over the hydrophilic ones in ginger. Ginger 

extract has been tested as a natural antioxidant in vivo and in vitro experiments and also 

in various meat post slaughter (El-Alim et al., 1999; Naveena et al., 2004; Ghasemzadeh 

et al., 2010; Maizura et al., 2011). Phenolic compounds in ginger have an ability to 

scavenge free radical, inhibit lipid peroxidation and possess high ferric reducing power 

(Chan et al., 2011). The free radical scavenging capacity significantly increased 

approximately 75 % with increasing the concentration of ginger from 0.50 to 0.75 % 

(Kishk and El Sheshetawy, 2010). The ability of the antioxidants in ginger (Zingiber 

officinale) extract to scavenge the free radical in vitro reached 79 % with a ferric 

reducing/antioxidant power (FRAP) to 26.2 µmol Fe (II)/g compared to the turmeric and 

kesum antioxidant capacity (Maizura et al., 2011).  

In the study conducted by Ghasemzadeh et al. (2010), extract from ginger has a strong 

free radical scavenging activity by using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) test 

which reached to 31.45 to 58.22 % to the commercial antioxidants BHT and α-tocopherol 

of 96.21 and 89.57 %, respectively. The values of ferric reducing antioxidant potential in 

the ginger extract were markedly lower than α-tocopherol but at the same time higher 
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than BHT. Incorporating ginger at a concentration of 3 % into raw chicken meat emulsion 

had higher 1,1-diphenyl-2-picrylhydrazyl (DPPH % inhibition) radical scavenging and 2-

2-azinobis-3ethylbenthiazoline-6-sulphonic acid (ABTS % inhibition) than control 

samples (Singh et al., 2014). Ginger demonstrated the antioxidant activity due to retarding 

the lipid oxidation in meat (El-Alim et al., 1999; Naveena et al., 2004; Baker et al., 2012). 

El-Alim et al. (1999) reported that adding ginger extract to raw pork patties significantly 

reduced the TBARS value at 4 oC for 7 days and at-18 oC for 6 months. This study also 

found that it did not inhibit the formation of peroxide in raw pork patties under 

refrigeration storage. In contrast, the peroxide value ranged from 0.18 to 0.70 

milliequivalents /kg meat compared to the control which ranged from 0.55 to 4.60 

milliequivalents /kg meat over 6 months of frozen storage. Lipid oxidation reduced in 

Muscovy duck breast meat after being submerged in the ginger extract for 14 days at 5 

oC (Tsai et al., 2012). The formation of peroxide and TBARS were inhibited significantly 

in cooking pork patties supplemented with ginger extract at a concentration of 1 ml/10 g 

meat and stored in both refrigeration and frozen storage (El-Alim et al., 1999). According 

to the results reported by Baker et al. (2012), TBARS values were found to be 

significantly reduced in lamb meat patties treated with ginger extract at 0.50, 0.75 and 1 

% (TBARS value ranged 0.34-0.98 mg MDA/kg meat in treated samples and 0.88-2.89 

mg MDA/kg in control), while the concentration of extract at a level of 0.50 % ginger 

extract was found to have more impact on the TBARS over 7 days of storage time. Ginger 

extracts have an effect on reducing autoxidation in sunflower oil stored either during 

heating or storage time (Al-dalain et al., 2011); sunflower oil treated with ginger extract 

at a concentration of 400 ppm was found to have a lower peroxide, TBARS, conjugated 

diene and conjugated triene values than control and BHT treatment over 8 weeks of 

storage at ambient temperature, while no significant difference was found among 

antioxidants after being heated at 180 oC for 18 hr. The oxidation of lipid and myoglobin 
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to metmyoglobin reduced in lamb patties either treated with ginger at a level 0.50 % alone 

or combined with sodium lactate over 150 days at -18 oC (Baker et al., 2013). Ginger 

supplementation at a concentration of 3 % to raw chicken meat emulsion reduced the 

formation of free fatty acids, peroxide and TBARS values over 9 days of storage time 

(Singh et al., 2014). 

In addition, application of ginger extracts can enhance physical and sensory properties of 

meat. For instance, Naveena and Mendirratta (2004) found that marinating buffalo meat 

chunks in ginger extract at 0, 3, 5 and 7 % v/w for 2 days at 4 oC enhanced the cooking 

meat yield and significantly decreased shear force values, water-holding capacity and 

enhanced sensory evaluation attributes flavour, juiciness, tenderness acceptability score. 

In another study conducted by Naveena and Mendirratta (2001), the addition of ginger at 

1, 3 and 5 % v/w to post-chilled spent hen breast meat chunks increased moisture content, 

cooking yield, total pigments, and water holding capacity, while it reduced the shear force 

value, however higher concentration had more effectiveness. These authors also found 

the addition of ginger to pre-and post-chilled spent hen breast meat chunks and cooked in 

a gas tandoor oven enhanced the appearance, flavour, juiciness, tenderness score 

compared to samples without ginger extract. Ginger extracts were found to have an effect 

on pH value in chicken meat according to work published by Goswami et al. (2014) who 

pointed out that chicken meat treated with ginger at 4 % had a higher pH value compared 

to the control samples over 6 days of storage time. A marked increase was observed in 

the pH value of cooked spent hen breast meat chunks with increasing the ginger 

concentrations from 1% to 5 % v/w (Naveena and Mendirratta, 2001).  

1.9.3 Sunflower Seeds 

The Sunflower plant (Helianthus annuus) belongs to the family Asteraceae (Fan and 

Michael Eskin, 2015). Sunflower seeds are a rich source of the phenolic compounds 
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which have been shown to have antioxidant capacity (Liang et al., 2013). The average 

phenolic and tocopherols compounds in sunflower is 15.97 and 0.211 mg/g DM, 

respectively. Phenolic compounds separated by HPLC from sunflower seeds are 

rosmarinic acid, chlorogenic acid, myricetin and rutin, while the most abundant phenol 

shown is chlorogenic acid 10.46 mg/g DM (Zilic et al., 2010). These authors also reported 

that phenolic compounds varied among three varieties of sunflower such as Petunia, 

Allium and Albarte. According to the results of Chen and Ho (1997), the action of caffeic 

acid as an antioxidant is stronger than chlorogenic acid. These authors also reported that 

the antioxidant capacity of natural source extracts correlated strongly with their hydroxyl 

groups. Acid or ring groups of phenolics are responsible for chelating metals (Decker, 

2002). In view of this, rosmarinic acid was found to have the strongest DPPH scavenging 

activity due to rosmarinic acid possessing four hydroxyl groups (Chen and Ho, 1997). 

However, revisable results were reported by Zilic et al. (2010) who claimed that 

rosmarinic acid in sunflower samples negatively correlated with chlorogenic acid.  

Sunflower extract was found to possess an elevated ability to scavenge free-radical 

activity in vitro experiments at 0.16 mg/g and a very strong reducing power at 1 mg/g 

(Kosinska and Karamac, 2006). There is a strong correlation between the results of 

ABTS, DPPH and Fe3+/ ferricyanide and phenolic content, this is due to a higher amount 

of phenolic compounds such as 5-O-caffeoylquinic acid, dicaffeoylquinic acid and 

caffeoyl-dimethoxycinnamoylquinic acid (Karamac et al., 2012). Sunflower seeds were 

found to have a stronger DPPH scavenging activity than sunflower kernel. However, the 

kernel had the greatest amount of phenolic compounds (Zilic et al., 2010).  

The activities of antioxidants may depend more on phenol than total phenolic compounds. 

Sterols have shown to play an important role in inhibiting polymerization and thermal 

degradation of oil during the frying applications, while tocopherols have the ability to 
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donate hydrogen and serve as radical-trapping antioxidants (Hall, 2001). Most of the 

research has demonstrated the efficiency of sunflower seed extract in in vitro tests, until 

now, to our knowledge, application of this antioxidant to chicken meat post-slaughter has 

not been well-documented. However, sunflower has been used in poultry diet as a 

potential source of proteins, fibre, and amino acids, e.g. cysteine and methionine (Tsuzuki 

et al., 2003). Therefore, there is a need to conduct this study to assess the efficiency of 

sunflower seed application in chicken meat. 

1.9.4 Small Red Bean 

Small red bean (Phaseolus vulgaris) is one of the common beans belonging to the family 

Leguminosae. The cultivation and consumption of this bean has increased throughout the 

world, due to its potential source of proteins, fat and crude fibre (Siddiq et al., 2010), its 

capacity to reduce the risk of coronary heart disease, diabetes, and obesity, to decrease 

serum cholesterol concentration, anti-proliferative effects against human ovarian cancer 

cells (SK-OV-3), human colon cancer cells (SW480), tongue cancer cells (CAL 27), and 

hepatocarcinoma cells (Hep G2) (Zou and Chang, 2014).  

Small red bean is considered one of the leguminous seeds that possesses high antioxidant 

capacity. Among 20 kinds of food, small red bean found to have the highest total phenolic 

content of 11.85 mg GAE/g dry weight basis (Wu et al., 2004). Among various beans, the 

small red bean had a highest total content of flavonoid and kaempferol 3-O-glucoside 

(Lin et al., 2008). Luthria et al. (2006) pointed out that small red bean contains ferulic 

acid of 17.4 mg/100g. Several studies have evaluated the antioxidant capacity of small 

red bean extract as a natural antioxidant in in vitro experiment (Chou et al., 2003; Zou 

and Chang, 2014). Small red bean had a strong free radical scavenging activity against 

DPPH and ABTS radicals, with the IC50 of 0.128 and 0.036 mg/ml, respectively (Zou 

and Chang, 2014). In vitro experiment reported by Chou et al. (2003) showed that the 
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extract from red bean has a strong free radical scavenging activity at a dosage of 0.62 to 

10 mg/ml, and the metal chelating impact of red bean extract at a dosage of 0.25 mg/ml 

reached 81.7 % compared to the commercial antioxidants (BHT and α-Tocopherol). In 

their study, they also found that the reducing power increased with increments in the 

concentration of red bean extract. The application of small red bean as a source of 

antioxidant to chicken meat post-slaughter has not been well-documented. Therefore, it 

is important to conduct this study to assess the efficiency of small red bean application in 

chicken meat. 

1.10 Summaries from Literature Review  

• Lipid, phospholipid and protein oxidation is a primary concern in meat products. 

It can lead to the development of off odours, off flavours and discoloration of 

meat, reduction in shelf-life, loss of quality and a decrease in nutritional value. 

The presence of lipids and phospholipids that contain high levels of unsaturated 

fatty acids makes poultry more susceptible to oxidation process. Moreover, 

phospholipid-like lipids polyunsaturated fatty acids undergoes oxidation by a 

free radical mechanism.   

• Application of antioxidants to reduce the lipid oxidation and protect the meat 

quality is possible, but little information about the effect of rosemary and ginger 

on a characteristic of chicken meat exists and no information exists on the 

application of small red bean and sunflower seeds to chicken meat. 

• Rosemary and ginger extract at concentrations of 0.02-5 % can inhibit the 

autoxidation of lipids and development of off-odour and off-flavour (warmed-

over flavour) in meat and meat products  

• Antioxidant supplementation to meat reduces the peroxide, TBARS, conjugated 

diene and conjugated triene values and increase meat shelf life. 
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1.11 Hypothesis: 

This study aimed to evaluate these following hypotheses 

• The post-slaughter application of natural antioxidants can improve the stability of 

lipid and chicken meat quality as measured by instrumental analyses 

• The use of natural antioxidants can limit the degree of warmed-over character in 

chicken meat 

• The post-slaughter application of natural antioxidants can perform similarly to the 

synthetic antioxidants in broiler chicken meat 

1.12 Objectives: 

• To evaluate the effect of post-slaughter application of natural antioxidants at 

different levels on the oxidative stability of fat from various portions of chicken 

carcasses under accelerated storage at 62.8 oC. 

• To investigate the impact of post-slaughter application of natural antioxidants on 

physic and chemical characteristics of raw and freshly cooked meat. 

• To determine the effect of natural antioxidants application on the degree of 

warmed-over character in chicken meat.  

• To evaluate the efficiency of natural antioxidants to reduce the lipid oxidation 

products in comparison with synthetic antioxidants in broiler chicken meat 

• To assess the diffusion of an antioxidant solution into the different layers of 

chicken fillets by dipping process.  
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Chapter 2 

The Impact of Natural Antioxidants on the Oxidative Stability of Fat 

from Broiler Chicken Meat. 

2.1 Introduction 

Lipid oxidation can cause deterioration and reduce the quality of meat and meat-derived 

products (Estevez et al., 2009). As mentioned previously (section 1.8), the process of lipid 

oxidation can be halted or delayed by the presence of free-radical scavenging compounds 

(e.g. antioxidants). In order to assess the progression of any chemical process, or events 

that influence these chemical processes, their relatively slow progression can be sped up 

by employing accelerated storage conditions at elevated temperatures (Khan and Shahidi, 

2001; Zhang et al., 2010; Tavasalkar et al., 2012; El-Shourbagy and El-Zahar., 2014). 

Khan and Shahidi (2001) and Tavasalkar et al. (2012) have demonstrated the oxidative 

stability and potential shelf life of lipids under standardised accelerated storage conditions 

(i.e. Schaal oven test). For practical purposes, it has been suggested that accelerated 

storage is considered a very useful tool to identify and characterise a new antioxidant and 

determine its activity (Tavasalkar et al., 2012). In order to estimate the activities of 

potential antioxidants, oils and fats have been used as oxidation substrates (Khan and 

Shahidi, 2001: Zhang et al., 2010; Tavasalkar et al., 2012; El-Shourbagy and  El-Zahar, 

2014). El-Shourbagy and  El-Zahar (2014) studied the capacity of rosemary, peanut skins, 

pomegranate fruits and BHA in ghee at 63 oC for 21 days. In order to monitor oxidation 

of oil and evaluate shelf life, several chemicals, instrumental and sensory evaluation 

techniques have been used. These techniques can also be applied to estimate the 

efficiency of antioxidants in various lipid systems (Che Man and Tan, 1999). Chemical 

and instrumental techniques used include, measuring fatty acid degradation, phospholipid 
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content, conjugated dienes, conjugated trienes and TBARS value. Conjugated dienes are 

indicators of primary oxidation products; while conjugated trienes and TBARS are 

indicators of secondary oxidation products (Estevez et al., 2009). 

Most of these studies have focused on using oil as an oxidation substrate and evaluating 

the antioxidant capacity of the extracts. To our knowledge, the use of fat from chicken 

meat as an oxidation substrate for evaluating the antioxidant activity of natural extracts 

has not been reported. The efficacy of natural antioxidants in pure fat extracted from 

chicken meat has not yet been evaluated. Such knowledge could encourage to apply these 

antioxidants to other products that contain high levels of fat to reduce the lipid oxidation 

process. Therefore, this study was carried out to evaluate the effects of natural 

antioxidants such as: rosemary, ginger and small red bean and sunflower seeds, plus the 

synthetic antioxidant (BHT) on the oxidative stability of fat from various portions of 

chicken carcasses under accelerated storage at 62.8 oC. 
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2.2 Materials and Methods 

2.2.1 Raw Materials 

2.2.1.1 Chicken Carcasses 

Freshly slaughtered, whole chicken carcasses of Ross breed were obtained from a single 

supplier in the UK (Faccenda Group Ltd., Brackley, UK) for all experiments, where all 

animals came from the same stock and were fed the same base diet (Table 2.1). Slaughter 

age ranged from 36-41 days with an average carcass weight of 1.7 kg.  

Table 2.1 Ingredients and chemical composition (%) of broiler diet. 

Ingredients (%) Starter Grower Finisher Withdrawal 

Wheat 54.00 48.00 55.00 55.00 

Barley 0.00 8.00 8.00 9.00 

Soya 31.50 28.00 20.50 20.00 

Rapeseed 4.00 6.20 6.75 6.75 

Fishmeal 4.00 0.00 0.00 0.00 

Biscutmeal 0.00 2.80 2.70 2.70 

Vegetable Oil 3.25 4.00 3.70 4.00 

Vits/Mins/Amino Acids/Enzyme 3.25 3.00 3.35 2.55 

Chemical composition (%) 
    

Protein 24.00 21.00 17.90 17.60 

Fat 6.30 8.00 8.50 8.70 

Fibre 3.00 3.50 3.50 3.50 

Ash 5.30 4.80 4.40 4.30 

 

2.2.1.2 Sources of Natural Antioxidants 

Ground rosemary (Rosmarinus officinalis), ginger (Zingiber officinale Roscoe), dry small 

red bean seeds (Phaseolus vulgaris) and sunflower seeds (Helianthus annuus) were 

obtained from various commercial sources. Dried and ground rosemary and ginger were 

obtained from Gekruid vof (Hoogstraten, Belgium), small red bean seeds from Bob’s Red 

Mill (USA) and sunflower seeds from Suma (Elland, UK).  
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2.2.1.3 Chemicals Used 

Table 2. 2 Chemicals used. 

Chemical Grade / Purity 

Supplier 

Name 
Address (town, 

country) 

Sodium sulphite ≥98%, Sigma-Aldrich Gillingham, UK 

Ethanol, Absolute  
Assay (99.99% 

GC) 
Sigma-Aldrich Gillingham, UK 

Gallic acid 
97.5-102.5% 

(titration) 
Sigma-Aldrich Gillingham, UK 

Butylated hydroxytoluene 
≥99%, Food Grade, 

kosher 
Sigma-Aldrich Gillingham, UK 

2-thiobarbituric acid ≥98%, Sigma-Aldrich Gillingham, UK 

L-ascorbic acid 
reagent grade, 

crystalline 
Sigma-Aldrich Gillingham, UK 

Sulphuric acid 
ACS reagent, 95.0-

98.0% 
Sigma-Aldrich Gillingham, UK 

Disodium phosphate 

dibasic  
BioXtra, ≥99.0% Sigma-Aldrich Gillingham, UK 

Hydrogen peroxide 

Laboratory reagent 

grade, Assay > 

30% (w/v) 

Sigma-Aldrich Gillingham, UK 

Tridecanoic acid Analytical standard Sigma-Aldrich Gillingham, UK 

cis-4,7,10,13,16,19-

Docosahexaenoic methyl 

ester 

≥ 98% (GC) Sigma-Aldrich Gillingham, UK 

Methyl all-cis-

7,10,13,16,19-

docosapentaenoate 

Analytical standard Sigma-Aldrich Gillingham, UK 

Methyl myristate ≥99% (GC) Sigma-Aldrich Gillingham, UK 

Methyl palmitoleate 
≥99% (capillary 

GC), liquid 
Sigma-Aldrich Gillingham, UK 

Methyl palmitate 
≥99% (capillary 

GC) 
Sigma-Aldrich Gillingham, UK 

Methyl palmitoleate ≥ 99% (GC) Sigma-Aldrich Gillingham, UK 

Methyl stearate ≥99% (GC) Sigma-Aldrich Gillingham, UK 

Methyl oleate 99% Sigma-Aldrich Gillingham, UK 

Methyl linoleate ≥99% (GC) Sigma-Aldrich Gillingham, UK 

Methyl linolenate ≥99% (GC) Sigma-Aldrich Gillingham, UK 

Methyl arachidonate ≥99% (GC) Sigma-Aldrich Gillingham, UK 

cis-5,8,11,14,17-

Eicosapentaenoic methyl 

ester 

Analytical standard Sigma-Aldrich Gillingham, UK 
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Table 2.2 (Continued) Chemicals used: 

Chemical Grade / Purity Supplier 

Name Address (town, 

country) 

2,2,4-trimethylpentane (iso-

octane) 

99%, for 

spectroscopy, Acros 

Organics 

Fisher Scientific Loughborough, UK 

Potassium hydroxide 99.98%, (trace 

metal basis), Acros 

Organics 

Fisher Scientific Loughborough, UK 

Ammonium molybdate(VI) 

tetrahydrate 

Analytical reagent 

grade 

Fisher Scientific Loughborough, UK 

Chloroform HPLC grade Fisher Scientific Loughborough, UK 

Methanol HPLC gradient 

grade, (Assay 

99.99%) 

Fisher Scientific Loughborough, UK 

Hexane 99%, pure, mixture 

of isomers, Acros 

Organics 

Fisher Scientific Loughborough, UK 

Ethanol, Absolute  Analytical reagent 

grade, (Assay 

99.99% GC) 

Fisher Scientific Loughborough, UK 

Trichloracetic acid 99+%, ACS 

reagent, Acros 

Organics 

Fisher Scientific Loughborough, UK 

Glacial acetic acid Analytical reagent 

grade, 99.83% 

Fisher Scientific Loughborough, UK 

Malonaldehyde bis(diethyl 

acetal),1,1,3,3-tetra-

ethoxypropane  

97%, Acros 

Organics 

Fisher Scientific Loughborough, UK 

Acetone  Analytical reagent 

grade, 99.99% 

Fisher Scientific Loughborough, UK 

Hydrochloric acid  Analytical reagent 

grade (37%) 

Fisher Scientific Loughborough, UK 

Petroleum ether Laboratory reagent 

grade (40-60oC) 

Fisher Scientific Loughborough, UK 

Folin-Ciocalteau  Phenol reagent Fisher Scientific Loughborough, UK 

Sodium carbonate 

anhydrous 

Analytical reagent 

grade, (Assay 

99.96%) 

Fisher Scientific Loughborough, UK 

  



56 

 

2.2.2 Preparation of Natural Antioxidant Extracts 

The extraction of natural antioxidants from rosemary (ROS), small red bean (SRB), 

sunflower seeds (SFS) and ginger (GGR) was optimised and analysed to determine the 

anti-oxidative capacity of the extracts. The ROS and GGR were supplied as powders, 

whereas the SRB and SFS were supplied whole. Hence, SRB and SFS were freeze dried 

(Edwards Modulyo freeze dryer, Sussex, UK) and then ground to a powder in a 

commercial coffee grinder (DeLonghi KG49, Treviso, Italy), after which the SRB and 

SFS powders were passed through an 80 and 20 mesh sieve respectively.  

Antioxidant extracts of SFS, GGR and ROS, were produced employing aqueous ethanol 

(absolute ethanol: water at 80:20 v/v) according to the method described by Selani et al. 

(2011). Ten grams of the powdered samples were accurately weighed and mixed with 100 

ml aqueous ethanol. The mixture was gently shaken in an orbital shaker (HS 501 digital, 

IKA labortechnik, Staufen, Germany) for 48 h in a dark place at ambient temperature (20 

oC). The extracts were passed through a cheesecloth before being filtered through 

Whatman® No. 1 filter paper. The filtrates were then concentrated in a water bath at 60 

°C to remove excess solvent until a volumetric reduction of 90 % was obtained. The 

concentrated extracts were stored at -20 oC, until analyses for calibration and subsequent 

use. Antioxidant extracts from SRB were also obtained using aqueous ethanol, but at an 

equal ethanol: water (50:50 v/v) ratio instead. SRB contains a considerably higher amount 

of hydrophilic antioxidant compounds than lipophilic (see section 1.7.4 for more detail). 

Accordingly, to extract both hydrophilic and lipophilic fractions the correct ratio of 

ethanol and water is required (Wu et al., 2004). The same extraction protocol as described 

above was used to obtain the antioxidant extract from the SRB. For BHT extract, 10 gm 

of BHT powder directly dissolved in 100 ml of absolute ethanol. The plant and BHT 

extracts were obtained analysed for total phenolic content (section 2.2.2.1).  
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2.2.2.1 Total Phenolic Measurement in Plant Extracts 

Total phenolics were assessed in extracts from various plants (section 2.2.1) by the Folin-

Ciocalteau reagent as described by Singleton and Rossi (1965). The total phenolic content 

was expressed as milligrams Gallic acid equivalent (mg of GAE / 100 g of sample) based 

on sample dry weight.  Half a ml (0.5 ml) of appropriate extracts and standard solutions 

were transferred and mixed with 30 ml of distilled water in a 50ml test tube. To that, 2.5 

ml of Folin–Ciocalteu reagent were added, after 1 min 7.5 ml of 20 % sodium carbonate 

(w/v) was added and the volume adjusted to 50 ml using deionised water. All samples 

were incubated with the standard for 2 h at 23 °C to allow the reaction colour to develop. 

Absorbance at 760 nm was recorded after colour development against a blank using 

spectrophotometry (Beckman, DU640 spectrophotometer, Fullerton, CA).  

A calibration curve was prepared using gallic acid solution 0, 0.1, 0.2, 0.3, 0.4, 0.5 and 

0.6 mg/ml. This was conducted by weighing 100 mg of gallic acid in 100 ml volumetric 

flask and adding 10 ml of ethanol to dissolve, followed by adding distilled water up to 

mark to produce (1 mg/ml) stock solution. 0, 1, 2, 3, 4, 5 and 6 ml of this solution was 

transferred and then distilled water was added to volume 10 ml to produce 0, 0.1, 0.2, 0.3, 

0.4, 0.5 and 0.6 mg gallic acid / ml extraction (Figure 2.1). After vortexing for 15 sec, 0.5 

ml of each concentration was placed in a test tube and the same procedure above applied 

for analysis. The total phenolic content was calculated from the standard curve and then 

expressed as mg Gallic acid equivalent (GAE) / 1 ml extract, followed by the conversion 

of this value to mg GAE / 100 g of dry weight. The amount of phenolic content in ROS, 

SRB, GGR, and SFS extracts and BHT is reported in Appendix (Figure A1).  

 

 𝑥 = (𝑦 + 0.022)/1.0975 
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mg total phenolic content /100 g dry weight = [
𝑥 (𝑚𝑔) 𝑋 𝑉

weight of sample (g)
] x100 

Where x is the unknown amount of phenolics content in sample (mg/ml) is taken from 

the standard calibration curve (Figure 2.1), y is the absorbance of meat sample, V, is the 

dilution factor. Figure 2.1 shows the strong correlation between Gallic acid 

concentrations and absorbance (R2 = 0.9883), however, the line went through all points 

on a graph was not straight. This could be due to the random errors or variance of triplicate 

measurements or could be due to the interference of the environment with the 

measurement process which cannot be possible to control these errors. 

 

Figure 2. 1 Gallic acid calibration curves employed to determine the total phenolic 

content in plant extracts (Means ± SED; n=3). 

2.2.3 Preparation of Fat Extract  

2.2.3.1 Portioning and Grinding of Chicken Carcasses 

The chicken carcasses were manually deboned and portioned into: breast meat; thigh 

meat; adipose tissue; and skin. Dry matter (section 2.2.3.1.1) and total lipid content 

(section 2.2.3.1.2) of each tissue was analysed before extraction process and data is 
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presented in Appendix (Table A1.1). The chicken meat samples were ground separately 

in a Mainca blender (Mainca Ltd., Horton, Berkshire, UK) in the presence of dry ice 

(approximately 200 g dry ice / kg tissue) to avoid oxidation and then freeze dried. The 

freeze-dried samples were finely pulverised in a commercial coffee grinder (DeLonghi 

KG49, Treviso, Italy).  

 2.2.3.1.1 Dry Matter (DM)  

Dry matter of raw meat samples was determined using a freeze dryer (Edwards Modulyo 

freeze dryer, Sussex, UK). Approximately 40 g of ground chicken meat was accurately 

weighed in a plastic pot and kept at -20 oC overnight. The frozen samples were then 

freeze-dried for 72 h at -40 ºC and, the weight of samples was then recorded. The dry 

matter (DM) was calculated and measured as g / kg raw meat  using the following 

equation. 

DM g/kg raw meat =  [
weight of dried samples (g)

Initial weight of raw meat (g)
]  𝑥 1000 

 

2.2.3.1.2 Lipid (Ether Extracts) in Meat Samples 

Total lipid content was determined using an ether extraction of the meat samples 

according to the solvent method described by FOSS (1987) using a Soxhlet system (HT 

1043 extraction apparatus, FOSS, Warrington, UK). Approximately 1 g of dried meat 

sample was weighed and then placed in cellulose extraction thimbles (Whatman ®, 

Maidstone, UK), after which the thimbles were plugged from the top with pure cotton 

wool 100 % (Wilko cotton wool pleat, Nottinghamshire, UK) followed by recording the 

weight of empty extraction cups. 25 ml of 40-60 oC petroleum ether was added to the 

extraction cups, and all samples were then extracted by immersing thimbles into a solvent 

for 30 min of continuous reflux at 150 oC. The time was counted from the point that 

dripping was observed from all of the condensers. The thimbles were then lifted out from 
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the solvent and rinsed for 30 min followed by closure of the taps on Soxhlet units and the 

condensed solvent was allowed to collect for 15 min. The petroleum ether was then 

evaporated by opening the evaporation valve on the Soxhlet units for 5 min, followed by 

removing the extraction cups and placing in the fume cupboard for 30 min to evaporate 

further solvents and cool them down. The weight of extraction cups containing the fat 

was recorded and the fat was calculated as follows: 

Fat (Ether Extract)g/kg DM = [
Fat weight (g)

Initial weight of sample (g)
]  x 1000 

2.2.3.2 Fat Extraction from Chicken Portions 

Fat was extracted from the dried chicken tissue samples with chloroform: methanol (2:1 

v/v) mixture as described by Folch et al. (1957). One gram of ground sample was 

homogenised with 20 ml of extraction solvent. The mixture was gently shaken (HS 501 

digital, IKA labortechnik, Staufen, Germany) for 25 min at ambient temperature (~23 

oC). The homogenates were filtered by Whatman No. 1 filter paper. The remaining solids 

were extracted twice more with the same solvent volume, following which the filtrates 

containing the lipids were combined and concentrated under vacuum in a rotary 

evaporator (BuchiRotavapor R II, Flawil, Switzerland) at 40 °C to remove the excess 

solvent. The lipid extracts were stored at -20 oC until subsequent use.  

2.2.3.3 Experimental Design and Sample Preparation 

This experiment was consisted of a 6 x 3 x 3 factorial design plus added control with five 

different types of antioxidants plus control (ROS, SRB, SFS, GGR, BHT and CON) 

combined with three levels of antioxidants (0, 10 and 20 mg) applied to the fat extracted 

from 4 portions of chicken carcasses (breast, thigh, adipose and skin tissues) and all 

samples were stored at 62.8 oC for three storage times (0, 3 and 7 days).  
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The preparation of fat extracted from breast, thigh, adipose and skin tissues was 

conducted as described in section 2.2.3.2 and each portion was conducted and treated 

separately. Fat samples of each portion were treated by adding extracts from ROS, SRB, 

SFS, and GGR at concentrations of 0, 10 and 20 mg equivalent total phenolic /100 g fat. 

In addition to the four natural antioxidant extracts, this study also used the synthetic 

antioxidant BHT at 0, 10 and 20 mg equivalent total phenolics as an example of a 

powerful artificial antioxidant. Each treatment was conducted in triplicate. All samples 

were vortexed for 1 min to facilitate uniform distribution of the antioxidant and stored 

under schaal oven conditions for 7 days. 

2.2.3.4 Fat Storage and Sampling 

Treated and non-treated fat samples with various antioxidant extracts (section 2.2.3.3) 

were subjected to the Schaal oven test (Guzman et al., 2011). The control and treated 

samples were placed in an oven (Binder, Tuttlingen, Germany) after the temperature was 

set at 62.8 oC for up to one week in order to produce oxidation compounds and measuring 

the oxidative stability of lipids during the storage times. This test is a standard method 

utilised for assessing fats and oils at 62.8 oC. Fat samples were periodically sampled at 

day 0, 3 and 7 and samples were analysed for thiobarbituric acid reactive substances, 

phospholipid content, conjugated dienes, conjugated trienes and fatty acids following 0, 

3 and 7 days of storage.  

2.2.3.4.1 Thiobarbituric Acid Reactive Substances (TBARS) Determination  

TBARS is a secondary lipid oxidation product generated from the decomposition of 

hydroperoxides and considered a good indicator of oxidation process (Hayes, 2000; 

McCarthy et al., 2001; Bax et al., 2012). An increase of TBARS in meat is indicative of 

advanced lipid oxidation (McCarthy et al., 2001; Selani et al., 2011; Bax et al., 2012; 

Naveena et al., 2013). The presence of TBARS is responsible for off-odours and off-
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flavours which have a negative effect on sensory properties of meat (Byrne et al., 2001), 

decreases the shelf-life and nutritional values (Byrne et al., 2001; Sampaio et al.,2012). 

TBARS value was determined in extracting fat samples in triplicate according to the 

method described by Ke and Woyewoda (1979). Ten milligrams of extracted fat were 

weighed into a 10-ml test tube to which 5 ml of the TBA work solution was added. TBA 

work solution was prepared approximately 30 min before use by mixing, 180 ml TBA 

stock solution (prepared by dissolving 2.88 g of 2-thiobarbituric acid in 50 ml deionised 

water in a 500 ml volumetric flask and made up to volume with glacial acetic acid and 

placed on a magnetic stirrer until dissolved), with 120 ml chloroform and 15 ml sodium 

sulphite solution (prepared by dissolving 18.91 g of sodium sulphite in 500 ml deionised 

water). All samples were vortexed for 15 sec before being incubated in a water bath at 95 

oC for 45 min. The tubes were rapidly cooled down by tap water and 2.5 ml of 

trichloracetic acid solution (prepared by dissolving 22.87 g of trichloracetic acid in 500 

ml deionised water) was added. After thorough mixing by inverting ten times, all samples 

were centrifuged (Rotina 46R HettichZentrifugen, Tuttlingen, Germany) at 2500 g for 10 

min at 4 oC. The absorbance (at 538 nm) of the resulting supernatant was determined 

against a blank, which contained all chemical solutions except a sample, by 

spectrophotometer (Beckman, DU640 spectrophotometer, Fullerton, CA). 

A standard curve was prepared by dissolving 220 mg of 1,1,3,3–tetra-ethoxypropane 

(TEP) in 100 ml of deionised water to produce (2.2 mg TEP / ml) working solution. Then 

serial dilutions were prepared by pipetting aliquots of 0, 0.02, 0.075, 0.15, 0.30, 0.45 and 

0.600 ml of working TEP standard solution into test tubes and made up to 0.600 ml by 

adding deionized water (DW) to produce (0, 0.044, 0.165, 0.330, 0.660, 0.990 and 1.320 

mg TEP equivalents / 0.600 ml extraction). All samples were then vortexed for 15 sec. 

0.010 ml was pipetted from each dilution which contained (0.00073 – 0.022 mg TPE / 
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0.010 ml) (Figure 2.2) and placed in 10 ml test tube and the same procedure was applied 

as used for sample analysis, except the TEP work solution was used instead of a sample.  

For constructing standard curve, the concentrations of (TEP) were plotted against the 

absorbance of TEP (Figure 2.2). From the standard curve, the amount of TBARS in fat 

samples was determined and expressed as mg of malondialdehyde equivalents / kg fat by 

utilising the following equations: 

            𝑥 = (𝑦 + 0.0094)/124.27    

mg TBARS (MDA)/kg fat meat = [
𝑥 (𝑚𝑔)

weight of fat sample (g)
] x1000 

Where x is the unknown amount of MDA in fat (mg/g) is taken from the standard 

calibration curve (Figure 2.2). y, is the absorbance of fat chicken sample, and 1000 is the 

dilution factor used to obtain the results of TBARS in mg MDA/kg fat. 

 

Figure 2. 2 Standard curve of 1,1,3,3–tetra-ethoxypropane (TEP) for determination of 

TBARS (mg MDA) (Means ± SED; n=3). 
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2.2.3.4.2 Conjugated Dienes and Conjugated Trienes Determination 

The conjugated dienes (CD) and conjugated trienes hydroperoxides (CT) formation in the 

lipids were determined according to the method mentioned by Pegg (2005). Twenty-five 

milligrams of lipid extract were weighed and dissolved in 25 ml of 2, 2, 4-

trimethylpentane (iso-octane) and the contents then homogenized by vortex for 15 sec. 

The homogenate sample was transferred to a quartz cuvette, 1 cm path length and the 

absorbance was determined against a blank by spectrophotometer (Beckman, DU640 

spectrophotometer, Fullerton, CA) at 232 nm and 268 nm for CD and CT respectively. 

Each sample was assessed in triplicate. The concentration of CD and CT formed in fat 

was calculated by utilising the molar extinction coefficient of 25,200 M-1cm-1. The 

concentration of both CD and CT were calculated and reported as micromole/g by 

utilising the following equation:  

CCD and CCT = A232 and A268 / (E x L)  

CD value = [CCD and CCT x (2.5 x 10 4)] / W  

Where: CCD and CCT is CD and CT concentration (mmol/ml). 

 A232 and A268 is the absorbance measured at both wavelengths 233 for CDs and 268 for 

CTs, E is the molar extinction coefficient for CD and CT 2.525 x 104 M-1 cm -1. L is the 

length of the light path in cm (1 cm). 2.5 x 104 is a factor that includes the volume of iso-

octane (25 ml) used to dissolve the oil sample and a unit conversion (1000 µmol/mmol) 

to report the results as micromole, W is weight of sample in g. 

2.2.3.4.3 Phospholipid Content Determination   

The phospholipid content was determined by using an adjusted procedure according to 

Anderson and Davis (1982). Twenty-five milligrams of extracted fat was dissolved in 0.5 

ml chloroform, of which 0.025 ml were transferred into digestion tubes and heated in a 
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block heater at 38 C until dry. To this, 0.45 ml H2SO4 (4.45 M) (4.45 M of H2SO4 was 

prepared by mixing 24.97 ml of H2SO4 with 100 ml of DW) was added and vortexed after 

which all samples were heated in a block heater (Maplelab Scientific BH-603, Dalang, 

China) at 200 °C for 25 min. The tubes were then cooled and 0.150 ml H2O2 (30 %) was 

added. The samples were mixed and heated again for a further 30mins before 3.9 ml of 

deionised water was added and the mixture cooled. Then 0.5 ml of ammonium molybdate 

(VI) tetrahydrate solution 2.5 % (2.5 g dissolved in100 ml DW) and 0.5 ml of ascorbic 

acid solution 10 % (10 g dissolved in 100 ml DW) were added. The samples were mixed 

well and incubated in a block heater at 100 °C for 10 min. The tubes were cooled and the 

absorbance determined against a blank that contained all chemicals except samples by a 

spectrophotometer (Beckman, DU640 spectrophotometer, Fullerton, CA) at 820 nm.  

A standard curve was prepared by dissolving 125 g sodium phosphate dibasic in 50ml 

deionised water to produce 2.5 mg/ml stock solution. From this solution 0, 0.2, 0.4, 0.8, 

1.2, 1.6 and 2 ml of the solution were placed in 10 ml test tubes followed by adding 10 

ml of deionised water to produce a calibration standard curve at concentrations of 0, 0.05, 

0.10, 0.20, 0.30, 0.40 and 0.50 mg of sodium phosphate / ml extract. After mixing all 

samples by vortex for 15 sec, 0.025 ml from each concentration, which contained 

(0.00125-0.01250 mg sodium phosphate dibasic / 0.025 ml extraction) was placed in 

digestion tubes and the same procedure above applied for analysis. The phosphorus 

content values were calculated from a standard curve, which was prepared from sodium 

phosphate dibasic (Na2HPO4) and the results were expressed as g of phospholipids / 100 

g of fat. The total phospholipids contents of fat were calculated using the following 

formula: 

𝑥 = (𝑦 + 0.0021)/76.855 
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g phosphorus /100 fat = [
(𝑥 𝑚𝑔 𝑋 𝑉)/1000

weight of fat sample (g)
] x 100 

Total phospholipids contents (g/100 g fat) = phosphorus content (g) x 25 

Where x is the unknown amount of phosphorus in the lipid sample (mg/ml) and is taken 

from the standard calibration curve (Figure 2.3). Y is the absorbance of meat sample. V 

is the dilution factor. 100 is a dilution factor used to obtain the results of phosphorus in 

g/100 g fat. The number 25 is derived from dividing the molecular weight of 

phosphoglyceride (754) by the molecular weight of phosphorus (31). 

 

Figure 2. 3 Standard calibration curve of sodium phosphate dibasic for determination of 

phospholipid content (Means ± SED; n=3). 

2.2.3.4.4 Fatty Acids Determination   

Fatty acids were determined according to the method outlined by O’Fallon et al. (2007) 

with slight modification. Forty milligrams of extracted fat or 0.5 g of dried meat was 

accurately weighed into 15 ml Kimax test tubes. To these samples 1.0 ml of internal 

standard (4 mg of C13:0/ml of methanol) was added, followed by 0.7 ml of 10 M KOH 
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in water (10 M KOH was prepared by dissolving 56 g of KOH in 100 ml of deionised 

water), and 5.3 ml of methanol to facilitate saponification. The tubes were incubated for 

1.5 h at 55 °C in a water bath with shaking vigorously by hand every 20 min for 5 sec. 

The tubes were cooled to ambient temperature and 0.58 ml of 12 M H2SO4 was added. 

The solution of 12 M H2SO4 was prepared by dissolving 67.33 ml of concentrated H2SO4 

and made up to 100 ml by adding deionised water. After mixing by inversion, the samples 

were then incubated for a further 1.5 h at 55 °C in a water bath with shaking vigorously 

by hand every 20 min for 5 sec to facilitate the formation of methyl esters of the liberated 

free fatty acids. After cooling tubes to room temperature, 3 ml of hexane were added and 

vortexed, after which the tubes were centrifuged (Rotina 46R Hettich Zentrifugen, 

Germany) at 2500 g for 10 min. The solvent layer containing the fatty acid methyl esters 

was transferred by glass pipette and placed into a GC vial. The fatty acid methyl esters 

were assessed by Gas Chromatography (Hewlett Packard HP 6890) equipped with a flame 

ionization detector utilising a capillary column (CP-SIL88, 100 m × 250 µm × 0.20 µm). 

The initial oven temperature was 70 °C, held isothermally for 2 min, before increasing by 

8 °C/m to 110 °C, held isothermally at 110 °C for 4 min, then a programmed temperature 

increase of 5 °C/min to 170 °C and a further increase of 4 °C/min to 225 °C and finally 

held isothermally for 15 min. Hydrogen was used as the carrier gas at a flow rate of 2.1 

ml/min, and the pressure of the column head was 29.59 psi. The temperature of the 

injector and detector were set at 250 °C. One microliter of fatty acid methyl esters was 

injected in split mode at a 100:1 ratio. Fatty acid identification was conducted by 

comparison of retention times of fatty acid methyl esters from known standards. The 

following formula calculated individual fatty acids.  

Calculation individual fatty acid (g/100 g fat)  

=
Weight of Standard (mg) x fatty acid (%)

 internal standard area (%) x weight of sample (g)
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∑ SFA = sum of C14:0, C16:0, C18:0 and C20:0 

∑ MUFA = sum of C16:1 n-7 and C18:1 n-9 

∑ PUFA= sum of C18:2 n-6, C18:3 n-3, C20:4 n-6, C20:5 n-3, C22:5 n-3 and C22:6 n-3 

∑ n-3 PUFA sum of C18:3 n-3, C20:5 n-3, C22:5 n-3 and C22:6 n-3 

∑ n-6 PUFA= sum of C18:2 n-6 and C20:4 n-6 

2.2.3.4.4.1 Determination of GC accuracy  

The accuracy of GC method was determined by calculating the linearity of the calibration 

curve, limit of quantitation (LOQ) and limit of detection (LOD). For calculating the 

linearity of the standard curve, serial dilutions 1:60, 1:36, 1:22 and 1:13 of individual 

fatty acids were prepared in GC vials by dissolving correct amount of each fatty acids 

that ranged from 15.00 to 104.10 mg in 1ml of hexane as shown in Table 2.3. Each 

dilution was prepared in triplicates and run all samples through the GC. To construct the 

calibration curve, the concentrations of each fatty acid were plotted against the set of data 

for each of the fatty acids obtained from GC as shown in Figure 2.4. For determination 

of both LOD and LOQ, steyx/slope method was applied according to the method 

described by Thummaluru and Gurrala (2016). Limit of quantitation and limit of detection 

were calculated as per the following formulas:  

LOD mg/ml = [
steyx

slope
] x 3.3 

   LOQ  mg/ml = [
steyx

slope
] x10 
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Table 2. 3 Linearity of calibration of illustrated fatty acids method and determination of 

Limit of Quantitation (LOQ) and Limit of Detection (LOD) 

 Linearity 

Fatty acid LOQ 

(mg/ml) 

LOD 

(mg/ml) 

range 

mg/ml 

Calibration 

(R2 value) 

Myristic acid 1.04 0.34 0.16-34.00 1.0000 

Palmitic acid 2.11 0.69 0.48-104.10 1.0000 

Palmitoleic acid 5.20 1.71 0.15-33.41 0.9993 

Stearic acid 8.31 2.74 0.32-68.11 0.9996 

Oleic acid 8.58 2.83 0.32-68.81 0.9995 

Linoleic acid 8.16 2.69 0.16-34.75 0.9984 

Linolenic acid 5.04 1.66 0.16-34.83 0.9994 

Arachidic acid 8.11 2.67 0.32-68.60 0.9996 

Arachidonic acid 5.07 1.67 0.17-36.11 0.9994 

Eicosapentaenoic acid   0.85 0.28 0.15-33.33 0.9993 

Docosahexaenoic acid  5.72 1.88 0.16-34.63 0.9992 
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Figure 2. 4 Standard calibration curve of fatty acids for determination the linearity 

(Means ± SED; n=3). 
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2.2.4 Statistical Analysis  

Four separate factorial plus added control of 6 x 3 x 3 was used for analysing TBARS, 

CD, CT, phospholipid content and fatty acids of fat extracted from the four portions of 

chicken carcass over schaal oven test for 7 days. Each portion was conducted and 

analysed separately, and each experiment was conducted in triplicate (n = 3). In this 

experiment five different antioxidants were used to decrease the rancidity in fat samples 

and each of the antioxidant had two levels (10 mg and 20 mg) and a control treatment 

(without any added antioxidant dose) was included and all samples were stored at 0, 3 

and 7 days. The control treatment represented (0) level for three factors and factorial plus 

added control structure was applied by using the equation (Antioxidants /(level x storage 

time)). The model expanded to the following: (Antioxidant + Antioxidant․ Level + 

Antioxidant․ Storage time + Antioxidant․ Level․ Storage time) 

In which 

Antioxidant: represented the main effect of any antioxidant at any level and storage time. 

Antioxidant․ Level: represented the comparison between 0 level and two antioxidant 

levels (10 and 20 mg) (averaged over the storage time and different antioxidants) 

Antioxidant․ Storage time: represented overall differences between antioxidants and 

storage time (averaged over 0, 10 and 20 mg levels) 

Antioxidant․ Level․ Storage time: represented the interaction between Antioxidant x 

Level x Storage time.  

All data obtained from the various treatments were analysed by general treatment 

structure (no blocking), using the GenStat statistical software (Edition 17th, VSN 

International Ltd). Tukey's HSD test was used to identify the significant differences 



72 

 

between means, and the significance level of all data was set at p ≤ 0.05. The null (H0) 

and alternative (H1) hypothesis for each dependent variable were set as:  

Null hypothesis (H0): 

There was no significant effect of natural antioxidants application, application level, 

accelerate storage time and interaction between them on oxidative stability of fat from 

different portions of chicken carcasses (H0: μ = 0; p > 0.05). 

Alternative hypothesis (H1) 

There was a significant effect of natural antioxidants application, application level, 

storage time and interaction between them on oxidative stability of fat from different 

portions of chicken carcasses (H1: μ≠ 0; p ≤ 0.05). 

  



73 

 

2.3 Results 

2.3.1 Effect of Natural Antioxidants on the Formation of Thiobarbituric Acid-

Reactive Substances (TBARS) in Extracted Fat from Chicken Portions during 

Accelerated Storage Conditions 

2.3.1.1 Chicken Breast Fat 

The addition of antioxidants to the lipid fraction of chicken breast meat showed a 

significant (p < 0.001) reduction in the formation of TBARS compared to the non-treated 

samples. The lowest TBARS values were found in samples treated with BHT followed 

by ROS, SRB, SFS and GGR (Appendix Table A2). However, the addition of 

antioxidants at both lower and higher levels had a lower TBARS values compared to the 

"zero" level. A significant (p ≤ 0.05) difference was found only between both levels of 

GGR extract that lower level awarded a greater protection against an increase of TBARS 

compared to the higher level (Figure 2.5). Regardless of antioxidant levels, the TBARS 

values in none and treated samples significantly increased (p < 0.001) at day 3 of storage 

and declined at day 7. Samples treated with antioxidants were found to have significantly 

lower (p < 0.001) TBARS values compared to the non-treated samples for 7 days (Figure 

2.6). An interaction was found between antioxidant x level x storage time (p < 0.001) for 

TBARS values due to the increase the TBARS value in all treatments up to 3 days and 

decreased afterward at day 7 (Table 2.4). The addition of natural antioxidants at lower 

and higher level awarded a greater protection against oxidative rancidity compared to the 

non-treated samples during 7 days of storage time. However, none of the natural 

antioxidants performed significantly better than the synthetic antioxidant (BHT 

treatment) within the first 3 day period. Only the addition of the ROS extract at the lower 

level and over a 7 day period awarded a greater protection against oxidative rancidity 

compared to the BHT treatment.  
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Figure 2.5 Effect of different levels of natural antioxidants on TBARS values in fat from 

chicken breast meat (Means ± SED; n = 3). Non-treated control (CON); butylated 

hydroxytoluene (BHT); Rosemary extract (ROS), Small Red Bean extract (SRB); Sun 

Flower Seed (SFS) extract; ginger (GGR) extract. 

 

 

Figure 2.6 Effect of natural antioxidant application on TBARS values in fat from chicken 

breast meat during the accelerated storage time (Means ± SED; n = 3). Non-treated 

control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small Red 

Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 
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Table 2.4 Effect of natural antioxidant extracts at different levels on TBARS values (mg MDA/kg fat) in fat from chicken portions during the accelerated 

storage time at 62.8 oC. 

 

Tissue 

 

Time 

(d) 

Controls Treatment with Natural Antioxidants 

CON          BHT            ROS           SRB            SFS          GGR 

T0 T10 T20 T10 T20 T10 T20 T10 T20 T10 T20 

Breast 

0 13.63ab           

3 66.93g 12.73a 11.84a 41.52ef 25.12abcd 32.96cdef 22.74abcd 29.79bcde 35.00de 25.02abcd 45.72ef 

7 56.34fg 14.71ab 11.98a 9.42a 12.99a 18.32abc 24.14abcd 23.04abcd 19.19abcd 23.09abcd 31.66cde 

Thigh 

0 25.35bcdefg           

3 57.27j 7.28a 17.91abcd 22.57abcde 36.10efghi 39.58ghi 38.94fghi 26.70bcdefg 21.95abcde 43.75hij 35.01efghi 

7 48.50ij 16.08abcd 14.40abc 22.71abcde 21.43abcde 27.04bcdefg 20.79abcde 30.17defgh 12.44ab 23.22bcdef 30.05cdefgh 

Adipose 

0 41.84def           

3 74.96i 25.77abc 26.19abc 38.66bcde 30.55abcd 71.08hi 59.86gh 42.82def 37.00abcde 40.74def 39.49cde 

7 75.10i 23.69a 24.94ab 44.89def 46.14efg 72.33hi 84.80i 54.87fg 50.30efg 54.87fg 46.56efg 

Skin 

0 12.95abcdef           

3 33.87g 8.56abcdef 7.90abcd 9.38abcdef 6.91abc 8.19abcde 10.07abcdef 14.73bcdef 16.38cdef 12.93abcdef 15.93cdef 

7 54.57h 4.70a 5.74ab 8.04abcde 9.93abcdef 16.94def 16.24cdef 17.81ef 15.71cdef 18.03f 16.59cdef 

Mean values with different small superscript letters presented within each row and column of each tissue differ significantly (p ≤ 0.05) according to the Tukey's HSD test.   
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2.3.1.2 Chicken Thigh Fat 

Similar to the chicken breast fat, the results show that the addition of antioxidants to the 

thigh fat before processing significantly reduced TBARS values (p < 0.001) Among the 

treatments with antioxidants, the lowest TBARS value was found in BHT treated samples 

followed by SFS, ROS, SRB, GGR treatments and the non-treated control (Appendix 

Table A2). Regardless of the storage time, the TBARS values of the thigh fat treated with 

10 and 20 mg of antioxidant extracts were significantly lowered as compared to "zero" 

level. Only significant differences were found between 10 and 20 mg of SFS (p = 0.002) 

and a significant inhibition of TBARS values was found in samples treated with a higher 

level (20 mg) compared to the lower level (10 mg) (Figure 2.7). Regardless of the level 

of antioxidants, the TBARS values in all treated or non-treated samples (with the 

exception of BHT) increased at day 3 and decreased thereafter. However, higher level 

oxidation of lipid was detected in non-treated samples (Figure 2.8). The results show that 

a significant antioxidant x level x storage time interactions were observed for the TBARS 

values of thigh fat (p < 0.001), due to the increase the TBARS value in all treatments up 

to 3 days and decreased the values over time. On day 0, all natural antioxidants (except 

GGR at 10 mg) significantly (p < 0.001) reduced the formation of TBARS values. Among 

natural antioxidants, SFS at 20 mg was found to have the lowest TBARS values. At day 

7, the addition of natural antioxidants showed a significant reduction in the formation of 

TBARS compared to the non-treated samples. SFS at 20 mg was found to have the lowest 

TBARS values of 12.44 mg MDA/kg. Only the addition of SFS at 20 mg and ROS at 10 

mg extract over a 7 day period awarded similar protection against oxidative rancidity 

compared to the BHT treatment (Table 2.4).   
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Figure 2.7 Effect of different levels of natural antioxidants on TBARS values in fat from 

chicken thigh meat (Means ± SED; n = 3). Non-treated control (CON); butylated 

hydroxytoluene (BHT); Rosemary extract (ROS), Small Red Bean extract (SRB); Sun 

Flower Seed (SFS) extract; ginger (GGR) extract.  

 

Figure 2.8 Effect of natural antioxidant application on TBARS values in fat from chicken 

thigh meat during the accelerated storage time (Means ± SED; n = 3). Non-treated 

control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small Red 

Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract.  
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2.3.1.3 Chicken Adipose Fat 

The addition of antioxidants to fat from adipose tissue significantly declined the lipid 

oxidation compared to the non-treated samples The BHT treatment had significantly 

lower (p < 0.001) lipid oxidation with a mean value of 25.15 mg MDA/kg meat compared 

to the ROS, GGR, SFS, non-treated samples and SRB (Appendix Table A2). No 

significant differences were found between 10 and 20 mg of each antioxidant, although 

they were significantly differed from non-treated samples "zero" level. Among natural 

antioxidants, ROS at both 10 and 20 mg had the lowest TBARS values (Figure 2.9). 

Regardless of antioxidant levels, the TBARS value of non-treated and treated fat samples 

increased over storage time, showing a rapid increase up to 3 days with no discernible 

changes over 7 days. Over storage time, all treated samples (with exception SRB) were 

found to have the lowest TBARS value compared to non-treated samples and BHT 

followed by ROS were found to have the lowest formation of TBARS at each interval of 

storage time (Figure 2.10). The results presented in Table 2.4 shows that a significant 

interaction between antioxidant x level x storage time (p < 0.001). All natural antioxidants 

(with the exception of SRB at both levels) effectively reduced the lipid oxidation during 

the storage time compared to the non-treated samples. Among the natural antioxidants, 

ROS and SFS at higher levels were found to have the lowest TBARS values compared to 

SRB, GGR, SFS and non-treated samples. The addition of natural extracts at the lower 

and higher level on day 3 of storage time awarded similar protection against oxidative 

rancidity compared to the BHT. Subsequently, none of the natural antioxidants performed 

significantly more than a synthetic antioxidant (BHT treatment).  
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Figure 2.9 Effect of different levels of natural antioxidants on TBARS values in fat from 

chicken adipose tissue (Means ± SED; n = 3). Non-treated control (CON); butylated 

hydroxytoluene (BHT); Rosemary extract (ROS), Small Red Bean extract (SRB); Sun 

Flower Seed (SFS) extract; ginger (GGR) extract. 

 

Figure 2.10 Effect of natural antioxidant application TBARS values in fat from chicken 

adipose tissue during the accelerated storage time (Means ± SED; n = 3). Non-treated 

control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small Red 

Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract.  
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2.3.1.4 Chicken Skin Fat 

The application of antioxidants significantly reduced the formation of TBARS in skin fat, 

while samples treated with BHT and ROS provided greater protection against oxidative 

rancidity compared to the non-treated samples (Appendix Table A2). No significant 

differences were found between 10 and 20 mg of each antioxidant, although they were 

significantly differed from non-treated samples "zero" level. BHT and ROS at both levels 

were found to have the lowest formation of TBARS (Figure 2.11). Regardless of the 

antioxidant levels, TBARS content significantly increased (p ≤ 0.05) in non-treated of fat 

from skin tissue over 3 and up to 7 days’ storage time from 12.95 to 33.87 and 54.57 mg 

MDA/kg respectively. While, antioxidant treatments were found to have a lower TBARS 

values compared to the non-treated samples over storage time. The antioxidants that 

found to have the lowest TBARS values for 7 days, were BHT and ROS (Figure 2.12). A 

significant difference was found between antioxidant x level x storage time (p < 0.001) 

for TBARS in the skin fat sample (Table 2.4). The TBARS content increased in non-

treated samples of fat from skin tissue over 3 and up to 7 days of storage time. Natural 

antioxidant supplementation at both concentrations significantly lowered the TBARS 

values as compared to the non-treated samples over storage time. No significant 

differences were found among natural antioxidant supplementation at either level over 7 

days. The addition of natural extracts at the lower and higher levels on day 3 of the storage 

time awarded similar protection against oxidative rancidity compared to the BHT. 

Subsequently, most of the natural antioxidants (with the exception of ROS at 10 and 20 

mg) did not perform significantly better than the synthetic antioxidant (BHT treatment) 

(Table 2.4). 
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Figure 2.11 Effect of different levels of natural antioxidants on TBARS values in fat from 

chicken skin tissue (Means ± SED; n = 3). Non-treated control (CON); butylated 

hydroxytoluene (BHT); Rosemary extract (ROS), Small Red Bean extract (SRB); Sun 

Flower Seed (SFS) extract; ginger (GGR) extract. 

 

Figure 2.12 Effect of natural antioxidant application on TBARS values in fat from chicken 

skin tissue during the accelerated storage time (Means ± SED; n = 3). Non-treated 

control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small Red 

Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 
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2.3.2 Effect of Natural Antioxidants on the Degradation of Phospholipids in Fat 

Extracted from Chicken Portions during Accelerated Storage Conditions  

2.3.2.1 Chicken Breast Fat 

In fat from breast chicken meat, phospholipid content was significantly affected by 

antioxidant supplementation (p = 0.005). BHT treatment was found to have the lowest 

content of phospholipid with a mean value of 46.71 g/100 g fat (Appendix Table A2). No 

significant differences were found between "zero" level and 10 mg of each antioxidant, 

while samples treated with 20 mg yielded markedly a lower phospholipid content than 

non-treated samples "zero" level (Figure 2.13). Over storage time, the content of 

phospholipid was decreased at day 3 and slightly increased at day 7, while a significant 

reduction of phospholipid was found in fat treated with BHT at day 3, with no discernible 

changes over 7 days (Figure 2.14). No significant differences (p = 0.475) were found 

between antioxidant, level and storage time for phospholipid content (Table 2.5).   
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Figure 2.13 Effect of different levels of natural antioxidants on phospholipid content in 

fat from chicken breast meat (Means ± SED; n = 3). Non-treated control (CON); 

butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small Red Bean extract 

(SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 

 

Figure 2.14 Effect of natural antioxidant application on phospholipid content in fat from 

chicken breast meat during the accelerated storage time (Means ± SED; n = 3). Non-

treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small 

Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract.  
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Table 2.5 Effect of natural antioxidant extracts at different levels on phospholipid content (g100/g fat) in fat from chicken portions during the accelerated 

storage time at 62.8 oC.  

Tissue 
Time 

(d) 

Controls Treatment with Natural Antioxidants 

CON          BHT            ROS           SRB            SFS          GGR 

T0 T10 T20 T10 T20 T10 T20 T10 T20 T10 T20 

Breast 

0 59.99           

3 53.22 43.88 42.19 53.14 44.23 50.85 48.92 50.67 46.32 51.35 49.79 

7 54.39 46.50 53.50 61.14 56.12 54.75 58.37 56.09 51.49 58.62 48.03 

Thigh 

0 34.46           

3 24.86 25.14 27.06 26.68 28.27 29.02 28.41 26.80 27.46 29.42 29.66 

7 25.82 28.21 29.23 27.99 30.44 32.25 34.29 31.48 30.93 30.69 31.62 

Adipose 

0 4.68bcd           

3 2.90ab 2.89ab 3.27ab 2.68a 3.13ab 2.99ab 2.92ab 2.93abc 2.94ab 2.51a 3.71abc 

7 3.51abc 5.28cd 4.83bcd 3.94abcd 4.71bcd 4.06abcd 4.03abcd 3.94abcde 3.57abc 5.75d 3.48abc 

Skin 

0 8.05           

3 5.01 4.75 5.21 5.43 4.97 6.44 4.61  5.15 5.89 4.66 5.56 

7 5.26 5.96 6.09 6.27 4.79 5.82 5.90 6.91 5.87 6.14 5.37 

Mean values with different small superscript letters presented within each row and column of each tissue differ significantly (p ≤  0.05) according to the Tukey's HSD test.  
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2.3.2.2 Chicken Thigh Fat 

In fat from thigh meat, treated and non-treated samples was not significantly affected 

by the application of antioxidants and interaction between antioxidant x level x storage 

time (p > 0.05) (Appendix Table A2). No significant difference was found between 

antioxidant levels (p = 0.842). Regardless of the antioxidant levels, phospholipid 

content in all samples (treated and non-treated) was decreased over 3 days and slightly 

increased thereafter at day 7. All natural antioxidants yielded more phospholipid 

content than non-treated samples at day 3 and 7 of storage times. The natural 

antioxidants that yielded significantly higher amount of phospholipid content at day 3 

and 7, were SRB and GGR compared to the non-treated samples (Figure 2.15). There 

was no significant interaction (p = 0.979) between antioxidant x level x storage time 

(Table 2.5). 

