
 

 

 

 

A Thesis Submitted for the Degree of Doctor of Philosophy at  

Harper Adams University 

 

Copyright and moral rights for this thesis and, where applicable, any accompanying 

data are retained by the author and/or other copyright owners. A copy can be 

downloaded for personal non-commercial research or study, without prior permission 

or charge. 

This thesis and the accompanying data cannot be reproduced or quoted extensively 

from without first obtaining permission in writing from the copyright holder/s. The 

content of the thesis and accompanying research data (where applicable) must not be 

changed in any way or sold commercially in any format or medium without the formal 

permission of the copyright holder/s. 

When referring to this thesis and any accompanying data, full bibliographic details 

including the author, title, awarding institution and date of the thesis must be given. 

 



 

 

 

 

 

THE LIFE CYCLE GREENHOUSE GAS 

EMISSIONS OF RENDERED PRODUCTS 

by 

ANGEL DIEGO RAMIREZ MOSQUERA 

(Angel D Ramirez) 

(MEng, MSc, PgC) 

 

 

Thesis submitted in partial fulfilment of the requirement for the award of the degree 

of Doctor of Philosophy by Harper Adams University College 

 

 

Director of Studies: Dr Robert G Wilkinson 

Supervisors: Dr Andrea C Humphries and Mr Stephen L Woodgate 

 

 

May 2012 

  



ii 
 

Abstract 

The main research objectives were: (i) to quantify the greenhouse gas (GHG) emissions 

of rendered products, and (ii) to evaluate the effect of the inclusion of ingredients derived 

from terrestrial animal by-products (ABP) on the GHG emissions of animal diets. Generic 

life cycle assessment methodology was used to study the main systems: category 1 and 3 

mammalian rendering, on-farm broiler production, chicken meat processing, poultry 

rendering, and salmon feed production. UK industry data were collected to build the life 

cycle inventories. The effect of fuels used (natural gas (NG) and rendered fat (RF)) in the 

rendering industry and alternative co-product handling approaches were investigated. 

GHG emissions calculated were −0.77 and 0.15 kg CO2e/kg category 1 and 3 mammalian 

rendered fat respectively and 0.15 kg CO2e/kg mammalian processed animal protein 

(PAP) for the mean proportion of NG and RF. GHG emissions were 1.798 and 1.901 

kgCO2e/kg live weight for ‘Standard’ and ‘Heavy’ broiler production systems respectively. 

GHG emissions were 3.415, 2.042, 3.495, and 3.257 kgCO2e/kg chicken meat using 

economic allocation, mass allocation, main product, and system expansion respectively. 

GHG emissions of poultry PAP were 0.325 and 1.201, 7.555 and 8.423, -0.178 and 0.698 

kg CO2/kg for economic allocation, mass allocation, main product employed to partition 

between chicken meat and poultry ABP and for RF and NG respectively. The inclusion of 

poultry PAP instead of fish meal derived from reduction fisheries in salmon feed 

production resulted in higher and lower GHG emissions when employing mass and 

economic allocation respectively. 

Economic allocation is an adequate co-product handling method for animal by-product 

systems because the driver for their production is the demand for the main commodity 

(edible meat products). The GHG emissions of rendered products were similar or low 

relative to marginal products such as palm oil and soya bean meal because (i) ABP have 

a low or null value and therefore incur low or zero emissions from their production, (ii) the 

rendering process produces biofuels that are used to offset the use of fossil fuels, and (iii) 

palm oil and soya bean incur emissions from agriculture and land transformation.  
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1 Introduction 

Climate change represents a serious threat to human society and the natural 

environment. During the last century the Earth warmed approximately 0.7 °C largely due 

to increased greenhouse gas (GHG) emissions resulting from human activity. Without 

action to reduce GHG emissions global temperatures are predicted to rise 0.3 – 6.4 °C by 

2100, with sea levels rising by 0.18 – 0.59 metres compared to 1990 levels (Solomon et 

al., 2007a). This is likely to result in more extreme weather occurrences (floods, drought), 

with developing countries becoming more at risk from disease, hunger and famine. To 

combat climate change international and national policy has been developed to reduce 

GHG emissions. For example, the Kyoto protocol (UN, 1998) is an international 

agreement to reduce emissions of six GHGs, including carbon dioxide, nitrous oxide and 

methane. Under the agreement the European Union (EU) has agreed to collectively 

reduce emissions by 8.5% and the UK has specifically agreed to reduce emissions by 

12.5% below 1990 levels by 2012 (UK, 2008a). 

Life Cycle Assessment (LCA) is a tool that is used to investigate and quantify the 

environmental impact of a given product or service during its life cycle (ISO, 2006b; a)  . 

Examples of environmental impacts that can be assessed include climate change, 

acidification, smog, ozone layer depletion, eutrophication, human toxicological pollutants, 

desertification and depletion of minerals and fossil fuels. The life cycle of a product or 

service can be considered as a series of consecutive or interlinked stages from extraction 

of the raw materials to disposal of the end products. The LCA methodology can also be 

used to analyse specific environmental impacts (e.g. Climate Change) or specific stages 

of a product or services life cycle (e.g. production). 

Animal by-products (ABP) are unavoidable by-products of the livestock production 

system. In the EU, 17 million tonnes of slaughterhouse by-product are produced every 

year (Woodgate and van der Veen, 2004). The rendering industry is accepted to play an 

important role in the food chain by transforming ABP into processed proteins and 

rendered fats, which are used as inputs for other industries. Rendering involves physical 



3 
 

transformation, with the processes involving particle size reduction, heat treatment (for 

dehydration and microbial sterilization), pressing, separation and milling. Feedstock for 

the rendering industry consists primarily of slaughterhouse by-products, but also on-farm 

fallen stock and butchery and supermarket wastes. Rendering plants deal with different 

categories of raw materials (EC, 2002; 2009) and the products of rendering, are either 

burnt as fuel (category 1), or used in the fertiliser, pet food and chemical industries 

(category 3). Alternative sources of fats and proteins are palm oil and soybean meal. To 

date there have been no LCA or “carbon footprint” studies conducted on the UK rendering 

industry. Consequently the GHG emissions of rendered products have not been clearly 

defined. 

The main objective of this project was to determine the GHG emissions associated with 

the production of rendered products in the UK. Under current legislation category 3 

proteinaceous material can be included as pet food ingredients. However, the European 

Commission is considering to allow the feeding of poultry derived processed animal 

protein to farmed pig and farmed fish and pig derived processed animal protein to farmed 

birds and farmed fish (fish derived material is already allowed to be used in the feeding of 

non-ruminants) (Gleadle, 2011). Therefore it is expected that poultry derived processed 

animal proteins will be allowed to be included in farmed fish feeds in the short to midterm. 

In the UK, farmed fish feeds are normally formulated with fishmeal as the predominant 

protein source. A second objective of the project was to undertake comparative LCA of 

GHG emissions of salmonid feeds production based on either vegetable, fishmeal or 

terrestrial ABP derived ingredients as the predominant protein source. 
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2 Literature review: Introduction to animal by-products and life cycle assessment 

2.1 The animal by-product system 

The animal by-product (ABP) system includes animal production, slaughtering, meat 

processing, meat consumption, ABP processing, and ABP use or disposal (Figure 1).  

Each of these elements of the ABP system is described in the following sections, with a 

focus on ABP processing and rendering (the focus of the research presented). 

Animal production

Animal

Slaughtering

ABP processing Use/Final disposal

Further meat

processing

Consumption of animal 

products

Live animals

Non-edible

Edible

 

Figure 1 The animal by-product system 

2.1.1 Meat production trend 

The principal purpose of animal agriculture is to produce animal derived foods such as 

meat products, milk and eggs. Meat products are mainly produced from beef cattle, lamb, 

pigs and poultry. Globally meat production (including all different animals) increased 

steadily between 2000 and 2009 from approximately 233.5 to 283.9 million tonnes per 

annum (p.a.), corresponding to a 21.6 % increase (Figure 2). During the same period total 

European meat production increased from approximately 51.7 to 54.8 million tonnes p.a. 

(representing a 6% increase), whilst UK production remained constant at 3.4 million 

tonnes per annum. Globally, meat production is projected to more than double from 1999-

2001 to 2050 (229 to 465 million tonnes), with poultry being the commodity of choice 

(Steinfeld et al., 2006). 

Poultry represents the largest UK meat production sector. In 2009, 1,652 thousand tonnes 

of poultry meat was produced (Figure 3), of which 88.6 % was chicken meat. Chicken 

meat production increased from 1,214 to 1,463 thousand tonnes between 2000 and 2009 
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(a 20% increase). Chicken meat increased its contribution to meat production from 34.6% 

to 41.4% between 2000 and 2009. In 2000, the second and third largest amount of meat 

produced in the UK were pork and beef, with 899 and 705 thousand tonnes produced, 

respectively. However, in 2004, beef production surpassed pig meat production. In 2009, 

849.9 and 720.3 thousand tonnes of beef and pork were produced, respectively. Lamb 

production decreased from 383.0 thousand tonnes in 2000 to 302.6 in 2009 (Figure 3). 

Between 2000 and 2009, UK meat production was steady (Figure 2) however a shift in the 

contribution is observed. In concordance with global trends, meat produced from 

mammalian animals has decreased, whilst meat production from birds (mostly broiler 

chicken) has increased.  

 

Figure 2 World, Europe and United Kingdom total meat production in million tonnes 
between 2000 and 2009 (FAO, 2011). Quantity axis is in logarithmic base 2.  

 

Figure 3 Beef, lamb, pork and poultry meat production in UK in thousand tonnes 
between 2000 and 2009 (FAO, 2011). 
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2.1.2 Land based animal production 

Beef cattle production has three phases: (i) the cow-calf phase that involves the first 6 to 

10 months of a calf’s life, during which the animals’ weight increases to between 180 kg 

and 300 kg, (ii) the stocker-yearling phase during which the calf’s weight is increased to 

between 270 kg and 390 kg, mainly by feeding the animal on roughage, and (iii) the 

feedlot operations phase during which the animal achieves a slaughtering weight (400 kg 

– 600 kg) at between 15 and 24 months of age. This phase involves high-energy ratio 

feeds (Taylor and Field, 2009). Dairy cows that are no longer usable for milk production 

are also sent for slaughter for meat production. In addition, male calves that are born from 

dairy herds are sometimes brought into the beef system. Consequently, beef production 

can come from either beef or dairy cattle systems. World cattle stock between 2000 and 

2009 was approximately 1,345 million head per annum. Cattle stock in the UK between 

2000 and 2009 was variable, there was a downwards trend in stock levels from 11.1 to 9.9 

million head (a 11% decrease) (FAO, 2011). 

Lambs are raised on pastures and generally do not need feedlot operations. Normally 

lambs are ready for slaughter at 90 – 120 days of age when they weigh between 40 kg 

and 70 kg. Only lambs that are not large enough for slaughtering go to feedlots (Taylor 

and Field, 2009). World sheep stock between 2000 and 2009 was approximately 1,068 

million head per annum. The UK has seen a decrease in the sheep stock between 2000 

and 2009 from 42.2 to 32.0 million head (a 24% decrease) (FAO, 2011).   

Essentially pig production comprises four basic types of operation: (i) Feeder pig 

production that involves keeping a breeding herd to produce feeder pigs that are kept until 

they reach a weight of approximately 18 kg, (ii) Feeder pig finishing that involves raising 

feeder pigs until they reach slaughtering weight (approximately 100 kg), (iii) Farrow-to-

finish that involves keeping a breeding herd to produce pigs that are raised until they 

achieve slaughtering weight, and (iv) Purebred or seedstock that is similar to farrow-to-

finish but produces animals for breeding (Taylor and Field, 2009). World pig stock 

between 2000 and 2009 was approximately 910 million head. During the same period, pig 
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stock in the UK decreased from approximately 6.5 million head to approximately 4.6 

million head (a 29% decrease) (FAO, 2011). 

Poultry production encompasses the husbandry of chickens, turkeys, geese, ducks, 

pigeons, peafowls and guineas. Chickens are by far produced in the greatest number. 

Chicken production includes the incubation of eggs. Young poultry should have adequate 

feeding and water during the first 10 to 20 weeks, after which, birds are raised and fed 

until they reach slaughtering weight in 14 – 20 weeks (Taylor and Field, 2009). World 

chicken stock increased from approximately 14,399 million head in 2000 to 18,631 million 

head in 2009 (a 29% increase). UK chicken stock increased by 3% in the same period, 

from 154.3 to 159.3 million head chicken (FAO, 2011). 

2.1.3 Slaughtering and meat processing 

The main processes in an animal slaughtering/meat processing plant are: (i) stunning-

and-slaughtering, and (ii) dressing the carcass. The terminology used for these processes 

varies depending on species (for example in the poultry meat processing industry, these 

are commonly referred as evisceration and portioning, respectively). 

Stunning can be performed by mechanical, electrical and gaseous methods. Mechanical 

methods include the use of penetrating stunners, non-penetrating stunners or bullet guns. 

In electrical methods an electric current is passed through the animal’s brain. Gaseous 

methods include the use of carbon dioxide (CO2), whereby the animals are put in 

chambers containing a mixture of 70% CO2 and 30% air (Gracey, 1998). 

Immediately after stunning, sticking and bleeding is performed that causes death by loss 

of blood and thus lack of oxygen in the brain. This can be accomplished by cutting the 

throat or thoracic inlet (Gracey, 1998). 

In the slaughterhouse, depending on the species, animals are divided mainly into lean 

carcass, skins and hides, and slaughterhouse by-products. Dressing of the lean carcass 

differs depending on the animal species. The basic processes include bleeding, skinning, 

removal of offal and carcass splitting (Gracey, 1998). 
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On average the carcass weight of cattle, sheep and pigs accounts for 53%, 47% and 75% 

of the live weight, respectively. The best and worst cases for carcass dressing in the UK 

for cattle, sheep and pigs are presented in Table 1. Materials that are sent to rendering 

are defined in the table as “rendering” and specified risk material (SRM). In the best cases 

defined by EBLEX (2006), rendering material mass is considerably lower than in the worst 

case for each of the three species (edible material is maximised in the best case). The 

amount of material sent to rendering can be minimised by good separation practices.  

Table 1 Best and worst case of the distribution of final destination of different parts 
of cattle, sheep and pigs after slaughtering in UK (EBLEX, 2006) 

 
Cattle Sheep Pig 

 

kg / 
head 

% of 
live 

cat. 
kg / 

head 
% of 
live 

cat. 
kg / 

head 
% of 
live 

cat. 

carcass wt 318 53% 
 

20 47% 
 

76 75% 
 

total live 
weight 

599.98 
  

42.14 
  

101.35 
  

Best case 

carcass lean 192.54 32% 
 

11.7 28% 
 

41.08 41% 
 

edible 
human  

122.61 20% 3 9.11 22% 3 33.86 33% 3 

pet food 4.91 1% 3 1.3 3% 3 1.37 1% 3 

rendering  64.46 11% 3 8.5 20% 3 14.89 15% 3 

SRM 98.52 16% 1 1.76 4% 1 
   

hide and 
skin 

42.49 7% 3 4.66 11% 3 
 

0% 3 

gut content 74.49 12% 2 5.11 12% 2 10.15 10% 2 

Worst case 

carcass lean 192.54 32% 
 

11.7 28% 
 

41.08 41% 
 

edible 
human 

65.76 11% 3 4.67 11% 3 15.25 15% 3 

pet food 0 0% 3 0 0% 3 0 0% 3 

rendering 198.43 33% 3 19.35 46% 3 45.02 44% 3 

SRM 100.76 17% 1 1.76 4% 1 
   

hide and 
skin 

42.49 7% 3 4.66 11% 3 
 

0% 3 

gut content 0 0% 2 0 0% 2 0 0% 2 

 

The ratio of total materials sent to rendering to carcass lean is in the best case: 0.84 for 

cattle, 0.88 for sheep and 0.36 for pigs. In the worst case, these ratios are 1.55 for cattle, 

1.80 for sheep and 1.10 for pigs. This means in the worst case defined by EBLEX more 
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material is sent to rendering than consumed by humans, whilst in the best case the 

opposite occurs. 

2.1.4 Animal by-products classification and management alternatives 

 A by-product is a secondary product obtained in the manufacturing of a principal product. 

Animal by-products (ABP) are secondary products of the animal husbandry and meat 

industries. ABP includes hides, skins, hairs, feathers, hoofs, horns, feet, heads, bones, 

toe nails, blood, organs, glands, intestines, muscle and fat tissues, shells and whole 

carcasses (Meeker and Hamilton, 2006). They are classified into three categories 

according to European legislation (Table 2). 

Table 2 Classification of animal by-products (EC, 2002; 2009) 

Category Material 

1 - Animals or body parts with or suspected to be infected with a TSE. 

- Specified risk material (SRM): in the EU: skull, brain, tonsils, spinal cord, and 
intestines of bovine animals, in UK and Portugal also: entire head and vertebral 
column. 

- Entire bodies containing SRM. 

- Catering waste from international transport. 

- Animal materials in wastewater from category 1 rendering plants. 

2 - Manure and digestive tract content. 

- Animal materials in waste water from slaughterhouses and category 2 rendering 
plants. 

- Fallen stock (including parts). 

- Not category 1 material. 

3 - Parts of slaughtered animals fit for human consumption or unfit but with no 
transmissible diseases. 

- Hides, skins, horns, bristles and feathers from animal fit for human consumption. 

- Non-ruminant blood. 

- Raw milk from healthy animals. 

- Food of animal origin which is no longer able to be eaten by humans. 

- ABP generated in the production of food products for humans. 

 

The classification was established to reduce animal and human health risks. One of the 

main drivers of the legislation was the Bovine Spongiform Encephalopathy (BSE) 

epidemics. BSE is a Transmissible Spongiform Encephalopathy (TSE) that was identified 

for the first time in the UK in 1986. BSE was described as a pathology that includes the 
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appearance of fibrils and vacuolation in brain grey matter. Initially, cattle with BSE become 

apprehensive, hyperaesthetic and uncoordinated to walk, ultimately falling (Prince et al., 

2003). BSE is of importance because of its association with the rare mortal variant 

Creutzfeld-Jacob Disease (vCJD), a human TSE. Eating BSE infected cattle may be 

related to the development of vCJD in humans (Fishbein, 1998). 

Methods of treatment of ABP and its final uses or disposal according to their categories 

are also established in the European legislation (Table 3).  

Table 3 Permitted treatments and uses after treatment of ABP (EC, 2002; 2009) 

Category Possible treatments Permitted uses after treatment 

1 Incineration n.a. 

Rendering Incineration 

Co-incineration 

2 Incineration n.a. 

Rendering Incineration 

Co-incineration 

Rendered fats – be used to produce organic fertilizers 
or oleochemical splitting for technical uses not to be 
used in humans. 

Rendered proteins – be used as organic fertilizers 

Transformed to produce biogas, composted or 
landfilled 

Production of biogas Burn to produce energy 

3 Incineration n.a. 

Rendering Incineration 

Co-incineration 

Pet foods 

Technical uses 

Production of biogas Burn to produce energy 

Composting Compost 

Processing into pet foods Pet foods 

Processing in a technical 
plant 

Technical uses 

 

Category 1 materials are required to be disposed of by combustion directly or after 

rendering; however their energy content can be recovered and therefore they can be used 

as biofuels. Category 2 materials can also be used in composting, biogas production, or 

after rendering they can be used in fertiliser manufacturing and in the oleochemical 
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industry. Category 3 materials can be used in pet food manufacturing and, subject to 

previous approval and depending on the species, in the production of animal feeds. The 

pet food industry can use either chilled or rendered ABP. 

A brief description of each option in Table 3 apart from rendering is presented below: 

- Incineration: defined as the thermal treatment of material with or without energy recovery 

(EC, 2000) Incineration provides high security in the destruction of organic material 

(Woodgate, 2006). 

- Co-incineration: defined as the burning of the material in an energy or material 

generation plant (EC, 2000). 

- Anaerobic digestion (AD): defined as the decomposition of the ABP by microorganisms 

in the absence of oxygen resulting in the production of biogas, which can be burnt to 

produce heat and power, or used as a road transport fuel. For ABP this in practice 

typically requires the addition of high carbon materials such as straw (Woodgate, 2006). 

- Composting: defined as the aerobic decomposition of the ABP by microorganisms in the 

presence of oxygen. Typically ABP are in practice co-composted with high carbon 

materials (Woodgate, 2006). Co-composting has been found to be an effective way of 

disposing of cattle mortalities (Xu et al., 2007). Furthermore the practical viability of co-

composting as a way of disposal of SRM has been investigated with success (Hao et al., 

2009). The latter is not permitted in the EU. 

- Preparation of pet food: includes the use of fresh or frozen ABP. The amount of pet food 

that uses chilled ABP is decreasing globally, while the amount of dried pet food which 

uses rendered products as ingredients is increasing (Woodgate, 2006). 

- Burial/landfill: this option is not permitted in the EU for raw ABP; however globally it is 

considered an option. This option is associated with high risks of spreading animal 

diseases (Woodgate, 2006). 

In general, different variations of incineration/co-incineration, rendering, composting and 

generation of biogas in vessels are perceived as preferred options for the safe disposal of 
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carcass material. Landfill and composting in windrows are considered secondary options. 

Anaerobic digestion in pits and on-farm burial are considered undesirable options (Pollard 

et al., 2008). 

2.1.5 Rendering 

Woodgate and van der Veen (2004) define rendering as “to render open or split - by heat 

processing – raw material into a solid (protein meal also referred to as Meat-and-Bone 

Meal: MBM) and a liquid (fat in the form of tallow is a liquid at elevated temperatures)”. In 

practice the term has become related to the processing of inedible ABPs. There are two 

main streams of ABP: fallen stock (on farm) and slaughterhouse/meat processing by-

products (Figure 1). 

Fallen stock from animal agriculture represents between 3% and 10% of the total 

throughput of the rendering industry (Bansback, 2006). In the UK, the most common 

methods of fallen stock disposal used by farmers are: Knackers’ yards, hunt kennels, 

incineration and rendering (DEFRA, 2008; Kirby et al., 2010). The first two seem to be the 

preferred options. It should be noticed, that Knackers’ yards are intermediaries, and thus 

the final destination of the farm ABP that go to this disposal option might be rendering. 

The main stream of ABP comes from the slaughterhouses/meat plants. 

2.1.5.1 The rendering process 

There are two main rendering systems: dry and wet systems (Woodgate and van der 

Veen, 2004). 

Dry rendering is the prevalent system currently (Anderson, 2006). In the dry continuous 

process the material is ground and passed through a disc dryer/cooker. The vapour from 

the cooker is taken to a condenser. Process condensate is typically sent to wastewater 

treatment and non-condensable gases are treated to destroy odours. The cooked material 

is directed to a press system where the liquid (fat) is separated from the solid 

(proteinaceous material). The solid is taken typically to grinding and screening systems to 

obtain protein meal. The liquid is directed to a filtration system to obtain rendered fat 
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(tallow in the case of beef material). Figure 4 presents a diagram of a continuous dry 

process. 

 

Figure 4 Dry rendering process (Woodgate and van der Veen, 2004) 

 

Similarly, in the wet process the heat provided melts the fat; however both meal and fats 

remain hydrated until a later stage. Further evaporation takes place in another step 

(Woodgate and van der Veen, 2004). Currently, wet rendering is more associated with 

edible rendering (Anderson, 2006). Figure 5 presents a diagram of a wet processing 

system. 

 

Figure 5 Wet rendering process (Woodgate and van der Veen, 2004) 
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Kalbasi-Ashtari et al. (2008) stated that the chemical composition of raw materials, particle 

size, type of rendering system, air pressure and temperature influence the cooking time 

required. High pressure and temperature are associated with a reduction in the potential 

BSE infectivity in the protein meal; however it also decreases its nutritional value since it 

affects some amino acid content and digestibility. The particle size of raw material is very 

important because smaller particles lead to greater heat penetration. 

In the EU legislation, 5 methods for rendering processes (not including fish rendering) are 

approved. Table 4 presents the different methods, which mainly define the maximum 

particle size before entering the cooking process and the time, temperature and in some 

cases pressure required during the cooking process. 

Table 4 Raw material size, temperature and pressure for different methods (EC, 
2002; 2009) 

Method 

Maximum 
Raw Material 
particle size 

[mm] 

System 

Cooking parameters
a
: 

Core Temperature (T) [°C], time (t) [min], and 
Pressure (P) [bar] 

1 50 Batch or 
continuous 

T = 100, t = 20, P = 3 

2 150 Batch 1st step: T = 100, t = 150 

2nd step: T = 110, t = 120 

3rd step: T = 120, t = 50 

3 30 Batch or 
continuous 

1st step: T = 100, t = 95 

2nd step: T = 110, t = 55 

3rd step: T = 120, t = 13 

4 30 Batch or 
continuous 

1st step: T = 110, t = 13 

2nd step: T = 120, t = 8 

3rd step: T = 130, t = 3 

5 20 Batch or 
continuous 

Heating until coagulation, and then pressed to 
remove fat and water 

Proteinaceous material: 

1st step: T = 80, t = 120 

2nd step: T = 100, t = 60 

a
When the cooking parameters include more than one step, the time-temperature requirements can 

be achieved simultaneously. 

 

It has been suggested that BSE transmission is associated with the intake of rendered 

products included in cattle feeds (Fishbein, 1998; Prince et al., 2003). Furthermore, it has 
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been suggested that changes that took place in rendering technology in the early 1980’s 

caused BSE to survive the rendering process: in particular the change from batch to 

continuous rendering and the removal of the solvent extraction phase. Solvent extraction 

involved the use of an organic solvent at high temperatures to extract the protein meal, 

which was then exposed to high temperature steam to remove the solvent. Additionally at 

that time the rendered protein meal fraction in feeds was increased from 1 % to 12 % 

(Fishbein, 1998). Regarding rendered fats, the number of publications associated with the 

significance of tallow for BSE transmission are limited (Woodgate and van der Veen, 

2004). 

The BSE transmission issue was unknown until the studies on the epidemics. Taylor et al. 

(1995) analysed 15 rendering methods, 12 of which were in use in the EU at the time of 

the epidemics to verify their effectiveness for inactivation of  the BSE agent. The tests 

included BSE infected raw material. The results indicated that 4 processes produced 

MBM with BSE infectivity. No infectivity was found in tallow produced by the 15 

processes. Processes that allowed survival of the BSE agent are no longer used in the 

rendering industry. 

2.1.5.2 Animal by-products processed by rendering in United Kingdom 

There are 22 rendering plant locations in the UK according to the UK Rendering 

Association (UKRA - Figure 6). Plants are located across the whole UK. They are 

normally located outside highly populated areas, however there are some plants located 

in urban areas. 

In 2006, 2007, and 2008 the rendering industry in the UK processed around 2 million 

tonnes of ABP per year (Figure 7). Total UK meat production in 2006, 2007 and 2008 was 

3.39, 3.41, and 3.36 million tonnes respectively (FAO, 2011). Consequently ratios of ABP 

processed by rendering to meat produced were 0.61, 0.65 and 0.60 in 2006, 2007 and 

2008, respectively. This means the amount of material rendered was between 60% and 

65% of the total meat produced in the UK (assuming that the fallen stock amount is not 

important). Thus the amount of biomass processed by the rendering industry can be 
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considered significant (in the same order of magnitude as that of total meat production). 

These ratios are consistent with the carcass to rendering material ratios for cattle, sheep 

and pigs presented in section 2.1.3. Figure 7 presents the amount of ABP treated by 

rendering according to the ABP categories; categories 1 and 2 are quantified together 

because they are normally handled together as category 1 material. Between 2006 and 

2008 approximately 60% of the ABP treated was category 1 and 2 material, whilst in 2008 

approximately 57% of the ABP treated was category 3 material. 