 

Figure 2.15 Effect of natural antioxidant application on phospholipid content in fat 

from chicken thigh meat during the accelerated storage time (Means ± SED; n = 3).  

Non-treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), 

Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 
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2.3.2.3 Chicken Adipose Fat 

In the fat from adipose tissue, phospholipid was not affected by natural antioxidant 

supplementation (p = 0.158) (Appendix Table A2). No significant differences were 

found between antioxidant levels and non-treated samples (p = 0.295). The results 

reported in Figure 2.16 show that the effect of antioxidants on phospholipid content 

was depended on the storage time. Hence, none of the natural antioxidants yielded more 

phospholipid content than non-treated samples within the first 3 days. At day 7, 

antioxidant treatments were found to have a higher amount of phospholipid content 

than non-treated samples. The only natural antioxidant that provided a greater 

protection against a decrease in phospholipid content at day 7 was BHT and GGR. The 

results also show that a significant interaction (p = 0.007) between antioxidant x level 

x storage time (Table 2.5). The phospholipid content of non-treated control was reduced 

over 7 days of accelerated storage. However, a significant reduction of phospholipid 

content was shown in samples treated with ROS and GGR extract at the lower 

application dose at day 3 compared to non-treated samples at day 0 of storage. None of 

the natural antioxidants provided protection against a reduction in phospholipid content 

within the first 3 days. The only natural antioxidant that provided a greater protection 

against a decrease in phospholipid content at day 7 was GGR at the lower application 

dose. Moreover, no significant differences were found between both levels (10 and 20 

mg) of each antioxidant (with the exception of GGR extract). The impact of natural 

antioxidants at both levels was most similar to that of BHT.  
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Figure 2.16 Effect of natural antioxidant application on phospholipid content in fat 

from chicken adipose tissue during the accelerated storage time (Means ± SED; n = 

3). Non-treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract 

(ROS), Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) 

extract. 

2.3.2.4 Chicken Skin Fat 

Similar to the chicken adipose fat, the results show that the addition of antioxidants to 

the skin fat before processing did not have any effect on phospholipid content (p = 

0.333) (Appendix Table A2). No significant difference was found between antioxidants 

at different levels of application and non-treated samples (p = 0.267). Accelerated 

storage conditions significantly reduced the phospholipid content in non-treated 

samples and samples treated with ROS, SFS, GGR, SRB and BHT over 3 days, found 

no effect at day 7. None of the natural antioxidants awarded a significant protection 

against a decrease in phospholipid content over 7 days as compared to the non-treated 

and BHT samples (Figure 2.17). There was no significant interaction (p = 0.374) 

between antioxidant x level x storage time (Table 2.5).  
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Figure 2.17 Effect of natural antioxidant application on phospholipid content in fat 

from chicken skin tissue during the accelerated storage time (Means ± SED; n = 3). 

Non-treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), 

Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract.  

2.3.3 Effect of Natural Antioxidants on the Formation of Conjugated Dienes (CD) 

in Extracted Fat from Chicken Portions during Accelerated Storage Conditions. 

2.3.3.1 Chicken Breast Fat 

Conjugated dienes (CD) in chicken breast fat were significantly affected by antioxidant 

application (p < 0.001) (Appendix Table A2). The CD values of non-treated samples 

were significantly higher compared to the sample treated with antioxidants with mean 

values of 54.95, 40.52, 39.92, 38.49, 35.59 and 34.69 µmol/g fat for non-treated 

samples, GGR, ROS, SRB, SFS and BHT, respectively). The results shown in Figure 

2.18 show that both levels of natural antioxidants were significantly reduced the 

formation of CDs in fat from breast chicken meat compared to "zero" level. The highest 

reduction was found in samples treated with 20 mg followed by 10 mg and "zero" level 

respectively. Figure 2.19 shows that there was a significant difference between 

antioxidant and storage time (p < 0.001). The CD values of non-treated samples at day 
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0 was 44.64 µmol/g fat. After the fat samples were subjected to the accelerated storage 

time, the CD values significantly increased by over 40 % to 62.66 µmol/g fat at day 3 

of storage and slightly declined toward the end of storage to 57.55 µmol/g fat at day 7. 

The CDs in breast fat samples were significantly reduced by the addition of natural 

antioxidants compared to the non-treated samples over time. No significant differences 

were found among natural antioxidant during the 7 days of storage time. The addition 

of natural extracts to fat from breast meat on days 3 and 7 awarded similar protection 

against oxidative rancidity compared to the synthetic antioxidants. Table 2.6 shows that 

there was no significant interaction between antioxidant x level x storage time (p = 

0.145).  
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Figure 2.18 Effect of different levels of natural antioxidants on conjugated dienes in fat 

from chicken breast meat (Means ± SED; n = 3). Non-treated control (CON); butylated 

hydroxytoluene (BHT); Rosemary extract (ROS), Small Red Bean extract (SRB); Sun 

Flower Seed (SFS) extract; ginger (GGR) extract. 

 

Figure 2.19 Effect of natural antioxidant application on conjugated dienes in fat from 

chicken breast meat during the accelerated storage time (Means ± SED; n = 3). Non-

treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), 

Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 
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Table 2.6 Effect of natural antioxidant extracts at different levels on conjugated dienes (µmol/g fat) in fat from chicken portions during the 

accelerated storage time at 62.8 oC. 

Tissue 
Time 

(d) 

Controls Treatment with Natural Antioxidants 

CON          BHT            ROS           SRB            SFS          GGR 

T0 T10 T20 T10 T20 T10 T20 T10 T20 T10 T20 

Breast 

0 44.64           

3 62.66 36.08 39.87 46.17 41.99 49.36 39.53 40.29 33.06 47.29 37.40 

7 57.55 22.69 40.13 41.94 29.56 38.11 26.97 39.72 29.33 44.34 33.06 

Thigh 

0 20.34           

3 29.29 29.32 33.66 29.16 31.03 28.27 23.61 28.22 23.88 27.20 29.72 

7 30.07 35.90 36.78 30.63 33.37 30.17 31.12 30.95 28.85 30.09 32.49 

Adipose 

0 7.55a           

3 13.68def 13.83def 13.13def 14.94fg 17.37h 13.77def 15.32fgh 13.81def 13.95def 12.03cd 14.08efg 

7 10.63bc 10.28bc 12.12cde 14.31efg 16.42gh 10.56bc 9.36ab 10.47bc 10.10bc 10.71bc 9.61ab 

Skin 

0 8.83a           

3 16.32ghi 20.96k 27.07i 17.05ghi 17.58hij 13.51def 11.16bc 13.27cde 12.77bcd 15.50fgh 18.21ij 

7 29.14i 19.49jk 28.19i 15.02efg 16.52ghi 12.11bcd 10.64ab 12.37bcd 11.61bcd 13.10cde 15.76gh 

Mean values with different small superscript letters presented within each row and column of each tissue differ significantly (p ≤  0.05) according to the Tukey's HSD test.  
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2.3.3.2 Chicken Thigh Fat 

In thigh fat, the CD values were found significantly lower in non-treated samples 

compared to the sample treated with antioxidants (p < 0.001) (Appendix Table A2). 

Antioxidants at both levels were found to have higher CD values compared to non-treated 

samples (p = 0.007). However, none of the natural antioxidants awarded any protection 

against a reduction of CD values compared to the non-treated samples. BHT treatment 

contained 20 mg had a higher content of CDs compared to any other treatments (Figure 

2.20). Figure 2.21 shows that the CD values of all samples were significantly increased 

at day 3 with no discernible changes over 7 days. None of the natural antioxidants 

inhibited the formation of CDs in thigh fat samples during the 7 days. However, the 

natural antioxidants from SFS and SRB provided very little protection against oxidation 

at day 3, while did not affect the CDs at day 7. While at face value the natural antioxidants 

provided a slightly better protection against changes in CD compared to BHT. No 

significant interaction (p = 0.288) was found between antioxidant x level x storage time 

(Table 2.6).  
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Figure 2.20 Effect of different levels of natural antioxidants on conjugated dienes in fat 

from chicken thigh meat (Means ± SED; n = 3). Non-treated control (CON); butylated 

hydroxytoluene (BHT); Rosemary extract (ROS), Small Red Bean extract (SRB); Sun 

Flower Seed (SFS) extract; ginger (GGR) extract. 

 

Figure 2.21 Effect of natural antioxidant application on conjugated dienes in fat from 

chicken thigh during the accelerated storage time (Means ± SED; n = 3). Non-treated 

control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small Red 

Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 
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2.3.3.3 Chicken Adipose Fat 

In fat from adipose tissue, the CD values were found significantly higher in samples 

treated with ROS with mean value of 15.76 µmol/g fat compared to the other treatments, 

regardless of antioxidants and storage time (p < 0.001) (Appendix Table A2). All 

antioxidant at both levels was found to have significantly higher content of CDs compared 

to the non-treated samples (p < 0.001). A significant difference was found only between 

both levels of ROS and lower level provided a greater protection against formation of CD 

(Figure 2.22). Regardless of natural antioxidant levels, the CD values in all samples were 

significantly increased at day 3 compared to day 0 and significantly decreased thereafter 

at day 7. The CD values were significantly higher in samples treated with ROS treatment 

than any other treatments at day 3 and 7 of storage time (Figure 2.23). The results reported 

in Table 2.6 show a significant interaction between antioxidant x level x storage time (p 

< 0.05). In all instances (treated or non-treated) the peak in CDs occurred at day 3, with 

markedly lower CD values at day 7 compared to day 3. None of the natural antioxidants 

awarded any protection against an increase in CDs at day 3. However, samples treated 

with ROS had a markedly higher level of CD at both times and at both levels of 

application. The only natural antioxidants that provided a decrease in CD at day 7 were 

SRB and GGR at the higher application dose. The natural antioxidants and BHT was 

found to have similar effects on CD content in adipose fat.   
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Figure 2.22 Effect of different levels of natural antioxidants on conjugated dienes in fat 

from chicken adipose tissue (Means ± SED; n = 3). Non-treated control (CON); butylated 

hydroxytoluene (BHT); Rosemary extract (ROS), Small Red Bean extract (SRB); Sun 

Flower Seed (SFS) extract; ginger (GGR) extract. 

 

Figure 2.23 Effect of natural antioxidant application on conjugated dienes in fat from 

chicken adipose tissue during the accelerated storage time (Means ± SED; n = 3). Non-

treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small 

Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 
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3.3.3.4 Chicken Skin Fat 

In fat from skin tissue, all antioxidants (with exception BHT) significantly reduced the 

formation of CD compared to the non-treated samples with mean values of 11.86, 12.51, 

15.64, 16.54, 18.10 and 23.93 µmol/g fat for SRB, SFS, GGR, ROS, non-treated samples and 

BHT, respectively (Appendix Table A2). All antioxidants (with the exception of BHT) at 

both levels were significantly differed from non-treated samples (p ≤ 0.05), while 

significantly the highest reduction of CD was found in samples treated with SRB and SFS 

at both levels compared to the non-treated samples (Figure 2.24). The results shown in 

Figure 2.25 observed that the CD values were increased significantly in non-treated 

samples with storage time, while in treated samples significant increase of CD was found 

at day 3, with no significant changes at day 7. The antioxidants that significantly reduced 

the formation of CD at day 3, were SRB and SFS. At day 7, all natural antioxidants were 

significantly reduced the CD values compared to the non-treated samples, while the 

highest reduction was found in SRB and SFS treatment. A significant (p < 0.001) 

interaction between antioxidant, level and storage time was found for CD values (Table 

2.6). The CD values of non-treated samples were significantly increased (p < 0.001) over 

storage time, while in treated samples an increase of CD formation was found up to 3 

days and decreased over time. All natural antioxidants with the exception of ROS at both 

levels and GGR at 20 mg awarded discernible protection against an increase in CDs at 

day 3. Samples treated with ROS at both levels and GGR at higher levels had a markedly 

higher level of CD at day 3 of storage. All natural antioxidants provided a decrease in 

CDs at day 7, while natural antioxidants that provided the highest decrease in CDs at day 

7 were SRB and SFS at the lower and higher application dose. The natural antioxidants 

were performed similar to that of BHT.   
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Figure 2.24 Effect of different levels of natural antioxidants on conjugated dienes in fat 

from chicken skin tissue (Means ± SED; n = 3). Non-treated control (CON); butylated 

hydroxytoluene (BHT); Rosemary extract (ROS), Small Red Bean extract (SRB); Sun 

Flower Seed (SFS) extract; ginger (GGR) extract. 

 

Figure 2.25 Effect of natural antioxidant application on conjugated dienes in fat from 

chicken skin tissue during the accelerated storage time (Means ± SED; n = 3). Non-

treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small 

Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 
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2.3.4 Effect of Natural Antioxidants on the Formation of Conjugated Trienes (CT) 

in Extracted Fat from Chicken Portions during Accelerated Storage Conditions 

2.3.4.1 Chicken Breast Fat 

The application of antioxidants significantly reduced (p < 0.001) the formation of CTs in 

chicken breast fat compared to the untreated samples with mean values of 9.58, 12.03, 

13.97, 14.50, 14.89 and 21.76 µmol/g fat for BHT, SFS, ROS, SRB, GGR and non-treated 

samples, respectively) (Appendix Table A2). Antioxidants at both levels (10 and 20 mg) 

significantly reduced the formation of CT in fat samples compared to the non-treated 

samples (p < 0.001). The natural antioxidants at a higher level of application were found 

to have the lowest formation of CT compared to lower and non-treated samples. Among 

them, SFS at the lower and higher application dose had the lowest formation of CT. BHT 

at 10 mg significantly reduced more CT formation than 20 mg and non-treated samples 

(Figure 2.26). Regardless of antioxidant levels, the CT values in non-treated samples at 0 

day was 19.17 µmol/g fat. After the fat samples were subjected to the accelerated storage 

time, the CT values increased by 35 % to 25.88 µmol/g fat at day 3 of storage time and 

declined afterward to 20.23 µmol/g fat at the end of the storage time. The application of 

natural antioxidants was significantly reduced the formation of CTs compared to the non-

treated samples at day 3 and 7 of storage time (p < 0.001). BHT and SFS treatments were 

found to have the lowest CT values compared to the non-treated samples during the 

storage time (Figure 2.27). The natural antioxidant that provided the highest reduction in 

CTs over time was SFS. The impact of the natural antioxidants was similar to that of BHT 

particularly at the end of storage (Figure 2.27). There was no significant interaction (p = 

0.449) between antioxidant x level x storage time (Table 2.7). 
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Figure 2.26 Effect of different levels of natural antioxidants on conjugated trienes in fat 

from chicken breast meat (Means ± SED; n = 3). Non-treated control (CON); butylated 

hydroxytoluene (BHT); Rosemary extract (ROS), Small Red Bean extract (SRB); Sun 

Flower Seed (SFS) extract; ginger (GGR) extract. 

 

Figure 2.27 Effect of natural antioxidant application on conjugated trienes in fat from 

chicken breast meat during the accelerated storage time (Means ± SED; n = 3). Non-

treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small 

Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract.
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Table 2.7 Effect of natural antioxidant extracts at different levels on conjugated trienes (µmol/g fat) in fat from chickens’ portions during the accelerated 

storage time at 62.8 oC. 

Tissue 

 

Time 

(d) 

Controls Treatment with Natural Antioxidants 

CON          BHT            ROS           SRB            SFS          GGR 

T0 T10 T20 T10 T20 T10 T20 T10 T20 T10 T20 

Breast 

0 19.17           

3 25.88 11.00 12.16 19.21 15.32 21.26 15.84 15.36 12.19 20.34 14.74 

7 20.23 5.47 9.71 13.29 8.06 12.68 8.20 12.00 8.57 14.76 9.72 

Thigh 

0 9.83           

3 12.14 10.73 12.31 11.28 13.15 12.09 10.21 10.74 9.70 11.00 12.91 

7 12.98 14.15 13.82 13.64 14.00 13.72 14.17 13.35 12.96 13.18 14.50 

Adipose 

0 1.16abc           

3 3.24bcdefg 4.42defg 4.02defg 4.41defg 5.56fg 4.04defg 4.22defg 4.75efg 4.66efg 3.14bcdef 5.63g 

7 0.92ab 0.79ab 2.02abcd 2.53abcde 3.49cdefg 1.47abc 0.64a 1.03abc 0.81ab 0.91ab 0.44a 

Skin 

0 2.69a           

3 4.06b 7.08g 8.97h 5.94ef 6.03f 5.17def 3.89b 4.28bc 3.90b 5.71ef 7.46g 

7 4.41bcd 5.08cde 8.35h 3.69b 3.83 b 2.58a 2.19a 2.39a 2.27a 3.57b 5.28def 

Mean values with different small superscript letters presented within each row and column of each tissue differ significantly (p ≤  0.05) according to the Tukey's HSD test.  
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2.3.4.2 Chicken Thigh Fat 

The conjugated triense (CTs) in thigh fat treated with was not significantly affected 

by supplementation of antioxidants (p > 0.05) (Appendix Table A2). The addition of 

natural extracts at the lower and higher level statistically did not provide protection 

against oxidative rancidity compared to the non-treated samples. All antioxidants 

(with exception SRB and SFS) at 20 mg were found to have significantly higher 

content of CT than zero level (Figure 2.28). Moreover, CTs values were increased in 

all samples either treated or non-treated over 7 days of storage. The addition of natural 

extracts over a 7 day period statistically did not provide any protection against 

oxidative rancidity compared to the non-treated samples. While at face value the 

natural antioxidants provided a slightly better protection against changes in CT 

compared to the synthetic antioxidant BHT (Figure 2.29). The results present in Table 

2.7 show that there was no significant interaction (p = 0.311) between antioxidant x 

level x storage time. 
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Figure 2.28 Effect of different levels of natural antioxidants on conjugated trienes in 

fat from chicken thigh meat (Means ± SED; n = 3). Non-treated control (CON); 

butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small Red Bean extract 

(SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 

 

Figure 2.29 Effect of natural antioxidant application on conjugated trienes in fat from 

chicken thigh meat during the accelerated storage time (Means ± SED; n = 3). Non-

treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), 

Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 
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2.3.4.3 Chicken Adipose Fat 

In fat from adipose tissue, the CT values were found significantly higher in samples 

treated with ROS with mean value of 4.00 µmol/g fat compared to the other treatments, 

regardless of the level of antioxidants and storage time (p < 0.001) (Appendix Table 

A2). ROS at higher level was found to have significantly (p = 0.054) higher content 

of CT compared to the non-treated and treated samples (Figure 2.30). Figure 2.31 

shows that the formation of the CT was significantly increased (p < 0.001) over the 

first 3 days and markedly declined at day 7. The addition of natural extracts 

statistically did not provide protection against oxidative rancidity compared to the 

non-treated samples for 7 days. The interactions between antioxidant, level and 

storage time are shown in Table 2.7. The peak in CTs occurred at day 3, with markedly 

lower CT values at day 7 compared to day 3. None of the natural antioxidants awarded 

any protection against an increase in CTs at day 3. However, samples treated with 

ROS had a markedly (p = 0.014) higher level of CTs at both times and at both levels 

of application. The only natural antioxidants that provided a decrease in CT at day 7 

were SRB and GGR at the higher application dose. However, statistically they were 

not significant differed from non-treated samples. The impact of the natural 

antioxidants on reduction of CT content was comparable to that of BHT.   
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Figure 2.30 Effect of different levels of natural antioxidants on conjugated trienes in 

fat from chicken adipose tissue (Means ± SED; n = 3). Non-treated control (CON); 

butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small Red Bean extract 

(SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 

 

Figure 2.31 Effect of natural antioxidant application on conjugated trienes in fat from 

chicken adipose tissue during the accelerated storage time (Means ± SED; n = 3). 

Non-treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract 

(ROS), Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) 

extract. 
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2.3.4.4 Chicken Skin Fat 

In fat from skin tissue, only SFS significantly reduced the formation of CT compared 

to the non-treated samples with mean values of 3.21 and 3.72 µmol/g fat for SFS and 

non-treated samples, respectively (Appendix Table A2). All antioxidants at both levels 

(with exception of SRB at 20 mg and SFS at 10 and 20 mg) significantly differed from 

non-treated samples (p < 0.001). However, only SRB at 20 mg and SFS at both levels 

awarded discernible protection against an increase in CT compared to the non-treated 

samples (Figure 2.32). The results presented in Figure 2.33 show that the CT values 

in non-treated samples were increased significantly at day 3 compared to 0 day, but 

did not differ thereafter at day 7. In contrast, the peak in CTs in treated samples 

occurred at day 3, with markedly lower CT values at day 7 compared to day 3. None 

of the natural antioxidants significantly reduced the formation of CT at day 3, while 

at day 7 SRB, SFS and ROS were significantly reduced the formation of CT in skin 

fat samples. The impact of the natural antioxidants was more effective compared to 

that of BHT. Furthermore, the interaction between antioxidant, level and storage time 

are listed in Table 2.7. The results show that storage time was found to have a 

significant (p < 0.001) effect on CT content in untreated samples, with a 30 + % 

increase over 7 days. In all instances (treated or non-treated) the peak in CTs occurred 

at day 3, with markedly lower CT values at day 7 compared to day 3. The only natural 

antioxidants that provided a decrease in CT at day 3 were SRB and SFS at the higher 

application dose. At day 7, all natural antioxidants at both levels, with the exception 

GGR at the higher dose, awarded higher protection against an increase in CTs. Natural 

antioxidants that had the lowest formation of CTs was SRB and SFS at the higher 

application dose.  
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Figure 2.32 Effect of different levels of natural antioxidants on conjugated trienes in 

fat from chicken skin tissue (Means ± SED; n = 3). Non-treated control (CON); 

butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small Red Bean extract 

(SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 

 

Figure 2.33 Effect of natural antioxidant application on conjugated trienes in fat from 

chicken skin tissue during the accelerated storage time (Means ± SED; n = 3). Non-

treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), 

Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract.  
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2.3.5 Effect of Natural Antioxidants on Fatty Acid Profile in Fat Extracted from 

Chicken Portions during Accelerated Storage Conditions 

2.3.5.1 Chicken Breast Fat 

In fat from the breast meat, all saturated fatty acids were significantly affected by 

antioxidants application (p ≤ 0.05). SFS treatment was found to have significantly a 

higher amount of SFAs than SRB, GGR and BHT, while none of the natural 

antioxidants awarded any protection against a decrease in SFAs compared to the non-

treated samples (Appendix Table A3). Regardless of storage time, a significant 

difference was found between antioxidant levels for all SFAs (with exception C14:0) 

(p ≤ 0.05). SFS at 20 mg had a significantly higher amount of all SFAs than SRB at 

10 and 20 mg, GGR at 10 mg and BHT at 20 mg, respectively, none of the antioxidants 

yielded a significantly higher amount of SFAs as compared to the non-treated samples. 

A significant difference was found between antioxidants and storage time (p < 0.001). 

During the storage time, none of the natural antioxidants significantly reduced the 

degradation of SFAs compared to the non-treated samples for 7 days. The content of 

C14:0, C16:0, C18:0, C20:0 and total SFAs in treated or non-treated was decreased 

with time. However, a significant reduction of C16:0 and total saturated fatty acids 

(SFAs) was found in untreated samples at day 7 of storage compared to 0 day, with a 

10 + % decrease over 7 days of storage time (Appendix Table A3). A significant 

interaction (p ≤ 0.05) was found between antioxidant x level x storage time for fatty 

acid C16:0, C18:0 and sum of SFAs (Table 2.7). The content of C16:0, C18:0 and the 

sum of SFAs in untreated and treated samples were decreased with storage time. None 

of the natural antioxidants awarded any protection against the decrease in SFAs at day 

3. However, samples treated with SRB had a higher reduction of SFAs at both times 
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and at both levels of application. The only natural antioxidants that provided protection 

against degradation of SFAs at day 7 were ROS, SFS and GGR at the higher 

application dose.  

For mono-unsaturated fatty acids (MUFAs), the application of antioxidants 

significantly affected the C18:1 n-9 and the sum of MUFAs (p ≤ 0.05). SFS treatment 

was found to have significantly a higher amount of MUFAs than SRB, GGR and BHT, 

while none of the natural antioxidants awarded any protection against a decrease in 

MUFAs compared to the non-treated samples (Appendix Table A3). There was a 

significant difference between levels of antioxidants for C18:1 n-9 and the sum of 

MUFAs (p ≤ 0.05). Hence, SFS at 20 mg dose had significantly higher C18:1 n-9 and 

the sum of MUFAs compared to the SRB and BHT at 20 mg and GGR at 10 mg. 

Furthermore, the results also show that there was a significant difference between 

antioxidants and storage time for all MUFAs (p ≤ 0.05). Over storage time, the content 

of C18:1 n-9 and sum of MUFAs reduced during the storage time. The highest 

reduction was found in non-treated samples. None of the natural antioxidants yielded 

a significantly higher amount of C18:1 n-9 and the sum of MUFAs for 12 days. The 

results also show that a significant AO x L x ST interaction (p ≤ 0.05) was found for 

C18:1 n-9 and sum MUFA. The content of C18:1 n-9 and the sum of MUFAs for 12 

days in all samples was decreased with storage time. None of the natural antioxidants 

awarded any protection against the decrease in MUFAs at day 3. However, samples 

treated with SFS at 20 mg yielded a higher amount. The only natural antioxidants that 

provided protection against degradation of MUFAs at day 7 were ROS, SFS and GGR 

at the higher application dose. The impact of the natural antioxidants was more than 

that of BHT.  
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With respect to polyunsaturated fatty acids (PUFAs), the natural antioxidants that 

provided a greater protection against oxidation of C18:2 n-6, C18:3 n-3 and PUFAs 

was SFS, however, statistically was not differ from non-treated samples (Appendix 

Table A3). The application of natural extracts at lower or higher application dose 

statistically did not impose any protection for PUFAs compared to the non-treated; 

however, SFS at higher level had a higher content of C18:2 n-6, C18:3 n-3 and PUFAs 

(Appendix Table A3). Regardless of the antioxidant levels, none of the natural 

antioxidants markedly yielded more PUFAs content than non-treated samples over 

time. The accelerated storage conditions had a significant effect on C18:2 n-6, C18:3 

n-3, C22:6 n-3 and the sum of PUFAs in non-treated samples, SRB, GGR and BHT at 

day 7compared to day 0 (Appendix Table A3). A significant antioxidant x level x 

storage time interactions (p ≤ 0.05) were found for C18:2 n-6, C20:4 n-6, C20:5 n-3, 

C22:6 n-3 and the sum of PUFAs (Table 2.8). Indicating that PUFAs in both treated 

at both levels and non-treated decreased over storage time and the highest reduction 

of PUFAs was observed after 7 days of storage. The application of natural extracts at 

the lower or higher application dose statistically did not impose any protection for 

PUFAs compared to the non-treated samples over 7 days of the period. However, all 

natural antioxidants, with the exception of SRB at both levels and GGR at 10 mg, 

yielded more PUFAs compared to the non-treated samples. The application of natural 

antioxidants performed similar to the synthetic antioxidant (BHT treatment) over 7 

days of storage.  

Antioxidant supplementation had a significant (p < 0.001) effect on ∑n-3 and n-6 

PUFA. Samples treated with ROS extract had the highest n-3 PUFA with mean value 

of 2.35 g/100 g fat. In contrast, SFS awarded greater protection against the reduction 
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of n-6 PUFA with a mean value of 14.03 g/100 g fat (Appendix Table A3). SFS at 20 

mg was found to have a higher amount of n-3 and n-6 compared to any other treatments 

(Appendix Table A3). The amount of long chain n-3 and n-6 PUFA in all samples was 

significantly decreased with storage time, while a significant reduction of n-3 in 

samples treated with BHT at day 7 was found as compared to day 0. With respect to 

∑n-6, the amount of n-6 was markedly decreased in all treatments with exception SFS 

at day 7 (Table A2.6). The results presented in Table 2.8 show a significant interaction 

between three main factors was observed for ∑n-6 PUFA (p = 0.016) due to the 

increase the reduction of n-6 with time of storage. A significant reduction of n-6 was 

found in samples treated with SRB at both levels and GGR at lower application dose 

at day 7 of storage. The addition of the SFS extract at a higher application dose and 

over a 7-day period awarded a greater protection against oxidation of ∑n-6 PUFAs. 

The natural antioxidants performed similar to the synthetic antioxidant (BHT) over 7 

days of storage (Table 2.8).  
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Table 2.8 Effect of natural antioxidant extracts at different levels on fatty acid profile (g of fatty acids/100 g of fat) in fat from the chicken breast 

tissue during the accelerated storage time at 62.8 oC 

Fatty acid 

 

 

Time 

(d) 

Controls Treatment with Natural Antioxidants 

CON             BHT            ROS           SRB            SFS          GGR 

T0 T10 T20 T10 T20 T10 T20 T10 T20 T10 T20 

C14:0 

0 0.21           

3 0.19 0.21 0.20 0.23 0.22 0.21 0.21 0.21 0.20 0.20 0.21 

7 0.16 0.16 0.16 0.18 0.18 0.16 0.14 0.20 0.20 0.15 0.20 

C16:0 

0 12.48fg           

3 12.09defg 12.53fg 11.19bcdef 12.33efg 12.15defg 11.96defg 12.08defg 12.08defg 12.84g 12.13defg 12.17defg 

7 11.05abcde 11.10abcde 10.28bcdef 11.29bcdef 11.97defg 10.93abcd 9.74a 11.23bcdef 12.12defg 10.15ab 11.58cdefg 

C18:0 

0 4.30ef           

3 4.27ef 4.29ef 3.85bcd 4.30ef 4.13def 4.16def 4.12def 4.17def 4.36f 4.21ef 4.16def 

7 4.00bcdef 3.84bcd 3.65ab 3.98bcde 4.10def 4.01cdef 3.38a 4.01cdef 4.12def 3.72abc 3.95bcde 

C20:0 

0 0.23           

3 0.23 0.24 0.21 0.24 0.23 0.23 0.23 0.23 0.25 0.22 0.23 

7 0.20 0.21 0.18 0.18 0.23 0.19 0.18 0.21 0.22 0.19 0.21 

∑ SFA 

0 17.46ef           

3 17.02cdef 17.48ef 15.64bcd 17.35def 16.94cdef 16.78cdef 16.86cdef 16.93cdef 17.87f 17.01cdef 16.99cdef 

7 15.65bcd 15.49bc 14.47ab 15.84bcde 16.69cdef 15.54bc 13.61a 15.88bcde 16.86cdef 14.46ab 16.13bcdef 

C16:1 n-7 

0 1.31           

3 1.38 1.60 1.41 1.44 1.45 1.46 1.41 1.42 1.53 1.47 1.44 

7 1.34 1.39 1.19 1.37 1.44 1.21 1.22 1.38 1.51 1.18 1.50 

C18:1 n-9 

0 24.68def           

3 23.47bcdef 25.11ef 22.55abcdef 24.14def 24.20def 23.64bcdef 24.05cdef 23.87cdef 25.73f 23.81bcdef 24.06cdef 

7 21.23abcd 22.07abcde 20.27ab 21.94abcde 23.75bcdef 20.57abc 19.32a 21.74abcde 24.15def 19.07a 23.06bcdef 

∑ MUFA 

0 25.99def           

3 24.86bcdef 26.71ef 23.96abcdef 25.58cdef 25.65def 25.10bcdef 25.46cdef 25.28cdef 27.26f 25.27bcdef 25.50cdef 

7 22.57abcd 23.46abcdef 21.47ab 23.31abcde 25.19bcdef 21.78abc 20.54a 23.12abcde 25.67def 20.26a 24.56bcdef 

C18:2 n-6 

0 13.19def           

3 12.69cdef 13.41ef 11.95abcde 13.01def 13.05def 12.78cdef 12.91cdef 12.94cdef 13.94f 12.86cdef 12.97cdef 

7 11.54abcd 11.81abcde 10.92ab 11.81abcde 12.72cdef 11.25abc 10.32a 11.84abcde 13.03def 10.46a 12.33bcdef 
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Table 2.8 (continued)  

Fatty acid 

 

Time 

(d) 

Controls Treatment with Natural Antioxidants 

CON             BHT            ROS           SRB            SFS          GGR 

T0 T10 T20 T10 T20 T10 T20 T10 T20 T10 T20 

C18:3 n-3 

0 1.58           

3 1.53 1.67 1.48 1.60 1.62 1.56 1.63 1.58 1.70 1.55 1.59 

7 1.35 1.41 1.30 1.40 1.55 1.30 1.23 1.37 1.57 1.19 1.47 

C20:4 n-6 

0 1.14abcd           

3 1.22d 1.12abcd 0.95abc 1.20cd 1.10abcd 1.16bcd 1.09abcd 1.14abcd 1.13abcd 1.19bcd 1.14abcd 

7 1.23d 1.02abcd 1.03abcd 1.13abcd 1.09abcd 1.28d 0.89a 1.18bcd 0.92ab 1.23d 1.03abcd 

C20:5 n-3 

0 0.13e           

3 0.12bcde 0.12bcde 0.09abc 0.12abcde 0.11abcde 0.11abcde 0.09abcd 0.11abcde 0.11abcde 0.11abcde 0.13cde 

7 0.13e 0.10abcde 0.11abcde 0.11abcde 0.10abcde 0.13de 0.09ab 0.11abcde 0.11abcde 0.13de 0.09a 

C22:5 n-3 

0 0.47           

3 0.45 0.42 0.36 0.45 0.41 0.44 0.41 0.43 0.43 0.45 0.43 

7 0.46 0.38 0.39 0.44 0.42 0.48 0.44 0.45 0.40 0.46 0.40 

C22:6 n-3 

0 0.25c           

3 0.25abc 0.24ab 0.19a 0.30bc 0.29bc 0.30bc 0.24ab 0.24ab 0.24ab 0.24ab 0.22ab 

7 0.23ab 0.22ab 0.22ab 0.26abc 0.22ab 0.29bc 0.18a 0.25abc 0.22ab 0.27ab 0.23ab 

∑ PUFA 

0 16.76def           

3 16.36cdef 16.97ef 15.03abcd 16.68def 16.58cdef 16.36cdef 16.37cdef 16.45cdef 17.54f 16.38cdef 16.48cdef 

7 14.94abcd 14.94abcd 13.98ab 15.15bcde 16.10cdef 14.72abc 13.16a 15.20bcde 16.24cdef 13.73ab 15.55bcde 

∑ n-3 

0 2.44           

3 2.45 2.45 2.13 2.47 2.43 2.41 2.38 2.37 2.47 2.34 2.37 

7 2.17 2.11 2.03 2.20 2.30 2.20 1.95 2.19 2.29 2.04 2.19 

∑ n-6 

0 14.32efg           

3 13.91defg 14.52fg 12.91bcdef 14.21efg 14.15defg 13.94defg 14.00defg 14.09defg 15.07g 14.04defg 14.11defg 

7 12.77abcde 12.83abcde 11.95abc 12.95bcdef 13.81defg 12.52abcd 11.21a 13.02bcdef 13.95defg 11.69ab 13.36cdef 

Total FA 

0 60.21def           

3 58.23cdef 61.16ef 54.63abcde 59.61def 59.17cdef 58.23cdef 58.70cdef 58.66cdef 62.66f 58.67cdef 58.98cdef 

7 53.17abcd 53.89abcde 49.92ab 54.30abcde 57.98cdef 52.04abc 47.31a 54.21abcde 58.77cdef 48.44a 56.25bcdef 

Mean values with different small superscript letters presented within each row and column of each fatty acid differ significantly (p ≤ 0.05) according to the Tukey's HSD test.
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2.3.5.2 Chicken Thigh Fat 

In fat from thigh meat, no significant differences were found between non-treated samples 

and natural antioxidant treatments for all SFAs, while natural antioxidants significantly 

yielded more all individual SFAs compared to that of BHT (p ≤ 0.05). Antioxidant 

supplementation at different levels had a significant (p < 0.001) effect on all SFAs (with 

exception of C14:0 and C20:0 (p ≤ 0.05). Hence, BHT at both levels had a significantly 

higher reduction, while none of the natural antioxidants provided protection against the 

degradation of any of the SFAs (Appendix Table A4). The accelerated storage conditions 

caused a decrease in all SFAs over 7 days. A significant reduction of all SFAs (with the 

exception of C20:0) was shown in non-treated samples at the end of the storage time. 

None of the natural antioxidants provided protection against the degradation of any of the 

SFAs over 7 days (p > 0.05). The impact of the natural antioxidants was similar to that of 

BHT.  

For MUFA, application of antioxidants had a significant an effect on all MUFAs (p < 

0.001). BHT was found to have significantly higher amount of all MUFAs than any other 

treatments (Appendix Table A4). Antioxidant supplementation at different levels had a 

significant effect on all MUFAs (p < 0.001). Hence, BHT at both levels had significantly 

higher reduction, while none of the natural antioxidants at both levels provided protection 

against the degradation of any of the MUFAs (Appendix Table A4). Furthermore, a 

significant difference was found between antioxidant and storage time for all MUFAs (p 

≤ 0.05). The content of all MUFAs in all samples was decreased with storage time, while 

the highest reduction of all MUFAs was found in non-treated samples, with a 10 % 

decrease at the end of the storage time. None of the natural antioxidants provided a 

protection against the degradation of all individual MUFAs and total MUFAs for 7 days 
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(p > 0.05). The natural antioxidants provided a slightly better protection against changes 

in MUFAs compared to BHT (Table A1.4). No significant interaction was found between 

antioxidant, level and storage time (p > 0.05) (Table 2.9).  

With respect to the PUFAs, none of the natural antioxidants provided protection against 

the degradation of fatty acids such as C18:2 n-6, C18:3 n-3 and total PUFAs compared to 

the non-treated samples. However, the natural antioxidants provided a slightly better 

protection against changes in PUFAs compared to BHT. All antioxidants significantly 

reduced the degradation of C22:6 n-3 compared to the non-treated samples, but no 

significant differences were found between antioxidant treatments. Moreover, the 

addition of natural extracts at both the lower and higher levels did not statistically provide 

protection against oxidation of PUFAs compared to the non-treated samples. The natural 

antioxidants at both levels and times provided a slightly better protection against changes 

in PUFAs compared to BHT (Appendix Table A4). A significant difference was found 

between antioxidant and storage time for all PUFAs (p ≤ 0.05) (Appendix Table A4). 

Hence, accelerated storage conditions caused a decrease in C18:2 n-6, C18:3 n-3 and total 

PUFAs content in non-treated samples, with a 10 % decrease at day 7 of the storage time. 

During the storage time, a significant difference between antioxidant and non-treated 

samples were shown for C20:4 n-6 and C22:6 n-3. Antioxidants that yielded significantly 

more C22:6 n-3 content was ROS and BHT at day 7 of storage compared to the non-

treated samples, while SRB treatment yielded more C20:4 n-6 than non-treated samples 

(Appendix Table A4). No significant interaction was found between antioxidant, level 

and storage time (p > 0.05) (Table 2.9). 

For both ∑n-3 and ∑n-6, none of the natural antioxidants at lower and higher levels of 

application provided protection against the degradation of ∑n-3 and ∑n-6 compared to 

the non-treated samples. However, the natural antioxidants provided a slightly better 
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protection against changes in ∑n-3 and ∑n-6 PUFAs compared to BHT as highest 

degradation was detected in samples treated with BHT. The amount of ∑n-3 and n-6 was 

affected by the storage time (p > 0.05) (Appendix Table A4). A significant reduction was 

shown at the end of the storage time compared to that at day 0. None of the natural 

antioxidants awarded a significant protection against oxidation of ∑n-3 and ∑n-6 PUFAs 

over 7 days. However, natural treatments yielded more ∑n-3 and ∑n-6 PUFAs. The only 

natural antioxidants provided marked a protection against decrease of ∑n-3 and n-6 

PUFAs was SFS at lower application dose at the end of storage time. No significant 

interaction (p > 0.05) was found between antioxidant, level and storage time (Table 2.9). 
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Table 2.9 Effect of antioxidant extracts at different levels on the fatty acid profile (g of fatty acids/100 g of fat) in fat from the chicken thigh tissue during 

the accelerated storage time at 62.8 oC. 

Fatty acid 

 

Time 

(d) 

Controls Treatment with Natural Antioxidants 

CON             BHT            ROS           SRB            SFS          GGR 

T0 T10 T20 T10 T20 T10 T20 T10 T20 T10 T20 

C14:0 

0 0.38           

3 0.35 0.34 0.33 0.33 0.36 0.36 0.35 0.37 0.34 0.35 0.34 

7 0.34 0.33 0.33 0.37 0.35 0.37 0.36 0.39 0.37 0.38 0.37 

C16:0 

0 18.49           

3 17.11 16.28 15.59 16.59 17.08 17.45 16.76 17.48 16.71 17.05 16.42 

7 16.72 16.20 16.11 17.74 17.20 17.65 16.72 18.15 17.45 17.88 17.31 

C18:0 

0 5.47           

3 5.11 4.85 4.69 5.01 5.16 5.26 5.05 5.21 5.00 5.11 4.93 

7 5.00 4.94 4.85 5.28 5.16 5.28 5.07 5.44 5.24 5.34 5.14 

C20:0 

0 0.35           

3 0.34 0.32 0.32 0.34 0.35 0.35 0.32 0.36 0.33 0.32 0.32 

7 0.31 0.31 0.30 0.32 0.34 0.34 0.32 0.35 0.34 0.36 0.32 

∑SFA 

0 24.92           

3 23.11 22.00 21.02 22.47 23.14 23.63 22.68 23.64 22.58 23.02 22.19 

7 22.56 21.95 21.68 23.93 23.27 23.85 22.68 24.54 23.62 24.19 23.35 

C16:1 n-7 

0 2.62           

3 2.39 2.28 2.17 2.32 2.38 2.45 2.33 2.49 2.33 2.50 2.2 

7 2.35 2.22 2.22 2.49 2.41 2.46 2.31 2.56 2.44 2.51 2.43 

C18:1 n-9 

0 39.04           

3 35.51 34.29 32.84 35.19 35.99 37.06 35.14 37.27 35.25 36.12 34.27 

7 35.04 33.75 33.79 37.09 35.99 36.96 34.70 38.21 36.31 37.61 36.16 

∑MUFA 

0 41.66           

3 37.90 36.58 35.01 37.52 38.37 39.51 37.47 39.76 37.58 38.62 36.57 

7 37.39 35.97 36.01 39.58 38.41 39.42 37.01 40.77 38.75 40.12 38.59 

C18:2 n-6 

0 20.69           

3 18.90 18.14 17.41 18.50 19.04 19.52 18.60 19.69 18.75 19.08 18.23 

7 18.67 18.28 17.96 19.82 19.16 19.68 18.55de 20.31 19.44 19.94 19.24 
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Table 2.9 (continued)  

 

Fatty acid 

 

Time 

(d) 

Controls Treatment with Natural Antioxidants 

CON             BHT            ROS           SRB            SFS          GGR 

T0 T10 T20 T10 T20 T10 T20 T10 T20 T10 T20 

C18:3 n-3 

0 2.90           

3 2.64 2.55 2.38 2.55 2.64 2.71 2.62 2.72 2.60 2.63 2.53 

7 2.56 2.47 2.47 2.76 2.67 2.77 2.58 2.83 2.68 2.80 2.70 

C20:4 n-6 

0 0.69           

3 0.61 0.62 0.63 0.64 0.68 0.65 0.65 0.65 0.64 0.67 0.66 

7 0.65 0.68 0.65 0.73 0.70 0.70 0.70 0.69 0.69 0.69 0.68 

C22:5 n-3 

0 0.22           

3 0.21 0.21 0.20 0.21 0.22 0.22 0.22 0.21 0.21 0.22 0.22 

7 0.22 0.23 0.22 0.23 0.23 0.23 0.24 0.23 0.23 0.24 0.22 

C22:6 n-3 

0 0.22           

3 0.20 0.24 0.20 0.24 0.27 0.20 0.22 0.17 0.19 0.20 0.22 

7 0.23 0.28 0.29 0.35 0.33 0.33 0.29 0.30 0.31 0.27 0.27 

∑PUFA 

0 24.73           

3 22.35 21.52 20.62 21.90 22.58 23.11 22.09 23.27 22.20 22.59 21.65 

7 22.10 21.66 21.30 23.54 22.75 23.38 22.07 24.06 23.04 23.66 22.84 

∑n-3 

0 3.34           

3 3.04 3.00 2.78 3.01 3.12 3.13 3.06 3.10 3.00 3.05 2.97 

7 3.02 2.98 2.98 3.34 3.23 3.33 3.10 3.37 3.22 3.30 3.20 

∑n-6 

0 21.38           

3 19.51 18.76 18.04 19.14 19.72 20.18 19.25 20.34 19.39 19.75 18.89 

7 19.32 18.96 18.61 20.55 19.86 20.38 19.26 21.00 20.13 20.63 19.92 

Total FA 

0 91.31           

3 83.56 80.33 76.85 82.12 84.36 86.45 82.46 86.84 82.55 84.44 80.62 

7 82.29 79.86 79.27 87.41 84.76 86.99 82.05 89.68 85.72 88.25 85.05 

. 
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2.3.5.3 Chicken Adipose Fat 

In adipose fat, antioxidants at different levels and storage times were found to have an 

effect on the fatty acid profiles (Appendix Table A5). None of the natural antioxidants at 

different levels provided protection against the degradation of SFAs, MUFAs, PUFAs, 

∑n-3 and ∑n-6 compared to the non-treated samples. However, the natural antioxidants 

provided a slightly better protection against changes in these fatty acids compared to BHT 

as highest degradation was detected in samples treated with BHT (Appendix Table A5). 

All fatty acids in both treated and non-treated samples were significantly decreased (p ≤ 

0.05) with increasing accelerating storage time, while the highest reduction was shown at 

day 12 compared to day 0. Over storage time none of the natural antioxidants significantly 

inhibited (p > 0.05) the degradation of individual fatty acids in fat from adipose tissue 

(Appendix Table A5). The results of interaction between antioxidant x level x storage 

time are presented in Table 2.10. The results show that the amount of all fatty acids in 

non-treated samples of adipose fat significantly decreased (p ≤ 0.05) as the accelerated 

storage increased, while a significant reduction of 12% was found at the end of the storage 

time compared to day 0. None of the natural antioxidants at both levels provided 

protection against a decrease in all SFAs, MUFAs, PUFAs, ∑n-3 and ∑n-6 at day 3. At 

day 7, all natural antioxidants inhibited the reduction of all SFAs, MUFAs, PUFAs, ∑n-

3 and ∑n-6 compared to the non-treated samples. The natural antioxidants that provided 

significant protection against a decrease of all fatty acids at day 7, were ROS, SRB, GGR 

at the lower application doses and SFS at the higher application dose. The natural 

antioxidants at both time and application dose provided better protection against changes 

in fatty acids compared to BHT (Table 2.10 and Appendix Table A5). 
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Table 2.10 Effect of antioxidant extracts at different levels on the fatty acid profile (g of fatty acids/100 g of fat) in fat from the chicken adipose tissue 

during the accelerated storage time at 62.8oC. 

  

Fatty acid 

 

 

Time 

(d) 

Controls Treatment with Natural Antioxidants 

CON             BHT            ROS           SRB            SFS          GGR 

T0 T10 T20 T10 T20 T10 T20 T10 T20 T10 T20 

C14:0 

0 0.44cde           

3 0.42bcde 0.38abcde 0.37abcd 0.41bcde 0.39abcde 0.36ab 0.34a 0.41abcde 0.38abcde 0.39abcde 0.36abc 

7 0.39abcde 0.38abcde 0.37abcde 0.44cde 0.43bcde 0.44de 0.40abcde 0.41abcde 0.41bcde 0.44d 0.37abcde 

C16:0 

0 19.66egh           

3 19.07defg 16.52abc 16.25ab 18.13bcdefg 17.69abcdef 16.64abc 15.72a 18.13bcdefg 17.64abcde 17.40abcd 16.02ab 

7 17.28abcd 19.12defg 16.62abc 19.91fg 19.28defg 19.68efg 18.61cdefg 19.13defg 20.11g 19.95g 18.59cdefg 

C18:0 

0 5.24fgh           

3 5.08efgh 4.40abcd 4.28abc 4.83cdefgh 4.69abcdefg 4.46abcd 4.16a 4.79bcdefgh 4.66abcdef 4.63abcde 4.21ab 

7 4.62abcde 5.09efgh 4.40abcd 5.29gh 5.14efgh 5.24fgh 4.93defgh 5.14efgh 5.39h 5.32h 4.95defgh 

C20:0 

0 0.53ab           

3 0.53ab 0.46ab 0.45ab 0.48ab 0.49ab 0.46ab 0.44ab 0.50ab 0.49ab 0.48ab 0.45ab 

7 0.48ab 0.46ab 0.45ab 0.54b 0.53ab 0.54b 0.46ab 0.47ab 0.51ab 0.54b 0.42a 

∑ SFA 

0 26.13ef           

3 25.35def 21.97abc 21.54ab 24.09bcdef 23.48abcdef 22.13abc 20.82a 24.06bcdef 23.38abcde 23.12abcd 21.25ab 

7 22.99abcd 25.27def 22.04abc 26.41f 25.62def 26.14ef 24.61cdef 25.37def 26.63f 26.50f 24.51cdef 

C16:1 n-7 

0 2.99fg           

3 2.87defg 2.51abc 2.45ab 2.72bcdefg 2.67abcdef 2.51abc 2.36a 2.74bcdefg 2.66abcdef 2.63abcde 2.44ab 

7 2.61abcd 2.82cdefg 2.48ab 2.98fg 2.88defg 2.96efg 2.71bcdefg 2.82cdefg 2.92defg 3.01g 2.73bcdefg 

C18:1 n-9 

0 42.73efg           

3 41.47defg 36.11abc 35.01ab 39.22bcdefg 38.32abcdef 36.16abc 34.08a 39.33bcdefg 38.29abcdef 37.78abcde 34.89ab 

7 37.56abcd 41.51defg 36.07abc 42.97fg 41.57defg 42.45defg 40.25cdefg 41.28defg 42.89fg 43.33g 40.46cdefg 

∑ MUFA 

0 45.72efg           

3 44.34defg 38.62abc 37.45ab 41.94bcdefg 40.99abcdef 38.66abc 36.44a 42.12bcdefg 40.95abcdef 40.41abcd 37.32ab 

7 40.17abcd 44.33defg 38.55abc 45.95fg 44.45defg 45.41defg 42.96cdefg 44.10defg 45.82fg 46.34g 43.19cdefg 
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Table 2.10 (continued) 

 

Fatty acid 

 

Time 

(d) 

Controls Treatment with Natural Antioxidants 

CON             BHT            ROS           SRB            SFS          GGR 

T0 T10 T20 T10 T20 T10 T20 T10 T20 T10 T20 

C18:2 n-6 

0 20.55fg           

3 19.89defg 17.32abc 16.98abc 18.84bcdefg 18.37abcdef 17.34abc 16.42a 19.02bcdefg 18.48abcdefg 18.17abcde 16.80ab 

7 17.96abcd 19.92defg 17.37abc 20.65fg 19.85defg 20.33efg 19.16cdefg 19.86defg 20.62fg 20.75g 19.33cdefg 

C18:3 n-3 

0 3.16fg           

3 3.06defg 2.71abcd 2.63ab 2.91bcdefg 2.79abcde 2.68abc 2.53a 2.93bcdefg 2.85abcdefg 2.83abcdef 2.63ab 

7 2.78abcde 3.01cdefg 2.65abc 3.16fg 3.05defg 3.16fg 2.90bcdefg 3.00cdefg 3.10efg 3.20g 2.92bcdefg 

C20:4 n-6 

0 0.19abc           

3 0.18abc 0.16abc 0.17abc 0.17abc 0.17abc 0.17abc 0.16ab 0.17abc 0.18abc 0.18abc 0.16abc 

7 0.17abc 0.17abc 0.14a 0.19abc 0.18abc 0.19bc 0.16ab 0.21c 0.20bc 0.20bc 0.15ab 

C22:5 n-3 

0 0.28bcd           

3 0.25bcd 0.33cde 0.22bcd 0.28bcd 0.19b 0.22bc 0.33cde 0.35de 0.28bcd 0.35de 0.32bcd 

7 0.23abc 0.25abc 0.41e 0.32bcd 0.26bcd 0.29bcd 0.27bcd 0.32a 0.31bcd 0.19b 0.28bcd 

∑ PUFA 

0 24.17fg           

3 23.38efg 20.55abcd 20.00abc 22.20bcdefg 21.52abcdef 20.41abcd 19.43a 22.47bcdefg 21.79abcdefg 21.52abcdef 19.91ab 

7 21.14abcde 23.34efg 20.57abcd 24.32g 23.34efg 23.97fg 22.49bcdefg 23.07defg 24.23g 24.34g 22.68cdefg 

∑ n-3 

0 3.43f           

3 3.31cdef 3.05abcd 2.85a 3.19abcdef 2.99abc 2.89ab 2.85a 3.29cdef 3.13abcdef 3.17abcdef 2.95abc 

7 3.01abc 3.25bcdef 3.05abcde 3.48f 3.31cdef 3.45f 3.17abcdef 3.00abc 3.41def 3.39def 3.20abcdef 

∑ n-6 

0 20.74fg           

3 20.07defg 17.49abc 17.15abc 19.01bcdefg 18.54abcdef 17.51abc 16.58a 19.19bcdefg 18.66abcdefg 18.34abcde 16.96ab 

7 18.13abcd 20.09defg 17.51abc 20.84fg 20.03defg 20.52efg 19.32bcdefg 20.07defg 20.82fg 20.95g 19.48cdefg 

Total FA 

0 96.02fg           

3 93.08defg 81.12abc 78.99ab 88.23bcdefg 85.98abcdef 81.20abc 76.69a 88.65bcdefg 86.12abcdef 85.06abcde 78.47ab 

7 84.29abcd 92.94defg 81.16abc 96.69fg 93.41defg 95.52efg 90.06cdefg 92.53defg 96.68fg 97.18g 90.39cdefg 

Mean values with different small superscript letters presented within each row and column of each fatty acid differ significantly (p ≤ 0.05) according to the Tukey's HSD test.  
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2.3.5.4 Chicken Skin Fat 

In fat from skin tissue, none of the natural antioxidants at different levels provided any 

protection against the degradation of all fatty acids compared to the non-treated samples. 

However, the natural antioxidants provided significantly better protection against changes 

in all fatty acids compared to BHT as highest degradation was detected in samples treated 

with BHT (Appendix Table A6). Moreover, all individual SFAs, MUFAs and PUFAs in 

non-treated samples and samples treated with natural antioxidant extracts were not 

significantly changed during the storage time (p > 0.05). A significant reduction of all 

fatty acids was shown in BHT treatment (p ≤ 0.05) (Appendix Table A6). There was a 

significant interaction (p ≤ 0.05) between antioxidant x level x storage time for all 

individual fatty acids with exception C14:0 (Table 2.11). All fatty acids were reduced 

with increasing storage time, while a significant reduction was shown in samples treated 

with BHT at both levels at day 3 of storage time. None of the natural antioxidants at both 

time and application dose performed significantly better than non-treated samples. 

However, natural antioxidants yielded more fatty acids than non-treated samples and 

BHT (Table 2.11).  
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Table 2.11 Effect of antioxidant extracts at different levels on the fatty acid profile (g of fatty acids/100 g of fat) in fat from the chicken skin tissue during 

the accelerated storage time at 62.8 oC. 

Fatty acid 

 

 

Time 

(d) 

Controls Treatment with Natural Antioxidants 

CON             BHT            ROS           SRB            SFS          GGR 

T0 T10 T20 T10 T20 T10 T20 T10 T20 T10 T20 

C14:0 

0 0.44           

3 0.43 0.37 0.37 0.41 0.43 0.43 0.43 0.43 0.44 0.44 0.44 

7 0.43 0.43 0.38 0.44 0.43 0.45 0.43 0.43 0.44 0.45 0.42 

C16:0 

0 19.71c           

3 18.71abc 17.42a 17.08a 18.62abc 19.63c 20.03c 19.67c 19.37bc 19.78c 19.81c 19.83c 

7 19.32bc 19.52c 17.71ab 19.95c 19.78c 19.66c 19.66c 19.55c 19.95c 20.06c 19.55c 

C18:0 

0 5.52c           

3 5.22abc 4.85a 4.76a 5.21abc 5.49c 5.60c 5.49c 5.39bc 5.52c 5.54c 5.56c 

7 5.40bc 5.42c 4.93ab 5.58c 5.52c 5.49c 5.49c 5.44c 5.59c 5.60c 5.43c 

C20:0 

0 0.43abcd           

3 0.43abcd 0.37abc 0.34a 0.43abcd 0.4abcd 0.44bcd 0.44bcd 0.42abcd 0.44bcd 0.46cd 0.43bcd 

7 0.45cd 0.40abcd 0.36ab 0.46d 0.41abcd 0.40abcd 0.41abcd 0.38abcd 0.39abcd 0.42abcd 0.37abc 

∑ SFA 

0 26.37c           

3 25.02bc 23.25ab 22.79a 24.92abc 26.23c 26.77c 26.29c 25.88c 26.44c 26.51c 26.54c 

7 25.87c 26.05c 23.66ab 26.71c 26.42c 26.26c 26.26c 26.06c 26.64c 26.81c 26.05c 

C16:1 n-7 

0 2.85c           

3 2.69bc 2.49ab 2.41a 2.68bc 2.80c 2.86c 2.81c 2.79c 2.85c 2.84c 2.84c 

7 2.78c 2.81c 2.53ab 2.89c 2.86c 2.85c 2.83c 2.79c 2.87c 2.88c 2.81c 

C18:1 n-9 

0 42.09c           

3 39.92abc 37.20a 36.37a 39.82abc 42.01c 42.85c 42.14c 41.40bc 42.22c 42.23c 42.33c 

7 41.19bc 41.70c 37.81ab 42.68c 42.27c 42.05c 42.02c 41.70c 42.58c 42.91c 41.67c 

∑ MUFA 

0 44.26d           

3 42.61bcd 39.68ab 38.78a 42.51abcd 44.81d 45.71d 44.95d 44.19d 45.06d 45.07d 45.17d 

7 43.97cd 44.52d 40.34abc 45.57d 45.13d 44.90d 44.86d 44.48d 45.45d 45.78d 44.48d 
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Table 2.11 (continued) 

 

Fatty acid 

 

 

Time 

(d) 

Controls Treatment with Natural Antioxidants 

CON             BHT            ROS           SRB            SFS          GGR 

T0 T10 T20 T10 T20 T10 T20 T10 T20 T10 T20 

C18:2 n-6 

0 20.70c           

3 19.77abc 18.48a 18.04a 19.80abc 20.85c 21.35c 21.01c 20.72c 21.13c 21.04c 21.06c 

7 20.53bc 20.79c 18.79ab 21.21c 20.97c 20.93c 20.92c 20.75c 21.25c 21.28c 20.75c 

C18:3 n-3 

0 3.07cd           

3 2.98bcd 2.77ab 2.65a 3.00bcd 3.16d 3.21d 3.17d 3.13d 3.17d 3.18d 3.17d 

7 3.11d 3.11d 2.81abc 3.20d 3.18d 3.14d 3.14d 3.06cd 3.13d 3.18d 3.12d 

C20:4 n-6 

0 0.27a           

3 0.26a 0.26a 0.26a 0.28a 0.29a 0.30a 0.29a 0.30a 0.30a 0.29a 0.29a 

7 0.30a 0.28a 0.26a 0.28a 0.26a 0.27a 0.28a 0.28a 0.28a 0.28a 0.28a 

C22:6 n-3 

0 0.22bcd           

3 0.18bc 0.20bcd 0.16abc 0.23bcd 0.39d 0.22bcd 0.27bcd 0.33cd 0.19bc 0.30bcd 0.19bc 

7 0.22bcd 0.23bcd 0.24bcd 0.21bcd 0.04a 0.04a 0.28bcd 0.24bcd 0.00a 0.21bcd 0.12ab 

∑ PUFA 

0 24.26d           

3 23.20abcd 21.71ab 21.11a 23.30bcd 24.69d 25.09d 24.74d 24.48d 24.80d 24.81d 24.71d 

7 24.16cd 24.41d 22.09abc 24.91d 24.41d 24.34d 24.62d 24.32d 24.66d 24.94d 24.27d 

∑ n-3 

0 3.39de           

3 3.16bcd 2.97ab 2.81a 3.23bcde 3.55e 3.44de 3.44de 3.46de 3.37cde 3.48de 3.36cde 

7 3.33cde 3.42de 3.05abc 3.51e 3.26bcde 3.23bcde 3.50e 3.38cde 3.22bcde 3.48de 3.33cde 

∑ n-6 

0 20.97c           

3 20.04abc 18.74a 18.30a 20.08abc 21.15c 21.65c 21.30c 21.02c 21.43c 21.33c 21.35c 

7 20.83bc 21.07c 19.05ab 21.50c 21.23c 21.21c 21.20c 21.03c 21.53c 21.56c 21.03c 

Total FA 

0 95.66d           

3 90.82bcd 84.64ab 82.68a 90.80bcd 95.74d 97.57d 95.98d 94.55d 96.30d 96.40d 96.42d 

7 93.99cd 95.05d 86.10abc 97.28d 96.05d 95.60d 95.82d 94.95d 96.84d 97.63d 94.89d 

Mean values with different small superscript letters presented within each row and column of each fatty acid differ significantly (p ≤ 0.05) according to the Tukey's HSD test.  
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2.4 Discussion  

2.4.1 Effect of Natural Antioxidants on the Formation of Thiobarbituric Acid-

Reactive Substances (TBARS) in Extracted Fat from Chicken Portions during 

Accelerated Storage Conditions 

Autoxidation of lipids can be determined by quantification of the secondary lipid 

oxidation products. For instance, TBARS are a secondary lipid oxidation product 

produced from the breakdown of polyunsaturated fatty acids, particularly, those with 

three or more double bonds in their structure which can be measured by the TBARS test 

utilizing thiobarbituric acid as a reagent (Estevez et al., 2009). However, the profile of fat 

from the breast, thigh meat, skin, and adipose tissue varied with respect to fatty acids 

(especially unsaturated fatty acids). The application of natural antioxidants significantly 

reduced the oxidative deterioration of fats extracted from the four portions (Figures 2.6, 

2.8, 2.10 and 2.12 and TableA2). Among natural antioxidant treatments, it was observed 

that the ROS extract reduced lipid oxidation more in fat from breast meat, skin and 

adipose tissue as compared to non-treated samples, while in thigh fat the lowest reduction 

of TBARS values was found in the SFS treatment at each interval of storage time. This is 

probably associated with efficiency of compounds and the chemical structure of natural 

extracts. Zilic et al. (2010) reported that natural sources which contain several compounds 

that exert anti-oxidative functions tend to retard lipid oxidation. These compounds are 

mainly phenolic compounds such as the chlorogenic, caffeic, ferulic and rosmarinic acids 

(Velasco and Williams, 2011). The phenolic compounds can retard oxidation by 

scavenging free-radicals, quenching singlet oxygen and chelating metals (Velasco and 

Williams, 2011; Karre et al., 2013). However, BHT is well-known as a potent antioxidant, 

which can retard lipid oxidation in meat (Selani et al., 2011) and meat products (Banerjee 
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et al., 2012). The effectiveness of ROS, SRB, SFS, and GGR extracts were comparable 

to BHT. These results clearly show that autoxidation of fat decreased in the presence of 

both natural antioxidants and BHT (Table 2.4). Similar results were observed by Baker 

(2011) who found that the value of TBARS in olive oil stored for 12 days at 65 oC was 

significantly reduced in samples treated with GGR extract at 0.50, 0.75 and 1 % and ROS 

extract at 0.05, 0.075 and 0.1 %.  

In addition, no significant difference was found between either level of the most natural 

or the synthetic antioxidants after applying them to the different extracted fat (p > 0.05), 

while a significant difference was found between each antioxidant level and the "zero" 

level (Figures 2.5, 2.7, 2.9 and 2.11). These results suggested that the optimum level of 

natural and synthetic antioxidants that can inhibit the formation of lipid oxidation in fat 

from various portions of the chicken carcass is probably between 10 and 20 mg total 

phenolics per 100 g fat. Lau and King (2003) found that lipid oxidation was lower in dark 

poultry meat with added grape seed extract at 1 % compared to 2 %. Naveena et al. (2008) 

reported that the addition of pomegranate seed and rind powder extract containing total 

phenolics up to 10 mg total phenolics to 100 g of chicken patties meat reduced TBARS 

values significantly during 12 days. However, the conditions of their experiment were 

different from our study. The addition of natural extracts at the lower and higher levels 

over a 7-day period awarded a greater protection against oxidative rancidity compared to 

the non-treated samples (Table 2.4). Furthermore, increased TBARS values in fat is 

considered a good indicator of decomposition of hydroperoxides and generates secondary 

lipid oxidation products (Hayes, 2000; McCarthy et al., 2001; Bax et al., 2012). The 

increase of TBARS values in fat samples of breast or thigh meat over 3 days and which 

subsequently decreased at the end of the storage time (Figures 2.6, 2.8 and Table 2.4), 

this agreed with results shown by McCarthy et al. (2001) who reported that TBARS 
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values in cooked pork patties increased significantly over 6 days and declined up to 9 

days of storage. The breakdown of malondialdehyde might cause the decrease of TBARS 

value following a continuous storage time and produce volatile compounds during the on-

going exposure to heat and oxygen (Bax et al., 2012). Furthermore, oxidation of lipids 

throughout the storage time occurred more rapidly up to 3 days of storage in control 

samples of fat from breast meat than in fat from skin tissue, thigh meat, and adipose 

(Figures 2.6, 2.8, 2.10 and 2.12). There could be two reasons for the rapid formation of 

TBARS during the 3 days of storage. The first could be related to the higher concentration 

of phospholipids in breast meat compared to thigh meat (Table 2.5). The second could be 

linked to the large amount of long-chain fatty acids such as C20:4 n-6, C22:5 n-3, C20:5 

n-3 and C22:6 n-3 (Table 2.8). Similar results were reported by Sampaio et al. (2012) 

who showed that lipid oxidation and degradation in cooked breast meat occurred quicker 

than in cooked thigh meat. Hence, chicken meat contains high levels of unsaturated fatty 

acids and is more susceptible to oxidation than pork, beef and lamb (Hayes, 2000). Min 

and Ahn (2005) reported that phospholipids have a high level of polyunsaturated fatty 

acids and, therefore, plays a major role in increasing rancidity. It was pointed out that the 

thermal process facilitates the lipid compounds’ reaction with oxygen and other catalysts 

(Ahn and Kim, 1998). Nevertheless, these findings clearly observed that the employ of 

natural antioxidant extracts could be effective in inhibiting chicken fat against oxidation 

of lipid at accelerated storage conditions. 
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2.4.2 Effect of Natural Antioxidants on the Degradation of Phospholipids in Fat 

Extracted from Chicken Portions during Accelerated Storage Conditions 

Phospholipids are known to be susceptible to thermal degradation (Jayasena et al., 2013) 

and have been linked to the development of warmed-over flavours (Igene and Pearson, 

1979; Igene, et al., 1980; Roldan et al., 2014). The content of phospholipids in the current 

study was within the range of those reported by Pikul et al. (1985) and Alasnier et al. 

(2000), but higher than those published by Soyer et al. (2010) and lower than those 

reported by Pikul et al. (1984). Moreover, supplementation with either natural or synthetic 

antioxidants impeded the degradation of phospholipid content in fat from all portions with 

(exception breast fat) by means of yielding a higher phospholipid content than the 

equivalent control. In thigh fat, natural antioxidants yielded more phospholipid content 

than non-treated samples at day 3 and 7 of storage times. The natural antioxidants that 

yielded significantly higher amount of phospholipid content at day 3 and 7, were SRB 

and GGR compared to the non-treated samples (Figure 2.15 and Table A2). In fat from 

adipose and skin, phospholipid degradation was reduced at day 7 of storage time 

compared to non-treated samples (Figures 2.16, 2.17 and Table A2). These results 

indicated that phospholipids can be protected by adding antioxidants to fat as a result of 

low level of degradation of phospholipids in fat samples were detected during the 

accelerated storage time at 62.8 oC. The underpinning mechanism by antioxidants in 

protecting phospholipids from thermal decomposition is not well known. This mechanism 

could be similar to the protective mechanism as it applies to individual fatty acids since 

phospholipids are considered to have elevated levels of unsaturated fatty acids. 

Furthermore, no significant differences were found between "zero" level and both 10 and 

20 mg of each antioxidant. These results suggest that the phospholipid content did not 

affect by antioxidant application doses. Moreover, the phospholipid content of fat from 
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breast meat, thigh meat, skin tissue and adipose tissue was significantly influenced (p ≤ 

0.05) by accelerating storage condition (Figures 2.14, 2.15, 2.16 and 2.17). Several 

reports have been published regarding the effect of storage time on the phospholipid 

content. For example, Soyer et al. (2010) showed that phospholipid content significantly 

decreased in fat from chicken breast and thigh meat frozen for 6 months. Phospholipids 

degradation is associated with endogenous and exogenous factors such as saturation 

degree of fatty acids, enzymes, metals, storage time, temperature, oxidation reaction and 

oxygen (Erickson, 2000; Soyer et al., 2010; Wang et al., 2011). To that effect, Wang et 

al. (2011) observed that phospholipid content in duck muscle declined after exposure to 

different heating methods such as boiling water for 30 min and roasting at 90 oC for 1 hr, 

hydrolysis of phospholipids was greater in roasted meat than in boiled meat. Yoshida et 

al. (2005) showed that the phospholipids decreased significantly in oils from peanut seeds 

unroasted and roasted for 6, 12, 20 and 30 min in a microwave. The cause of lowering 

phospholipids could be associated with changes the chemical composition during the 

oxidative deterioration of lipid. In addition, the higher degradation of phospholipids in fat 

from breast and thigh meat than fat from skin and adipose tissue due to the higher content 

of phospholipids detected in the breast and thigh meat, which is expected to show high 

degradation of phospholipids. Ma et al. (2007) pointed out that phospholipid is a rich 

source of polyunsaturated fatty acids, which is highly susceptible to oxidative 

deterioration. It can be explained that the rate of phospholipid degradation is associated 

with the relative presence of polyunsaturated fatty acids. Therefore, the elevated levels of 

oxidative deterioration in fat from breast and thigh meat are likely to be due to high levels 

of polyunsaturated fatty acids in phospholipid fraction.  
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2.4.3 Effect of Natural Antioxidants on the Formation of Conjugated Dienes (CDs) 

in Extracted Fat from Chicken Portions during Accelerated Storage Conditions. 

Conjugated dienes (CDs) are a good indicator of primary lipid oxidation products, which 

are produced through the oxidation of polyunsaturated fatty acids that have two double 

bonds in their structure (Feiner, 2006; Estevez et al., 2009). CDs are considered to be 

associated with warmed over flavour (Byrne et al., 2001). CD values found in extracted 

fat in the current study were within the range of those shown in previous work (Hawang 

et al., 2013), which found that the CD values in raw patties ranged from 57-78 µmol/g 

lipid. Furthermore, the fat extracted from chicken breast and skin portions is more stable 

with regards to CDs under thermal conditions when antioxidants are added (Table A2, 

Figures 2.19 and 2.25). The application of natural antioxidants significantly (p ≤ 0.05) 

reduced the formation of CD in fat from breast meat compared to the non-treated samples, 

but no significant differences was found between natural antioxidant treatments and BHT 

(Figures 2.19 and Table A2). In skin, the antioxidants that significantly reduced the 

formation of CD at day 3, were SRB and SFS. At day 7, all natural antioxidants 

significantly reduced the CD values compared to the non-treated samples, while the 

highest reduction was found in SRB and SFS treatments (Figure 2.25 and Table A2). It 

appears that incorporation of the natural antioxidants in fat has the ability to retard 

oxidation level and enhance the stability of fat against autoxidation. The ability of 

antioxidants to retard oxidation in fat from the breast meat and increase its stability could 

be associated with low levels of unsaturated fatty acids. The results agree with the 

previous studies outlined by Al-dalain and Al-fraihat (2011) who highlighted that 

addition of natural and synthetic antioxidants to sunflower oil retarded the increments of 

the CDs during the heating period.  
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Furthermore, the results show that both levels of natural antioxidants were significantly 

reduced the formation of CDs in fat from breast and skin tissues compared to "zero" level 

(Figures 2.18 and 2.24). The highest inhibition of CDs was found in fat samples of breast 

tissue treated with 20 mg followed by 10 mg and "zero" level respectively (Figure 2.18). 

These results are in agreement with Poiana (2012), who found that CD values were 

reduced significantly with application levels of grape seeds extracts into sunflower oil 

and stored under heating storage conditions. Similar findings were found in skin fat, while 

SRB and SFS at both levels awarded discernible protection against an increase in CDs 

compared to the non-treated samples (Figure 2.24). These results suggest that the 

inclusion of SRB and SFS into the breast and skin fat effectively reduced the CDs 

formation (Figure 2.18 and 2.24). This could be due to active compounds in SRB and 

SFS extracts which are considered a rich source of phenolic compounds (Luthria et al., 

2006; Lin et al., 2008; Amakura et al., 2013; Ye et al., 2015) and whose anti-oxidative 

functions tend to retard lipid oxidation. No significant differences between some 

antioxidant levels indicated that increasing the concentration did not have any effect on 

lipid oxidation. Similar findings observed by Choe et al. (2011), found that the inhibition 

of CDs in raw pork meat was not affected by increasing the concentrations of pumpkin 

leaf extracts over time. In addition, the difference between meat portions in response to 

the antioxidant levels was attributed to the disparity in chemical composition, mainly, 

phospholipids and polyunsaturated fatty acids.  Moreover, the addition of natural extracts 

at the lower and higher level awarded similar protection against oxidative rancidity 

compared to the BHT, which could be attributed to the efficiency of compounds and the 

chemical structure of natural antioxidants.  

In addition, a significant increase in CD content progressed in fat samples of breast meat 

and adipose tissue up to 3 days and decreased thereafter (Figures 2.19 and 2.23). These 
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results were similar to other reports that described an initial increase in CDs followed by 

a decline during extended storage of chicken breast meat, pork and vegetable lipid sources 

(Juntachote et al., 2007; Teets et al., 2008). Erickson (2002) reported that an elevated 

content of the CDs is a strong indicator of auto-oxidation. The formation and reduction 

of CDs are affected by several factors, such as processing and storage conditions, oxygen 

availability, and temperature (Min and Ahn, 2005). CDs are produced concurrently to the 

formation of lipid hydroperoxides from polyunsaturated fatty acids (Estevez et al., 2009). 

In the early stages of lipid oxidation, the decomposition of hydroperoxides occurs slowly 

(Erickson, 2002), meaning that there is an initial accumulation of hydroperoxides and 

CDs (Gordon, 2001). However, ultimately, the rate of CDs degradation becomes more 

rapid than the rate of CDs formation, which accounts for the reduction in CDs following 

an initial accumulation. Over time, secondary lipid oxidation products such as pentanal, 

hexanal, 4-hydroxynonenal, and TBARS are formed (Mensink and Jogchum, 2002).  

2.4.4 Effect of Natural Antioxidants on the Formation of Conjugated Trienes (CTs) 

in Extracted Fat from Chicken Portions during Accelerated Storage Conditions 

Conjugated trienes (CT) are formed from oxidation of polyunsaturated fatty acids, 

particularly those that have three or more double bonds in their structure (Wrolstad et al., 

2005). The presence of conjugated trienes (CT) in fat is indicative of advanced lipid 

oxidation (Gordon, 2001). The application of natural antioxidants was significantly 

reduced the formation of CTs in fat from breast tissue compared to the non-treated 

samples, while BHT and SFS treatments were found to have the lowest CT values 

compared to the non-treated samples during the storage time (Figure 2.27 and Table A2). 

In skin fat, none of the natural antioxidants significantly reduced the formation of CT at 

day 3, while at day 7 SRB and SFS were significantly reduced the formation of CT in 
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skin fat samples (Figure 2.33). It appears that incorporation of the natural antioxidants in 

fat has the ability to retard oxidation levels and enhance the stability of fat against 

autoxidation. The fat extracted from chicken breast and skin portions are more stable 

under thermal conditions when antioxidants are added to them could be due to the 

phenolic compounds present in natural antioxidant extracts that could inhibit the 

oxidation of polyunsaturated fatty acids and decrease the formation of CTs to lower levels 

compared to the non-treated samples. These results are in agreement with the previous 

study outlined by Al-dalain and Al-fraihat, (2011) who observed that the addition of 

natural and synthetic antioxidants to sunflower oil retarded the increments of CTs during 

the heating period while the lowest accumulation of CTs was detected in samples 

containing BHT. The effect of application at different levels was only shown in fat 

samples from breast and skin tissues (Figures 2.26 and 2.32). Hence, the natural 

antioxidants at a higher level of application were found to have the lowest formation of 

CT in fat from breast tissue compared to lower and non-treated samples. Among them, 

SFS at the lower and higher application dose had the lowest formation of CT. These 

results are in agreement with Poiana (2012), who found that the CT values were reduced 

significantly with application levels of grape seeds extracts into sunflower oil and stored 

under heating storage conditions. Similar results were shown in fat from skin tissue, SRB 

at 20 mg and SFS at both levels awarded discernible protection against an increase in CT 

compared to the non-treated samples (Figure 2.32). Hence, these results indicate that the 

addition of natural antioxidants at the lower and higher levels to fat extracted from breast 

and skin could provide a greater protection against oxidative rancidity compared to the 

non-treated samples and similar to BHT, as lower formation of CTs was shown. 

 In addition, the CT values in all fat samples were significantly influenced by storage at 

elevated temperatures (Figure 2.27, 2.29, 2.31 and 2.33). The level of CTs in non-treated 
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samples of thigh and skin fat increased progressively over storage time; while the 

formation of CTs in breast and adipose fat reached its highest level on day 3 of the 

accelerated storage time which declined towards the end of storage. The increase in CTs 

in fat under the accelerated storage is likely due to the decomposition of conjugated 

dienes; which, as primary oxidation products, undergo further oxidation and produce CTs 

as secondary lipid oxidation products. The discrepancy in the continued formation of the 

CTs over time in non-treated samples of breast and adipose tissue could be due to the 

ongoing degradation of the CTs, facilitated by compounds with a prominent presence in 

breast and adipose tissue, into the form no longer detectable by the CTs detection system 

used. Among the raw cuts of chicken meat (non-treated), the fat from breast tissue 

contained the highest levels of CTs, followed by the fat from thigh and adipose tissue, 

with the fat from raw skin containing the lowest levels of CTs. This could be attributed 

to the high amount of phospholipid in fat from the breast meat. 

2.4.5 Effect of Natural Antioxidants on Fatty Acid Profile in Fat Extracted from 

Chicken Portions during Accelerated Storage Conditions 

The fatty acid composition in the current study was similar to those reported by Sampaio 

et al. (2012) and higher than those reported by Cortinas et al. (2004) and Mariutti et al. 

(2011). The evaluation of the fatty acid composition in fat from different portions of 

chicken meat subjected to an accelerated storage time can provide valuable information 

about the changes which occur to each fatty acid. Measuring fatty acid content is an 

important factor in evaluating the nutritional quality of meat and its products (Andres et 

al., 2014). According to the literature, the stability of fatty acid content in meats increases 

after it has been supplemented with antioxidants since the existing antioxidants act as 

hydrogen donors to supply electrons to reduce the hydrolysis of unsaturated fatty acids 
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(Cortinas et al., 2004; Sampaio et al., 2012). In the present study, extracts of natural 

sources and BHT were used as antioxidants in fat derived from different portions of 

chicken meat. Such natural antioxidants are well documented to have many anti-oxidative 

phytochemicals (Trindade et al., 2010; Velasco and Williams, 2011; Sampaio et al., 

2012). The results showed that the application of natural extracts at the lower and higher 

levels into fat from breast meat, thigh meat and skin tissue over a 7 day period did not 

award a significantly greater protection against oxidative rancidity compared to the non-

treated samples (Tables 2.8, 2.9 and 2.11). In contrast, in skin fat, natural antioxidants at 

both levels provided a significant protection against a decrease in all SFAs, MUFAs, 

PUFAs, ∑n-3 and ∑n-6 at day 7. Hence, the natural antioxidants that provided significant 

protection against a decrease of all fatty acids at day 7, were ROS, SRB, GGR at the lower 

application doses and SFS at the higher application dose (Table 2.10). These findings 

were similar to the data reported by Sampaio et al. (2012) who found that the SFAs, 

MUFAs and PUFAs were inhibited from degradation in breast and thigh meat 

supplemented with BHT, oregano plus sage, oregano plus sage plus 5 % honey, and 

oregano plus sage plus 10 % honey and stored at 4 oC for 4 days. The results from their 

studies also suggested that the degradation of fatty acids, either saturated or unsaturated, 

was lower in natural than in synthetic antioxidant treatments. In the study conducted by 

Trindade et al. (2010), they found that ROS extract supplemented either alone or mixed 

either with BHT/BHA or oregano extract reduced the hydrolysis of most fatty acids in 

beef burgers after being submitted to different irradiation doses and stored for 90 days. 

The results of our experiment indicated that fatty acid composition can be protected by 

adding natural antioxidants to fat and results in a low level of degradation of SFAs, 

MUFAs and PUFAs in all chicken portion fat samples during the storage time at 62.8oC. 

Huang et al. (2005) illustrated that antioxidant substances can retard lipid oxidation in 
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initiation and propagation steps by reacting with lipid free radicals and free radicals 

produced by the oxidation of unsaturated fatty acids to form stable and non-radical 

products. Reische et al. (2002) reported that antioxidants donate hydrogen atoms carried 

in their structure to the peroxy and oxy free radicals which are produced in the 

propagation phase. Also, antioxidants have the ability to react directly with lipid radicals 

formed in the initiation phase and convert them into non-radical products. In our study, 

the effect of natural antioxidants on the rate of oxidation varied in fat from different 

portions of chicken and depended mostly on the type and level of antioxidant that was 

being used to stabilize the fatty acid from oxidation. For instance, using SFS at 10 or 20 

mg extract was more active in chicken breast and thigh fat in the oxidative stabilization 

of individual fatty acids and the SFAs, MUFAs, PUFAs, ∑n-3 and ∑n-6 PUFAs content 

than other treatments. Adipose fat supplemented with ROS extract at 10 mg had the 

lowest reduction of most individual and the sum of SFAs, MUFAs, and PUFAs. In 

contrast, GGR extract at 10 mg was observed to be more efficient in skin fat as it reduced 

the degradation of the most individual and the sum of SFAs, MUFAs, PUFAs content 

(Appendix Table A3, 4, 5 and 6). These differences between meat portions in response to 

the natural and synthetic antioxidants was attributed to the disparity in chemical 

composition, particularly, phospholipids and polyunsaturated fatty acids. Consequently, 

according to these results, antioxidants behaved differently in different fat samples. Most 

of the natural antioxidants when added to the fat extracted from four chicken portions 

performed similarly to the synthetic antioxidant (BHT treatment) over the 7 day storage 

period. This may be due to the natural antioxidants containing many phenolic compounds 

which may have the ability to scavenge free radicals similar to phenolic compounds in 

synthetic antioxidant structures. It appeared that the fat supplemented with antioxidants 
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and stored at high temperature can protect long chain fatty acids from oxidation and 

further decomposition. 

Several studies have found that antioxidant activity was observed more at higher 

concentration than the lower concentration (Mielnik et al., 2006; Rojas and Brewer, 2007; 

Carpenter et al., 2007). However, in our study, the effect of the level mostly depended on 

the type of antioxidant added. The lowest level of degradation was detected in the SFS 

extract treatment at 20 mg in breast fat. In contrast, thigh fat treated with sunflower seed 

extract at 10 mg had the highest value of all fatty acids. This could be related to a higher 

concentration of phospholipids in breast meat than in thigh meat. Therefore, high levels 

of antioxidants might be needed to improve the oxidative stability of fat. No significant 

differences were found between the 10 and 20 mg addition of antioxidants. These 

observations indicate that applying antioxidants at a higher level could become a pro-

oxidative (Lau and King, 2003). In addition, the results showed that accelerated storage 

induced a decline of fatty acid content that influenced all three families of fatty acids 

SFAs, MUFAs and PUFAs in different proportions (Tables 2.8, 2.9, 2.10 and 2.11). 

Unsaturated fatty acids were more susceptible to oxidation than saturated fatty acids, due 

to the ability of free radicals to attack easily and react with unsaturated fatty acids double 

bonds and produce short-chain aldehydes (Huang et al., 2013). Our results indicate that 

higher temperature (62.8 oC) results in accelerated degradation of SFAs content in all 

chicken portions. A decrease of saturated fatty acids is associated with the breakdown of 

a large amount of fatty acid C16:0 which was the most predominant SFAs followed by 

C18:0 in fat from all cuts. Similar results were shown by Sampaio et al. (2012) who found 

that the saturated fatty acids were decreased in cooked breast and thigh meat during the 

storage time of 4 days. In the current study, the highest degradation of SFA in fat samples 

stored at 62.8 oC for 7 days was probably due to the thermal process. Additionally, fat 
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stored at a high temperature and for a long time can undergo various reactions including 

autoxidation and thermolytic reactions which could result in greater changes to the fatty 

acid profile (Erickson, 2002). Similar results were found by Cortinas et al. (2004), who 

observed that the content of SFAs rapidly reduced after cooking thigh meat compared to 

raw meat. Moreover, the content of MUFAs gradually declined throughout the storage 

time in fat from all cuts. This could be due to susceptible lipids being attacked by free 

radicals. The results suggest that the oxidative degradation of MUFAs occurred after 

subjecting fat samples to oven temperature (62.8 oC). This may be due to lipid oxidation 

which appears to be stimulated by a thermal process. The results are in agreement with 

those reported by Sampaio et al. (2012) who found that the mono-unsaturated fatty acids 

decreased in cooked chicken breast and thigh meat over 4 days of storage. Cortinas et al. 

(2004) also observed that the content of MUFAs declined in cooked thigh meat compared 

to raw meat. In addition, after subjecting fat samples from all cuts to an oven temperature 

of 62.8 oC, accelerated storage had an effect on the PUFA content over 7 days. These 

results agree with those reported by Cortinas et al. (2004) who found that the content of 

PUFA declined in cooked thigh meat compared to raw meat. Similar results were reported 

by Sampaio et al. (2012) who found that the polyunsaturated fatty acids decreased in 

breast and thigh meat over 4 days of storage at 4 oC. The decrease in PUFA content was 

mainly due to oxidation degradation of polyunsaturated fatty acids mainly C18:2 n-6 and 

C18:3 n-3 into primary and secondary oxidation products.  The content of n-3 and n-6 in 

samples of all cuts without antioxidants decreased over 7 days of storage. However, the 

reduction was greater in ∑n-3 compared to ∑n-6 PUFAs for all cuts except adipose fat. 

Erickson (2002) reported that n-3 PUFAs oxidized faster than n-6 PUFAs, due to the 

effect of location of methylene-interrupted double bonds on the rate of oxidation.  
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2.5 Conclusions 

The effect of natural and synthetic antioxidants on lipid oxidation outlined that in the non-

treated samples (without antioxidant added), during storage, had low stability against 

oxidation deterioration. Adipose tissue was more susceptible to lipid oxidation followed 

by breast, thigh and skin tissue. The addition of ROS, SRB, SFS, GGR extracts and BHT 

to fat from portions of chicken has a positive effect on delaying the oxidative deterioration 

throughout the storage, as evidenced by reducing the degradation of fatty acids and 

phospholipids, lower formation of CD, CT and TBARS values. Among natural 

treatments, the application of ROS at the lower and higher level over a 7 day period 

provided greater protection against oxidative rancidity compared to the non-treated 

samples. No significant difference was found between antioxidants at level 10 and 20 mg 

total phenolic/100 g. However, the addition of 10 mg to thigh, skin and adipose tissue had 

lower lipid oxidation, while breast was more resistant to the oxidation process when 20 

mg was added. These results suggest that the optimum level of natural and synthetic 

antioxidants needed to inhibit the rate of lipid oxidation is probably between 10 and 20 

mg total phenolic/100 g fat. The addition of natural extracts (10 and 20 mg) on day 3 of 

the storage time provided a protection similar to BHT, against oxidative rancidity. It 

seems that the use of these antioxidants extracted from natural sources could be 

considered as an efficient way to protect the nutritional value of meat and extend its shelf 

life. Application of natural and synthetic antioxidants to raw and freshly cooked meat 

during the storage time would be necessary to understand whether antioxidants would 

have any positive impact on physical and chemical characteristics of broiler chicken meat. 

Therefore, further investigation is required to evaluate the efficiency of natural and 

synthetic antioxidant application to raw and freshly cooked meat during the storage time.  
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Chapter 3: 

Uptake Efficiency of Natural Antioxidants into Chicken Breast Meat. 

3.1 Introduction  

A number of different approaches can be employed to apply antioxidants to a piece of 

meat (Naveena et al., 2008; Lee et al., 2010). These approaches include wet applications 

such as soaking or dipping (with or without tumbling), injection or rubbing on as a dry 

application. For this study the choice was made to use dipping (without tumbling) in order 

to apply the various antioxidants to chicken meat. The basis of any wet application 

process is the capacity of animal muscles to retain water when penetrated into muscle 

(Nunez-Gonzalez, 2010). The dipping process involves submerging meat for a 

predetermined time into a liquid containing additives to facilitate absorption of water and 

additives and to increase water retention (Yusop et al., 2010). The diffusion rate of a 

solution into the meat, and its retention, is dependent on the gross characteristics of the 

meat (i.e. fat content) (Post and Heath, 1982; Huff-Lonergan and Lonergan, 2005); the 

content and location of connective tissue (Hansen, et al., 2008); and on the muscle 

myofibril content (Nunez-Gonzalez, 2010). Muscle myofibrillar proteins are principally 

responsible for water retention by meat (Nunez-Gonzalez, 2010). The process of dipping 

meat in any solution will cause the uptake of water and increase the weight of a piece of 

meat. More importantly, the process of dipping can alter the structure of muscle tissue to 

increase tenderness, juiciness and to enhance the flavour of meat (Lemos et al., 1999; 

Alarcon-Rojo, 2010). Several studies have shown the progress of uptake of model active 

ingredients into different layers of meat, using phosphate, sodium chloride and a 

fluorescent dye to monitor the diffusion (Xiong and Kupski, 1999a; Xiong and Kupski, 

1999b; Alarcon-Rojo, 2010).  
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Although several studies have been carried out to evaluate the effect of the dipping 

process with antioxidants on characteristics of chicken meat (Naveena and Mendirratta, 

2001; Naveena et al., 2004; Vaithiyanathan et al., 2011); the amount of moisture uptake 

and penetration of antioxidant ingredients is not well documented. In particular, the 

kinetic process that contributes in terms of penetration of the antioxidant solution into the 

core of the chicken breast fillet during immersion is not well understood. Such knowledge 

is of practical importance since it can help to establish the optimum schedule for the 

dipping process and gives an indication of the diffusion of an antioxidant solution into 

the different meat layers. Therefore, this study aimed to determine the readiness by which 

antioxidant ingredients penetrate chicken breast fillets using the dipping method 

(soaking).   
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3.2 Materials and Methods 

3.2.1 Raw Materials 

Chicken carcasses, sources of natural antioxidants and chemicals used was described in 

Chapter 2 section 2.2.1. 

3.2.2 Experimental Design and Preparation of Samples 

This experiment comprised of a 6 x 4 factorial design which included six experimental 

antioxidant treatments (ROS, SRB, SFS, GGR, BHT and CON) and three dipping times 

(5, 20, 30 and 60 min). With respect to the preparation of meat samples, fresh whole 

carcasses of chicken meat were obtained and divided into two batches, half batches of the 

chicken carcasses were initially stored at -20 oC for at least two months prior to being 

thawed to 4 oC under refrigeration temperature (4 oC), and a half of whole chicken 

carcasses were used on the same day of conducting experiments as raw samples. After 

removing the breast fillets and all visual fat, the breast fillets (raw and thawed meat) were 

cut into uniform sized pieces, dimensions length 4 cm, width 2 cm, and thickness 2 cm, 

and weighing 23.59 ± 0.68 g each before dipping. The uniform pieces of raw and thawed 

breast fillets were dipped into an appropriate antioxidant solutions for 5, 20, 30 and 60 

min: four of these treatments were treated with natural antioxidants ROS, SRB, SFS and 

GGR (200 mg equivalent total phenolics dissolved in 1 litre of deionised water (DW)). 

One batch of raw and thawed chicken breast meat was treated with butylated 

hydroxytoluene (BHT) as an example of a powerful artificial antioxidant (200 mg 

equivalent total phenolics dissolved in 1 litre of DW), and one batch was treated with DW 

as a control (CON). At each time interval of dipping process, the samples were removed 

from the extraction and dried using a paper towel. All samples were immediately frozen 
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at -20 oC for three days in the freezer to aid in slicing before measuring phenolic 

penetration (Figure 3.1).  

3.2.3 Antioxidant Extraction from Meat Slices 

In order to measure the penetration of phenolic content into different layers of chicken 

fillets. Four slices in dimensions ranging from 4-5 mm thickness were removed from the 

top side of raw and thawed dipped meat samples (section 3.2.1) as illustrated in Figure 

3.1. The phenolic content was extracted according to the method described by Naveena 

et al. (2008) with slight modifications. To obtain the phenolic content, 2 g of individual 

slices were weighed and homogenized (Silverson Machines Ltd., Chesham, UK) in 10 ml 

of aqueous acetone (acetone: water at 70:30 (v/v)) for 30 sec at high speed. The mixture 

was gently shaken in an orbital shaker (HS 501 digital, IKA labor Technik, Staufen, 

Germany) for 4 h in the dark at ambient temperature (~23 oC) and then refrigerated for 

24 h. The extracts were filtered through Whatman® No. 1 filter paper.  
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Figure 3. 1 Illustration of the sample diffusion for monitoring total phenolic penetration 

into the chicken breast fillet. 
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3.2.4 Total Phenolic Content Determination in Meat Extraction  

The total phenolic content of extraction obtained from both raw and thawed meats 

(section 3.2.2) was measured according to the method described in section 2.2.2.1. 

3.2.5 Moisture Uptake Analysis  

Portions of chicken breast meat were cut into a cuboid shape of approximately 4 x 2 x 2 

cm3 which equated to approximately 23.59 g of meat in weight. One side of the cuboid 

retained the fascial membrane while the remaining lengthwise sides were cut through the 

muscle tissue and dipped in separate solutions containing antioxidant extracts. Following 

the dipping, the meat samples were re-weighed. Each treatment was conducted in 

triplicate. Moisture uptake was calculated as per the following formula: 

Moisture uptake (%)   

= [ 
weight of dipped meat (g)– weight of meat before dipping (g)

 weight of meat before dipping (g)
] x 100 

3.2.6 The Rate of Phenolic Uptake in Raw and Thawed Meat 

The rate of phenolic uptake in meat samples was calculated as per the following formula: 

Rate of Phenolic Uptake 

=
(Phenolic content in dipped sample (g)– Phenolic content in control sample(g))

Time of dipping (min)
 

3.2.7 Statistical Analysis  

The data of dipping raw and thawed chicken meat were conducted and analysed 

separately. This experiment was conducted utilising full factorial design of 6 x 4 x 3, 

where the three factors were the antioxidant treatments (ROS, GGR, SFS, SRB, BHT and 
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non-treated), dipping times (5, 20, 30 and 60 minutes) and chicken breast fillet layers 

(Membrane layer, tenderloin layer and the core of fillets). The interaction between 

antioxidant x dipping time x meat layer was also assessed. Penetration of total phenolic 

content was analysed by using general analysis of variance (ANOVA). The experiment 

was conducted in triplicate (n = 72). While moisture uptake was analysed by using two-

way analysis of variance (ANOVA). Tukey's HSD test was used to identify the significant 

differences between means, and the significance level of all data was set at p ≤ 0.05. The 

null (H0) and alternative (H1) hypothesis for each dependent variable were set as:  

Null hypothesis (H0): 

There was no significant effect of natural antioxidants application, dipping time, meat 

layer and the interaction between them on penetration of antioxidant ingredients into raw 

and thawed chicken breast fillets (H0: μ = 0; p > 0.05) 

Alternative hypothesis (H1) 

There was a significant effect of natural antioxidants application, dipping time, meat layer 

and the interaction between them on penetration of antioxidant ingredients into raw and 

thawed chicken breast fillets (H1: μ≠ 0; p ≤ 0.05). 
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3.3 Results  

3.3.1 Moisture Uptake 

3.3.1.1 The Moisture Uptake in Raw Meat  

The uptake of moisture due to dipping raw chicken breast meat into various antioxidant 

solutions was significantly affected by antioxidant solutions (Appendix Table B1). The 

moisture uptake was found higher in SRB followed by ROS, non-treated samples, SFS 

and GGR respectively (Appendix Table B1). Regardless of antioxidants, the moisture 

uptake was significantly affected by dipping samples into antioxidants solution and 

deionised water for 60 min. From 5 min, onwards, the moisture uptake was increased 

significantly (p < 0.001) in raw meat samples with increasing dipping time (Appendix 

Table B1). Moreover, a significant AO x DT interaction (p = 0.019) was found for 

moisture uptake (Figure 2.2), indicating that the effect of antioxidant on moisture uptake 

in raw meat samples is depending on the dipping time. The uptake of moisture in raw 

meat samples due to dipping samples into various antioxidant solutions increased as the 

dipping time progressed. No significant differences were found between treatments over 

the first 20 min of the dipping process, from 30 min onwards the highest absorption of 

moisture was observed in raw meat samples dipped in SRB followed by ROS solution. 

Moisture uptake in raw breast samples treated with SFS and GGR from 30 min onwards 

was markedly less than the non-treated samples. 
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Figure 3. 2 Effect of natural antioxidants and dipping time interaction on moisture uptake 

of raw chicken fillets (Means ± SED; n = 3). Non-treated control (CON), Rosemary 

extract (ROS), Small Red Bean extract (SRB), Sun Flower Seed extract (SFS), ginger 

extract (GGR).  

3.3.1.2 The Moisture Uptake in Thawed Meat  

In chicken breast meat samples that were previously frozen and thawed, the moisture 

uptake was not significantly affected by antioxidant (p = 0.588) (Appendix Table B1). 

Regardless of antioxidant effects, the dipping time causes a similar increase in moisture 

uptake as was observed for raw chicken breast samples (Appendix Table B1). Hence, the 

uptake of moisture due to dipping chicken breast meat into various antioxidant solutions 

in thawed meat samples increased significantly as the dipping time progressed (p < 

0.001). At 60 min, moisture uptake in thawed breast samples treated with natural 

antioxidants was highest. The thawed chicken breast meat samples showed limited overall 

diversion with regards to weight compared to the non-treated samples and each other 

during the entire dipping process especially when compared to the raw breast meat 
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samples (Appendix Table B1). No significant (p = 0.286) interaction was found between 

antioxidant and dipping time for the moisture uptake in thawed samples (Figure 3.3) 

 

Figure 3. 3 Effect of natural antioxidants and dipping time interaction on moisture uptake 

of thawed chicken fillets (Means ± SED; n = 3). Non-treated control (CON), Rosemary 

extract (ROS), Small Red Bean extract (SRB), Sun Flower Seed extract (SFS), ginger 

extract (GGR). 

3.3.2 Total Phenolic Content  

After the moisture uptake was determined (section 3.3.1) the penetration of phenolic 

compounds into the sequential layers of raw and thawed chicken breast fillets was also 

monitored by assessing total phenolic content expressed as mg GAE/100 g meat (Table 

3.1 and 3.2).  

3.3.2.1 Raw Chicken Breast Fillets 

3.3.2.1.1 The Penetration of Phenolic Content into Raw Meat 

The total phenolic in raw meat was affected significantly by antioxidant, meat layer, 

dipping time and interaction between them (Appendix Table B2). The phenolic content 
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was found significantly higher in raw meat samples dipped in antioxidant solutions 

compared to the non-treated samples, while highest absorption was shown in samples 

dipped into ROS solution. The penetration of phenolic compounds into both membrane 

and tenderloin sides of breast fillets were markedly higher compared to the core of fillet 

(p < 0.001). The uptake of phenolic content due to dipping chicken breast meat into 

various antioxidant solutions in raw meat samples was affected significantly by dipping 

time, while the highest phenolic content was found at 20 min (Appendix Table B2). A 

significant AO x ML interaction was appeared for phenolic content, indicating that 

penetration of phenolic content into ML of chicken meat is depending on the AO solutions 

(Figure 3.4). The phenolic content of ROS, SRB, SFS, GGR and BHT was limited to the 

outer layer only (there was only a minor accumulation of phenolic content into the core). 

Both layers of raw breast fillets dipped in the ROS solution had the highest total phenolic 

uptake compared to any other treatments (Figure 3.4). A significant AO x DT interaction 

(p < 0.001) was found for phenolic content (Figure 3.5), due to the rapid increase in the 

total phenolic penetration in all treatments (with exception ROS) up to 20 min of dipping 

time and decreased over 60 min. Over dipping time meat samples exposed to ROS had a 

highest phenolic content compared to any other treatments (Figure 3.5). The results 

presented in Figure 3.6 also show a significant interaction (p < 0.001) between ML x DT 

for phenolic content due to the increase the penetration of phenolic content into three 

meat layers (membrane, tenderloin sides and core) over 20 min and decreased thereafter. 

The absorption of phenolic content was lower through the core of the fillets compared to 

the membrane, and tenderloin sides. A significant AO x ML x DT interaction (p = 0.035) 

was found for total phenolic content (Table 3.1). The results show that when meat samples 

were exposed to deionised water (control), the phenolic content of the outer layers 

(membrane and tenderloin sides) decreased while little change in total phenolic content 
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in the core of the fillets could be observed over time. The membrane side of raw chicken 

breast tissue that is directly covered by a membrane showed very little variation from the 

control when dipped in a variety of antioxidant solutions, with the exception of the ROS 

dipping solution. Over time, the raw samples exposed to the ROS dipping solution 

doubled its total phenolic content. The same observations were made on the tenderloin 

side outer layer of the raw chicken breast tissue. In addition, total phenolic content in the 

core of chicken breast fillets dipped into antioxidant solutions and deionised water was 

not significantly affected by dipping time. The penetration of ROS phenolic compounds 

into both membrane and tenderloin sides of breast fillets were markedly higher compared 

to the BHT.  

 

 Figure 3. 4 Effect of natural antioxidants and meat layer interaction on total phenolic 

content of raw chicken fillets (Means ± SED; n = 3).  
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Figure 3.5 Effect of natural antioxidants and dipping time interaction on total phenolic 

content in raw chicken fillets (Means ± SED; n = 3). Non-treated control (CON); 

butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small Red Bean extract 

(SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 

 

Figure 3.6. Effect of meat layer and dipping time interaction on total phenolic content in 

raw chicken fillets (Means ± SED; n = 3).  
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Table 3.1 Effect of natural antioxidants and dipping time on total phenolic content (mg GAE/100 g meat) in different layers of raw breast chicken meat.  

Meat layer Treatment 
Dipping Time (minutes) 

5  20 30 60 

Membrane side 

 

CON 28.38a   41.66ab 28.24a 32.05a 

ROS 42.15ab  72.13de 67.44bcde 82.35e 

SRB 37.40a  44.83abc 39.27a 43.20abc 

SFS 43.11abc  46.61abcd 40.79ab 43.76abc 

GGR 36.48a  49.71abcd 33.05a 40.87ab 

BHT 32.54a  50.34abcd 39.30a 41.43ab 

Tenderloin side 

 

CON 29.74a  40.60ab 30.32a 29.41a 

ROS 39.99ab  71.74def 73.46ef 76.87f 

SRB 30.01a  49.72abcde 46.80abc 40.45ab 

SFS 29.22a  48.28abcd 45.77abc 43.80abc 

GGR 31.94ab  52.73abcdef 38.99ab 36.74ab 

BHT 38.57ab  55.31bcdef 46.44abc 43.96abc 

The core of the fillet 

 

CON 29.17a  40.53a 33.32a 32.65a 

ROS 31.09a  42.40a 28.98a 33.12a 

SRB 28.74a  41.43a 43.79a 37.50a 

SFS 29.45a  35.37a 30.91a 33.55a 

GGR 31.13a  41.88a 32.65a 30.88a 

BHT 30.55a  37.78a 34.60a 34.14a 
Mean values with different small superscript letters presented within each row of each treatment differ significantly (p ≤ 0.05) according to the Tukey's HSD test.  

Mean values with different small superscript letters presented within each column of each meat layer differ significantly (p ≤ 0.05) according to the Tukey's HSD test. 
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3.3.2.1.2 The Rate of Phenolic Uptake in Raw Meat 

The rate of phenolic uptake through the 4 to 5 mm slices of outer layers (membrane and 

tenderloin) to the core of raw meat after dipping into ROS, SRB, SFS, GGR and BHT 

solutions was calculated (section 3.2.6) and results are presented in Figure 3.7. The results 

show that the rate of uptake was higher through the tenderloin side of the raw fillets 

compared to the membrane side (Figures 3.7A and B). Overall, the rate of uptake was the 

highest over a 20-min period for all products. The uptake rate of ROS, SRB, SFS, and 

GGR were limited to the outer layer only (there was only a minor accumulation of 

phenolic content into the core); while the phenolics in SRB continued to be taken up well 

past 20 min (in a manner similar to BHT) (Figure 3.7). The uptake of ROS (and BHT) at 

the tenderloin side was immediate (positive rate of uptake at 5 mins); while the rate of 

uptake for the SRB, SFS and GGR was negative for the first 5 min. The highest rate of 

uptake was noticed over the first 20 min with exception non-treated samples and that the 

rate of uptake slowed after that. 
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Figure 3. 7 Effect of dipping time on the rates of phenolic uptake of raw chicken fillets 

after dipping into antioxidant solutions. A, membrane side; B, tenderloin side; C, core of 

the fillets. Non-treated control (CON); butylated hydroxytoluene (BHT); Rosemary 

extract (ROS), Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger 

(GGR) extract 
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3.3.2.2 Thawed Chicken Breast Fillets 

3.3.2.2.1 The Penetration of Phenolic Content into Thawed Meat 

A similar trend was observed in thawed samples as was observed in raw meat. The total 

phenolic in thawed meat samples was significantly affected by main factors antioxidant, 

meat layer, dipping time and interaction between them (Appendix Table B2). The 

phenolic content was significantly higher (p < 0.001) in meat samples exposed to the 

different antioxidant solutions compared to the non-treated samples with mean values of 

98.22, 84.54, 76.48, 73.70, 62.09 and 54.33 mg GAE/ 100 g meat for ROS, GGR, BHT, 

SFS, SRB and non-treated samples, respectively (Appendix Table B2). Regardless of the 

antioxidants and dipping time, the rate of diffusion of phenolic compounds into the meat 

layers of thawed samples increased in order of: tenderloin side > membrane side > the 

core of fillets (p < 0.001) (Appendix Table B2). The uptake of phenolic content due to 

dipping chicken breast meat into various antioxidant solutions in thawed samples 

significantly increased (p < 0.001) at each interval of dipping time (Appendix Table B2). 

A significant AO x ML interaction (p < 0.001) was found for phenolic content (Figure 

3.8). The phenolic content was higher in the membrane side of thawed samples dipped in 

all antioxidant solutions followed by tenderloin side and the core of fillets. In addition, 

meat layers were found to have a significantly higher uptake of phenolic content than 

those dipped into deionised water (control). Samples dipped in the ROS solution had the 

highest total phenolic uptake compared to any other treatments. (Figure 3.8). A significant 

AO x DT interaction was found for phenolic content (p < 0.001), due to the increase of 

phenolic content in all thawed meat samples dipped into various antioxidant solutions as 

the dipping time progressed. All dipped thawed meat samples had significantly the 

highest total phenolic penetration at 60 min. At 60 min, thawed meat samples had the 
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highest total phenolic for those dipped in GGR followed by BHT, ROS, SFS, SRB and 

non-treated samples, respectively (Figure 3.9). The results presented in Figure 3.10 also 

show a significant interaction (p < 0.001) between ML x DT for phenolic content due the 

increase of phenolic content of the outer layers (membrane and tenderloin sides) and the 

core of the fillets over time. The high absorption was found in the membrane side, 

followed tenderloin sides and the core of fillets over time. There was a significant (p < 

0.001) interaction between AO x ML x DT (Table 3.2). The results show that, when meat 

samples exposed to deionised water (control), the phenolic content of the outer layers 

(membrane and tenderloin sides) decreased while little change in total phenolic content 

in the core of the fillets could be observed over time. Thawed meat samples were found 

to have a significantly higher rate of penetration of antioxidants compared to the samples 

dipped into deionised water (control). The rate of diffusion of phenolic compounds into 

the meat layers of thawed samples increased in order of: tenderloin side > membrane side 

> the core of fillets. Thawed breast fillets dipped in the ROS solution had the highest total 

phenolic uptake compared to any other treatments over 30 min of dipping time. In 

addition, all dipped thawed meat samples with the exception of SRB had the highest total 

phenolic penetration at 60 min. At 60 min, thawed meat samples had the highest total 

phenolic for those dipped in GGR followed by ROS, BHT, SFS, SRB and non-treated 

samples, respectively. In the core of thawed meat samples dipped into GGR solution, a 

significant accumulation of phenolic compounds was detected as compared to the non-

treated samples. The penetration of phenolic compounds from natural antioxidants into 

the membrane and tenderloin sides was higher compared to the BHT (Table 3.2).  
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Figure 3.8 Effect of natural antioxidants and meat layer interaction on total phenolic 

content of thawed chicken fillets (Means ± SED; n = 3). Non-treated control (CON); 

butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small Red Bean extract 

(SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract 

 

 

Figure 3.9 Effect of natural antioxidants and dipping time interaction on total phenolic 

content in thawed chicken fillets (Means ± SED; n = 3). Non-treated control (CON); 

butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small Red Bean extract 

(SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract 
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Figure 3.10 Effect of meat layer and dipping time interaction on total phenolic content in 

thawed chicken fillets (Means ± SED; n = 3). 
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Table 3.2 Effect of natural antioxidants and dipping time on total phenolic content (mg GAE/100 g meat) in different layers of thawed chicken meat.  

Meat layer Treatment 
 Dipping Time (minutes) 

5  20 30 60  

Membrane side 

 

CON 62.35abc  64.26abc 50.56a 49.97a  

ROS 92.90bcd  138.75efg 106.30def 135.78efg  

SRB 86.81abcd  73.43abcd 51.46a 62.91abc  

SFS 89.77abcd  88.59abcd 62.56abc 102.83cde  

GGR 99.82cde  76.00abcd 54.24ab 154.16g  

BHT 80.78abcd  69.44abcd 53.96ab 145.18fg  

Tenderloin side 

 

CON 59.85abc  57.28abc 42.93a 43.48a  

ROS 75.81abcd  114.67ef 115.13ef 137.45f  

SRB 54.71abc  71.62abcd 50.05ab 69.03abcd  

SFS 70.46abcd  84.69cde 58.65abc 98.98de  

GGR 58.25abc  75.20abcd 51.56abc 179.76g  

BHT 62.75abc  65.70abcd 47.12a 114.76ef  

The core of the fillet 

 

CON 56.93abcd  69.24abcde 45.85ab 49.30abc  

ROS 57.30abcd  69.17bcde 56.26abcd 79.13def  

SRB 61.41abcd  70.02bcde 45.95ab 47.63abc  

SFS 66.83abcde  71.39cde 47.35abc 42.30a  

GGR 65.12abcde  69.04bcde 43.96a 87.40ef  

BHT 60.92abcd  63.49abcde 52.66abc 101.02f  
Mean values with different small superscript letters presented within each row of each treatment differ significantly (p ≤ 0.05) according to the Tukey's HSD test.  

Mean values with different small superscript letters presented within each column of each meat layer differ significantly (p ≤ 0.05) according to the Tukey's HSD test. 
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3.3.2.2.2 The Rate of Phenolic Uptake of Thawed Meat 

With regards to the rate of phenolic uptake in chicken breast meat samples that were 

previously frozen (thawed), the rate of ROS, SRB, SFS, and GGR was limited to the outer 

layer (membrane and tenderloin side) (Figures 3.11A and B), only with a minor 

accumulation of phenolic content in the core (Figure 4.4C). The results also showed that 

the rate of uptake was higher through the membrane side of the fillets compared to the 

tenderloin side (Figures 3.11A and B). Overall, the rate of phenolic uptake through the 

membrane side was the highest over 5-min period followed by the 20-min period for all 

products. Although the rate of phenolic uptake through the membrane side dipped into 

GGR solution was highest over 5 min, the highest rate of phenolic uptake was detected 

in samples dipped into ROS solution over time (Figure 3.11A). Similar to findings 

observed in membrane side, the highest rate of phenolic uptake was also noticed in the 

tenderloin side dipped into ROS (Figure 3.11 B).  
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Figure 3. 11 Effect of dipping duration on the rates of phenolic uptake in thawed chicken 

fillets after dipping into antioxidant solutions. A, membrane side; B, tenderloin side; C, 

core of the fillets. Non-treated control (CON); butylated hydroxytoluene (BHT); 

Rosemary extract (ROS), Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; 

ginger (GGR) extract 
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3.4 Discussion 

3.4.1 Moisture Uptake 

Moisture content is one of the most important indicators to evaluate the meat quality. 

Hosseini and Mehr. (2014) found a high correlation between moisture content and 

solution uptake. Dipping chicken meat in the GGR solution leads to increased moisture 

content which that enhanced hydrophilic properties (Naveena and Mendirratta, 2001). 

Similar findings were observed in the current study when the dipping process increased 

moisture uptake of chicken breast fillets (Figures 3.2, 3.3 and Table B1). The percentage 

of moisture uptake in chicken meat was similar to those reported by Yusop et al. (2010), 

who found that the moisture uptake by chicken breast fillets dipped for 30, 60, 120 and 

180 min ranged from 2.63-2.92 %. In this study, the moisture uptake was dependent on 

the dipping time (Figures 3.2 and 3.3) in accordance with results previously published by 

Yusop et al. (2010). These results suggest that the uptake of antioxidant solution into the 

chicken meat is a dynamic process during which compound gradually diffuse into the 

meat tissue. The highest level of absorption of moisture was observed in raw meat 

samples dipped in the SRB followed by ROS solution over dipping time (Figure 3.2). 

This is probably associated with their phenolic compounds. Both had hydrophilic 

compounds that can easily penetrate into muscle tissue. Moisture uptake in raw breast 

meat samples treated with SFS and GGR from 30 min onwards was markedly less than 

the non-treated samples (Figure 3.2). This could be due to the phenolic compounds that 

had higher levels of lipophilic compounds hinder to penetrate through the muscle. 

Furthermore, the greatest moisture uptake observed in raw meat could be attributed to the 

ability of meat structure to absorb and retain water during and after dipping process. 
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Furthermore, the reduction of moisture uptake in thawed samples could be due to 

inducing severe distortions and excessive damage to chicken muscle fibre structure 

during the freezing periods which then limits the ability of meat to take up and ultimately 

retain moisture. Meat stored under freezing temperature develops structural damage 

through the formation of ice crystal (Aidani et al., 2014). It was suggested that damage 

that takes place in cell walls due to the freezing process could reduce the ability of meat 

to reabsorb water and increase exude of water from meat as drip loss (James and James, 

2010)).  

3.4.2 Total Phenolic Content 

The penetration of antioxidant compounds into the sequential layers of chicken breast 

fillets was monitored in order to determine the amount of total phenolic content. Several 

studies have used phosphate, sodium chloride and fluorescent dyes to monitor the 

diffusion of marinade into different layers of meat (Xiong and Kupski, 1999a, Xiong and 

Kupski, 1999 b; Alarcon-Rojo, 2010). However, the principal aim of this study was to 

establish the appropriate time of exposure to an antioxidant containing solution for 

subsequent experiments.  In the current study, the penetration level of total phenolic into 

chicken breast fillets mostly depended on antioxidant type and dipping time (Tables 3.2, 

3.3 and Table B2). Since the penetration rate of total phenolic into the core of the fillet 

was lower than what was found in the outer layers (Figures 3.4, 3.8 and Table B2); it was 

determined that the uptake of various natural antioxidants is not instantaneous. It is 

evident that the antioxidant solution that overcomes the physical barriers or restrictions 

in the chicken muscles was limited to approximately 4 to 5 mm on each side during 

dipping time. Moreover, phenolic content was markedly penetrated into the outer layers 



164 

 

 

(membrane and tenderloin sides) compared to the core of the fillets over time (Figures 

3.6 and 3.10). Similar findings were reported by Xiong and Kupski (1999a) who found 

that the diffusion rate of phosphate into the chicken meat was depth dependent, where the 

rate of phosphate uptake was higher at the outer layer, followed at progressively lower 

rates to the middle and inner layers when chicken breast fillets were dipped with different 

concentrations of phosphates. Interestingly, samples treated with natural antioxidants 

were found to have a higher total phenolic content in comparison with non-treated 

samples (Tables 3.2, 3.3 and Table B2). The penetration of antioxidant solution and total 

phenolic into meat was apparently produced by an increased capillary force that can 

deliver water into the core of muscle and expand muscle fibres (Offer and Trinick, 1983). 

The ability of meat to absorb any solution was found to be correlated with dipping time 

(Lemos et al., 1990). Furthermore, penetration of a particular solution into chicken meat 

is dependent on the meat structure, with chicken breast having a greater ability to absorb 

a solution than the thigh or drumstick (Post and Heath, 1982), which is probably due to 

the higher amount of connective tissue in thigh and drumstick meat (Min and Ahn, 2012). 

Xiong and Kupski (1999a) found increasing signs of swollen fibres in the chicken muscle 

tissue based on results obtained by microscopic analysis after meat irrigated with different 

phosphate marinades caused a quick extension of the myofibril matrix of the muscle and 

disintegration of the actomyosin complex. Naveena and Mendiratta (2004a) pointed out 

that samples dipped into ginger extract at 5 %, for 48 h had a lower muscle fibre diameter 

compared to the non-treated samples with mean values 60.76 and 57.66 microns, for non-

treated samples and ginger treatment, respectively. Ginger extract was markedly caused 

an extensive degradation of fibres and layers of connective tissue around muscle fibres 

(Naveena and Mendiratta, 2004b). Naveena and Mendiratta, (2001; 2004b) reported that 
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the ginger extract added to buffalo meat enhanced cooking meat yield, sensory 

acceptability, flavour, juiciness, tenderness, and decreased significantly meat shear force 

values, which could be due to decrease the degradation of protein and bind more water. 

Furthermore, in our study, rapid penetration of total phenolic in raw meat and thawed 

meat was at 20 min and 60 min, respectively (Tables 3.2, 3.3 and Table B2). These results 

were in contrast to those reported by Xiong and Kupski (1999b) who found that a rapid 

penetration of phosphate was detected at 5 min of dipping time. Moreover, according to 

the results, fillets of thawed and raw meat dipped in ROS solution was found to have a 

higher total phenolic content over dipping duration (Figures 3.5 and 3.9). However, the 

mechanisms behind this are not well documented but could be due to the molecular 

weight of phenolic compounds existing in ROS, which could have a high diffusivity. This 

result suggests that the ROS solution penetrated into the chicken fillets more rapidly while 

the diffusion in the deep layer of fillets was much slower. The dynamic process that 

contributed in term of penetration of the antioxidant solution into the core of the chicken 

breast fillet during immersion could be due to capillary forces. The higher phenolic uptake 

in the thawed meat samples compared to the raw samples (Tables 3.2, 3.3 and Table B2), 

could be associated with high diffusion of phenolic content into the thawed meat and 

ability of meat to retain a high amount of antioxidant compounds.  

3.4.3 The Rate of Phenolic Uptake  

The uptake rate of phenolic content in samples dipped into ROS, SRB, SFS, GGR and 

BHT solution was limited to the outer layers (membrane and tenderloin side) in both raw 

and thawed meat samples (there was only a minor accumulation of phenolic content into 

the core) (Figures 3.7 and 3.11). These results clearly show that the diffusion of 
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antioxidant solutions into the chicken fillets was limited. These findings are in agreement 

with those reported b Xiong and Kupski (1999a) that a higher diffusion rate of phosphate 

into the chicken meat was found in the outer layers than that in the core of chicken fillets. 

In raw meat, the rate of phenolic uptake by samples dipped into antioxidant solutions in 

raw meat was highest at 20 min. In contrast, the highest rate uptake of phenolic content 

in thawed meat was shown in the first 5 min. Although the rate of phenolic uptake through 

the membrane side dipped into GGR solution was highest over 5 min in thawed meat, the 

highest rate of phenolic uptake was detected in both raw and thawed meat samples dipped 

into ROS solution over time (Figure 3.7 and 3.11). As mentioned before, this could be 

due to the molecular weight of phenolic compounds existing in ROS which could have a 

high diffusivity. 

3.5 Conclusions 

All antioxidants were capable of improving moisture uptake as raw and thawed chicken 

fillets dipped in natural antioxidant solution absorbed moisture with increasing dipping 

time. Breast fillets dipped in SRB and ROS solution were observed to have a higher 

moisture uptake than the other treatments over time. The results also suggested that 

dipping raw and thawed meat into various antioxidant solutions had a positive effect on 

the penetration of phenolic content. The penetration of phenolic was highest in both raw, 

and thawed chicken breast fillets dipped in ROS solution. Rapid absorption of phenolic 

content in raw meat was in the first 20 min and the thawed meat was at 60 min. Penetration 

of phenolic content in raw and thawed meat was greater in the outer layers (membrane 

and tenderloin side) followed by the core of the fillets. 
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Chapter 4: 

The Impact of Post-Slaughter Natural Antioxidant Application on the 

Physical and Chemical Characteristics of Broiler Chicken Meat 

4.1 Introduction  

Lipid autoxidation is of primary concern in many lipid-rich foods and negatively affect 

the sensorial characteristics of meat (Frankel, 1980; Byrne et al., 2001; Min and Boff, 

2002), and is also known to cause reductions in nutritional value (Min, Nam et al., 2008). 