 

Figure 6 Rendering plants location in UK (UKRA, Not dated) 

 

Figure 7 Total animal by-products amount handled by category in UK in years 2006, 
2007 and 2008 (Pers. Comm. SL Woodgate 2010) 

1,214,000 1,360,000 
876,000 

845,000 
865,000 

1,139,000 

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

2006 2007 2008

to
n

n
e

s 
A

B
P

 

Category 3

Categories 1/2



18 
 

ABPs can also be classified by species, as shown in Figure 8. SRM is always ruminant 

material (cattle or lamb). Mixed material is difficult to define, but includes fallen stock and 

slaughterhouse by-products as well as supermarket/food waste. In 2008 the percentage of 

SRM was very high in comparison to years 2006 and 2007. The SRM percentage was 

approximately 15% in 2006 and 2007 and 35% in 2008. The mixed material portion was 

lower in 2008; thus maybe the increase in SRM is related to more detailed statistics in 

2008. 

 

Figure 8 Distribution of animal by-products amount by species in UK in years 2006, 
2007 and 2008 (Pers. Comm. SL Woodgate 2010) 

2.1.5.3 Rendered products and their uses in United Kingdom 

The products of the rendering industry are rendered proteins and fats. The total 

production of dry rendered products (DRP) in the UK for years 2006, 2007, and 2008 is 

presented in Figure 9. Over this period there was an increase in the production of DRP. 

However, the processing of ABP has been stable or even decreased. Of the total DRP 

produced, proteins represented 64%, 65% and 61% for years 2006, 2007, and 2008 

respectively. The yield of DRP (ratio of DRP produced to ABP processed), was 35%, 34% 

and 41% respectively. 

Figure 10 presents the tonnage of DRP produced by category and by type (fat or proteins) 

for the years 2006, 2007 and 2008. As with ABP category 1 and 2 products are combined. 

Category 1 and 2 products account for more material than category 3 products. Category 
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1 rendered proteins are still known as MBM, whilst current legislation (EC, 2009), defines 

category 3 proteins as Processed Animal Proteins (PAP). 

 

Figure 9 Production of DRP in UK for years 2006, 2007 and (Pers. Comm. SL 
Woodgate 2010) 

 

Figure 10 Production of DRP by categories in UK for years 2006, 2007 and 2008 
(Pers. Comm. SL Woodgate 2010) 

 

Table 5 presents the different uses of rendered proteins in 2006, 2007 and 2008. Most 

proteins are used as fuels and in the pet food industry. 

Table 5 Use of rendered proteins in tonnes by category for years 2006, 2007 and 
2008 (Pers. Comm. SL Woodgate 2010) 

Use Category 2006 2007 2008 

Combustion fuel 1/2 344,000 262,000 213,500 

Cement 1/2 0 55,000 83,500 

Cement 3 0 5,000 0 
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Fertiliser 3 13,000 28,000 16,000 
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Category 3 proteins are used mostly in the pet food industry (Fig 11). Other uses of 

category 3 proteins include animal feed and fertilisers. Despite the fact category 3 

products can be used in these valuable applications, in 2007 small amounts were used in 

the cement industry as fuel in kilns. 

 

Figure 11 Use distribution of category 3 rendered proteins in UK in years 2006, 2007 
and 2008 (Pers. Comm. SL Woodgate 2010)  

 

Category 1 and 2 rendered proteins are treated as category 1 materials. Therefore they 

both are used as fuels in the cement industry for heat production or in fluidised bed 

combustion (FBC) plants for the production of heat and/or power. The latter was the most 

prevalent use in 2006, 2007 and 2008 (Figure 12). 

 

Figure 12 Use distribution of categories 1 and 2 rendered proteins in UK in years 
2006, 2007 and 2008 (Pers. Comm. SL Woodgate 2010) 
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production in the rendering industry itself. Only category 1 and 2 materials are used as 

fuels in the rendering industry. 
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Table 6 Use of rendered fats in tonnes by category for years 2006, 2007 and 2008 
(Pers. Comm. SL Woodgate 2010) 

Use Category 2006 2007 2008 

Combustion fuel 1/2 118,000 130,000 98,000 

Cement fuel 1/2 
  

67,000 

Biodiesel 1/2/3 20,000 47,500 40,000 

Oleochemicals 2/3 49,000 76,500 69,000 

Pet Food 3 21,000 11,000 34,000 

Animal feed 3 26,000 
 

14,000 

Store 1/2 30,000 
  

 

Figure 13 presents the percentage use of category 2 and 3 fats for non-combustion 

purposes. The main use of these products is as raw materials in the oleochemical 

industry. Category 3 fats are also used in the manufacturing of pet foods. 

 

Figure 13 Use distribution of category 2/3 rendered fats in UK in years 2006, 2007 
and 2008 (Pers. Comm. SL Woodgate 2010)  

Figure 14 presents the percentage use of fats for combustion purposes. Their use as fuel 

replacement in the rendering industry itself is the most important. In 2008, their use as 

fuels for the cement industry was also important. 

 

Figure 14 Use distribution of category 1/2/3 rendered fats used for combustion in 
different systems in UK in years 2006, 2007 and 2008 (Pers. Comm. SL Woodgate 
2010) 
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2.2 Application of life cycle assessment methodology 

2.2.1 Sustainable development 

The term sustainable development has become very important in the last decades; it is 

defined in the Brundtlandt Report (UN, 1987) as “development that meets the needs of the 

present without compromising the ability of future generations to meet their own needs. It 

contains two key concepts:  

- the concept of 'needs', in particular the essential needs of the world's poor, to 

which overriding priority should be given; and  

- the idea of limitations imposed by the state of technology and social organization 

on the environment's ability to meet present and future needs.” 

This definition can be perceived as quite broad, and efforts towards a more specific 

definition have been made. Jabareen (2008) has described a conceptual framework for 

sustainable development (Figure 15).  

Ethical paradox

UtopiaEco-Form

Integrative 

management

Natural capital 

stock 
Equity

Global 

agenda

 

Figure 15 Conceptual framework for sustainable development (Jabareen, 2008) 

 

The seven concepts in the Figure 15 are useful to illustrate the implications and 

requirements of sustainable development. In the core, the ethical paradox refers to the 

actual words; on one hand “sustainability” is associated with a state that can be kept 

indefinitely and on the other hand, “development” requires modification. The natural 

capital are natural assets that humans can modify but not create, and is normally divided 

into three categories: non-renewable resources, the capacity of nature to produce 

renewable resources, and the capacity of nature to assimilate pollutants. An associated 



23 
 

term is “strong sustainability” which implies that the natural capital should be kept 

constant. In contrast, “weak sustainability” allows for the intervention in the natural system 

(OECD, Not dated). 

Equity is related with the social aspects of sustainable development. It is associated with 

environmental, social and economic justice, social equity, equal rights, quality of life, right 

distribution, freedom, democracy, public participation and empowerment. There are two 

types of equity: intergenerational and intragenerational. Intergenerational is related to 

equal distribution between present and future generations. Intragenerational is associated 

with the fairness in the distribution of resources at the present time (Jabareen, 2008). 

The Eco-form is a term associated with the design of urban places, buildings and houses. 

Typical associated technologies and ideas are: alternative materials, renewable energy, 

organic food, conservation and recycling. Energy efficiency is seen as one of the core 

elements in this sense. The concept of utopia is associated with sustainable development 

and a vision of a perfect society, with justice and in harmony with nature. This vision 

would require deep changes towards a non-competitive and non-materialistic society 

(Jabareen, 2008). 

Integrative management refers to the integrative and holistic approach required for 

sustainable development. Social development, economic growth and environmental 

protection are to be considered together. The political global agenda refers to the shift 

towards a global agenda in contrast to traditional local and national environmental 

protection schemes. The global political agenda is also attached to the integrative 

approach in the sense that sustainable development should deal with world poverty 

eradication, shift in consumption and production and adequate care of the natural system 

in contrast to the traditional only environmental approach (Jabareen, 2008). 

The concept of sustainable development is a very broad one and seems to be associated 

with many issues. Environmental, social and economic dimensions are the three 

dimensions of sustainability. However, some priorities can be made. Environmental 

sustainability also in itself has different aspects. In the current political agenda, one of the 
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most important environmental issues is climate change and mitigation of greenhouse gas 

emissions. To make these concepts practical, there is the need for tools that allow 

comprehensive assessment of the environmental burden and resource use from different 

production systems. These tools should be flexible enough to focus on particular 

environmental criteria, for example, climate change. 

2.2.2 Climate change 

“Climate change refers to a change in the state of the climate that can be identified (e.g., 

by using statistical tests) by changes in the mean and/or the variability of its properties, 

and that persists for an extended period, typically decades or longer. Climate change may 

be due to natural internal processes or external forcings, or to persistent anthropogenic 

changes in the composition of the atmosphere or in land use“ (Solomon et al., 2007a). 

The mean temperature of the Earth depends on the heat from the Sun and the properties 

of the Earth. To maintain an inhabitable temperature the natural greenhouse effect traps 

infra-red radiation within the Earth’s atmosphere. This is achieved by Greenhouse Gases 

(GHG’s) that absorb a proportion of the infra-red radiation that would otherwise be lost to 

space. Since the industrial revolution the concentration of GHG’s in the atmosphere has 

increased due to anthropogenic activities resulting in an increment in the atmospheric 

absorption of outgoing infra-red radiation. There are six main anthropogenic GHGs: 

carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), Ozone-depleting substances 

(ODS), chlorofluorocarbons (CFCs) and hydroclorofluorocarbons (HCFCs). Some of these 

gases normally exist in the atmosphere, however during the last 250 years the increase 

has been attributed to human activities (Solomon et al., 2007a). 

GHGs can be characterized by the Global Warming Potential (GWP), which is expressed 

in relation to that of CO2. GWP for a 100-year time horizon of CO2 is 1, for CH4 is 25, and 

for N2O is 298 (Solomon et al., 2007a). The time horizon of 100-year is commonly used by 

regulators and the literature. CH4 and N2O are considerably more powerful GHGs than 

CO2. However CO2 is often considered the most important GHG due to its abundance 

(Figure 16). 
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Projected concentration increases are used to estimate temperature increases. 

Temperature increase by the end of the 21st century (2090 – 2099) could be between 1.1 

°C and 6.4 °C relative to that of years 1980 – 1990. An associated sea level rise of 0.18 m 

to 0.58 m in the same period is also projected. Extreme weather situations are predicted 

to be more frequent (Solomon et al., 2007a). Depending on the temperature increase 

different impacts can be expected (Table 7). Climate change is a serious threat for 

humans and nature, and thus represents the most important environmental sustainability 

challenge for humanity in the 21st century. 

Table 7  Potential Impacts by the end of the 21st century associated with different 
temperature increase above preindustrial era (Great Britain, 2006) 

Temperature increase 
above preindustrial 

Potential Impacts 

1- 2 ºC  Major impacts on ecosystems and species 

2-3 ºC  Greenland ice cap starts to melt, major loss of coral reef 
ecosystem; considerable species loss; large impacts on 
agriculture; Terrestrial carbon sink could become a 
source 

1-4 ºC  North Atlantic circulation at increasing risk of collapse 

2-4.5 ºC  West Antarctic ice sheet at increasing risk of collapse 

 

In 2004, globally the most important GHG was CO2 (Figure 16). In particular the 

combustion of fossil fuels for heat and power (and transport) was the greatest source of 

CO2 followed by deforestation and decay of biomass. CH4 is the second most important 

GHG; its main source is agriculture. N2O emissions are also associated with agriculture 

due to the use of fertilisers (Barker et al., 2007). 

The major source of GHGs in the world is energy supply. Other major sources are 

industry, forestry, agriculture and transport (Figure 17). In energy, transport and industry, 

the main GHG is CO2, which is a very different situation for that of agriculture where the 

main GHG’s are methane and nitrous oxide. 
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Figure 16 Global anthropogenic GHG emissions in 2004 (Barker et al., 2007) 

 

Figure 17 Contribution of global GHG emissions by sector in 2004 (Barker et al., 
2007) 

Similarly in the UK, the sector with the highest GHG emissions was Energy supply that 

accounted for 35 % of emissions in 2009 (Figure 18). Transport was the second and 

business was the third largest contributors with 22% and 15% respectively. GHG 

emissions from agriculture were 49.5 million tonnes CO2 equivalents (9% of the total in 

2009). Industrial processes accounted for only 2%. The reported figures are based on 

sectorial emissions (e.g. energy supply is the whole energy supply to the different sectors 

in the UK). A life cycle perspective (instead of sectorial) would include the emissions 

associated with energy production in the sector where they are used. There has been a 

reduction of 28% in the GHG emissions from the UK between 1990 and 2009. The 
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Processes accounted together for 87% of this reduction. The Climate Change Act 2008 

(UK, 2008a) sets a reduction target of 80% in relation to the level of 1990 for year 2050, 

which indicates that by 2050 total GHG emissions must be less than 156 million tonnes 

CO2. 

 

Figure 18 Evolution of GHG emissions in the UK by sector in million tonnes CO2 
between 1990 and 2009 (DECC, 2011) LULUCF: Land Use, Land Use Change and 
Forestry 

 

 

Figure 19 Main contributors to each GHG in the UK (DECC, 2011) 

 

In 2009, the emissions of GHG as CO2, CH4, and N2O accounted for 84%, 8% and 6% of 
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contribution was different for each GHG, with the major contributors to CO2 related to 

those sectors that heavily depend on the combustion of fossil fuels: Energy Supply and 

Transport. Agriculture is the main contributor to emissions of CH4 and N2O, the former 

mainly associated with anaerobic decomposition (in enteric fermentation and manure 

management) and the latter mainly associated with fertiliser application and manure 

management. Anaerobic decomposition in landfill is also an important source of CH4 

(Figure 19). 

There are two types of strategies that are addressed regarding climate change and the 

future: mitigation and adaptation. Mitigation refers to “a human intervention to reduce the 

sources or enhance the sinks of greenhouse gases” and adaptation to “Initiatives and 

measures to reduce the vulnerability of natural and human systems against actual or 

expected climate change effects” (Solomon et al., 2007a). 

The shift towards more efficient and renewable energy systems is seen as one of the 

most important mitigation activities. This involves the shift from fossil fuel systems (coal, 

oil and gas) to carbon neutral or less carbon intensive energy systems (hydropower, wind, 

bioenergy, geothermal, solar, nuclear, etc.). It is important to realise that carbon neutrality 

(no CO2 emissions) does not necessarily imply total climate friendliness as there are other 

powerful GHG’s as N2O and CH4. Comprehensive assessments of systems should be 

undertaken to find holistic solutions. 

2.2.3 Sustainability assessment tools 

The evaluation of sustainability requires methods to measure the current status or effects 

of changes. A great variety of sustainability assessment tools have been developed. Ness 

et al. (2007) have classified them in three areas of coverage: indicators/indices, integrated 

assessment and product-related assessment. 

Indicator and indices are measures that are associated to some state of social, economic 

or environmental development in a region (Ness et al., 2007). Indices are aggregated 

indicators. Examples of indicators are the United Nations Indicators of Sustainable 

Development (UN, 2009). These are indicators at national level related to social (e.g. Gini 
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Index of Income Inequality), economic (e.g. Gross Domestic Product per capita), 

environmental (e.g. Emission of GHG) and institutional (e.g. Number of Internet 

Subscribers per 1000 Inhabitants) issues. Integrated indexes are oriented towards the 

integration of nature and societal dimensions in one index, examples are the Human 

Development Index by the UN Development Programme, which integrates life 

expectancy, literacy and standard of living (Ness et al., 2007). 

Integrated assessment refers to tools that are used in the support of decision making 

related to projects and policies (Ness et al., 2007). One example of this type of tool is 

Environmental Impact Assessment for projects. 

Product-related assessments are associated with flows in production and consumption of 

goods and services. Of these, Life Cycle Assessment (LCA) is the most established tool, 

and has been used to evaluate environmental aspects in different product and service 

systems (Ness et al., 2007). The basis for assessment based on products (and services) 

is that the environmental impact of the economy is related to the consumption of products 

(and services), directly by the actual use of them and indirectly by their production and 

final disposal (Tukker and Jansen, 2006). 

LCA is a tool that was developed for the evaluation of industrial products; however it has 

been successfully used to evaluate the environmental impact of agricultural products 

(Williams et al., 2006; de Vries and de Boer, 2010). Rendered product chains involve both 

agriculture and industrial processes. The suitability of LCA to be used in products from 

different sectors like industry, agriculture and energy, makes it an adequate tool to 

evaluate the energy use and GHG emissions from rendered product systems.  

2.2.4 Life cycle assessment 

LCA is a tool for the assessment of the environmental impact of a product or service 

throughout every stage of its life cycle. LCA methodology is standardized by international 

standards ISO 14040 (ISO, 2006a) and ISO 14044 (ISO, 2006b). LCA is defined in the 

ISO standards as the “compilation and evaluation of the inputs, outputs and the potential 

environmental impacts of a product system throughout its life cycle”. The life cycle is the 
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“consecutive and interlinked stages of a product system, from raw material acquisition or 

generation from natural resources to final disposal” and a product system is the “collection 

of unit processes with elementary and product flows, performing one or more defined 

functions, and which models the life cycle of a product” (ISO, 2006a). 

LCA involves four phases: goal and scope definition, inventory analysis, impact 

assessment, and interpretation. These phases have a logical order, however LCA has an 

iterative character and anything can be refined in any phase of a study. 

2.2.4.1 Goal and scope definition 

The objectives of the study are defined in this phase. This involves the justification for the 

study and the intended use of the results. The scope of the study includes definition of the 

product system and functional unit. The functional unit is the “quantified performance of a 

product system for use as a reference unit” (ISO, 2006a). Table 8 presents some 

examples of functional units for different product systems. 

Table 8 Example of functional units 

Product system Functional unit 

Beverage packaging  Litres of packaged drink 

Beef kg of beef meat 

Painting m
2
 x year 

   

The system boundary is defined to indicate the processes that are part of the product 

system.  Processes to be included depend on the objectives of the study. 

The ISO standards present a list of unit processes that can be considered as part of a 

product system: “acquisition of raw materials; inputs and outputs in the main 

manufacturing/processing sequence; distribution/transportation; production and use of 

fuels, electricity and heat; use and maintenance of products; disposal of process wastes 

and products, recovery of used products (including, reuse, recycling and energy 

recovery); manufacture of ancillary materials; manufacture, maintenance and 

decommissioning of capital equipment; additional operations, such as lighting and 

heating”. 
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The methodological framework can be used for: cradle-to-gate studies, gate-to-gate 

studies and even specific parts of a production system (like waste management, 

components of a product system, etc). Figure 20 illustrates the difference between cradle-

to-gate, gate-to-gate and cradle-to-grave studies. 

Raw material 

extraction
Manufacturing

Distribution/

Retail

Use/

consumption

Disposal/

Recycling

cradle-to-gate

cradle-to-grave

gate-to-gate

 

Figure 20 Differences between cradle-to-gate, gate-to-gate and cradle-to-grave 

 

There is a consensus that there are two types of LCA: attributional (called also accounting 

or retrospective) and consequential (called also change oriented or prospective) 

(Baumann and Tillman, 2004; Curran, 2007a; Finnveden et al., 2009). The main 

differences regard boundaries, co-product handling procedures and choice of data. In 

attributional studies, average data is used while in consequential, marginal data is used 

(Baumann and Tillman, 2004). Average and marginal data issues are common when 

studying systems that use or produce electricity, where average represents the national 

electricity technology/fuel mix (global annual average) and marginal is associated with the 

technology/fuel that is used on the margin (e.g. used during the peak load of the day). 

Average and marginal data issues also appear in the case of the production of farmed 

animal feeds, where average sources of fats and proteins are normally different to 

marginal sources of fats and proteins (Dalgaard et al., 2008; Schmidt, 2010). 

Cut-off criteria should also be established. This helps to identify which inputs are to be 

included in the study. Mass, energy or environmental significance can be used as cut-off 

criteria. A contribution percentage should be defined for which the total sum of inputs 

should account. Mass cut-off criteria would involve the setting of a percentage (e.g. 95%), 
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of the total input mass to the system, for which the sum of the inputs included in the study 

should be at least equal to 95% (ISO, 2006b). 

2.2.4.2 Inventory analysis 

In this phase, all the data collection and calculation of inputs and outputs is performed. 

Qualitative and quantitative data for each unit process in the product system should be 

collected by measuring, calculation or estimation. A process flow diagram, that includes 

the processes and their relationships, should be developed. Data collected might be 

classified as suggested in ISO 14044: 

“- energy inputs, raw material inputs, ancillary inputs, other physical inputs, 

- products, co-products and waste, 

- releases to air, water and soil, and 

- other environmental aspects” 

The calculation includes the accounting of all the inputs and outputs of processes in the 

flowchart. A software tool that provides a framework to organise the product system and 

perform the calculations is typically used (e.g. Simapro (PRe Consultants, 2011)). The use 

of commercial databases which have access to common products is a general practise in 

LCA. 

The results of an inventory analysis are the product and elementary flows involved in the 

product system, normalised according to the functional unit. A product flow (economic 

flow) is “products entering from or leaving to another product system” and an elementary 

flow (natural flow) is “material or energy entering the system being studied that has been 

drawn from the environment without previous human transformation, or material or energy 

leaving the system being studied that is released into the environment without subsequent 

human transformation” (ISO, 2006b). 

2.2.4.2.1 Co-product handling 

Co-product handling is required when a process produces more than one co-product. A 

co-product is “any of two or more products coming from the same unit process or product 
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system” (ISO, 2006a). Allocation is “partitioning the input or output flows of a process or a 

product system between the products system under study and one or more other product 

systems”. 

Wastes are also outputs; however inputs and outputs should be allocated to co-products 

only. Wastes in LCA are “substances or objects which the holder intends or is required to 

dispose of” (ISO, 2006b). Econometrica et al. (2009) studied the indirect GHG missions 

from the use of wastes, residues and by-products in the UK. They recognised that the 

terms “waste”, “residues” and “by-products” normally do not have the same definition in 

legislation and LCA. This can make the use of these terms complex and confusing. ISO 

14044 provides a hierarchy regarding co-product handling which suggests that: 

- Allocation should be avoided either by process division or system expansion. 

- If allocation has to be performed, the inputs and outputs of the system should be 

divided according to the physical relationships in which inputs and outputs change 

according to changes in their functions. 

- If no physical relationships can be defined, other relationships should be used (e.g. 

economic value of products and co-products). 

Reuse and recycling have special requirements, since these processes (and similar like: 

composting, energy recovery, etc.) involve more than one product (ISO, 2006b). For 

these, there are two cases for allocation: 

- Closed-loop allocation is used where the properties of the recycled material are 

the same as the virgin material. Allocation is not needed since the secondary 

material production reduces the use of the virgin material. 

- Open-loop allocation is used when the material is recycled or reused in other 

product systems. 

Allocation and system expansion are among the most debated issues in LCA 

methodology (Weidema, 1993; Azapagic and Clift, 1999b; a; Ekvall and Finnveden, 2001; 

Ayer et al., 2007; Curran, 2007a; Reap et al., 2008). However, it is commonly affirmed 
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that there is no single method to solve the multiple output problem (Guinee et al., 2004; 

Curran, 2007a; Kendall and Chang, 2009). Approaches that are used include: 

- Main or primary product (or no allocation): the main product takes all the 

environmental burden of the system. 

- Economic allocation: the economic value ratio of the co-products is used to divide 

the environmental burden among co-products. 

- Mass allocation: the mass proportion of the co-products is used to divide the 

environmental burden (a similar approach can be taken with volume). 

- System expansion: the avoidance of allocation through the inclusion of avoided 

products from other products systems in the studied system. 

- Biological allocation: it has been argued that biological causality could be used in 

biological product systems (Ayer et al., 2007; Schau and Fet, 2008). One example 

is in milk based systems, allocation can be based on the energy required to 

produce milk, maintenance, growing, pregnancy, etc. 

Economic allocation and system expansion seem to be the methods that are used most 

often; however, they both have advantages and disadvantages (Table 9). In studies 

related to agricultural and food systems, economic allocation is normally the most used 

co-product handling method (Ayer et al., 2007; Schau and Fet, 2008; Kendall and Chang, 

2009), probably because it is a generally applicable method. 

Table 9 Advantages and disadvantages of economic allocation and system 
expansion 

 Economic allocation  System expansion 

Advantages Generally applicable (Weidema, 
1993; Guinee et al., 2004) 

Adequate to analyse changes in the 
product system, demand or 
production volume (Ekvall and 
Finnveden, 2001; Cederberg and 
Stadig, 2003) 

Disadvantages Economic value varies with time 
(Ayer et al., 2007; Feitz et al., 2007) 

Tariffs and subsidies make it 
imperfect (Feitz et al., 2007; Schau 
and Fet, 2008) 

Does not represent the effect of 
decisions (Reap et al., 2008) 

Requires more data to include 
avoided products (Ekvall and 
Finnveden, 2001; Reap et al., 2008; 
Thomassen et al., 2008a) 
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It is commonly affirmed that the choice of method depends on the type of the study: 

attributional or consequential. Allocation should be used in the first case, while allocation 

should be avoided by system expansion in the latter (Baumann and Tillman, 2004; 

Curran, 2007a; Schmidt, 2008b; Thomassen et al., 2008a; Fruergaard et al., 2009). 

Previously, it had been suggested that system expansion should be used always 

(Weidema, 2001), and economic allocation had also been perceived as a universal 

solution (Ekvall and Finnveden, 2001; Guinee et al., 2004).  

Different co-product handling methods are one of the reasons for different results and 

non-comparability among studies of similar products (Azapagic and Clift, 1999b; a; 

Cederberg and Stadig, 2003; Heijungs and Guinee, 2007; Reap et al., 2008; Cherubini et 

al., 2009; Flysjö et al., 2011a). However, results with different methods for allocation are 

not always radically different (Curran, 2007b; Guinee and Heijungs, 2007). In the literature 

authors sometimes choose to evaluate the sensitivity of results with different allocation or 

system expansion methods. Essentially the evaluation of sensitivity to co-product handling 

methodology should be seen as a way to provide robustness to the LCA study process. 

Recently, the issue of comparability among studies also has been prompted. Flysjö et al. 

(2011a) analysed different guidelines for co-product handling and has stated the need for 

harmonization between life cycle approaches studies. This is a critical issue if the results 

of life cycle studies will be used in communications. 

2.2.4.3 Impact assessment 

The impact assessment should be planned to achieve the goal and scope of a LCA. This 

phase involves mandatory and non-mandatory parts. Mandatory parts in ISO 14044 

include: 

- Choice of impact categories, category indicators and characterization models.  

- Classification, which is the assignation of inventory results to impact categories.  

- Characterization, which is the calculation of the category indicator results. 
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The terms used for impact assessment in LCA should be carefully distinguished; Table 10 

presents an example of the terms used for the impact category climate change: 

Table 10 Example of terms use (ISO, 2006b) 

Term Example 

Impact category Climate Change 

Inventory results Amount of GHG per functional unit  

Characterization model Baseline model of 100 years of the IPCC 

Category indicator Infrared radiative forcing (W m
-2

) 

Characterization factor Global Warming Potential (GWP100) for each GHG (kg 
CO2 eq./kg GHG gas) 

Category indicator result kg of CO2 eq per functional unit 

Category endpoints Coral reefs, forest, crops 

 

Typical impact categories are (Baumann and Tillman, 2004): 

- Climate change: This refers to the effect of heating the atmosphere due to 

accumulation of GHG emissions. Most important GHG’s are CO2, CH4 and N2O. 

- Resources: This refers to the depletion of resources, which may be divided into 

abiotic and biotic. 

- Land Use: this category includes land occupancy and transformation. 

- Ozone depletion: The depletion of the ozone in the upper atmosphere as a result 

of the emission of bromated and chlorinated substances. 