Many of these negative effects are due to the formation of hydroperoxides, 

malondialdehyde, 4-hydroxynonenal, and volatile compounds (Erickson, 2002; 

Domínguez et al., 2014). The processing of meat, such as cooking, can accelerate the rate 

of lipid oxidation in beef, pork and chicken (Min et al., 2008); grinding and deboning of 

meat also promotes lipid oxidation (Laack, 1994). This is because cooking, grinding and 

deboning processes disrupt the cell membranes and facilitate the lipid compounds to come 

into direct contact with oxygen and compounds that have the ability to catalyse meat lipid 

oxidation (Bragagnolo, 2009). 

While minimising the processing of meat just prior to consumption limits the events that 

lead to oxidation of lipids; in a fast-moving society with ready-meals and pre-prepared 

foods for convenience, processing meats well-ahead of consumption means that 

controlling the possible onset of autoxidation is of utmost importance. Lipid and 

phospholipid oxidation can be effectively controlled using packaging materials and/or 

antioxidants. The use of antioxidants to prevent and delay autoxidation of lipids in meat 
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and meat-derived products during the storage time has been the focus of a number of 

studies (McCarthy et al., 2001; Ahn et al., 2002; Mielnik et al., 2003; Nissen et al., 2004).  

The antioxidant capacity of naturally sourced extracts correlates strongly with their total 

phenolic content (Shan et al., 2005; Rusaczonek et al., 2007; Velasco and Williams 2011). 

The active compounds that act as antioxidants in natural sources are phenolic in nature 

such as phenolic acids, phenolic diterpenes, flavonoids and volatile oils (Velasco & 

Williams 2011). Several studies have pointed out that rosemary, red bean, ginger and 

sunflower are a rich sources of antioxidant compounds, while ROS was found to have the 

highest antioxidant compounds (Shan et al., 2005; Amakura et al., 2013; Baker et al., 

2013). Although information about the effect of extraction of natural antioxidants from 

plant origins such ROS and GGR on the oxidation of lipids of meat is well documented, 

to our knowledge there were no research related to investigate the impact of SRB and 

SFS as natural antioxidants on quality of raw and freshly cooked chicken meat. Therefore, 

the current study was carried out to evaluate the effects of extract of ROS, SRB, SFS, and 

GGR as natural antioxidants compared to the synthetic antioxidant BHT on the physical 

and chemical characteristics of chicken meat.  
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4.2 Materials and Methods 

4.2.1 Raw Materials 

Chicken carcasses, sources of natural antioxidants and chemicals used was described in 

Chapter 2 section 2.2.1. 

4.2.2 Experimental Design and Sample Preparation 

This experiment was designed as factorial design consisted of a 6 x 3 with five antioxidant 

treatments plus control (ROS, GGR, SFS, SRB, BHT, and non-treated control), and three 

storage times (0, 3 and 7 days). For the preparation of meat samples, raw meat samples 

were prepared as per the same procedure discussed in section 3.2.2. Six experimental 

treatments were prepared as mentioned in a previous Chapter 3 (section 3.2.2) by dipping 

raw breast fillets into an appropriate antioxidant solution for 20 min as a rapid absorption 

of phenolic content in raw meat was found in the first 20 min as discussed in Chapter 3. 

All samples were then packaged in polyethylene bags (transmission rate of oxygen = 

51000 cm3/m2. 24h. bar). Each treatment was conducted in triplicate. All samples were 

stored at 4 oC for 7 days. Following refrigerated storage at 0, 3, and 7 days, the samples 

were taken to be analysed as a raw meat and at the same time, samples were taken at each 

point of storage time and cooked by sous vide method.  

4.2.2.1 Sous-Vide - “Low-Temperature & Low-Oxygen” (LTLO)  

Chicken breast fillets samples were taken during storage time (section 4.2.2) and 

packaged in a plastic vacuum bag (65 Micron Vacuum Pouches 160 x 300) and the air 

was evacuated (Tre Spade V33 Auto Vacuum Sealer, Torino, Italy). The samples were 

then cooked in a water bath (Grant water bath, Shepreth, England) at 75 oC for 45 min. 
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After the internal temperature of the meat reached 71 oC, a digital calibrated thermometer 

(Therma 20 thermometer, UK) was used to monitor the internal temperature. The 

packages were removed from the water bath, and cooled with tap water to an ambient 

temperature of 23 oC. Raw and cooked meat samples were analysed following 0, 3 and 7 

days of storage for chemical and physical parameters.  

4.2.3 Chemical Parameters Analysis  

4.2.3.1 Thiobarbituric Acid Reactive Substances (TBARS) Determination 

TBARS value was determined in meat samples according to the method described by 

Buege and Aust (1978). Approximately 0.5 g of finely chopped meat was weighed and 

put in a 10 ml test tube to which 2.5 ml of TBA stock solution was added. A litre of TBA 

stock solution contained 3.75 g thiobarbituric acid (TBA), 150 g trichloroacetic acid 

(TCA), and HCl at a final concentration of 0.25 M. Samples were then vortexed for 15 

sec before being incubated in a water bath at 95 oC for 15 min until the development of a 

pink colour. The tubes were rapidly cooled down in a bath of tap water and centrifuged 

(Rotina 46R, Hettich Zentrifugen, Germany) at 2500 g for 10 min at 4 oC. The supernatant 

was transferred to a cuvette and the absorbance determined by spectrophotometer 

(Beckman, DU640 spectrophotometer, Fullerton, CA) at 532 nm against a blank 

containing 0.5 ml of deionised water and 2.5ml TBA stock solution.  

A standard curve was prepared by dissolving 31 mg of 1,1,3,3–tetra-ethoxypropane (TEP) 

in 1000 ml of deionised water to produce (0.031 mg TEP / ml) working solution. Then 

serial dilutions were prepared by pipetting aliquots of 0, 1, 2, 3, 4, 5 and 6 ml of working 

TEP standard solution into 50 ml test tubes and filled up to mark by adding deionized 

water (DW) to produce (0, 0.00062, 0.00124, 0.00186, 0.00248, 0.0031 and 0.00372 mg 
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TEP equivalents / ml extraction). All samples were then vortexed for 15 sec. Half ml was 

pipetted from each dilution and placed in 10 ml test tube. The same procedure was applied 

as used for sample analysis, except the TEP work solution was used instead of a sample.  

For constructing standard curve, the concentrations of (TEP) were plotted against the 

absorbance of TEP (Figure 2.5). From the standard curve, the amount of TBARS in meat 

samples was determined and expressed as mg of malondialdehyde equivalents / kg raw 

meat by utilising the following equations: 

𝑥 = (𝑦 − 0.0013)/126.22 

mg TBARS (MDA)/kg raw meat = [
𝑥 (𝑚𝑔)

weight of meat sample (g)
] x1000 

Where x is the unknown amount of MDA in meat samples (mg/g), and is taken from 

standard calibration curve (Figure 4.1), y is the absorbance of meat sample, 1000, is the 

dilution factor used to obtain the results of TBARS in mg MDA/kg meat. 

 

Figure 4. 1 Standard curve of 1,1,3,3–tetra-ethoxypropane (TEP) for determination of 

TBARS (mg MDA) (Means ± SED; n = 3). 
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4.2.3.2 Conjugated Dienes and Conjugated Trienes Determination 

The conjugated dienes (CD) and conjugated trienes hydroperoxides (CT) formation in the 

lipids were determined according to the procedure described in section 2.2.3.4.2. 

4.2.3.3 Phospholipid Content Determination   

The phospholipid content was determined according to the procedure described in section 

2.2.3.4.3. 

4.2.3.4 Fatty Acids Determination   

Fatty acids were determined according to the method described in section 2.2.3.4.4. 

4.2.4 Physical Parameters Analysis  

4.2.4.1 Colour Measurement 

Meat colour stability of each treatment was evaluated by measuring meat parameters such 

as L* (lightness), a* (redness) and b* (yellowness) using a CR-400 Chroma meter 

measuring head with data processor DP-400 (Konica Minolta sensing, Inc., Japan). 

Measurements were taken at four points on the surface area of chicken breast fillets, after 

placing in a white tray, using D65 illuminator at 2° standard observer angle after 

calibration with a calibration plate. 

4.2.4.2 pH Value  

Approximately 5 g of the ground raw and cooked meat were weighed and mixed with 20 

ml of deionized water and homogenised (Silverson Machines Ltd., Chesham, UK) for 30 

sec at high speed and pH values of samples were assessed with pH meter (Jenway, Stone, 

Staffordshire) after calibration with buffer solutions at pH 4.0 and 7.0. Each sample was 

evaluated in triplicate throughout the storage time.  



173 

 

 

4.2.4.3 Drip Loss  

Drip loss of breast fillets was determined according to the method described by Honikel 

(1998). Approximately 80 g weighed of raw chicken breast was weighed and placed into 

a net bag and then suspended in an airtight plastic container (520 ml Round Tamper 

Evident Container 9 3 mm x 118 mm, UK), and stored at refrigeration temperature (4 oC) 

for 24 h. After that, meat samples were removed from the container and dried using paper 

towel. The same samples were used for next time during the storage time. Subsequently, 

the samples were reweighed and drip loss was calculated using the following formula:  

Drip loss (%)  = [ 
Initial weight of raw meat (g)–  final weight of meat (g)

Initial weight of raw meat (g)
] x 100 

4.2.4.4 Cooking Loss  

Approximately 100 g of raw meat was weighed before a thermal processing and cooked 

until the internal temperature reached 71 oC. After the cooked meat, had been cooled to 

ambient temperature (23 oC), meat samples were dried with paper towel and reweighed. 

Subsequently, cooking loss was measured by the following formula: 

Cooking loss (%) = [
Initial weight of raw meat −  weight of cooked meat

Initial weight of raw meat (g)
] x100 

4.2.4.5 Textural Analysis  

The texture of the cooked meat was evaluated by using a texture analyser (TA. XT 

plus,TA.HD.Plus. Stable Micro Systems, UK) equipped with 30 kg load cell. The 

crosshead speed was set at 10 mm and test speed 2 mm/s. After refrigeration of meat at 4 

oC, cooked meat samples were cut into uniform pieces with dimensions 1 cm2 by using 

twin blade sample preparation cutting tool (Stable Micro Systems sample preparation 
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tool, UK). The meat samples were then sheared perpendicular to the fibres. For cutting 

the sample a Warner Bratzler blade set with ‘Rectangular slot blade’ (HDP/WBR) was 

used. The shear force of meat was evaluated by measuring the peak force (N) (Honikel, 

1998). 

4.2.5 Statistical Analysis  

The data of raw and sous vide cooked chicken meat were analysed separately. For each 

raw and cooked meat, full factorial design of a 6 x 3 was utilised where the two factors 

were the six antioxidant treatments (ROS, GGR, SFS, SRB, BHT, and control), and three 

storage times (0, 3 and 7 days). The interaction between antioxidant x storage time also 

was assessed. All parameters were analysed using two-way analysis of variance 

(ANOVA). The experiment was conducted in triplicate (n = 3). When the main factors 

and interactions was significant, Tukey's HSD test was used to identify the significant 

differences between means and the significance level of all data was set at p ≤ 0.05. The 

null (H0) and alternative (H1) hypothesis for each dependent variable were set as:  

Null hypothesis (H0): 

There was no significant effect of natural antioxidants application, storage time and 

interaction between them on physical and chemical properties of raw and freshly cooked 

chicken breast fillets (H0: μ = 0; p > 0.05) 

Alternative hypothesis (H1) 

There was a significant effect of natural antioxidants application, storage time and 

interaction between them on physical and chemical properties of raw and freshly cooked 

chicken breast fillets (H1: μ≠ 0; p ≤ 0.05).  
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4.2 Results  

4.2.1 Effect of Natural Antioxidants on Thiobarbituric Acid-Reactive Substances 

(TBARS)  

Lipid oxidation (TBARS) values in chicken breast meat were affected significantly by 

the cooking process for 7 days (p ≤ 0.05) (Appendix Table C2). Hence, TBARS values 

were found to be significantly higher (p ≤ 0.05) in sous vide cooked samples than in raw 

meat. The application of the natural antioxidants provided (p ≤ 0.05) protection against 

oxidative rancidity in both raw and cooked meats compared to the non-treated control 

(CON) (Tables 4.1 and Appendix Table C2). In raw meat samples, all natural antioxidants 

provided a decrease in TBARS values, while among natural antioxidants SFS was found 

to have significantly lower (p = 0.012) TBARS compared to the non-treated samples over 

7 days (Table 4.1). The impact of natural antioxidants was similar to that of the synthetic 

antioxidant BHT. After samples were cooked by sous vide, natural antioxidants caused a 

similar decrease in TBARS values as was observed in raw meat (Table 4.1 and Appendix 

Table C2). A significant higher (p < 0.001) protective effect was observed in samples 

treated with ROS followed by GGR, BHT, SRB and SFS with a resulting decrease in 

TBARS compared to the non-treated samples. The reduction of TBARS values in all 

cooked meat samples treated with antioxidants with exception SFS was above 45% (Table 

4.1 and Appendix Table C2). In addition, storage time was found to have a significant 

effect on TBARS values in raw meat samples and cooked meat (p ≤ 0.05). In all instances 

the peak in TBARS values in raw and cooked meat samples occurred at day 3, with 

markedly lower TBARS values at day 7 compared to day 3 (Table 4.1 and Appendix 

Table C2). No significant AO x ST interaction (p = 0.468) was found for TBARS value 
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in raw meat samples (Table 4.1). In contrast, there was a significant AO x ST interaction 

(p < 0.001) found for TBARS in cooked meat samples (Table 4.1 and Figure 4.2), due to 

the increase of TBARS values in non-treated and treated samples with storage time. 

However, all meat samples supplemented with antioxidants were found to have lower 

lipid oxidation compared to the non-treated samples throughout the storage time. At day 

0, the application of antioxidants provided a greater protection against oxidation 

compared to the non-treated samples. However, with the exception of ROS, SFS and 

GGR, the natural antioxidants from SRB provided very little protection against oxidation 

at day 3. A higher protective effect was observed only in samples treated with GGR and 

ROS with a resulting decrease in TBARS values over storage time. The natural 

antioxidants that provided a greater protection against an increase of TBARS values 

compared to the BHT, was ROS at day 0 and 3 of storage, while GGR performed more 

in reducing lipid oxidation than to the BHT over 7 days. 

Table 4.1 Effect of natural antioxidants application on lipid oxidation TBARS values (mg 

MDA/kg meat) of raw and sous-vide processed chicken breast meat following storage at 

4°C. 

   Antioxidants (AO)  p value 

 ST 

(d) 

CON ROS SRB SFS GGR BHT  SED AO ST AO x ST 

R
a
w

 m
ea

t 0 0.35 0.35 0.31 0.33 0.33 0.35 
    

3 0.62 0.44 0.47 0.38 0.46 0.49 0.07 0.012 <0.001 0.468 

7 0.53 0.38 0.35 0.33 0.43 0.33 
    

 ST 

(d) 

CON ROS SRB SFS GGR BHT  SED AO ST AO x ST 

S
o

u
s 

v
id

e 0 3.16 0.99 1.92 1.69 1.12 1.16 
    

3 7.14 2.61 3.73 6.73 3.66 3.53 0.38 <0.001 <0.001 <0.001 

7 5.68 2.52 3.01 4.17 1.65 2.25 
    

SED, standard error of differences of means; p ≤ 0.05 is significantly different according to the Tukey's 

HSD test; p > 0.05 is not significant different according to the Tukey's HSD test. 
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Figure 4.2 Effect of natural antioxidants application and storage time interaction on 

TBARS values of sous-vide processed chicken breast meat (Means ± SED; n = 3). Non-

treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small 

Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract.  

4.2.2 Effect of Natural Antioxidants on Conjugated dienes (CDs) 

Conjugated dienes (CDs) values were significantly increased in cooked meat samples as 

compared to that in raw meat (Appendix Table C2). In raw meat, the application of natural 

antioxidants was found to have a significant effect on CD values in raw but did not have 

any effect on cooked meat (Table 4.2 and Appendix Table C2). In raw meat, all 

antioxidants were awarded a greater protection against an increase in CDs as compared 

to the non-treated samples (p < 0.001), but no significant differences were found between 

antioxidant treatments (Table 4.2 and Appendix Table C2). Regardless of the 

antioxidants, storage time was found to have a significant (p < 0.001) effect on CD content 

in raw and cooked meat. Hence, the CD values were increased over 7 days of storage. 
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However, a significant increase of CDs content was found in raw samples at 7 days 

compared to day 0 of storage (Table 4.2 and Appendix Table C2). There was a significant 

AO x ST interaction (p = 0.034) for CDs in raw meat samples (Table 4.2 and Figure 4.3). 

The formation of CD in all raw meat samples increased with increasing storage time. 

However, all antioxidants provided a significant decrease in CDs compared to the non-

treated samples over 7 days of storage time. The only natural antioxidants that markedly 

reduced the formation of CDs at day 7 compared to any other antioxidant treatments was 

SFS. The effect of natural antioxidants compared to the BHT was similar over storage 

time (Figure 4.3). In cooked meat, no significant interaction (p = 0.407) was shown 

between antioxidant and storage time for CDs (Table 4.2).  

Table 4.2 Effect of natural antioxidants on Conjugated Dienes (µmol/g fat) of raw and 

sous-vide processed chicken breast meat following storage at 4°C. 

   Antioxidants (AO)  p value 

 ST 

(d) 

CON ROS SRB SFS GGR BHT  SED AO ST AO x ST 

R
a
w

 m
ea

t 0 35.59 32.44 25.88 26.03 24.93 23.70 
    

3 47.43 31.93 29.50 31.25 27.86 30.31 3.01 <0.001 <0.001 0.034 

7 49.10 46.36 44.36 39.62 44.60 45.01 
    

 ST 

(d) 

CON ROS SRB SFS GGR BHT  SED AO ST AO x ST 

S
o

u
s 

v
id

e 

0 46.11 44.68 45.57 44.63 43.51 42.48 
    

3 54.68 48.14 48.69 52.69 57.50 52.07 3.24 0.104 <0.001 0.407 

7 56.12 53.80 48.56 54.98 55.24 53.73 
    

SED, standard error of differences of means; p ≤ 0.05 is significantly different according to the Tukey's 

HSD test; p > 0.05 is not significant different according to the Tukey's HSD test. 
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Figure 4.3 Effect of interaction of natural antioxidants application and storage time on 

Conjugated Dienes of raw chicken breast meat (Means ± SED; n = 3). Non-treated 

control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small Red 

Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 

4.2.3 Effect of Natural Antioxidants on Conjugated Trienes (CTs) 

Conjugated trienes (CTs) was higher in cooked chicken breast meat than in raw meat (p 

≤ 0.05). Hence, a significant formation of CTs was found in cooked meat compared to 

the raw meat (Appendix Table C2). The use of natural antioxidants significantly reduced 

the formation of CT in raw, but did not have any effect on CT of cooked meat (Table 4.3 

and Appendix Table C2). In raw meat, all natural antioxidants provided a greater 

protection against an increase in CT values compared to the non-treated samples, while 

no significant differences were found between antioxidant treatments. The effect of 

natural antioxidants as compared to the BHT was similar (Table 4.3 and Appendix Table 

C2). Storage time was found to have a significant effect on CTs content in raw and cooked 

meat (p < 0.001). The CT content in raw and cooked samples of breast meat significantly 

increased over 7 days of storage. However, values of CT were higher in cooked meat than 
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those in raw meat over 7 days (Appendix Table C2). Table 4.3 shows that there was no 

significant AO x ST interaction for CTs in raw and cooked meat (p = 0.555; p = 0.393). 

Table 4.3. Effect of natural antioxidants application on Conjugated Trienes (µmol/g fat) 

of raw and sous-vide processed chicken breast meat following storage at 4 °C. 

   Antioxidants  p value 

 ST 

(d) 

CON ROS SRB SFS GGR BHT  SED AO ST AO x ST 

R
a

w
 m

ea
t 0 

16.13 15.64 12.48 12.16 13.65 11.76 

    

3 
21.84 16.26 14.83 15.36 14.02 15.4 

2.13 0.003 <0.001 0.555 

7 
25.06 23.2 23.07 20.35 24.2 22.74 

    

 ST 

(d) 

CON ROS SRB SFS GGR BHT  SED AO ST AO x ST 

S
o
u

s 
v
id

e 0 24.97 20.92 22.23 20.93 21.53 20.96 

    

3 26.05 23.53 24.73 24.73 28.51 27.14 1.71 0.056 <0.001 0.393 

7 29.84 28.15 27.35 28.93 29.43 29.61 

    

SED, standard error of differences of means; p ≤ 0.05 is significantly different according to the Tukey's 

HSD test; p > 0.05 is not significant different according to the Tukey's HSD test. 

4.2.4 Effect of Natural Antioxidants on Phospholipid Content 

Phospholipid content in chicken breast meat samples was significantly affected after the 

cooking process (p ≤ 0.05). Hence, following the sous vide treatment of chicken meat the 

phospholipid degradation was significantly higher compared to the raw meat samples 

with mean values of 41.24 and 40.13 g/100 g fat for raw and cooked meat, respectively 

(Appendix Table C3). The effect of antioxidants on phospholipid content in raw meat was 

not significant, regardless of the storage time (p = 0.348) (Tables 4.4 and Appendix Table 

C3). In contrast, a significant effect of antioxidant supplementation on the phospholipid 

content in cooked meat was found (p < 0.001). Hence, natural antioxidants provided a 

greater protection against a decrease in phospholipid content. The highest phospholipid 
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content was found in ROS treatment followed by SRB, SFS, GGR and BHT respectively. 

Furthermore, the application of natural antioxidants awarded a better protection against a 

decrease of phospholipids compared to the BHT (Table 4.4 and Appendix Table C3). 

Moreover, a significant effect of storage time was seen in phospholipid content in both 

raw and cooked meat (p ≤ 0.05). The resulting phospholipid content decreased over 7 

days of storage and a significant reduction of phospholipid content was found at the end 

of the storage time compared to day 0 (Table 4.4 and Appendix Table C3). A significant 

AO x ST interaction (p = 0.004) was found for phospholipid content in raw meat (Table 

4.4 and Figure 4.4), due to the decrease phospholipid content with storage time. Over 

storage time, all antioxidants yielded more phospholipid content at day 7 of storage 

compared to the non-treated samples. Among antioxidant treatments, the antioxidant that 

had markedly reduced the degradation of phospholipids only at day 7 was SFS. Figure 

4.5 shows that a significant AO x ST interaction (p < 0.001) for phospholipid content in 

cooked meat indicating that the effect of antioxidants on phospholipid content was 

depending on the storage time. All natural antioxidants provided a greater protection 

against a decrease in phospholipid content over storage time as the higher reduction of 

phospholipid content was found in non-treated samples. The highest phospholipid content 

was found in ROS treatment followed by SFS, SRB, and GGR respectively. Furthermore, 

the application of natural antioxidants awarded a better protection against a decrease of 

phospholipids compared to the BHT over time.   
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Table 4.4 Effect of natural antioxidants application on phospholipid content (g/100 g fat) 

of raw and sous-vide processed chicken breast meat following storage time (ST) at 4 °C. 

   Antioxidants (AO)  p value 

 ST 

(d) 

CON ROS SRB SFS GGR BHT  SED AO ST AO x ST 

R
a

w
 m

ea
t 0 45.16 43.64 42.49 41.37 43.36 43.80 

    
3 41.85 42.15 41.07 41.48 41.27 41.59 1.03 0.348 <0.001 0.004 

7 37.53 38.41 37.85 41.65 38.10 39.50 
    

 ST 

(d) 

CON ROS SRB SFS GGR BHT  SED AO ST AO x ST 

S
o

u
s 

v
id

e 0 40.39 42.10 41.41 40.43 41.64 40.84 
    

3 38.93 42.07 42.50 41.06 39.48 39.32 0.58 <0.001 <0.001 <0.001 

7 35.36 40.71 38.88 40.03 38.55 38.61 
    

SED, standard error of differences of means; p ≤ 0.05 is significantly different according to the Tukey's 

HSD test; p > 0.05 is not significant different according to the Tukey's HSD test. 

 

 

Figure 4.4 Effect of interaction of natural antioxidants application and storage time on 

phospholipid content of raw chicken breast meat (Means ± SED; n = 3). Non-treated 

control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small Red 

Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 
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Figure 4.5 Effect of interaction of natural antioxidants application and storage time on 

phospholipid content of sous-vide processed chicken breast meat (Means ± SED; n = 3). 

Non-treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), 

Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 

4.2.5 Effect of Natural Antioxidants on pH Values 

The pH values in all treatments significantly increased after the cooking process 

(Appendix Table C3). Antioxidant supplementation had a significant an effect on the pH 

values in raw meat (p = 0.004), but did not have any effect on the pH values in cooked 

meat (p = 0.155). In raw meat, the natural antioxidants that had significantly lower pH 

values were ROS and GGR than the non-treated samples (Appendix Table C3). Storage 

time also statistically (p > 0.05) did not affect the pH values in both raw and cooked 

chicken meat (Tables 4.5 and Appendix Table C3). Table 4.5 shows that there was no 

significant interaction between both antioxidant and storage time for pH values in raw 

and cooked meat (p = 0.725; p = 0.920).
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Table 4.5 Effect of natural antioxidants application on pH values of chicken breast meat 

during the storage time (ST) at 4 oC. 

   Antioxidants (AO)  p value 

 ST 

(d) 

CON ROS SRB SFS GGR BHT  SED AO ST AO x ST 

R
a

w
 m

ea
t 0 5.95 5.69 5.89 5.94 5.79 5.86 

    

3 5.96 5.79 5.91 5.92 5.79 5.77 0.09 0.004 0.223 0.725 

7 6.00 5.91 5.92 5.90 5.82 5.89 
    

 ST 

(d) 

CON ROS SRB SFS GGR BHT  SED AO ST AO x ST 

S
o

u
s 

v
id

e 0 6.17 6.06 6.05 6.07 6.17 6.07 
    

3 6.15 6.06 6.08 6.03 6.00 6.01 0.08 0.155 0.348 0.920 

7 6.11 6.07 6.04 6.00 6.11 6.01 
    

SED, standard error of differences of means; p ≤ 0.05 is significantly different according to the Tukey's HSD 

test; p > 0.05 is not significant different according to the Tukey's HSD test. 

4.2.6 Effect of Natural Antioxidants on Cooking Loss  

The proportion of cooking loss in treated and non-treated samples was significantly (p = 

0.013) affected by the addition of natural antioxidants (Tables 4.6 and Appendix Table C4). 

However, a significant protection against an increase of cooking loss was found in samples 

treated with BHT with mean value of 20.51% compared to the non-treated samples of 23.42 

%. Regardless of antioxidant, storage time had a significant (p = 0.015) an effect on cooking 

loss (Table 4.6 and Appendix Table C4). Hence, the proportion of cooking loss was 

increased at day 3, but significantly decreased at the end of storage time compared to day 3. 

No significant AO x ST interaction (p = 0.628) was found for cooking loss (Table 4.6).  

4.2.7 Effect of Natural Antioxidants on Texture (Shear Force) 

The shear force values of cooked meat were not significantly (p = 0.541) affected by natural 

antioxidant supplementation (Tables 4.6 and Appendix Table C4). However, meat samples 
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treated with natural antioxidants had lower shear force values compared to the non-treated 

samples. In addition, storage time had a significant effect on the shear force (p < 0.001). The 

shear force was significantly increased at day 3 and decreased at the end of storage time 

(Tables 4.6 and Appendix Table C4). There was no significant interaction (p = 0.481) 

between antioxidant and storage time for shear force (Table 4.6). 

Table 4.6 Effect of natural antioxidants application on cooking loss and shear force of 

chicken breast meat following time (ST) at 4 °C.  

   Antioxidants (AO)  p value 

 ST 

(d) 

CON ROS SRB SFS GGR BHT  SED AO ST AO x ST 

C
o
o
k

in
g
 L

o
ss

 

(%
) 

0 23.24 23.29 21.91 22.8 20.67 19.91 
    

3 24.37 22.86 23.77 23.15 23.87 20.64 1.31 0.013 0.015 0.628 

7 22.64 21.2 21.81 21.35 20.92 20.99 
    

 ST 

(d) 

CON ROS SRB SFS GGR BHT  SED AO ST AO x ST 

S
h

ea
r 

fo
rc

e 
(N

) 0 16.23 14.5 15.21 14.92 15.59 16.07 
    

3 18.45 18.64 17.5 17.89 16.86 17.56 1.02 0.541 <.001 0.481 

7 17.39 17.18 15.8 17.64 17.84 16.77 
    

SED, standard error of differences of means; p ≤ 0.05 is significantly different according to the Tukey's HSD 

test; p > 0.05 is not significant different according to the Tukey's HSD test. 
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4.2.8 Effect of Natural Antioxidants on Drip Loss /Water Holding Capacity  

The application of natural antioxidant significantly reduced the drip loss (p ≤ 0.05) 

(Appendix Table C4). The antioxidants that provided a greater protection against a reduction 

of drip loss were ROS and SRB compared to the non-treated samples with mean values of 

1.76, 191 and 2.44 % for ROS, SRB and non-treated samples, respectively. Storage time 

significantly increased the drip loss with increasing storage time (p < 0.001) (Appendix 

Table C4). Figure 4.5 shows a significant interaction between antioxidant and storage time 

(p = 0.023), due to the increase of drip loss in meat samples with increasing time. All natural 

antioxidant treatments were found to have a significantly lower drip loss than that in non-

treated, but did not significantly differ from each other at day 0. A similar effect of natural 

antioxidants was shown on drip loss at day 3. Among natural antioxidants, ROS and SRB 

treatments had the lowest significant drip loss at day 3. On day 7, the only natural antioxidant 

that markedly reduced the drip loss compared to the non-treated samples was ROS with 

values of 2.51 %. The drip loss of all raw chicken meat (treated or non-treated) significantly 

increased with storage time. However, the highest proportion of drip loss was found in the 

non-treated samples compared to treated samples. Moreover, the impact of natural 

antioxidants on drip loss was similar to that in BHT. 
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Figure 4.6 Effect of interaction of natural antioxidants application and storage time on drip 

loss of raw chicken breast meat (% (w/w)) (Means ± SED; n = 3). Non-treated control 

(CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small Red Bean extract 

(SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 

4.2.9 Effect of Natural Antioxidants on Colour  

The lightness (L*) values in raw chicken meat were not significantly affected by the 

application of natural antioxidants (p = 0.609) (Tables 4.7 and Appendix Table C4). Storage 

time had a significant (p = 0.026) effect on the lightness values. The lightness values were 

significantly decreased from 61.01 to 59.58 at day 3 of storage and slightly increased toward 

the end of storage time to 59.60 (Tables 4.7 and Appendix Table C4). There was no 

significant interaction (p = 0.233) between antioxidant and storage time (Table 4.7). With 

respect to the redness (a*) values, the redness (a*) values of raw chicken meat were 

significantly (p < 0.001) affected by the application of natural antioxidants (Tables 4.7 and 

Appendix Table C4). The antioxidants that provided a greater stability of redness (a*) values 

were GGR and ROS compared to the non-treated samples (Tables 4.7 and Appendix Table 
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C4). The effect of storage time on redness values was not significant (p = 0.091). No 

significant interaction (p = 0.624) was found between the antioxidant and storage time (Table 

4.7).  

For the yellowness (b*) values, the b* value was affected significantly (p < 0.001) by 

antioxidants application and storage time (Tables 4.7 and Appendix Table C4). GGR and 

ROS had significantly higher b* values compared to the non-treated samples. The 

yellowness values were markedly increased over storage time. However, the highest increase 

was shown at day 3 (Tables 4.7 and Appendix Table C4). No significant interaction (p = 

0.654) was found between the antioxidant and storage time (Table 4.7). 

Table 4.7 Effect of natural antioxidants application on L*, a* and b* values of chicken breast 

meat during the storage time (ST) at 4 oC. 

   Antioxidant (AO)  p value 

      

Variable ST 

(d) 

CON ROS SRB SFS GGR BHT  SED AO ST AO x ST 

L
*
 v

a
lu

e 0 59.26 62.97 60.73 61.71 60.55 60.85 
    

3 60.24 59.43 57.98 59.24 60.15 60.41 1.41 0.609 0.026 0.233 

7 58.33 59.16 60.92 60.75 58.86 59.57 
    

 ST 

(d) 

CON ROS SRB SFS GGR BHT  SED AO ST AO x ST 

a
*
 v

a
lu

e 0 2.17 3.09 1.90 2.18 3.26 2.23 
    

3 2.35 2.67 1.63 2.37 3.18 2.59 0.38 <.001 0.091 0.624 

7 2.18 3.21 2.48 2.89 3.24 2.60 
    

 ST 

(d) 

CON ROS SRB SFS GGR BHT  SED AO ST AO x ST 

b
*

 v
a
lu

e 0 5.89 9.54 5.96 6.01 9.43 7.47     

3 7.48 10.31 7.37 7.64 10.93 7.98 0.80 <.001 <.001 0.654 

7 7.21 10.51 8.22 8.55 10.35 7.55     

SED, standard error of differences of means; p ≤ 0.05 is significantly different according to the Tukey's HSD 

test; p > 0.05 is not significant different according to the Tukey's HSD test. 
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4.2.10 Effect of Natural Antioxidants on Fatty Acid Composition  

In raw meat, all antioxidants yielded higher content of all fatty acids, while a significant 

effect of antioxidants was found on C14:0, C18:0, C18: 2 n-6, C20:4 n-6, PUFAs, n-3 and 

n-6 (Table 4.8 and Appendix Table C5). The antioxidants that significantly yielded these 

fatty acids was GGR compared to the non-treated samples. All fatty acids in raw meat 

samples were declined over storage time, but significant reduction (p ≤ 0.05) was found in 

C20:0 content (Table 4.8 and Appendix Table C5). A significant interaction was found 

between antioxidant and storage time for C20:0 in raw meat (p < 0.001). The amount of 

C20:0 was higher in all treated samples (with exception BHT) compared to the non-treated 

samples over 3 days, but antioxidants did not award any protection over 7 days (Table 4.8). 

There was a significant interaction between antioxidants and storage time for ∑ n-3 (p = 

0.038), indicating the effect of antioxidants on ∑n-3 is depending on the storage time (Table 

4.8). All antioxidants (with exception of BHT) had a higher amount of n-3 compared to the 

non-treated samples over storage time.  

After raw meat subjected to the sous vide cooking process, the fatty acids in chicken breast 

samples were significantly affected by the cooking process, which resulted in a decrease of 

all fatty acids after cooking compared to that in raw meat (Table 4.9 and Appendix Table 

C6). The application of antioxidants had a significant effect on C20:0 fatty acid (p = 0.002). 

However, none of the antioxidants awarded significant protection against a reduction of 

C20:0 compared to that in non-treated samples. BHT was found to have a higher amount of 

C20:0 of 0.25 g/kg DM compared to the GGR treatment of 0.20 g/kg DM. The storage time 

had a significant impact on content of C14:0, C16:0, C18:0 and the sum of SFA in cooked 

samples (p ≤ 0.05). All these fatty acids were decreased over 7 days of storage time, while a 

significant reduction was found at day 3 compared to day 0 (Table 4.9 and Appendix Table 
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C6). A significant AO x ST interaction (p < 0.001) was shown for C20:0 in cooked meat 

(Table 4.9), indicating that the effect of antioxidant on C20:0 is depending on the storage 

time. The amount of this fatty acid in BHT treatment was significantly higher than that in 

non-treated samples at day 3 days of storage time, but thereafter none of antioxidants 

provided any protection against reduction of C20:0 at day 7. With respect to the MUFAs, a 

significant effect of antioxidant on C16:1 n-7 in cooked meat was shown (p = 0.007), but 

did not significantly affect the C18:1 n-9 and total content of MUFAs (p > 0.05) (Table 4.9 

and Appendix Table C6). The amount of C16:1 n-7 was highest in BHT, but did not 

significantly differ from SFS, ROS and non-treated samples, only was significantly different 

from SRB and GGR treatment. The interaction between antioxidant and storage time for all 

MUFAs was not significant (p > 0.05). The application of antioxidants had a significant 

effect on the C18:2 n-6, C20:4 n-6, C22:6 n-3 and total of PUFAs (p ≤ 0.05). The 

antioxidants that provided a greater protection against degradation of C18:2 n-6 and total 

PUFAs was SFS compared to the non-treated samples, while SRB treatment was found to 

have the highest C22:6 n-3 content of 0.51 g/kg DM, but statistically did not differ from the 

non-treated samples. A significant (p = 0.016) effect of storage time was found only on 

content of C18:3 n-3 at day 7 compared to day 0 with a + 18 % decrease over 7 days of 

storage time (Table 4.9 and Appendix Table C6). A significant AO x ST interaction (p = 

0.041) was found for C20:4 n-6 in cooked samples (Table 4.9). None of the antioxidants 

provided any protection against reduction of these fatty acids compared to the non-treated 

samples over 7 days of storage time. Over storage time, all samples (treated or non-treated) 

statistically were not changed with time. The results also showed that there was a significant 

effect of antioxidants on the ∑n-3 and ∑n-6 PUFA content in cooked chicken breast meat (p 

≤ 0.05). SFS treatment had the highest content of ∑n-3 and ∑n-6 PUFA with mean values 
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of 3.17 and 12.82 g/kg DM for ∑n-3 and ∑n-6 PUFA, respectively. Regarding the storage 

time, ∑n-3 PUFA content in cooked meat significantly reduced over storage time, highest 

reduction was found at day 7 compared to the day 0. No significant AO x ST interaction for 

both ∑n-3 and ∑n-6 (p = 0.222; p = 0.334) was detected in cooked meat (Table 4.9).  
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Table 4. 8 Effect of natural antioxidants application on fatty acid composition (g of fatty 

acid/kg DM) of raw chicken breast meat during the storage time (ST) at 4 oC. 

Fatty acid 
ST 

(d) 

 Antioxidants (AO)   p value 

CON BHT ROS SRB SFS GGR SED AO ST AO x ST 

Total F. A 

0 56.75 62.73 62.06 73.15 64.24 63.68     

3 53.19 50.83 50.00 57.56 65.59 75.95 7.48 0.073 0.286 0.109 

7 52.77 65.92 67.31 60.88 58.54 63.39     

C14:0 

0 0.28 0.28 0.26 0.33 0.29 0.32     

3 0.20 0.25 0.22 0.25 0.29 0.39 0.04 0.026 0.394 0.112 

7 0.22 0.33 0.32 0.27 0.27 0.29     

C16:0 

0 12.73 13.86 13.99 16.72 14.25 14.36     

3 11.01 11.34 11.14 12.41 14.07 16.73 1.82 0.091 0.134 0.094 

7 11.21 15.89 14.74 13.22 12.58 13.50     

C18:0 

0 5.36 5.85 5.94 6.11ab 6.09 5.88     

3 5.16 5.15 5.06 5.73ab 6.49 7.41 0.55 0.049 0.382 0.071 

7 5.55 5.58 5.76 5.39ab 5.50 5.70     

C20:0 

0 0.20a 0.33bcd 0.26abc 0.38d 0.27abcd 0.27abcd     

3 0.23abc 0.22ab 0.27abcd 0.26abc 0.27abcd 0.33cd 0.03 0.069 <.001 <.001 

7 0.29abcd 0.26abc 0.24abc 0.24abc 0.20a 0.19a     

∑ SFA 

0 18.58 20.32 20.45 23.54 20.90 20.83     

3 16.61 16.96 16.68 18.65 21.12 24.87 2.32 0.073 0.228 0.076 

7 17.27 22.06 21.05 19.10 18.55 19.69     

C16:1 n-7 

0 1.76 1.67 1.80 2.20 1.81 2.10     

3 1.37 1.34 1.18 1.26 1.58 2.07 0.46 0.336 0.052 0.235 

7 1.25 2.80 2.01 1.82 1.51 1.92     

C18:1 n-9 

0 21.96 24.28 23.54 29.19 24.93 24.98     

3 20.40 18.84 17.54 21.70 25.04 28.03 3.50 0.186 0.141 0.204 

7 19.94 26.24 25.87 23.04 21.98 24.69     

∑ MUFA 

0 23.73 25.95 25.33 31.40 26.74 27.08     

3 21.77 20.18 18.72 22.96 26.61 30.10 3.92 0.210 0.126 0.218 

7 21.20 29.04 27.88 24.86 23.49 26.61     

C18:2 n-6 

0 11.24 12.71 12.43 14.31 12.89 12.29     

3 11.37 10.33 11.05 12.36 13.82 16.01 1.46 0.019 0.965 0.115 

7 10.75 11.53 14.30 13.13 12.74 13.18     

C18:3 n-3 

0 1.46 1.71 1.59 1.74 1.65 1.58     

3 1.37 1.22 1.36 1.62 1.92 2.11 0.30 0.118 0.738 0.398 

7 1.36 1.51 1.99 1.76 1.72 1.80     

C20:4 n-6 

0 0.25 0.40 0.45 0.42 0.41 0.40     

3 0.30 0.41 0.48 0.36 0.39 0.60 0.06 0.013 0.092 0.074 

7 0.38 0.38 0.37 0.37 0.29 0.36     
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Table 4.8 (continued)  

Fatty acid 
ST 

(d) 

 Antioxidants (AO) SED  p value  

CON BHT ROS SRB SFS GGR  AO ST AO x ST 

C20:5 n-3 

0 0.28 0.25 0.27 0.28 0.27 0.27     

3 0.20 0.29 0.29 0.26 0.29 0.34 0.06 0.687 0.867 0.899 

7 0.26 0.29 0.29 0.29 0.25 0.31     

C22:5 n-3 

0 0.74 0.84 0.97 0.72 0.82 0.80     

3 0.96 0.90 0.96 0.81 0.94 1.28 0.14 0.185 0.025 0.326 

7 0.94 0.64 0.88 0.81 0.93 0.85     

C22:6 n-3 

0 0.48 0.55 0.58 0.75 0.57 0.42     

3 0.61 0.54 0.46 0.54 0.50 0.65 0.12 0.795 0.989 0.389 

7 0.63 0.47 0.54 0.55 0.57 0.59     

∑ PUFA 

0 14.44 16.46 16.28 18.21 16.60 15.76     

3 14.81 13.70 14.60 15.96 17.86 20.98 1.73 0.012 0.998 0.068 

7 14.31 14.82 18.38 16.91 16.49 17.09     

∑ n-3  

0 2.96a 3.34 3.40ab 3.48ab 3.31ab 3.07a     

3 3.14ab 2.96 3.07a 3.23ab 3.66ab 4.37b 0.33 0.028 0.544 0.038 

7 3.18ab 2.92 3.71ab 3.41ab 3.47ab 3.55ab     

∑ n-6 

0 11.49ab 13.11 12.88 14.73 13.29 12.69     

3 11.67ab 10.74 11.53 12.72 14.20 16.61 1.46 0.014 0.980 0.096 

7 11.13a 11.91 14.67 13.50 13.02 13.55     

Mean values with different small superscript letters presented within each row and column of each fatty acid 

differ significantly (p ≤ 0.05) according to the Tukey's HSD test.  
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Table 4. 9 Effect of natural antioxidants application on fatty acid composition (g of fatty 

acid/kg DM) of sous vide chicken breast meat during the storage time (ST) at 4 oC. 

Fatty acid 
ST 

(d) 

 Antioxidants (AO)   p value 

CON BHT ROS SRB SFS GGR SED AO ST AO x ST 

T. FA 

0 55.63 64.96 58.37 57.29 70.37 52.22     

3 52.21 50.17 54.20 57.64 56.90 50.77 6.72 0.319 0.025 0.504 

7 48.45 59.14 54.47 53.08 48.81 51.02     

C14:0 

0 0.30ab 0.31ab 0.26ab 0.25ab 0.35b 0.22ab     

3 0.25ab 0.21a 0.22a 0.25ab 0.24ab 0.22ab 0.03 0.065 0.001 0.051 

7 0.20a 0.31ab 0.23ab 0.21a 0.22a 0.21a     

C16:0 

0 12.74 15.28 12.86 12.64 15.22 11.19     

3 11.41 11.69 11.22 12.51 12.43 11.01 1.60 0.223 0.024 0.567 

7 11.37 13.53 12.15 11.20 10.42 11.28     

C18:0 

0 5.43 5.60 5.27 5.53 6.01 5.02     

3 5.07 4.68 4.98 5.34 5.31 5.08 0.38 0.608 0.019 0.523 

7 5.02 5.21 5.10 5.22 4.81 5.03     

C20:0 

0 0.17ab 0.27cd 0.22abcd 0.24abcd 0.25abcd 0.19abcd     

3 0.22abcd 0.20abcd 0.23abcd 0.21a 0.29d 0.17abc 0.02 0.002 0.358 <.001 

7 0.23abcd 0.27a 0.20abcd 0.21abcd 0.16a 0.16ab     

∑SFA 

0 18.63 21.45 18.60 18.66 21.84 16.62     

3 16.95 16.78 16.66 18.31 18.27 16.49 2.00 0.320 0.017 0.533 

7 16.82 19.21 17.68 16.63 15.61 16.53     

C16:1 n-7 

0 1.81 2.80 1.82 1.52 1.99 1.27     

3 1.31 1.79 1.26 1.67 1.66 1.10 0.41 0.007 0.051 0.486 

7 1.62 2.15 1.69 1.12 1.17 1.46     

C18:1 n-9 

0 21.27 25.99 22.24 22.01 27.59 19.95     

3 19.87 19.80 20.77 22.41 22.14 18.71 2.99 0.290 0.038 0.499 

7 19.05 23.38 20.88 19.93 17.87 19.64     

∑MUFA 

0 23.08 28.79 24.05 23.53 29.58 21.22     

3 21.17 21.59 22.03 24.08 23.79 19.81 3.33 0.222 0.036 0.503 

7 20.68 25.53 22.57 21.04 19.05 21.10     

C18:2 n-6 

0 10.66 11.58 12.17 11.86 15.01 11.14     

3 10.93 9.11 12.13 11.84 11.60 11.25 1.44 0.034 0.062 0.318 

7 8.21 11.27 11.03 12.05 10.95 10.34     

C18:3 n-3 

0 1.49 1.54 1.65 1.51 2.17 1.43     

3 1.48 1.05 1.58 1.60 1.52 1.43 0.24 0.090 0.016 0.178 

7 0.97 1.43 1.39 1.54 1.36 1.30     

C20:4 n-6 

0 0.32abc 0.22a 0.29abc 0.25ab 0.31abc 0.23ab     

3 0.33abc 0.22a 0.27abc 0.25ab 0.23ab 0.30abc 0.03 0.001 0.528 0.041 

7 0.39c 0.22a 0.26abc 0.24ab 0.35bc 0.24ab     

Mean values with different small superscript letters presented within each row and column of each fatty acid 

differ significantly (p ≤ 0.05) according to the Tukey's HSD test.  
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Table 4.9 (continued) 

Fatty acid 
ST 

(d) 

 Antioxidants (AO)   p value 

CON BHT ROS SRB SFS GGR SED AO ST AO x ST 

C20:5 n-3 

0 0.27 0.29 0.29 0.25 0.27 0.24     

3 0.23 0.27 0.23 0.26 0.27 0.25 0.023 0.272 0.233 0.521 

7 0.26 0.27 0.28 0.24 0.27 0.25     

C22:5 n-3 

0 0.70 0.69 0.83 0.75 0.75 0.81     

3 0.69 0.70 0.78 0.79 0.73 0.77 0.058 0.061 0.598 0.928 

7 0.69 0.77 0.77 0.82 0.74 0.80     

C22:6 n-3 

0 0.47 0.39 0.50 0.49 0.45 0.52     

3 0.42 0.45 0.53 0.51 0.50 0.48 0.042 0.006 0.705 0.612 

7 0.43 0.44 0.48 0.52 0.50 0.47     

∑ PUFA 

0 13.91 14.71 15.72 15.10 18.95 14.38     

3 14.08 11.80 15.51 15.26 14.84 14.48 1.717 0.041 0.058 0.321 

7 10.95 14.39 14.22 15.40 14.16 13.39     

∑ n-3  

0 2.93 2.91 3.27 3.00 3.63 3.01     

3 2.82 2.47 3.11 3.16 3.01 2.93 0.258 0.013 0.025 0.222 

7 2.35 2.90 2.93 3.12 2.86 2.81     

∑ n-6 

0 10.99 11.80 12.46 12.11 15.30 11.38     

3 11.26 9.33 12.40 12.10 11.83 11.55 1.464 0.049 0.068 0.334 

7 8.60 11.49 11.29 12.29 11.30 10.58     
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4.3 Discussion 

4.3.1 Effect of Natural Antioxidants on Thiobarbituric Acid-Reactive Substances 

(TBARS)  

TBARS values in raw and cooked meat in the current study were similar to those shown 

previously (Min et al., 2008; Selani et al., 2011). However, the magnitude of the change 

in TBARS values after cooking and storage differs among reports in chicken meat 

(Cortinas et al., 2004; Naveena et al., 2008; Selani et al., 2011). This variation could be 

associated with several factors such as the fatty acid profile of the meat, cooking process 

and storage circumstance (time, temperature, package and antioxidant contents such as 

vitamin E). TBARS values were significantly higher in sous vide cooked samples than in 

raw meat (Appendix Table C2). This increase in lipid oxidation has previously been 

attributed to thermal processes, which are known to disrupt the cell membranes and 

release pro-oxidants (Min et al., 2008; Selani et al., 2011; Naveena et al., 2013). Cross et 

al. (1987) reported that cooking related oxidation of meat is linked to the breakdown of 

haem proteins, which yield pro-oxidants. This study shows that supplementation with 

natural antioxidants significantly reduces TBARS values in both raw and sous vide 

cooked meat (p ≤ 0.05) (Table 4.1 and Appendix Table C2). Raw meat samples had 

significantly lower TBARS when treated with SFS extract (p = 0.012) compared to the 

non-treated sample control (Table 4.1 and Appendix Table C2). This could be due to 

phenolic compounds in SFS that can inhibit the formation of TBARS in raw meat. In 

order to assess the practical effectiveness of the natural antioxidants they were compared 

to a powerful synthetic antioxidant (BHT). There were no significant differences found 

between natural antioxidants and BHT, indicating that the natural antioxidants have a 
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similar protective characteristic in raw chicken meat to that of synthetic ones (Table 4.1 

and Appendix Table C2). In cooked meat, all treated samples had significantly lower 

TBARS values over 7 days. Among the treatments, ROS extract imparted significantly 

lower TBARS values compared to the non-treated samples (Table 4.1 and Figure 4.2). 

The application of ROS as a natural antioxidant either in meat and meat products used 

directly or in extracted form has been well documented (Chen et al., 1999; Yanishlieva-

Maslarova et al., 2001; Mielnik et al., 2003; Rojas and Brewer 2007). In this work, ROS 

retarded lipid oxidation during the storage time by reducing TBARS values when applied 

to turkey meat following mechanical deboning (Mielnik et al., 2003). This data shows 

that there are no significant differences between natural antioxidants and synthetic 

treatments in either raw or cooked meats which suggested that the application of natural 

extracts was as powerful as the BHT treatment, which is supported by previous studies 

(McCarthy et al., 2001; Naveena et al., 2008; Selani et al., 2011).  

Furthermore, the value of TBARS in all samples either before or after cooking increased 

at day 3 of storage and decreased at day 7 (Table 4.1 and Appendix Table C2). These 

results are in agreement with McCarthy et al (2001) who reported that TBARS values in 

cooked pork patties increased significantly up to 6 days and declined up to 9 days of 

storage. The reduction of TBARS value following a continuous storage time might be 

caused by a breakdown of malondialdehyde and produce volatile compounds during the 

on-going exposure to heat and oxygen (Bax et al., 2012). All meat samples supplemented 

with antioxidants were found to have lower levels of lipid oxidation throughout the 

storage time, compared to the non-treated samples. These results are in agreement with 

those reported by Naveena et al. (2013) who found that raw chicken patties treated with 

either natural or synthetic antioxidants markedly reduced the formation of TBARS 
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compared to the non-treated over 9 days of refrigeration storage. In the current study, 

TBARS values in all raw samples, with or without antioxidants added, ranged from 0.31 

to 0.62 mg MDA/kg, which suggested only small oxidative deterioration changes in the 

breast meat. The most extensive oxidation of lipids occurred in cooked breast meat (0.99–

7.14 mg MDA/kg meat) where these values were significantly different (p ≤ 0.05) from 

raw samples. 

4.3.2 Effect of Natural Antioxidants on Conjugated Dienes (CDs) 

Conjugated dienes (CDs) are a good indicator of primary lipid oxidation products 

(Estevez et al., 2009). The presence of conjugated dienes (CDs) in meat indicates that 

polyunsaturated fatty acids that have two double bonds in their structure underwent an 

oxidation process (Feiner, 2006; Estevez et al., 2009). CDs have been associated with 

warmed over flavour in pork meat (Byrne et al., 2001). Conjugated dienes (CDs) values 

found in meat in the current study were lower than those shown in previous work (Hwang 

et al., 2013), who found that the CD values in raw chicken patties ranged from 57-78 

µmole/g lipid. In this study, CDs were monitored to evaluate the effectiveness of natural 

antioxidants in delaying lipid oxidation in cooked and raw chicken meat. The average CD 

values of sous vide cooked chicken breast samples were significantly higher (p ≤ 0.05) 

than that in raw meat (Appendix Table C2). The higher values of CD suggest that the 

unsaturated fatty acids and phospholipids became unstable during the cooking process. 

This is most likely due to the decomposition of polyunsaturated fatty acids during the 

sous vide cooking process which yield elevated amounts of conjugated dienes. During 

the early stages of the oxidation process of polyunsaturated fatty acids, the double bonds 

migrate along the carbon chain and yield unconjugated dienes, which are relatively 
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unstable compounds (Estevez et al., 2009). These unconjugated dienes then chemically 

stabilised by being converted to conjugated dienes. Hence, the elevated presence of CDs 

indicates the decomposition of polyunsaturated fatty acids. Similar findings were found 

by Farhoosh et al. (2012) who found a significant increase in CDs in olive oil samples 

subjected to a heating process compared to the non-treated samples. In this study, the use 

of natural antioxidants significantly reduced (p ≤ 0.05) the formation of conjugated dienes 

in raw meat samples; there were no significant differences between natural antioxidants 

and the high-performing synthetic BHT (Table 4.2 and Appendix Table C2). Our results 

indicate that incorporation of natural antioxidants in chicken meat have the ability to 

retard oxidation levels and enhance its stability against autoxidation. These results are in 

agreement with those observed by Choe et al. (2011), who showed that addition of natural 

antioxidants to ground pork reduced the formation of CDs compared to the non-treated 

over a 10 day time. Similar findings were reported by Hwang et al. (2011) who found that 

addition of ganghwayakssuk extract to raw chicken patties reduced the formation of CDs 

over 10 days at 4 oC. Furthermore, in the current study, storage time was found to have a 

significant effect on the formation of the CDs in both raw and cooked meat (Table 4.2 

and Appendix Table C2). Along with increased storage time, mean values of CD 

increased in raw and cooked meat at each interval of storage time. Higher CDs were also 

noticed in cooked meat over storage time. This could be due to thermal processes that can 

breakdown the polyunsaturated fatty acids and result in an increase in CD values over 

time. These results are in agreement with those reported by Lee et al. (2010) who found 

an increase in CDs over 7 days in ground pork stored at 4 oC. The formation of CDs 

depends on the oxygen uptake during the storage time (Sultana et al., 2007).  
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4.3.3 Effect of Natural Antioxidants on Conjugated Trienes (CTs) 

Conjugated trienes (CTs) are a secondary lipid oxidation products. The formation of CT 

occurs when polyunsaturated fatty acids containing three or more double bonds in their 

structure undergo an oxidation process that yields conjugated diene moieties, which then 

extend and incorporate an additional double bond (Wrolstad et al., 2005). The presence 

of conjugated trienes in meat is indicative of advanced lipid oxidation (Wrolstad et al., 

2005; Ali et al., 2009; Al-Dalain et al., 2011). In this study, the sous vide cooked meat 

caused a marked increase of CT values compared to those in raw meat (Appendix Table 

C2). These results are in agreement with those reported by Ali et al. (2009), who found 

that frying significantly increased the formation of CTs in kebabs compared to non-fried 

samples. The use of natural antioxidants reduced the formation of CTs in raw meat 

compared to the non-treated samples immediately after the dipping time (Table 4.3 and 

Appendix Table C2). The protective influence of natural antioxidants with regards to CTs 

formation was still present post cooking breast chicken meat immediately after dipping 

time, but was essentially absent following any length of storage time. It seems that the 

application of natural antioxidants into breast meat could have the ability to retard 

oxidation and enhance the stability of fat against autoxidation. These results are in 

agreement with those reported by Sultana et al. (2007), who found the addition of corncob 

extract to corn oil reduced the formation of CTs. In addition, storage time was found to 

have an effect on the formation of CTs in both raw and cooked meat (Table 4.3 and 

Appendix Table C2). Along with increased storage time, mean values of CT increased in 

raw and cooked meat throughout the 7 days of storage time. Higher CTs were also noticed 

in cooked meat over storage time (Table 4.3 and Appendix Table C2). This could be due 

to thermal processes that can breakdown polyunsaturated fatty acids and result in an 
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increase in CTs over time. Moreover, the higher formation of CTs in cooked meat might 

be attributed to the oxygen uptake during the storage time (Sultana et al., 2007).  

4.3.4 Effect of Natural Antioxidants on Phospholipid Content 

Phospholipids are known to be susceptible to thermal degradation (Jayasena et al., 2013) 

and have been linked to the development of warmed-over flavours in reheated meats 

(Igene and Pearson, 1979; Igene et al., 1980; Roldan et al., 2014). In the current study, 

chicken breast meat cooked by sous vide at 75 for 45 min was found to have significantly 

higher phospholipid degradation compared to the raw meat (Appendix Table C3). These 

results are in agreement with Wang et al. (2011) who observed that phospholipid content 

in duck muscle declined after exposure to different heating methods such as boiling in 

water for 30 min or roasting at 90 oC for 1 hr. The increase phospholipids degradation is 

associated with changes in the chemical composition during the oxidative deterioration 

of lipids, heating and enzymatic degradation (Jayasena et al., 2013).  

The addition of antioxidants to chicken breast meat had a significant protective effect on 

phospholipid content in cooked meat, but did not affect in raw meat (Table 4.4 and 

Appendix Table C3). Among the sous-vide cooked samples, the highest phospholipid 

content was found in ROS treated samples followed by SRB, SFS, GGR treatments and 

the non-treated control. Hence, the effectiveness of the natural antioxidants in inhibition 

of phospholipid degradation was greater compared to BHT, which supports the notion 

that natural antioxidants are worthwhile contenders in the replacement of synthetic 

antioxidants. As mentioned before, the underpinning mechanism by antioxidants in 

protecting phospholipids from thermal decomposition is not well known. This mechanism 

could be similar to the protective mechanism as it applies to individual fatty acids since 



202 

 

 

phospholipids are considered to have elevated levels of unsaturated fatty acids. Moreover, 

a significant effect of storage time was seen in phospholipid content in both raw and 

cooked meat (p ≤ 0.05). The resulting phospholipid content decreased over 7 days of 

storage and a significant reduction of phospholipid content was found at the end of the 

storage time compared to day 0 (Table 4.4 and Appendix Table C3). The phospholipid 

content in treated and non-treated samples of raw and cooked meat significantly 

decreased over 7 days of storage potentially indicating an enzymatic and thermal 

degradation. However, the highest reduction of phospholipids was shown in non-treated 

samples compared to those treated with natural antioxidants (Figures 4.4 and 4.5). This 

could be attributed to the structural phospholipids that contain high levels of 

polyunsaturated fatty acids predominantly those PUFAs that have three or more double 

bonds, which they increase the sensitivity of phospholipid to degradation under storage 

conditions and heating process. Similar findings were reported by Alasnier et al. (2000) 

and Soyer et al. (2010), who revealed a marked reduction in phospholipids in raw breast 

and thigh chicken meat without antioxidants added during a storage time. The decrease 

of phospholipids related to its decomposition and forming a complex with protein or 

carbohydrate (Takagi and Yoshida, 1999). 

4.3.5 Effect of Natural Antioxidants on pH Values  

In the meat industry, pH is considered an important parameter that has an effect on the 

meat quality (Feiner, 2006). The pH of meat is known as an impact on the rate of lipid 

oxidation in chicken (Ozer and Saricoban, 2010). Thiansilakul et al. (2011) found a 

correlation between lipid oxidation and pH value in chicken patties under refrigeration 

temperature. At pH >7.0, lipid oxidation (TBARS) in chicken, pork, beef and lamb 
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muscles was found to be higher than pH<7.0 (Tichivangana & Morrissey, 1985). The pH 

values of raw and cooked meat ranged from 5.69-6.00 and 6.00-6.17, respectively, which 

corresponded to those reported in a previous study where the pH of raw meat ranged from 

5.61-5.87 and cooked meat ranged from 5.92-6.03 (Naveena et al., 2013). 

The pH values significantly increased after the cooking process (Appendix Table C3). 