- Toxicity: This is used to reflect the toxicological impacts of pollutants; this can be 

divided into human toxicity and eco-toxicity. The latter can be further divided into 

terrestrial and aquatic toxicity, and the latter can be divided into fresh and marine 

toxicity. 

- Photo-oxidant formation: Photo-oxidants are created in the lower atmosphere from 

NOx and hydrocarbons with sunlight, and can cause human health problems and 

damage to vegetation. 

- Acidification: Acid deposition occurs in some way (acid rain, fog, etc.); resulting in 

damage to vegetation, buildings and monuments and mortality in aquatic animals. 

Major pollutants are SO2, NOx, HCL and NH3. 



37 
 

- Eutrophication: This is related to the increased level of nutrients (N and P) which 

may cause changes in species and biological productivity, degradable organic 

pollution normally (expressed typically as BOD or COD) also contributes to this 

category. Major pollutants are NOx and NH3. 

Non-mandatory parts of impact assessment in ISO 14044 include: 

- Normalization, which is the calculation of the category indicator results in relation 

to reference data in order to understand the relative magnitude of the indicator 

results. Reference data might be the total indicator result for a country or 

continent. 

- Grouping (of results). This may be used to divide the impacts categories (e.g. local 

and regional effects, low and high priority, etc.). 

- Weighting. This includes the conversion of category indicator results using factors 

based on societal choices.  

- Data quality analysis, which is the analysis of the reliability of the category 

indicator results. 

Grouping and weighting are not based on science, but on value-choices and, thus, results 

of these parts should be carefully treated. 

Databases with ready-made impact assessment methods may be used. Examples of 

methods are: Eco-indicator’99, EPS, among others. 

Eco-indicator’99 is a method intended for designers and engineers in product 

development applications. It includes normalization factors valid for average damage in 

Europe and weighting factors based on cultural values in society (Baumann and Tillman, 

2004) 

EPS (Environmental Priority Strategies in Product Design) is also a method developed for 

product development in industry. The special issue about this method is that the weighting 

is based on the willingness to pay to avoid changes in human health, biological diversity, 
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ecosystem production capacity, abiotic resources and cultural and recreational values 

(Baumann and Tillman, 2004). 

2.2.4.4 Interpretation 

The final phase is interpretation, in which the significant issues based on all the previous 

phases are stated, and conclusions and limitations are presented. A check for 

completeness, sensitivity and consistency is part of the interpretation phase (ISO, 2006b). 

2.2.5 Life cycle greenhouse gas emissions of goods and services 

Nowadays, life cycle approaches with focus on GHG emissions are common since climate 

change is a priority regarding environmental policy. Commonly GHG emissions 

assessment results are called “Carbon Footprints”. There are several definitions of 

“Carbon Footprint”, one is “The total set of GHG emissions caused by an individual or 

organisation, event or product. It should be expressed in carbon dioxide equivalent (CO2-

eq)” (The Carbon Trust, 2007). Baldo et al. (2009) defined the “Carbon Footprint” as “the 

overall amount of carbon dioxide (CO2) and other greenhouse (GHG) emissions 

associated with a product along its supply chain, which includes its use phase as well as 

product end-of-life management”. It is mentioned that it should be expressed in CO2 

equivalents, based on the GWP. 

The British Standard PAS 2050 for the assessment of life cycle GHG emissions from 

products (BSI, 2008b) and its guidance document (BSI, 2008a) have recently been 

developed. The development of these documents has used as reference the ISO 

standards for LCA and thus they can be perceived as a further specification of generic 

LCA methodology to focus only on GHG’s. The life cycle GHG emissions assessment has 

in practice 3 phases, the start-up, the calculation of the GHG gas emissions and the next 

steps. 

In the Start-up, the objectives and the functional unit are defined. The usual goal is the 

reduction of GHG emissions; however, additional objectives can be defined. This phase 

includes the definition of people and suppliers, resources, schedule and reasons to carry 

the study. 
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The calculation of the GHG emissions has 5 steps: construction of the process map, 

setting of boundaries and priorities, data collection, GHG emissions calculation and an 

optional step which is the uncertainty check (BSI, 2008b). 

Exclusions of the product system are explicitly indicated in PAS 2050. For example, 

human energy inputs, transport of consumers to and from retail, transport of employees to 

and from work, animals providing transport and production of capital goods are all 

excluded from the assessment. 

For final disposal a period of 100 years of GHG emissions should be included in the 

assessment. If carbon storage is supposed to occur in a product, the assessment should 

include the impact over 100 years, and more than 50 % of the carbon should remain 

stored for at least 1 year. Therefore, food or feed should not be included as eligible 

products for storage of biogenic carbon (BSI, 2008b). 

There are two types of data: activity data and emission factors. Activity data is the amount 

of material and energy involved, while emission factors are used to transform activity data 

into GHG emissions. To calculate the GHG emissions of an activity, the following 

calculation is used (BSI, 2008b): 

                          (                              )

                         (              ) 

The calculation of the total GHG emissions of a product involves the sum of the emissions 

for all processes in the product life cycle. 

 With regard to co-product handling, PAS 2050 (BSI, 2008b) proposes the following 

hierarchy: 

- Allocation should be avoided by process division 

- Next option should be system expansion 

- If allocation has to be performed, it should be based on economic value of co-

products 
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The first two steps are in concordance with ISO LCA (ISO, 2006b; a), however PAS 2050 

sets economic allocation as mandatory once allocation has to be performed. 

The last steps are the validation of results, the reduction of emissions and the 

communication of the results and reductions. Validation is used to verify that the 

assessment has been in concordance with PAS 2050. It is recommended to have a third 

party certification when the results are intended to be used for external communication. 

The reduction of emissions and communication of results are only present in the guidance 

document and not actually in the standards. 

 “Carbon Footprinting” has positive and negative aspects in comparison to a “full” LCA. In 

particular positive aspects are related to its huge popularity (especially in UK) and 

potential for increasing consumer awareness of the environmental impact of products 

(Weidema et al., 2008a). It should be noted that the term “Carbon Footprint” is just a new 

name for “the result of the life cycle impact category indicator global warming potential”, 

which has been around for decades as part of impact assessment in LCA (Finkbeiner, 

2009).  

The development of specific standards for GHG emissions may be considered 

unnecessary because the full LCA standards already cover climate change issues 

(SETAC Europe LCA Steering Committee., 2008; Weidema et al., 2008a). Furthermore, 

Schmidt (2008a) considered that focusing only on the “Carbon Footprint” is a backward 

step, since there are three key aspects to sustainability: environmental, economic, and 

social. With development of the “Carbon Footprint” concept even the environmental is 

replaced by one single indicator (diminishing the importance of other environmental 

impacts). 

Of the different types of sustainability assessment tools the product-related tools are the 

best suited to assess in a direct manner the environmental impact of human created 

systems. 
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2.2.6 Comparative life cycle assessment 

A comparative LCA is a “LCA study in which two or more alternative product/services are 

compared”. In comparative studies, the functional unit definition and methodological 

choices for different product/services should be comparable (Baumann and Tillman, 

2004). 

System boundaries and co-product handling procedures should be carefully defined for 

the product systems that are being compared. This seems to be a limitation for the 

comparison of LCA results among studies, however it is possible. For some products, it 

has been shown that general trends can be used to compare results from different studies 

(de Vries and de Boer, 2010). Comparative LCA can be used in a business to business 

approach to include environmental criteria in the selection of providers or in a business to 

consumer approach to give the opportunity to the public to select products with 

information about their environmental profile. 

2.3 Climate change and the rendering industry 

2.3.1 Legislation 

The Climate Change Act (UK, 2008a) sets legally binding targets for the UK to reduce its 

GHG emissions by 80% by 2050 and 34% by 2020 in relation to the baseline year (1990 – 

1995). These targets should be met by action within the UK and abroad. 

The Energy Act (UK, 2008b) has as key aspects the Renewable Obligation (RO) and the 

Renewable Heat Initiative. The first one is related to the higher inclusion of large scale 

renewable electricity in UK and the latter is related to establish financial support towards 

the use of heat from renewable sources. Heat technologies included are: heat pumps, 

biomass boilers, solar-thermal water heaters and combined heat and power (CHP) plants 

which use renewable fuels (DECC, Not dated-b). 

Also part of the Energy Act, and alongside with the RO, the Feed-in Tariff system is 

designed to encourage the development of small scale (less than 5 MW) low-carbon 
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electricity generation, particularly by organisations and individuals that have are not in the 

electricity market (DECC, Not dated-a). 

Among the instruments already in place regarding GHG emissions from industry in UK 

legislation is the Climate Change Levy, which is a tax on energy use from fossil fuels 

(DEEC, Not dated). For example, the use of natural gas is taxable for £0.00154 per kWh. 

The rendering industry is required to pay this levy when using fossil fuels.  

Given the UK ambitious mitigation targets, further and stricter measures and policies are 

likely to be introduced in different sectors in the short to medium term. It is likely that the 

rendering industry (as any other sector) will be challenged to reduce its GHG emissions. 

Therefore, it is important to identify which processes in the production chain are the most 

important regarding GHG emissions. 

2.3.2 Competitiveness 

Green marketing has been discussed since the early 1990s. The aim of the field is to 

include environmental aspects in marketing. It is supposed that if the environmentally 

friendly characteristics of products are shown to the consumer by means of for example 

“ecolabels”, consumers would choose products with “greener” characteristics (Rex and 

Baumann, 2007). 

There are three types of ecolabels; I, II and II. Ecolabels type I provide information about 

the environmental friendliness of a product in a specific product category. This type 

requires third party authorization. Ecolabels type II are self-declared environmental claims  

that do not require certification (Baumann and Tillman, 2004). 

Ecolabels type III, also called Environmental Product Declarations (EPD), are based on 

LCA results to be communicated in market situations. LCA methodology for EPDs should 

be very strictly standardized since they are supposed to be used in comparison of 

products (Baumann and Tillman, 2004). It seems like EPDs of full LCA (ecolabels type III) 

are best suited for the communication between businesses, while ecolabels of inferior 

types are well suited for communication to consumers. It should be noted that traditional 
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LCA results are not necessarily sufficient to ensure complete environmentally sound 

practice, however they can be a central part of an ecolabelling system (Mungkung et al., 

2006). 

In the UK, the Carbon Trust (The Carbon Trust, 2010b)  has established the Carbon Trust 

Footprinting Company to provide certification of GHG LCA performed according to BSI 

PAS 2050. The Carbon Footprinting Label has been developed to be used in both 

business-to-consumer and business-to-business situations (The Carbon Trust, 2010a). 

This is probably an important characteristic of “Carbon Footprinting”, its simplicity. In 

contrast, the result of a full LCA might not be usable for communications with final 

consumers as they might be too complex. 

Rendered products are used in some applications where marginal sources of protein and 

fat sources are used. For example, an alternative source of protein with a similar content 

of crude protein would be soya bean meal which has 516 g per kg dry matter, while PAP 

has 538 g per kg dry matter (Sellier, 2003). Fat alternatives can be selected based on 

chain length, tallow and palm oil are long chain fatty acids (C16-18) (Postlethwaite, 1995). 

However, there are a number of other proteins and oils that might also be of interest. 

Additionally there might be competition between rendering products themselves, different 

proportion of fuels used in different plants or different sources of ABP (cattle, lamb, pigs, 

poultry, fish, etc). In the context of the rendering industry, its products are always used in 

other business sectors.  

Comparison of the LCA results for different products or the same product from different 

providers that can be used in the same application might help the selection of providers. 

This is especially important in a future world with high demand and legislative pressure for 

even more climate change friendly products. 

2.3.3 Greenhouse gas emissions from rendered product systems 

In rendered product systems (before LCA boundaries are set), there are multiple sources 

of GHG’s (Figure 21). The rendering industry consumes significant amounts of energy to 

release fat, evaporate water and sterilise the raw materials (Kalbasi-Ashtari et al., 2008). 
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In rendering plants, the main source for GHGs is the combustion of fossil fuels for process 

heat. 
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Figure 21 Identification of GHG emission sources from the rendering products 
system (without setting boundaries) 

 

Category 1 rendered fat is also burnt in different proportions to produce process heat. 

However, rendered fat is biogenic and thus the CO2 produced in its combustion can be 

considered part of the natural carbon cycle. Bioenergy carbon neutrality is based on the 

assumption that all the CO2 that biomass absorbs from the atmosphere while growing will 

be released as CO2 by decomposition (naturally) or by combustion (artificially) and thus 

forms part of the natural carbon cycle. The carbon cycle regulates the content of CO2 and 

CH4 in the atmosphere (Danny Harvey, 2000). Carbon in plant biomass is carbon 

removed from the atmosphere by photosynthesis. Plant, soil and animal respiration and 

decomposition complete part of the carbon cycle in the form of CO2 (or as CH4 if 

converted under anaerobic conditions) (Denman et al., 2007). In contrast emissions of 

CO2 resulting from the burning of fossil fuels result in a net gain of CO2in the atmosphere, 

consequently contributing to global warming. 
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It is important to notice that the net balance occurs when it is CO2 which is absorbed 

(during photosynthesis) and released under aerobic conditions (respiration or combustion) 

in a relatively short term cycle. CH4 from decomposition of biomass in anaerobic 

conditions is biogenic; however it does represent a net gain of CO2 equivalents in the 

atmosphere as the GWP of CH4 is 25 times that of CO2 (Solomon et al., 2007a). When the 

biomass that is burnt is part of the long term reservoirs of carbon in Biota, the combustion 

of that biomass produces biogenic CO2 that cannot be considered neutral regarding its 

effect to the accumulation of CO2 in the atmosphere as it is associated with a natural 

reservoir of carbon. This is critical for emissions associated with land transformation. In 

summary, not all biogenic emission of carbon can be considered Climate Change neutral. 

Emissions from processes actually outside the rendering plant are also presented in 

Figure 21. Livestock production (and animal slaughtering) results in GHG emissions (de 

Vries and de Boer, 2010). 

The production of electricity that is supplied via the national grid involves GHG emissions 

associated with the burning of fossil fuel; however this is not the end of the story in a life 

cycle perspective. Fuel extraction and processing and logistics also have associated GHG 

emissions. Fossil fuels are used for electricity production outside of the rendering plant 

(i.e. by power stations) and for heat production inside the rendering plant. 

The production, processing, transport, extraction of raw material and associated energy 

production of commercial products (e.g. chemicals) used in the rendering process also 

produces GHG emissions. 

Finally, there is transport between almost every stage: animal production to 

slaughterhouses/meat plants, and meat-plants to rendering plants. Additionally there is 

transport associated with feed, fuels and commercial products. Transport is mostly based 

on fossil fuel powered vehicles, and thus there are GHG emissions associated with it. 
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2.3.4 System boundaries in LCA of rendered products 

Figure 21 illustrates the entire rendered product system before system boundaries have 

been established. ABP are produced in the animal production system and can be 

perceived as a waste or a valuable product. In guideline documents for LCA the definition 

of a waste is: 

- “substances or objects which the holder intends or is required to dispose of” (ISO, 

2006b) 

- “materials, co-products, products or emissions which the holder discards or 

intends, or is required to, discard” (BSI, 2008b) 

These two definitions are in agreement, however they are qualitative and in the context of 

animal by-products are not necessarily operational (ABP are by-products that the animal 

and meat producers are “required” to dispose of). Therefore in the current work, the 

recommendation by Guinee et al. (2004) to differentiate between co-products and wastes 

has been used, and consequently a waste is considered an economic flow with null or 

negative cost. In the context of animal by-products if the holder (farm or slaughterhouse) 

paid for its disposal, than they were considered wastes, which do not incur the 

environmental impact associated with their production. Whilst when the holder (farm or 

slaughterhouse) received revenue in exchange of the animal by-product material, than it 

was considered a co-product, that based on an adequate co-product handling approach 

incurs an environmental burden associated with its production. 

Based on the UK ABP industry there are 3 main groups of ABP. Category 1 (including 

category 2 material) mammalian material, category 3 mammalian material and category 3 

poultry material. Category 3 mammalian material includes ruminants and pork in the UK. 

This is not necessarily valid for other countries; it seems that in some other countries 

there are rendering plants processing pig material exclusively (pers comm Stephen L 

Woodgate 2011). 

The price of slaughterhouse by-products for mammalian material in the UK is presented in 

Table 11. The reference provides a division for prices based on two categories of weekly 
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amounts, 10 – 50 tonnes and over 50 tonnes. Greater amounts have “higher” price. Only 

the slaughterhouse output described as “Best fat” has a positive price. Most of the 

mammalian derived slaughterhouse by-products in the UK in the periods presented 

represented costs to the meat producers. Transport has not been included in the figures. 

Table 11 Average price of red meat derived slaughterhouse by-products (£/tonne) 
(Meat Trades Journal, 2007-2009) 

 

weekly 
amount 10 - 50 tonnes over 50 tonnes 

MTJ 
classification category 

Dec 2006 - 
Sep 2009 2008 

Dec 2006 - 
Sep 2009 2008 

Best fat 3 13.4 14.4 77.8 82.7 

Other fat 3 -2.7 -1.1 14.1 16.6 

Bones 3 -75.0 -80.9 -55.4 -55.8 

Hard Offal 3 0.0 0.0 0.0 0.0 

Other Offal 3 -79.5 -84.0 -54.7 -61.9 

SRM 1 -78.0 -81.3 -56.1 -58.3 

 

Using the prices in Table 11, and detailed partition of mass for cattle parts in EBLEX 

(2006) it is possible to construct the economic value distribution of the main economic 

flows from the slaughtering of beef cattle (Table 12). Both categories of mammalian ABP 

(1 and 3) are negative economic flows and therefore have been treated as wastes 

throughout the research programme presented. 

Table 12 Mass of beef slaughtering streams in kg for ideal and worst case based on 
an average beef animal adapted from EBLEX (2006) and economic value in 
percentage based adapted from Meat Trades Journal (2007-2009) 

Slaughtering output 
economic flows  

Best case Worst case Positive 
economic 

flow 
Mass 
(kg) 

Economic 
value (%) 

Mass 
(kg) 

Economic 
value (%) 

carcass lean 192.54 96.3% 192.54 96.8% Yes 

edible material
 

122.61 65.76 Yes 

hide and skin 42.49 4.2% 42.49 5.2% Yes 

petfood 4.91 0.1% 0  Yes* 

gut content 89.45 0.3% 0  Yes* 

category 3 ABP
 

64.46 -0.4% 123.98 -0.4% No 

category 1 ABP
 

65.403 -0.5% 175.21 -1.5% No 

Total beef cattle mass 581.863  599.98   

*They would have a positive price in the ideal case defined by the reference; they do not 
necessarily exist currently. 
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In contrast Table 13 presents the average prices of poultry derived ABP. Poultry ABP 

(over 50 tonnes) are economic flows of positive value and therefore will be treated as 

valuable by-products throughout the research programme presented. 

Table 13 Average price of poultry derived slaughterhouse by-products (Meat Trades 
Journal, 2007-2009) 

MTJ 
classification 

weekly 
amount 10 - 50 tonnes over 50 tonnes 

category 
Dec 2006 - 
Sep 2009 2008 

Dec 2006 - 
Sep 2009 2008 

Carcasse 3 0 0 23.0 12.1 

Offal 3 0 0 13.3 4.8 

 

2.3.5 Type of life cycle assessment and main methodological choices 

The main purpose of this research programme is to present attributional LCA results of 

GHG emissions of rendered products. Therefore methodological approaches associated 

with attributional LCA are used. 

The main co-product handling approach used is allocation (either based on economic or 

mass ratio of co-products). However, system expansion is used also when the Climate 

Change effect of the ABP processing system is evaluated in the context of meat 

production and for waste disposal. In these cases the consequential loops associated with 

the by-product or waste streams are included in the system according to the availability of 

data of the involved processes. 

Data is used for average production and technology, however in some cases sensitivity is 

tested with marginal technologies (in particular in the case of co-production of electricity). 

In the case of the production of animal feeds, emissions associated with land 

transformation associated with soya bean are included as presented in Ecoinvent 

databases (Ecoinvent Centre, 2010). Land use change associated with soya bean is 

modelled including the area of land transformed from tropical, shrub and arable land 

associated with soya bean cultivation in the previous 5 years. The 5 year average 

includes cultivation in the average transformed land area. 
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2.4 Conclusion 

The rendering industry processes a significant amount of biomass. With these materials, 

renderers produce rendered protein meals and fats, which depending on the category 

material can be useful or have to be disposed of. Category 3 rendered products are useful 

as pet food ingredients, organic fertilizers, and as raw material in the oleochemical 

industry. Category 1 rendered products are required to be disposed by combustion (with 

energy recovery) or can be used as feedstock for biofuels. 

The environmental burden of a process should be allocated between the various co-

products, but not the wastes. When ABPs do not have a positive economic value, the 

environmental burden of their production should be ascribed to the animal products. 

Arguably as they are unavoidable by-products, their processing should be included as part 

of animal food production. Energy recovery from ABPs within or outside the rendering 

industry has relevance for GHG emissions since they are biomass and biogenic CO2 

emissions can be considered carbon neutral. However in the production of ABP, the most 

important GHG emissions are CH4 and N2O (from animal production) which are not 

climate neutral. Therefore the co-product handling methodology and system boundaries 

are critical in the calculation of GHG emissions from rendered products. 

The organisation of the current thesis is presented in Figure 22. Chapter 3 presents an 

overview of publicly available results of GHG emissions of animal and meat production 

which is where animal by-products are produced. The primary objective of this study was 

to calculate the GHG emissions of rendered products in the UK (Chapters 4 and 7). As 

shown in the previous section, beef and poultry ABPs can be treated differently as the 

former represents a cost and the latter represents a positive value, therefore the GHG 

emissions of the production of broilers is investigated in Chapter 6, and the processing of 

poultry meat and poultry by-products is investigated in Chapter 7. The effect of the 

inclusion of ABP processing as part of the meat production system was also investigated 

(Chapters 5 and 7). Ultimately, the evaluation of rendered products as feed ingredients for 

farmed animals is performed with salmonid feed production as a case study (Chapter 8). 
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Figure 22 The animal by-product system (chapter focus in parentheses) 
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Greenhouse gas emissions of land based meat production systems: An overview 
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3 Greenhouse gas emissions of land based meat production systems: An 

overview 

3.1 Abstract 

The environmental burden of food production has been an objective of major scrutiny in 

recent decades. Greenhouse gas (GHG) emissions from animal production are an 

important contributor to Global Warming. Animal production (as any other agricultural 

activity) is predominantly associated with CH4 and N2O GHG emissions that are 

associated with enteric fermentation, manure management and fertiliser application. 

Recently (especially in the last decade), studies on the GHG emission intensity of animal 

products have been increasingly completed. Studies have taken regional or country level 

intensity or process based life cycle assessment approaches. 

The objective of this study was to provide an overview of 34 studies that have investigated 

the GHG emissions of land-based meat production systems to understand major 

methodology issues and to compare and contrast the results presented in these studies. 

Studies were grouped by major land based meat production systems (beef, lamb, pigs 

and poultry). There is agreement amongst studies that ruminant derived meat is 

associated with the highest GHG emission intensity. Poultry systems appear to have 

lower GHG emission intensity than pig systems. 

In general, calculation of GHG emissions intensity from land based meat production is in a 

mature state. However, there is need for further work in the treatment of emissions 

associated with the consequences of changes. In particular for the treatment of GHG 

emissions associated with land transformation (forests to arable land for feed production 

or to pasture land). 

3.2 Keywords 

Livestock, sustainability, life cycle assessment, intensity, carbon footprint, review 



53 
 

3.3 Introduction 

Land based animal production (dairy, meat and eggs production) is an important 

economic sector accounting for 40% of the agricultural gross domestic product, providing 

one-third of human’s protein intake and employment for 1.3 billion people (Steinfeld et al., 

2006). However it also contributes 18% to anthropogenic global greenhouse gas (GHG) 

emissions; this is higher than the share of transport and represents 80% of agricultural 

emissions (Steinfeld et al., 2006). Globally, the major GHG is CO2, mostly associated with 

the combustion of fossil fuels to produce electricity, heat and transport (Barker et al., 

2007). Emissions from agriculture are mostly associated with other more powerful GHG, 

namely CH4 and N2O. The former is mainly associated with anaerobic decomposition (in 

enteric fermentation and manure management) and the latter mainly associated with 

fertiliser application and manure management. 

The climate impact of livestock/meat production is exacerbated by increasing production 

trends over the past decade. Globally land based meat production increased from 

approximately 233.5 to 283.9 million tonnes (FAO, 2011) between 2000 and 2009, 

corresponding to a 21.6% increase. Total meat production in Europe increased from 

approximately 51.7 to 54.8 million tonnes in the same period (representing a 6% 

increase). Annual meat production is projected to increase to 465 million tonnes by 2050, 

with the major increase in developing countries (Steinfeld et al., 2006). Consequently 

there have been a substantial number of studies published that have investigated the 

GHG emissions of animal production. The approaches used to calculate GHG emissions 

have varied from using production statistics to calculate regional intensities to application 

of standard life cycle assessment (LCA) methodology. LCA is a mature tool to evaluate 

the environmental burden of a product throughout its life cycle standardised by ISO (ISO, 

2006b; a). LCA has been applied extensively to food production (Roy et al., 2009; de 

Vries and de Boer, 2010; Cerutti et al., 2011; Henriksson et al., 2011; Milani et al., 2011). 

LCA studies on meat production have been performed to evaluate the different 

environmental impacts associated with their production (e.g. Climate Change, 
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Acidification, Eutrophication, Land use, Ecotoxicity, etc.). In recent years part of LCA 

research has focused only on the evaluation of the Climate Change impact of a product or 

service; the results of this are commonly referred to as Carbon Footprints (BSI, 2008b; a; 

Weidema et al., 2008a). Carbon Footprint has positive and negative attributes in 

comparison to a “full” LCA. In particular positive aspects are related to its huge popularity 

(especially in UK) and potential for increasing consumer awareness of the environmental 

impact of products (Weidema et al., 2008a). In contrast, focusing only on the Carbon 

Footprint can be considered as a backward step, since there are three key aspects to 

sustainability (environmental, economic, and social) and with the development of the 

Carbon Footprint concept even the environmental is replaced by one single indicator 

(Schmidt, 2008a). It seems that the future of LCA is actually in the direction of integral 

sustainability assessment with the associated broadening of the impact assessment to 

include not only the environment but also social and economic dimensions (Guinee et al., 

2010). However, Climate Change can be considered the greatest sustainability threat that 

humanity is currently facing. The potential severity of the consequences should encourage 

the mitigation of GHG emissions by any means (New et al., 2011). Therefore focusing on 

only Climate Change may be useful in the current world. GHG emission mitigation 

opportunities in animal production have been presented in Weidema et al. (2008b) and de 

Boer et al. (2011). 

Beef, lamb, pig and poultry meat represented 22-23%, 5%, 37% and 32% of global land 

based meat production (summing up to 98%) respectively between 2005 and 2010 (FAO, 

2011). The purpose of this study was to contrast methodological choices and GHG 

emissions reported by 34 studies completed on the production of land based meat. 

3.4 Scope of the review 

The 34 studies presented in this review have been grouped as beef (Table A-1), lamb 

(Table A-2), pig (Table A-3) and poultry (Table A-4) in Appendix A. The focus of the 

current review is on meat production systems, and consequently other animal products 

such as dairy and eggs are not included. 
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The term poultry is used instead of chickens because one of the studies also reports 

results for turkeys. Some studies do not explicitly state the use of LCA or Carbon Footprint 

methodology; however they studied the GHG emissions intensity of meat production 

systems and therefore were included in the review. This review is mainly focused on peer-

reviewed literature; however some institutional reports (frequently cited in peer reviewed 

literature) are also included. 