These results were similar to those published by Naveena et al. (2008; 2013), who 

demonstrated that the pH of meat increased after a cooking process. Antioxidant 

supplementation had a significant an effect on the pH values in raw meat (p = 0.004), but 

did not have any effect on the pH values in cooked meat (p = 0.155). In raw meat, the 

antioxidants that had significantly lower pH values were ROS and GGR treatments than 

the non-treated samples (Table 4.5 and Appendix Table C3). This could be attributed to 

the acid compounds that present in ROS and GGR extracts that may have caused a drop-

in pH in breast chicken meat. Hence, ROS and GGR extracts were found to have a servals 

acid compounds such as carnosic acid, rosmarinic acid in rosemary extracts and cinnamic 

acid, salicylic acid in the ginger extract (Hernandez-Hernandez et al., 2009; Ghasemzadeh 

et al., 2010). The application of natural antioxidants such as Nutrox and Meliox 

significantly reduced the pH values in pork patties compared to that in non-treated 

samples. However, in the study conducted by Selani et al. (2011), found that a range of 

antioxidants (such as: grape peel and seed extract, sodium erythorbate, citric acid) did not 

have any effect on the pH values in either raw or cooked chicken meat over 9 days of 

storage. These results suggest that the effect of natural antioxidants on pH values in 

chicken meat is depending more on the type of natural antioxidants being used.   
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4.3.6 Effect of Natural Antioxidants on Drip Loss /Water Holding Capacity  

Water-holding capacity is shown to be inversely proportional to drip loss (Grossi, et al., 

2014). Water holding capacity can be described as water remaining in meat following a 

storage time or a cooking process (Aaslyng et al., 2003), which is predominantly 

dependent upon the ability of myofibrillar protein to bind and retain water (Wang et al., 

2009). Proteins, like triglycerides and phospholipids, undergo oxidation by a free radical 

mechanism (Grossi et al., 2014). According to the results reported by Wang et al. (2009), 

sarcoplasmic and myofibrillar protein solubility in chicken meat decreased with an 

increase in time. In the current study, samples supplemented with natural antioxidants 

had a significantly lower drip loss compared to the non-treated samples over time (Figure 

4.6). Among antioxidants, ROS treatment was found to have the lowest drip loss 

compared to any other treatments (Tables 4.6 and Appendix Table C4). It seems that the 

reduction of drip loss in meat samples treated with natural antioxidants performed better 

than BHT. This could be attributed to inhibition of meat protein degradation by phenolic 

compounds that leads to increase the ability of meat to retain water. The drip loss of raw 

chicken meat significantly increased with storage time. The non-treated samples had a 

greater drip loss compared to the other treatments (Figure 4.6 and Appendix Table C4). 

Increasing drip loss in chicken meat during storage is likely to be due to greater oxidation 

of meat protein, which could reduce the ability of proteins to retain water. These findings 

were in agreement with Maqsood et al. (2015), who found that drip loss increased 

progressively in camel meat under refrigeration temperature with increasing storage time.   
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4.3.7 Effect of Natural Antioxidants on Cooking Loss  

Cooking loss is known total loss of water that occurs in meat during the cooking process 

(Roldan et al., 2015) and has been linked to the thermal process (Aaslyng et al., 2003), 

which can denature and oxidize protein (Wang et al., 2009). Thus, reducing the ability of 

the meat protein to retain water and its structure (Aaslyng et al., 2003).  

The proportion of cooking loss in meat samples was significantly (p = 0.013) affected by 

the addition of antioxidants (Table 4.6 and Appendix Table C4). However, a significant 

protection against an increase of cooking loss was found in samples treated with BHT 

with mean value of 20.51% compared to the non-treated samples of 23.42 %. No 

significant differences were found among natural antioxidants and non-treated samples. 

However, natural antioxidants were found to have the lower cooking loss than that in non-

treated samples. The increase in cooking loss in natural antioxidants and non-treated 

samples could be attributed to degradation of meat proteins caused by cooking 

temperature at 75 oC for 45 min. The increase of cooking loss in meat depends on the 

cooking temperature and cooking duration (Roldan et al., 2013). Consequently, the 

cooking process can cause the oxidation and denaturation of meat proteins (Wang et al., 

2009). The latter leads to reduced ability of the meat protein to retain water in its structure 

by capillary forces (Aaslyng et al., 2003). These results were consistent with those 

reported by Naveena et al. (2004), when supplementing buffalo meat chunks with ginger 

(5% w/w) and papain (0.2 % w/w) did not significantly affect the cooking loss compared 

to the non- treated samples, while meat samples treated with cucumis (2% w/w) resulted 

in a significantly lower cooking loss compared to the non-treated samples. This could be 

related to antioxidant compounds and their capacity in cucumis to protect proteins from 

denaturation and retaining more moisture.  
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4.3.8 Effect of Natural Antioxidants on Texture (Shear Force) 

The shear force values of cooked meat were not significantly affected by antioxidant 

(natural or synthetic) supplementation (p > 0.05) (Table 4.6 and Appendix Table C4). Our 

results disagree with those reported by Naveena and Mendirratta (2001), who found that 

the addition of ginger reduced the shear force, especially at higher concentrations. These 

differences between this study and ours may be due to the concentration of antioxidants 

or dipping time used which could decrease the shear force.  

4.3.9 Effect of Natural Antioxidants on Colour  

Colour is one of the attributes of most interest to consumers in assessing and purchasing 

meat because the colour is a primary sensory characteristic, it is often used to evaluate 

meat quality either in the home or at retail (Velasco and Williams, 2011). The 

discolouration of meat during storage time takes place by oxidation of oxymyoglobin, 

resulting in the appearance of an undesirable colour in meat (Nerin et al., 2006). The 

addition of antioxidants to meat and its products can inhibit the discolouration of meat 

(Lee et al., 2010). The results obtained from our study show that the lightness (L*) values 

of raw chicken meat were not significantly affected by antioxidant treatment (Table 4.7 

and Appendix Table C4). However, antioxidants provided a greater stability with respect 

to discoloration as a higher L* values were found in antioxidant treatments than non-

treated samples. Similar findings were observed by Selani et al. (2011), that observed 

application of antioxidants to raw breast meat did not have any effect on lightness (L*) 

values as compared to the non-treated samples. There was a significant (p < 0.001) effect 

of natural antioxidants on redness (a*) values (Appendix Table C4). The antioxidants that 

provided a greater stability of redness (a*) values were GGR and ROS compared to the 



207 

 

 

non-treated samples (Table 4.7 and Appendix Table C4). This finding indicates that the 

application of natural antioxidants inhibited the discoloration of chicken meat compared 

to the non-treated samples. The effectiveness of antioxidants to reduce the discoloration 

of meat has been reported by Ahn et al. (2007), who found that redness (a*) values in 

beef meat samples treated with oleoresin rosemary was significantly higher than non-

treated samples.  

For the yellowness (b*) values, the b* value was affected significantly (p < 0.001) by 

antioxidants application (Table 4.7 and Appendix Table C4). GGR and ROS had 

significantly higher b* values compared to the non-treated samples. Hence, the higher in 

yellowness (b*) values of chicken meat treated with GGR and ROS extracts might be 

caused by the application of plant extracts which presented a dark green and orange 

colour. Similar findings were demonstrated by Choe et al. (2011), who found the highest 

b* values in pork meat treated with various levels of barley leaf and lotus powder 

compared with the non-treated samples. The reduction of discolouration in chicken meat 

could be related to antioxidant compounds that have the ability to reduce the oxidation of 

oxymyoglobin and formation metmyoglobin.  

4.3.10 Effect of Natural Antioxidants on Fatty Acid Composition 

The total fatty acids, SFAs, MUFAs and PUFAs content in the current study were similar 

to those reported by Mariutti et al. (2011), and higher than those reported by Cortinas et 

al. (2004) who found that the amount of SFAs, MUFAs and PUFAs in breast meat was 

6.24, 9.13 and 3.48 g/kg DM. Measuring fatty acid content is an important factor in 

evaluating the nutritional quality of meat and its products (Mariutti, et al., 2011). The 

thermal process can potentially cause hydrolysis of fatty acids in meat (Cortinas et al., 
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2004; Alfaia et al., 2010). The cooking process caused a decrease in all individual fatty 

acids and SFAs, MUFAs and PUFAs in all meat samples (Appendix Table C5 and C6). 

These results suggest that the majority of SFAs, MUFAs and PUFAs in meat remains 

relatively unstable after the cooking process. The possible explanation for this is more 

likely to be due to the high temperature used for cooking which can induce lipid oxidation. 

Hence, the PUFAs in chicken meat were more susceptible to oxidation degradation 

followed by MUFAs and SFAs (11.04, 10.20 and 9.98 %, respectively). These results 

indicate that the cooking process reduced all individual fatty acids and influenced all three 

families of fatty acids SFAs, MUFAs and PUFAs in different proportions. It seems that 

unsaturated fatty acids were more susceptible to oxidation than saturated fatty acids. 

Sensitivity to oxidative processes mainly depends on the composition of lipids. Lipids 

containing high levels of unsaturated fatty acids are considered to be more prone to 

oxidation compared to lipids high in saturated fatty acids (Min et al., 2008). Thus, free 

radicals can easily attack and react with unsaturated fatty acid double bonds, and produce 

short-chain aldehydes (Huang, et al., 2013). Cortinas et al. (2004) observed that the 

cooking of thigh chicken meat caused reduction of all individual and the sum SFAs, 

MUFAs and PUFAs compared to the raw meat.  

According to the literature, the stability of fatty acid content in meat increased after it was 

supplemented with antioxidants, since the existing antioxidants act as hydrogen donors 

to supply electrons in order to reduce the hydrolysis of unsaturated fatty acids (Cortinas 

et al., 2004; Sampaio et al., 2012). In our study, the results showed that there was a 

significant impact of antioxidants on fatty acid composition in raw (Table 4.8 and 

Appendix Table C5). In raw meat, all antioxidants yielded higher content of all fatty acids, 

while a significant effect of antioxidants was found on C14:0, C18:0, C18: 2 n-6, C20:4 
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n-6, PUFAs, n-3 and n-6 (Table 4.8 and Appendix Table C5). The antioxidants that 

significantly yielded these fatty acids was GGR compared to the non-treated samples. 

After raw meat subjected to sous vide cooking process, the antioxidants that provided a 

greater protection against degradation of C18:2 n-6, total PUFAs, ∑n-3 and ∑n-6 was 

SFS compared to the non-treated samples (Table 4.9 and Appendix Table C6). These 

results were in agreement with Sampaio et al. (2012) who found that natural antioxidant 

treatments (oregano, plus sage, oregano, plus sage plus 5 % honey, and oregano plus sage 

plus 10 % honey) had significantly higher contents of all fatty acids compared to the non-

treated samples. In contrast, in the study conducted by Pateiro et al. (2014), that observed 

the fatty acid composition of pig meat treated with natural antioxidant extract and BHT 

did not significantly differ from non-treated samples over storage time. 

The content of fatty acids in all raw and cooked samples gradually declined throughout 

the storage time (Tables 4.8 and 4.9). Treated samples were found to have a lower 

degradation of fatty acids compared to non- treated samples which is likely to be due to 

susceptible lipids being attacked by free radicals. The decrease of all individual and the 

sum of SFAs, MUFAs and PUFAs proportion after 7 days of refrigeration is consistent 

with the data of earlier studies. In the study conducted by Sampaio et al. (2012) all 

individuals and the sum of SFAs, MUFAs and PUFAs proportions decreased in breast 

and thigh chicken meat after 96 hr of storage at 4 oC. Similar findings were shown by 

Mariutti et al. (2011), who found the amount of SFAs, MUFAs, PUFAs, ∑n-3 and ∑n-6 

PUFAs decreased in raw and grilled chicken patties stored at -18 oC for 90 days. The 

reduction of PUFAs content was mainly due to oxidation degradation of polyunsaturated 

fatty acids, mainly C18:2 n-6 and C18:3 n-3 into primary and secondary oxidation 

products.  



210 

 

 

4.4 Conclusions  

Lipid oxidation products in chicken breast meat were affected significantly by the 

cooking process for 7 days. Hence, the results of this study suggest that chicken meat 

after cooking was more prone to lipid oxidation during the storage time as evidenced by 

highest degradation of phospholipid and fatty acids and formation of TBARS, CDs and 

CTs being found in cooked meat. The application of natural antioxidants to chicken breast 

meat prior to the cooking process provided a higher protection with regards to meat lipid 

stability of chicken breast meat stored under refrigeration temperature. All natural 

antioxidants were found to have lower values of TBARS, CD and CT compared to the 

non-treated samples, samples treated with SFS were more resistant to oxidation as 

evidenced by the lower TBARS, CD and CT formation observed. After meat subjected 

to the cooking process, natural antioxidants significantly reduced the formation of 

TBARS values and degradation of phospholipid content compared to the non-treated 

samples, ROS treatment had the lowest TBARS values and highest phospholipid content. 

A significant effect of antioxidants, particularly GGR extract was found on C14:0, C18:0, 

C18: 2 n-6, C20:4 n-6, PUFAs, n-3 and n-6 in raw meat, while in cooked meat, SFS 

treatment yielded more C20:00 and C16:1 n-7, C18:2 n-6, ∑PUFA, ∑n-3 and ∑n-6 PUFA 

compared to any other treatments. The application of natural extracts had significantly 

increased the stability of meat colour as evidenced by highest redness values being found 

in meat samples. Natural antioxidants particularly ROS and GGR significantly reduced 

the pH values. Drip loss and cooking loss of chicken meat markedly enhanced by the 

application of antioxidants. 

The shear force was not significantly affected by antioxidant supplementation.  

Furthermore, storage time had a significant effect on all physical and chemical parameters 



211 

 

 

(with exception pH and a* values) in breast chicken meat samples. The results also show 

that natural antioxidants performed similar to the synthetic antioxidant BHT. It can be 

concluded that the stability of chicken meat could improve by the application of natural 

antioxidants. Because of this, utilising these antioxidants extracted from natural sources 

should be considered as an efficient way to protect physicochemical characteristics and 

the nutritional value of meat.   
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Chapter 5: 

The Impact of the Post-Slaughter Application of Natural Antioxidants 

on the Characteristics of Chicken Meat Cooked by Different Methods 

and Following Reheating. 

5.1 Introduction 

Results presented in chapter 4 demonstrated that using plant extracts as a source of natural 

antioxidants in raw meat and cooked meat reduced the lipid oxidation products. In 

addition, the supplementation of meats with natural antioxidants was found to reduce the 

degradation of fatty acids and in particular, the degradation of phospholipids, which gives 

an indication that treating chicken meat with antioxidants before cooking could slow 

down the autoxidation of cooked meat during the storage time and enhance meat quality. 

The use of antioxidants to prevent and delay the oxidation of lipids in meat and meat-

derived products during the storage time has been the focus of a number of studies 

(McCarthy et al., 2001; Ahn et al., 2002; Sampaio et al., 2012; Karre et al., 2013; Packer 

et al., 2015). Sampaio et al. (2012) found that the shelf life of cooked chicken meat 

increased when natural antioxidants were added prior to processing. They also found that 

the protection against lipid oxidation and degradation in the cooked breast and thigh was 

enhanced.  Furthermore, cooked pork patties containing rosemary extract at 0.2 % (w/w) 

and stored under high-oxygen conditions at 4 oC for 9 days was found to have lower 

thiobarbituric acid reactive substance (TBARS) compared to an untreated control 

(McCarthy et al., 2001). Ahn et al. (2002) investigated the influence of rosemary extract 

(0.02 % (w/w)) in cooked ground beef meat, and found that this significantly decreased 
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the TBARS value, hexanal content and warmed-over flavour score in cooked ground beef 

meat throughout the storage time.  

The cooking process can lead to an increase in the decomposition of fatty acid 

composition (Mariutti et al., 2011); formation of cholesterol-linked oxidation products 

(Khan et al., 2015); and the production of secondary lipid oxidation products and volatile 

compounds (Dominguez et al., 2014), which could have an effect on consumer 

acceptance. Several studies have demonstrated that the rate of lipid oxidation is more 

related to cooking methods in beef (Alfaia et al., 2010), foal meat (Dominguez et al., 

2014; 2015), and in chicken meat (Pikul, 1985). Pikul (1985) evaluated the impact of 

cooking methods and reheating process on lipid oxidation in chicken meat, and showed a 

significant increase in lipid oxidation products in samples that were first cooked, then 

cooled, and subsequently reheated. Lipid oxidation has an association with warmed-over 

flavour, which reduces meat quality by imparting a rancid flavour and grassy odour in 

cooked, frozen and reheated meat (Colindres and Brewer 2011). There is a large variety 

of precooked chicken meat on the market where it is up to the customer to merely reheat 

the meat prior to consumption. In various meat products, this is implicated with the 

phenomenon of warmed-over characteristics. Development of warmed-over flavour in 

cooked meat is a significant issue and causes undesirable sensory changes in pre-cooked 

meat (Lanari et al., 1995; Byrne et al., 2001; Ahn et al., 2002; Mielnik et al., 2006; Hayes, 

2008; Colindres and Brewer 2011). Meat quality and its shelf life could be enhanced by 

means that delay or otherwise inhibit the onset of lipid oxidation such as the use of 

antioxidants. The activity of natural antioxidants for preventing the oxidation of lipid and 

changes which occurs in cooked meat and reheated is not well documented. Hence, this 

study was carried out to evaluate the effects of natural antioxidants on the lipid oxidation 
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products (warmed over flavour) and physical characteristics of chicken meat cooked by 

two distinctly different methods (grilling and sous-vide processing), and subsequent 

reheating. The two precooking processes employed in this work represented “low-

temperature & low-oxygen” (LTLO aka sous vide) (Vaudagna et al., 2002), and “high-

temperature & high-oxygen” (HTHO aka grilled) (Campo et al., 2006). In order to take 

into account the fact that, the reheating process for ready-to-eat foods typically occurs 

sometime after the initial cooking process; the influence of time before reheating was also 

investigated. The reheating process was facilitated in a fan-forced oven, the type typically 

installed in many households. To monitor the development rancidity and the oxidation 

state in cooked chicken meat, changes of phospholipids and fatty acid and analysis the 

formation of lipid oxidation products were used.  
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5.2 Materials and Methods  

5.2.1 Raw Materials 

Chicken carcasses, sources of natural antioxidants and chemicals used was described in 

Chapter 2 section 2.2.1. 

5.2.2 Experimental Design and Sample Preparation  

This experiment designed as full factorial consisted of a 6 x 2 x 4 with six antioxidant 

treatments (ROS, GGR, SFS, SRB, BHT, and control), with two reheating (before and 

after reheating) and four storage times (0, 4, 8 and 12 days). For preparation of meat 

samples, raw meat samples were prepared as per the same procedure discussed in section 

3.2.2 and treated all samples as per the same procedure discussed in section 4.2.2. After 

preparation of samples, samples divided into two batches, half batches of chicken breast 

samples were cooked by sous vide cooking process: “low-temperature & low-oxygen” 

(LTLO) as described in section 4.2.2.1 and a half batches of chicken breast samples were 

cooked by the grilled method “high-temperature & high-oxygen” (HTHO). 

5.2.1.1 Grilled Method - “High-Temperature & High-Oxygen” (HTHO)  

Chicken breast fillets were cooked using the contact grill (Buffalo, Bristol, UK) at 240 

oC for 5 min on both sides, until the internal temperature of the meat reached 71 oC. After 

the internal temperature of the meat reached 71 oC, a digital calibrated thermometer 

(Therma 20 thermometer, UK) was used to monitor the internal temperature. Cooked 

samples were allowed to cool down at room temperature to an ambient temperature of 23 

oC. All samples then then packaged in polyethylene bags (transmission rate of oxygen = 

51000 cm3/m2. 24h. bar). Meat cooked samples were stored at 4 oC and periodically 
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sampled at 0, 4, 8 and 12 days. Not reheated cooked meat samples were also taken at each 

point of storage time and reheated at 160 oC for 10 min in a convection oven (Binder, 

Tuttlingen, Germany). Both cooked and reheated samples were analysed at day 0, 4, 8 

and 12 of storage for physical and chemical parameters.  

5.2.1.2 Chemical and Physical Analysis  

Chemical parameters such as TBARS, conjugated dienes and trienes, phospholipid 

content and fatty acids were analysed according to the method described in Chapter 2, 

sections 4.2.3.1, 2.2.3.4.2, 2.2.3.4.3 and 2.2.3.4.4. Physical parameters such as colour 

measurement, pH value, cooking loss and texture analysis were analysed according to the 

procedures as described in sections 4.2.4.1, 4.2.4.2, 4.2.4.4 and 4.2.4.5.   
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5.2.3 Statistical Analysis  

The data for LTLO and HTHO cooked chicken meat were conducted and analysed 

separately. A 6 x 2 x 4 factorial design was used with antioxidant treatments (ROS, SRB, 

SFS, GGR, BHT and non-treated), reheating process (before and after reheating), and the 

storage times (0, 4, 8 and 12 days) as main factors and interaction between them. The data 

obtained from the various treatments were analysed by general analysis of variance 

(ANOVA), using the GenStat statistical software (Edition 17th, VSN International Ltd). 

The experiment was conducted in triplicate (for each cooking method, n = 48). The 

significance level of all data was set at p ≤ 0.05. The null (H0) and alternative (H1) 

hypothesis for each dependent variable were set as:  

Null hypothesis (H0):  

There was no significant effect of natural antioxidants application, reheating process, 

storage time and interaction between them on physical and chemical properties of chicken 

meat cooked by different methods (sous vide and grilled methods) (H0: μ = 0; p > 0.05) 

Alternative hypothesis (H1): 

There was a significant effect of natural antioxidants application, reheating process, 

storage time and interaction between them on physical and chemical properties of chicken 

meat cooked by different methods (sous vide and grilled methods) (H1: μ≠ 0; p ≤ 0.05). 

  



218 

 

 

5.3 Results  

5.3.1 Effect of Natural Antioxidants on Thiobarbituric Acid-Reactive Substances 

(TBARS) 

5.3.1.1 TBARS in Sous-Vide (LTLO) Processed Chicken Meat 

The influence of the initial cooking process on the TBARS values was much greater in 

the HTHO (grilled) processed chicken meat compared to the LTLO (sous vide) breast 

meat, with an initial TBARS value of 13.39 and 6.81 mg MDA/kg meat, respectively 

(Appendix Table D2). A significant (p < 0.001) an effect of antioxidant, reheating process 

and storage time and interaction between three factors on TBARS values was found in 

LTLO samples. Regardless of the reheating process and storage time, all antioxidants 

provided a greater protection against an increase of TBARS value (p < 0.001), while 

among them, ROS awarded significantly lower amount of TBARS with mean value of 

3.57 mg MDA/kg meat compared to the any other treatments. The effectiveness of natural 

antioxidants compared to the synthetic antioxidant BHT to inhibit the formation of 

TBARS in LTLO samples were ROS > BHT > GGR > SFS > SRB > non-treated samples 

respectively. The reheating process significantly reduced the formation of TBARS with 

mean values of 7.33 and 6.29 mg MDA/kg meat for samples before reheating and after 

reheating process. TBARS values in LTLO samples significantly increased (p < 0.001) 

with increasing storage time (Appendix Table D2).  

A significant AO x RH interaction (p < 0.001), indicating that the effect of antioxidants 

on TBARS values in LTLO samples is depending on heating process. All Natural 

antioxidants (with exception SRB) were significantly reduced TBARS values in both 

before and reheated meat samples compared to the non-treated control (Figure 5.1). A 
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significant interaction (p < 0.001) between AO x ST, due to the increase the TBARS 

values in all samples with time, but treated samples (with exception SRB) were found to 

have higher inhibition of TBARS values compared to the non-treated samples at each 

interval. Among antioxidants, ROS was found to have the lowest formation of TBARS 

over time. There was a significant interaction (p < 0.001) between reheating process and 

storage time, due to the increase of TBARS values in samples before and after reheating 

over time, but marked formation of TBARS were shown in the samples before reheating 

(Figure 5.3). The results of interaction between AO x RH x ST are presented in Table 5.1. 

A significant increased (p < 0.001) of TBARS values was found in non-treated samples 

at day 0, 4 and 8 and decreased at day 12. The application of antioxidants provided a 

greater protection against an increase of TBARS values in all samples either before or 

after reheating process compared to the non-treated samples during 12 days. Before 

reheating samples, GGR was found to reduce the high level of TBARS value by up to 

3.02 mg MDA/kg (i.e. a reduction of 59.44 %) at day 0, while the lowest amount of 

TBARS was shown in samples treated with ROS at day 4 and GGR at day 8 of storage. 

On day 12, the TBARS values were significantly lower in ROS treatment with values of 

6.24 mg MDA/kg vs. 10.33, 15.53 and 17.17 mg MDA/kg meat for GGR, non-treated 

and SRB, respectively. Interestingly, over storage time, the natural antioxidant influence 

was comparable with BHT as natural antioxidants reduced TBARS value by up to 1.00 -

11.34 mg MDA/kg (i.e. a reduction of 26-72 %) compared to the BHT that reduced 

TBARS by up to 0.85-9.66 mg MDA/kg (i.e. a reduction of 17-77 %). After reheating 

LTLO samples for 12 days, the results show that natural antioxidants that awarded a 

greater reduction against an increase of TBARS compared to the non-treated samples, 

was ROS treatment which was more resistant to reheating process. 
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Figure 5. 1 Effect of interaction of natural antioxidants application and reheating process 

on lipid oxidation (TBARS) of sous-vide (LTLO) processed chicken breast meat (Means 

± SED; n = 3).  

 

Figure 5. 2 Effect of interaction of natural antioxidants application and storage time on 

lipid oxidation (TBARS) of sous-vide (LTLO) processed chicken breast meat (Means ± 

SED; n = 3). Non-treated control (CON); butylated hydroxytoluene (BHT); Rosemary 

extract (ROS), Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger 

(GGR) extract. 
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Figure 5. 3 Effect of interaction of reheating process and storage time on lipid oxidation 

(TBARS) of sous-vide (LTLO) processed chicken breast meat (Means ± SED; n = 3).   
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Table 5.1 Effect of natural antioxidants application on the degree of rancidity as expressed in TBARS (mg MDA/kg meat), comparing a ‘Low 

Temperature, Low Oxygen’ (Sous Vide) and a ‘High Temperature, High Oxygen’ (Grilled) cooking method for raw chicken breast meat during storage 

at 4 oC. 

Time 

(d)
 

 Controls
 

Natural Antioxidant Treatments 

 

S
o
u

s 
V

id
e 

CON A.R.H  BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 5.08Acd 6.21Ade 4.23Bbc 2.47Aa 2.82Aa 2.34Aa 7.21Ae 5.30Acd 2.76Aa 3.18Ba 2.06Aa 4.78Ac 

4 8.26Bd 8.90Bd 1.92Aa 1.11Aa 2.10Aa 2.20Aa 6.15Abc 5.07Abc 6.32Bc 1.75Ac 4.41Bb 5.51Abc 

8 15.83Cf 15.65Df 6.17Cc 6.89Bc 6.06Bbc 3.05Aba 14.83Bf 9.39Bd 11.67De 10.61Dde 4.49Bab 5.29Abc 

12 15.54Cef 10.46Cd 8.38Dbcd 8.76Bcd 6.24Bb 3.79Ba 17.17Cf 14.63Ce 8.23Cbcd 7.38Cbcd 10.33Cd 6.25Ab 

(d)
 

G
ri

ll
ed

 

CON A.R.H BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 14.78Ad 16.09Ad 4.69Aab 6.94ABbc 6.25Aabc 3.02Aab 6.95Abc 10.35Ac 6.75Abc 5.77Aab 10.02Ac 2.50Aa 

4 15.42Ad 15.23Ad 4.44Aab 3.76Aa 7.53Abc 10.70Bc 5.11Aab 7.48Abc 8.76ABc 9.44Ac 7.66Abc 9.81Bc 

8 25.41Cef 26.75Bf 9.04Ba 9.91BCa 19.25Bbc 18.09Cbc 23.82Cdef 21.97Bcde 21.68Ccde 20.53Bbcd 20.78Cbcd 17.09Cb 

12 20.37Bdef 24.30Bf 13.82Cabc 10.67Ca 16.32Bbcd 18.72Ccde 16.69Bcd 22.98Bef 11.59Bab 21.23Bdef 14.14Babc 17.96Ccde 

Mean values with different small superscript letters presented within each row differ significantly (p ≤ 0.05) according to the Tukey's HSD test.  

Mean values with different capital superscript letters presented within each column of each cooking method/treatment differ significantly (p ≤ 0.05) according to the Tukey's HSD test.
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5.3.1.2 TBARS in Grilled (HTHO) Processed Chicken Meat 

The protective influence of natural antioxidants on high-temperature/high-oxygen 

(HTHO) processed chicken meat was also observed with respect to the previously 

discussed LTLO samples. The TBARS values in grilled processed breast meat were 

affected significantly by antioxidant, reheating process, storage time and interaction 

between three factors (p < 0.001) (Appendix Table D2). Hence, regardless of reheating 

process and storage time, the application of natural antioxidants significantly decreased 

the accumulation of TBARS in cooked samples compared to the non-treated control (p < 

0.001). The effectiveness of natural antioxidants compared to the synthetic antioxidant 

(BHT) to inhibit the formation of TBARS in HTHO samples was BHT > ROS > GGR > 

SFS > SRB > non-treated samples, respectively (Appendix Table D2). The reheating 

process significantly caused an increase of TBARS values compared to those before 

subjecting to reheating process (p < 0.001). Furthermore, the TBARS values in cooked 

meat samples increased from 7.84 to 19.53 mg MDA/kg meat up to 8 days and declined 

at day 12 of storage time to 17.40 mg MDA/kg meat, respectively. There was a significant 

effect of AO x RH interaction (p < 0.001) on TBARS values. Hence, antioxidants 

application awarded higher protection against an increase of TBARS values in both 

before and after reheating samples compared to the non-treated samples. Reheating 

process significantly increased the formation of TBARS values in non-treated samples, 

SRB and SFS (p < 0.001) (Figure 5.4). A significant AO x ST interaction was found for 

TBARS, due to the increase of TBARS values in all treated and non-treated samples with 

storage time. The application of natural antioxidants significantly inhibited the formation 

of TBARS values compared to the non-treated samples. Over 12 days, natural 

antioxidants had reduced TBARS values, about 6 to 67 % compared to the non-treated 
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samples. The results also showed that the efficiency of these antioxidants was similar to 

the BHT as the reduction of TBARS was 32 - 71 % (Figure 5.5). A significant RH x ST 

interaction was found for TBARS values (p < 0.001), indicating that the effect of 

reheating process on TBARS is depending on the storage time. Hence, the reheating 

process significantly increased TBARS at day 4 and 12 of storage time (Figure 5.6). A 

significant interaction (p < 0.001) was found between three main factors (AO x RH x ST) 

(Table 5.1). As shown in Table 5.1 the TBARS values in all samples increased over 8 

days of storage time and decreased at day 12 of storage time. Natural antioxidant 

treatments were found to have the highest inhibition level of TBARS values compared to 

the non-treated samples. Among natural antioxidants, GGR and ROS treatments after 

reheating were found to have the lowest lipid oxidation compared to the non-treated 

samples at day 0, while at day 4, SRB treatment either before or after reheating process 

had the lowest values of TBARS. At day 8, GGR and ROS after reheating awarded the 

highest protection against an increase of TBARS values. No significant differences were 

found among natural antioxidants (with exception SRB after reheating) at day12 of 

storage time. Furthermore, over 12 days, natural antioxidants had reduced TBARS values, 

about 6 - 67 % compared to the non-treated samples. The results also showed that the 

efficiency of these antioxidants was similar to the BHT as the reduction of TBARS was 

32 - 71 %. 
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Figure 5.4 Effect of interaction of natural antioxidants application and reheating process 

on lipid oxidation (TBARS) of grilled (HTHO) processed chicken breast meat (Means ± 

SED; n = 3).  

 

Figure 5.5 Effect of interaction of natural antioxidants application and storage time on 

lipid oxidation (TBARS) of grilled (HTHO) processed chicken breast meat (Means ± 

SED; n = 3). Non-treated control (CON); butylated hydroxytoluene (BHT); Rosemary 

extract (ROS), Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger 

(GGR) extract. 
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Figure 5.6 Effect of interaction of reheating process and storage time on lipid oxidation 

(TBARS) of grilled (HTHO) processed chicken breast meat (Means ± SED; n = 3).  
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5.3.2 Effect of Natural Antioxidants on Phospholipid Content 

5.3.2.1 Phospholipids in Sous-Vide (LTLO) processed chicken meat 

The influence of the initial cooking process on phospholipid content was much greater in 

the HTHO (grilled) breast meat compared to the LTLO (sous vide) breast meat with an 

initial phospholipid content of 44.62 and 45.06 g/100 g fat, respectively (Appendix Table 

D2). The phospholipid content in LTLO samples was significantly affected by 

antioxidants (p < 0.001). Supplementation with either natural or synthetic antioxidants 

impeded the degradation of phospholipid content compared to the non-treated control, 

but there were no significant differences between antioxidant treatments (Appendix Table 

D2). The reheating process significantly caused a reduction of phospholipid content 

compared to those before reheating process (p < 0.001). It was found that the phospholipid 

content in cooked meat samples significantly decreased (p < 0.001) throughout the 

storage time, the highest reduction was found on day 8, with no significant changes at day 

12 (Appendix Table D2). A significant AO x RH interaction (p = 0.016) was found for 

phospholipid content (Figure 5.7). The phospholipid content was significantly reduced 

after reheating process compared to those before reheating. Natural antioxidants were 

found to have a higher phospholipid content compared to the non-treated samples (Figure 

5.7). A significant interaction between antioxidant and storage time was found (p < 

0.001), due to the decrease of the phospholipid content in all LTLO samples with storage 

time. Natural antioxidants provided a great protection against phospholipid degradation 

at day 0 and 4 of storage time, while at day 8 and 12 of storage time only ROS and SRB 

treatments had significantly the highest content of phospholipid compared to the non-

treated samples (Figure 5.8). No significant interaction was found between reheating 
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process and storage time (p = 0.274). There was a significant interaction (p < 0.001) 

between three main factors (AO x RH x ST) for phospholipid content (Table 5.2). The 

phospholipid content in all LTLO meat samples either before or after reheating were 

susceptible to the oxidation process and decreased with storage time, while the highest 

reduction of phospholipids was shown in the samples after reheating compared to those 

before reheating process for 12 days. Supplementation with either natural or synthetic 

antioxidants impeded the degradation of phospholipid content in LTLO samples 

compared to the non-treated samples during the storage time. Before reheating process, 

samples treated with either ROS or SRB had the highest content of phospholipid 

compared with any other samples on day 0. At day 4, the treatment with GGR and SFS 

yielded a higher phospholipid content than the equivalent control with mean values 50.99 

and 47.36 g/100 g fat respectively vs. 44.26 g/100 g fat for non-treated control. The 

remaining natural antioxidants (ROS and SRB), plus BHT provided a similar but minor 

protection against phospholipid degradation at 45.49, 44.34, and 45.96 g/100 g fat 

respectively. At day 8, samples treated with all natural antioxidants (with the exception 

of the samples treated with ROS extract) provided a better protection against 

phospholipids compared to the non-treated samples, while similar to BHT treatment with 

mean values 49.32, 48.80, 48.30, 46.18, 45.54 and 50.92 g/100 g fat for SRB, GGR, SFS, 

ROS, CON and BHT, respectively. No significant differences were found between 

treatments before reheating at day 12 of the storage time. After reheating process, a 

significant difference was only found at day 4 of storage between SRB and SFS, non-

treated and BHT treatments, respectively. Natural antioxidants provided a similar 

protection to phospholipids compared with BHT that yielded a higher phospholipid 

content (Table 5.2).  
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Figure 5.7 Effect of interaction of natural antioxidants application and reheating process 

on phospholipid content of sous-vide (LTLO) processed chicken breast meat (Means ± 

SED; n = 3). 

 

Figure 5.8 Effect of interaction of natural antioxidants application and storage time on 

phospholipid content of sous-vide (LTLO) processed chicken breast meat (Means ± SED; 

n = 3). Non-treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract 

(ROS), Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) 

extract.  
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Table 5.2 Effect of natural antioxidants application on phospholipid content (g/100 g fat) of chicken breast meat cooked by a ‘Low Temperature, Low 

Oxygen’ (Sous Vide) and a ‘High Temperature, High Oxygen’ (Grilled) cooking method during the storage time at 4 oC. 

Time 

(d)
 

 Controls
 

Natural Antioxidant Treatments 

 

S
o
u

s 
V

id
e 

CON A.R.H  BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 47.42Cbc 42.22Ba 49.64BCcd 44.73Cab 51.89Bd 44.41Bab 52.06Bd 42.18Aa 48.12Abcd 42.66Aa 48.16ABbcd 41.63Ba 

4 44.26ABde 40.31Aab 45.96Aef 38.14Aa 45.49Aef 41.97ABbcd 44.34Ade 43.92Acde 47.36Af 40.34Aab 50.99Bg 41.04ABabc 

8 45.54Bab 43.89Ca 50.92Cc 43.12BCa 46.18Aab 43.71ABa 49.32ABbc 43.21Aa 48.30Abc 43.40Aa 48.80ABbc 42.97Ba 

12 42.84Aabcde 39.35Aa 46.45ABe 41.19Babcd 45.50Acde 40.52Aabc 45.24Abcde 41.77Aabcde 45.44Acde 40.07Aab 46.40Ade 38.37Aa 

(d)
 

G
ri

ll
ed

 

CON A.R.H BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 45.55Babcd 42.91Aa 49.97Cde 45.77Babcde 55.84Cf 43.18ABab 49.60Bde 44.03Aabc 50.76Bef 48.08Abcde 48.51Acde 46.76Aabcde 

4 43.69ABab 41.34Aa 45.34Aab 40.84Aa 44.28Aab 42.74Aab 47.87Bb 44.55Aab 46.66ABab 42.63Aab 44.37Aab 43.85Aab 

8 44.67Bab 42.36Aa 49.05BCb 45.99Bab 46.59Bab 45.89Bab 45.38ABab 43.28Aa 46.07Aab 45.61Aab 45.34Aab 45.91Aab 

12 41.86Aabcd 37.55Aa 46.56ABd 42.77Abcd 46.06Bcd 41.69Aabcd 43.21Abcd 41.15Aabc 45.83Abcd 43.75Abcd 46.19Acd 40.88Aab 

Mean values with different small superscript letters presented within each row differ significantly (p ≤ 0.05) according to the Tukey's HSD test.  

Mean values with different capital superscript letters presented within each column of each cooking method/treatment differ significantly (p ≤ 0.05) according to the Tukey's HSD test.
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5.3.2.2 Phospholipids in Grilled (HTHO) Processed Chicken Meat 

The protective influence of natural antioxidants on high-temperature/high-oxygen 

(HTHO) processed chicken meat was also examined. The natural antioxidants, plus BHT 

awarded a greater protection against phospholipid degradation compared to the non-

treated control, but there were no significant differences between antioxidant treatments. 

Natural antioxidants provided similar protection against phospholipids compared to BHT.   

(Appendix Table D2). The reheating process significantly reduced phospholipid content 

compared to those before reheating process (p < 0.001). The storage time had an effect 

on phospholipid content of HTHO samples. It was found that the phospholipid content in 

cooked meat samples significantly decreased (p < 0.001) throughout the storage time, the 

highest reduction was found on day 8 of storage time with no significant changes at day 

12 (Appendix Table D2). No significant interaction was found between antioxidant and 

reheating process for phospholipid content (p = 0.120). The results presented in Figure 

5.9 show that the effect of interaction between antioxidant and storage time was 

significant (p = 0.004). The phospholipid content in both treated and untreated samples 

was decreased with increasing storage time, while all natural antioxidants were found 

yield more phospholipid content compared to the non-treated control at each point of 

storage time. A significant interaction between reheating process and storage time was 

found for phospholipid content in HTHO samples (p < 0.001). The phospholipid content 

was markedly reduced in samples after reheating at each interval of storage time 

compared to those before reheating process (Figure 5.10). A significant AO x RH x ST 

interaction was found for phospholipid content (p < 0.001) (Table 5.2). The treatment 

with ROS and SFS yielded a higher phospholipid content than the equivalent control with 

mean values 55.84 and 50.76 g/100 g fat respectively vs. 45.55 g/100 g fat for the non-
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treated control. The remaining natural antioxidants (SRB and GGR), plus BHT provided 

a similar but minor protection against phospholipid degradation at 49.60, 48.50 and 49.97 

g/100 g fat respectively at day 0 of storage, while at day 4, 8 and 12, no significant 

differences were found between treated and non-treated samples when samples of chicken 

breast meat were stored under refrigerated conditions each interval storage time days. 

Natural antioxidants provided better protection against phospholipids compared to non-

treated samples and similar to BHT at each interval of storage time. After HTHO samples 

were subjected to the reheating process, SFS treatment was found to have a higher 

phospholipid content compared to the non-treated samples at day 0 of the storage time. 

At days 4 and 8 of refrigeration, antioxidants did not have any effect on the phospholipid 

content. At day 12, the highest phospholipid content was found in SFS with values of 

43.75 vs 37.55 g/100 g fat for non-treated samples (Table 5.2).  
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Figure 5.9 Effect of interaction of natural antioxidants application and storage time on 

phospholipid content of grilled (HTHO) processed chicken breast meat (Means ± SED; 

n = 3). Non-treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract 

(ROS), Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) 

extract. 

 

Figure 5.10 Effect of interaction of reheating process and storage time on phospholipid 

content of grilled (HTHO) processed chicken breast meat (Means ± SED; n = 3).
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5.3.3 Effect of Natural Antioxidants on Conjugated Dienes (CDs) 

5.3.3.1 Conjugated Dienes (CDs) in Sous-Vide (LTLO) Processed Chicken Meat 

The average CDs in LTLO samples was 27.91 µmol/g fat which significantly lower (p < 

0.001) than that in HTHO samples with mean value of 43.07 µmol/g fat (Appendix Table 

D2). Regardless of the reheating process and storage time, the effectiveness of natural 

antioxidants compared to the synthetic antioxidant BHT to inhibit the formation of CDs 

in LTLO samples were BHT > GGR > ROS > SRB > SFS > non-treated samples, with 

mean values 25.49, 27.07, 27.08, 28.49, 28.58 and 30.70 µmol/g fat respectively. The CD 

values in LTLO samples were not significantly affected by reheating process (p = 0.137). 

The storage time was found to have a significant effect on the CD values in LTLO 

samples (p < 0.001). The CD values were markedly increased with increasing time of 

storage, being at its highest therefore towards the end of storage time (Appendix Table 

D2). No significant interaction was found between antioxidant and reheating process for 

CD values (p = 0.130). Figure 5.11 shows a significant AO x ST interaction for CD values 

in LTLO samples (p = 0.027). The CD values in all samples increased with increasing 

storage time. However, non-treated samples were affected more compared to the samples 

treated with antioxidants (natural and BHT). The natural antioxidants that reduced the 

formation of CD in LTLO samples for 12 days compared to the non-treated control, were 

BHT, ROS and GGR (Figure 5.11). There was a significant interaction between reheating 

process and storage time (p < 0.001). The CD values in LTLO samples after reheating 

were significantly higher at day 0 and 4 of storage time, while at day 8, samples before 

reheating was found to have the highest CD values, with no significant changes toward 

the end of storage time (Figure 5.12). The results presented in Table 5.3 also show that 
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the interaction between antioxidant, reheating process and storage time was significant 

for CD values (p = 0.043). Before reheating LTLO samples, antioxidant supplementation 

reduced CDs in LTLO samples compared to the non-treated samples (Table 5.3). No 

significant differences were observed between treated and non-treated samples for up to 

8 days of the storage time. At day 12, the CD values were significantly reduced in ROS 

treatments with mean values of 25.60 vs. 31.52 µmol/g fat for non-treated. The most 

natural antioxidants were found to have lower CD values compared to the BHT. 

Moreover, CD values were increased significantly in non-treated and SFS up to 8 days of 

storage and decreased at the end of the storage time. After reheating LTLO samples, no 

significant differences were observed between non-treated and most treated samples (with 

the exception of the samples treated with SRB extract) up to 8 days. At day 12, GGR 

treatment was found to have the lowest formation of CDs with values of 26.29 µmol/g fat 

compared to 32.90 µmol/g fat observed in non-treated samples. The reheating process 

had an effect on CDs in samples treated with SRB and ROS at days 4 and 12 (Table 5.3).    
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Figure 5.11 Effect of interaction of natural antioxidants application and storage time on 

conjugated dienes of sous-vide (LTLO) processed chicken breast meat (Means ± SED; n 

= 3). Non-treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract 

(ROS), Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) 

extract. 

 

Figure 5.12 Effect of interaction of reheating process and storage time on conjugated 

dienes of sous-vide (LTLO) processed chicken breast meat (Means ± SED; n = 3).   
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Table 5.3 Effect of natural antioxidants application on conjugated dienes (µmol/g fat) of chicken breast meat cooked by a ‘Low Temperature, Low 

Oxygen’ (Sous Vide) and a ‘High Temperature, High Oxygen’ (Grilled) cooking method during the storage time at 4 oC. 

Time 

(d)
 

 Controls
 

Natural Antioxidant Treatments 

 

S
o
u

s 
V

id
e 

CON A.R.H  BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 27.26Aa 25.76Aa 22.36Aa 24.29ABa 23.24Aa 26.52Aa 26.56Aa 31.99Ca 23.21Aa 25.43Aa 26.88Aa 26.5ABa 

4 32.55Bb 33.68Cb 23.42Aab 25.65ABab 24.45Aab 28.34Aab 29.31Ab 18.08Aa 25.75ABab 29.98Ab 23.22Aab 30.66Bb 

8 35.22Ca 27.12ABa 30.94Aa 23.86Aa 32.71Aa 25.04Aa 34.41Aa 25.49Ba 34.06Ba 25.56Aa 31.37Aa 23.94Aa 

12 31.52Bcd 32.9BCd 26.50Aab 26.92Babc 25.60Aa 30.75Abcd 31.75Acd 30.34Cabcd 30.18ABabcd 34.47Ad 27.72Aabc 26.29Aab 

(d)
 

G
ri

ll
ed

 

CON A.R.H BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 55.91Bd 47.01Abcd 48.64Abcd 36.60Babc 52.37Acd 26.44Aa 59.47Bd 46.99Cbcd 56.52Bd 32.04Aab 60.07Bd 47.43ABbcd 

4 55.80Bd 46.21Abcd 48.31Abcd 39.28Babcd 41.81Aabcd 37.62Aabc 38.79Aabcd 51.79Ccd 41.24Aabcd 32.89Aab 28.47Aa 48.96Bbcd 

8 43.76Aab 60.83Bc 32.69Aa 32.79ABa 35.35Aab 36.18Aab 39.13Aab 40.75Bab 35.52Aab 47.18Bb 39.35Aab 37.00Aab 

12 64.81Cd 68.72Cd 37.86Aabc 28.81Aa 40.16Abc 31.42Aab 33.67Aab 30.13Aab 59.93Bd 30.78Aab 34.33Aab 45.65ABc 

Mean values with different small superscript letters presented within each row differ significantly (p ≤ 0.05) according to the Tukey's HSD test.  

Mean values with different capital superscript letters presented within each column of each cooking method/treatment differ significantly (p ≤ 0.05) according to the Tukey's HSD test. 
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5.3.3.2 Conjugated Dienes (CDs) in Grilled (HTHO) Processed Chicken Meat 

A similar trend was seen in HTHO samples as supplementation with either natural or 

synthetic antioxidants significantly reduced the formation of CDs in all HTHO samples 

compared to the non-treated control. The antioxidants that had the lowest formation of 

CD in HTHO was ROS. Natural antioxidants that performed similarly to BHT was ROS 

and SFS (Appendix Table D2). The CD values were significantly affected by reheating 

process (p < 0.001). Hence, HTHO samples after reheating significantly decreased 

compared to those before reheating (Appendix Table D2). The storage time had a 

significant effect on the CD values in HTHO (p < 0.001). The CD values were 

significantly decreased at day 4 compared to day 0, with no significant changes thereafter. 

A significant interaction (p < 0.001) was found between antioxidant and reheating process 

for CD values (Figure 5.13). Treated samples either before and after reheating process 

with natural antioxidants were found to have the lowest lipid oxidation compared to the 

non-treated control. However, the CD values were found higher in ROS, SFS and BHT 

samples before reheating process compared to those after reheating (Figure 5.13). A 

significant AO x ST interaction was found for CD values in HTHO samples (p < 0.001). 

The CD values in untreated samples increased with increasing storage time, while treated 

samples with natural antioxidants were provided a greater protection against an increase 

of CD values (Figure 5.14). There was significant interaction between reheating process 

and storage time (p < 0.001). The CD values in HTHO samples before reheating were 

significantly higher at day 0 and 12 days of storage time, while at day 8, samples after 

reheating was found to have the highest CD values (Figure 5.15). The results listed in 

Table 5.3 also show that a significant AO x RH x ST interaction was found for CD values 

in HTHO samples (p < 0.001). Supplementation with either natural or synthetic 
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antioxidants did not reduce the formation of CDs in all HTHO samples before reheating 

(with the exception of the samples treated with GGR extract) compared to the non-treated 

samples up to 8 days (Table 5.3). In contrast, on day 12, the lowest CDs formation was 

detected in SRB and GGR treatments compared to the non-treated samples with values 

of 33.67, 34.33 vs. 64.81 µmol/g fat for non-treated samples. No significant differences 

were found between natural antioxidants and BHT at each interval of storage, which 

shows that natural antioxidants performed similarly to BHT. After reheating HTHO 

samples, antioxidants reduced the accumulation of CDs in reheated samples compared to 

the non-treated samples over storage, while a significant reduction was observed on day 

8 and 12 of storage time. No significant differences were found between both natural and 

BHT antioxidant treatments over 12 days. 
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Figure 5.13 Effect of interaction of natural antioxidants application and reheating 

process on conjugated dienes of grilled (HTHO) processed chicken breast meat (Means 

± SED; n = 3). 

 

Figure 5.14 Effect of interaction of natural antioxidants application and storage time on 

conjugated dienes of grilled (HTHO) processed chicken breast meat (Means ± SED; n = 

3). Non-treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract 

(ROS), Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) 

extract. 
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Figure 5.15 Effect of interaction of reheating process and storage time on conjugated 

dienes of grilled (HTHO) processed chicken breast meat (Means ± SED; n = 3). 

5.3.4 Effect of Natural Antioxidants on Conjugated Trienes (CTs) 

5.3.4.1 Conjugated Trienes (CTs) in Sous-Vide (LTLO) Processed Chicken Meat 

The influence of the initial cooking process on the CT values was much greater in the 

HTHO (grilled) breast meat compared to the LTLO (sous vide) breast meat, with an initial 

CT value of 19.17 and 13.28 µmol/g fat, respectively (Appendix Table D3). Regardless 

of the storage time and reheating process, the effectiveness of natural antioxidants and 

the synthetic antioxidant BHT to inhibit the formation of CTs in LTLO samples were 

BHT > SRB > GGR > SFS > ROS > non-treated samples, respectively. The CT in LTLO 

samples was not affected significantly by reheating process (p = 0.422). Storage time 

significantly increased the CT values over 4 days, found no effect at day 8 and 12 

(Appendix Table D3). Figure 5.16 shows a significant AO x RH interaction was found 
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for CT values (p = 0.040). All natural antioxidants before subjecting to reheating process 

were significantly reduced the formation of CT compared to the non-treated samples, 

while after reheating process only SRB extracted significantly inhibited the formation of 

CT compared to non-treated samples (Figure 5.16). No significant difference was found 

between antioxidant and storage time for CT values (p = 0.350). The results presented in 

Figure 5.17 show that a significant interaction was found between reheating process and 

storage time (p < 0.001). The CT values were found significantly higher in LTLO samples 

before reheating at day 8 compared to those after reheating process, while the CT values 

were therefore significantly higher in samples after reheating process (Figure 5.17). A 

significant AO x RH x ST interaction (p = 0.004) was found for CT values in LTLO 

samples (Table 5.4). Application of antioxidants to LTLO samples provided a higher 

protection compared to the non-treated samples for 12 days, despite statistically not 

differing. The results also showed that there was a significant effect of storage time on 

the formation of CTs in non-treated samples. In addition, after reheating LTLO samples, 

on day 4 of storage, SRB extract had the lowest CT value of 9.44 µmol/g fat compared to 

non-treated samples with a value of 17.22 µmol/g. At day 12 of storage, the lower 

formation of CTs was found in samples treated with GGR with values of 12.10 µmol/g 

fat vs. 15.34 µmol/g fat for non-treated. The results of natural antioxidants were similar 

to BHT as no significant differences were detected between both.  
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Figure 5.16 Effect of interaction of natural antioxidants application and reheating 

process on conjugated trienes of sous-vide (LTLO) processed chicken breast meat (Means 

± SED; n = 3). Non-treated control (CON); butylated hydroxytoluene (BHT); Rosemary 

extract (ROS), Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger 

(GGR) extract. 

 

Figure 5.17 Effect of interaction of reheating process and storage time on conjugated 

trienes of sous-vide (LTLO) processed chicken breast meat (Means ± SED; n = 3).   
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Table 5.4 Effect of natural antioxidants application on conjugated trienes (µmol/g fat) of chicken breast meat cooked by a ‘Low Temperature, Low 

Oxygen’ (Sous Vide) and a ‘High Temperature, High Oxygen’ (Grilled) cooking method during the storage time at 4 oC. 

Time 

(d)
 

 Controls
 

Natural Antioxidant Treatments 

 

S
o
u

s 
V

id
e 

CON A.R.H  BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 16.43Ba 10.38Aa 10.99Aa 11.72Ba 11.81Aa 11.70Aa 10.32Aa 15.08Ca 10.08Aa 12.28Aa 12.77Aa 13.62Ba 

4 17.38Bb 17.22Cb 12.96Aab 13.81Cab 14.44Aab 16.85Aab 15.91Aab 9.44Aa 13.34ABab 16.96Aab 13.68Aab 17.16Cb 

8 17.51Bb 11.40ABab 13.42Aab 9.00Aa 16.49Aab 11.79Aab 14.43Aab 9.54Aa 15.59Bab 10.59Aab 14.23Aab 11.11Aab 

12 12.96Aabc 15.34BCcd 10.69Aa 12.04Bab 11.65Aa 14.80Abcd 11.06Aa 13.39Babc 12.08ABab 17.83Ad 11.97Aa 12.10ABab 

(d)
 

G
ri

ll
ed

 

CON A.R.H BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 31.81Bcd 21.27Aabc 27.26Bbcd 13.87Bab 29.44Bcd 10.86ABa 37.20Bd 25.01Cabcd 31.77Ccd 10.87ABa 34.16Bcd 23.20ABabcd 

4 29.89Bc 23.09Aabc 29.07Bbc 17.58Cabc 23.05ABabc 19.33Babc 20.28Aabc 30.00Dc 20.58Babc 15.39BCab 11.88Aa 29.58Bc 

8 12.97Aab 25.19Ac 10.10Aa 9.80Aa 10.72Aa 10.47ABa 11.76Aa 13.08Bab 10.57Aa 18.68Cb 12.05Aa 13.22Aab 

12 30.62Bc 39.20Bd 10.07Aa 10.83Aab 13.65ABab 7.30Aa 9.55Aa 7.62Aa 30.31Cc 7.49Aa 9.64Aa 18.87Ab 

Mean values with different small superscript letters presented within each row differ significantly (p ≤ 0.05) according to the Tukey's HSD test.  

Mean values with different capital superscript letters presented within each column of each cooking method/treatment differ significantly (p ≤ 0.05) according to the Tukey's HSD test. 
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5.3.4.2 Conjugated Trienes (CTs) in Grilled (HTHO) Processed Chicken Meat 

The protective influence of natural antioxidants on high-temperature/high-oxygen 

(HTHO) processed chicken meat was also observed (Appendix Table D3). Regardless of 

the storage time and reheating process, the effectiveness of natural antioxidants and 

synthetic antioxidant BHT to inhibit the formation of CTs in HTHO samples were ROS 

> BHT > SFS > GGR > SRB > non-treated samples, with mean values 15.60, 16.07, 

18.21, 19.07, 19.31 and 26.75 µmol/g fat respectively. The CT values were significantly 

affected by reheating process (p < 0.001). Hence, HTHO samples after reheating 

significantly decreased compared to those before reheating (Appendix Table D3). The 

storage time had a significant effect on the CT values in HTHO (p < 0.001). The CT 

values were significantly decreased with increasing storage time (p < 0.001) (Appendix 

Table D3). Figure 5.18 shows a significant interaction was found between antioxidant 

and reheating process for CT values (p < 0.001). Treated samples either before and after 

reheating process were found to have the lowest lipid oxidation compared to the non-

treated control. The CT values were significantly higher in ROS, SFS and BHT samples 

before reheating process compared to those after reheating (Figure 5.18). A significant 

AO x ST interaction was found for CT values in HTHO samples (p < 0.001). The CT 

values in all samples decreased at day 8 of storage time and increased therefore at day 12. 

Treated samples with natural antioxidants were provided a greater protection against an 

increase of CT values over time, while the highest reduction of CT by natural antioxidants 

was found at day 12 (Figure 5.19). There was a significant interaction between reheating 

process and storage time (p < 0.001). The CT values in HTHO samples before reheating 

were significantly higher at day 8 of storage time compared to those after reheating 

(Figure 5.20). The results reported in Table 5.4 show that a significant AO x RH x ST 
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interaction for CT values in HTHO samples (p < 0.001). The values of CT in treated 

samples of HTHO was not significantly different from non-treated samples at day 0. On 

day 4, GGR treatment had significantly lower CT values compared to the non-treated 

samples. Although the CTs of meat samples were not affected by treatments on day 8, 

samples treated with antioxidants provided a higher protection. At day 12, lower CTs 

were detected in SRB and GGR treatments with values of 9.55 and 9.64 µmol/g fat vs. 

30.31, and 30.62 µmol/g fat for SFS treatment and non-treated samples respectively. The 

natural antioxidants influence on CTs, particularly SRB, were similar to those treated 

with BHT. Furthermore, the influence of the storage time on CT values was much greater 

in non-treated samples compared to those treated with antioxidants over 12 days. After 

reheating HTHO samples, CTs were not affected by treatments after the first 4 days of 

storage. Whilst, on days 8 and 12, natural antioxidants reduced CT values significantly 

and among natural antioxidants ROS was found to have the lowest formation of CTs. The 

results of natural antioxidants were found to be similar to those treated with BHT.   
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Figure 5.18 Effect of interaction of natural antioxidants application and reheating 

process on conjugated trienes of grilled (HTHO) processed chicken breast meat (Means 

± SED; n = 3). 

 

Figure 5.19 Effect of interaction of natural antioxidants application and storage time on 

conjugated trienes of grilled (HTHO) processed chicken breast meat (Means ± SED; n = 

3). Non-treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract 

(ROS), Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) 

extract. 
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Figure 5. 20 Effect of interaction of reheating process and storage time on conjugated 

trienes of grilled (HTHO) processed chicken breast meat (Means ± SED; n = 3). 

5.3.5 Effect of Natural Antioxidants on Texture (Shear Force) 

The effect of antioxidants on the texture of cooked breast meat as indicated by shear force 

for 12 days of storage time are presented in Appendix Table D3. In general, samples 

cooked by the HTHO method had a higher shear force value than those cooked by LTLO 

method. The shear force of LTLO samples was not significantly affected by antioxidant 

supplementation, reheating process and interaction between three factors (p > 0.05). 

Whilst, shear force of LTLO samples was affected by storage time (p = 0.001). Hence, 

shear force significantly decreased in LTLO samples at day 4 and 12 of storage time 

compared to day 0 (Appendix Table D3). No significant interaction was found between 

three factors for shear force of LTLO samples (p > 0.05) (Table 5.5)  

With respect to the HTHO samples, the results also showed that antioxidants had a 

significant (p = 0.022) an effect on shear force of HTHO samples (Appendix Table D3). 
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Hence, the effectiveness of natural antioxidants and the synthetic antioxidant BHT to 

enhance the meat texture (shear force) in HTHO samples was ROS > BHT > non-treated 

> GGR >SFS > SRD, respectively. The reheating process did not have any effect on the 

shear force of HTHO samples (p = 0.818). The shear force was significantly affected by 

storage time (p = 0.004). The shear force was decreased at day 12 compared to the day 0 

(Appendix Table D3). No significant interaction was found between three factors for 

shear force (p > 0.05) (Table 5.5). 
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Table 5.5 Effect of natural antioxidants application on shear force of chicken breast meat cooked by a ‘Low Temperature, Low Oxygen’ (Sous Vide) and 

a ‘High Temperature, High Oxygen’ (Grilled) cooking method during the storage time at 4 oC. 

Time 

(d)
 

 Controls
 

Natural Antioxidant Treatments 

 

CON A.R.H  BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 

S
o
u

s 
V

id
e 

12.83 16.43 11.87 9.46 14.33 14.13 15.43 12.96 12.47 14.14 15.02 16.07 

4 11.40 12.80 13.80 12.83 12.39 12.86 15.42 10.68 11.55 11.35 10.41 12.50 

8 11.11 14.02 12.46 13.63 12.05 14.11 12.69 12.51 11.47 13.55 12.34 13.36 

12 10.91 10.23 11.41 10.28 11.56 13.56 11.05 12.83 10.49 9.42 12.98 15.15 

(d)
 

G
ri

ll
ed

 

CON A.R.H BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 14.12 13.04 13.17 12.30 11.89 12.13 17.25 14.22 14.24 12.36 13.02 12.90 

4 11.88 13.57 13.15 12.02 12.65 12.42 13.12 13.00 12.47 13.11 11.79 15.03 

8 15.15 13.37 13.64 13.12 13.63 15.33 13.70 14.11 17.29 15.20 14.16 13.53 

12 12.77 11.90 13.54 12.50 10.97 13.07 12.27 16.02 14.70 13.29 13.09 14.50 

.
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5.3.6 Effect of Natural Antioxidants on pH  

5.3.6.1 pH in Sous-Vide (LTLO) Processed Chicken Meat 

The influence of the initial cooking process on TBARS values was much greater in the 

LTLO (sous vide) compared to the HTHO (grilled) breast meat (Appendix Table D3). 