Some of the studies cover more impact categories than Climate Change; however the 

focus of this review was limited to this impact category. To enable direct comparison 

between studies, only studies with results that could be presented in units of kg of either 

carcass weight (CW) or live weight (LW) were included, for example some studies (Flessa 

et al., 2002; Stewart et al., 2009) were not included as they reported results for integrated 

farming without presenting results for beef LW or CW. 

Studies were classified according to: geographical coverage, functional unit (FU), 

approach to economic and natural flow calculation, co-product handling, scope and GHG 

emission sources included, and results in GHG emission per FU (Appendix A). Some 

single references report results for more than one meat system and therefore have been 

included in more than one table (Williams et al., 2006; Weidema et al., 2008b; Cederberg 

et al., 2009a; Edward-Jones et al., 2009; Peters et al., 2010; Lesschen et al., 2011; Phong 

et al., 2011). 

3.5 Summary of differences among studies 

3.5.1 Geographical coverage 

The current review includes 20 studies on beef production (Table A-1 in Appendix A). Ten 

of these studies were for Europe or European countries, seven for North American 

countries (one including a comparison with production in Sahelian Africa) and one each 

for Japan, Australia and Brazil. 

As a first observation, lamb production studies are not as numerous as for all the other 

meat production systems (4 studies in Table A-2 in Appendix A). This may be because 
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lamb meat production is comparatively low, accounting for only 5% of global meat 

production in the period 2005-2010. All the studies found for lamb meat production were 

for the UK and Australia which perhaps reflects the importance of this meat in these 

countries in comparison to other regions. Production in the UK accounted for 32% of the 

total production of lamb meat in the EU between 2005 and 2010. UK and Turkey were the 

top producers in the EU in the period. UK was the 11th greatest producer in the world in 

the period. Australia and New Zealand were the third and fourth lamb producers in the 

world after China and India (FAO, 2011). 

Table A-3 (Appendix A) presents the 12 studies for pig meat included in this review. Table 

A-4 presents the studies on poultry meat production (9 studies). Poultry and pig meat 

production are the greatest land based meat production systems (FAO, 2011), and 

therefore it seems that the interest for understanding their environmental relevance has 

increased lately. Studies are mostly being performed for systems in Europe and North 

America. 

LCA results for meat production systems vary depending on geographical coverage. This 

can be attributed to variations in animal husbandry practices and the natural flows 

associated with inputs and activities (for example, the GHG emissions intensity of energy 

systems in different countries can vary considerably). Studies from developing countries 

seem scarce; however this is not an issue necessarily exclusive of studies on GHG 

emissions from meat production systems, but maybe with research into environmental 

issues in general. 

3.5.2 Scope and GHG emissions sources 

The studies included in the current review were grouped into three “scopes” according to 

the processes included: These scopes were cradle-to-farm-gate, cradle-to-

slaughterhouse-gate (2 studies (Dalgaard et al., 2007; Peters et al., 2010)), and cradle-to-

grave (1 study (Weidema et al., 2008b)). Most studies (31 studies) applied a cradle-to-

farm-gate approach, including only processes associated with animal production. Cradle-

to-slaughterhouse-gate includes cradle-to-farm-gate processes with the addition of 
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transport to slaughterhouse and the inputs and outputs associated with slaughtering. 

Cradle-to-grave includes cradle-to-slaughterhouse-gate with the addition of consumption 

and final waste management. 

All the studies on beef and lamb (Tables A-1 and A-2 in Appendix A) have included GHG 

emissions from: feed production, enteric fermentation, on-farm energy use, manure 

management and soil management. In most studies feed production includes GHG 

emissions associated with feed (crop) production, processing, and delivery. In some 

studies feeds are produced or assumed to be produced on the farm and consequently 

there are no GHG’s associated with transport (Phetteplace et al., 2001; Beauchemin et 

al., 2010). This is also obvious for systems that do not include feedlot operations (Subak, 

1999; Cederberg et al., 2011). Lesschen et al. (2011) included feed production; however 

they did not include feed processing or delivery. 

Not all the studies explicitly state whether indirect emissions associated with soil and 

manure management are included, however it seems that these processes are normally 

included. There are studies that explicitly stated that indirect emissions were included 

(Phetteplace et al., 2001; Williams et al., 2006; Cederberg et al., 2009a; Edward-Jones et 

al., 2009; Beauchemin et al., 2010; Nguyen et al., 2010a; Pelletier et al., 2010b; Veysset 

et al., 2010; Beauchemin et al., 2011; Cederberg et al., 2011; Eady et al., 2011; Foley et 

al., 2011; Lesschen et al., 2011).  

Pig systems are different to ruminant systems. Ruminants rely more on pastures, while 

pigs normally are fed with feeds produced from outside the farm. Apart from this and its 

associated soil management, the rest of the processes are the same to those in ruminant 

meat systems. All the reviewed studies on pig meat systems included: feed production, 

enteric fermentation, energy use, manure management and soil management. 

Poultry meat production systems are very different to ruminant systems. Similarly to pigs, 

birds are monogastric animals, however from a GHG emissions perspective they are 

different. Cradle-to-farm-gate poultry meat studies normally include feed production (and 
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delivery), on-farm energy use and manure management. Enteric fermentation is minimal 

in birds and therefore is has never been included. 

Weidema et al. (2008b) is the only study with a cradle-to-grave approach that includes all 

the processes associated with meat production, and therefore animal by-products 

processing appears to be included. Peters et al. (2010), one of the two cradle-to-

slaughterhouse-gate studies, explicitly stated that slaughterhouse processes are included; 

however it is not clear how animal by-products processing was treated. Dalgaard et al. 

(2007), the other cradle-to-slaughterhouse-gate study explicitly stated that the processing 

of animal by-products was included. 

3.5.3 Functional unit 

The definition of the functional unit is one of the first steps in LCA, and is the basis for 

calculation of economic and natural flows in the product system (ISO, 2006b; a). The main 

choices of functional unit in studies that have a cradle-to-farm-gate approach are either 

CW or LW. LW is the actual weight of the live animals leaving the farm gate. When based 

on CW, the carcass yield (sometimes called the killing-out-percentage (KoP)) is used to 

quantify results based on the “saleable part” derived from the slaughtering process. Yields 

used may vary from study to study (Tables A-1, A-2, A-3 and A-4 in Appendix A). Some 

studies have used a top-down approach to calculation using statistics based on CW. In 

principle, it seems that cradle-to-farm-gate studies (i.e. not including post-farm stages) 

processes are better based on LW, as this is the actual outcome of the farm gate. 

Although to provide results based on CW seems useful since the main purpose of the 

meat production system is to produce actual edible meat, it does not seem ideal to 

present the results based on the outcome of the slaughtering process when the complete 

inputs and outputs of the slaughtering process are not included. The difference between 

LW and CW is approximately the mass of animal by-products and their processing is not 

taken into account in cradle-to-farm-gate studies. 
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3.5.4 Approach to economic and natural flows calculation 

The approach to calculation of economic and natural flows varies from study to study. 

Some studies used top-down approaches (national inventories and/or input-output tables) 

as main data sources, whilst some studies used a bottom-up approach based on real 

process data from farms. In addition, simulation has been used to model whole farms or 

entire country level systems. Studies that combine bottom-up with top-down approaches 

to calculation can be called “hybrid” studies in contemporary LCA terminology (Weidema 

et al., 2008b; Cederberg et al., 2009a). It is important to realise that some studies may be 

in fact “hybrid” studies although it is not necessarily explicitly stated. 

Emissions from enteric fermentation, and soil and manure management has been 

quantified by IPCC emission factors or methodologies (IPCC, 2006) in most studies. The 

use of life cycle inventory databases is especially relevant for the inputs to the farm (e.g. 

feeds and energy). Some studies however have also included the modelling of the 

production of feeds (at least partially); this is obvious for studies where the feeds (or part 

of them) are produced on the animal production farm. 

3.5.5 Co-product handling 

Co-product handling is probably the most debated issue in LCA methodology (Weidema, 

1993; Azapagic and Clift, 1999b; Ekvall and Finnveden, 2001; Ayer et al., 2007; Curran, 

2007a; Reap et al., 2008; Flysjö et al., 2011a). In principle, at least for cradle-to-farm-gate 

studies of pure meat systems there seem to be only two multiple output problems: the 

farm outputs (animals, manure) and the production of feeds (or any other input) from 

multiple output systems (e.g. soya bean and soya bean oil from the processing of soya 

beans). 

Most cradle-to-farm-gate studies reviewed here used main or primary product (also called 

no-allocation) for the output of the farms. Some studies based on LW stated that co-

product handling (e.g. allocation) is not required as the animals leave the farm as single 

units; however they included feed production sometimes from databases that normally 

required previous allocation (therefore their system may actually include the use of a co-
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product handling approach although it is not necessarily stated). Manure management is 

normally handled with system expansion, although this can also be seen as the usual and 

reasonable way of including waste management in LCA. 

The inclusion of slaughterhouse processes (cradle-to-slaughterhouse-gate studies) adds 

an additional complication as meat processing systems produce a great variety of co-

products and by-products (e.g. edible carcass, skins and hides, different types of 

slaughterhouse by-products). The only cradle-to-grave study (Weidema et al., 2008b) 

used input-output tables to account for all the environmental impacts of meat production in 

the economy and therefore animal by-products should be included. 

Some LCA studies of beef (included in Table A-1 in Appendix A) are also associated with 

milk production. These and other studies have found important implications of the link 

between milk and beef systems (Cederberg and Stadig, 2003; Williams et al., 2006; 

Weidema et al., 2008b; Cederberg et al., 2009a; Nguyen et al., 2010a; Flysjö et al., 

2011a; Flysjo et al., 2012). It has been shown that beef from systems that include dairy 

calves have lower resource consumption and environmental impact than 100% beef 

systems (Williams et al., 2006; Weidema et al., 2008b; Nguyen et al., 2010a). In fact some 

studies have shown that the environmental benefits of increasing milk yield with the 

consequential reduction in the number of dairy cattle is offset since more 100% beef 

systems are required to cover the beef demand (Weidema et al., 2008b; Cederberg et al., 

2009a; Nguyen et al., 2010a). The reason is quite obvious; since the environmental 

burden associated with pregnancy of cows can be divided for both milk and beef in milk-

beef systems. The co-product handling of milk and animals for different purposes (dairy or 

beef) is a very critical issue in milk-beef systems, which are common in Europe. 

Studies based on lamb present the same characteristics to those of beef (at least of pure 

beef systems). Lamb studies do not have the co-production issue of milk, however they do 

have a co-production issue regarding animals and wool. Lamb systems appear not to be 

based strongly on feedlots and therefore the issue of co-product handling in feed 

production seems not very important. Manure management presents the same 
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implications as beef systems. Three studies on lamb meat used economic allocation to 

divide the life cycle inventory between lambs and wool. 

Co-product handling issues that can be seen in pig systems are: the co-production of 

porker and sow (Basset-Mens and van der Werf, 2005), the co-production of feed 

ingredients (with special relevance for soy bean meal) and the handling of manure. A 

special case is the study by Phong et al. (2011) which studied integrated aquaculture-

agriculture producing some different products (rice, fruits, vegetables, pigs, poultry, and 

fish), and therefore requires co-product handling for different animal and vegetable 

species. Of the reviewed studies on pig meat, two (Dalgaard et al., 2007; Nguyen et al., 

2010b) used a consequential approach that included the consequences of co-production 

in some feed ingredients (e.g. soya bean meal) through system expansion. The remaining 

studies used an attributional approach (based in allocation approaches). 

Co-product handling issues in cradle-to-farm-gate poultry systems seem to be associated 

with feed production and manure management. In addition when using top-down 

approaches to calculation as in Verge et al. (2009b) and Lesschen et al. (2011), it seems 

that a co-production issue arises as the statistics for broilers and culled laying hens are 

commonly amalgamated as poultry meat. However this does not seem to be a critical 

issue as the amount of meat from culled laying hens do not seem important in comparison 

with broiler meat. For example in Canada at least, the total LW of culled laying hens was 

5% of the total LW (Verge et al., 2009b). 

3.5.6 Greenhouse gas emissions 

Results for GHG intensity of beef production in Europe vary between 7 and 49 kgCO2 / kg 

LW (Table A-1 in Appendix A), using mid, averages or conventional figures when ranges 

or various results are reported, when results are reported based only in CW (and the 

carcass yield is not reported) it has been assumed as 58%. The maximum is for European 

generic production from 100% beef systems when including the opportunity cost of land 

(Nguyen et al., 2010a). North American studies, normally based on regional level or 

generic practices, present more similar results raging between 8 and 19.2 kgCO2 / kg LW. 
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Enteric fermentation, soil and manure management are normally the most important 

contributors in the GHG emissions from beef production systems. Differences in the 

contribution from these sources can be attributed to different economic flows and also to 

the range of emission factors reported in the literature. The GWP of CH4 and N2O used to 

characterise these GHG may vary between studies, however this would not result in a 

significant variance in the results obtained. A case study of the differences in using 

different range of emissions factors has been described by Edward-Jones et al. (2009). 

For example, in the study for Sweden completed by Cederberg et al. (2009a) and 

involving a hybrid approach, enteric fermentation accounted for 55%, manure 

management and application for 19%, feed production and delivery accounted for 23%, 

and indirect N2O for 2%of the total GHG emissions of beef. In contrast, enteric 

fermentation accounted for 17% and 44% for two different farms in Wales using a bottom-

up approach (Edward-Jones et al., 2009). 

GHG emissions from land transformation is a relatively new issue in LCA of meat products 

(and in LCA in general), although it was included in an early study by Subak (1999). Two 

studies deal with land transformation in detail (Nguyen et al., 2010a; Cederberg et al., 

2011). Nguyen et al. (2010a) studied two issues: the opportunity cost of land associated 

with the loss of carbon sequestration potential in beef systems in Europe, and the 

increased demand of land for the production of feeds (in particular soy bean produced in 

South America). They found that depending on the role of grasslands and croplands, land 

used related emissions could be positive or negative. Highly and moderately productive 

grasslands acted as carbon sink, whilst extensive use of croplands acted as a carbon 

source. In their 100% beef cattle case, GHG emissions were 27.3 kg CO2e / kg CW and 

84.1 kg CO2e / kg CW when land transformation was not and was included, respectively 

(a threefold increase). Most studies of European beef production have assumed a carbon 

balance in soil. Cederberg et al. (2011) considered the land transformation of tropical 

rainforest to pasture land in Brazil, and reported the alarming figure of 726 kg CO2e / kg 

CW for beef produced in newly deforested land using 20 years for the production period 

over which the emissions from the initial deforestation are amortized (the shorter the 
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period the higher the emissions). In Cederberg et al. (2011), enteric fermentation and 

manure management were minor relative contributors (although in magnitude similar with 

other studies) in comparison to the GHG emissions from land transformation. These 

studies basically included marginal production issues. Nguyen et al. (2010a) studied 

marginal production of feed ingredients (in South America) and the consequences of 

potential land transformation in Europe, whilst Cederberg et al. (2011) studied the 

consequences of the marginal production of beef, taking into consideration that Brazil is 

the top exporter of beef and that the associated growth is being driven by exports. The 

contrast between marginal and average production is associated with the contrast 

between consequential and attributional LCA, which are important issues in LCA studies 

(Dalgaard et al., 2008; Thomassen et al., 2008a; Finnveden et al., 2009), and it seems 

that they are extremely critical issues in LCA of livestock production. 

Results for GHG intensity of lamb production vary considerably from 7.5 to 51.7 kgCO2 / 

kg LW for cradle-to-farm-gate studies (Table A-2 in Appendix A). It should be noted that 

the high extreme is from the study by Edward-Jones et al. (2009), which is based on one 

case study with real data from a farm producing beef and lamb. Similar to beef systems, 

enteric fermentation, and soil and manure management are normally the most important 

contributors in the GHG emissions from lamb production systems. Differences in the 

contribution from these can be attributed to different economic flows and also to the range 

of emissions factors in the literature. The differences in using different emissions factors 

has been studied by Edward-Jones et al. (2009). 

Results for pig meat systems range between 1.6 and 15.7 kg CO2/ kg LW for cradle-to-

farm-gate studies. The highest result is from the only study including emissions 

associated with land transformation in feed production and the opportunity cost of land 

(Nguyen et al., 2010b). When not including the extremes, GHG emissions per live weight 

are lower than for ruminant systems with emissions ranging from 1.5 to 4.9 kg CO2e /kg 

LW for Europe. GHG emissions from pig systems in North America are in a similar range 
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with 2.3 to 4.5 kg CO2e / kg LW. The study by Phong et al. (2011) is a very different case 

for multiple output farms in the Mekong Delta. 

The GHG emissions contribution from the different processes can vary from study to 

study. The contribution of enteric fermentation to the GHG emissions of pig production is 

considerably lower than in ruminants. In addition, the effect of previous generation is lower 

than in ruminants. The contribution from different sources in the different pig systems 

studied is similar. In the base case in Nguyen et al. (2010b), feed production and delivery 

accounted for 61% of the GHG emissions, on-farm CH4 and N2O emissions (manure 

management and enteric fermentation) for 35%, and on-farm energy use for 5% (only 

counting positive GHG emissions, manure land spreading provides credits from the 

avoidance of inorganic fertilisers production). In general, emissions associated with feed 

production and manure management seem to be the most important contributors (Basset-

Mens and van der Werf, 2005; Dalgaard et al., 2007; Cederberg et al., 2009a; Pelletier et 

al., 2010a; Stone et al., 2012). 

GHG emissions from poultry meat systems seem to range between 1 and 2 kg CO2 / kg 

LW at the farm gate, not taking into account the multiple output system presented in 

Phong et al. (2011). Poultry systems do not have enteric emissions, normally the impact 

of the previous generation is considered negligible (breeding stock produce a lot of 

chicks), and the feed conversion ratios (FCR) are relatively low in comparison to other 

land animals. There is an agreement that feed production is the most important life cycle 

stage in the GHG emissions of poultry meat systems with example relative contributions 

of 82% (Pelletier, 2008) and 83% (Cederberg et al., 2009a). Manure management can 

provide negative emissions in some studies, as in Pelletier (2008), because of the 

avoidance of inorganic fertiliser production. Two studies on poultry meat that are related 

(Williams et al., 2006; Leinonen et al., 2012) included the effect of the breeding stock. 

It should be noted that transport of feeds even in cases where studies focus solely on feed 

production and delivery is not a major contributor in comparison to agricultural emissions 

(Dalgaard et al., 2008). The transport of animals does not seem to be of importance in 
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comparison to agricultural emissions either (Dalgaard et al., 2007). In fact even when the 

transport of meat produced in Brazil to Europe has been included, it has been shown that 

transport was not an important contributor in comparison to other sources in livestock 

production systems (Cederberg et al., 2009b). In general, transport does not seem an 

important relative contributor in meat production systems, as these systems are mostly 

characterised by emissions associated with agricultural processes (and/or land 

transformation). 

3.6 Discussion 

Every study or review that has investigated the GHG emissions from a range of animal 

production systems has found that the meat produced from birds has a similar or slightly 

lower GHG emissions intensity than those of pig systems, and that both are considerably 

lower than those of ruminant systems (Williams et al., 2006; Weidema et al., 2008b; 

Cederberg et al., 2009a; de Vries and de Boer, 2010; Dyer et al., 2010; Lesschen et al., 

2011). The reasons for the difference are quite obvious, birds are very efficient protein 

producers and accumulators (as evidenced by a relatively low FCR), manure emissions 

are not as high as for other animal systems, the impact from the previous generation is 

negligible, and emissions from enteric fermentation are insignificant. Pigs are also 

monogastric animals but are less efficient than birds, emissions from enteric fermentation 

are not negligible, and emissions from manure management can be important. In addition 

the effect of the previous generation is important in mammals. At the higher extreme in 

GHG emission intensity of meat production systems are ruminant systems. Ruminants 

have relatively high FCR, the impact from progeny is critical (cows only have one calf per 

year), emissions from manure management is of consideration and emissions from enteric 

fermentation are relatively high. There is great disparity in the GHG results for beef 

production because of variations between studies in all these important factors. It should 

be noted that manure management, depending on the LCA modelling choices can provide 

emission credits through the avoidance of inorganic fertilisers or fossil energy production. 
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Figure 23 presents some of the GHG emissions results in this review based on LW. 

Weidema et al. (2008b) is not included because it is a cradle-to-grave study, and thus not 

comparable with the rest of the studies illustrated in Figure 23. Beauchemin et al. (2011) 

is not included as it is the same base case in Beauchemin et al. (2010) which is included. 

Phetteplace et al. (2001) and Veysset et al. (2010) have not been included as they 

presented different types of animal husbandry operations (e.g. calf-to-weanling, calf-to-

beef systems) and not necessarily average intensity or CW or LW. Leinonen et al. (2012) 

was not included as it is a related study to Williams et al. (2006) and results for the latter 

based on LW have been provided (pers. comm. Table A-4 in  Appendix A) and are here 

assumed to be valid for both. Figure 23 only includes average figures for Brazil and does 

not include results for newly deforested land that are detailed in Cederberg et al. (2011). 

Phong et al. (2011) is not included because it is a very special multiple system 

(agriculture-aquaculture system). Edward-Jones et al. (2009) is not included as it is a case 

for multiple species farms (beef and lamb). Cases that include the opportunity cost of land 

in Nguyen et al. (2010a) and land transformation in Nguyen et al. (2010b) are not 

included. Dalgaard et al. (2007) has not been included as it uses an extreme 

consequential approach. For studies with results based only on CW, the carcass yields 

were assumed to be 58%, 47%, 75% and 70%, for beef, lamb, pig, and chicken systems, 

respectively. LCA has been performed also for a variety of aquaculture systems 

(Henriksson et al., 2011). Although salmonid farming is not currently a major meat 

producing sector in comparison to land based systems, aquaculture is the animal food 

production sector with the highest growth rate. Global farmed salmon, trout and smelts 

production increased from 1.4 to 2.3 million tonnes between 1999 and 2008 (FAO, 

2008a); a 64% increase. Therefore some results in the literature for farmed salmonids 

(salmon and trout) (Aubin et al., 2009; Ayer and Tyedmers, 2009; Pelletier et al., 2009) 

have been included in Figure 23. The result for the recirculating salmon aquaculture 

system in Ayer and Tyedmers (2009) is not included as it is a niche technology. All these 

studies on salmonid systems used LW as functional unit (the actual outcome of the farm).  
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Figure 23 Greenhouse gas emissions of beef, lamb, pig, poultry and salmonid 
production systems (kg CO2e/ kg live weight) 

 

Results in Figure 23 range from 4.7 to 25.5, 3.9 to 7.5, 1.6 to 4.8, 0.7 to 2, and 1.8 to 3.3 

kg CO2e / kg LW for beef, lamb, pig, poultry and salmonid systems respectively. Ruminant 

systems (beef and lamb) present the greatest range of results (Figure 23), possibly 

because ruminant systems have many important processes affecting their GHG emissions 

(see above). Furthermore beef system studies are the most numerous, taking into account 

that ruminant system results depend on many factors, and therefore there is more 

possibility for different results. The pig, poultry and salmonid systems present similar 

results (at least when compared to ruminants systems). Of the currently commercially 

available meat production systems, poultry systems appear to be associated with the 

lowest GHG emission intensity. 

Figure 24 presents the studies based on edible meat produced, calculated as 90% of the 

CW as in Lesschen et al. (2011). Where the results of studies have been presented based 

on the edible portion it has been used directly in this form. Carcass yield factor in 

salmonid systems has been assumed as 50 %, similar to processing of oily fish in Nielsen 
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et al. (2003). Figure 24 also includes results for in-vitro production of cultured meat 

(Tuomisto and de Mattos, 2011). 

 

 
 

Figure 24 Greenhouse gas emissions of beef, lamb, pig, poultry, salmon and 
cultured meat production systems (kg CO2e/ kg edible meat) 

 
 

Although results from different studies are not necessarily comparable, it seems that the 

meat production systems associated with the lowest GHG emission intensities are poultry 

and cultured meat systems. Pig and salmon systems have similar GHG intensity when 

compared to ruminant systems. Cultured meat production systems are only at 

experimental level today and therefore are not currently commercially produced. 

An evaluation of improvement options on beef systems has been presented in 

Beauchemin et al. (2011) and in general for land based animal production in Weidema et 

al. (2008b). The former focuses on on-farm strategies for 100% beef systems and the 

latter focuses on overall improvements in the livestock system. Strategies including 

feeding oilseeds, improving forage quality and increasing the number of calves weaned 

show great potential for mitigation in beef systems. Beef from milk-beef systems have a 

lower GHG intensity than 100 % beef systems, and therefore the improvement options in 

beef and dairy have to be evaluated together. A global perspective for mitigation 

strategies in animal production has been discussed in de Boer et al. (2011). Mitigation 
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strategies in monogastric land based meat production systems (pigs and birds) are more 

related to improvement in feed conversion and mitigation of emissions from the feed 

production system and manure emission. 

Being an important source of GHG’s, it is important to work towards the mitigation of 

emissions from every meat production system. However, it is also important to realise that 

an important step towards emission mitigation would be a shift from high GHG emission 

intensive systems (as ruminants) to more efficient systems. It is important to notice that 

the present review only focuses on Climate Change impact. Other environmental impacts 

should be taken into account when the environmental relevance of a system is to be 

described or compared. Furthermore, other aspects of sustainability beyond the 

environmental dimension should also be considered. 

The present work is not an attempt of providing a detailed review of GHG emissions from 

animal production systems, rather a broad perspective on differences between studies. It 

is however obvious that research into the GHG emissions from meat production systems 

is in a mature stage regarding animal production; however there is need of further work 

into evaluating consequences, principally associated with current and potential land 

transformation. There is also further work needed into accounting for GHG emissions 

arising during slaughtering, and in particular ways of accounting for animal by-products 

processing. 

3.7 Conclusion 

In general, GHG emission results from land-based meat production systems vary between 

different studies. Calculation methods of economic flows varies with some studies having 

a national intensity approach (top-down), and other studies having a more traditional 

process based LCA (bottom-up) approach. Some studies used both and this is called the 

“hybrid” approach to calculation. The calculation of natural flows is normally based on 

standard methodologies, emission factors or databases. Whole farm simulation 

approaches are used frequently. It seems that there is plenty of literature already for 

ruminant products; however studies for monogastric systems are not as common. 
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Critical methodological issues found were: co-product handling when studying milk-beef 

systems and using a consequential approach in particular in land use in animal and feed 

production. Geographical differences are important and may be related to: animal 

management, feed ingredients sourcing, and in general environmental burden of the 

inputs and outputs (e.g. the GHG emission intensity of energy systems vary from country 

to country). 

It is clear that studies on animal production are focused on the agricultural aspects of the 

production chain which are probably the most important. Results for cradle-to-farm-gate 

are expressed either on CW or LW. Using CW seems more useful as it is closer to the 

sealable part; however LW seems more ideal from a traditional LCA perspective as the 

actual outcome of the farm are live animals. 
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4 Greenhouse gas life cycle assessment of products arising from the rendering 

of mammalian animal by-products in the UK 

4.1 Abstract 

Animal by-products (ABP) are unavoidable by-products of meat production that are 

categorized under EU legislation into category 1, 2, and 3 materials, which are normally 

treated by rendering. Rendering is a thermal process that produces rendered fat and 

protein. Heat is provided from the combustion of natural gas and self-produced rendered 

fat. The main objectives of the study were (i) to assess energy intensity in the UK 

rendering industry, and (ii) to quantify the greenhouse gas emissions associated with the 

production of mammalian rendered products using life cycle assessment. 

Thermal energy requirements were 2646 and 1357 kJ/kg, whereas electricity 

requirements were 260 and 375 kJ/kg for category 1 and 3 ABP respectively. Fossil CO2 

emissions were −0.77 and 0.15 kg CO2e/kg category 1 and 3 mammalian rendered fat 

respectively and 0.15 kg CO2e/kg processed animal protein. These were low relative to 

vegetable products such as palm oil and soya bean meal because (i) ABP were 

considered wastes that do not incur the environmental burden of their production, and (ii) 

the rendering process produces biofuels that can be used to generate energy that can be 

used to offset the use of fossil fuels in other systems. 

4.2 Introduction 

Animal by-products (ABP) are secondary products of the animal production and meat 

industries that can account for up to 50% of the live weight of an animal. ABP are 

classified by European legislation into three categories (EC, 2009). Category 1 material 

includes animals or body parts infected with, or suspected of being infected with, a 

transmissible spongiform encephalopathy and includes skull, brain, tonsils, spinal cord, 

and intestines of bovine animals, entire head and vertebral column. Category 1 materials 

must be disposed of by combustion, either directly or following rendering. They can be 

used as biofuels and their energy content recovered. Category 2 material mainly includes 

fallen stock, manure and digestive tract content. Category 2 materials can be used for 
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composting, biogas production, or following rendering they can be used to manufacture 

fertilizer and in the oleochemical industry. Category 3 materials include parts of 

slaughtered animals fit for human consumption, or unfit but with no transmissible diseases 

(including hides, skins, horns, bristles and feathers, non-ruminant blood, raw milk from 

healthy animals, and food of animal origin which is no longer able to be consumed by 

humans). Category 3 materials can be used in pet food manufacturing. When different 

categories of material are mixed together they are downgraded to the lower number 

category (EC, 2009). For example, category 1 and 2 materials are usually mixed together 

in the UK and processed together as category 1 material. This classification establishes a 

marked difference between different categories of ABP as category 1 material has to be 

destroyed. In contrast, category 3 material is potentially a valuable commodity. However, 

disposal of mammalian ABP from all categories represent a cost to meat producers in the 

UK. 

Woodgate and van der Veen (2004) define rendering as “to render open or split by heat 

processing raw material into a solid protein meal and a liquid”. Dry rendering systems 

are the most common (Anderson, 2006). In this process, the raw material (ABP) is ground 

and passed through a disk dryer/cooker. The vapour from the cooker is typically taken to a 

condenser. The process condensate is then sent to wastewater treatment and 

noncondensable gases are treated to destroy odours. Alternatively in some systems the 

vapour is sent to a thermal oxidizer and the remaining gas is released to the atmosphere. 

The dry material is directed to a press where the liquid (fat) is separated from the solid 

(proteinaceous material). The solid is ground to obtain protein meal and the liquid is 

directed to a filtration system to obtain rendered fat (tallow in the case of beef fat). Within 

the EU, category 1 protein meal is referred to as meat-and-bone-meal (MBM), and 

category 3 protein meal is referred to as processed-animal-protein (PAP). 

Life cycle assessment (LCA) is a mature ISO-standardized tool for evaluating the potential 

environmental impacts from products or services throughout their life cycle (ISO, 2006a; 

b) where the life cycle is defined as the series of interlinked stages required to produce, 
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use and dispose of a product. However, LCA methodology may also be used to evaluate 

only parts of the product life cycle. The choice of environmental impact categories (climate 

change, eutrophication etc.) depends on the objectives of the study. LCA has been used 

extensively to evaluate the environmental impacts of producing different fats and protein 

meals (Dalgaard et al., 2008; Reijnders and Huijbregts, 2008; Schmidt, 2010). 

To date the UK is the only country to have established a legally binding long-term 

framework to reduce greenhouse gas (GHG) emissions. The UK Climate Change Act 

2008 (UK, 2008a) sets ambitious targets to reduce GHG emissions to 80% below 1990 

levels by 2050. Industry has a major role in the attainment of these targets. Consequently 

it is important that industries, such as the rendering industry, quantify their GHG 

emissions to enable sensible carbon management strategies to be developed. The GHG 

emissions associated with the rendering process are due to energy use, wastewater 

treatment and the production of chemicals that are used in the process. The use of 

rendered fat as a fuel instead of fossil fuels in the rendering process could have critical 

implications regarding GHG emissions. As rendered fat is produced from animal material, 

the CO2 emissions produced from its combustion are biogenic, and hence can be 

considered carbon neutral. This is because biogenic CO2 is associated with a short 

carbon cycle (Solomon et al., 2007b), in which carbon absorbed from the atmosphere by 

plants during photosynthesis is returned to the atmosphere when rendered fat is burnt to 

produce energy. Emissions from the combustion of fossil fuels lead to a net gain in 

atmospheric CO2. To date, there has been no study that analyses the effect on CO2 

emissions of using varying proportions of fossil fuel and rendered fat for the production of 

thermal energy in the rendering process. 

The objectives of the study were (i) to assess the energy intensity of the UK rendering 

industry, and (ii) to quantify the GHG emissions associated with rendered products 

derived from mammalian by-products using LCA methodology. The effect of the fuel type 

used to produce process heat (i.e.,natural gas or rendered fat) on GHG emissions was 

also investigated. 
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4.3 Materials and methods 

4.3.1 System description, boundaries, and co-product handling 

Three functional units were used: 1 kg category 1 mammalian rendered fat (MRF), 1 kg 

category 3 MRF and 1 kg PAP (at the rendering plant gate). Two product systems were 

defined: S1 for category 1 MRF and S2 for category 3 rendered products (Figure 25). As 

the disposal of mammalian (mainly ruminant material) ABP represents a cost to meat 

producers and economic flows with negative value are treated as wastes in LCA 

methodology (Guinee et al., 2004; Guinee et al., 2009), the production of ABP, including 

animal production and processing, were not included in the system boundaries. 
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Figure 25 System boundaries for the production of category 1 and 3 mammalian 
rendered fat (MRF), and processed animal protein (PAP) by the rendering process 
(ABP: animal by-product, Cat: category, T: Transport, MBM: meat and bone meal) 
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The product systems are described as follows: 

S1: The product system in which category 1 and 2 ABP are converted to category 1 MRF. 

The system was expanded to replace average British electricity production with electricity 

produced from the combustion of MBM in Fluidised Bed Combustion (FBC) power plants. 

FBC power plants are the most common disposal option for MBM in the UK (personal 

communication with Stephen L. Woodgate, FABRA). A test for avoidance of alternative 

electricity technologies has been included in the Sensitivity Analysis (Supporting 

Information). The use of category 1 MRF as fuel in the rendering process can be 

considered a recycling process (See the Fuel Scenarios section). 

S2: The product system in which category 3 ABP are converted to category 3 MRF and 

PAP. S2 includes S1, as category 1 MRF is used as a fuel in the category 3 rendering 

process. Co-product handling of GHG emissions between category 3 MRF and PAP was 

completed using mass and economic allocation and system expansion. The mass 

allocation factors employed were based on yield, where yield was defined as the mass of 

ABP that was converted to a rendered product (i.e., rendered fat or protein meal). The 

mass allocation factors used were 57.7% for category 3 MRF and 42.3% for PAP. 

Economic allocation was performed according to the average prices of rendered products 

between September 2007 and January 2010 provided by a rendering company. During 

the period studied the price ratio of rendered products varied (Figure 26). The economic 

allocation factors used were 77.7% for category 3 MRF and 22.3% for PAP. System 

expansion assumed that the main product was category 3 MRF because the greatest 

revenue for a rendering system comes from the production of MRF. As the current most 

valuable use of PAP is as an ingredient for pet food manufacturing, in the system 

modelled, the coproduction of PAP avoids the production of similar protein meals. 

Soybean meal was chosen based on its similar total protein content: the total crude 

protein contents of PAP and soybean meal being 538 and 516 g/kg dry matter 

respectively (Sellier, 2003). 
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Systems S1 and S2 also include ABP transport to the rendering plant, MBM transport 

from the rendering plant to the FBC power plant, electricity, water, wastewater treatment 

and the production of chemicals used in the rendering process (Figure 25). Infrastructure 

was not included and a rationale for its exclusion is provided in the Sensitivity Analysis. 

 

Figure 26 Price ratio of category processed animal protein (petfood grade) to 
category 3 mammalian rendered fat (grade 2) on a mass basis between September 
2007 and January 2010 (provided by an anonymous UK company) 

4.3.2 Fuel scenarios 

The UK rendering industry uses both natural gas and category 1 MRF as fuel to produce 

heat for the rendering process. The proportion of each fuel used varies on an annual 

basis. The impact of using different proportions of natural gas and category 1 MRF on the 

life cycle GHG emissions associated with the functional units was investigated. The 

system was tested assuming that 0%, 25%, 50%, 75%, and 100% of the thermal energy 

was derived from natural gas, with the remainder being derived from MRF. When category 

1 MRF is used as a fuel within the system, more category 1 MRF is produced than the 

actual functional unit depending on the level of substitution. When category 3 rendered 

products were produced using category 1 MRF as a fuel, both the category 3 rendering 

process and the category 1 rendering process were modeled using the same percentage 

(e.g., for the production of category 3 MRF that was rendered using 25% natural gas, the 

remaining 75% came from category 1 MRF that had been rendered using 25% natural gas 

and 75% category 1 MRF). 
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4.3.3 Data and calculation 

The study used primary and secondary data sources. Category 1 and 2 ABP are usually 

mixed and processed together as category 1 material. Total processing of category 1 and 

2 ABP in the UK between 2006 and 2007 was approximately 1 150 000 tonnes per 

annum, while the processing of category 3 ABP was approximately 950 000 tonnes per 

annum (pers. comm. with SL Woodgate). 

Primary data for the years 2006, 2007, and 2008 was collected through direct contact with 

UK rendering plants. Specific primary data collected was: 

1. The yield of rendered fat and protein meal produced by category 1 and 3 rendering 

plants. Data was obtained from seven rendering plants (five category 1 plants and two 

category 3 plants), which processed between 30% and 40% of UK ABP. 

2. The annual amount of ABP processed. Electricity consumed and fuels used was 

obtained through direct contact with five rendering plants, which processed approximately 

30% of category 1 ABP and 10% of category 3 ABPs in the UK. 

3. The annual amount of water and chemicals used was collected from 4 UK rendering 

plants for the years 2006, 2007, and 2008. These plants processed approximately 20% of 

UK ABP. 

4. The annual amount of wastewater produced was collected from three rendering plants, 

which processed approximately 15% of UK ABP. 

5. The annual amount of ash produced from the combustion of a certain amount of 

feedstock in a FBC system was collected from 1 UK FBC power plant. 

Simapro 7 (PRe Consultants, 2011) was used for system modelling and calculation of 

results. Climate change was assessed using the Greenhouse Gas Protocol 1.00 (The 

Greenhouse Gas Protocol, 2010) impact assessment method, which makes a distinction 

between fossil and biogenic carbon, and uses the climate change characterization factors 

with a time frame of 100 years reported by IPCC (Solomon et al., 2007b). Data sources 

for economic flows and life cycle inventory are presented in the Appendix B. 
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4.4 Results 

4.4.1 Rendered product yields 

The current study collected data from rendering plants that processed between 30% and 

40% of UK ABP between 2006 and 2008, and thus the yields presented can be 

considered a robust average. Table 14 presents the average economic flows for the 

rendering of 1 kg of category 1 ABP and 1 kg of category 3 ABP, respectively. Yields of 

0.27 kg MBM/kg ABP processed and 0.13 kg MRF/kg ABP processed were determined 

for category 1 material. Yields of 0.33 kg PAP/kg ABP processed and 0.24 kg MRF/kg 

ABP processed were determined for category 3 material. 

Table 14 Economic flows for the rendering of 1 kg Category 1 and 3 mammalian 
ABP in the UK 

Product flow Units Category 1 rendering Category 3 rendering 

Amount min max Amount min max 

MBM produced kg 0.27 0.24 0.32 n.a. n.a. n.a. 

PAP produced kg n.a. n.a. n.a. 0.33 0.26 0.38 

Category 1 MRF kg 0.13 0.09 0.17 n.a. n.a. n.a. 

Category 3 MRF kg n.a. n.a. n.a. 0.24 0.18 0.29 

Heat (as energy 

content in fuel) 

kJ 2646 2218 3075 1357 1333 1394 

Electricity kJ 260 154 333 375 361 383 

Water use m
3
 0.00179 0.00104 0.00286 0.00165 0.00148 0.00181 

Wastewater
a
 m

3
 0.00174 0.00072 0.00326 0.00174 0.00072 0.00326 

Chemicals use        

Sodium 

Hypochlorite 

kg 3 x 10
-6

 2 x 10
-6

 4 x 10
-6

 3 x 10
-7

 8 x 10
-8

 8 x 10
-7

 

Sodium Hydroxide 

(Caustic) 

kg 6 x 10
-7

 2 x 10
-7

 1 x 10
-6

 1 x 10
-7

 3 x 10
-8

 1 x 10
-7

 

Sulphuric Acid   kg 4 x 10
-7

 5 x 10
-8

 9 x 10
-7

 1 x 10
-7

 6 x 10
-8

 2 x 10
-7

 

Various boiler, 

cooling tower and 

cleaning chemicals 

kg 9 x 10
-7

   1 x 10
-6

   

min (minimum value) 
max (maximum value) 
MBM (meat and bone meal) 
PAP (processed animal protein) 
MRF (mammalian rendered fat) 
n.a. : not applicable 
a
wastewater is taken from category 1 rendering plants only and applied to both category 1 and 3 

rendering plants 
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4.4.2 Energy intensity of the UK rendering process 

Thermal energy requirements for the rendering of category 1 and 3 ABP were 2646 and 

1357 kJ/kg ABP processed respectively (Table 14). This energy was produced from the 

combustion of category 1 MRF and natural gas, and was calculated by adding the amount 

of energy contained in natural gas to the amount of energy contained in MRF. The 

average does not take into account the combustion efficiency of the different fuels. The 

amount of thermal energy needed to treat category 1 was higher than that required to 

treat category 3 ABP. Electricity consumption in the current study was 260 and 375 kJ/kg 

ABP processed for category 1 and 3 material, respectively (Table 14). 

4.4.3 Category 1 MRF life cycle GHG emissions 

The life cycle CO2 emissions associated with category 1 MRF were dependent on the 

proportion of natural gas and MRF used. Fossil CO2 emissions ranged from −1.61 to 0.40 

kg CO2e/kg for category 1 MRF (Figure 27), increasing as the percentage of natural gas 

increased.  

 

Figure 27 Fossil and biogenic CO2 emissions for 1 kg of category 1 mammalian 
rendered fat (MRF) based on the percentage of natural gas used as fuel for the 
rendering process (the rest being provided by category 1 MRF as fuel) 
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Negative fossil CO2 emissions occurred when the percentage of natural gas used was 

between 0% and 70% (Figure 27). Biogenic CO2 emissions decreased with increasing 

natural gas use, ranging from approximately 3 to 10 kg CO2e/kg category 1 MRF. This 

was because when more natural gas was used, less category 1 MRF was used. Biogenic 

CO2 emissions are associated with the combustion of category 1 MRF as thermal fuel for 

the rendering process and MBM to produce process electricity in FBC plants. 

4.4.4 Category 3 MRF life cycle GHG emissions 

The life cycle CO2 emissions for category 3 MRF varied depending on the percentage of 

MRF used as fuel and the allocation approach employed (Figure 28). Fossil CO2 

emissions increased with increasing natural gas use for each allocation approach 

employed, ranging between −0.11 and 0.54 kg CO2e/kg category 3 MRF. The lowest 

figure for fossil CO2 emissions was obtained for each allocation approach when the 

amount of natural gas used was 0%. The CO2 emissions varied depending on the 

approach used to allocate emissions between category 3 MRF and PAP. Economic 

allocation resulted in the highest figures for fossil CO2 emissions, with emissions ranging 

between 0.09 and 0.54 kg CO2e/kg category 3 MRF. Mass allocation resulted in fossil 

CO2 emissions ranging from 0.05 to 0.29 kg CO2e/kg category 3 MRF (Figure 28). For 

system expansion, negative fossil CO2 emissions were calculated when the percentage of 

natural gas used in the rendering process was low (less than 12%: Figure 28). When the 

proportion of natural gas used was 0%, this approach provided the lowest result (−0.11 kg 

CO2e/kg category 3 MRF). This is because of the double effect of using category 1 MRF 

produced with 0% natural gas as a fuel and the avoidance of soybean meal production. 

Biogenic CO2 emissions ranged between 0.01 and 1.94 kg CO2e/kg category 3 MRF 

depending on the allocation approach employed and the percentage of natural gas used 

(Figure 28). For each allocation approach used, biogenic CO2 emissions increased with 

decreasing natural gas use because the combustion of tallow and MBM contributes to 

biogenic CO2 emissions. System expansion resulted in the highest biogenic CO2 

emissions. 
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Figure 28 Fossil and biogenic CO2 emissions for 1 kg of category 3 mammalian 
rendered fat (MRF) based on the percentage of natural gas used as fuel for the 
rendering process (the rest being provided by category 1 MRF as fuel) for each co-
product handling approach (ECA: economic allocation, MAA: mass allocation, 
MPSE: system expansion). 

4.4.5 PAP life cycle GHG emissions 

The CO2 emissions associated with PAP (Figure 29) were similar to those for category 3 

MRF, as the systems were the same and only the allocation factors used were different.  

 

Figure 29 Fossil and biogenic CO2 emissions for 1 kg of processed animal protein 
(PAP) based on the percentage of natural gas used as fuel for the rendering 
process (the rest being provided by category 1 tallow as fuel) for each co-product 
handling approach (ECA: economic allocation, MAA: mass allocation). 
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There are no results for system expansion for PAP because this is the co-product that 

avoids production of soybean meal and consequently category 3 tallow takes the credits 

for this. Fossil CO2 emissions from the PAP system ranged from 0.00 to 0.29 kg CO2e/kg 

PAP depending on the allocation approach and percentage of natural gas used in the 

system (Figure 29). Contrary to category 3 MRF, the highest CO2 emissions occurred 

when mass allocation was used, and the lowest when the economic allocation approach 

was used. Fossil CO2 emissions were equal to those of category 3 MRF when mass 

allocation was used (Figure 29). 

4.5 Sensitivity analysis 

A sensitivity analysis was performed to test some of the assumptions made in the product 

system modelled. The base case results are set as the fossil CO2 emissions for category 

1 and 3 MRF with 25% of the thermal energy requirement being provided from natural gas 

and 75% from category 1 MRF. Allocation of CO2 emissions between category 3 MRF and 

PAP was based on mass. Base case results were -0.77, 0.15 and 0.15 kg CO2e/kg 

category 1 MRF, category 3 MRF and PAP respectively.  

4.5.1 Thermal energy requirement of the category 3 system 

Both the yield of rendered products and the thermal energy requirement of rendering vary 

between literature references. Thermal energy is required to evaporate water and produce 

dry rendered products. In the current study, a difference in the thermal heat required to 

render category 1 and 3 ABP was obtained. The thermal energy required to render 

category 1 animal ABP being higher than that reported in the literature. A test was 

performed to evaluate the impact of applying the thermal energy required to process 

category 1 ABPs to category 3 ABPs, but keeping the yield of rendered products the 

same. CO2 emissions from both the category 1 and 3 systems were only marginally 

affected by this change. As more thermal energy is required, more category 1 MRF is 

used in the category 3 system. As a consequence, more category 1 MBM is co-produced 

that is disposed of by combustion in FBC power plants. As a result the production of more 

British electricity is avoided. This effect is particular for the UK rendering industry and the 
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results would be different if the system used less category 1 MRF, and more natural gas 

fuel to generate thermal energy. It would also be different if a less carbon intensive source 

of electricity was avoided by the combustion of MBM. 

4.5.2 Source of electricity avoided by combustion of MBM 

In the base case system modelled production of British electricity is avoided by the 

combustion of MBM in FBC plant. British electricity is highly coal based and therefore very 

carbon intensive. Two test were performed: 1) Assuming that the electricity avoided was 

produced from natural gas and 2) Assuming that the electricity avoided had a very low 

carbon intensity (average Norway electricity).  

If the electricity avoided was produced from natural gas, fossil CO2 emissions increased to 

-0.16, 0.18 and 0.18 kg CO2e/kg category 1 MRF, category 3 MRF and PAP respectively. 

The result is important for category 1 MRF. In this scenario emissions from the category 1 

system are still negative, as in the base case. Electricity production from natural gas is 

marginal in the UK, and results for electricity production avoided, either using British 

electricity or natural gas are in reasonable agreement. 

If the electricity avoided was produced from low carbon sources (Norway electricity), fossil 

CO2 emissions increased to 1.26, 0.25 and 0.25 for category 1 MRF and category 3 MRF 

and PAP respectively. In this scenario emissions from the category 1 system would be 

positive and higher than those from the category 3 system. However, in the UK this 

scenario does not currently apply as electricity is highly carbon based. 

This test illustrates that the results obtained are dependent on the carbon intensity of 

electricity production where the system is modelled. The base case is relevant to the UK, 

but should be treated with caution if applied to systems outside the UK. 

4.5.3 Inclusion of infrastructure in the system boundaries 

In the base case infrastructure has not been included in the system boundaries. The main 

capital good used in the system is the rendering plant (buildings and equipment). A test 

was performed assuming that the life-span of a rendering plant is 20 years with an 
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average throughput of 100,000 tonnes of ABP/year. If the life cycle inventory for a similar 

sized chemical plant in Germany was included in the system boundaries CO2 emissions 

would be -0.77, 0.15 and 0.15 for category 1 MRF, category 3 MRF and PAP respectively.  

The inclusion of infrastructure in the system modelled would have no impact on the results 

obtained. 

4.6 Discussion and conclusion 

4.6.1 Rendered product yields and energy intensity 

Data on the quantity of ABP processed, energy use and rendered fat and protein meal 

yields was collected from UK rendering plants which processed 30−40% of UK ABP 

between 2006 and 2008. 

Consequently, the yields obtained can be considered representative of the UK rendering 

industry. Both MRF and protein meal yields were higher for category 3 than category 1 

materials, suggesting that category 3 ABP contained less water. The yields of tallow and 

protein meal reported by Lopez et al. (2010) for the US rendering industry were 0.28 and 

0.23 kg/kg ABP processed, respectively. Differences in rendered product yields between 

the US and UK can be explained by differences in the composition of ABP processed. In 

the US, ABP are not classified in the same way as they are under EU legislation, with no 

differentiation between category 1, 2, and 3 materials. 

In the current study, the amount of thermal energy used to process category 1 ABP was 

higher than that used for category 3 ABP. However, there was little difference between 

category 1 and 3 rendering plants in electricity use. As thermal energy is primarily used to 

generate process heat to evaporate water, this again suggests that category 1 ABP 

contained a higher proportion of water. Electricity is primarily used for motion and process 

control systems, which do not differ greatly between category 1 and category 3 rendering 

plants. Lopez et al. (2010) reported average thermal energy and electricity requirements 

of 2113 and 292 kJ/kg ABP processed respectively, which are midway between the 

values for category 1 and 3 ABP obtained in the current study. As stated above 
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differences in energy use probably reflect differences in the composition of ABP 

processed in the US and UK. 

The Ecoinvent database (Ecoinvent Centre, 2010) provides an inventory for tallow 

production for a rendering plant in Switzerland and provides both thermal energy and 

electricity values for the production of 1 kg of tallow. If these values are applied to the 

MRF yields obtained in the current study (0.13 and 0.24 kg MRF/kg ABP processed for 

category 1 and 3 material respectively) the thermal energy requirement for category 1 and 

3 would be 1090 and 2000 kJ/kg ABP processed, respectively. Similarly, the electricity 

requirement would be 82 and 151 kJ/kg ABP processed, respectively. In the current study, 

the thermal energy requirements was higher for category 1 and lower for category 3 

material than calculated using the Ecoinvent database. Similarly, the electrical energy 

requirement for both category 1 and 3 materials was higher than calculated using the 

Ecoinvent database. 

Ramírez et al. (2006) reported a primary energy requirement for rendering of 1625 kJ/kg 

ABP processed. Primary energy represents energy embodied in natural resources such 

as coal, before it is converted into usable energy such as electricity. Consequently, 

calculation of primary energy includes the inefficiency of electricity production, using an 

efficiency of 40%.18 If this approach is applied to data collected in the current study, the 

primary energy requirements would be 3296 and 2293 kJ/kg ABP processed for category 

1 and 3 materials respectively. These values are higher than those reported by Ramírez 

et al. (2006). Overall, the thermal and electrical energy requirements of rendering 

depends on the composition of ABP processed, with more thermal energy being required 

to process material with higher water content. The values obtained in the current study are 

in the same order of magnitude and consistent with those obtained in other studies. 

4.6.2 Greenhouse gas emissions from rendered products 

Under EU legislation (EC, 2009) secondary products of animal production and meat 

processing are classified as by-products, which potentially could be considered as 

commodities with economic value. However, In the UK the disposal of aggregated 
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mammalian ABP of all categories represents a cost to the producer. Within LCA 

methodology, economic flows with negative economic value are considered to be wastes 

(Guinee et al., 2004). Therefore, the environmental burden associated with their 

production should be allocated to other products such as meat, and hides and skins, 

which have a positive economic value. In the UK, mammalian ABP should not carry any of 

the environmental burdens associated with their production. This is not necessarily the 

case in other countries, or for ABP derived from other species. For example, in Australia 

ruminant ABP may have a positive economic value (Beer et al., 2007). Similarly, in the UK 

category 3 ABP derived from poultry have a positive economic value. In which case, the 

environmental burden associated with their production and processing could be allocated 

accordingly. 

In the current study, GHG emissions are reported on a CO2 equivalent basis (CO2e). It 

should be noted that the combustion of natural gas to produce thermal energy produces 

both CO2 and a small proportion of CH4 as GHGs. However, the proportion of CH4 is 

negligible in comparison to CO2 emission. Consequently, fossil CO2 emissions can be 

considered to be almost equal to fossil GHG emissions. MRF and MBM carbon content is 

biogenic. Therefore, CO2 emissions arising from their combustion do not contribute to the 

net gain of GHG in the atmosphere. 

In the current study, CO2 emissions associated with category 3 rendered products (i.e., 

MRF and PAP) were allocated using both mass and economic allocation, and system 

expansion to illustrate the effect of different co-product handling approaches. As the main 

purpose of rendering is to dispose of ABP with a charge to the producer; mass allocation 

is probably the most appropriate option. If economic allocation is used, the results would 

be dependent on variations in the price ratio between MRF and PAP (Figure 26). With 

system expansion it is not possible to obtain results for both category 3 MRF and PAP 

simultaneously. 

The average percentage of total thermal energy derived from the combustion of MRF by 

the rendering plants that participated in the study was 76%. Consequently, a scenario 
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where 25% of thermal energy is derived from natural gas and 75% from MRF can be 

considered representative of the UK. In this case, the fossil CO2 emissions associated 

with category 1 MRF at the rendering plant gate were −0.77 kg CO2e/kg. 

Using mass allocation the fossil CO2 emissions associated with category 3 MRF and PAP 

were 0.15 and 0.15 kg CO2e/kg respectively. Using economic allocation the CO2 

emissions associated with category 3 MRF and PAP are 0.28 and 0.06 kg CO2e/kg 

respectively. The robustness of the results in relation to some important choices in the 

modelled system is presented in the Sensitivity Analysis. 

There is a considerable difference in CO2 emissions between category 1 and 3 MRF. For 

category 1 MRF negative CO2e emissions are realized by the replacement of grid 

electricity with electricity produced from the combustion of MBM in FBC power plants. It 

should be noted that when more category 1 MRF is used as a fuel within the system, 

more MBM is coproduced and thus the system gains more credits from the avoidance of 

British electricity. In contrast, in the category 3 system the protein meal (PAP) is a 

valuable co-product and the effect of electricity production from combustion of MBM is not 

as important. 