The antioxidant supplementation was found to have a significant effect on pH values of 

LTLO (p < 0.001). The pH values in natural antioxidants compared to the synthetic 

antioxidant BHT in LTLO samples were SFS > non-treated > SRB > GGR > BHT > ROS, 

respectively. (Appendix Table D3). Reheating process was found to have an effect on the 

pH values in LTLO samples (p ≤ 0.05). Reheated samples were found to have the lowest 

pH values than those before reheating process. pH values of LTLO samples were 

significantly affected by storage time which pH values significantly increased (p < 0.001) 

with increasing storage time (Appendix Table D3). No significant interaction was found 

between antioxidant and reheating process for pH values (p = 0.451). A significant AO x 

ST interaction was found (p < 0.001). The natural antioxidants that found to have a lower 

pH values for 12 days compared to the non-treated samples was ROS (Figure 5.21). 

Figure 5.22 shows a significant interaction between RH x ST for pH values in LTLO 

samples (p = 0.003). The pH values in samples before and after reheating were found 

significantly increased at day 12 of storage time compared to day 0. At day 12, samples 

before reheating had higher pH values compared to those after reheating (Figure 5.22). A 

significant AO x RH x ST interaction was found for pH values (p < 0.001) (Table 5.6). 

Samples treated with antioxidants had lower pH values over 12 days of storage. However, 

significant differences were found only between ROS and non-treated samples on day 8 

with pH values 6.09 vs. 6.42 respectively. No significant differences were found between 
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natural antioxidants and BHT. The pH values in all treatments, with the exception of non-

treated samples and GGR, significantly increased with increasing storage time. 

Furthermore, after reheating LTLO samples, most of the meat samples that underwent 

antioxidant treatments had lower pH values than non-treated samples following storage 

over 12 days. Significantly higher pH values were found in GGR on day 8 with values of 

6.47 vs. 6.20 for non-treated. Over storage time, reheating samples significantly reduced 

the pH values in non-treated samples only at day 8 of storage. A similar trend was 

observed in GGR treatment on day 8 as pH values increased after the reheating process.  

 

 

Figure 5.21 Effect of interaction of natural antioxidants application and storage time on 

pH values of sous-vide (LTLO) processed chicken breast meat (Means ± SED; n = 3). 

Non-treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), 

Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 
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Figure 5.22 Effect of interaction of reheating process and storage time on pH values of 

sous-vide (LTLO) processed chicken breast meat (Means ± SED; n = 3). 
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Table 5.6 Effect of natural antioxidants application on pH values of chicken breast meat cooked by a ‘Low Temperature, Low Oxygen’ (Sous Vide) and 

a ‘High Temperature, High Oxygen’ (Grilled) cooking method during the storage time at 4 oC. 

Time 

(d)
 

 Controls
 

Natural Antioxidant Treatments 

 

S
o
u

s 
V

id
e 

CON A.R.H  BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 6.33Ab 6.29ABab 6.30Aab 6.21Aab 6.27Bab 6.18Aa 6.24Aab 6.31ABab 6.31Aab 6.32ABb 6.22Aab 6.28ABab 

4 6.41Aab 6.45Bb 6.26Aab 6.29Aab 6.27Bab 6.31Aab 6.13Aa 6.31ABab 6.36Aab 6.42Bab 6.34Aab 6.24Aab 

8 6.42Acd 6.20Aab 6.26Aabc 6.19Aab 6.09Aa 6.17Aab 6.31Abcd 6.17Aab 6.31Abcd 6.28Abcd 6.27Aabc 6.47Bd 

12 6.42Aabc 6.46Babc 6.51Babc 6.36Aabc 6.31Bab 6.26Aa 6.62Bc 6.46Babc 6.61Bbc 6.37ABabc 6.38Aabc 6.31ABab 

(d)
 

G
ri

ll
ed

 

CON A.R.H BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 6.24 6.23 6.35 6.10 6.24 6.20 6.19 6.21 6.25 6.15 6.25 6.24 

4 6.33 6.18 6.24 6.18 6.32 6.24 6.20 6.20 6.26 6.14 6.32 6.17 

8 6.32 6.24 6.20 6.17 6.19 6.17 6.22 6.19 6.10 6.18 6.14 6.14 

12 6.29 6.45 6.29 6.31 6.17 6.39 6.20 6.31 6.17 6.26 6.31 6.28 

Mean values with different small superscript letters presented within each row differ significantly (p ≤ 0.05) according to the Tukey's HSD test.  

Mean values with different capital superscript letters presented within each column of each cooking method/treatment differ significantly (p ≤ 0.05) according to the Tukey's HSD test. 
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5.3.6.2 pH in Grilled (HTHO) Processed Chicken Meat 

The protective influence of natural antioxidants on high-temperature/high-oxygen 

(HTHO) processed chicken meat was also observed (Appendix Table D3). The pH values 

of HTHO samples were significantly affected by the application of antioxidants (p = 

0.003). The values of pH in SFS and SRB were found to have significantly lower than 

that in non-treated samples, while the remaining antioxidants ROS, GGR and BHT were 

not significantly different from non-treated samples. The pH values were not significantly 

affected by reheating process (p = 0.170). Regardless of the antioxidants and reheating 

process, pH values significantly increased at day 12 of storage time compared to the day 

0, 4 and 8 (p < 0.001) (Appendix Table D3). No significant interaction was found between 

antioxidant and reheating process for pH values in HTHO samples (p = 0.168). The 

interaction between antioxidant and storage time was not significant shown for pH values 

(p = 0.578). A significant RH x ST interaction was found for pH values (p < 0.001). The 

pH values in samples before reheating were significantly higher than those before 

reheating at day 0 and 4 of storage time, while at day 12, the highest values of pH were 

shown in samples after reheating (Figure 5.23). No significant AO x RH x ST interaction 

was found for pH values (p = 0.149) (Table 5.6). 
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Figure 5.23 Effect of interaction of reheating process and storage time on pH values of 

grilled (HTHO) processed chicken breast meat (Means ± SED; n = 3). 

5.3.7 Effect of Natural Antioxidants on Cooking Loss (CL)  

Figure 5.24 shows that all samples (with exception SRB and SFS) cooked by the HTHO 

method had a significantly higher cooking loss than those cooked by LTLO method. The 

application of antioxidants had a significant effect on the cooking loss of LTLO and 

HTHO samples (p ≤ 0.05). Cooking loss of LTLO samples treated with ROS was found 

to have a significantly lower cooking loss compared to the other treatments. On the 

contrary, all samples treated with antioxidants, other than those treated with SFS extract, 

and cooked by the HTHO method had a lower cooking loss than non-treated control. 

Among natural antioxidant treatments, ROS treatment was found to have the lowest 

cooking loss. These findings indicate that the effect of natural antioxidants, particularly 

ROS on cooking loss was comparable to the BHT.  
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Figure 5.24 Effect of natural antioxidants application on cooking loss of chicken breast 

meat cooked by a ‘Low Temperature & Low Oxygen’ (Sous Vide) and a ‘High 

Temperature & High Oxygen’ (Grilled) cooking methods for raw chicken breast meat 

(Means ± SED; n = 3). Non-treated control (CON); butylated hydroxytoluene (BHT); 

Rosemary extract (ROS), Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; 

ginger (GGR) extract. 

5.3.8 Effect of Natural Antioxidants on Colour  

5.3.8.1 Colour in Sous-Vide (LTLO) Processed Chicken Meat 

The effect of natural antioxidants compared to the non-treated and BHT on lightness (L*), 

redness (a*) and yellowness (b*) in cooked chicken breast meat during the storage time 

are listed in Tables 5.7 and Appendix Table D4. Application of natural antioxidants and 

storage time had a significant effect on lightness (L*) values (p < 0.001). The natural 

antioxidants that found to have significantly lower lightness values was ROS followed by 

SRB, GGR, SFS, BHT and non-treated samples, respectively. No significant differences 

were found between before and after reheating LTLO samples (p = 0.946). For the storage 

time, the lightness (L*) values of LTLO samples were increased up to 4 days of storage 
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time and significantly decreased thereafter (p < 0.001) (Appendix Table D4). The 

interaction between antioxidant x reheating process and between reheating process x 

storage time was not significantly found for L* values (p = 0.597; p = 0.435). There was 

a significant effect of antioxidant x storage time interaction (p = 0.017) on lightness (L*) 

values in LTLO samples (Figure 5.25). The lightness (L*) values were decreased at day 

8 and increased thereafter at day 12 of storage time. All natural antioxidants (with 

exception SRB) were found to have significantly lower lightness values compared to the 

non-treated samples for 12 days of storage time, while ROS treatment had the lowest 

lightness (L*) values as compared to any other treatments. No significant AO x RH x ST 

interaction (p = 0.590) was found for lightness values (Table 5.7).  

 

Figure 5.25 Effect of interaction of natural antioxidants application and storage time on 

lightness of sous-vide (LTLO) processed chicken breast meat (Means ± SED; n = 3). Non-

treated control (CON); butylated hydroxytoluene (BHT); Rosemary extract (ROS), Small 

Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger (GGR) extract. 
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With respect to the redness (a*) value, antioxidant supplementation and storage time had 

significantly an effect on the redness (a*) values in LTLO samples (p > 0.001) (Appendix 

Table D4). Non-treated samples were found to have the highest a* values compared to 

any other treatments with mean values of 0.11, -0.16, -0.70, -0.81, -0.96 and -1.40 for 

non-treated samples, SFS, SRB, GGR, BHT and ROS, respectively. Reheating process 

did not have any effect on a* values (p = 0.283). The results also show that the storage 

time significantly reduced the redness value in LTLO meat samples up to day 4 and 

increased thereafter over 12 days (Appendix Table D4). No significant interaction (p = 

0.937) was found between three factors for a* values in LTLO cooked samples (Table 

5.7).  

For yellowness (b*) values, the yellowness (b*) values were affected by antioxidant 

supplementation, reheating process and storage time (p < 0.001). Overall, regardless of 

the storage time and reheating process, yellowness b* values were found to have 

significantly higher (p < 0.001) in GGR treatment followed by ROS, SRB, non-treated, 

SFS and BHT, respectively (Appendix Table D4). After reheating LTLO cooked samples, 

b* value was significantly higher than in samples before reheating process (p = 0.009). 

The results also indicated that the storage time had a significant effect on the b* values in 

sous vide cause an increase of b* value up to day 8 and decreased thereafter at day 12 

(Appendix Table D4). Only a significant AO x ST interaction (p = 0.026) was found for 

b* value of LTLO cooked samples (Figure 5.26). Over storage time, significant changes 

of b* values were shown only in samples treated with GGR compared to the non-treated 

samples (Figure 5.26). In addition, b* values were found significantly lower in both BHT 

and SFS at day 0 and 4, with no significant changes at day 8 and 12 of storage time. No 
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significant interaction (p = 0.974) was found between antioxidant, reheating process and 

storage time for b* values in LTLO samples (Table 5.7).  

 

 

Figure 5.26 Effect of interaction of natural antioxidants application and storage time on 

yellowness (b*) values of sous-vide (LTLO) processed chicken breast meat (Means ± 

SED; n = 3). Non-treated control (CON); butylated hydroxytoluene (BHT); Rosemary 

extract (ROS), Small Red Bean extract (SRB); Sun Flower Seed (SFS) extract; ginger 

(GGR) extract. 
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Table 5.7 Effect of natural antioxidants application on L*, a* and b* values of chicken breast meat cooked by a ‘Low Temperature, Low Oxygen’ (Sous 

Vide) cooking method during the storage time at 4 oC. 

Time 

(d)
 

 Controls
 

Natural Antioxidant Treatments 

 CON A.R.H  BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 

L
*

 v
a
lu

e 

81.33 78.91 82.10 81.37 76.94 78.38 78.60 78.86 78.28 77.33 79.08 78.69 

4 80.82 81.22 80.13 80.91 77.54 77.92 81.01 81.48 79.84 80.08 78.93 79.45 

8 80.58 79.41 80.59 81.59 77.67 75.11 79.04 79.66 78.77 78.49 76.18 77.04 

12 81.38 81.49 80.45 81.26 77.38 76.87 80.39 80.37 78.78 79.61 79.74 79.69 

(d)
 

 CON A.R.H BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 

 a
*
 v

a
lu

e 

-0.24 0.10 -1.20 -1.26 -1.47 -1.67 -0.07 -0.73 0.11 -0.49 -0.94 -1.46 

4 -0.18 -0.21 -1.13 -1.13 -1.38 -1.87 -1.16 -1.58 -0.61 -0.36 -0.88 -1.49 

8 0.05 0.65 -0.84 -1.26 -1.40 -1.22 -0.32 -0.58 0.20 0.30 0.17 -0.20 

12 0.03 0.70 -0.08 -0.80 -1.26 -0.59 -0.52 -0.63 0.17 -0.58 -1.00 -0.70 

(d)
 

b
*

 v
a
lu

e 

CON A.R.H BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 17.32 18.13 16.76 17.11 18.60 19.24 17.36 18.60 17.10 16.95 22.60 24.34 

4 17.25 18.78 16.63 17.33 18.35 18.73 17.96 18.80 16.80 17.49 21.21 21.31 

8 18.31 18.54 17.20 17.26 19.16 19.18 18.36 18.60 18.15 17.52 23.70 23.23 

12 17.01 17.41 17.85 18.38 18.97 19.01 18.86 19.31 17.27 18.20 21.30 21.02 
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5.3.8.2 Colour in Grilled (HTHO) Processed Chicken Meat 

The lightness (L*) values in HTHO samples were not affected by antioxidants application 

(p = 0.606). A significant effect of reheating process was shown on L* values (p = 0.001) 

(Appendix Table D4). Samples before reheating were found to have significantly lower 

values of L* compared to those before after reheating process. Furthermore, storage time 

was found to have a significant an effect on L* values in HTHO samples (p = 0.026). The 

L* values were decreased up to 8 days, but significantly increased, therefore at day 12 

compared to day 4 of storage time (Appendix Table D4). For redness (a*) values, 

antioxidant application was found to have significant an effect on redness values (p = 

0.017). All natural antioxidants awarded a greater protection against the reduction of 

redness of HTHO samples compared to the non-treated samples, while GGR was found 

to have a higher a* values compared to any other treatments (Appendix Table D4). The 

reheating process significantly affected the redness values of HTHO (p = 0.008). Hence, 

a* values were found lower in samples before reheating compared to those after reheating 

process. Moreover, the redness values were not affected by storage time (p = 0.663) 

(Appendix Table D4).  With respect to the yellowness (b*) values in HTHO samples, the 

effect of antioxidants on yellowness (b*) values in HTHO was not significant (p = 0.105) 

(Appendix Table D4). Whilst, the b* values were significantly affected by reheating 

process (p = 0.019). Reheated samples were found to have a higher yellowness values 

compared to those before reheating process. b* values were significantly increased (p < 

0.001) at day 8 compared to day 0 and 4 and slightly declined at day 12 of storage time 

(Appendix Table D4). No significant AO x RH x ST interaction was found for lightness 

(L*), redness (a*) and yellowness (b*) values in HTHO (p > 0.05) (Table 5.8). 
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Table 5.8 Effect of natural antioxidants application on L*, a* and b* values of chicken breast meat cooked by a ‘High Temperature, High Oxygen’ 

(Grilled) cooking method during the storage time at 4 oC. 

Time 

(d)
 

 Controls
 

Natural Antioxidant Treatments 

 

CO A.R.H  BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 

L
*

 v
a
lu

e 

81.94 84.88 83.87 84.88 83.38 84.46 85.25A 84.86 84.28 85.22 84.11 84.40 

4 84.39 84.81 83.06 84.75 82.94 83.39 82.61A 84.46 82.04 84.27 81.72 83.97 

8 82.60 84.21 85.27 84.68 83.53 85.30 83.08A 85.09 81.91 82.32 83.69 85.20 

12 85.11 84.36 84.07 83.91 84.43 84.33 85.24A 84.89 84.09 85.41 84.24 84.97 

(d)
 

a
*
 v

a
lu

e 

CON A.R.H BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 -0.80 -1.82 -0.98 -1.55 -0.98 -1.79 -1.37 -1.89 -1.73 -2.54 -1.28 -1.46 

4 -1.93 -1.85 -1.32 -0.46 -1.48 -1.49 -1.39 -0.70 -1.04 -2.06 0.02 -1.84 

8 -2.42 -2.16 -1.73 -0.96 -0.15 -1.55 -0.47 -1.55 -1.22 -1.19 -0.21 -2.05 

12 -2.44 -1.83 -1.40 -1.38 -0.95 -2.06 -1.11 -0.91 -1.84 -1.00 0.31 -1.25 

(d)
  

b
*

 v
a
lu

e 

CON A.R.H BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

0 15.75 15.00 14.12 15.25 14.81 15.12 15.06 15.27 14.62 15.60 14.99 14.21 

4 14.50 15.46 14.65 14.17 14.72 15.70 14.93 14.44 14.64 16.06 14.11 15.42 

8 17.30 16.61 16.18 14.77 14.85 16.31 14.99 15.47 15.67 17.24 15.67 16.64 

12 15.79 16.69 15.23 16.24 15.64 16.80 14.90 15.38 16.11 15.72 15.01 16.25 
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5.3.9 Effect of Natural Antioxidants on Fatty Acids  

5.3.9.1 Fatty Acids in Sous-Vide (LTLO) Processed Chicken Meat 

The fatty acid composition of the cooked chicken meat expressed as g/kg DM is shown 

in Tables 5.9 and 5.10. The influence of the initial cooking process on fatty acid 

composition was much greater in the HTHO breast meat compared to the LTLO breast 

meat (Appendix Table D5). Accordingly, LTLO samples were found to have a higher 

content of all fatty acids than those in HTHO samples. The application of antioxidants 

awarded a greater protection against a decrease of all saturated fatty acids (with exception 

C20:0), while GGR treatment yielded SFAs significantly (p ≤ 0.05) more than non-treated 

samples, but did not differ from other antioxidant treatments (Appendix Table D5). 

Furthermore, SFAs in LTLO were not significantly affected by reheating process (p > 

0.05). Storage time had a significant effect on all SFAs in LTLO samples (p ≤ 0.05). All 

SFAs were decreased when storage time increased, while a significant reduction was 

found at day 12 compared to the day 4 (Appendix Table D5). A significant AO x RH 

interaction was found for C20:0 (p = 0.026). The content of C20:0 was significantly 

higher in ROS and SRB after reheating process, while in GGR and BHT treatment the 

highest amount of C20:0 was shown before reheating process. A significant interaction 

was found between antioxidant and storage time for all SFAs (p ≤ 0.05). The content of 

SFAs in non-treated samples reduced significantly with time of storage, while all natural 

antioxidant treatments were awarded a greater protection against a decrease of SFAs at 

each interval of storage time. At day 0, GGR was found to have a higher content of SFAs, 

while SRB treatment had the highest content of SFAs at day 4. At day 8 and 12, SFS 

yielded significantly more amount of SFAs than any other treatments. Natural 
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antioxidants provided a higher protection compared to the non-treated samples and BHT 

as the highest reduction of SFAs were detected in non-treated and samples treated with 

BHT. A significant RH x ST interaction was found for all SFAs in LTLO samples (p ≤ 

0.05). The content of SFAs significantly reduced in samples after reheating process at day 

0, with no significant differences between before and after reheating meat samples at day 

4, 8 and 12 o storage time. The effect of interaction between three main factors are shown 

in Table 5.9. Treatment with natural antioxidants significantly reduced the decomposition 

of fatty acids in LTLO samples (p ≤ 0.05). Saturated fatty acids (SFAs) in treated LTLO 

samples had a higher protection particularly at day 12, SFS had significantly the highest 

(p ≤ 0.05) amount of C14:0, C16:0 and total SFAs compared to the non-treated sample, 

but antioxidant treatments did not have an effect on both fatty acids C18:0 and C20:0 (p 

> 0.05). Natural antioxidants provided higher protection compared to the BHT as the 

highest reduction of SFAs were detected in non-treated and samples treated with BHT. 

Similar findings were shown in samples treated with antioxidants after cooking samples 

were reheated.  

The amount of monounsaturated fatty acids (with exception C16:1 n-7) in LTLO samples 

was significantly affected by antioxidant supplementation (p ≤ 0.05). The natural 

antioxidants that provided a marked protection against a decrease of C18:1 n9c, C18:1 

n9t and total of MUFAs was SFS compared to the non-treated samples. However, all 

natural antioxidants yielded more MUFAs than non-treated samples and BHT. Reheating 

process was no affected the amount of MUFAs in LTLO samples (p > 0.05). Storage time 

was significantly affected the content of all MUFAs (p ≤ 0.05). The amount of all MUFAs 

decreased up to 8 days of storage time and slightly increased thereafter at day 12, while 

significant reduction was found at day 8 compared to day 0 and 4 of storage time 
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(Appendix Table D5). No significant interaction was found between antioxidant and 

reheating process for all MUFAs (p > 0.05). A significant interaction was found between 

antioxidant and storage time for all MUFAs (p ≤ 0.05). The content of MUFAs in non-

treated samples reduced significantly with time of storage, while all natural antioxidant 

treatments were awarded greater protection against a decreased of MUFAs at each 

interval of storage time. At day 0, GGR was found to have a higher content of MUFAs, 

while SRB and ROS treatments were found to have the highest content of MUFAs at day 

4. At day 8 and 12, SFS yielded significantly more amount of MUFAs than any other 

treatments. Natural antioxidants provided higher protection compared to the non-treated 

samples and BHT. No significant interaction (p > 0.05) was found between reheating 

process and storage time for all MUFAs (Appendix Table D5). A significant AO x RH x 

ST interaction (p ≤ 0.05) was found for all MUFAs in LTLO samples (Table 5.9). During 

the storage time, natural antioxidants ROS and GGR had the lowest degradation of 

MUFAs compared to the non-treated samples before reheating. A higher reduction of 

MUFAs was shown in BHT treatment compared to the natural antioxidant treatments. 

After samples were reheated, ROS and SFS had a higher amount of MUFAs at day 12 of 

storage time compared to the non-treated samples.  

The amount of all PUFAs (with exception C22:5 n-3) in LTLO was significantly affected 

by the natural antioxidant (p ≤ 0.05) (Appendix Table D5). The natural antioxidants that 

protected PUFAs from degradation were GGR, ROS and SFS compared to the non-

treated samples (Appendix Table D5). The reheating process was found to have a 

significant effect on C20:4 n-6 and C20:5 n-3 in LTLO samples (p ≤ 0.05). Hence, the 

amount of these fatty acids was higher in samples after reheating than those before 

reheating (Appendix Table D5). Furthermore, all PUFAs (with exception C22:6 n-3) 
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significantly affected by storage time (p ≤ 0.05). The content of PUFAs was significantly 

decreased with storage time, significant reduction was found at day 12 compared to day 

4 of storage time. No significant AO x RH interaction was found for all PUFAs in LTLO 

samples (p > 0.05). A significant AO x ST interaction was found for all PUFAs with 

exception C20.5 n-3 and C22:5 n-3 (p ≤ 0.05) (Appendix Table D5). The amount of 

PUFAs in all samples (treated or untreated) was decreased over storage time. No 

significant differences were found between treated and non-treated samples at day 0, 4 

and 8 of storage time, while at day 12, ROS awarded a greater protection against a 

decreased of PUFAs compared to the non-treated samples (Appendix Table D5). Table 

5.9 shows a significant AO x RH x ST interaction (p ≤ 0.05) for all PUFAs with exception 

C22.5 n-3. Over storage time no significant differences were found between antioxidant 

treatments and non-treated samples for C18:2 n-6, C18:3 n-3 and total PUFAs at all 

intervals of storage time, while only the significant differences were found between GGR 

before reheating process compared to the SFS after reheating process at day 0 of storage 

time (Table 5.9). The amounts of C20:4 n-6 and C22.5 n-3 was significantly higher only 

in GGR treatment after reheating process compared to the con-treated samples at day 0 

and 8 of storage time, but no significant differences were found between treated and no-

treated samples at day 4 and 12 of storage times. The natural antioxidants that yielded 

more content of C22:6 n-3 were found in samples treated with GGR and ROS compared 

to non-treated samples at day 0, while at day 4, 8 and 12 of storage time the significant 

effect of antioxidants on PUFAs did not found (Table 5.9).  

The amount of ∑n-3 and ∑n-6 PUFAs in LTLO samples was significantly affected by the 

application of natural antioxidants (p = 0.002) (Appendix Table D5). The natural 

antioxidants that protected ∑n-3 and ∑n-6 PUFAs from degradation were GGR, ROS and 
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SFS compared to the non-treated samples. The reheating process did not affect the ∑n-3 

and ∑n-6 PUFAs in LTLO samples (p > 0.05). Furthermore, both ∑n-3 and ∑n-6 PUFAs 

significantly affected by storage time (p < 0.001). The content of ∑n-3 and ∑n-6 PUFAs 

was significantly decreased with storage time, while a significant reduction was found at 

day 12 compared to day 0 and 4 of storage time (Appendix Table D5). No significant AO 

x RH interaction was found for ∑n-3 and ∑n-6 PUFAs in LTLO samples (p > 0.05). A 

significant AO x ST interaction was found for ∑n-3 and ∑n-6 PUFAs (p ≤ 0.05). The 

amount of n-3 and n-6 PUFAs in all samples (treated or untreated) were decreased over 

storage time. No significant differences were found between treated and non-treated 

samples at day 0, 4 and 8 of storage time, while at day 12, ROS awarded a greater 

protection against a decreased of n-3 and n-6 PUFAs compared to the non-treated samples 

(Appendix Table D5). The results also show that a significant AO x RH x ST interaction 

was found for ∑n-3 and ∑n-6 PUFAs (Table 5.9). No significant differences were found 

between antioxidant treatments and non-treated samples for both for ∑n-3 and ∑n-6 

PUFAs at each interval of storage time, while only the significant differences were found 

between GGR before reheating process compared to the SFS after reheating process at 

day 0 of storage time (Table 5.9). The impact of natural antioxidants on all fatty acids 

was similar to that of BHT.   
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Table 5.9 Effect of natural antioxidant application on fatty acid composition (g/kg DM) of chicken breast meat cooked by a ‘Low Temperature, Low 

Oxygen’ (Sous Vide) cooking method during the storage time at 4 oC. 

Fatty acid Time 

(d) 

Controls Natural Antioxidant Treatments 

CON A.R.H BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

C14:0 

0 0.46Bab 0.39Dab 0.43ABab 0.36Aab 0.38BCab 0.42Aab 0.34Aab 0.35Aab 0.42Aab 0.28Aa 0.56Bb 0.33Aab 

4 0.38ABa 0.33Ca 0.50Ba 0.38Aa 0.33ABa 0.5Aa 0.37Aa 0.46Aa 0.48Aa 0.31Aa 0.28Aa 0.48Ba 

8 0.30ABa 0.28Ca 0.35ABa 0.34Aa 0.30Aa 0.28Aa 0.38Aab 0.34Aa 0.33Aa 0.50Bb 0.40ABab 0.32Aa 

12 0.25Aa 0.25Aa 0.29Aab 0.31Aabc 0.41Cbc 0.42Abc 0.36Aabc 0.33Aabc 0.43Ac 0.43Bc 0.41ABbc 0.31Aabc 

C16:0 

0 19.30Aab 17.31Cab 19.35ABab 16.39Aab 16.64ABab 19.15Aab 15.49Aab 15.64Aab 17.78Aab 13.48Aa 23.18Bb 14.8Aab 

4 16.61Aa 15.39Ba 21.68Ba 17.74Aa 14.72ABa 22.32Aa 17.39Aa 20.53Aa 20.73Aa 14.11Aa 13.29Aa 20.18Ba 

8 13.91Aa 13.14Aa 15.5ABa 16.05Aa 13.81Aa 13.41Aa 16.77Aa 15.62Aa 15.09Aa 22.52Bb 17.36ABa 14.82Aa 

12 11.97Aa 12.21Aa 13.56Aab 14.16Aab 17.98Bb 18.66Ab 15.81Aab 15.11Aab 18.39Ab 18.87Bb 17.29ABab 14.75Aab 

C18:0 

0 6.81Bab 6.67Cab 7.02ABab 6.39Aab 6.82Bab 6.41Aab 5.81Aa 5.98Aa 6.39Aab 5.32Aa 8.17Ab 6.59Ba 

4 6.58ABa 5.96Ba 7.46Ba 6.95Aa 6.09ABa 7.96Aa 6.32Aa 7.63Aa 7.39Aa 5.88ABa 5.78Aa 7.48Ca 

8 5.59ABab 5.25Aa 6.40ABab 6.30Aab 5.75Aab 5.81Aab 6.96Abc 6.28Aab 6.07Aab 8.02Cc 7.05Abc 6.50Babc 

12 5.30Aa 5.71ABab 5.44Aab 5.73Aab 6.83Bab 6.94Ab 6.10Aab 6.09Aab 6.92Ab 6.68Bab 6.37Aab 5.46Aab 

C20:0 

0 0.43Aab 0.43Bab 0.46Aab 0.37Aab 0.41Aab 0.46Aab 0.33Aa 0.35Aab 0.44Aab 0.30Aa 0.53Bb 0.33Aa 

4 0.38Aa 0.37ABa 0.49Aa 0.40Aa 0.31Aa 0.49Aa 0.4Aa 0.53Aa 0.44Aa 0.35Aa 0.32Aa 0.47Ba 

8 0.34Aa 0.35Aa 0.40Aa 0.37Aa 0.36Aa 0.32Aa 0.38Aa 0.33Aa 0.37Aa 0.56Bb 0.39ABa 0.34Aa 

12 0.31Aa 0.32Aab 0.31Aab 0.30Aa 0.39Aab 0.48Ab 0.36Aab 0.38Aab 0.41Aab 0.42ABab 0.38ABab 0.35Aab 

C16:1n-7 

0 2.46 2.16 2.37 1.88 1.45 2.73 2.05 1.59 2.37 1.79 2.59 1.26 

4 1.90 1.71 2.83 2.14 1.59 2.62 2.45 2.33 2.51 1.44 1.42 2.25 

8 1.65 1.44 1.21 1.75 1.42 1.29 1.37 1.80 1.80 2.78 1.70 1.40 

12 1.04 0.96 1.45 1.62 1.92 2.25 1.69 1.94 2.29 2.28 1.89 2.00 

C18:1 n-9c 

0 33.07Aab 30.22Cab 34.99ABab 27.28Aab 30.00ABab 33.56Aab 25.61Aab 28.22Aab 30.40Aab 20.98Aa 41.93Bb 25.37Aab 

4 28.63Aa 24.95Ba 38.57Ba 31.19Aa 26.91ABa 40.25Aa 29.60Aa 37.61Aa 36.67Aa 24.95ABa 22.35Aa 36.94Ba 

8 23.73Aa 21.30Aa 26.77ABa 27.86Aa 23.52Aa 21.66Aa 30.63Aab 25.09Aa 26.30Aa 39.62Cb 29.98ABab 26.28Aa 

12 20.37Aab 19.15Aa 22.80Aabc 23.20Aabc 31.98Bbc 33.75Ac 27.46Aabc 26.74Aabc 32.07Abc 32.49BCc 29.70ABabc 24.89Aabc 
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Table 5.9 (Continued) Effect of natural antioxidant application on fatty acid composition (g/kg DM) of chicken breast meat cooked by a ‘Low 

Temperature, Low Oxygen’ (Sous Vide) cooking method during the storage time at 4 oC.  

Fatty acid Time 

(d) 

Controls Natural Antioxidant Treatments 

CON A.R.H BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

C18:1 n-9t 

0 2.41Aa 2.13Ca 2.49ABa 2.14Aa 2.08ABa 2.62Aa 2.04Aa 2.17Aa 2.28Aa 1.85Aa 2.74Ba 2.06Aa 

4 2.06Aa 2.04BCa 2.67Ba 2.26Aa 2.05ABa 2.58Aa 2.35Aa 2.57Aa 2.57Aa 1.96Aa 1.75Aa 2.54Ba 

8 1.92Aa 1.87Ba 1.97ABa 2.13Aa 1.88Aa 1.78Aa 2.16Aa 1.93Aa 1.92Aa 2.84Bb 2.10ABa 1.95Aa 

12 1.70Aa 1.59Aa 1.76Aa 1.89Aa 2.20Ba 2.37Aa 2.02Aa 2.07Aa 2.36Aa 2.39ABa 2.19ABa 2.00Aa 

C18:2 n-6 

0 20.19Aab 18.84Cab 21.30Bab 17.75Aab 21.20Aab 18.87ABab 16.39Aab 17.82Aab 18.77ABab 13.67Aa 27.57Ab 17.45Aab 

4 18.04Aa 15.05Ba 23.01Ba 19.66Aa 16.70Aa 24.63Ba 17.52Aa 24.28Aa 23.87Ba 16.27ABa 15.17Aa 23.68Ba 

8 15.14Aab 12.87Aa 17.81ABabc 17.10Aab 14.94Aab 13.96Aab 20.40Abc 16.28Aab 16.32Aab 23.92Cc 20.40Abc 17.91Aabc 

12 13.77Aab 11.68Aa 13.74Aab 14.48Aabc 20.71Abc 21.48ABc 16.86Aabc 15.88Aabc 19.72ABbc 19.65BCbc 18.98Aabc 15.83Aabc 

C18:3 n-3 

0 3.19Aab 2.91Cab 3.31Bab 2.61Aab 3.16Aab 2.91ABab 2.37Aab 2.65Aab 2.85ABab 1.84Aa 4.49Bb 2.50Aab 

4 2.74Aa 2.10Ba 3.64Ba 2.90Aa 2.41Aa 4.00Ba 2.69Aa 3.77Aa 3.73Ba 2.36ABa 2.10Aa 3.79Ba 

8 2.11Aab 1.76Aa 2.57ABabc 2.51Aabc 2.10Aab 1.86Aab 2.95Aabc 2.28Aab 2.39Aab 3.71Cc 3.05ABbc 2.62Aabc 

12 1.87Aab 1.55Aa 1.87Aab 2.03Aabc 3.17Abc 3.26ABc 2.51Aabc 2.21Aabc 3.01ABbc 2.93BCbc 2.90ABbc 2.18Aabc 

C20:4 n-6 

0 1.80Aa 2.34Babc 2.35Aabc 2.36Aabc 2.49Abc 1.95Aab 2.13Aabc 2.41Abc 2.16ABabc 2.28ABabc 2.15Aabc 2.72Ac 

4 2.40Aa 2.14Ba 2.33Aa 2.67Aa 2.49Aa 2.44Ba 2.04Aa 2.32Aa 2.41Ba 2.66Ba 2.39Aa 2.35Aa 

8 2.00Aa 2.08ABa 2.26Aab 2.17Aab 2.19Aab 2.26ABab 2.26Aab 2.30Aab 1.98Aa 2.22Aab 2.39Aab 2.70Ab 

12 2.24Aa 1.84Aa 1.90Aa 2.16Aa 2.27Aa 2.29ABa 2.06Aa 2.05Aa 2.03Aa 1.95Aa 2.16Aa 2.10Aa 

C20:5 n-3 

0 0.25 0.31 0.27 0.29 0.23 0.28 0.25 0.25 0.26 0.33 0.36 0.25 

4 0.27 0.33 0.27 0.29 0.26 0.29 0.30 0.26 0.28 0.25 0.29 0.31 

8 0.26 0.33 0.26 0.26 0.26 0.26 0.19 0.25 0.23 0.27 0.27 0.25 

12 0.23 0.28 0.24 0.23 0.25 0.23 0.23 0.22 0.23 0.23 0.20 0.23 

C22.5 n-3 

0 0.64Aa 0.77Aab 0.83Bb 0.85Ab 0.86Ab 0.71Aab 0.75Aab 0.80Aab 0.72Aab 0.80Bab 0.75Aab 0.88Ab 

4 0.75Ba 0.70Aa 0.79Ba 0.88Aa 0.78Aa 0.80Aa 0.67Aa 0.80Aa 0.77Aa 0.83Ba 0.78Aa 0.79Aa 

8 0.65Aa 0.70Aab 0.77Bab 0.69Aab 0.74Aab 0.77Aab 0.74Aab 0.72Aab 0.68Aab 0.76ABab 0.77Aab 0.83Ab 

12 0.73ABa 0.70Aa 0.64Aa 0.75Aa 0.75Aa 0.75Aa 0.65Aa 0.69Aa 0.69Aa 0.66Aa 0.70Aa 0.69Aa 
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Table 5.9 (Continued) Effect of natural antioxidant application on fatty acid composition (g/kg DM) of chicken breast meat cooked by a ‘Low 

Temperature, Low Oxygen’ (Sous Vide) cooking method during the storage time at 4 oC. 

Fatty acid Time 

(d) 

Controls Natural Antioxidant Treatments 

CON A.R.H BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

C22:6 n-3 

0 0.33Aa 0.46Aabc 0.50Aabc 0.55Abc 0.65Ac 0.42Aab 0.52Abc 0.50Aabc 0.49Aabc 0.54Abc 0.49Aabc 0.64Bc 

4 0.46Aa 0.41Aa 0.41Aa 0.53Aa 0.57Aa 0.51Aa 0.44Aa 0.57Aa 0.45Aa 0.53Aa 0.57Aa 0.43Aa 

8 0.46Aa 0.42Aa 0.53Aa 0.56Aa 0.48Aa 0.54Aa 0.49Aa 0.51Aa 0.45Aa 0.40Aa 0.55Aa 0.52ABa 

12 0.63Ba 0.57Ba 0.51Aa 0.49Aa 0.49Aa 0.39Aa 0.42Aa 0.44Aa 0.44Aa 0.42Aa 0.44Aa 0.50ABa 

∑ SFA 

0 27.00Aab 24.80Cab 27.26ABab 23.50Aab 24.25ABab 26.44Aab 21.98Aab 22.33Aab 25.03Aab 19.38Aa 32.44Bb 22.04Aab 

4 23.95Aa 22.05Ba 30.13Ba 25.48Aa 21.45ABa 31.28Aa 24.47Aa 29.16Aa 29.04Aa 20.64Aa 19.67Aa 28.61Ba 

8 20.14Aab 19.01Aa 22.65ABab 23.06Aab 20.21Aab 19.81Aab 24.49Aab 22.56Aab 21.86Aab 31.60Bc 25.20ABb 21.99Aab 

12 17.82Aa 18.50Aab 19.60Aabc 20.50Aabc 25.61Bbc 26.49Ac 22.64Aabc 21.90Aabc 26.16Ac 26.40Bc 24.45ABabc 20.87Aabc 

∑ MUFA 

0 37.94Aab 34.51Dab 39.85ABab 31.30Aab 33.52ABab 38.90Aab 29.70Aab 31.98Aab 35.04Aab 24.61Aa 47.26Bb 28.69Aab 

4 32.59Aa 28.70Ca 44.07Ba 35.59Aa 30.56ABa 45.45Aa 34.40Aa 42.52Aa 41.75Aa 28.35Aa 25.51Aa 41.73B 

8 27.30Aa 24.60Ba 29.95ABa 31.74Aa 26.82Aa 24.73Aa 34.16Aab 28.82Aa 30.02Aa 45.24Bb 33.78ABa 29.63Aa 

12 23.10Aab 21.70Aa 26.01Aabc 26.71Aabc 36.11Bbc 38.37Ac 31.17Aabc 30.74Aabc 36.72Aabc 37.16ABbc 33.78ABabc 28.89Aabc 

∑ PUFA 

0 26.40Aab 25.63Cab 28.55Bab 24.42Aab 28.58Aab 25.14ABab 22.42Aab 24.41Aab 25.24ABab 19.46Aa 35.81Ab 24.43Aab 

4 24.66Aa 20.73Ba 30.46Ba 26.93Aa 23.20Aa 32.67Ba 23.66Aa 32.00Aa 31.50Ba 22.90ABa 21.29Aa 31.35Ba 

8 20.62Aab 18.15ABa 24.21ABabc 23.29Aabc 20.73Aab 19.66Aab 27.04Abc 22.34Aab 22.04Aab 31.27Cc 27.43Abc 24.82ABabc 

12 19.48Aabc 16.61Aa 18.88Aab 20.14Aabc 27.62Abc 28.40ABc 22.72Aabc 21.49Aabc 26.12ABbc 25.83BCbc 25.37Aabc 21.54Aabc 

∑n-3 PUFA 

0 4.40Aab 4.45Bab 4.91Bab 4.31Aab 4.89Aab 4.32ABab 3.90Aa 4.19Aab 4.32ABab 3.51Aa 6.09Ab 4.26Aab 

4 4.23Aa 3.54Aa 5.11Ba 4.60Aa 4.01Aa 5.60Ba 4.10Aa 5.40Aa 5.22Ba 3.97Aa 3.74Aa 5.32Ba 

8 3.48Aab 3.21Aa 4.14ABabc 4.02Aabc 3.59Aab 3.44Aab 4.37Aabc 3.76Aab 3.75Aab 5.13Bc 4.64Abc 4.22Aabc 

12 3.47Aab 3.09Aa 3.25Aa 3.50Aab 4.65Ab 4.63ABb 3.80Aab 3.56Aab 4.37ABab 4.23Aab 4.23Aab 3.60Aab 

∑n-6 PUFA 

0 21.99Aab 21.18Cab 23.64Bab 20.11Aab 23.68Aab 20.83ABab 18.52Aab 20.22Aab 20.93ABab 15.95Aa 29.72Ab 20.17Aab 

4 20.44Aa 17.19Ba 25.34Ba 22.33Aa 19.19Aa 27.07Ba 19.56Aa 26.60Aa 26.28Ba 18.93ABa 17.56Aa 26.03Ba 

8 17.14Aab 14.95ABa 20.07ABabc 19.26Aabc 17.14Aab 16.22Aab 22.66Abc 18.58Aab 18.30Aab 26.13Cc 22.79Abc 20.61ABabc 

12 16.02Aabc 13.51Aa 15.63Aab 16.64Aabc 22.97Abc 23.77ABc 18.92Aabc 17.93Aabc 21.75ABbc 21.60BCbc 21.14Aabc 17.94Aabc 

Mean values with different small superscript letters presented within each row of each fatty acid differ significantly (p ≤ 0.05) according to the Tukey's HSD test.  

Mean values with different capital superscript letters presented within each column of each fatty acid differ significantly (p ≤ 0.05) according to the Tukey's HSD test. 
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5.3.9.2 Fatty Acids in Grilled (HTHO) Processed Chicken Meat 

Contrary to the fatty acid findings observed in LTLO samples as discussed previously, 

natural antioxidant application and the reheating process did not have any effect on all 

fatty acids in samples cooked by HTHO during the 12 days of storage time (Appendix 

Table D6). However, antioxidants provided a higher protection to fatty acids over the 

storage time compared to the non-treated samples. Storage time significantly reduced the 

amount of C18:3 n-3, C20:4 n-6, C22.5 n-3, C20:5 n-3, C22:6 n-3 and total of PUFAs, 

∑n-3 and ∑n-6 in HTHO samples, regardless of the antioxidant and reheating process, 

while the highest reduction was found at day 8 of storage time (Appendix Table D6). No 

significant interaction (p > 0.05) was found between three factors for all fatty acids in 

HTHO samples (Table 5.10).  
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Table 5.10 Effect of natural antioxidant application on fatty acid composition (g/kg DM) of chicken breast meat cooked by a ‘High Temperature, High 

Oxygen’ (Grilled) cooking method during the storage time at 4 oC. 

Fatty acid Time 

(d) 

Controls Natural Antioxidant Treatments 

CON A.R.H BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

C14:0 0 0.38 0.34 0.42 0.31 0.29 0.38 0.35 0.30 0.27 0.34 0.49 0.38 

4 0.38 0.32 0.35 0.32 0.31 0.36 0.27 0.46 0.34 0.41 0.41 0.48 

8 0.32 0.30 0.36 0.37 0.25 0.32 0.48 0.37 0.36 0.30 0.36 0.30 

12 0.36 0.25 0.37 0.39 0.35 0.35 0.29 0.40 0.37 0.39 0.32 0.30 

C16:0 0 17.17 16.73 18.11 13.65 13.64 15.92 15.29 13.42 12.43 15.40 21.62 17.02 

4 17.34 15.61 15.66 13.81 14.68 15.45 12.35 19.82 15.80 18.42 17.51 21.04 

8 14.34 13.22 16.31 16.79 12.07 14.06 20.84 17.08 16.36 14.17 16.94 13.71 

12 15.39 11.70 16.89 17.39 15.38 15.41 13.66 17.69 16.35 17.39 14.42 14.47 

C18:0 0 5.81 6.70 6.46 5.69 5.80 6.14 5.86 5.47 5.21 5.84 7.40 6.53 

4 6.40 6.10 5.89 5.69 5.98 6.07 5.37 7.00 5.90 6.79 6.73 7.78 

8 5.90 5.50 6.46 6.38 5.32 5.63 7.39 6.65 6.03 5.60 6.56 6.09 

12 6.39 5.07 6.53 6.41 5.83 5.70 5.96 6.38 6.06 7.03 5.93 5.74 

C20:0 0 0.40 0.44 0.41 0.33 0.30 0.36 0.39 0.34 0.28 0.31 0.46 0.36 

4 0.44 0.41 0.37 0.30 0.35 0.40 0.31 0.41 0.39 0.45 0.40 0.48 

8 0.30 0.28 0.38 0.34 0.28 0.31 0.46 0.35 0.39 0.34 0.39 0.34 

12 0.37 0.25 0.40 0.39 0.35 0.36 0.31 0.43 0.38 0.40 0.37 0.32 

C16:1 n-7 0 2.53 1.88 2.38 1.01 1.53 2.01 1.66 1.47 1.46 2.11 2.94 2.14 

4 2.34 2.02 2.22 1.65 1.60 1.61 1.18 2.52 2.12 1.90 1.89 2.39 

8 1.52 1.50 2.05 2.39 1.12 1.69 2.87 2.11 2.13 1.65 1.73 1.17 

12 1.29 1.05 2.09 2.20 1.98 2.01 1.47 2.26 1.93 1.76 1.55 1.63 

C18:1 n-9c 0 31.44 29.14 33.43 23.29 22.57 27.01 26.91 22.85 19.96 26.48 38.81 29.09 

4 30.70 27.15 26.59 23.18 26.01 26.18 21.36 34.34 26.52 32.76 30.81 38.80 

8 23.22 21.09 27.74 28.54 20.31 22.79 38.06 28.78 28.49 24.65 29.96 22.52 

12 26.02 17.97 29.34 29.74 24.51 26.78 22.48 31.83 28.60 29.97 25.73 25.44 
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Table 5.10 (Continued) Effect of natural antioxidant application on fatty acid composition (g/kg DM) of chicken breast meat cooked by a ‘High 

Temperature, High Oxygen’ (Grilled) cooking method during the storage time at 4 oC.  

Fatty acid Time 

(d) 

Controls Natural Antioxidant Treatments 

CON A.R.H BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

C18:1 n-9t 

 

0 2.45 2.14 2.40 1.72 1.88 2.04 2.08 1.87 1.67 1.90 2.64 2.05 

4 2.28 2.02 2.01 1.85 1.96 2.03 1.67 2.41 1.97 2.34 2.21 2.62 

8 1.96 1.71 2.09 2.11 1.70 1.83 2.62 2.21 2.21 1.88 2.13 1.72 

12 2.00 1.61 2.21 2.18 2.04 2.07 1.74 2.37 2.13 2.10 1.89 1.98 

C18:2 n-6 

0 18.15 16.88 21.56 15.90 14.77 16.69 17.72 15.15 13.13 15.51 22.20 17.95 

4 18.76 15.02 15.79 14.00 16.86 16.64 14.05 21.09 16.62 22.98 20.54 24.20 

8 13.96 13.25 16.47 15.99 12.22 13.82 21.86 16.29 16.89 14.28 18.55 14.02 

12 17.12 11.92 18.20 16.54 14.25 15.65 13.62 18.05 16.87 18.37 15.55 14.02 

C18:3 n-3 

0 2.62 2.34 3.33 2.34 2.03 2.55 2.69 2.13 1.78 2.30 3.47 2.72 

4 2.80 2.13 2.34 2.04 2.42 2.50 2.00 3.29 2.42 3.35 3.06 3.92 

8 1.85 1.83 2.44 2.40 1.59 1.98 3.43 2.31 2.44 1.96 2.65 1.93 

12 2.52 1.50 2.69 2.42 2.10 2.25 1.82 2.65 2.47 2.69 2.19 1.93 

C20:4 n-6 

0 1.80 2.02 2.35 2.41 2.50 2.06 2.38 2.25 2.14 2.14 2.09 2.10 

4 2.17 1.75 1.90 2.05 2.15 2.17 2.33 2.00 1.99 2.26 2.19 2.30 

8 1.61 1.85 2.09 2.14 1.98 1.99 1.95 1.85 2.22 1.96 2.13 2.07 

12 1.87 2.01 2.16 1.71 1.43 1.68 2.05 1.35 1.83 2.13 1.85 1.82 

C20:5 n-3 

0 0.26 0.21 0.26 0.24 0.29 0.24 0.25 0.26 0.29 0.25 0.25 0.30 

4 0.25 0.23 0.28 0.26 0.25 0.25 0.24 0.26 0.30 0.23 0.21 0.23 

8 0.20 0.26 0.27 0.25 0.21 0.23 0.20 0.24 0.23 0.22 0.20 0.25 

12 0.18 0.29 0.24 0.21 0.22 0.20 0.24 0.31 0.24 0.23 0.21 0.22 

C22.5 n-3 

0 0.60 0.70 0.76 0.70 0.79 0.70 0.72 0.71 0.70 0.73 0.68 0.74 

4 0.71 0.55 0.67 0.71 0.77 0.76 0.73 0.69 0.66 0.74 0.73 0.79 

8 0.56 0.65 0.71 0.74 0.69 0.67 0.63 0.62 0.66 0.60 0.69 0.69 

12 0.67 0.73 0.69 0.60 0.52 0.58 0.68 0.52 0.64 0.66 0.58 0.65 



275 

 

 

Table 5.10 (Continued) Effect of natural antioxidants on fatty acid composition (g/kg DM) of chicken breast meat cooked by a ‘High Temperature, High 

Oxygen’ (Grilled) cooking method during the storage time at 4 oC. 

Fatty acid Time 

(d) 

Controls Natural Antioxidant Treatments 

CON A.R.H BHT A.R.H ROS A.R.H SRB A.R.H SFS A.R.H GGR A.R.H 

C22:6 n-3 

0 0.39 0.43 0.56 0.52 0.50 0.40 0.45 0.42 0.51 0.47 0.47 0.46 

4 0.44 0.30 0.40 0.46 0.49 0.45 0.53 0.46 0.37 0.47 0.51 0.47 

8 0.33 0.44 0.45 0.47 0.45 0.47 0.38 0.40 0.44 0.46 0.48 0.46 

12 0.40 0.47 0.38 0.36 0.36 0.40 0.41 0.57 0.39 0.40 0.34 0.40 

∑SFA 

0 23.76 24.20 25.40 19.97 20.04 22.80 21.89 19.53 18.19 21.89 29.98 24.29 

4 24.56 22.44 22.26 20.12 21.32 22.27 18.28 27.68 22.44 26.07 25.05 29.78 

8 20.86 19.29 23.50 23.87 17.91 20.32 29.17 24.44 23.13 20.41 24.25 20.44 

12 22.51 17.26 24.20 24.59 21.92 21.82 20.22 24.90 23.15 25.21 21.04 20.83 

∑MUFA 

0 36.42 33.17 38.21 26.02 25.98 31.06 30.65 26.19 23.09 30.50 44.40 33.28 

4 35.33 31.18 30.82 26.68 29.58 29.83 24.20 39.28 30.61 37.00 34.91 43.81 

8 26.70 24.30 31.88 33.04 23.13 26.31 43.55 33.10 32.83 28.18 33.82 25.41 

12 29.31 20.63 33.64 34.12 28.54 30.86 25.69 36.46 32.66 33.83 29.17 29.05 

∑PUFA 

0 23.83 22.58 28.81 22.12 20.87 22.64 24.20 20.92 18.55 21.39 29.16 24.27 

4 25.13 19.98 21.37 19.51 22.94 22.77 19.89 27.80 22.37 30.01 27.24 31.91 

8 18.52 18.27 22.43 21.99 17.15 19.17 28.45 21.71 22.88 19.48 24.70 19.42 

12 22.75 16.92 24.35 21.85 18.87 20.76 18.82 23.45 22.43 24.48 20.72 19.05 

∑n-3 PUFA 

0 3.88 3.68 4.91 3.81 3.60 3.90 4.11 3.53 3.29 3.74 4.87 4.22 

4 4.20 3.21 3.69 3.46 3.93 3.96 3.50 4.71 3.76 4.78 4.51 5.41 

8 2.94 3.18 3.87 3.85 2.95 3.35 4.64 3.57 3.77 3.24 4.02 3.33 

12 3.76 2.99 3.99 3.60 3.19 3.43 3.15 4.05 3.74 3.98 3.32 3.21 

∑n-6 PUFA 

0 19.95 18.90 23.90 18.31 17.27 18.75 20.09 17.40 15.27 17.65 24.29 20.05 

4 20.93 16.77 17.68 16.05 19.01 18.81 16.38 23.09 18.62 25.23 22.72 26.50 

8 15.57 15.10 18.55 18.14 14.20 15.81 23.81 18.14 19.11 16.24 20.68 16.09 

12 18.99 13.93 20.36 18.25 15.68 17.33 15.67 19.40 18.69 20.50 17.40 15.84 
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5.4 Discussion  

5.4.1 Effect of Natural Antioxidants on Thiobarbituric Acid-Reactive Substances 

(TBARS) 

TBARS values in cooked meat in the current study were within the range reported by Yu et 

al. (2002) and higher than those in previous works (Lau et al., 2008: Min et al., 2008; Selani 

et al., 2011). Lau et al. (2008) found that the TBARS values in chicken meat cooked in a 

microwave reached up to 13.93 mg MDA/kg meat. Significantly higher TBARS values were 

observed in HTHO cooked meat than sous-vide cooked samples (Appendix Table D2). This 

could be due to the high temperature used during grilling meat samples, despite the cooking 

time being shorter than in sous vide cooked samples. Another explanation for this could be 

the cooking process have been conducted under aerobic conditions, which cooking process 

can disrupt the cell membranes and facilitate the lipid compounds to come into direct contact 

with oxygen and compounds that have the ability to catalyse meat lipid oxidation 

(Bragagnolo, 2009). It has been reported that the accelerating rate of lipid oxidation depends 

on the cooking temperature (Bax et al., 2011). Dominguez et al. (2014) reported that foal 

steaks, roasted at 200 oC had a higher TBARS value compared to that cooked in the 

microwave, grilled and fried less than 200 oC. Lanari et al. (1995) and Nute (2009) found 

that warmed over flavour becomes noticeable when TBARS values range between 0.6 to 2.0 

mg MDA/kg beef meat. Moreover, after reheating LTLO cooked samples, the TBARS 

values were significantly decreased compared to those before reheating process. In contrary 

to this, reheating process markedly increased TBARS values of HTHO cooked samples 

compared to those before reheating (Appendix Table D2). These findings are in agreement 

with those reported by Pikul (1985), who reheated cooked chicken leg and breast meat, and 
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reported a significant increase in TBARS values in reheated samples. It seems that the 

formulation of warmed over flavour in multi-reheating cooked meat samples is depending 

on cooking methods. In addition, TBARS values in LTLO samples significantly increased 

from 4.04 to 9.76 mg MDA/kg meat over 12 days of storage time (p < 0.001). In HTHO 

cooked samples, the TBARS values were increased over 8 days and subsequent decrease to 

day 12 (Appendix Table D.2) could be due to the breakdown of malondialdehyde, and 

produced volatile compounds during the ongoing exposure to heat and oxygen (Bax et al., 

2012). Non-treated samples of LTLO and HTHO were affected more by storage time than 

those treated with antioxidants (Figures 5.2 and 5.5). This is consistent with Naveena et al. 

(2013) and Selani et al. (2011) who reported that the highest increase in lipid oxidation was 

seen in non-treated samples over the storage time compared to those containing antioxidants. 

Addition of antioxidant inhibited lipid oxidation in beef cooked meat during the storage time 

(Colindres and Brewer 2011; Selani et al., 2011), this corresponds with our results (Figures 

5.2 and 5.5). The significant effect of natural antioxidants observed on lipid oxidation in 

samples cooked in the current study at each interval of storage time (Figures 5.2 and 5.5), 

was due to the phenolic compounds in their structure that have the ability to terminate free 

radical reactions, thereby quenching metal and reactive oxygen species (Reische, 2002; 

Huang et al., 2005). Interestingly, the effectiveness of ROS was more in sous vide cooked 

meat by the reduction of TBARS values. Naveena et al. (2013) observed a similar finding in 

previous work where rosemary reduced the oxidative deterioration in both cooked buffalo 

and chicken meat. This finding explains/highlights that the capability of natural antioxidants 

to reduce the oxidation process could be more effective at low temperature and low oxygen. 

Accordingly, the highest reduction of TBARS values in BHT treatment after grilling (Figure 

5.5) could be due to the synthetic antioxidant being more stable at the high temperatures 
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used. This synthetic antioxidant was originally preferred for stabilisation of fats in baked 

and fried products due to its stability in a wide range of pH and processing conditions 

(Fasseas et al., 2007; Rowe et al., 2007; Karre et al., 2013). The application of natural 

antioxidants was provided a greater protection against an increase of TBARS values in both 

before and reheated meat samples compared to the non-treated samples (Figures 5.1 and 

5.5). These findings clearly found that the supplementation of natural antioxidants could 

reduce the warmed-over flavour attribute in reheated cooked meat under refrigeration 

storage time. 

5.4.2 Effect of Natural Antioxidants on Phospholipid Content 

The content of phospholipids in the current study was within the range of those reported by 

Pikul et al., (1985) and Alasnier et al. (2000), whilst being higher than those published by 

Soyer et al. (2010) who found that phospholipid content in chicken breast meat ranged from 

12-23 g/100 g fat in, while similar to those reported by Pikul et al. (1984), who showed that 

the amount of phospholipid content in chicken breast meat is 70 g/100 g fat.  

Phospholipids are in the majority of food products containing high levels of polyunsaturated 

fatty acids and are considered more susceptible to oxidative deterioration (Ma et al., 2007). 

This can occur by thermal degradation (Jayasena et al., 2013) and have phospholipids been 

linked to the development of warmed-over flavours and rancidity flavour in reheated meats 

(Igene and Pearson, 1979; Igene et al., 1980; Roldan et al., 2014). A significant reduction of 

phospholipid was found in LTLO compared to the HTHO cooking methods (Appendix Table 

D2). An increase in the phospholipid degradation in LTLO samples may be attributed to the 

duration of cooking. The increased hydrolysis of phospholipids as a result of cooking time 

was reported previously by Wang et al. (2011), who indicated that hydrolysis of 
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phospholipids was greater in meat roasted at 90 oC for 1 hr than in boiled meat for 30 min. 

Accordingly, it could be expected that a lower cooking temperature and time leads to greater 

degradation of phospholipids in chicken meat. Furthermore, reheating process significantly 

caused a reduction of phospholipid content in both LTLO and HTHO samples compared to 

those before subjecting to reheating process (p < 0.001) (Appendix Table D2). The decreased 

content of phospholipid in meat after reheating might be related to its decomposition and 

formation of a complex with protein or carbohydrate (Takagi and Yoshida, 1999). Hence, 

this degradation of phospholipid could lead to producing more warmed over flavour in 

reheated cooked meat as being highly linked with phospholipid content. Moreover, the 

storage time had an effect on the phospholipid content of LTLO samples. It was found that 

the phospholipid content in cooked meat samples significantly decreased (p < 0.001) 

throughout the storage time, the highest reduction was found on day 8 of storage time with 

no significant changes at the end of the storage time (Appendix Table D2). A significant 

effect of storage time was seen in the phospholipid content, indicating that the storage time 

resulted in reducing the phospholipid content which could be attributed to the autoxidation 

of polyunsaturated fatty acids present in its structure. A similar finding reported by Alasnier 

et al. (2000) reported that phospholipid content in breast and thigh meat decreased during 

the storage time. Soyer et al. (2010) found a similar reduction of phospholipid content in 

frozen chicken breast and thigh meat for 6 months. These results suggest that phospholipid 

content in meat is unstable under storage conditions, which could be attributed to the 

formation of warmed over flavour. Non-treated samples were found to have a higher 

reduction of phospholipid at each interval of storage time than antioxidant treatments 

(Figures 5.8 and 5.9). The results of the current experiment indicated that phospholipids 

could be protected by adding antioxidants to chicken meat before cooking. Hence, 
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supplementation with either natural or synthetic antioxidants impeded the degradation of 

phospholipid content in all LTLO and HTHO samples compared to the non-treated samples 

(Figures 5.8, 5.9 and Appendix Table D2). Treated samples with natural antioxidants 

provided a marked protection against a reduction of phospholipids compared to the non-

treated samples, while similar to BHT treatment. As mentioned in Chapter 5, the 

underpinning mechanism by antioxidants in protecting phospholipids from thermal 

decomposition is not well known. This mechanism could be similar to the protective 

mechanism as it applies to individual fatty acids since phospholipids are considered to have 

elevated levels of unsaturated fatty acids. Furthermore, natural antioxidants significantly 

reduced the degradation of phospholipid content in both before and after reheating LTLO 

samples (Figure 5.7), indicating that natural antioxidants can protect the phospholipid from 

degradation at different conditions, which could have reduced the warmed-over flavour.  