The fossil CO2 emissions calculated for the life cycle inventory of tallow in the Ecoinvent 

database are higher than those in the current study, with combustion of natural gas being 

the main contributor. The database does not differentiate between ABP categories, but 

states that ABP are treated as wastes, and that the system does not include animal 

production or slaughtering. Consequently, the result calculated with the inventory in the 

Ecoinvent database is comparable with the system modelled, assuming 100% natural 

gas. For category 3 MRF, using this scenario and mass allocation CO2 emissions would 

be 0.29 kg CO2e/kg (Figure 28). This is considerably lower than that calculated using the 

Ecoinvent database. This difference can be explained by the fact that in the inventory in 

the Ecoinvent database the amount of thermal energy required to produce tallow is 

considerable higher than that reported in the current study. 
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Palm oil and MRF both consist of long chain fatty acids (C16−18), which are used by the 

oleochemical industry (e.g.,soap manufacture) (Postlethwaite, 1995). The GHG emissions 

for palm oil have been reported by Reijnders and Huijberts (2008), who included CO2 

emissions from combustion of fossil fuel for agriculture, processing and logistics; loss of 

biogenic carbon through land use change; and CH4 production from anaerobic digestion of 

palm oil waste. Allocation of CO2 emissions was based on economics. The results ranged 

from 2.8 to 19.7 kg CO2e/kg palm oil mainly depending on plantation practices. Schmidt 

(2010) reported results between 2.16 and 2.60 kg CO2e/kg palm oil using different 

modelling and allocation approaches. The Ecoinvent database life cycle inventory also 

provides a figure for GHG emissions from palm oil in Malaysia. All of these results are 

higher than the CO2 emissions for category 1 and 3 MRF obtained in the current study. 

PAP has a similar protein content to soya bean meal (Sellier, 2003) and has the potential 

to replace soya bean meal in animal diets. Dalgaard et al. (2008) reported a consequential 

LCA of soya bean meal for inclusion in livestock production. Since soya oil is a coproduct 

of soya bean meal, system expansion was used to include the avoidance of palm and 

rape oil production. The system included agriculture and milling of soya bean in Argentina, 

marginal production of palm oil in Malaysia and rapeseed and barley in Denmark. It also 

included transport of soya bean meal from Argentina to The Netherlands. Greenhouse 

gas emissions were 0.72 kg CO2e/kg soya bean meal. Similarly, the Ecoinvent database 

also provides inventories for soya bean meal from Brazil and the US, respectively. All of 

these results are higher than the CO2e emissions for PAP obtained in the current study. 

The main reason that mammalian rendered products in the UK have lower CO2 emissions 

compared to substitute vegetable oils and protein meals is because they are treated as 

wastes within LCA methodology. Consequently, they do not carry any of the 

environmental burden associated with their production. In addition, a significant 

percentage of the thermal energy required for rendering is derived from combustion of 

MRF that does not contribute to fossil CO2 emissions. The system also gains credits from 

the production of biogenic electricity from the combustion of MBM. 
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The UK rendering industry currently produces approximately 74 000 tonnes of category 3 

MRF and 97 500 tonnes of mammalian PAP per annum (Personal communication with 

Stephen Woodgate, FABRA). Assuming that category 3 MRF and PAP are used as direct 

replacements for palm oil and soya bean meal in current applications, and using fossil 

CO2e emissions associated with palm oil and soya bean meal derived from the Ecoinvent 

databases, the use of UK rendered products can be estimated to reduce CO2 emissions 

by approximately 70 000 tonnes per annum (excluding emissions associated with land 

transformations). If higher CO2 emission values for palm oil and soya bean meal are used 

then CO2 emission reductions calculated would be significantly higher. As category 1 MRF 

is used as a fuel in the rendering industry, it is included in the production of category 3 

rendered products. However, sufficient category 1 MRF is produced by the UK rendering 

industry to satisfy its energy requirements and still replace fats used in the production of 

biodiesel or other carbon intensive form of electricity generation. The estimated CO2 

emission avoidance associated with use of UK rendered products should be treated with 

caution as the palm oil and soya bean meal replaced by UK rendered products could be 

used elsewhere. 
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5 The relative importance of slaughtering and animal by-product management in 

the life cycle greenhouse gas emissions of beef production in the UK 

5.1 Abstract 

The objective of the study was to analyse the influence of slaughtering and animal by-

products (ABP) management on the greenhouse gas (GHG) emissions of beef production. 

Two system boundary scenarios were modelled. The first system only included on-farm 

beef production, whilst the second system included on-farm beef production, slaughtering, 

ABP rendering, and the use of rendered products to replace alternative products. 

Slaughterhouse co-products handling was performed using economic and mass 

allocation. Two contrasting slaughtering yield scenarios were used and the system was 

tested with 100% of the energy use for ABP rendering being derived from either natural 

gas or tallow. When tallow is not used as a fuel for the rendering process it is used to 

produce biodiesel. 

Inclusion of slaughtering and ABP management had a minimal impact on the GHG 

emissions of beef production. Between 1.1 and 1.4% of GHG emissions associated with 

beef production originated from the slaughtering process. Marginal negative GHG 

emissions were derived from ABP management, because rendered products avoid the 

production of products that are associated with higher GHG emissions. Animal production 

was responsible for more than 99.6% of the GHG emissions of beef meat. 

5.2 Introduction 

As a result of increasing pressure for environmental sustainability in food production, the 

environmental impact of beef (and other meat systems) production has frequently been 

studied using life cycle assessment (LCA) or similar assessment tools (e.g. Carbon 

Footprint) (Ogino et al., 2004; Casey and Holden, 2006a; Williams et al., 2006; Ogino et 

al., 2007b; Vergé et al., 2008; Edward-Jones et al., 2009; Beauchemin et al., 2010; 

Nguyen et al., 2010a; Pelletier et al., 2010b; Peters et al., 2010; Cederberg et al., 2011). It 

is estimated that the animal production sector is responsible for 18% of global greenhouse 

gas (GHG) emissions (Steinfeld et al., 2006). It is therefore important to gain a holistic 
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understanding of the GHG emissions associated with each stage of animal production to 

enable targeted GHG mitigation strategies to be implemented. In a recent review of LCA 

studies of beef, pork and chicken production in Organisation for Economic Co-operation 

and Development (OECD) countries, de Vries and de Boer (2010) compared the results of 

16 studies where a cradle-to-farm-gate approach had been taken. The GHG emissions 

associated with beef, pork and chicken production ranged from 14.0 to 32.0, 3.9 to 10.0 

and 3.7 to 6.9 kg CO2e/kg meat (carcass weight), respectively. The GHG emissions 

associated with pork and chicken production were lower than for beef production because 

ruminants consume more energy per kg of meat than non-ruminants and produce 

methane (CH4) as a result of enteric fermentation. Additionally ruminants tend to have a 

lower reproductive rate and longer generation interval. 

Following animal production, the conversion of animals to meat results in the production of 

animal by-products (ABP). Animal by-products include hides, skins, hairs, feathers, hoofs, 

horns, feet, heads, bones, toe nails, blood, organs, glands, intestines, muscle and fat 

tissues, shells and whole carcasses (Meeker and Hamilton, 2006). Animal by-products are 

classified by European legislation into three categories (EC, 2009). A description of these 

categories and the treatment options available is provided in section 2.1.4. The most 

common treatment option for ABP in the UK is rendering. Between 2006 and 2008 animal 

production in the UK was approximately 3.4 million tonnes live weight per year (FAO, 

2010). Over the same period, the UK rendering industry processed approximately 2 

million tonnes of ABP per year (pers. comm. SL Woodgate, FABRA). The slaughter of 

animals and disposal of ABP by rendering can be considered an essential part of the meat 

production system. Consequently, it is important to understand the relative contribution of 

post farm-gate processes to the life cycle GHG emissions associated with meat 

production. 

LCA studies of beef production normally adopt one of two approaches. Either the 

functional unit is expressed as 1) the mass of live weight leaving the farm gate (Ogino et 

al., 2004; Casey and Holden, 2006a; Edward-Jones et al., 2009; Pelletier et al., 2010b), or 
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2) as the mass of saleable meat calculated from the killing out percentage (KoP) (Williams 

et al., 2006). In both approaches only the environmental burden associated with animal 

production up to the farm gate is included. Post farm gate processes such as 

slaughtering, meat processing and disposal of ABP by rendering are not included.  

Consequently, a true insight into the GHG emissions associated with meat production is 

not provided. Peters et al. (2010) investigated the GHG emissions associated with beef 

production in Australia and included emissions associated with meat processing. 

However, it is unclear whether or how the treatment of ABP was included in their 

modelling. 

The primary objective of the current study was to investigate the relative contribution of 

post-farm gate processes (i.e. slaughtering and ABP management) to the GHG emissions 

associated with beef production at the slaughtering plant gate. In Chapter 4 it was 

demonstrated that GHG emissions associated with the rendering of ABP to produce 

rendered products could be minimised by generating process heat from the combustion of 

category 1 mammalian rendered fat (MRF) as opposed to fossil fuels. Secondary 

objectives of this study were (i) to verify the influence of substituting MRF for natural gas 

during the rendering process and (ii) to analyse the effect of modelling two contrasting 

slaughtering yields, on the GHG emissions of beef production. 

5.3 Materials and methods 

5.3.1 System description and boundaries 

The functional unit was 1 kg of beef meat at the slaughterhouse gate. Two system 

boundaries were modelled B1 and B2 (Figure 30). B1 included animal production up to 

the farm gate. B2 included (i) animal production, (ii) slaughterhouse processes, (iii) ABP 

rendering, (iv) biodiesel production from category 1 MRF and the avoidance of fossil 

diesel combustion, production and extraction, (v) electricity production from the 

combustion of meat and bone meal (MBM) in Fluidized Bed Combustion (FBC) power 

plants and the consequent avoidance of British grid electricity, (vi) the avoidance of palm 

oil production due to substitution with category 3 MRF, and (vii) the avoidance of soya 
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bean meal production due to substitution with mammalian processed animal protein 

(PAP). Palm oil (a marginal source of fat) and MRF (beef tallow in particular) both consist 

of long chain fatty acids (C16-18), which are used in the same applications by the 

oleochemical industry (e.g. soap manufacture) (Postlethwaite, 1995). Soya bean meal (a 

marginal source of protein) has a similar protein content to PAP (Sellier, 2003) and is 

therefore an obvious substitute in pet foods and animal diets. After leaving the farm it was 

assumed that live animals were transported by lorry to the slaughterhouse/meat 

processing plant. Oceanic transport of avoided palm oil and soybean meal to the UK was 

included in the category 3 ABP managing system. 
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Figure 30 System Boundaries B1 and B2 for the beef production system (T: 
transport, ABP: animal by-product, MBM: meat and bone meal, MRF: mammalian 
rendered fat, PAP: processed animal protein, ICE: internal combustion engine) 
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5.3.2 Beef slaughtering yield cases 

Two slaughtering yield scenarios reflecting industry practice were modelled, the best case 

and the worst case as defined by EBLEX (2006). In the best case the yield of edible 

material for human consumption was maximised. In the worst case, separation of edible 

and non-edible material was less efficient, such that a higher proportion of ABP was 

produced. The relative proportion of different co-products and by-products produced from 

each scenario are presented in Table 15. 

Table 15 Relative percentage of each co-products and by-product produced during 
the slaughtering of beef cattle using the best and worst case scenario as defined by 
EBLEX (2006) 

Slaughtering stream Best case Worst case 

carcass lean 33.1 32.1 

edible material
a 

21.1 11.0 

hide and skin 7.3 7.1 

petfood 0.8 0.0 

gut content 15.4 0.0 

category 3ABP
b 

11.1 20.7 

category 1ABP
b 

11.2 29.2 

Total beef cattle mass 100.0 100.0 
a
edible material  other than carcass lean 

b
ABP: animal by-products 

5.3.3 Co-product handling 

The environmental burden associated with beef production was allocated between beef 

(i.e. carcass lean and edible material) and slaughterhouse co-products using two 

approaches, namely mass and economic allocation. Different methods of co-product 

handling in LCA produce different results (Cederberg and Stadig, 2003; Flysjö et al., 

2011a). Mass allocation factors (Table 16) were calculated using data presented in Table 

15.  

Economic allocation factors (Table 16) were calculated using the average price of beef 

and hides and skins published in the Meat Trades Journal (Meat Trades Journal) between 

December 2006 and July 2009. During this period the price of beef was between 10 and 

40 times higher than that of hides and skins (Figure 31). In September 2008 hide prices 

dropped drastically due to the global financial crisis demonstrating economic factors are 
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variable over time, whilst mass factors remain constant. The prices of gut contents and 

pet food were assumed as 30 and 100 pounds sterling per tonne respectively (this 

estimation reflect prices of fish and poultry by-products). 

Table 16 Mass and economic allocation factors (%) for each slaughterhouse co-
producta  

Co-products Best yield case Worst yield case 

Mass 

allocation 

Economic 

allocation 

Mass 

allocation 

Economic 

allocation 

Beef/edible 69.724 95.420 85.874 94.922 

Skins and hides 9.400 4.184 14.126 5.078 

Pet food material 1.086 0.061 na na 

Gut content 19.790 0.335 na na 

a
 na: not applicable 

 

 

Figure 31 Mass adjusted price ratios of beef to hides and skins (Meat Trades 
Journal, 2007-2009) 

 

5.3.4 Rendering fuel scenarios 

The rendering industry uses both grid natural gas and category 1 MRF as fuels to produce 

process heat. If MRF is used as a fuel, there is a closed-loop recycling situation. The 

system was tested with 100% of the energy input being derived from either natural gas or 

MRF. The proportions of category 1 and 3 ABP produced varied depending on the 

slaughtering yields case (Table 15). In the case of 100% natural gas as fuel for rendering 

the entire category 1 MRF produced is used in the production of biodiesel. In the case of 

100% MRF as fuel for rendering, part of the produced category 1 MRF is used as a fuel 
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and the remainder is used in the production of biodiesel. Table 17 presents the distribution 

of final use of category 1 MRF for both slaughtering yield cases when MRF is used as fuel 

for rendering. Yields and energy requirements in rendering are based on data in Chapter 

4. 

Table 17 Amounts (kg) of category 1 mammalian rendered fat (MRF) used as a fuel 
in rendering and the production of biodiesel based on 1 kg of animal by-products 
(ABP) produced for both slaughtering yields cases when thermal energy for the 
rendering of ABP is provided entirely by category 1 MRF  

 

Best yield 
case 

Worst 
yield case 

cat 1 ABP produced
a 1 1 

cat 3 ABP produced 0.708 0.986 

Final uses   

category 1 MRF used as fuel in rendering
b 0.098 0.109 

category 1 MRF used in the production of biodiesel 0.036 0.025 
a
 The basis for presenting data is 1 kg ABP produced for both slaughtering cases, however the 

amounts of category 1 and 3 ABP produced in both slaughtering cases is different (Table 15). 
b 
Energy intensity and yields in rendering are taken from Chapter 4 

 

5.3.5 Data sources and calculation 

GHG emissions associated with the production of beef production in the UK have been 

taken from Williams et al. (2006). The model was developed further under the DEFRA-

funded project IS0222 and modified for this study to express the GHG emissions on a live 

weight rather than deadweight basis (pers. comm. AG Williams, 2011) as 6.888 kgCO2e 

per kg live weight beef at the farm gate. 

Data on energy use associated with slaughtering was derived from a study for Finland 

(The Finnish Environment, 2002). This reference provides heat and electricity use of 720 

kJ and 684 kJ per kg carcass weight, based on average carcass weight of 260 kg. It is 

recognised that beef slaughtering and meat processing technology may vary from country 

to country. However, animal slaughtering in both Finland and the UK are regulated by EU 

legislation consequently and the process in both countries is similar. 

Inventory data on category 1 and 3 rendering and its associated processes were taken 

from Chapter 4. The Ecoinvent database (Ecoinvent Centre, 2010) was used to provide 

inventories associated with the production of (i) British grid electricity, (ii) power from 

internal combustion engines, (iii) fossil diesel, (iv) soya bean meal from Brazil, (v) palm oil 
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from Malaysia, and (vi) transport. Energy use in the production of biodiesel from MRF 

(beef tallow) was taken from Lopez et al. (2010). 

Simapro 7.3 (PRe Consultants, 2011) was used for system modelling and calculation. 

Climate Change was assessed using the Greenhouse Gas Protocol 1.00 (The 

Greenhouse Gas Protocol, 2010) method which uses the climate change characterisation 

factors with a timeframe of 100 years reported by IPCC (Solomon et al., 2007b). Carbon 

dioxide emissions associated with land transformation from soya bean meal in Brazil and 

palm oil production in Malaysia were included. Biogenic CO2 emissions from the 

combustion of ABP were not included as it was considered that these do not represent a 

net gain of CO2 in the atmosphere. For further information on the biogenic CO2 emissions 

from the rendered products system see Chapter 4. 

5.4 Results 

The GHG emissions associated with 1 kg of beef for both system boundaries (B1 and B2) 

and for the best and worst slaughtering scenarios are presented in Table 18. The effects 

of allocation method and thermal fuel used during the rendering of ABP are also 

presented. The breakdown of the relative contributions of animal production, slaughtering 

and ABP management (Figure 30) to the total GHG emissions associated with beef 

production is also provided. When the best case slaughtering scenario was applied to 

system B1, the GHG emissions associated with the beef production were 8.882 and 

12.156 kg CO2e/kg for mass and economic allocation respectively. Conversely when the 

worst case scenario was applied, the GHG emissions increased to 13.763 and 15.214 kg 

CO2e/kg beef respectively. When the best case slaughtering scenario was applied to 

system B2 and natural gas was used as fuel for the rendering of ABP, the GHG emissions 

associated with the beef production were 8.904 and 12.186 kg CO2e/kg for mass and 

economic allocation respectively. Conversely when the worst case scenario was used 

GHG emissions increased to 13.549 and 14.976 kg CO2e/kg beef respectively. When the 

fuel used for the rendering of ABP was category 1 MRF, the GHG emissions associated 

with beef production were marginally higher. 
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Table 18 Life cycle greenhouse gas emissions associated with 1 kg beef at the 
slaughtering gatea 

Allocation Fuel
b
 Units 

Animal 
production 

Slaughter T
c
 

ABPM
d 

Total 
Cat 1 Cat 3 

Best yield scenario 

System boundaries B1 

mass na kg CO2e 8.882 na na na na 8.882 

% 100.0 na na na na 100.0 

economic na kg CO2e 12.156 na na na na 12.156 

% 100.0 na na na na 100.0 

System boundaries B2 

mass natural 
gas 

kg CO2e 8.882 0.121 0.021 -0.043 -0.077 8.904 

% 99.8 1.4 0.2 -0.5 -0.9 100.0 

mass Cat 1 
MRF

e 
kg CO2e 8.882 0.121 0.021 -0.032 -0.077 8.915 

% 99.6 1.4 0.2 -0.4 -0.9 100.0 

economic natural 
gas 

kg CO2e 12.156 0.166 0.029 -0.059 -0.106 12.186 

% 99.8 1.4 0.2 -0.5 -0.9 100.0 

economic Cat 1 
MRF

e
 

kg CO2e 12.156 0.166 0.029 -0.044 -0.106 12.201 

% 99.6 1.4 0.2 -0.4 -0.9 100.0 

Worst yield scenario 

System boundaries B1 

mass na kg CO2e 13.763 na na na na 13.763 

% 100.0 na na na na 100.0 

economic na kg CO2e 15.214 na na na na 15.214 

% 100.0 na na na na 100.0 

System boundaries B2 

mass natural 
gas 

kg CO2e 13.763 0.149 0.032 -0.173 -0.224 13.549 

% 101.6 1.1 0.2 -1.3 -1.7 100.0 

mass Cat 1 
MRF

e
 

kg CO2e 13.763 0.149 0.032 -0.132 -0.224 13.589 

% 101.3 1.1 0.2 -1.0 -1.6 100.0 

economic natural 
gas 

kg CO2e 15.214 0.165 0.036 -0.191 -0.248 14.976 

% 101.6 1.1 0.2 -1.3 -1.7 100.0 

economic Cat 1 
MRF

e
 

kg CO2e 15.214 0.165 0.036 -0.146 -0.248 15.021 

% 101.3 1.1 0.2 -1.0 -1.6 100.0 
a 
na: not applicable 

b
 Fuel: Fuel used in the rendering process 

c
 T: transport farm to slaughter 

d
 ABPM: animal by-product management 

e
 Cat 1 MRF: category 1 mammalian rendered fat 

 

5.5 Sensitivity analysis 

A sensitivity analysis was performed to test the choice of avoided products by the 

category 1 rendered products. In the base case system modelled, production of British 

average electricity is avoided by the combustion of MBM in FBC power plant, and surplus 

category 1 MRF is used in the production of biodiesel and avoids the production of fossil 
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diesel and CO2 emissions from its combustion in internal combustion engines (Figure 30). 

A test was performed assuming that the electricity avoided was produced from natural gas 

(marginal electricity) and that surplus category 1 MRF avoids the production of palm oil 

from Malaysia (similar to category 3 MRF as it could be argued that rendered fats displace 

not fossil fuels but other sources of marginal fat for the production of biodiesel). It should 

be noted that category 1 MRF can only replace palm oil in combustion applications. The 

sensitivity analysis was performed for system boundaries B2 (the only affected by 

changes in ABP management) and only for economic allocation at the slaughterhouse 

gate. Table 19 presents the results of this test. 

Table 19 Life cycle greenhouse gas emissions associated with 1 kg beef at the 
slaughtering gate for avoidance of marginal products by both categories of 
rendered productsa 

Fuel
b
 Units 

Animal 
production 

Slaughter T
c
 

ABPM
d 

Total 
Cat 1 Cat 3 

Best yield scenario 

natural 
gas 

kg CO2e 12.156 0.166 0.029 -0.010 -0.106 12.235 
% 99.4 1.4 0.2 -0.1 -0.9 100 

Cat 1 
MRF

e
 

kg CO2e 12.156 0.166 0.029 -0.025 -0.106 12.220 
% 99.5 1.4 0.2 -0.2 -0.9 100 

Worst yield scenario 

natural 
gas 

kg CO2e 15.214 0.163 0.036 -0.032 -0.248 15.134 
% 100.5 1.1 0.2 -0.2 -1.6 100 

Cat 1 
MRF

e
 

kg CO2e 15.214 0.165 0.036 -0.075 -0.248 15.092 
% 100.8 1.1 0.2 -0.5 -1.6 100 

a 
na: not applicable 

b
 Fuel: Fuel used in the rendering process 

c
 T: transport farm to slaughter 

d
 ABPM: animal by-product management 

e
 Cat 1 MRF: category 1 mammalian rendered fat 

 

This test illustrated that for either average or marginal products avoided, the contribution 

from the ABP management system to the GHG emissions of beef is negative and 

significantly minor. However the magnitude is different depending on the final use of the 

rendered products. Contrary to the base case, when the fuel used for the rendering of 

ABP was category 1 MRF, the GHG emissions associated with beef production were 

marginally lower.  
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5.6 Discussion and conclusion 

The GHG emissions associated with beef production at the slaughtering plant gate 

depend mainly on the slaughtering scenario and co-product handling approach adopted. 

The inclusion of the slaughtering process and ABP management did not have a major 

effect on the GHG emissions of beef production. The choice of co-product handling 

approach is an important reason for differences in GHG emissions for similar product 

systems (Cederberg and Stadig, 2003; Ayer et al., 2007; Curran, 2007a; Thomassen et 

al., 2008a; Flysjö et al., 2011a). When economic allocation is used the co-product with the 

highest economic value (beef) is allocated the greatest proportion of the GHG emissions 

associated with the system. When mass allocation is used GHG emission are allocated 

equally on a mass basis to all of the co-products. Consequently, GHG emissions of beef 

production at the slaughtering plant gate were lower when mass rather than economic 

allocation was used. 

Within system boundary B2, on-farm animal production was responsible for greater than 

99.6% of the GHG emissions of beef production (Table 18). The second largest positive 

contributor being slaughtering, which was responsible for 1.4 and 1.1% of the GHG 

emissions for the best and worst case slaughtering scenarios respectively. In both cases 

transport (of live cattle to the slaughterhouse) was responsible for 0.2% of GHG 

emissions. 

The contribution of category 1 ABP management to the GHG emissions of beef 

production depended on the slaughtering scenario and fuel source used in the rendering 

process. The contribution of category 1 ABP rendering to the GHG emissions of beef were 

marginal and negative (between -0.4 and -1.3%). In the base case, the GHG emission 

credits were higher when natural gas was used as a fuel as opposed to MRF. This is 

because in the base system modelled, when category 1 MRF is not used as a fuel for 

rendering, it is used for the production of biodiesel and the conversion of more MRF to 

biodiesel to avoid fossil diesel resulted in a greater GHG avoidance than the use of MRF 

instead of natural gas as a fuel for rendering. In Chapter 4, it was reported the GHG 



103 
 

emissions associated with mammalian rendered products and concluded that from a 

Climate Change perspective it was beneficial to maximise the use of MRF as a fuel for the 

rendering process. However, in this study the system boundaries were constrained to the 

ABP collection and the rendering process. The current study includes beef production at 

the slaughtering plant gate with the system being expanded to include total destruction of 

unavoidable ABP (rendering and use of rendered products). The contribution of category 

3 ABP management to the GHG emissions of beef production was also minor and 

negative (between -0.9 and -1.7%), regardless of the fuel used in the rendering process. 

The negative emissions of category 3 ABP rendering are due to the avoidance of marginal 

palm oil and soybean meal production (which incur emissions associated to agricultural 

processes and land transformation). 

It is important to notice the effect of replacing not fossil diesel (and associated production 

and fossil emissions from combustion), but replacing a different source of marginal fat to 

produce biodiesel (as in the sensitivity analysis). In this test, the system does not gain 

credits from fossil diesel combustion (and production) avoidance since both MRF and 

palm oil are biogenic material. The credits for category 1 MRF in the sensitivity test are 

associated with the avoidance of agricultural and land transformation emissions from palm 

oil (as with the category 3 MRF). Contrary to the best case, in the sensitivity analysis, beef 

production performed better from a Climate Change perspective when category 1 MRF 

was used as fuel in rendering (instead of natural gas). Most importantly, ABP 

management provided GHG emission credits in any case (Tables 18 and 19). 

GHG emissions associated with the beef production at the slaughtering plant were lower 

for the best than the worst case slaughtering scenario. With higher yields, less animal live 

weight is required to produce a given amount of beef. However, the GHG emission 

avoidance from ABP management was higher for the worst case slaughtering scenario 

because more material that avoids the production of higher GHG intensity substitutes 

(fossil fuels, soya bean meal and palm oil) is produced. Higher yields reduce GHG 

emissions from on farm beef production, which is ultimately the most important 
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component in the beef production system. But higher yields may result in more domestic 

waste production without necessarily an increase in food intake (e.g. more bone and/or 

fat). This indicates that an even more holistic and detailed approach including 

consumption in households and domestic waste management is required to adequately 

analyse the effect of slaughtering yields and animal by-product processing. 

The primary energy requirements for slaughtering have been reported as 1390 kJ/kg 

carcass weight and 5500 kJ/kg final meat product (Ramírez et al., 2006). Similarly, Lopez 

et al. (2010) reported that the energy requirement for slaughtering ranged from 1323 – 

5291 kJ/kg (15% electricity + 85% heat) carcass weight. These values are in good 

agreement with the value of 1404 kJ/kg in The Finnish Environment (The Finnish 

Environment, 2002) used in the current study.  If the value at the higher end of the range 

reported by Lopez et al. (2010) had been used in the system modelled, with economic 

allocation and natural gas as a fuel for rendering then GHG emissions would have 

increased to 12.738 and 15.710 kg CO2e/kg beef for the best and worst case slaughtering 

scenarios respectively.  In this situation the contribution from slaughtering would increase 

to 5.6 and 5.7% for best and worst case slaughtering scenarios respectively. The relative 

contribution of slaughtering to the GHG emissions of beef production is strongly 

dependent on energy use during slaughtering. However, animal production is still the 

greatest contributor. 