5.4.3 Effect of Natural Antioxidants on Conjugated Dienes (CDs) 

The presence of conjugated dienes (CDs) in meat indicating that polyunsaturated fatty acids 

have two double bonds in their structure underwent an oxidation process (Feiner, 2006; 

Estevez et al., 2009). Conjugated diene values in cooked meat in the current study ranged 

from 22.36 to 68.72 µmol/g fat, which was lower than those reported in previous works (Lee 

et al., 2011; Hwang et al., 2013). Lee et al. (2011) found that the CD values in cooked pork 

meat ranged from 430 to 699 µmol/g. Hwang et al. (2013) reported that the CD values of 

fried chicken nuggets ranged from 505 to 966 µmol/g. This difference could be attributed to 

the cooking method was used and type of meat. Cooking methods had a negative impact on 

the oxidative stability of the chicken meat, which resulted in increased CD values. As can 

be seen, HTHO cooked meat had the highest formation of CDs (Appendix Table D2). This 
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could be due to a higher temperature, which can disrupt the cell membrane and facilitate the 

uptake of oxygen. Rapid formation of CDs in meat has been established as a response to the 

cooking methods (Weber et al., 2008; Dai et al., 2014). The higher values of CD suggest that 

the unsaturated fatty acids and phospholipids were unstable during the process. This was 

most likely due to the decomposition of polyunsaturated fatty acids after cooking and the 

formation of the high content of conjugated dienes. Furthermore, the CD values in LTLO 

samples were not significantly affected by reheating process (p = 0.137), while CD values 

in HTHO samples were significantly reduced (p < 0.001) after reheating process (Appendix 

Table D2). Hence, the formation of CDs decreased after reheating which could be due to the 

breakdown of conjugated dienes to secondary lipid oxidation products. Moreover, the 

refrigeration time significantly affected the CD values, which increased progressively over 

12 days of storage time (Appendix Table D.2). Similar an increase of CD values was found 

in cooked ground pork stored at oC for 14 days (Juntachote et al., 2006). Furthermore, the 

application of antioxidants significantly reduced the formation of CD in both LTLO and 

HTHO samples, while ROS and BHT were found to have the lowest values of the CD 

(Appendix Table D.2). The lower CD values observed in cooked meat treated with 

antioxidants could be associated with phenolic compounds, which could stabilize the 

polyunsaturated fatty acids from decomposition as demonstrated by the lowest formation of 

secondary lipid oxidation products (TBARS) in antioxidant treatments. The CD values in 

untreated samples increased with storage time increased, while treated samples with natural 

antioxidants were provided a greater protection against an increase of CD values in both 

LTLO and HTHO (Figures 5.11 and 5.14). These findings are in agreement with those found 

by Lee et al. (2010), who found that cooked pork supplemented with different kimchi 

ethanolic extracts had lower CD values compared to the non-treated samples. Similar 
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findings were observed by Choe et al. (2011) who found that cooked ground pork treated 

with different concentrations of lotus, barley leaf powder and BHT had lower values of CD 

over storage time. Furthermore, natural antioxidant treatments worked similar to BHT in all 

samples either cooked by LTLO and HTHO methods. This could be due to various phenolic 

compounds present in their structure. Treated samples either before and after reheating 

process were found to have the lowest lipid oxidation compared to the non-treated control. 

The CD values were significantly higher in ROS, SFS and BHT samples before reheating 

process compared to those after reheating (Figure 5.13). These findings observed that 

application of natural antioxidants can inhibit the autoxidation of lipids and reduce the 

development of warmed-over flavour in the meat. 

5.4.4 Effect of Natural Antioxidants on Conjugated Trienes (CTs) 

Conjugated trienes are a by-product of secondary lipid oxidation products produced from 

oxidation of fatty acids containing three or more double bonds in their structure. The 

presence of conjugated trienes in meat is indicative of advanced lipid oxidation (Wrolstad et 

al., 2005). There was a significant difference (p ≤ 0.05) between LTLO and HTHO cooking 

methods with HTHO cooked samples having higher CT values (Appendix Table D3). 

Similar findings are reported by Poiana (2012), who found that higher temperatures (193 oC) 

caused the greatest accumulation of CT in sunflower oil. This could be related to the cooking 

process that can decompose polyunsaturated fatty acids and lead to an increase in the CTs 

content. Furthermore, the CT in LTLO samples was not affected significantly by reheating 

process, while the CT values of HTHO were significantly affected by reheating process (p 

< 0.001). Hence, HTHO samples after reheating significantly decreased compared to those 

before reheating (Appendix Table D3). Considering the lowest accumulation of CTs was 
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formed in reheated LTLO cooked samples, it seems that reheating cooked meat had no effect 

on the CTs. The significant effect of reheating on CT values in HTHO particularly in non-

treated samples could be related oxidation more polyunsaturated fatty acids by reheating 

temperature that could lead to producing significant changes in conjugated trienes. 

Moreover, storage time significantly increased the CT values in LTLO samples over 4 days, 

found no effect at day 8 and 12. In contrast, the CT values in HTHO samples were 

significantly decreased (p < 0.001) with increasing storage time (Appendix Table D3). These 

findings are in agreement with Abreu et al. (2011), who pointed out that the level of CTs 

increased over storage time in blue shark meat stored at -20 oC for 12 months. Their results 

also found that antioxidant treatments caused a lower accumulation of conjugated trienes 

compared to the non-treated control. Similar findings were observed in a recent study, 

samples containing natural antioxidants had a lower accumulation of CTs (Appendix Table 

D3). The oxidative stability of cooked meat treated with antioxidants based on the changes 

of CTs was consistent with those reported by Poiana (2012) who found that either oil 

supplemented with grape seeds or synthetic antioxidants (BHT) and heated in the microwave 

or convection oven had a lower form of conjugated trienes. The effectiveness of natural 

antioxidants and the synthetic antioxidant BHT to inhibit the formation of CTs in LTLO 

samples were BHT > SRB > GGR > SFS > ROS > non-treated samples, respectively 

(Appendix Table D3). However, no significant difference was observed among natural 

antioxidant treatments (with exception SRB) cooked by LTLO and non-treated samples, 

while significant reduction of CT values were found in BHT treatment compared to non-

treated samples. This could be related to cooking meat under vacuum conditions that could 

not lead to producing significant changes in conjugated trienes. In contrast, the higher 

inhibition of CTs in HTHO samples was found in ROS followed by BHT, SFS, GGR, SRB 



284 

 

 

and non-treated samples (Appendix Table D3). No significant difference was found between 

the BHT and natural antioxidant treatments due to the ability of natural antioxidants to 

perform similarly with respect to reducing the CT production. Natural antioxidants were 

provided a greater protection against an increase of CT values in HTHO samples over time, 

while the highest reduction of CT by natural antioxidants was found at day 12 (Figure 5.19). 

These results are consistent with those reported by Al-Dalain et al. (2011) who observed that 

ginger, rosemary and fernel performed similarly to the synthetic antioxidant (BHT) in 

reducing CT formation in sunflower oil over the storage time. Moreover, the application of 

natural antioxidants significantly reduced the formation of CTs in LTLO samples before 

reheating process, while a significant inhibition of CT values was found in both before and 

after reheating HTHO samples (Figures 5.16 and 5.18). These results have suggested that 

ROS, SRB, SFS and GGR have ability to stabilise the lipid oxidation products in chicken 

meat.  

5.4.5 Effect of Natural Antioxidants on Texture (Shear Force) 

The range of shear force in the current study was within the normal range reported by Rimini 

et al. (2014) who observed that shear force of cooked breast meat ranged from 14.02 to 15.40 

N, respectively. Meat samples cooked by the HTHO method had a higher shear force value 

than those cooked by LTLO (Appendix Table D3). Increased shear force value in grilled 

meat could be attributed to an increase in the cooking loss, which could be the reason why 

the HTHO samples had a higher shear force. Another explanation for this could be because 

the cooking process was conducted under high temperature and high oxygen. Bao and 

Ertbjerg (2015) suggested that meat toughness was more likely attributed to protein when 

meat protein undergoes the oxidation by reactive oxygen species and generate cross-links in 
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structural proteins. Murphy and Marks (2000) found that shear force strongly correlated with 

cooking temperature when shown that shear force of cooked breast meat increased with 

increasing cooking temperatures. Furthermore, reheating process and application of 

antioxidants were not affected the shear force value of both LTLO and HTHO cooked meat 

(Appendix Table D3). However, samples treated with antioxidants had a lower shear force 

compared to the non-treated samples.  These findings are inconsistent with those reported 

by Naveena et al. (2004), who found that antioxidant treatments had significantly lower shear 

force than the non-treated samples. These differences between this study and ours may be 

due to the types of antioxidants, antioxidant dose or dipping time used which could decrease 

the shear force. Naveena and Mendiratta (2001) found that shear force of cooked breast 

treated with 1 % of ginger extract did not significantly differ from the non-treated samples 

while samples treated with both 3 and 5 % were found to have a significantly lower shear 

force than the non-treated samples. This finding indicated that shear force of chicken could 

be enhanced by increasing application dose of natural antioxidants. In addition, during the 

storage time, the shear force of cooked breast meat decreased at day 12 of storage time 

compared to day 0 (Appendix Table D3). Reduction of shear force in the cooked pork muscle 

stored at 4 oC during a 14-day storage time has also been reported (Bao and Ertbjerg, 2015). 

In another study by Ferrentino and Spilimbergo (2016), they found that the hardness of 

cooked ham decreased with storage time. This could be attributed to the deterioration of 

meat quality during the storage time, which can be induced by bacteria. 

5.4.6 Effect of Natural Antioxidants on pH.  

pH is considered a good indicator of meat stability, which is more related to the chemical 

reaction that generate meat deterioration (Hwang et al., 2012). The pH values of cooked 
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meat were within the normal range reported in previous studies carried out by Sampaio et 

al. (2012) who found that the pH values of cooked breast chicken meat ranged from 5.7 to 

6.40, respectively. However, it was slightly higher than those published in a study conducted 

by Naveena et al. (2013). The pH value of LTLO cooked samples higher than HTHO 

samples (Appendix Table D3). This could be due to the fact that cooking meat at a lower 

temperature and longer time caused the rapid increase of pH. It seems that a longer cooking 

time and lower temperature affect the pH more than a higher temperature and shorter time. 

These results were consistent with those reported by Oz and Zikirova (2015) who found that 

beef meat cooked at < 100 oC over a long-time had higher pH values than those cooked at < 

100 oC for a shorter time. In another study, a decrease in pH of cooked meat has been 

observed by Nithyalakshmi and Preetha, (2015), who pointed out that meat cooked at 60 oC 

had lower pH values than those cooked at 40 oC. Reheating meat did not cause marked 

changes in pH values, which it seems that reheating had no effect on pH values. A marked 

increase was observed in the pH value of LTLO and HTHO cooked breast meat with 

increasing storage time (Appendix Table D3). This could be due to the denaturation of 

protein and amino acid by bacteria (Choe et al., 2011). An increased pH in cooked meat with 

storage time has also been reported by Choe et al. (2011) and Talab (2014). Furthermore, 

samples supplemented with natural antioxidants had a lower pH value compared to the non-

treated samples (Appendix Table D3). ROS treatment was found to have a lower pH value 

at each interval of storage time (Figure 5.21). This could be attributed to the phenolic acid 

present in plant extracts that caused a rapid drop in pH values. These results are similar to 

those reported by Lara et al. (2011), who found that cooked pork patties treated with 

rosemary, meliox and BHT had lower pH values compared to the non-treated samples. In 
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our study, there was no significant difference between pH of natural antioxidant treatments 

and BHT, an indication that both performed similarly.  

5.4.7 Effect of Natural Antioxidants on Cooking Loss 

Grilled (HTHO) samples were shown to have a higher cooking loss (Figure 5.24), most 

likely attributable to the higher core temperature reached in grilled samples, despite the 

cooking time being shorter. Several studies have also found a greater cooking loss because 

of the use of higher temperatures during the cooking process (Murphy and Marks, 2000; 

Lorenzo et al., 2015; Roldan et al., 2015). Roldan et al. (2015) found cooking loss was higher 

in oven roasted lamb meat than in LTLO cooked samples, with values 35.70 and 23.70 % 

respectively. Roldan et al. (2013) showed an increase in cooking loss in lamb meat with 

increasing cooking temperature and cooking duration. Accordingly, the reason for increasing 

water loss in chicken meat after cooking is more likely because the thermal process can 

denature and oxidize protein (Wang et al., 2009), thus reducing the ability of the meat protein 

to retain water in its structure by capillary forces (Aaslyng et al., 2003). Since samples 

containing ROS were found to have a lower cooking loss in both LTLO and HTHO samples 

(Figure 5.24), these results suggest that the addition of antioxidant extracts to meat before 

cooking could protect proteins from denaturation. Lara et al. (2011) observed similar 

findings when pork patties supplemented with natural (Nutrox and Meliox) and synthetic 

(BHT) antioxidants had the lowest cooking loss compared to the non-treated samples. 

Natural antioxidants provided similar protection as compared to BHT (Figure 5.24) which 

indicate that both performed similarly. 



288 

 

 

5.4.8 Effect of Natural Antioxidants on Colour  

The higher L* values found in HTHO cooked meat than LTLO samples (Appendix Table 

D4), could be due to the higher cooking loss was observed. Pulgar et al. (2012) suggested 

that higher L* values in pork meat were related to losses of great amounts (16-20 %) of water 

during the cooking process which turns meat to a dry appearance. In the study carried out by 

Kralik et al. (2014) breast meat with higher L* values had lower pH values. A similar finding 

was observed in our study when HTHO cooked meat was found to have a higher L* value 

and lower pH values. Furthermore, reheating process did not have any effect on L* values 

of LTLO samples, while significantly increased the L* values in HTHO samples (Appendix 

Table D4). As mentioned before, this could be attributed to exuded great amounts of water 

during the reheating process which turns meat to a dry appearance. Furthermore, the 

lightness (L*) values of cooked breast chicken meat either by LTLO or HTHO methods 

tended to increase at the end of storage time (Appendix Table D4). These results are in 

agreement with those reported by Lara et al. (2011) who found an increase in lightness values 

in cooked pork with storage time. However, in the study carried out by Selani et al. (2011), 

they found that lightness (L*) of cooked breast meat was not affected by storage time. 

Moreover, LTLO cooked meat treated with natural antioxidants had lower L* values than 

BHT and non-treated samples over storage time, and the lowest L* values was found in ROS 

and GGR treatments compared to any other treatments (Figure 5.25). The lower in lightness 

(L*) values of chicken meat treated with ROS and GGR extracts might be caused by the 

application of plant extracts which presented a dark green and orange colour. These results 

are in agreement with those reported by Lee et al. (2010), who found ground pork meat 

treated with mustard leaf kimchi had a lower lightness compared to the positive control 

(ascorbic acid) and control.  
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Antioxidant supplementation was found to have a significant effect on the redness (a*) 

values in cooked and reheated LTLO and HTHO samples (Appendix Table D4). GGR 

treatment cooked by HTHO was found significantly higher (p ≤ 0.05) than non-treated 

samples. These results are in agreement with those observed by Lee et al. (2010) who found 

an incremental reduction of redness in pork meat after applying 0.1 and 0.2 % of mustard 

leaf kimchi with the reduction being less in samples that contained 0.05 %. The reheating 

process significantly reduced the redness values compared to those before reheating 

(Appendix Table D4). This could be related to the oxidation of oxymyoglobin (ferrous Fe2+) 

to metmyoglobin (ferric Fe3+) which reduce the redness of meat and turns meat colour to 

brown (Mancini and Hunt, 2005). The results also show that the storage time significantly 

reduced the redness value in LTLO meat samples up to day 4 and increased thereafter over 

12 days (Appendix Table D4). In the study carried out by Lara et al. (2011) found an increase 

of redness values in non-treated samples of cooked pork with storage time, while in samples 

containing antioxidants the values decreased. Pizato et al. (2014) observed that a* values 

were declined in cooked breast meat over storage time.  

The highest b* values shown in sous vide (LTLO) (Appendix Table D4), could be due to 

duration of cooking meat that could denaturised more haemoproteins and produce 

metmyoglobin. Lorenzo et al. (2015) suggested that the cooking process could cause several 

changes of meat colour due to rapid oxidation of myoglobin. Higher b* values were observed 

in GGR treatment cooked by LTLO, followed by ROS and SRB treatments compared to the 

non-treated over storage time (Appendix Table D4) and Figure 5.26). This could be due to 

the colour present in plant extracts. Lara et al. (2011) also found discoloration of cooked 

pork patties with supplemental natural antioxidants such as Meliox. After reheating LTLO 

and HTHO cooked samples, b* value was significantly higher than samples before reheating 
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process (p ≤ 0.05). As mentioned before this could attributed to denaturation of haem-

proteins and increase formation of metmyoglobin by reheating process. The results also 

indicated that the storage time had a significant effect on the b* values in LTLO and HTHO 

samples which cause an increase of b* value up to day 8 and decreased thereafter at day 12 

(Appendix Table D4). This increase agrees with the results of previous studies conducted by 

Pizato et al. (2015) who found an increase of b* values in cooked chicken breast meat during 

the storage time. 

5.4.9 Effect of Natural Antioxidants on Fatty Acids  

The fatty acid profile in meat can be affected by several mechanisms, which occur during 

cooking processes such as lipid oxidation and cooking loss (Dominguez et al., 2015). In the 

current study, the amount of individual fatty acids and total SFAs, MUFAs and PUFAs 

markedly decreased when meat samples cooked by HTHO could be attributed to the high 

temperature of grilling as compared to the LTLO method that can cause a greater oxidative 

degradation (Appendix Table D5 and D6). The reduction in HTHO samples was observed 

more in PUFAs (9.14 %) followed by MUFAs (5.25 %) and SFAs (4.90 %). This is due to 

higher degradation of predominant fatty acids such as C16:0, C18:1 n-9c and C18:2 n-6 in 

meat. These results were consistent with those observed by Saldanha and Bragagnolo (2007), 

who found a greater reduction of PUFAs (30-36 %), followed by MUFAs (18-20 %) and 

SFAs (6-8 %) in grilled hake fillet samples. The results indicate that high temperature 

cooking processes reduced all individual fatty acid content, which influenced all three 

families of fatty acids (SFAs, MUFAs and PUFAs) in different proportions. Several studies 

have demonstrated the effect of cooking methods on the fatty acid composition of meat 

(Weber et al., 2008; Alfaia et al., 2010; Dominguez et al., 2015). Alfaia et al. (2010) found 
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a reduction of both SFAs and PUFAs in beef meat cooked by the grilling method compared 

to those cooked by microwave and boiling methods but increased MUFAs. In contrast, a 

study conducted by Weber et al. (2008) showed that different cooking methods did not have 

any significant effect on the fatty acids of fish fillets. The reduction of PUFAs content was 

mainly due to oxidation degradation of polyunsaturated fatty acids, mainly C18:2 n-6 and 

C18:3 n-3 into primary and secondary oxidation products. Interestingly, a higher reduction 

of fatty acids in grilled samples could be associated with an increase in primary and 

secondary lipid oxidation products in the current study. The reduction of ∑n-3 and ∑n-6 

PUFAs was found to be more in HTHO samples than in LTLO samples. However, the 

maximum losses found in n-3, and n-6 PUFA were 10.24 and 8.92 %. This finding was 

supported by Erickson (2002) who reported that n-3 PUFAs oxidized more rapidly than n-6 

PUFAs, due to the effect of location of methylene-interrupted double bonds on the rate of 

oxidation. Mielnik et al. (2006) found that degradation of n-6 and n-9 could result in the 

production of more heptanal, while propanal originates from the oxidation of ∑n-3 PUFAs 

during the storage time. 

In addition, reheating process significantly affected the content of C20:4 n-6 and C20:5 n-3 

in LTLO samples which they increased significantly in samples after reheating process 

(Appendix Table D5 and D6). Moreover, the content of fatty acids gradually declined 

throughout the storage time in chicken samples (Appendix Table D5 and D6) which is likely 

to be due to susceptible lipids being attacked by free radicals. The decrease of all individual 

and sum of SFAs, MUFAs and PUFAs proportion after 12 days of refrigeration time is 

consistent with the findings of earlier study conducted by Sampaio et al. (2012), they found 

that all individual and sum of SFAs, MUFAs, and PUFAs proportions in cooked breast and 

thigh chicken meat decreased after 4 days of storage at 4 oC. Similar findings were also 
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shown by Mariutti et al. (2011) who found a reduction in the amount of SFAs, MUFAs, 

PUFAs, ∑n-3 and ∑n-6 PUFAs in grilled chicken patties stored at -18 oC for 90 days.  

Antioxidants play a significant role in retarding and delaying the lipid oxidation in meat and 

meat products (Velasco and Williams 2011). The high stability of MUFAs, PUFAs, ∑n-3 

and ∑n-6 PUFAs in the natural antioxidant treatments (GGR, ROS and SFS) of LTLO 

cooking meat samples (Appendix Table D5). This could be attributed to the phenolic 

compounds in these antioxidant extracts, which have an ability to scavenge free radicals, 

inhibit lipid peroxidation and are capable of high ferric reducing power (Chan et al., 2011). 

Several studies have found that the stability of fatty acid composition in cooked meat 

containing natural antioxidants increased (Trindade et al., 2010; Mariutti et al., 2011; 

Sampaio et al., 2012). In the study conducted by Mariutti et al. (2011), fatty acid composition 

of grilled chicken meat samples containing sage and garlic extracts remained stable during 

the storage time compared to the non-treated samples. In the other study, rosemary either 

alone or mixed either with synthetic (BHT/BHA) antioxidants or oregano extract reduced 

the hydrolysis of most fatty acids in beef burgers after being subjected to different irradiation 

doses and stored for 90 days (Trindade et al., 2010). The results in our study showed that the 

natural antioxidants performed better than BHT (Appendix Table D5).  

5.5 Conclusions  

In summary, lipid oxidation occurred more in samples cooked by HTHO compared to those 

cooked by LTLO method as the highest amount of lipid oxidation products such as TBARS, 

CDs, and CTs has shown. Of all samples analysed, HTHO samples showed the highest 

decomposition of fatty acids, particularly, unsaturated fatty acids. LTLO cooked meat 

samples were found to have a higher value of pH and higher degradation of phospholipids. 
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Furthermore, the reheating process was found to have a significant effect on lipid oxidation 

products in both HTHO and LTLO cooked meat samples. Cooked meat samples without 

antioxidants had lower stability against oxidation deterioration over time under storage 

conditions. Supplementation of chicken breast meat with natural and synthetic antioxidants 

before the cooking process provided the greatest protection compared to the non-treated 

samples with regards to lipid stability of chicken breast meat stored under refrigeration 

temperature, especially in LTLO samples. ROS effectively inhibited lipid oxidation in 

cooked meat samples as indicated by the lowest phospholipid degradation and formation of 

TBARS, CDs and CTs. The results also indicate that natural antioxidants provided a greater 

protection against lipid oxidation compared to non-treated samples and similar to BHT. 

These findings confirmed that the application of ROS, SRB, SFS and GGR have the ability 

to slow down the lipid oxidation products in cooked and reheated chicken meat.   
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Chapter 6. 

General Discussion and Recommendations for Future Studies 

This study focused on the efficacy of a small range of natural antioxidant extracts with 

regards to chicken meat quality and to compare their effectiveness to a commonly used 

synthetic antioxidant. 

Natural antioxidants are considered to have various biological functions such as antioxidant, 

anti-inflammatory, anti-cancer and antibacterial properties (Manthey and Grohmann, 2001; 

Chan et al., 2011; Berdahl and McKeague, 2015). In light of the broader reasons for the 

application of antioxidants the more recent focus of research has been on the use of natural 

antioxidants. This is mainly because consumers’ preference, and place increasing demands 

on foods containing natural antioxidants instead of synthetic ones because of the perceived 

health benefits (Fasseas et al., 2007), improved nutritional value and the enhanced quality of 

meat (Velasco et al., 2011).  A further reason for the move towards natural antioxidants is to 

avoid reporting carcinogenic side effects associated with long-term consumption of some 

synthetic antioxidants (Altmann et al., 1986; Van, 1986; Gharavi, et al., 2007). The plants 

from which the extracts were obtained in the current study are part of the staple diet in many 

cultures and are often consumed at levels significantly higher than proposed in this study 

(Charles, 2013; Apak et al., 2011).  

This project used rosemary (ROS), small red bean (SRB), sunflower seeds (SFS), and ginger 

(GGR) as the raw materials from which ethanolic extracts were obtained. The natural 

antioxidant extracts were characterised and standardised in their use in various types of 

chicken meat (described in Chapter 2). Firstly, the in-vitro influence of the natural 

antioxidants on the extracted lipid fractions from the chicken meat was evaluated (described 
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in Chapter 2), before the same natural antioxidants were applied to chicken meat (described 

in Chapter 4). Ultimately, the impact of the application of natural antioxidants on the 

warmed-over characteristics in cooked chicken meat was evaluated (described in Chapter 

5). 

6.1 Lipid Oxidation in Chicken Breast Meat.  

Lipid and phospholipid oxidation occurred naturally and by a thermal process in chicken 

meat over storage time. A lower level of TBARS was found in fresh control meat which 

indicated that a slight amount of lipid oxidation had occurred (0.40 mg MDA/kg meat) (see 

Chapter 4). These results are consistent with those found by Selani et al. (2011). Thermal 

processes markedly increased the lipid oxidation in chicken meat. Hence, TBARS values 

were found to be higher in fat samples stored at elevated temperatures.  This was also 

observed in grilled samples, sous vide cooked, and freshly cooked meat (Chapter 2, 4 and 

5). The higher secondary lipid oxidation product observed could be attributed to the cooking 

temperature that facilitates the lipid compounds to react with oxygen and compounds that 

have the ability to catalyse meat lipid oxidation (Bragagnolo, 2009), which goes some way 

to explain the high levels of TBARS in grilled meat samples. Several researchers have 

demonstrated that the incidence of warmed-over flavour coincided with the development of 

thiobarbituric acid reactive substances (TBARS) (Lanari et al., 1995; Byrne et al., 2001; 

Nute, 2009). Moreover, freshly cooked samples were also induced the oxidation of 

phospholipids and fatty acids particularly unsaturated fatty acids. Oxidation of both 

phospholipids and unsaturated fatty acids increased the formation of primary (CD) and 

secondary lipid oxidation products (CT) (see chapter 4).  
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Measuring fatty acid content is an important factor in evaluating the nutritional quality of 

meat and its products (Mariutti, Nogueira, & Bragagnolo, 2011). Thermal processing can 

potentially cause hydrolysis of fatty acids in meat (Cortinas et al., 2004; Alfaia et al., 2010). 

In Chapter 2 and 4, cooking processes caused a significant decrease (p ≤ 0.05) in all 

individual fatty acids and total SFAs, MUFAs and PUFAs in all meat samples. These 

findings suggest that the majority of SFAs, MUFAs and PUFAs in meat remains relatively 

unstable after the cooking process. The possible explanation for this is more likely that the 

thermal process that used could induced the lipid oxidation. Unsaturated fatty acids were 

more susceptible to oxidation than saturated fatty acids as evidenced by higher losses shown 

in the USFA. Therefore, greater degradation of USFA could be attributed to lipid oxidation 

in cooked meat. Similar results were reported by Cortinas et al. (2004), who demonstrated 

that the cooking of chicken thigh meat caused a reduction of all individuals and total SFAs, 

MUFAs and PUFAs compared to the raw meat. Moreover, after chicken meat samples were 

subjected to different cooking methods (LTLO and HTHO methods), as reported in Chapter 

5, HTHO samples had a greater reduction in PUFA (9.14 %) followed by MUFA (5.25 %) 

and SFA (4.90 %) compared to the LTLO methods. This fact is due to higher degradation of 

C16:0, C18:1 n-9c and C18:2 n-6 in meat. These results are similar to those reported by 

Saldanha and Bragagnolo (2007), who found a high reduction of PUFA (30-36 %), followed 

by MUFA (18-20 %) and SFA (6-8 %) in grilled hake fillet samples. These results indicate 

that cooking at high temperature reduced levels of all individual fatty acids, which 

influenced all three families of fatty acids SFAs, MUFAs and PUFAs in different 

proportions. Sensitivity to oxidation processes mainly depends on the composition of lipids. 

Lipids containing high levels of unsaturated fatty acids are considered more prone to 

oxidation compared to fats high in saturated fatty acids (Min et al., 2008). Thus, a free radical 
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can attack quickly, react with unsaturated fatty acid double bonds, and produce warmed-

over flavour (Huang, et al., 2013). It was previously observed that formation of primary and 

secondary lipid oxidation in either fresh or cooked meat could be minimized by antioxidant 

supplementation (Naveena et al., 2008; Naveena et al., 2013).  

6.2. The Effect of Supplementary Natural Antioxidants on Lipid Oxidation Products 

in Chicken Meat 

Firstly, supplementation of natural antioxidants to chicken fat or meat prior to exposing 

thermal process was evaluated (Chapter 2). The important goal of this particular experiment 

to find out the optimum level of antioxidant can inhibit or delay the process of lipid oxidation 

and to measure natural antioxidant capacity under standardised accelerated storage 

conditions (i.e. Schaal oven test). For practical purposes, it has been suggested that 

accelerated storage is considered a very useful tool to identify and characterise a new 

antioxidant and determine its activity. Hence, the application of natural antioxidants was 

noticed significantly reduced the formation of lipid oxidation products as indicated by 

decreasing TBARS, CDs and CTs values compared to samples without added antioxidants 

(control) (Chapter 2). However, these products were found in lower levels in samples treated 

with the synthetic antioxidants (BHT), the effect of natural antioxidants was comparable 

with that of (BHT). This is probably associated with efficiency of compounds and the 

chemical structure of natural extracts. Zilic et al. (2010) reported that natural sources which 

contain several compounds that exert anti-oxidative functions tend to retard lipid oxidation. 

These compounds are mainly phenolic compounds such as the chlorogenic, caffeic, ferulic 

and rosmarinic acids (Velasco and Williams, 2011). The phenolic compounds can retard 

oxidation by scavenging free-radicals, quenching singlet oxygen and chelating metals 

(Velasco and Williams, 2011; Karre et al., 2013).  
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On the contrary, the application of natural antioxidants particularly ROS extract to meat prior 

to the cooking process awarded a greater protection against oxidative rancidity in meat was 

freshly cooked, and cooked meat by LTLO and stored for 12 days. In raw meat without 

subjecting to any cooking method, SFS extract followed by SRB extract imposed a marked 

protection against oxidative rancidity by reducing TBARS, CD and CT formation. However, 

natural antioxidants performed significantly to decrease the lipid oxidation products in 

samples stored under accelerated storage condition and cooked by HTHO, their effect was 

slightly less than BHT. It seems that natural antioxidants in some instances performed 

similar to or higher than synthetic antioxidants. The highest inhibition of lipid oxidation was 

seen in fat treated with BHT under Schaal oven temperature and in grilled samples, which 

could be attributed to synthetic antioxidant stability in a wide range of pH and processing 

conditions (Fasseas et al., 2007; Rowe et al., 2007; Karre et al., 2013). Fluctuation effect of 

antioxidants observed in this study could be attributed to the active compounds in the extract. 

Although the application was carried out based on the total phenolic compounds, there were 

variations in their ability to protect lipids from autoxidation. In addition, antioxidant 

supplementation protected fatty acids and phospholipids from degradation and reduced the 

formation of TBARS, conjugated dienes and conjugated trienes.  

6.3. Effect of Antioxidant on pH, Shear Force, Cooking Loss and Colour of Chicken 

Meat 

The impact of antioxidant supplementation on chicken meat pH, colour, texture and cooking 

loss were evaluated in Chapters 4 and 5. The results showed that antioxidants did not have 

any significant effect on shear force of chicken meat freshly cooked, while in HTHO 

samples, a significant effect of natural antioxidants on shear force was shown (p = 0.022). 

Hence, the effectiveness of natural antioxidants and the synthetic antioxidant BHT to 
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enhance the meat texture (shear force) in HTHO samples was ROS > BHT > non-treated > 

GGR >SFS > SRD, respectively. Our findings are in agreement with those reported by 

Naveena and Mendirratta (2004), who found that marinating buffalo meat chunks in the 

GGR extract at 0, 3, 5 and 7 % v/w for 2 days at 4 oC significantly decreased shear force 

values. In another study conducted by Naveena and Mendirratta (2001), the addition of GGR 

at 1, 3 and 5% v/w to chicken breast meat reduced the shear force value. However, the sample 

containing the highest concentration was found to have a lower value. Further work is 

required to determine whether dipping time would have any effect on shear force. 

The application of antioxidants significantly affected the pH values in raw and cooked 

chicken meat by both sous vide and grilled methods, as reported in Chapters 4 and 5. Meat 

samples supplemented with antioxidants and cooked by sous vide and grilled methods were 

found to have lower pH values than non-treated samples. This could be attributed to the 

phenolic acid present in plant extracts that caused a rapid drop in pH values and cooking 

temperature. A similar reduction of pH in cooked meat treated with antioxidants has been 

shown by Lara et al. (2011), who found that cooked pork patties treated with ROS, meliox 

and BHT had lower pH values compared to the non-treated samples. This finding is in 

agreement with those reported by Selani et al. (2011), who found that the antioxidant (i.e. 

Grape peel and seed extract, sodium erythorbate, citric acid and sugar, BHT) did not have 

any effect on  pH values in cooked chicken meat over 9 days of storage time.  

Because colour is a primary sensory attribute, it is often used to evaluate meat quality. Losses 

due to consumer discrimination against meat with surface discoloration, either in the home 

or at retail, result in losses of what may be edible meat. Aside from the packaging another 

effective methods to prolong shelf life is the addition of antioxidants to meat and its products. 

The use of antioxidants to preserve meat quality has been well documented. In the current 
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study, the effect of antioxidants was significantly observed on redness (a*) values in raw and 

cooked meat. The natural antioxidant treatments were found to have a lower oxidation of 

pigments than non-treated samples and BHT. This results in the notion that the addition of 

antioxidants could protect meat from discolouration.  

Samples treated with ROS, SRB, SFS and GGR were found to have a lower cooking loss 

compared to the non-treated samples as reported in Chapter 4. However, statistical was not 

significant. In contrast, samples treated with ROS extract and cooked by LTLO and HTHO 

had the lowest cooking loss compared with non-treated samples, but similar to the BHT. 

These results suggested that the addition of antioxidant extracts to meat before cooking could 

protect proteins from denaturation. Lara et al. (2011) observed similar findings who showed 

pork patties supplemented with natural (Nutrox and Meliox) and synthetic (BHT) 

antioxidant had a lowest cooking loss compared to the non-treated samples . 

6.4 Assessment of Natural and Synthetic Antioxidant Activity 

Previous research was carried out to measure natural antioxidant activities based on the 

secondary lipid oxidation product such as aldehydes (MDA) (Jayathilakan, et al., 2007). In 

the current study, calculation of antioxidant activity of plant extracts has been conducted 

using the following equation: 

AOA (%) = (V1-V2/V1) x 100.  

Where AOA is antioxidant activity, V1 is the TBARS value of the CON samples where V2 

is the TBARS value of the treated samples. 

The important goal in this particular section to find out the activity of ROS, SRB, SFS and 

GGR applied to various types of chicken meat to inhibit the lipid oxidation products 

compared to the synthetic antioxidant. The activity of natural antioxidants against an 
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increase in lipid oxidation in raw meat was ranged from 18 to 30 %. Among natural 

antioxidants, SFS extract had the highest inhibition of lipid oxidation of 30 %, while the 

inhibition of lipid oxidation in samples treated with BHT was reached to 22 %. In meat 

samples, freshly cooked and LTLO samples, ROS was found to have a higher antioxidant 

activity of 62 and 67 %, respectively for freshly cooked and LTLO samples compared to the 

BHT (56-54%). The inhibition of lipid oxidation products in treated samples stored under 

accelerated storage conditions was ranged from 31 to 51% and in samples cooked by HTHO 

methods was ranged from 27 to 37% as compared to the synthetic antioxidants, the 

antioxidant activity of BHT was found to be the highest of 71% in samples stored under 

accelerated storage conditions and (60%) in HTHO (grilled) samples. As mentioned before, 

this could be attributed to synthetic antioxidant stability in a wide range of pH and processing 

conditions (Fasseas et al., 2007; Rowe et al., 2007; Karre et al., 2013). Jayathilakan et al. 

(2007) tested the antioxidant activity of natural (cloves, cinnamon) and synthetic 

antioxidants (ascorbic acid, tart-butyl hydroquinone, butylated hydroxyanisole (BHA), and 

propyl gallate (PG) in different species of meat such as mutton, beef and pork and reported 

that tart-butyl hydroquinone had the highest antioxidant activity in three species of meat 

followed by cloves, ascorbic acid, BHA, PG and cinnamon, respectively.   
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6.5 General Conclusions 

The results obtained from this study support the research hypothesis: that the application of 

natural antioxidants to raw and cooked meat post-slaughter can improve meat quality, reduce 

lipid oxidation, discolouration of meat and limit the degree of warmed-over flavour in 

chicken meat as measured by instrumental analyses. The principle outcomes obtained from 

this study could be summarised as: 

• Thermal processing of chicken fat and meat induced lipid oxidation and increased 

the degradation of both fatty acids and phospholipids  

• The effect of natural antioxidants was similar to the synthetic antioxidant BHT 

• Antioxidant supplementation protected fatty acids and phospholipids from 

degradation and reduced the formation of primary oxidation products (conjugated 

dienes) and secondary oxidation products (MDA, 1, 3-propanedial and conjugated 

trienes) in chicken meat. In raw and freshly cooked meat, natural antioxidants were 

found to have lower primary and secondary lipid oxidation products, whilst in fat 

samples and grilled samples, BHT was found to have less lipid oxidation products. 

• Natural antioxidant reduced the warmed-over flavour that occurred in cooked meat 

and reheated during the storage time. 

• The colour of meat was more stable in samples containing natural antioxidants 

compared to those without antioxidants added.  

• The percentage of cooking and drip loss was reduced in samples treated with 

antioxidants. Treated samples were found to have lower pH values of meat, but 

antioxidants did not have any effect on the shear force. 
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6.6 Recommendations for further work   

6.6.1 Further work is required to evaluate whether the application of natural antioxidants has 

any adverse, neutral, or beneficial effects on the sensory attributes such as grassy, cardboard-

like, rancid flavour and odour, stale, and painty of raw and cooked chicken meat during 

various processing applications, and during extended storage times.  

6.6.2 All antioxidants reduced the formation of lipid oxidation products, while further study 

is needed to isolate and identify the antioxidant compounds from natural sources (ROS, SRB, 

SFS and GGR), and evaluate the effect of each antioxidant compound on lipid oxidation 

products in chicken meat. 

6.6.3 Antioxidants had a positive effect on the lipid oxidation in chicken meat, while it is 

important to apply these antioxidant extracts to other white meat such as turkey meat. The 

penetration of total phenolic was investigated in the outer layer and the core of chicken 

fillets, but it would be interesting to determine lipid oxidation products in the outer layer and 

the core to get a better understanding the process of lipid oxidation and the effect of phenolic 

compounds on lipid oxidation throughout the muscle. 

6.6.4 Further work is also required to determine whether the application of natural 

antioxidants has any effect on meat spoilage microorganisms.  
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Appendix A (Statistics Analysis for Chapter 2) 

Table A 1 Lipid composition of various portions of chicken tissue. 

 Chicken Tissue 

Parameters Breast Thigh Adipose Skin 

Dry matter g/kg meat 251.3 ± 4.96a 270.4 ± 2.22b 534.5 ± 4.11c 826.6 ± 4.36d 

Fat g/kg dry basis 66.6 ± 8.92a 271.9 ± 4.71b 777.8 ± 8.51c 971.7 ± 2.23d 

Mean values with different small letters presented within each row differ significantly (p ≤ 

0.05) according to the Tukey's HSD test.  

 

 

Table A2 Effect of natural antioxidant extracts at different levels on TBARS values, 

Conjugated dienes, Phospholipid content and Conjugated trienes in fat from chicken 

portions during the accelerated storage time (ST). 

Tissue Antioxidants (AO) 

 TBARS value (mg MDA/kg fat) 

 CON ROS SRB SFS GGR BHT SED AO 

Breast  45.63d 22.26b 24.54b 26.75bc 31.37c 12.82a 2.28 <0.001 

Thigh 43.70e 25.70bc 31.59cd 22.81b 33.01d 13.92a 2.22 <0.001 

Adipose 63.97d 40.06b 72.02e 46.24c 45.41bc 25.15a 2.04 <0.001 

Skin 33.80c 8.57a 12.86b 16.16b 15.87b 6.72a 1.38 <0.001 

  Conjugated dienes (µmol/g fat)   

 CON ROS SRB SFS GGR BHT SED AO 

Breast  54.95b 39.92a 38.49a 35.60a 40.52a 34.69a 2.13 <0.001 

Thigh 26.57a 31.05c 28.29ab 27.98ab 29.88bc 33.92d 1.00 <0.001 

Adipose 10.62a 15.76c 12.25b 12.08b 11.61b 12.34b 0.31 <0.001 

Skin 18.10d 16.54c 11.86a 12.51a 15.64b 23.93e 0.31 <0.001 

  Phospholipid content (g100/g fat)   

 CON ROS SRB SFS GGR BHT SED AO 

Breast  55.87b 53.66b 53.22b 51.15ab 51.94ab 46.71a 2.29 0.005 

Thigh 28.38 28.34 31.00 29.17 30.35 27.41 1.43 0.091 

Adipose 3.70 3.61 3.50 3.45 3.86 4.07 0.27 0.158 

Skin 6.11 5.36 5.69 5.95 5.43 5.50 0.40 0.333 

  Conjugated trienes (µmol/g fat)   

 CON ROS SRB SFS GGR BHT SED AO 

Breast  21.76d 13.97bc 14.50bc 12.03ab 14.89c 9.58a 0.98 <0.001 

Thigh 11.65 13.02 12.55 11.69 12.90 12.75 0.50 0.060 

Adipose 1.77a 4.00c 2.59ab 2.81b 2.53ab 2.81b 0.35 <0.001 

Skin 3.72b 4.87c 3.46ab 3.21a 5.51d 7.37e 0.12 <0.001 

Mean values with different small letters presented within each row of each tissue differ 

significantly (p ≤ 0.05) according to the Tukey's HSD test.  
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Table A3 Effect of natural antioxidant extracts at different levels on fatty acid profile (g of 

fatty acids/100 g of fat) in fat from chicken breast tissue during the accelerated storage time 

at 62.8 oC. 

Antioxidant (AO) 

C14:0 C16:0 C18:0 C20:0 C16:1 

 n-7 

C18:1 

 n-9 

C18:2 

 n-6 

C18:3 

 n-3        
CON  0.19ab 11.87bc 4.19c 0.22ab 1.35 23.13bc 12.47bc 1.49ab 

ROS  0.20b 11.93bc 4.13bc 0.22ab 1.43 23.51c 12.65c 1.54ab 

SRB  0.18a 11.18a 3.92a 0.21a 1.33 21.89a 11.82a 1.43a 

SFS  0.20b 12.07c 4.17c 0.23b 1.46 23.87c 12.94c 1.56b 

GGR  0.19ab 11.51ab 4.01ab 0.21a 1.40 22.50ab 12.16ab 1.45ab 

BHT  0.18ab 11.28a 3.91a 0.21a 1.40 22.50ab 12.02ab 1.47ab 

Antioxidant (AO) x Level (L) 

AO L         

CON 0 mg 0.19 11.87cde 4.19c 0.22 1.35 23.13 12.47bc 1.49abc 

ROS 10 mg 0.20 11.81cde 4.14bc 0.21 1.41 23.04 12.41bc 1.50abc  
20 mg 0.20 12.06de 4.12bc 0.23b 1.45 23.97bc 12.88cd 1.58bc 

SRB 10 mg 0.18 11.44abcd 4.08bc 0.21 1.34 22.10 12.02ab 1.43ab  
20 mg 0.18 10.91ab 3.75a 0.21 1.32 21.68a 11.62a 1.43ab 

SFS 10 mg 0.20 11.66bcde 4.09bc 0.22 1.40 22.80 12.39bc 1.48abc  
20 mg 0.20 12.48e 4.24c 0.23b 1.52 24.94c 13.48d 1.63c 

GGR 10 mg 0.18 11.14abc 3.97ab 0.21 1.33 21.44a 11.66a 1.37a  
20 mg 0.21 11.87cde 4.06bc 0.22 1.47 23.56 12.65bc 1.53abc 

BHT 10 mg 0.18 11.81cde 4.06bc 0.22 1.49 23.59 12.61bc 1.54abc  
20 mg 0.18 10.74a 3.75a 0.20a 1.30 21.41a 11.44a 1.39a 

Antioxidant (AO) x Storage time (ST) 

AO ST         

CON 0 0.21bcd 12.48d 4.30d 0.23ef 1.31 24.68d 13.19de 1.58de  
3 0.19abcd 12.09cd 4.27d 0.23ef 1.38 23.47bcd 12.69cde 1.53de  
7 0.16ab 11.05abc 4.00bcd 0.20abcd 1.34 21.23abc 11.54ab 1.35ab 

ROS 3 0.22d 12.24d 4.22d 0.23ef 1.44 24.17d 13.03de 1.61e  
7 0.18abc 11.63bcd 4.04cd 0.21bcd 1.41 22.85bcd 12.27bc 1.47bd 

SRB 3 0.21cd 12.02cd 4.14d 0.23ef 1.44 23.84cd 12.85cde 1.60e  
7 0.15a 10.34a 3.69a 0.19a 1.22 19.94a 10.79a 1.27a 

SFS 3 0.21bcd 12.46d 4.27d 0.24f 1.47 24.80d 13.44e 1.64e  
7 0.20bcd 11.68bcd 4.06cd 0.22cde 1.45 22.95bcd 12.43cd 1.47bd 

GGR 3 0.21cd 12.15d 4.19d 0.23ef 1.45 23.94cd 12.92cde 1.57de  
7 0.18abc 10.86ab 3.84abc 0.20abc 1.34 21.07ab 11.40a 1.33a 

BHT 3 0.20bcd 11.86cd 4.07d 0.22de 1.50 23.83cd 12.68cd 1.58de 
 7 0.16a 10.69a 3.74ab 0.20ab 1.29 21.17ab 11.37a 1.36abc 

SED          
AO  0.008 0.19 0.05 0.007 0.07 0.50 0.24 0.04 

AO x L  0.010 0.23 0.06 0.008 0.08 0.60 0.29 0.05 

AO x ST  0.013 0.31 0.08 0.011 0.11 0.80 0.39 0.06 

AO x L x ST 0.015 0.36 0.09 0.012 0.13 0.92 0.45 0.08  

p value          
AO  0.006 <.001 <.001 0.016 0.360 <.001 <.001 0.008 

AO x L  0.231 <.001 <.001 0.004 0.125 <.001 <.001 <.001 

AO x ST  <.001 <.001 <.001 <.001 0.086 <.001 <.001 <.001 

AO x L x ST 0.152 0.008 <.001 0.304 0.241 0.045 0.032 0.105  

Mean values with different small letters presented within each column of each fatty acid differ significantly (p 

≤ 0.05) according to the Tukey's HSD test.  
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Table A3 (continued) effect of natural antioxidant extracts at different levels on fatty acid 

profile (g of fatty acids/100 g of fat) in fat from chicken breast tissue during the accelerated 

storage time at 62.8 oC. 

Antioxidant (AO)  C20:4  

n-6 

C20:5  

n-3 

C22:5  

n-3 

C22:6 

 n-3 

∑SFA ∑MUFA ∑PUFA ∑n-3 ∑n-6 
       

CON  1.19c 0.13b 0.46b 0.28c 16.71bc 24.47ab 16.02bcd 2.35b 13.67bc 

ROS  1.13bc 0.11a 0.43ab 0.27bc 16.71bc 24.93b 16.13cd 2.35b 13.78c 

SRB  1.10b 0.11a 0.44b 0.25bc 15.70a 23.22a 15.15a 2.23 12.92a 

SFS  1.09ab 0.11a 0.43ab 0.24ab 16.88c 25.33b 16.36d 2.33b 14.03c 

GGR  1.15bc 0.11a 0.43ab 0.24abc 16.15ab 23.90ab 15.54abc 2.24 13.30ab 

BHT  1.03a 0.10a 0.39a 0.22a 15.77a 23.90ab 15.23ab 2.18a 13.05a 

Antioxidant (AO) x Level (L) 

AO L          

CON 0 mg 1.19d 0.13c 0.46 0.28bc 16.71cd 24.47abc 16.02cde 2.35b 13.67cd 

ROS 10 mg 1.17cd 0.11bc 0.44 0.28bc 16.60cd 24.45abc 15.92bcde 2.34b 13.58cd 
 20 mg 1.10bc 0.10ab 0.42 0.26abc 16.82cd 25.42bc 16.34de 2.36b 13.98de 

SRB 10 mg 1.22d 0.12bc 0.46 0.30c 16.16bc 23.44ab 15.54abcd 2.30b 13.23bc 
 20 mg 0.99a 0.09a 0.43 0.21a 15.24ab 23.00a 14.77ab 2.16 12.60ab 

SFS 10 mg 1.16cd 0.11abc 0.44 0.24abc 16.40cd 24.20abc 15.83bcde 2.28 13.55cd 
 20 mg 1.03ab 0.11abc 0.41 0.23ab 17.37d 26.46c 16.89e 2.38b 14.51e 

GGR 10 mg 1.21d 0.12bc 0.45 0.25abc 15.73abc 22.77a 15.06abc 2.19 12.87ab 
 20 mg 1.09abc 0.11ab 0.41 0.23ab 16.56cd 25.03abc 16.02cde 2.28 13.74cd 

BHT 10 mg 1.07abc 0.11ab 0.4 0.23ab 16.49cd 25.08abc 15.96cde 2.28 13.68cd 
 20 mg 0.99a 0.10ab 0.38 0.21a 15.06a 22.71a 14.51a 2.08a 12.43a 

Antioxidant (AO) x Storage time (ST) 

AO ST          

CON 0 1.14 0.13 0.47 0.25ab 17.46de 25.99cd 16.76ef 2.44b 14.32efg 
 3 1.22 0.12 0.45 0.34c 17.02cde 24.86cd 16.36def 2.45b 13.91defg 
 7 1.23 0.13 0.46 0.23ab 15.65abc 22.57ab 14.94abcd 2.17ab 12.77bc 

ROS 3 1.15 0.11 0.43 0.29bc 17.14de 25.61cd 16.63ef 2.45b 14.18fg 
 7 1.11 0.10 0.43 0.24ab 16.27bcd 24.25bc 15.63bcde 2.25ab 13.38cd 

SRB 3 1.13 0.10 0.42 0.27abc 16.82cde 25.28cd 16.37def 2.39b 13.97defg 
 7 1.08 0.11 0.46 0.24ab 14.58a 21.16a 13.94a 2.07a 11.87a 

SFS 3 1.14 0.11 0.43 0.24ab 17.40e 26.27d 17.00f 2.42b 14.58g 
 7 1.05 0.11 0.42 0.24ab 16.37bcde 24.39c 15.72cde 2.24ab 13.48cde 

GGR 3 1.16 0.12 0.44 0.23a 17.00cde 25.39cd 16.43ef 2.36b 14.08efg 
 7 1.13 0.11 0.43 0.25ab 15.30ab 22.41a 14.64abc 2.26 ab 12.52b 

BHT 3 1.04 0.11 0.39 0.21a 16.56abc 25.33cd 16.00def 2.29ab 13.72def 
 7 1.03 0.10 0.39 0.22a 14.98a 22.46s 14.46ab 2.07a 12.39ab 

SED           

AO  0.04 0.005 0.02 0.01 0.25 0.54 0.27 0.04 0.23 

AO x L  0.05 0.006 0.02 0.02 0.29 0.64 0.32 0.05 0.28 

AO x ST  0.06 0.008 0.03 0.02 0.40 0.86 0.43 0.06 0.37 

AO x L X ST  0.07 0.009 0.04 0.02 0.46 0.99 0.49 0.07 0.43 

p value           

AO  0.002 <.001 0.013 <.001 <.001 <.001 <.001 <.001 <.001 

AO x L  <.001 <.001 0.23 <.001 <.001 <.001 <.001 <.001 <.001 

AO x ST  0.433 0.674 0.914 <.001 <.001 <.001 <.001 <.001 <.001 

AO x L X ST  0.021 <.001 0.784 0.003 0.003 0.047 0.018 0.081 0.016 

Mean values with different small letters presented within each column of each fatty acid differ significantly (p 

≤ 0.05) according to the Tukey's HSD test. 
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Table A4 Effect of natural antioxidant extracts at different levels on the fatty acid profile 

(g of fatty acids/100 g of fat) in fat from chicken thigh tissue during the accelerated 

storage time at 62.8 oC. 

Antioxidant (AO) 

C14:0 C16:0 C18:0 C20:0 C16:1 

 n-7 

C18:1 

 n-9 

C18:2 

 n-6 

C18:3 

 n-3        
CON  0.36b 17.44b 5.19b 0.33 2.45b 36.53b 19.42b 2.70b 

ROS  0.35b 17.15b 5.15b 0.33 2.40b 36.07b 19.13b 2.66b 

SRB  0.36b 17.15b 5.16b 0.33 2.39b 35.96b 19.09b 2.67b 

SFS  0.37b 17.45b 5.22b 0.34b 2.46b 36.76b 19.55b 2.71b 

GGR  0.36b 17.16b 5.13b 0.33 2.44b 36.04b 19.12b 2.67b 

BHT  0.34a 16.04a 4.83a 0.31a 2.22a 33.67a 17.95a 2.47a 

Antioxidant (AO) x Level (L) 

AO L         

CON 0 mg 0.36 17.44cd 5.19c 0.33 2.45cd 36.53cde 19.42cd 2.70c 

ROS 10 mg 0.35 17.17bcd 5.14bc 0.33 2.41bcd 36.14cde 19.16bcd 2.66bc  
20 mg 0.36 17.14bcd 5.16bc 0.34 2.40bcd 35.99bcde 19.10bcd 2.66bc 

SRB 10 mg 0.37 17.55cd 5.27c 0.34 2.46cd 37.01de 19.60cd 2.74c  
20 mg 0.35 16.74abc 5.06abc 0.32 2.32abc 34.92abc 18.57abc 2.60bc 

SFS 10 mg 0.38 17.82d 5.32c 0.35 2.53d 37.74e 20.00d 2.78c  
20 mg 0.36 17.08bcd 5.12bc 0.34 2.39bcd 35.78bcde 19.10bcd 2.64bc 

GGR 10 mg 0.37 17.46cd 5.23c 0.34 2.51d 36.86cde 19.51cd 2.71c  
20 mg 0.35 16.86bc 5.04abc 0.32 2.36abcd 35.21abcd 18.73abc 2.62bc 

BHT 10 mg 0.34 16.24ab 4.89ab 0.31 2.25ab 34.02ab 18.21ab 2.51ab  
20 mg 0.33 15.85a 4.77a 0.31 2.20a 33.31a 17.68a 2.42a 

Antioxidant (AO) x Storage time (ST) 

AO ST         

CON 0 0.38de 18.49f 5.47g 0.35 2.62df 39.04d 20.69e 2.90c  
3 0.35abcde 17.11abcde 5.11bcdef 0.34 2.39abcd 35.51abc 18.90abcd 2.64ab  
7 0.34ab 16.72abc 5.00bc 0.31 2.35abc 35.04abc 18.67abcd 2.56ab 

ROS 3 0.34abcd 16.84abcde 5.08bcde 0.34 2.35abc 35.59abc 18.77abcd 2.60ab  
7 0.36abcde 17.47cdef 5.22cef 0.33 2.45cdef 36.54cd 19.49cde 2.72bc 

SRB 3 0.35abcde 17.11bcde 5.15cdef 0.33 2.39abcde 36.10c 19.06bcd 2.67b  
7 0.36abcde 17.19cde 5.18cdef 0.33 2.39abcde 35.83bc 19.12bcd 2.68bc 

SFS 3 0.35abcde 17.10bcde 5.11cde 0.34 2.41cdef 36.26c 19.22bcd 2.66b  
7 0.38e 17.80cef 5.34fg 0.35 2.50cdef 37.26cd 19.88de 2.76bc 

GGR 3 0.35abcd 16.73abcd 5.02bcd 0.32 2.40bcde 35.20abc 18.66abc 2.58ab  
7 0.37bde 17.60cdef 5.24cef 0.34 2.47cdef 36.88cd 19.59cde 2.75bc 

BHT 3 0.34abc 15.94a 4.77a 0.32 2.23ab 33.57a 17.78a 2.46a 
 7 0.33a 16.15ab 4.90ab 0.30 2.22a 33.77ab 18.12ab 2.47a 

SED          
AO  0.01 0.21 0.07 0.01 0.04 0.47 0.25 0.04 

AO x L  0.01 0.25 0.08 0.01 0.05 0.56 0.30 0.05 

AO x ST  0.01 0.34 0.10 0.02 0.06 0.75 0.40 0.07 

AO x L x ST 0.01 0.39 0.12 0.02 0.07 0.87 0.46 0.08  

p value          
AO  <.001 <.001 <.001 0.028 <.001 <.001 <.001 <.001 

AO x L  0.070 0.002 0.007 0.255 0.001 <.001 <.001 0.005 

AO x ST  <.001 <.001 <.001 0.188 0.003 <.001 <.001 <.001 

AO x L x ST 0.073 0.182 0.412 0.456 0.403 0.331 0.369 0.071  

Mean values with different small letters presented within each column of each fatty acid differ significantly 

(p ≤ 0.05) according to the Tukey's HSD test.  
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Table A4 (continued) effect of natural antioxidant extracts at different levels on the fatty 

acid profile (g of fatty acids/100 g of fat) in fat from chicken thigh tissue during the 

accelerated storage time at 62.8 oC. 

Antioxidant (AO) C20:4  

n-6 

C22:5  

n-3 

C22:6 

 n-3 

∑SFA ∑MUFA ∑PUFA ∑n-3 ∑n-6 
  

     
CON  0.65 0.22 0.22a 23.53b 38.98b 23.06b 3.13b 20.07b 

ROS  0.69 0.22 0.30b 23.20b 38.47b 22.69b 3.17b 19.82b 

SRB  0.68 0.23 0.26b 23.21b 38.35b 22.66b 3.15b 19.77b 

SFS  0.67 0.22 0.24b 23.59b 39.22b 23.14b 3.17b 20.21b 

GGR  0.68 0.22 0.24b 23.19b 38.47b 22.69b 3.13b 19.80b 

BHT  0.64 0.22 0.25b 21.66a 35.89a 21.27a 2.93a 18.59a 

Antioxidant (AO) x Level (L) 

AO L         

CON 0 mg 0.65 0.22 0.22 23.53cd 38.98cd 23.06cd 3.13bc 20.07cd 

ROS 10 mg 0.68 0.22 0.29 23.20bcd 38.55cd 22.72bcd 3.17bc 19.84bcd  
20 mg 0.69 0.22 0.30 23.21bcd 38.39bcd 22.66bcd 3.18bc 19.79bcd 

SRB 10 mg 0.68 0.22 0.26 23.74cd 39.47cd 23.24cd 3.23c 20.28cd  
20 mg 0.68 0.23 0.25 22.68bc 37.24abc 22.08abc 3.08abc 19.25abc 

SFS 10 mg 0.67 0.22 0.24 24.09d 40.27d 23.67d 3.23c 20.67d  
20 mg 0.66 0.22 0.25 23.10bcd 38.17bcd 22.62bcd 3.11bc 19.76bcd 

GGR 10 mg 0.68 0.23 0.24 23.61cd 39.37cd 23.13cd 3.18bc 20.19cd  
20 mg 0.67 0.22 0.25 22.77bc 37.58abc 22.24abc 3.09abc 19.40abc 

BHT 10 mg 0.65 0.22 0.26 21.98ab 36.27ab 21.59ab 2.99ab 18.86ab  
20 mg 0.64 0.21 0.24 21.35a 35.51a 20.96a 2.88a 18.32a 

Antioxidant (AO) x Storage time (ST) 

AO ST         

CON 0 0.69 0.22 0.22abcd 24.92fh 41.66d 24.73f 3.34f 21.38e  
3 0.61a 0.21 0.20ab 23.11bcdef 37.90abc 22.35abcde 3.04abcd 19.51abcd  
7 0.65 0.22 0.23abcde 22.56abc 37.39abc 22.10abc 3.02abc 19.32abc 

ROS 3 0.66 0.21 0.25abcde 22.80bcde 37.95abc 22.24abcde 3.06abcde 19.43abcd  
7 0.71c 0.23b 0.34e 23.60cdefgh 38.99cd 23.15cdef 3.29df 20.20cde 

SRB 3 0.65 0.22 0.21abc 23.16cdefg 38.49c 22.60bcde 3.09abcdef 19.71bcd  
7 0.70bc 0.23b 0.31bde 23.27cdefg 38.21bc 22.73bcde 3.22bcdef 19.82bcd 

SFS 3 0.65 0.21 0.18a 23.11bcde 38.67c 22.74bcde 3.05abcde 19.86bcd  
7 0.69 0.23b 0.31fg 24.08cefgh 39.76cd 23.55cef 3.29df 20.57de 

GGR 3 0.66 0.22 0.21ab 22.60abcd 37.59abc 22.12abcd 3.01ab 19.32abcd  
7 0.69 0.23 0.27cdef 23.77cdefgh 39.35cd 23.25cdef 3.25cdef 20.27cde 

BHT 3 0.62ab 0.20a 0.22abcd 21.51a 35.80a 21.07a 2.89a 18.40a 
 7 0.66 0.23 0.28cef 21.82ab 35.99ab 21.48ab 2.98a 18.78ab 

SED          
AO  0.02 0.01 0.02 0.28 0.51 0.29 0.05 0.25 

AO x L  0.02 0.01 0.02 0.34 0.60 0.35 0.06 0.30 

AO x ST  0.03 0.01 0.03 0.45 0.81 0.47 0.07 0.40 

AO x L x ST 0.03 0.01 0.04 0.52 0.94 0.54 0.09 0.47  

p value          
AO  0.097 0.542 0.009 <.001 <.001 <.001 <.001 <.001 

AO x L  0.989 0.940 0.980 0.002 <.001 <.001 0.017 <.001 

AO x ST  0.003 <.001 <.001 <.001 <.001 <.001 <.001 <.001 

AO x L x ST 0.821 0.670 0.420 0.193 0.340 0.337 0.031 0.396  

Mean values with different small letters presented within each column of each fatty acid differ significantly 

(p ≤ 0.05) according to the Tukey's HSD test. 
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Table A5 Effect of natural antioxidant extracts at different levels on the fatty acid profile 

(g of fatty acids/100 g of fat) in fat from adipose tissue during the accelerated storage 

time at 62.8oC. 

Antioxidant (AO) 
C14:0 C16:0 C18:0 C20:0 C16:1 

 n-7 

C18:1 

 n-9 

C18:2 

 n-6 

C18:3 

 n-3 

CON 
 

0.42bc 18.67b 4.98c 0.51c 2.82c 40.59c 19.47c 3.00c 

ROS 
 

0.42c 18.75b 4.99c 0.51c 2.81c 40.52c 19.43c 2.98c 

SRB 
 

0.39ab 17.66a 4.70ab 0.47ab 2.63ab 38.23a 18.31ab 2.82ab 

SFS 
 

0.40abc 18.75b 5.00c 0.49bc 2.79c 40.46c 19.50c 2.97c 

GGR 
 

0.39abc 17.99ab 4.78bc 0.47ab 2.70bc 39.11b 18.76b 2.90bc 

BHT 
 

0.37a 17.13a 4.54a 0.46a 2.56a 37.17a 17.90a 2.75a 

Antioxidant (AO) x Level (L)      

AO L         

CON 0 mg 0.42bc 18.67d 4.98c 0.51d 2.82d 40.59e 19.47ef 3.00e 

ROS 10 mg 0.43c 19.02d 5.06c 0.51d 2.85d 41.10e 19.75f 3.04e 

20 mg 0.41abc 18.48bcd 4.91bc 0.51d 2.78cd 39.95de 19.11def 2.92de 

SRB 10 mg 0.40abc 18.16 4.85bc 0.50cd 2.73bcd 39.31cde 18.83cde 2.92de 

20 mg 0.37a 17.16 4.54ab 0.45ab 2.54ab 37.17ab 17.79ab 2.71ab 

SFS 10 mg 0.41abc 18.63 4.97c 0.48bcd 2.78cd 40.33de 19.44def 2.97de 

20 mg 0.40abc 18.87d 5.03c 0.50cd 2.79cd 40.59e 19.55ef 2.98de 

GGR 10 mg 0.42a 18.68cd 4.98c 0.51d 2.82d 40.56de 19.46def 3.01e 

20 mg 0.37a 17.31 4.58ab 0.43a 2.58abc 37.68bc 18.06bc 2.78bc 

BHT 10 mg 0.38a 17.82 4.74bc 0.46abc 2.67abcd 38.81bcd 18.62bcd 2.86cd 

20 mg 0.37a 16.44a 4.34a 0.45ab 2.46a 35.54a 17.18a 2.64a 

Antioxidant (AO) x Storage time (ST)       

AO    ST         

CON 0 0.44d 19.66ef 5.24e 0.53cd 2.99g 42.73d 20.55d 3.16e 

3 0.42bcd 19.07cdef 5.08cde 0.53cd 2.87defg 41.47d 19.89d 3.06e 

7 0.39abcd 17.28abc 4.62abc 0.48abc 2.61abcd 37.56bc 17.96ab 2.78bcd 

ROS 3 0.40bcd 17.91bcde 4.76bcd 0.48abc 2.70bcdef 38.77c 18.61c 2.85cd 

7 0.43d 19.59f 5.22e 0.54d 2.93g 42.27d 20.25d 3.11e 

SRB 3 0.35a 16.18a 4.31a 0.45ab 2.43a 35.12a 16.88a 2.60a 

7 0.42cd 19.14def 5.08cde 0.50bcd 2.83defg 41.35d 19.75d 3.03e 

SFS 3 0.39abcd 17.89bcd 4.73bc 0.49abcd 2.70cdef 38.83c 18.75c 2.89d 

7 0.41bcd 19.62f 5.26e 0.49abc 2.87dfg 42.09d 20.24d 3.05e 

GGR 3 0.38abc 16.71ab 4.42ab 0.46ab 2.54abc 36.33ab 17.48ab 2.73abc 

7 0.40bcd 19.27def 5.14de 0.48abc 2.87dfg 41.90d 20.04d 3.06e 

BHT 3 0.37ab 16.39a 4.34a 0.45ab 2.48ab 35.56ab 17.15ab 2.67ab 

7 0.37abc 17.87bcd 4.75bcd 0.46ab 2.65abcde 38.79c 18.64c 2.83cd 

SED 
         

AO 
 

0.01 0.32 0.09 0.02 0.05 0.71 0.33 0.05 

AO x L 
 

0.01 0.38 0.10 0.02 0.06 0.84 0.40 0.06 

AO x ST 
 

0.02 0.51 0.14 0.03 0.08 1.13 0.53 0.08 

AO x L X ST 
 

0.02 0.58 0.16 0.03 0.09 1.31 0.62 0.09 

p value 
 

        
AO 

 
<.001 <.001 <.001 0.002 <.001 <.001 <.001 <.001 

AO x L 
 

0.002 <.001 <.001 0.004 <.001 <.001 <.001 <.001 

AO x ST 
 

<.001 <.001 <.001 0.023 <.001 <.001 <.001 <.001 

AO x L x ST 
 

0.015 <.001 <.001 0.056 <.001 <.001 <.001 <.001 

Mean values with different small letters presented within each column of each fatty acid differ significantly 

(p ≤ 0.05) according to the Tukey's HSD test.  
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Table A5 (continued) effect of natural antioxidant extracts at different levels on the fatty 

acid profile (g of fatty acids/100 g of fat) in fat from adipose tissue during the accelerated 

storage time at 62.8 oC. 

Antioxidant (AO) 
C20:4  

n-6 

C22:5 

 n-3 
∑SFA ∑MUFA ∑PUFA ∑n-3 ∑n-6 

CON  0.18c 0.25 24.82c 43.41c 22.90c 3.25c 19.65c 

ROS  0.18bc 0.26 24.90c 43.33c 22.85c 3.24c 19.61c 

SRB  0.17ab 0.28 23.42ab 40.87ab 21.58ab 3.09 18.48ab 

SFS  0.19c 0.24a 24.86c 43.25c 22.89c 3.21bc 19.68c 

GGR  0.17ab 0.29 23.84bc 41.82b 22.11b 3.18 18.93b 

BHT  0.16a 0.30b 22.70a 39.74a 21.11a 3.05a 18.06a 

Antioxidant (AO) x Level (L)    

AO L        

CON 0 mg 0.18bc 0.25 24.82b 43.41e 22.90ef 3.25bc 19.65ef 

ROS 10 mg 0.18bc 0.30 25.25b 43.95e 23.26f 3.33c 19.93f 
 20 mg 0.18bc 0.23ab 24.55b 42.72de 22.43def 3.15abc 19.28def 

SRB 10 mg 0.18bc 0.25bc 24.14b 42.04cde 22.19cde 3.17abc 19.02cde 
 20 mg 0.16a 0.30 22.72a 39.70ab 20.96ab 3.01a 17.95ab 

SFS 10 mg 0.19c 0.18a 24.72b 43.11de 22.77def 3.14abc 19.63def 
 20 mg 0.19c 0.29 25.01b 43.39de 23.01ef 3.27bc 19.74ef 

GGR 10 mg 0.19c 0.27 24.81b 43.38de 22.93def 3.28bc 19.65def 
 20 mg 0.16a 0.30 22.88a 40.26bc 21.30bc 3.08ab 18.22bc 

BHT 10 mg 0.17ab 0.29 23.62ab 41.48bcd 21.94bcd 3.15abc 18.79bcd 
 20 mg 0.15a 0.32c 21.79a 38.00a 20.29a 2.95a 17.33a 

Antioxidant (AO) x Storage time (ST)    

AO ST        

CON 0 0.19b 0.27c 26.13e 45.72d 24.17d 3.43g 20.74d 
 3 0.18ab 0.25ab 25.35cde 44.34d 23.38d 3.31efg 20.07d 
 7 0.17a 0.23a 22.99abc 40.17bc 21.14bc 3.01abc 18.13bc 

ROS 3 0.17a 0.24ab 23.78bcd 41.46c 21.86c 3.09cd 18.77c 
 7 0.19b 0.29c 26.02e 45.20d 23.83d 3.40g 20.44d 

SRB 3 0.17a 0.27c 21.48a 37.55a 19.92a 2.87a 17.05a 
 7 0.17a 0.28c 25.37de 44.18d 23.23d 3.31fg 19.92d 

SFS 3 0.17a 0.32c 23.72bcd 41.53c 22.13c 3.21def 18.92c 
 7 0.20b 0.16a 26.00e 44.96d 23.65d 3.21def 20.44d 

GGR 3 0.17a 0.33c 22.18ab 38.87ab 20.71ab 3.06bc 17.65ab 
 7 0.17a 0.24abc 25.50de 44.77d 23.51d 3.30fg 20.21d 

BHT 3 0.16a 0.28c 21.75a 38.04ab 20.27ab 2.95ab 17.32ab 
 7 0.16a 0.33c 23.65bcd 41.44c 21.95c 3.15cde 18.80c 

SED         

AO  0.007 0.02 0.41 0.75 0.38 0.05 0.34 

AO x L  0.008 0.02 0.49 0.89 0.45 0.06 0.40 

AO x ST  0.011 0.03 0.66 1.20 0.61 0.08 0.54 

AO x L x ST  0.012 0.03 0.76 1.39 0.70 0.10 0.62 

p value         

AO  0.003 0.004 <.001 <.001 <.001 <.001 <.001 

AO x L  0.001 <.001 <.001 <.001 <.001 <.001 <.001 

AO x ST  0.012 <.001 <.001 <.001 <.001 <.001 <.001 

AO x L x ST  0.054 <.001 <.001 <.001 <.001 <.001 <.001 

Mean values with different small letters presented within each column of each fatty acid differ significantly 

(p ≤ 0.05) according to the Tukey's HSD test. 
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Table A6 Effect of natural antioxidant extracts at different levels on the fatty acid profile 

(g of fatty acids/100 g of fat) in fat from chicken skin tissue during the accelerated storage 

time at 62.8oC. 

Antioxidant (AO) 
 

C14:0 C16:0 C18:0 C20:0 C16:1 

 n-7 

C18:1 

 n-9 

C18:2 

 n-6 

C18:3  

n-3 

CON 
 

0.43b 19.25b 5.38b 0.44 2.77 41.07 20.33 3.05b 

ROS 
 

0.43b 19.50b 5.45b 0.43 2.81 41.70 20.71 3.13bc 

SRB 
 

0.43b 19.76b 5.52b 0.43 2.84 42.27 21.05 3.17bc 

SFS 
 

0.43b 19.66b 5.48b 0.41 2.82 41.98 20.97 3.12bc 

GGR 
 

0.44b 19.81b 5.53b 0.42 2.84 42.29 21.04 3.16c 

BHT 
 

0.39a 17.93a 4.99a 0.37a 2.56a 38.27a 19.03a 2.84a 

Antioxidant (AO) x Level (L) 
  

AO L 
        

CON 0 mg 0.43 19.25bc 5.38bc 0.44c 2.77bc 41.07bc 20.33bc 3.05bc 

ROS 10 mg 0.43 19.28bc 5.39bc 0.44c 2.79bc 41.25bc 20.51bc 3.10bc  
20 mg 0.43 19.71c 5.50c 0.41abc 2.83c 42.14c 20.91c 3.17c 

SRB 10 mg 0.44 19.85c 5.54c 0.42bc 2.85c 42.45c 21.14c 3.18c  
20 mg 0.43 19.66c 5.49c 0.43bc 2.82c 42.08c 20.97c 3.16c 

SFS 10 mg 0.43 19.46bc 5.41bc 0.40abc 2.79bc 41.55bc 20.74bc 3.09bc  
20 mg 0.44 19.86c 5.55c 0.42bc 2.86c 42.40c 21.19c 3.15c 

GGR 10 mg 0.44 19.93c 5.57c 0.44c 2.86c 42.57c 21.16c 3.18c  
20 mg 0.43 19.69c 5.49c 0.40abc 2.82c 42.00c 20.91c 3.15c 

BHT 10 mg 0.40 18.47b 5.13ab 0.38ab 2.65b 39.45b 19.64b 2.94b  
20 mg 0.38 17.39a 4.84a 0.35a 2.47a 37.09a 18.41a 2.73a 

Antioxidant (AO) x Storage time (ST) 
    

AO ST 
        

CON 0 0.44b 19.72bc 5.52bc 0.43bc 2.85bc 42.09bc 20.70bcd 3.07bcd  
3 0.41b 18.71bc 5.22bc 0.43bc 2.69bc 39.92bc 19.77b 2.98bc  
7 0.43b 19.32bc 5.40bc 0.45c 2.78bc 41.19bc 20.53bcd 3.11bcd 

ROS 3 0.42b 19.12bc 5.35bc 0.42bc 2.74bc 40.92bc 20.33bcd 3.08bcd  
7 0.44b 19.87c 5.55c 0.43bc 2.87c 42.48c 21.09bd 3.19cd 

SRB 3 0.43b 19.85c 5.54c 0.44c 2.83c 42.50c 21.18d 3.19d  
7 0.44b 19.66bc 5.49c 0.41abc 2.84c 42.04bc 20.93bcd 3.14cd 

SFS 3 0.43b 19.58bc 5.45bc 0.43bc 2.82bc 41.81bc 20.93bcd 3.15cd  
7 0.43b 19.75c 5.51c 0.39ab 2.83bc 42.14c 21.00bd 3.09bcd 

GGR 3 0.44b 19.82c 5.55c 0.44c 2.84c 42.28c 21.05bd 3.18cd  
7 0.44b 19.80c 5.52c 0.40abc 2.84c 42.29c 21.02bd 3.15cd 

BHT 3 0.37a 17.25a 4.80a 0.36a 2.45a 36.79a 18.26a 2.71a  
7 0.41b 18.62b 5.17b 0.38ab 2.67b 39.76b 19.79bc 2.96b 

SED 
         

AO 
 

0.01 0.23 0.07 0.01 0.03 0.50 0.25 0.04 

AO x L 
 

0.01 0.28 0.08 0.01 0.04 0.60 0.30 0.04 

AO x ST 
 

0.01 0.37 0.11 0.02 0.05 0.80 0.40 0.06 

AO x L x ST 
 

0.01 0.44 0.12 0.02 0.06 0.95 0.47 0.07 

p value 
         

AO 
 

<.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 

AO x L 
 

0.115 0.011 0.013 0.016 0.004 0.009 0.007 0.002 

AO x ST 
 

0.014 <.001 <.001 0.002 <.001 <.001 <.001 <.001 

AO x L x ST 
 

0.073 0.011 0.013 0.022 0.010 0.010 0.006 0.001 

Mean values with different small letters presented within each column of each fatty acid differ significantly 

(p ≤ 0.05) according to the Tukey's HSD test. 
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Table A6 Effect of natural antioxidant extracts at different levels on the fatty acid profile 

(g of fatty acids/100 g of fat) in fat from chicken skin tissue during the accelerated storage 

time at 62.8 oC. 

Antioxidant (AO) 
 

C20:4  

n-6 

C22:6  

n-3 
∑SFA ∑MUFA ∑PUFA ∑n-3 ∑n-6 

CON 
 

0.28ab 0.21 25.49b 43.84 23.87 3.29 20.61b 

ROS 
 

0.28ab 0.21 25.80b 44.51 24.33 3.39 20.99b 

SRB 
 

0.29b 0.19 26.13b 45.10 24.70 3.40 21.34b 

SFS 
 

0.29b 0.19 25.98b 44.80 24.56 3.36 21.25b 

GGR 
 

0.28b 0.20 26.20b 45.13 24.68 3.41 21.32b 

BHT 
 

0.26a 0.21 23.68a 40.83a 22.33a 3.06a 19.29a 

Antioxidant (AO) x Level (L) 
   

AO                         L    

CON 0 mg 0.28 0.21bcd 25.49bc 43.84bc 23.87bc 3.29bc 20.61bc 

ROS 10 mg 0.28 0.22bcd 25.55bc 44.04bc 24.10bc 3.37bc 20.79bc  
20 mg 0.28 0.19abcd 26.04c 44.97c 24.55c 3.40c 21.19c 

SRB 10 mg 0.29 0.11ab 26.25c 45.31c 24.72c 3.33bc 21.43c  
20 mg 0.29 0.27d 26.01c 44.90c 24.68c 3.47c 21.25c 

SFS 10 mg 0.29 0.28d 25.70bc 44.34bc 24.40c 3.42c 21.03bc  
20 mg 0.29 0.10a 26.27c 45.26c 24.73c 3.29bc 21.48c 

GGR 10 mg 0.28 0.25cd 26.38c 45.43c 24.88c 3.48c 21.45c  
20 mg 0.28 0.15abc 26.02c 44.82c 24.49c 3.34bc 21.19c 

BHT 10 mg 0.27 0.22bcd 24.39b 42.10b 23.06b 3.19b 19.90b  
20 mg 0.26 0.20abcd 22.97a 39.56a 21.60a 2.93a 18.67a 

Antioxidant (AO) x Storage time (ST)  
  

AO                    ST   

CON 0 0.27 0.22b 26.10bc 44.93bc 24.26bcd 3.39bc 20.97bcd  
3 0.26 0.18a 24.77bc 42.61bc 23.20b 3.16b 20.04b  
7 0.30b 0.22b 25.60bc 43.97bc 24.16bcd 3.33bc 20.83bcd 

ROS 3 0.29 0.31c 25.31bc 43.66bc 24.00bcd 3.39bc 20.61bcd  
7 0.27 0.11a 26.29c 45.35c 24.66bd 3.39bc 21.37bd 

SRB 3 0.30b 0.25b 26.27c 45.33c 24.92d 3.44c 21.48d  
7 0.28 0.14a 26.00bc 44.88c 24.48bcd 3.37bc 21.21bcd 

SFS 3 0.30b 0.26b 25.89bc 44.63bc 24.64bd 3.41bc 21.23bd  
7 0.28 0.12a 26.08c 44.97c 24.49bcd 3.30bc 21.28bd 

GGR 3 0.29 0.24b 26.25c 45.12c 24.76bd 3.42bc 21.34bd  
7 0.28 0.16a 26.16c 45.13c 24.61bd 3.40bc 21.29bd 

BHT 3 0.26a 0.18a 22.78a 39.23a 21.41a 2.89a 18.52a  
7 0.27 0.23b 24.58b 42.43b 23.25bc 3.23bc 20.06bc 

SED 
   

  
    

AO 
 

0.01 0.03 0.31 0.53 0.29 0.05 0.25 

AO x L 
 

0.01 0.03 0.37 0.64 0.35 0.06 0.30 

AO x ST 
 

0.01 0.04 0.49 0.86 0.47 0.08 0.41 

AO x L x ST 
 

0.01 0.05 0.58 1.01 0.55 0.09 0.48 

p value 
        

AO 
 

0.006 0.941 <.001 <.001 <.001 <.001 <.001 

AO x L 
 

0.894 <.001 0.010 0.008 0.009 <.001 0.008 

AO x ST 
 

0.004 <.001 <.001 <.001 <.001 <.001 <.001 

AO x L x ST 
 

0.017 <.001 0.007 0.010 0.002 <.001 0.006 

Mean values with different small letters presented within each column of each fatty acid differ significantly 

(p ≤ 0.05) according to the Tukey's HSD test.  
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Figure A. 1 Total phenolic content (mg of GAE/g dry weight) of plant extract as the results 

expressed mg of GAE/g dry weight) (Means ± SED; n = 3). Rosemary, (ROS); Small Red 

Bean, (SRB); Sunflower Seed, (SFS); Ginger, (GGR); Butylated Hydroxytoluene, (BHT). 
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Appendix B (Statistics Analysis for Chapter 3) 

Table B1 Effect of natural antioxidants (AO) and dipping time (DT) on moisture uptake 

(%) of raw and thawed chicken fillets. 

Main effects Raw Meat Thawed Meat  

Antioxidants (AO)    

CON 1.59ab 1.03  

ROS 1.76ab 1.33  

SRB 2.06a 1.29  

SFS 1.40bc 1.22  

GGR 1.02c 1.01  

Dipping time (DT) 
  

 

5 min 0.43d 0.52c  

20 min 1.50c 1.15b  

30 min 1.93b 1.17b  

60 min 2.40a 1.86a  

SED    

AO 0.17 0.25  

DT 0.15 0.22  

AO x DT 0.35 0.50  

p value 
  

 

AO <.001 0.588  

DT <.001 <.001  

AO x DT 0.019 0.286  

Mean values with different small letters presented within each column of each meat (raw and thawed) differ 

significantly (p ≤ 0.05) according to the Tukey's HSD test. 
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Table B2 Effect of natural antioxidants and dipping time on total phenolic content (mg 

GAE/100 g meat) in different layers of raw and thawed breast chicken meat. 

Main effects Raw Meat Thawed Meat 

Antioxidant (AO) 
  

CON 33.01c 54.33e 

ROS 55.14a 98.22a 

SRB 40.26b 62.09d 

SFS 39.22b 73.70c 

GGR 38.09b 84.54b 

BHT 40.41b 76.48c 

Meat Layer (ML) 
  

Membrane 44.05a 85.53a 

Tenderloin 44.62a 77.50b 

The core 34.40b 61.65c 

Dipping Time (DT) 
  

  5 min 33.32c 70.15c 

20 min 47.95a 77.33b 

30 min 40.78b 57.59d 

60 min 42.04b 94.50a 

SED 
  

AO 1.01 1.80 

ML 1.42 2.54 

DT 1.16 2.07 

AO x ML  2.46 4.40 

AO x DT 2.01 3.59 

ML x DT 2.85 5.08 

AO x ML x DT 4.93 8.80 

p value 
  

AO <0.001 <0.001 

ML <0.001 <0.001 

DT <0.001 <0.001 

AO x ML  <0.001 <0.001 

AO x DT <0.001 <0.001 

ML x DT <0.001 <0.001 

AO x ML x DT 0.035 <0.001 

Mean values with different small letters presented within each column of each meat (raw and thawed) differ 

significantly (p ≤ 0.05) according to the Tukey's HSD test. 
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Appendix C (Statistics Analysis for Chapter 4) 

Table C1 Proximate analysis of chicken meat  

Treatment 
Dry Matter g/kg meat Fat g/kg DM 

Raw Meat Cooked meat Raw Meat Cooked meat 

CON  247.90 ± 3.22a 312.40 ± 1.40cd 42.04 ± 19.86a 45.05 ± 2.63a 

BHT 267.90 ± 2.49b 310.30 ± 9.74cd 46.11 ± 13.28a 44.75 ± 20.38a 

ROS 257.40 ± 6.04ab 315.30 ± 2.70d 32.18 ± 15.71a 41.00 ± 0.19a 

SRB 247.40 ± 6.87a 305.60 ± 4.26cd 28.38 ± 13.32a 31.33 ± 4.69a 

SFS 258.50 ± 4.44ab 298.50 ± 0.23c 52.26 ± 11.43a 43.52 ± 0.99a 

GGR 244.90 ± 1.90a 302.60 ± 8.63cd 27.67 ± 8.29a 36.71 ± 5.52a 

The data shown are the average and standard deviation of three independent samples. Values with 

different small letters within each column differ significantly (p ≤ 0.05) according to the Tukey's HSD test 

 

Table C2 Effect of natural antioxidants application on TBARS values, Conjugated Dienes 

and Conjugated Trienes of raw and sous-vide processed chicken breast meat following 

storage at 4°C. 

 
TBARS value Conjugated Dienes Conjugated Trienes 

Raw  Sous-vide  

 

Raw  

 

Sous-vide  

 

Raw  

 

Sous-vide  

Main effects       

Antioxidant (AO) 
  

    

CON 0.50b 5.33d 44.04b 52.30 21.01b 26.96 

ROS 0.39ab 2.04a 36.91a 48.87 18.37ab 24.20 

SRB 0.38ab 2.89b 33.24a 47.61 16.79a 24.77 

SFS 0.35a 4.20c 32.30a 50.76 15.96a 24.86 

GGR 0.41ab 2.15a 32.46a 52.08 17.29a 26.49 

BHT 0.39b 2.32ab 33.01a 49.43 16.63a 25.90 

Average 0.40 3.16 35.33 50.18 17.67 25.53 

Storage Time (ST) 
  

    

0 0.34a 1.68a 28.09a 44.50a 13.64a 21.92a 

3 0.48b 4.57c 33.05b 52.29b 16.29b 25.78b 

7 0.39a 3.22b 44.84c 53.74b 23.10c 28.88c 

SED       

AO 0.04 0.22 1.74 1.87 1.23 0.99 

ST 0.03 0.16 1.23 1.32 0.87 0.70 

AO x ST 0.07 0.38 3.01 3.24 2.13 1.71 

p value  
 

    

AO 0.012 <0.001 <0.001 0.104 0.003 0.056 

ST <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

AO x ST 0.468 <0.001 0.034 0.407 0.555 0.393 

Mean values with different small letters presented within each column of each meat (raw and cooked) differ 

significantly (p ≤ 0.05) according to the Tukey's HSD test. TBARS value (mg MDA/kg meat); Conjugated 

Dienes (µmol/g fat); Conjugated Trienes (µmol/g fat).  
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Table C3 Effect of natural antioxidants application on phospholipid (g/100 g fat) and pH 

value of raw and sous-vide processed chicken breast meat following storage at 4°C. 

 
phospholipid content pH value 

Raw  Sous-vide  Raw  Sous-vide  

Main effects      

Antioxidant (AO) 
  

  

CON 41.51 38.28a 5.97b 6.15 

ROS 41.40 41.63d 5.80a 6.06 

SRB 40.47 40.93cd 5.91ab 6.05 

SFS 41.50 40.51bc 5.92ab 6.03 

GGR 40.91 39.89b 5.80a 6.10 

BHT 41.63 39.59b 5.84ab 6.03 

Average 41.24 40.13 5.87 6.07 

Storage Time (ST) 
  

  

0 43.30c 41.14b 5.85 6.10 

3 41.57b 40.56b 5.86 6.05 

7 38.84a 38.69a 5.91 6.06 

SED     

AO 0.59 0.34 0.05 0.05 

ST 0.42 0.24 0.03 0.03 

AO x ST 1.03 0.58 0.09 0.08 

p value  
 

  

AO 0.348 <0.001 0.004 0.155 

ST <0.001 <0.001 0.223 0.348 

AO x ST 0.004 <0.001 0.725 0.920 

Mean values with different small letters presented within each column of each meat (raw and cooked) differ 

significantly (p ≤ 0.05) according to the Tukey's HSD test.   
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Table C4 Effect of natural antioxidants application on characteristics of chicken breast 

meat following storage at 4°C. 

 
Cooking loss Shear force L* value 

 

a* value b* value Drip loss % 

Main effects       

Antioxidant(AO)       

CON 23.42b 17.36 59.27 2.24a 6.86a 2.44b 

ROS 22.45ab 16.77 60.52 2.99bc 10.12b 1.76a 

SRB 22.50ab 16.17 59.87 2.00a 7.18a 1.91a 

SFS 22.43ab 16.82 60.57 2.48ab 7.40a 2.09ab 

GGR 21.82ab 16.76 59.85 3.23c 10.24b 2.06ab 

BHT 20.51a 16.80 60.28 2.48ab 7.67a 2.08ab 

Storage Time 

(ST) 

      

0 21.97ab 15.42a 61.01b 2.47 7.38a 1.16a 

3 23.11b 17.82b 59.58a 2.47 8.62b 2.15b 

7 21.49a 17.10b 59.60a 2.77 8.73b 2.86c 

SED       

AO 0.53 0.59 0.82 0.22 0.46 0.13 

ST 0.75 0.41 0.58 0.15 0.33 0.09 

AO x ST 1.31 1.02 1.41 0.38 0.80 0.23 

p value       

AO 0.013 0.541 0.609 <.001 <.001 <.001 

ST 0.015 <.001 0.026 0.091 <.001 <.001 

AO x ST 0.628 0.481 0.233 0.624 0.654 0.023 

Mean values with different small letters presented within each column differ significantly (p ≤ 0.05) 

according to the Tukey's HSD test. 
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Table C5 Effect of natural antioxidants application on fatty acid composition (g of fatty 

acid/kg DM) of raw chicken breast meat during the storage time at 4 oC. 

Main effects TFA C14:0 C16:0 C18:0 C20:0 ∑  

SFA 

C16:1  

n-7 

C18:1  

n-9 

∑ 

MUFA 

Antioxidant (AO)          

CON 54.20a 0.24a 11.65 5.36a 0.24 17.49 1.46 20.77 22.23 

ROS 59.80ab 0.26ab 13.29 5.59ab 0.26 19.40 1.66 22.31 23.97 

SRB 63.90ab 0.28ab 14.12 5.74ab 0.29 20.43 1.76 24.64 26.40 

SFS 62.80ab 0.28ab 13.63 6.03ab 0.25 20.19 1.63 23.98 25.61 

GGR 67.70b 0.34b 14.86 6.33b 0.27 21.80 2.03 25.90 27.93 

BHT 59.80ab 0.29ab 13.70 5.53ab 0.27 19.78 1.94 23.12 25.06 

Storage Time (ST) 
         

0 63.80 0.29 14.32 5.87 0.29b 20.77 1.89 24.81 26.70 

3 58.90 0.27 12.78 5.83 0.26ab 19.15 1.47 21.92 23.39 

7 61.50 0.28 13.52 5.58 0.24a 19.62 1.88 23.63 25.51 

SED          

AO 4.32 0.03 1.05 0.32 0.02 1.34 0.27 2.02 2.27 

ST 3.05 0.02 0.74 0.23 0.01 0.95 0.19 1.43 1.60 

AO x ST 7.48 0.05 1.82 0.55 0.03 2.33 0.47 3.50 3.92 

p value 
 

        

AO 0.073 0.026 0.091 0.049 0.069 0.073 0.336 0.186 0.210 

ST 0.286 0.394 0.134 0.382 <.001 0.228 0.052 0.141 0.126 

AO x ST 0.109 0.112 0.094 0.071 <.001 0.076 0.235 0.204 0.218 

 

 

         

Main effects C18:2 

 n-6 

C18:3 

 n-3 

C20:4  

n-6 

C22:5 

 n-3 

C20:5  

n-3 

C22:6 

 n-3 

∑PUFA ∑ n-3 ∑n-6 

Antioxidant (AO)          

CON 11.12a 1.40 0.31a 0.25 0.88 0.57 14.52a 3.09ab 11.43a 

ROS 12.59ab 1.65 0.43b 0.28 0.94 0.53 16.42ab 3.40ab 13.02ab 

SRB 13.27ab 1.71 0.39ab 0.28 0.78 0.61 17.03ab 3.38ab 13.65ab 

SFS 13.15ab 1.77 0.36ab 0.27 0.89 0.55 16.99ab 3.48ab 13.51ab 

GGR 13.83b 1.83 0.45b 0.31 0.98 0.55 17.95b 3.66b 14.28b 

BHT 11.52ab 1.48 0.40ab 0.28 0.80 0.52 14.99ab 3.07a 11.92ab 

Storage Time (ST) 
   

  
    

0 12.65 1.62 0.39 0.27 0.81 0.56 16.29 3.26 13.03 

3 12.49 1.60 0.42 0.28 0.98 0.55 16.32 3.40 12.91 

7 12.60 1.69 0.36 0.28 0.84 0.56 16.34 3.37 12.96 

SED          

AO 0.85 0.17 0.04 0.04 0.09 0.07 1.00 0.19 0.84 

ST 0.60 0.12 0.03 0.02 0.06 0.05 0.71 0.14 0.60 

AO x ST 1.47 0.30 0.07 0.06 0.15 0.12 1.74 0.33 1.46 

p value          

AO 0.019 0.118 0.013 0.687 0.185 0.795 0.012 0.028 0.014 

ST 0.965 0.738 0.092 0.867 0.025 0.989 0.998 0.544 0.980 

AO x ST 0.115 0.398 0.074 0.899 0.326 0.389 0.068 0.038 0.096 

Mean values with different small letters presented within each column of each fatty acid differ 

significantly (p ≤ 0.05) according to the Tukey's HSD test.   
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Table C6 Effect of natural antioxidants application on fatty acid composition (g of fatty 

acid/kg DM) of sous vide chicken breast meat during the storage time at 4 oC. 

Treatment TFA C14:0 C16:0 C18:0 C20:0 ∑  

SFA 

C16:1 

 n-7 

C18:1 

 n-9 

∑ 

 MUFA 

Antioxidant (AO) 
         

CON 52.10 0.25 11.84 5.17 0.20ab 17.47 1.58ab 20.06 21.64 

ROS 55.70 0.23 12.08 5.12 0.22ab 17.64 1.59ab 21.30 22.88 

SRB 56.00 0.24 12.12 5.36 0.22ab 17.86 1.43a 21.45 22.88 

SFS 58.70 0.27 12.69 5.37 0.23b 18.57 1.61ab 22.53 24.14 

GGR 51.30 0.22 11.16 5.04 0.17a 16.54 1.28a 19.43 20.71 

BHT 58.10 0.28 13.50 5.16 0.25b 19.15 2.24b 23.06 25.30 

Storage Time (ST) 
         

0 59.80b 0.28b 13.32b 5.47b 0.22 19.30b 1.87 23.17b 25.04b 

3 53.60ab 0.23a 11.71a 5.08a 0.22 17.24a 1.46 20.62ab 22.08ab 

7 52.50a 0.23a 11.66a 5.06a 0.21 17.08a 1.54 20.13a 21.66a 

SED          

AO 3.88 0.02 0.93 0.22 0.02 1.16 0.24 1.73 1.93 

ST 2.74 0.01 0.66 0.16 0.01 0.82 0.17 1.22 1.36 

AO x ST 6.72 0.04 1.60 0.38 0.03 2.01 0.42 3.00 3.34 

p value 
 

       
 

AO 0.319 0.065 0.223 0.608 0.002 0.32 0.007 0.290 0.222 

ST 0.025 <.001 0.024 0.019 0.358 0.017 0.051 0.038 0.036 

AO x ST 0.504 0.051 0.567 0.523 <.001 0.533 0.486 0.499 0.503           

 
C18:2 

 n-6 

C18:3 

 n-3 

C20:4 

 n-6 

C22:5 

 n-3 

C20:5  

n-3 

C22:6 

 n-3 

∑PUFA ∑n-3 ∑n-6 

Antioxidant (AO)          

CON 9.94a 1.31 0.35c 0.25 0.69 0.44ab 12.98a 2.70a 10.28a 

ROS 11.78ab 1.54 0.27ab 0.27 0.79 0.50b 15.15ab 3.10ab 12.05ab 

SRB 11.92ab 1.55 0.24ab 0.25 0.78 0.51b 15.25ab 3.09ab 12.16ab 

SFS 12.52b 1.68 0.30bc 0.27 0.74 0.48ab 15.98b 3.17b 12.82b 

GGR 10.91ab 1.39 0.26ab 0.25 0.79 0.49ab 14.08ab 2.92ab 11.17ab 

BHT 10.66ab 1.34 0.22a 0.27 0.72 0.43a 13.63ab 2.76ab 10.88ab 

Storage Time (ST) 
   

  
    

0 12.07 1.63b 0.27 0.27 0.75 0.47 15.46 3.12b 12.34 

3 11.15 1.44ab 0.27 0.25 0.74 0.48 14.33 2.92ab 11.41 

7 10.64 1.33a 0.28 0.26 0.77 0.47 13.75 2.83a 10.92 

SED          

AO 0.84 0.14 0.02 0.01 0.03 0.02 0.99 0.15 0.85 

ST 0.59 0.10 0.01 0.01 0.02 0.02 0.70 0.11 0.60 

AO x ST 1.45 0.24 0.03 0.02 0.06 0.04 1.72 0.26 1.46 

p value         
 

AO 0.043 0.090 <.001 0.272 0.061 0.006 0.041 0.013 0.049 

ST 0.062 0.016 0.528 0.233 0.598 0.705 0.058 0.025 0.068 

AO x ST 0.318 0.178 0.041 0.521 0.928 0.612 0.321 0.222 0.334 

Mean values with different small letters presented within each column of each fatty acid differ significantly 

(p ≤ 0.05) according to the Tukey's HSD test.
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Appendix D (Statistics Analysis for Chapter 5) 

Table D1 Proximate analysis of chicken meat  

Treatment 
DM g/kg meat Fat g/kg DM 

Sous vide (LTLO) Grilled (HTHO) Sous vide (LTLO) Grilled (HTHO) 

CON 287.90 ± 9.27a 317.10 ± 10.28a 44.18 ± 4.56a 69.72 ± 20.26a 

BHT 297.60 ±1.81a 319.70 ±4.23a 77.17 ± 21.23a 61.90 ± 26.27a 

ROS 293.40 ± 7.16a 323.30 ±12.42a 63.88 ± 9.25a 56.36 ± 24.99a 

SRB 316.40 ±7.41a 327.20 ±9.63a 53.53 ± 8.24a 43.91 ± 5.94a 

SFS 300.00 ±11.65a 325.60 ±1.85a 60.88 ± 15.23a 59.21 ± 9.59a 

GGR 291.20 ±39.19a 322.10 ±5.16a 55.77 ± 21.63a 71.82 ± 32.21a 

The data shown are the average and standard deviation of three independent samples. Values with 

different small letters within each column differ significantly (p ≤ 0.05) according to the Tukey's test. 
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Table D2 Effect of natural antioxidants application on TBARS (mg MDA/kg meat), 

phospholipid content (mg/ 100 g fat) and conjugated dienes (µmol/g fat) comparing a 

‘Low Temperature, Low Oxygen’ (Sous Vide) and a ‘High Temperature, High Oxygen’ 

(Grilled) cooking method for raw chicken breast meat during storage at 4 oC. 

 TBAR  phospholipid conjugated dienes 

Main effects Sous vide grilled Sous vide grilled Sous vide grilled 

Antioxidants (AO) 
 

     

CON 10.74e 19.79d 43.23a 42.49a 30.75c 55.38d 

ROS 3.57a 12.49b 44.96b 45.78b 27.08ab 37.67a 

SRB 9.97d 14.42c 45.25b 44.88b 28.49bc 42.59c 

SFS 6.20c 13.22bc 44.46b 46.18b 28.58bc 42.01bc 

GGR 5.39b 12.50b 44.80b 45.23b 27.07ab 42.66c 

BHT 4.99b 7.91a 45.02b 45.79b 25.49a 38.12ab 

Average 6.81 13.39 44.62 45.06 27.91 43.07 

Reheating (RH) 
 

     

BRH 7.33b 12.97 46.02b 46.55b 28.34 45.16 

ARH 6.29a 13.80 43.22a 43.57a 27.48 40.98 

Storage Time (ST) 
 

     

0 4.04a 7.84a 47.97c 47.70c 25.83a 47.46b 

4 4.48a 8.78b 46.74b 45.57b 27.09ab 42.60a 

8 8.97b 19.53d 41.96a 43.89a 29.14bc 40.04a 

12 9.76c 17.40c 41.80a 43.07a 29.58c 42.19a 

SED 
 

     

AO 0.24 0.30 0.41 0.52 0.99 1.47 

RH 0.14 0.17 0.24 0.30 0.57 0.85 

ST 0.20 0.24 0.33 0.42 0.81 1.20 

AO x RH 0.34 0.42 0.58 0.73 1.40 2.08 

AO x ST 0.48 0.60 0.82 1.03 1.98 2.94 

RH x ST 0.28 0.35 0.47 0.60 1.15 1.70 

AO x RH x ST 0.68 0.85 1.16 1.46 2.81 4.16 

p value 
 

     

AO <.001 <.001 <.001 <.001 <.001 <.001 

RH <.001 <.001 <.001 <.001 0.137 <.001 

ST <.001 <.001 <.001 <.001 <.001 <.001 

AO x RH <.001 <.001 0.016 0.120 0.130 <.001 

AO x ST <.001 <.001 <.001 0.004 0.027 <.001 

RH x ST <.001 <.001 0.274 <.001 <.001 <.001 

AO x RH x ST <.001 <.001 <.001 <.001 0.043 <.001 

 Mean values with different small letters presented within each column of each cooking method differ 

significantly (p ≤ 0.05) according to the Tukey's HSD test. BRH, before reheating process; ARH, after 

reheating process 
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Table D3 Effect of natural antioxidants on conjugated trienes (µmol/g fat), pH values and 

shear force (N) of chicken breast meat cooked by Sous Vide and grilled cooking method 

during the storage time at 4 oC. 

 Conjugated trienes pH value Shear force (N) 

Main effects Sous vide grilled Sous vide grilled Sous vide grilled 

Antioxidants (AO) 
 

     

CON 14.83c 26.75c 6.37c 6.28b 12.47 13.22ab 

ROS 13.69bc 15.60a 6.23a 6.24ab 13.12 12.76a 

SRB 12.40ab 19.31b 6.32bc 6.22a 12.94 14.21b 

SFS 13.60abc 18.21ab 6.37c 6.19a 11.81 14.08ab 

GGR 13.33abc 19.07b 6.31bc 6.23ab 13.48 13.50ab 

BHT 11.83a 16.07ab 6.30ab 6.23ab 11.97 12.93a 

Average 13.28 19.17 6.32 6.23 12.63 13.45 

Reheating (RH)       

BRH 13.43 20.77 6.33 6.24 12.39 13.49 

ARH 13.13 17.58 6.30 6.22 12.87 13.42 

Storage Time (ST)       

0 12.27a 24.73c 6.27ab 6.22a 13.76b 13.39ab 

4 14.93b 22.48c 6.32b 6.23a 12.33a 12.85a 

8 12.93a 13.22a 6.26a 6.19a 12.78ab 14.35b 

12 12.99a 16.26b 6.42c 6.29b 11.66a 13.22a 

SED       

AO 0.63 1.14 0.02 0.02 0.64 0.36 

RH 0.37 0.66 0.01 0.01 0.37 0.21 

ST 0.52 0.93 0.02 0.02 0.53 0.29 

AO x RH 0.90 1.62 0.03 0.03 0.91 0.51 

AO x ST 1.27 2.29 0.05 0.05 1.29 0.72 

RH x ST 0.73 1.32 0.03 0.03 0.74 0.41 

AO x RH x ST 1.79 3.23 0.07 0.06 1.82 1.01 

p value       

AO <.001 <.001 <.001 0.003 0.068 0.022 

RH 0.422 <.001 0.055 0.17 0.204 0.818 

ST <.001 <.001 <.001 <.001 0.001 0.004 

AO x RH 0.040 <.001 0.451 0.168 0.074 0.143 

AO x ST 0.350 <.001 <.001 0.578 0.081 0.176 

RH x ST <.001 <.001 0.003 <.001 0.361 0.08 

AO x RH x ST 0.004 <.001 <.001 0.149 0.619 0.372 

 Mean values with different small letters presented within each column of each cooking method differ 

significantly (p ≤ 0.05) according to the Tukey's HSD test. BRH, before reheating process; ARH, after 

reheating process 
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Table D4 Effect of natural antioxidants on L*, a* and b* values of chicken breast meat 

cooked by Sous Vide and grilled cooking method during the storage time at 4 oC. 

 Sous vide Grilled 

Main effects L* value a* value b* value L* value a* value b* value 

Antioxidants(AO)          

CON 80.64de 0.11d 17.84ab 84.04 -1.85a 15.89 

ROS 77.23a -1.40a 18.90c 83.97 -1.30ab 15.50 

SRB 79.93cd -0.70bc 18.48bc 84.44 -1.17ab 15.05 

SFS 78.90bc -0.16cd 17.44a 83.69 -1.58ab 15.71 

GGR 78.60b -0.81b 22.34d 84.04 -0.97b 15.29 

BHT 81.05e -0.96ab 17.31a 84.31 -1.22ab 15.08 

Average 79.39 -0.65 18.72 84.08 -1.34 15.42 

Reheating          

BRH 79.40 -0.59 18.50 83.62 -1.14 15.18 

ARH 79.38 -0.71 18.94 84.54 -1.55 15.66 

ST          

0 79.15ab -0.78ab 18.68ab 84.29ab -1.51 14.98a 

4 79.94b -1.02a 18.39a 83.53a -1.29 14.90a 

8 78.68a -0.37b 19.10b 83.90ab -1.30 15.97b 

12 79.78b -0.44b 18.72ab 84.59b -1.29 15.81b 

SED       

AO 0.38 0.20 0.28 0.44 0.26 0.35 

RH 0.22 0.11 0.16 0.25 0.15 0.20 

ST 0.31 0.16 0.23 0.36 0.21 0.29 

AO x RH 0.54 0.28 0.40 0.62 0.37 0.49 

AO x ST 0.76 0.40 0.56 0.87 0.52 0.70 

RH x ST 0.44 0.23 0.33 0.51 0.30 0.40 

AO x RH x ST 1.08 0.56 0.80 1.24 0.74 0.99 

p value        

AO <.001 <.001 <.001 0.606 0.017 0.105 

RH 0.946 0.283 0.009 <.001 0.008 0.019 

ST <.001 <.001 0.026 0.023 0.663 <.001 

AO x RH 0.597 0.346 0.893 0.956 0.036 0.614 

AO x ST 0.017 0.457 0.001 0.146 0.537 0.943 

RH x ST 0.435 0.786 0.221 0.271 0.656 0.778 

AO x RH x ST 0.590 0.937 0.974 0.778 0.422 0.595 

Mean values with different small letters presented within each column of each cooking method differ 

significantly (p ≤ 0.05) according to the Tukey's HSD test.  
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Table D5 Effect of natural antioxidant application on fatty acid composition (g/kg DM) 

of chicken breast meat cooked by a ‘Low Temperature, Low Oxygen’ (Sous Vide) cooking 

method during the storage time at 4 oC. 

 
T.F.A  C14:0 C16:0 C18:0 C20:0  ∑SFA C16:1 

n-7 

C18:1 

 n-9c 

C18:1 

 n-9t 

∑MUFA 

Antioxidants (AO) 
    

 
     

CON 72.00a 0.33a 14.98a 5.98a 0.37 21.66a 1.66 25.18a 1.96a 28.80a 

ROS 84.50b 0.38ab 17.09 6.58 0.40 24.44 1.91 30.20b 2.20ab 34.31b 

SRB 81.10ab 0.37ab 16.54 6.40 0.38 23.69 1.90 28.87ab 2.16ab 32.94 

SFS 85.40b 0.40b 17.62b 6.58 0.41 25.01b 2.15 30.43b 2.27b 34.86b 

GGR 84.60b 0.38ab 16.96 6.68b 0.39 24.41 1.81 29.68ab 2.17ab 33.66 

BHT 81.80ab 0.37ab 16.80 6.46 0.39 24.02 1.91 29.08ab 2.16ab 33.15 

Reheating 
    

 
     

BRH 82.60 0.38 16.82 6.48 0.39 24.06 1.89 29.33 2.15 33.38 

ARH 80.50 0.36 16.51 6.42 0.39 23.68 1.89 28.48 2.16 32.53 

ST 
    

 
     

0 85.00bc 0.39b 17.38ab 6.53 0.40ab 24.70ab 2.06b 30.13ab 2.25b 34.44bc 

4 88.20c 0.40b 17.89b 6.79b 0.41b 25.49b 2.10b 31.55b 2.28b 35.93c 

8 76.75ab 0.34a 15.67a 6.33 0.38ab 22.72a 1.63a 26.89a 2.04a 30.56a 

12 76.30a 0.35a 15.73a 6.13a 0.37a 22.58a 1.78ab 27.05a 2.05a 30.87ab 

SED           

AO 3.94 0.02 0.81 0.22 0.02 1.04 0.17 1.60 0.09 1.81 

RH 2.27 0.01 0.47 0.13 0.01 0.60 0.10 0.93 0.05 1.05 

ST 3.22 0.02 0.66 0.18 0.02 0.85 0.14 1.31 0.07 1.48 

AO x RH 5.57 0.03 1.14 0.31 0.03 1.48 0.24 2.27 0.13 2.57 

AO x ST 7.88 0.04 1.62 0.44 0.04 2.09 0.34 3.21 0.18 3.63 

RH x ST 4.55 0.02 0.93 0.25 0.02 1.20 0.20 1.85 0.10 2.10 

AO x RH x ST 11.14 0.06 2.29 0.62 0.05 2.95 0.48 4.54 0.25 5.13 

p value           

AO 0.010 0.042 0.037 0.034 0.255 0.034 0.125 0.018 0.030 0.020 

RH 0.362 0.130 0.519 0.632 0.871 0.530 0.995 0.359 0.976 0.418 

ST <.001 <.001 <.001 0.003 0.008 0.001 0.002 <.001 <.001 <.001 

AO x RH 0.189 0.097 0.098 0.488 0.026 0.131 0.134 0.151 0.222 0.137 

AO x ST <.001 0.001 0.001 <.001 <.001 <.001 0.034 <.001 0.004 <.001 

RH x ST 0.039 0.026 0.048 0.056 0.009 0.042 0.243 0.048 0.226 0.061 

AO x RH x ST <.001 <.001 <.001 0.001 <.001 <.001 0.034 <.001 <.001 <.001 

Mean values with different small letters presented within each column of each fatty acid differ significantly 

(p ≤ 0.05) according to the Tukey's HSD test. BRH, before reheating process; ARH, after reheating process 
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Table D5 (Continued) Effect of natural antioxidant application on fatty acid composition 

(g/kg DM) of chicken breast meat cooked by a ‘Low Temperature, Low Oxygen’ (Sous 

Vide) cooking method during the storage time at 4 oC.  

Main effects C18:2 

n-6 

C20:4 

n-6 

C18:3 

n-3 

C22.5 

n-3 

C20:5 

n-3 

C22:6 

n-3 

∑PUFA ∑n-3 

 

∑n-6 

 

Antioxidants (AO) 

 
 

       

CON 15.70a 2.10a 2.28a 0.28 0.70a 0.47 21.53a 3.73a 17.80a 

ROS 19.06b 2.30b 2.86b 0.26 0.77b 0.51 25.75b 4.39b 21.36b 

SRB 18.18ab 2.20ab 2.68ab 0.24 0.73ab 0.49 24.51ab 4.14ab 20.37ab 

SFS 19.02b 2.21ab 2.85b 0.26 0.74ab 0.46 25.55b 4.31b 21.23b 

GGR 19.62b 2.37b 2.95b 0.27 0.77b 0.52 26.51b 4.51b 21.99b 

BHT 18.11ab 2.27ab 2.68ab 0.26 0.78b 0.51 24.61ab 4.23ab 20.38ab 

Reheating 
 

 
       

BRH 18.69 2.20 2.80 0.26 0.73 0.49 25.17 4.28 20.89 

ARH 17.88 2.28 2.63 0.27 0.76 0.49 24.32 4.16 20.16 

ST 

 
 

       

0 19.15bc 2.26bc 2.90b 0.28b 0.78b 0.51 25.87bc 4.46b 21.41bc 

4 19.82c 2.39c 3.02b 0.28b 0.78b 0.49 26.78c 4.57b 22.21c 

8 17.25ab 2.23b 2.49a 0.26ab 0.74a 0.49 23.47ab 3.98a 19.49ab 

12 16.90a 2.09a 2.46a 0.23a 0.70a 0.48 22.85a 3.87a 18.99a 

SED          

AO 1.01 0.06 0.18 0.01 0.02 0.02 1.20 0.19 1.02 

RH 0.58 0.03 0.11 0.01 0.01 0.01 0.69 0.11 0.59 

ST 0.82 0.05 0.15 0.01 0.01 0.02 0.98 0.15 0.83 

AO x RH 1.43 0.08 0.26 0.02 0.03 0.03 1.70 0.26 1.44 

AO x ST 2.02 0.12 0.37 0.03 0.04 0.04 2.40 0.37 2.03 

RH x ST 1.17 0.07 0.21 0.01 0.02 0.03 1.39 0.22 1.17 

AO x RH x ST 2.85 0.17 0.52 0.04 0.05 0.06 3.39 0.53 2.87 

p value          

AO 0.003 <.001 0.008 0.084 <.001 0.076 0.002 0.002 0.002 

RH 0.167 0.027 0.128 0.065 0.005 0.797 0.222 0.281 0.214 

ST <.001 <.001 <.001 <.001 <.001 0.475 <.001 <.001 <.001 

AO x RH 0.371 0.080 0.301 0.108 0.297 0.083 0.430 0.495 0.419 

AO x ST 0.001 0.023 0.001 0.652 0.107 <.001 0.002 0.003 0.001 

RH x ST 0.028 0.197 0.026 0.883 0.592 0.747 0.032 0.029 0.033 

AO x RH x ST <.001 0.002 <.001 0.127 0.012 0.006 <.001 <.001 <.001 

Mean values with different small letters presented within each column of each fatty acid differ significantly 

(p ≤ 0.05) according to the Tukey's HSD test. BRH, before reheating process; ARH, after reheating process 
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Table D6 Effect of natural antioxidant application on fatty acid composition (g/kg DM) 

of chicken breast meat cooked by a ‘High Temperature, High Oxygen’ (Grilled) cooking 

method during the storage time at 4 oC. 

 
T.FA  C14:0 C16:0 C18:0 C20:0 ∑ 

 SFA 

C16: 

1n-7 

C18:1 

 n-9c 

C18:1 

 n-9t 

∑ 

MUFA 

Antioxidants (AO) 
          

CON 72.50 0.33 15.19 5.98 0.36 21.86 1.77 2.02 25.84 29.63 

ROS 69.90 0.33 14.58 5.81 0.34 21.05 1.69 1.95 24.52 28.16 

SRB 78.80 0.36 16.27 6.26 0.38 23.27 1.94 2.12 28.33 32.39 

SFS 76.30 0.35 15.79 6.06 0.37 22.56 1.88 2.03 27.18 31.09 

GGR 83.20 0.38 17.09 6.60 0.39 24.46 1.93 2.16 30.15 34.23 

BHT 77.60 0.36 16.08 6.19 0.37 22.99 2.00 2.07 27.73 31.80 

Reheating 
          

BRH 76.90 0.35 15.86 6.13 0.37 22.71 1.90 2.08 27.48 31.46 

ARH 75.80 0.35 15.81 6.17 0.36 22.68 1.84 2.03 27.10 30.97 

ST 
          

0 77.50 0.35 15.87 6.08 0.36 22.66 1.93 2.07 27.58 31.58 

4 80.50 0.37 16.46 6.31 0.39 23.52 1.95 2.12 28.70 32.77 

8 73.70 0.34 15.49 6.12 0.35 22.30 1.83 2.01 26.35 30.19 

12 73.80 0.35 15.51 6.09 0.36 22.30 1.77 2.03 26.54 30.33 

SED 
          

AO 5.22 0.03 1.10 0.26 0.02 1.39 0.22 0.12 2.12 2.43 

RH 3.01 0.02 0.63 0.15 0.01 0.80 0.13 0.07 1.22 1.40 

ST 4.26 0.02 0.90 0.21 0.02 1.14 0.18 0.10 1.73 1.98 

AO x RH 7.38 0.04 1.55 0.37 0.03 1.97 0.31 0.17 2.99 3.43 

AO x ST 10.43 0.06 2.19 0.52 0.05 2.78 0.44 0.24 4.23 4.85 

RH x ST 6.02 0.03 1.27 0.30 0.03 1.61 0.26 0.14 2.44 2.80 

AO x RH x ST 14.76 0.08 3.10 0.74 0.06 3.94 0.62 0.34 5.99 6.86 

p value 
          

AO 0.155 0.387 0.28 0.067 0.361 0.220 0.735 0.536 0.139 0.184 

RH 0.716 0.951 0.939 0.828 0.504 0.975 0.646 0.472 0.754 0.726 

ST 0.318 0.691 0.676 0.672 0.100 0.673 0.720 0.712 0.503 0.528 

AO x RH 0.383 0.296 0.477 0.584 0.331 0.497 0.523 0.257 0.388 0.391 

AO x ST 0.165 0.308 0.168 0.071 0.035 0.142 0.105 0.126 0.127 0.126 

RH x ST 0.227 0.343 0.289 0.261 0.256 0.287 0.574 0.082 0.195 0.208 

AO x RH x ST 0.537 0.588 0.590 0.570 0.406 0.602 0.449 0.577 0.459 0.456 

Mean values with different small letters presented within each column of each fatty acid differ significantly 

(p ≤ 0.05) according to the Tukey's HSD test. BRH, before reheating process; ARH, after reheating process 
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Table D6 (Continued) Effect of natural antioxidant application on fatty acid composition 

(g/kg DM) of chicken breast meat cooked by a ‘High Temperature, High Oxygen’ 

(Grilled) cooking method during the storage time at 4 oC.  

 
C18:2  

n-6 

C18:3 

 n-3 

C20:4  

n-6 

C22.5 

 n-3 

C20:5 

 n-3 

C22:6  

n-3 

∑PUFA ∑n-3  ∑n-6  

 

Antioxidants (AO) 
         

CON 15.63 2.20 1.89 0.23 0.65 0.40 21.00 3.48 17.52 

ROS 15.11 2.18 1.99 0.24 0.68 0.44 20.65 3.54 17.11 

SRB 17.23 2.54 2.02 0.25 0.66 0.45 23.15 3.91 19.25 

SFS 16.83 2.43 2.08 0.25 0.67 0.44 22.70 3.79 18.91 

GGR 18.38 2.73 2.07 0.24 0.69 0.45 24.56 4.11 20.45 

BHT 16.81 2.50 2.10 0.25 0.70 0.45 22.80 3.90 18.91 

Reheating 
         

BRH 16.90 2.46 2.05 0.24 0.68 0.44 22.77 3.82 18.95 

ARH 16.43 2.39 2.00 0.24 0.68 0.44 22.19 3.76 18.43 

ST 
         

0 17.13 2.53 2.19c 0.26b 0.71b 0.47b 23.28b 3.96ab 19.32b 

4 18.04 2.69 2.11bc 0.25ab 0.71b 0.45ab 24.24b 4.09b 20.15b 

8 15.63 2.23 1.99b 0.23a 0.66a 0.44ab 21.18a 3.56a 17.62a 

12 15.85 2.27 1.82a 0.23ab 0.63a 0.41a 21.20a 3.53a 17.67a 

SED 
         

AO 1.26 0.23 0.08 0.01 0.02 0.03 1.48 0.23 1.26 

RH 0.73 0.13 0.04 0.01 0.01 0.01 0.86 0.13 0.73 

ST 1.03 0.19 0.06 0.01 0.02 0.02 1.21 0.18 1.03 

AO x RH 1.78 0.32 0.11 0.02 0.03 0.04 2.10 0.32 1.78 

AO x ST 2.51 0.46 0.15 0.03 0.05 0.05 2.96 0.45 2.52 

RH x ST 1.45 0.26 0.09 0.01 0.03 0.03 1.71 0.26 1.45 

AO x RH x ST 3.55 0.64 0.22 0.04 0.07 0.07 4.19 0.64 3.56 

p value 
         

AO 0.138 0.129 0.064 0.626 0.225 0.360 0.100 0.055 0.109 

RH 0.511 0.592 0.307 0.521 0.968 0.62 0.497 0.651 0.473 

ST 0.068 0.048 <.001 0.025 <.001 0.047 0.026 0.004 0.036 

AO x RH 0.277 0.328 0.150 0.019 0.293 0.966 0.308 0.393 0.294 

AO x ST 0.207 0.249 0.026 0.393 0.013 0.067 0.195 0.204 0.190 

RH x ST 0.224 0.242 0.965 0.081 0.955 0.130 0.237 0.294 0.228 

AO x RH x ST 0.606 0.491 0.055 0.588 0.147 0.590 0.571 0.373 0.607 

 Mean values with different small letters presented within each column of each fatty acid differ significantly 

(p ≤ 0.05) according to the Tukey's HSD test. BRH, before reheating process; ARH, after reheating process 
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