Peters et al. (2010) suggested that approximately 10% of the GHG emissions associated 

with beef production in Australia were due to meat processing. This is considerably higher 

than in the current study. Differences in energy use during slaughtering may be the 

reason. In the study of Peters et al. (2010) electricity and thermal energy use was 

considerably higher than those used in the current study (1440 and at least 1300 kJ/kg 

carcass weight respectively considering an energy density of 24.5 MJ/kg coal (DEFRA, 

2010b)). Peters et al. (2010) also included additional thermal energy from LPG that has 

not been accounted in the comparison here. In the current study all the heat in 
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slaughtering is derived from natural gas, which has a lower GHG emission intensity than 

coal, which is one more reason for the lower Climate Change relevance from slaughtering. 

The GHG emissions from on-farm beef production used in the current study were 6.888 

kgCO2e/kg beef live weight (pers. comm. AG Williams, 2011), which represents an 

average figure for England and Wales based on system modelling (Williams et al., 2006). 

Empirical studies based on real farm data have reported GHG emissions of 15.5 and 13.0 

kgCO2e/kg beef live weight for conventional systems in Wales (Edward-Jones et al., 2009) 

and Ireland (Casey and Holden, 2006a) respectively. The value used in the current study 

is relatively low and it should be noticed that if higher GHG intensity for beef production 

would have been used, the contribution of slaughtering and ABP management would have 

been even lower. 

The current study has demonstrated that the inclusion of animal slaughtering and ABP 

rendering in the system boundaries does not radically affect the GHG emissions 

associated with beef production. However slaughtering yields and co-product allocation 

methods do. Maximising the utilisation of produced beef (higher yield) results in lower 

GHG emissions associated with the mass of edible product. The inclusion of slaughtering 

adds positive GHG emissions to beef production, but these are very low in comparison 

with on-farm GHG emissions. The treatment of ABP by rendering provides credits to the 

beef production system through the avoidance of products such as fossil fuels, and 

marginal protein meals and fats. The benefits of ABP by rendering are marginal in 

comparison to the emissions from the animal production system. 
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6 Life cycle fossil energy use and greenhouse gas emissions of broiler 

production in the UK 

6.1 Abstract 

Chicken meat derived from broiler production accounted for approximately 38 % of total 

UK meat production between 2000 and 2009. To date, there have been limited studies 

that comprehensively investigate the environmental burden of broiler production. The 

objectives of the study were to quantify the fossil energy use and greenhouse gas (GHG) 

emissions associated with two broiler production systems in the UK producing birds of 

different weights (‘Standard’ and 'Heavy') and to identify mitigation strategies. The study 

employed generic life cycle assessment methodology, using industry data to model 

economic flows and databases to account for natural flows. 

For the ‘Standard’ production system fossil energy use and GHG emissions were 8,961 

MJ and 1,798 kg CO2e/tonne live weight at the farm gate.  For the ‘Heavy’ production 

system fossil energy use and GHG emissions were: 9,594 MJ and 1,901 kgCO2e/tonne 

live weight. In both production systems, feed production and delivery was the greatest 

contributor to fossil energy use and GHG emissions, contributing 62 % and 79 % 

respectively. GHG emissions associated with UK broiler production are estimated to be 

3.5 million tonnes CO2e (approximately 0.6 % of total UK GHG emissions). Greatest 

mitigation opportunities for reducing the GHG emissions associated with broiler production 

are related to feed production (reduction in feed conversion ratio (FCR), changes in feed 

formulation, mitigation in crop agriculture) and improving energy efficiency in broiler 

houses. 

6.2 Keywords 

Broiler chicken, feed, life cycle assessment, energy, greenhouse gases, mitigation 

6.3 Introduction 

It is widely accepted that agriculture has a significant impact on the environment. Steinfeld 

et al. (2006) estimated that animal production accounts for 18 % of global greenhouse gas 

(GHG) emissions, whilst within Europe, livestock farming is estimated to be responsible 
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for 10 % of GHG emissions (Lesschen et al., 2011). The majority of GHG emissions from 

EU livestock farming originate from beef, milk and pork production which are estimated to 

be responsible for 29, 29 and 25 % of livestock GHG emissions, respectively (Leip et al., 

2010). Within Europe, poultry meat production is estimated to be the fourth largest 

contributor (8 %) to GHG emissions arising from livestock production. 

The term poultry includes chickens, turkeys, geese and ducks. In the UK, broiler chickens 

are the predominant poultry meat produced, with an average of 835 million birds 

slaughtered per annum between 2000 and 2009 (FAO, 2011), representing approximately 

38 % of total meat production. Globally, meat production is projected to more than double 

from 1999-2001 to 2050, with poultry being the commodity of choice (Steinfeld et al., 

2006). Indeed, between 2000 and 2008 global meat production increased from 233 to 279 

million tonnes, an increase of 19%. Over the same period, the global chicken stock 

increased from 14.5 to 18.4 thousand million, an increase of 26 % (FAO, 2011). 

Consequently, it is important to quantify the GHG emissions associated with broiler 

production. 

Life Cycle Assessment (LCA) is a mature ISO-standardised tool for evaluation of the 

environmental impact of a product or service throughout its life cycle (ISO, 2006a; b), 

which may include various impact indicators (climate change, eutrophication, acidification, 

etc). Recently, life cycle approaches dedicated only to climate change, often called 

Carbon Footprints (CF), have become frequent as standardised by the British Standard 

(BSI, 2008b). Life cycle approaches (LCA or CF) have been used to evaluate the 

environmental impact of ruminant products such as milk and beef (de Boer, 2003; Casey 

and Holden, 2005; 2006a; Williams et al., 2006; Thomassen et al., 2008b; Edward-Jones 

et al., 2009; Beauchemin et al., 2010; Pelletier et al., 2010b; Peters et al., 2010; Flysjö et 

al., 2011b). Similarly, studies have been conducted on non-ruminant products such as pig 

meat (Basset-Mens and van der Werf, 2005; Williams et al., 2006; Pelletier et al., 2010a) 

and poultry meat (Williams et al., 2006; Katajajuuri et al., 2008; Pelletier, 2008). However, 

there are notably fewer studies relating to non-ruminant than ruminant products, possibly 
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because ruminant products are associated with significantly higher GHG emissions 

because of enteric fermentation in the rumen (de Vries and de Boer, 2010). In spite of 

their lower GHG emission intensity, pig and poultry production are important sectors of 

both the UK and global animal production industry, and it is important to understand their 

contribution to global warming. Research into the environmental impacts of poultry 

production has normally focussed on point-source emissions relating to litter and gaseous 

emissions from farms, with holistic life cycle approaches being less frequent (Pelletier, 

2008). Life cycle approaches are important because they help to identify elements in a 

production chain where the greatest improvements can be made. 

GHG emissions associated with broiler production, derived from data collected from 

commercial farms have been reported for both the US and Finland (Katajajuuri et al., 

2008; Pelletier, 2008). Similarly, GHG emissions associated with broiler production, 

derived using a system modelling approach have been reported for the UK (Williams et 

al., 2006). However, no studies have reported the GHG emissions for UK broiler 

production derived from data collected from commercial farms. 

The primary objective of the current study was to collect data from commercial farms to 

quantify the life cycle fossil energy use and GHG emissions associated with two broiler 

production systems in the UK. The secondary objective was to examine the fossil energy 

use and GHG emissions associated with broiler feed production. 

6.4 Materials and methods 

The study employed a generic LCA methodological framework (ISO, 2006a; b). Two 

functional units were employed for each production system: (i) 1 tonne broiler live weight 

at the farm gate, and (ii) 1 tonne broiler feed delivered to the farm. Data collected from 

commercial farms and a feed mill was used to quantify economic flows (product and 

waste flows) in both the broiler production systems, and in the broiler feed system. Data 

for economic flows was supplied by VION Food Group Ltd (VION). Infrastructure 

processes (e.g. production of equipment, maintenance and repair of agricultural vehicles) 

were excluded from the product systems. 
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The co-product handling method employed depended on the situation and co-products 

analysed. Economic allocation was preferred in cases of co-production of feed 

ingredients. System expansion was used to account for the burdens avoided by utilising 

poultry litter, wash water, and rendering of mortalities. 

The system was modelled using the Simapro 7.3 ® software package (PRe Consultants, 

2011), which provides assistance in calculation and access to databases. Fossil energy 

use was assessed using the Cumulative Energy Demand 1.08 impact assessment 

method (Frischknecht et al., 2003). Climate Change was assessed using the Greenhouse 

Gas Protocol 1.01 impact assessment method (The Greenhouse Gas Protocol, 2010).  

The product systems are described as follows: 

6.4.1 Broiler production system 

Two different broiler production systems were studied, which are representative of 95% of 

the indoor reared chickens produced according to independently audited standards in the 

UK (RSPCA, 2008). In the first system (Standard) both male and female birds were reared 

to 2.2 kg live weight, whilst in the second system (Heavy), female birds were reared to 2.2 

kg and male birds were reared to 3.9 kg live weight. The characteristics of each 

production systems are presented in Table 20. Slightly different feed formulations were 

used in each production system (Table 21). 

Economic flows were collected for two commercial farms for each production system 

during 2010. Altogether the 4 farms produced 8,306 tonnes live weight during the study 

period. The ‘Standard’ farms produced 3,872 and the ‘Heavy’ farms produced 4,434 

tonnes live weight, which represents 0.47 % of annual broiler production in the UK 

(assuming 835 million head of chicken are slaughtered annually between 2000 and 2009 

(FAO, 2011) at an average slaughter weight of 2.1 to 2.2 kg per head). 
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Table 20 Economic flows and summary information associated with ‘Standard’ and 
‘Heavy’ broiler production systems in the UK (per 1 tonne live weight) 

Economic flow or attribute in general 
information 

Standard Heavy 

General information   

Average start weight (g) 43.00 43.00 

Stocking density (Birds/m
2
) 19.34 16.74 

Average cycle length (days) 48.79 59.75 

Average slaughter weight (kg) 2.24 3.06 

Ventilation and lighting control system type ON-OFF ON-OFF 

Inputs   

Feed Conversion Ratio (FCR) 
a 

1.72 1.84 

Chicks mass (kg) 19.89 14.63 

Electricity (MJ) 335.05 420.48 

Heating (MJ) 
b
 1,820.73 1,805.47 

Diesel (MJ) 
c
 28.32 28.32 

Bedding (shavings) (kg) 71.12 62.59 

Cleaning chemicals (kg) 
c 

0.75 0.75 

Water use (kg) 3,751.87 3,573.22 

Outputs   

Mortalities (kg) 8.55 12.90 

Wash water (m
3
) 0.15 0.21 

Litter (kg) 580.8 610.8 

Rubbish (kg) 
c
 3.33 3.33 

CH4 from manure management (kg) 
c,d

 0.88 0.88 

N2O from manure management (kg) 
c,d

 0.36 0.36 
a
 Feed Conversion Ratio (FCR), defined as  kg feed consumed divided by kg live weight gained 

b
 Conversion of volume of LPG using a density of 1,968 litres/tonne and a Net Calorific Value 45.91 

GJ/tonne (DEFRA, 2010b) 
c
 Global average (not dependent on production system) 

d
 Natural flows 

 

Table 21 Aggregated diet formulations used in the ‘Standard’ and ‘Heavy’ broiler 
production systems 

Ingredient Standard (%) Heavy (%) 

Wheat 49.56 51.02 

Wheat (added non milled) 11.41 11.23 

Soya meal 21.51 20.33 

Field beans
a 

7.24 7.34 

Rapeseed
a 

5.92 6.00 

Soya oil 3.60 3.52 

Limestone 0.50 0.37 

Monocalcium phosphate
 

0.14 0.10 

Fishmeal 0.11 0.09 
a
Field beans and rapeseed are milled together and deliver as a single vegetable protein meal to the 

feed mill 
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The system modelled is presented in Figure 32. The system includes: (i) chick production 

and delivery (ii) feed production and delivery to the farms (see section 2.2), (iii) heating of 

the broiler houses (liquefied petroleum gas (LPG)), (iv) transport of LPG to the farms 

(assumed 200 km), (v) weekly trial tests of emergency diesel generators, (vi) transport of 

diesel to the farms (assumed 200 km), (vii) production of British electricity, (viii) production 

of bedding material, (iix) transport of bedding material to the farm (assumed 200 km), (ix) 

water use, (x) production of chemicals, (xi) transport of chemicals to the farm (assumed 

200 km), (xii) methane and nitrous oxide emissions resulting from manure management 

(xiii) transport of litter to secondary farms for land spreading (assumed 10 km), (xiv) 

transport of wash water to secondary farms for land spreading (assumed 10 km), (xv) litter 

disposal scenarios, (xvi) avoided inorganic fertiliser production due to displacement by 

wash water,  (xvii) transport of mortalities to the rendering plant (assumed 200 km), (xviii) 

rendering of mortalities in category 1 or 2 rendering plant, (xix) transport of waste to 

landfill, and (xx) landfill. The final use of category 2 rendered products arising from the 

rendering of mortalities was included in the system (Figure 32) according to economic 

flows reported by Chapter 4 and Lopez et al. (2010). It was assumed that category 1 

rendered fat produced was used as fuel in the rendering process and the surplus 

rendered fat in the production of biodiesel. Under EU legislation (EC, 2009) poultry 

mortalities are classified as category 2 animal by-products however they are normally 

mixed with, and processed as category 1 animal by-products. Transport distances of 200 

km for inputs were considered to be representative of UK broiler production. GHG 

emissions as methane (CH4) and nitrous oxide (N2O), associated with manure 

management were calculated using a Tier 1 approach as presented in the IPCC 

guidelines (2006), and the emission values used are presented in Table 20. In the system 

modelled, the only flows considered in relation to chick production were energy use (gas 

oil and electricity). The amount of heat (0.14 MJ per chick) and electricity (0.24 MJ per 

chick) used in hatcheries are aggregated figures provided from 4 VION hatcheries in UK. 

Data sources for the development of the life cycle inventory of broiler production are 

presented in Table 22. 
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Figure 32 Broiler production system showing main processes (T: transport) 
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Table 22 Data sources used in the life cycle inventory for broiler production flows 

Process Data source Geographical relevance 

Heat from LPG Production of LPG: Ecoinvent 
databases (Ecoinvent Centre, 
2010) 

GHG emissions from LPG 
combustion: DEFRA (2010b) 

Production: Europe 

GHG emissions: UK 

Heat from natural gas Ecoinvent databases (Ecoinvent 
Centre, 2010) 

Switzerland. Modified for UK 
natural gas production 

Diesel generator Ecoinvent databases (Ecoinvent 
Centre, 2010) 

Europe 

Electricity (average) Ecoinvent databases (Ecoinvent 
Centre, 2010) 

UK 

Electricity from natural 
gas power plants 
(marginal) 

Ecoinvent databases (Ecoinvent 
Centre, 2010) 

UK 

Bedding (production of 
shavings) 

US Life Cycle Inventory (NREL, 
2008) 

US (the only life cycle inventory 
process available for this 
process, technology is probably 
similar) 

Water Ecoinvent databases (Ecoinvent 
Centre, 2010) 

Switzerland modified for UK 
electricity 

Chemicals Ecoinvent databases (Ecoinvent 
Centre, 2010) 

Europe 

Inorganic fertilisers 
production 

Ecoinvent databases (Ecoinvent 
Centre, 2010) 

Europe 

rendering (and system 
expansion for heat for 
the rendering process, 
electricity, and biodiesel 
production from 
remaining tallow) 

Economic flows adapted from 
Chapters 4 and 5 

Biodiesel production adapted from 
Lopez et al. (2010) 

UK (rendering) 

US (biodiesel production) 

Landfill Ecoinvent databases (Ecoinvent 
Centre, 2010) 

Switzerland (assumed similar to 
UK) 

Emissions from manure 
management 

Calculation according to Tier 1 
IPCC (2006) 

 

Emissions from organic 
fertilising 

Calculation according to Tier 1 
IPCC (2006) 

 

Emissions from 
inorganic fertilising 

Calculation according to Tier 1 
IPCC (2006) 

 

FBC power plant 
electricity generation 

Global efficiency (Yassin et al., 
2009) 

UK 

Transport Ecoinvent databases (Ecoinvent 
Centre, 2010) 

Europe 

 

The nutrient value of wash water was determined by analysing two samples of wash water 

from one farm to determine the ammonium nitrogen, phosphorus (P2O5) and Potassium 

(K2O) content (Table 23). Indirect GHG emissions associated with volatilization of N in 
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organic fertiliser were included. System expansion was used to model the avoidance of 

inorganic fertiliser use including: (i) indirect GHG emissions associated with volatilization 

of N from inorganic fertiliser, and (ii) production of the inorganic fertiliser. Indirect 

emissions of N2O associated with volatilization were included because these vary 

depending on whether the fertiliser applied is inorganic or organic. Emissions associated 

with the application of organic fertiliser to land were calculated as 0.002 kg N2O per kg of 

N in litter and wash water. Emissions associated with the application of inorganic fertilisers 

to land were calculated as 0.001 kg N2O per kg of N in fertiliser using a Tier 1 approach as 

detailed in the IPCC guidelines (2006). Poultry litter and wash water is normally spread on 

farms located near to broiler farms, hence a transport distance of 10 km was assumed. 

Table 23 Nutrient content of wash water and poultry litter, nutrient availability 
factors and values used for the avoidance of inorganic fertiliser production  

Parameter Value from 
literature 

Samples 
average 

Availability 
factor 

Value used as 
avoided 

production 

Wash water     

Ammonium – N 
(kg/m

3)
 

n.a.
a
 0.195 100%

d
 0.195 

Phosphorus - P2O5 

(kg/m
3
) 

n.a.
a
 0.464 100%

d
 0.464 

Potassium - K2O 
(kg/m

3
) 

n.a.
a
 0.504 100%

d
 0.504 

Litter     

Dry matter (%) 35.8
b 

32.7 n.a.
a 

n.a..
a
 

Readily available - 
N (kg/tonne fresh 
weight) 

10
b 

4.6 100%
e 

4.5 

Phosphorus - P2O5 

(kg/tonne fresh 
weight) 

25.2
b 

16.4 60%
f 

9.8 

Potassium - K2O 
(kg/tonne fresh 
weight) 

19.3
b 

22.8 90%
f 

20.5 

Hydrogen – H (% 
dry matter) 

4.6
c 

5.8 n.a.
a 

n.a.
a
 

Gross Heating 
Value (MJ/tonne 
dry matter) 

13.1
c 

18.4 n.a..
a
 n.a.

a
 

Ash content 
(% dry matter) 

33.7 - 100%
g 

n.a.
a
 

a 
n.a. Not applicable 

b 
Nicholson et al. (1996) 

c
 Quiroga et al. (2010) 

d
 expert judgement (Paul Lewis, pers. comm., 2011) 

e 
100% since this N is readily available 

f
 DEFRA (2010a) 
g
 Fibrophos (2011) 
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6.4.2 Litter disposal scenarios 

Two scenarios for litter disposal were modelled: Litter-to-fertiliser and Litter-to-power. 

Over 60% of the litter produced by VION was sent to power plants whilst the rest is sent to 

land spreading. Thus the main scenario is litter-to-power. 

Litter-to-fertiliser: This scenario involved the disposal of litter by land spreading as organic 

fertiliser. Litter disposal was treated in the same way as wash water (see above). The 

nutrient value of litter was determined by taking two samples of litter from one farm and 

analysing to determine the ammonium nitrogen, phosphorus (P2O5) and Potassium (KO2) 

content. The results were in agreement with literature values as presented in Table 23. 

Availability factors were used to account for inorganic replacement (Table 23). 

Litter-to-power: This scenario involved the disposal of litter by combustion in Fluidised Bed 

Combustion (FBC) power plants for the production of electricity. Litter was transported to 

a FBC power plant (assuming a distance of 200 km), where the material was burnt to 

produce electricity. The production of electricity by this means displaces the production of 

average British electricity. A test with natural gas as the electricity technology displaced is 

presented in the Sensitivity Analysis. 

Litter samples were also analysed for dry matter (DM), Gross Heating Value (GHV) and H 

content.  The Net Heating Value (NHV) on a DM and fresh weight basis, were calculated 

according to Quiroga et al. (2010). The values are in reasonable agreement with literature 

values as presented in Table 23. 

It was assumed that the conversion efficiency of FBC power plants is 18 % (Yassin et al., 

2009). Thus, in the life cycle inventory, the combustion one tonne of fresh poultry litter in a 

FBC power plant would produce 1,982 MJ of electricity. 

The ash produced from FBC power plants is used as a fertiliser (Fibrophos). Using the 

ash content of broiler litter reported by Quiroga et al. (2010) and the  DM content of 

poultry litter (Table 23), the ash content of fresh poultry litter was calculated as 12%. The 

Nitrogen, Phosphorus and Potassium contents of Fibrophos were 0, 12 and 12% 
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respectively (Fibrophos, 2011). Land spreading of Fibrophos avoids the production of 

inorganic fertilisers. Ash was transported to land spreading assuming a distance of 200 

km. 

6.4.3 Broiler feeds production and delivery system 

Feed production starts with the production of ingredients. Once ingredients are delivered 

to the feed mill, there are two stages involved in feed production: 1) milling, mixing and 

pelleting (milling) and 2) blending in whole wheat (Figure 33). Broiler production involves 

five growth phases, with different diets being offered during each phase.  Diet formulations 

for each phase were provided by VION and the composition of aggregate diets is 

presented in Table 21. 
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feed delivered
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ingredients 
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water

heat

(natural gas)

British

electricity

T

Ingredients

non-milled

T

T

 

Figure 33 Broiler feed production and delivery system showing main processes (T: 
transport) 

 

Data was supplied for a commercial broiler feed mill for 2010, which produced 275,300 

tonnes/annum. The amount of energy used in feed production (MJ/tonne) was 147.79 MJ 

heat (as energy contained in the fuel: natural gas) and 65.3 MJ electricity (delivered to the 

plant) (Figure 33). The amount of water used in heat treatment (steam) during milling was 

66.9 kg/tonne milled feed produced. Transport of ingredients to the feed mill, and feed 

from the plant to broiler farms, was assumed to be 200 km for each journey. 

Field beans and rapeseed were milled together and delivered to the feed mill as a single 

vegetable protein meal containing 55 % field beans and 45 % rapeseed. Data on water 
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and electricity used in the production of this vegetable protein meal was supplied by 

VION. 

Data sources for the development of the live cycle inventory of broiler feed production and 

delivery are presented in Table 24.  

Table 24 Data sources used in the life cycle inventory for broiler feed production 
and delivery flows 

Process Data source Geographical relevance 

Wheat (intensive 
production) 

Ecoinvent databases (Ecoinvent 
Centre, 2010) 

Switzerland (assumed similar) 

Fishmeal
a 

LCA foods database (Nielsen et al., 
2003) 

Denmark 

(assumed similar) 

Soya meal
b 

Production: Ecoinvent databases 
(Ecoinvent Centre, 2010) 

Processing: LCA foods database 
(Nielsen et al., 2003) 

Production of soya bean: Brazil 

Processing: Denmark (assumed 
similar)  

Soya oil
c
 Production: Ecoinvent databases 

(Ecoinvent Centre, 2010) 

Processing: LCA foods database 
(Nielsen et al., 2003) 

Production of soya bean: Brazil 

Processing: Denmark 

Limestone Ecoinvent databases (Ecoinvent 
Centre, 2010) 

Switzerland (assumed similar) 

Monocalciumphosphate LCA foods database (Nielsen et al., 
2003) 

Denmark (assumed similar)
 

Fava beans (intensive 
production) 

Ecoinvent databases (Ecoinvent 
Centre, 2010) 

Switzerland (assumed similar) 

Rapeseed (intensive 
production) 

Ecoinvent databases (Ecoinvent 
Centre, 2010) 

Switzerland (assumed similar) 

Water Ecoinvent databases (Ecoinvent 
Centre, 2010) 

Switzerland modified for UK 
electricity 

Heat from natural gas Ecoinvent databases (Ecoinvent 
Centre, 2010) 

Switzerland modified for UK 
natural gas production 

Electricity (average) Ecoinvent databases (Ecoinvent 
Centre, 2010) 

UK 

Transport Ecoinvent databases (Ecoinvent 
Centre, 2010) 

Europe 

a
 Modified to allocate part of the environmental burden and resource use to the co-product fish oil 

according to the mass fraction of the co-products. Originally the life cycle inventory included system 
expansion that included the avoidance of rapeseed oil production. This is the only feed ingredient 
that allocation is based on mass as no economic information was available. The inclusion rate of 
this ingredient is not high and it is not expected radical variations in final results if using economic 
allocation. 
b
 Modified to allocate part of the environmental burden and resource use to the co-product soya oil 

according to the economic fraction of the co-products. Economic information was taken for years 
2006 to 2010 from The World Bank (2011). Originally the life cycle inventory included system 
expansion that included the avoidance rapeseed oil production.  
c
 Modified from original life cycle inventory of Soya meal (

b
) that included system expansion for the 

avoidance of rapeseed oil production. System was modified to obtain soya oil also as a co-product 
of the system according to economic fraction of the co-products. 
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The Ecoinvent database (Ecoinvent Centre, 2010) inventory for soya bean production in 

Brazil includes the non-renewable biogenic emissions associated with land 

transformation, using the proportion of land use transformation in the previous 5 years 

from arable land, shrub land and tropical rainforest. In the source the emissions from clear 

cutting of primary forest are fully allocated to the provision of stubbed land for cultivation 

that can be used for 2 years. 

6.5 Results 

6.5.1 Life cycle energy use in broiler production 

Fossil energy used in the two broiler production systems studied is presented in Figure 

34. Using the litter-to-power scenario, the total amount of fossil energy used to produce 

one tonne broiler live weight in both the ‘Standard’ and ‘Heavy’ production systems was 

8,961 and 9,594 MJ, respectively. Using the litter-to-fertiliser scenario the total amount of 

fossil energy used to produce one tonne broiler live weight in both the ‘Standard’ and 

‘Heavy’ production systems was 11,127 and 11,871 MJ, respectively. Both litter disposal 

scenarios resulted in negative energy use and therefore provided credits to the broiler 

production system. 

 

Figure 34 Fossil energy use associated with ‘Standard’ and ‘Heavy’ broiler 
production systems in the UK (MJ/tonne live weight) 
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The energy used in feed production and delivery accounted for the highest contribution to 

total energy consumption in the system. On-farm heat and electricity use were the second 

and third highest contributors respectively, whereas, chick production and delivery was 

the fourth highest energy user. These four accounted for 97 % of the fossil energy 

consumption in the broiler production systems studied when litter disposal was excluded 

(Figure 34). 

6.5.2 Life cycle GHG emissions associated with broiler production 

The GHG emissions associated with the two broiler production systems studied are 

presented in Table 25. Using the litter-to-power scenario the total GHG emissions 

associated with the production of one tonne broiler live weight in the ‘Standard’ and 

‘Heavy’ production systems were 1,798 and 1,901 kg CO2e, respectively. Using the litter-

to-fertiliser scenario the total GHG emissions were 1,976 and 2,088 kg CO2e, respectively. 

The GHG emissions associated with feed production provided the highest contribution to 

total emissions for the broiler production systems studied (79 %). The second highest 

contributor was on-farm heat, with manure management and on-farm electricity being the 

third and fourth highest contributors respectively. These four accounted for approximately 

98 % of the total GHG emissions associated with broiler production when litter disposal 

was excluded (Table 25). 

Negative GHG emissions arise from the rendering of mortalities and their associated 

credits (Chapter 4) and from litter disposal. Both litter disposal scenarios resulted in 

negative emissions, with the greatest credits being gained from the litter-to-power 

scenario. Spreading wash water to land also avoids GHG emissions associated with 

inorganic fertiliser production. However, these reductions were lower than the GHG 

emissions associated with transport of the wash water to where it will be applied to land. 

Consequently, application of wash water to land is associated with marginally positive 

GHG emissions. 
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Table 25 Greenhouse gas emissions associated with ‘Standard’ and ‘Heavy’ broiler 
production systems in the UK (kg CO2e/tonne live weight) 

Input/output Fossil 
(kgCO2e) 

Land 
transformation 

(kgCO2e) 

Total 
(kgCO2e) 

Contribution 
(%) 

Standard     

Feed production and delivery 1,163 424 1,586 79.04 

On-farm energy use (Heat and 
electricity) 

242 0 242 12.08 

Manure management 
(emissions) 

129 0 129 6.44 

Chick production and delivery 26 0 26 1.34 

Others minor contributors 23 0 23 1.19 

Rendering of mortalities 
(including transport) 

-2 0 -2 -0.10 

Total (excluding litter disposal) 1,584 424 2,007 100.00 

Litter-to-power scenario  -209  -209  

Total (litter-to-power scenario) 1375  1,798  

Litter-to-fertiliser scenario -31  -31  

Total (litter-to-fertiliser scenario) 1553  1976  

Heavy     

Feed production and delivery 1,249 434 1,683 79.41 

On-farm energy use (Heat and 
electricity) 

268 0 268 12.65 

Manure management 
(emissions) 

129 0 129 6.10 

Chick production and delivery 20 0 20 0.93 

Others minor contributors 21 0 21 1.05 

Rendering of mortalities 
(including transport) 

-3 0 -3 -0.14 

Total (excluding litter disposal) 1,686 434 2,120 100.00 

Litter-to-power scenario  -219  -219  

Total (litter-to-power scenario) 1,467  1,901  

Litter-to-fertiliser scenario -32  -32  

Total (litter-to-fertiliser scenario) 1,654  2,088  
a Others minor contributors: Shavings, Diesel, Chemicals, Water, Wash Water, Transport (LPG, 

diesel, shavings, chemicals, waste), Landfill 

 

6.5.3 Life cycle energy use in broiler feed production and delivery 

The fossil energy used in the production and delivery of broiler feed is presented in Figure 

35. The total amount of fossil energy used in the production and delivery of one tonne of 

broiler feed was 4,197 and 4,192 MJ for the ‘Standard’ and ‘Heavy’ production systems 

respectively. The highest contributions to total fossil energy use were associated with 

inclusion of wheat, soya meal and field beans/rapeseed meal in broiler feed, which in total 

accounted for the 56 % (Figure 35). 
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Fossil energy consumption associated with the transport of ingredients to the feed mill and 

feed to the farms were also important contributors. The energy used in transport was the 

same for both the feed ingredients and the finished feeds because the mass of material 

and distance travelled was assumed to be similar. The energy used by the feed mill (heat 

and electricity) accounted for between 6.4 % and 7.1 % of the total fossil energy used in 

feed production. 

 

Figure 35 Fossil energy use associated with broiler feed production and delivery for 
the ‘Standard’ and ‘Heavy’ production systems in the UK (MJ/tonne) 

 

6.5.4 Life cycle GHG emissions associated with broiler feed production and 

delivery 

The GHG emissions associated with the production and delivery of broiler feed are 

presented in Figure 36. Total GHG emissions associated with the production of one tonne 

of broiler feed were 923 and 913 kg CO2e, for the ‘Standard’ and ‘Heavy’ production 

systems respectively. These results include GHG emissions associated with land 

transformation, almost 100% of which were attributable to soya bean production in Brazil. 

Altogether, the inclusion of wheat, soya bean meal, field beans/rapeseed meal and soya 

oil in broiler feed accounted for 84 % of the total GHG emissions associated with feed 

production and delivery. 
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Figure 36 Greenhouse gas emissions associated with feed production and delivery 
for the ‘Standard’ and ‘Heavy’ broiler production systems (kg CO2e/tonne feed) 
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radically. This can be explained by the fact that both technologies are based on fossil 
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6.6 Discussion 

6.6.1 Differences between broiler production systems 

Fossil energy use and GHG emissions differed between the two production systems 

studies. The biggest differences being associated with FCR and on-farm energy use 

(Table 20). The FCR of birds on the ‘Heavy’ farms was 7% greater, than that of birds on 

the ‘Standard’ farms. Similarly, total fossil energy use (heat + electricity) was 10% higher 

on the ‘Heavy’ farms than that on the ‘Standard’ farms. As energy use for heating was 

similar for the two production systems. Differences in fossil energy use relate to 

differences in electricity use, with electricity use being 25% higher on the ‘Heavy’ than on 

the ‘Standard’ farms. Electricity is primarily used for ventilation and lighting. Differences in 

energy use can be attributed to the fact that the ‘Heavy’ birds took longer to grow and 

were less efficient than the ‘Standard’ birds. Consequently, to produce the same mass of 

birds, more electricity was used for ventilation and lighting. Differences in GHG emissions 

between the two production systems can be attributed to both on-farm electricity and feed 

use. Fossil energy use and GHG emissions/tonne of feed were similar for both the ‘Heavy’ 

and ‘Standard’ production systems. However, owing to differences in FCR more feed was 

used to produce the same mass of birds in the ‘Heavy’ than the ‘Standard’ production 

system. 

6.6.2 Comparisons with other broiler production studies 

Broiler production systems in the UK are fairly consistent, and the two systems studied 

represent 95% of UK broiler production (RSPCA, 2008). Williams et al. (2006) used LCA 

based on a systems modelling approach to study broiler production, and expressed the 

results on a dead weight basis. This model was developed further under DEFRA-funded 

project IS0222 and modified to express GHG emissions on a live weight basis for 

comparison with the current study. The results were 12,213 MJ and 2,016 kgCO2e/tonne 

live weight for fossil energy use and GHG emissions respectively (Williams, pers. comm. 

2011). In the current study, fossil energy use for the ‘Standard’ production system, using 

the litter to fuel scenario, was 27% lower and GHG emissions were 11% lower than those 
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reported by Williams et al. (2006). However, their results are based on litter disposal to 

land as an organic fertiliser. When compared with the litter to fertiliser scenario in the 

current study, differences in energy and GHG emissions were only 9% and 2% 

respectively. Results obtained in the current study were based on data collected from 

farms to account for economic flow, and databases and calculations to provide ‘static’ life 

cycle inventories. In contrast, systems’ modelling provides more ‘dynamic’ life cycle 

inventories which respond holistically to change. Although the approach adopted by 

Williams et al. (2006) was different to that adopted in the current study, the results are in 

good agreement. 

Katajajuuri et al. (2008), cited in de Vries and de Boer (2010), provide results of 16,000 

MJ and 2,079 kg CO2e/tonne live weight for energy use and GHG emissions arising from 

broiler production in Finland, based on data collected from farms. These results are 

significantly higher than those obtained in the current study. In contrast, the life cycle 

inventory for broiler production for Denmark derived from the LCA food database (Nielsen 

et al., 2003), included in the Simapro databases, provides results of 9,420 MJ and 1,820 

kg CO2e/tonne live weight, which are similar to those obtained in the current study. 

However, in the Danish products system modelled, significant credits are gained from the 

avoidance of rapeseed oil production through the co-production of soya oil when soya 

bean meal is produced. In the current study, system expansion is only used for disposal of 

wash water, litter and mortalities. Thus, these studies are not directly comparable. 

Pelletier (2008) using data collected from farms, reported energy use and GHG emissions 

of 14,900 MJ and 1,395 kg CO2e/tonne live weight respectively for the US broiler industry. 

For energy use and GHG emissions these results are higher and lower respectively than 

those obtained in the current study. Pelletier (2008) partitions 80% of energy use to feed 

production, with 18% being used on farm and 2% being attributed to chick production. In 

the current study, 62% of fossil energy was used for feed production and delivery, with 

35% being used on farm and 3% for chick production. The percentage of energy used for 

feed production reported by Pelletier (2008) was considerably higher than that used in the 
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current study. In addition, litter disposal accounted for -1,613 MJ/tonne live weight, which 

represents a lower credit than that of the litter-to-power scenario presented in the current 

study. 

In the study of Pelletier (2008), feed production was associated with energy use and GHG 

emissions of 6,920 MJ and 612 kg CO2e/tonne respectively. These values are 65% higher 

for energy use and 51% lower for GHG emissions than those obtained in the current 

study. Pelletier (2008), allocates GHG emissions to co-products based on gross energy. 

However, in the current study, ingredient life cycle inventories were derived from 

databases, such as the Ecoinvent database, which normally use economic allocation 

factors. As the approach to allocation adopted by the two studies was different, the results 

are not directly comparable. The use of economic allocation is probably more appropriate 

for feed production as the reason for processing is to provide a product to fulfil a human 

need in exchange for economic revenue. In the current study, the environmental burden 

associated with processing is ascribed to the co-products in proportion to their revenue as 

recommended (Guinee et al., 2004; BSI, 2008b). 

One of the major differences between the study reported by Pelletier (2008) and the 

current study relates to FCR. Pelletier (2008) reported a FCR of 1.9, which is 10% greater 

than that reported in the current study. If the FCR of birds in the ‘Standard’ production 

system using litter-to-power scenario had been similar then fossil energy use and GHG 

emissions would have been 9,724 MJ and 1,967 kgCO2e respectively. Differences in FCR 

may be related to the economics of broiler production. A worse FCR may be accepted 

from a cheaper diet if overall profitability is increased. The aggregate diet reported by 

Pelletier (2008) consisted of 70% US corn, 20% US soya bean meal, 2.5% poultry by-

product meal, 2.5% poultry fat, 2.5% US menhaden meal and 2.5% salt and limestone, 

which is significantly different to those presented in Table 21, with the main ingredient 

being corn instead of wheat. In addition, UK broiler diets contain a higher proportion of 

vegetable protein sources as the inclusion of terrestrial animal by-products in farm animal 

diets is currently prohibited under European legislation (EC, 2009). The GHG emissions 
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for US corn reported by Pelletier (2008) were 328 kg CO2e/tonne, which is mid-way 

between the values for the same product derived from the Ecoinvent databases 

(Ecoinvent Centre, 2010) and US Life Cycle Inventory (NREL, 2008) respectively. All of 

these values are considerable lower than the value of GHG emissions for wheat, derived 

from the Ecoinvent database and used in the current study. In addition, US soya bean 

meal production does not incur emissions associated with land transformation.  The use of 

corn instead of wheat as the main dietary ingredient and US soya bean instead of 

Brazilian soya bean are probably the main reasons for lower GHG emissions reported for 

the US broiler industry. 

6.6.3 GHG emissions of UK broiler production and mitigation options 

The model used (Figure 32) has been developed as a way to represent typical broiler 

production facilities in the UK. The study has not included detailed assessment regarding 

the GHG emissions associated with breading stock farms. A simple test reveals that the 

GHG associated with broiler production could increase 10% if the effect of one generation 

of breeders is included. 

Using values for broiler production in the UK (FAO, 2011) and GHG emissions calculated 

from the present study, GHG emissions from UK broiler production can be estimated to be 

3.5 million tonnes/annum. This represents 0.6% of total UK GHG emissions for 2009 

(DECC, 2011), although the emission associated with some crops (e.g. soya bean) do not 

occur in UK territory. The greatest opportunities for mitigation relate to feed production 

and utilisation. Potential mitigation strategies associated with crop production include 

different ways of improving the efficiency of fertiliser application such as precision farming 

techniques, use of slow release fertilisers, and timing of application (Smith et al., 2008). 

The environmental impact of broiler production could also be reduced by diet formulations 

that reduce reliance on ingredients associated with relatively high GHG emissions, such 

as wheat, soya bean meal and field bean/rapeseed meal. For example, processed animal 

protein (PAP), derived from rendering of animal by-products, has a similar protein content 

to soya bean meal, but a significantly lower GHG emissions intensity (Chapter 4). In the 



128 
 

current study, direct replacement of soya bean meal with mammalian PAP would reduce 

the GHG emissions associated with feed production by 26% and broiler production overall 

by 23%. However, as stated previously, the inclusion of terrestrial animal by-products in 

farm animal diets is currently prohibited under European legislation (EC, 2009). Reducing 

the FCR and maximising the efficiency of feed utilisation by appropriate diet formulation 

also offers a further opportunity for mitigation. 

Reductions in on-farm energy use and litter management strategies may further reduce 

GHG emissions. Reduction in electricity use can be achieved by the implementation of 

more advanced control systems (e.g. variable frequency drive) for ventilation instead of 

ON-OFF controls (Teitel et al., 2008). With regard to litter management, techniques such 

as reducing litter pH to inhibit the activity of microbes that convert organic matter to CH4 

have been discussed by Monteny et al. (2006). As with all life cycle approaches, it is 

important to realise that changes in one system may affect other systems. Consequently, 

all potential mitigation strategies would require careful evaluation before implementation. 

Changes in the energy sector (electricity and fuels production) towards major inclusion of 

renewable energy sources would also result in improvements in the poultry sector. 

6.7 Conclusion 

Fossil energy use and GHG emissions associated with two UK broiler production systems 

were determined using LCA methodology, using data collected from commercial farms. 

Fossil energy use and GHG emissions were 8,961 MJ and 1,798 kg CO2e/tonne live 

weight for the ‘Standard’ production system, and 9,594 MJ and 1,901 kg CO2e/tonne live 

weight for the ‘Heavy’ production system.  The main contributors to energy use and GHG 

emissions were feed production, on-farm energy use and emissions associated with litter 

management. The results are in agreement with other studies. It is estimated that the UK 

broiler industry produces 3.5 million tonnes of CO2/year, which represents 0.6% of total 

UK GHG emissions. The greatest mitigation opportunities relate to feed production and 

utilisation, on-farm energy use, and litter management strategies. 

  



129 
 

 

 

 

 

 

 

Chapter 7 

 

The influence of co-product handling on the greenhouse gas emissions of 

processed livestock products: A case study of chicken derived co-products and by-

products in the UK 
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7 The influence of co-product handling on the greenhouse gas emissions of 

processed livestock products: A case study of chicken derived co-products 

and by-products in the UK 

7.1 Abstract 

The study investigated the influence of co-product handling on the life cycle greenhouse 

gas (GHG) emissions of edible co-products (whole chickens, fillets, wings, etc) and poultry 

rendered products (poultry processed animal protein (PPAP), hydrolysed feather meal 

(HFM) and poultry rendered fat (PRF)). GHG emissions were calculated using economic 

flows from UK poultry processing industry.  The co-product handling methods employed 

were economic and mass allocation, main product approach and system expansion. 

Economic flows of negative value were treated by system expansion. The influence of fuel 

type used in poultry by-product processing was also evaluated. 

GHG emissions of mass weighted edible co-products were 3.381, 2.022, 3.460, and 3.057 

kgCO2e/kg for economic allocation, mass allocation, main product approach, and system 

expansion, respectively, when rendered fats were used as fuel in the poultry animal by-

product (ABP) processing system. When economic allocation was used for poultry 

processing and mass allocation was used for poultry ABP processing GHG emissions of 

PPAP, HFM and PRF ranged between -0.166 and 1.195 kg CO2e/kg. Different co-product 

handling combinations produced different life cycle impact assessment results. Economic 

allocation seems an appropriate method for the separation of co-products from by-

products whereas mass allocation should be used following initial separation. 

7.2 Keywords 

co-product handling, allocation, system expansion, chicken, meat, by-product, rendering 

7.3 Introduction 

Life cycle assessment (LCA) has frequently been used to evaluate the environmental 

burden of animal products (de Vries and de Boer, 2010). However, most studies tend to 

concentrate on animal production, with system boundaries being the farm gate. Although, 
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animal production is integral to the production of animal products, further processes are 

involved in the transformation of live animals to animal products. These post farm gate 

processes should be considered if the objective is to quantify the environmental burden of 

animal products.  Several studies on complete meals, based on animal products, have 

included post farm gate processes such as slaughtering, meat processing and waste 

management (Sonesson et al., 2005; Davis and Sonesson, 2008; Calderón et al., 2010; 

Davis et al., 2010). However, these processes have not generally been included in studies 

on the environmental impact of animal products (Williams et al., 2006; Edward-Jones et 

al., 2009). Animal slaughtering and meat processing plants produce a variety of co-

products and by-products, and the inclusion of post farm gate processes in LCA studies 

requires careful examination of the different co-products, by-products and waste streams 

arising from each stage of production. 

In LCA methodology a co-product is defined as any of two or more products arising from 

the same unit process or product system (ISO, 2006a). A by-product is defined as “a 

secondary product obtained during the manufacture of a principal commodity” (Meeker 

and Hamilton, 2006). A waste is defined as an economic flow with no or negative 

economic value (Guinee et al., 2004). The production volume of a by-product is not 

dominated by its demand, but by the demand and production volume of the main product 

(or co-products).  

Co-product handling methods are frequently debated in LCA methodology (Weidema, 

1993; Azapagic and Clift, 1999b; Ekvall and Finnveden, 2001; Ayer et al., 2007; Curran, 

2007a; Reap et al., 2008; Flysjö et al., 2011a). However, it is commonly affirmed that 

there is no single method to solve the multiple output (or input) problem (Guinee et al., 

2004; Curran, 2007a; Kendall and Chang, 2009). The LCA standard (ISO, 2006a; b) 

provides a hierarchy for co-product handling and suggests that: 1) Allocation, defined as 

“partitioning the input or output flows of a process or a product system between the 

product system under study and one or more other product systems” should be avoided, 

either by process division or system expansion, 2) If allocation has to be performed, the 
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inputs and outputs of the system should be divided according to the physical relationships 

in which inputs and outputs change according to changes in their functions, 3) If no 

physical relations can be defined, other relationships should be used (e.g. economic value 

of products and co-products). Recently, LCA dedicated to assessing exclusively climate 

change have been developed (Carbon Footprints (CF)). The CF standardised by BSI 

(2008b) provides a similar hierarchy to that recommended by ISO (2006a, b). However, if 

allocation cannot be avoided, it should be based on the economic value of the products. 

In practice, LCA/CF studies adopt one of two approaches to co-product handling; system 

expansion or economic allocation (Ayer et al., 2007; Schau and Fet, 2008; Kendall and 

Chang, 2009). Allocation is normally used in attributional LCA studies, whereas system 

expansion is normally used in consequential LCA studies (Baumann and Tillman, 2004; 

Curran, 2007a; Schmidt, 2008b; Thomassen et al., 2008a; Fruergaard et al., 2009). The 

reason for this is that system expansion is adequate to analyse changes in the product 

system, demand or production volume (Ekvall and Finnveden, 2001; Cederberg and 

Stadig, 2003), but it requires more data to include avoided product systems (Ekvall and 

Finnveden, 2001; Reap et al., 2008; Thomassen et al., 2008a). Economic allocation is 

more generally applicable (Weidema, 1993; Guinee et al., 2004), but economic value 

varies with time (Ayer et al., 2007; Feitz et al., 2007), tariffs and subsidies make it in-

perfect (Feitz et al., 2007; Schau and Fet, 2008) and it may not reflect the effect of 

decisions (Reap et al., 2008). Choice of co-product handling method is one of the main 

reasons for variability in results and non-comparability between studies of similar products 

(Azapagic and Clift, 1999b; Cederberg and Stadig, 2003; Heijungs and Guinee, 2007; 

Reap et al., 2008; Cherubini et al., 2009; Flysjö et al., 2011a). 

Poultry meat from broiler chickens contributes 38% to UK meat production with 1.3 million 

tonnes per annum being produced between 2000 and 2008 (FAO, 2011). The importance 

of taking a holistic approach when studying the environmental burden of broiler production 

has been discussed by Pelletier (2008). In the UK, animal by-products (ABP) that arise 

from animal production and meat processing are categorised by EU legislation (EC, 2009) 
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into category 1, 2 and 3 materials. Under this legislation, poultry by-products that are 

passed as fit for human consumption, but are not marketable, are classified as category 3 

materials. These by-products have a price and are considered to be valuable 

commodities. Feathers are used to produce hydrolysed feather meal (HFM) and offal and 

bone are used to produce poultry processed animal protein (PPAP) and poultry rendered 

fat (PRF). Although classified as category 3 material, disposal of poultry blood represents 

a cost to poultry processors. Dead birds are classified as category 2 material, disposal of 

which also represents a cost to poultry processors. Category 2 material is normally mixed 

with and treated as category 1 material prior to disposal by rendering. 

The influence of different co-product handling methods on the GHG emissions of ruminant 

co-products (milk and beef) has been studied (Cederberg and Stadig, 2003; Thomassen 

et al., 2008a; Flysjö et al., 2011a). However, in spite of being one of the most important 

animal products, the influence of different co-product handling methods on the GHG 

emissions of poultry meat co-products and by-products has not been investigated. The 

objectives of the study were to quantify the GHG emissions associated with different 

poultry meat co-products and by-products, and to investigate the influence of different co-

product handling methods.  

7.4 Materials and methods 

7.4.1 System description and economic flows 

The GHG emissions associated with UK broiler production to the farm gate, including 

emissions derived from fossil sources, agriculture and land transformation were derived 

from Chapter 6. Life cycle inventories for electricity production, heat from light fuel oil and 

natural gas, water and wastewater were taken from Ecoinvent databases (Ecoinvent 

Centre, 2010). 

7.4.1.1 Poultry meat processing 

Economic flows for poultry processing were provided for one UK plant by the VION Food 

Group Ltd (VION). Poultry processing involves two main stages. 1) Evisceration involves 
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the slaughtering and separation of whole birds (co-products) from non-edible material 

(e.g. viscera, heads, feathers) and 2) Portioning involves the separation of eviscerated 

whole birds into different chicken parts (e.g. fillets, legs, wings, etc.), further processing of 

the whole chicken (including cooling). The plant studied received eviscerated whole birds 

for portioning both from its own evisceration facility and from external sources. Economic 

flows for poultry processing were calculated based on 1.0 kg broiler live weight (Table 26). 

Table 26 Economic flows for the poultry processing plant during 2010 

Poultry Co-products Unit Amount 

Whole chickens (final) kg 0.033 

Chicken quarters, halves kg 0.001 

Wings kg 0.062 

Fillets kg 0.209 

Leg, drums, thighs kg 0.197 

Trims kg 0.008 

Edible offal kg 0.042 

Category 3 poultry by-products 
 

 

 Offal + bone kg 0.329 

 Feathers kg 0.064 

Inputs 
 

 

Live weight broiler kg 1.000 

Water kg 2.439 

Electricity MJ 0.379 

Heat (as energy content in Light fuel oil) MJ 0.218 

Transport (live birds from farm to plant) kg-km 200 

Negative economic flows 
 

 

Poultry blood kg 0.030 

birds dead on arrival, birds that do not pass post 
mortem inspection, heads, feet and floor waste kg 0.024 

Wastewater m
3
 0.002 

Emissions to air   

Methane, chlorodifluoro-, HCFC-22 kg 1.155 x 10
-5

 

 

Poultry processing produces a large variety of edible co-products and poultry ABP. In the 

current study the edible co-products functional units employed were: 1 kg whole chicken, 

1 kg fillet, 1 kg legs and thighs, 1 kg quarters and halves, 1 kg wings, 1 kg edible offal and 

1 kg trims. In addition, only for process subdivision, three groups of edible co-products 
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were also defined: 1 kg of whole chicken, 1 kg of fresh portions, and 1 kg of frozen 

portions. The poultry ABP functional units employed were 1 kg offal and bone, and 1 kg 

feathers. Edible offal consisted of gizzards, hearts, necks, hocks and liver. Packaging and 

further processing were not included in the system. 

7.4.1.2 Category 3 poultry by-products processing 

Economic flows for the processing of category 3 poultry ABP are presented in Table 27. 

Data was provided from one poultry ABP processing plant which processed 226,000 

tonnes poultry ABP per year, of which 180,000 tonnes was offal and bone and 46,000 

tonnes was feathers. The offal and bone throughput represented 30% of the category 3 

poultry by-product processed in the UK. The plant produced three products. PPAP and 

PRF were produced from the rendering of offal and bone, whereas HFM was produced 

from the hydrolysis of feathers. However, energy use by the plant was integrated.  

Table 27 Mean economic flows for the poultry by-product processing plant used in 
the study between 2006 and 2008, normalized for 1 kg of offal and bone 

Economic flows Unit Amount 

Poultry rendered and hydrolysed products    

PPAP kg 0.163 

PRF kg 0.101 

HFM kg 0.067 

Inputs  0.000 

Offal + bone kg 1.000 

Feathers kg 0.265 

Electricity kJ 224.3 

Heat (total energy content in both fuels used) kJ 2886.1 

Water kg 0.525 

Sodium hypochlorite kg 1.34 x 10
-3

 

Sodium hydroxide kg 7.77 x 10
-4

 

Sulphuric acid kg 3.69 x 10
-4

 

Chemicals (various) kg 1.08 x 10
-3

 

PPAP = Poultry processed animal protein 
PRF = Poultry rendered fat 
HFM = Hydrolysed feather meal 

 

The rendering industry uses both natural gas (fossil) and category 1 rendered fat 

(biogenic) as fuels to produce process heat. Two fuel scenarios were used in the current 



136 
 

study. In scenario 1, 100% of process heat was derived from natural gas, whereas in 

scenario 2, 100% of process heat was derived from category 1 rendered fat. Process heat 

derived from category 1 rendered fat was calculated as described in Chapter 4. The 

functional units for which results are presented are 1 kg PPAP, 1 kg PRF and 1 kg HFM. 

7.4.1.3 Category 2 poultry by-product processing  

Category 2 poultry ABP consists of birds dead on arrival, birds that do not pass post 

mortem inspection, heads, feet and floor waste. These ABP have null or negative 

economic value and are classified as wastes, which are disposed of by rendering. 

Economic flows for the rendering of category 1 (or 2) ABP were derived from Chapter 4.  

In the system modelled (Figure 37) surplus category 1 (or 2) rendered fat produced by the 

system was used in the production of biodiesel using economic flows derived from (Lopez 

et al., 2010). This avoided the production and use of fossil diesel. Use and production of 

fossil diesel life cycle inventories were derived  from the Ecoinvent databases (Ecoinvent 

Centre, 2010). 

Blood was disposed of in fluidized bed combustion (FBC) power plants to produce 

electricity. It was assumed that this avoided the production of average British electricity 

(coal based). Poultry blood was assumed to have a similar composition to the blood of 

other species with a dry matter (DM) content of 19% (Alberts et al., 2008; The Franklin 

Institute, 2011) and a protein and fat content of 98.8 and 1.2% DM respectively (Paladines 

et al., 1964). The Higher Heating Value was assumed to be 24.3 MJ/kg DM (Paladines et 

al., 1964). The Hydrogen (H) content of protein and fat was assumed to be 6 % and 12 % 

by mass, respectively, and therefore the total H content in blood was estimated as 1.2 % 

DM. Calculations detailed by Quiroga et al. (2010) were used to determine a Lower 

Heating Value (LHV) of 4,191 kJ/kg fresh blood. The calculated LHV was used to estimate 

the amount of electricity produced from 1 kg of blood (754 kJ), assuming the blood is 

burnt in a FBC power plant to produce electricity with an efficiency of 18 % (Yassin et al., 

2009). 
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Figure 37 Poultry processing and poultry by-products processing schematic flow diagram (PAP: Processed Animal Protein, t: transport, 
ABP: animal by-product, FBC: fluidised bed combustion, MBM: meat and bone meal) 
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7.4.2 Co-product handling methods 

In the system modelled, poultry blood and category 2 poultry ABP were treated as wastes 

which were disposed of by rendering or combustion in FBC power plants. The system was 

expanded to include the avoidance of fossil energy production. In addition, co-product or 

multiple input handling methods were required to allocate the environmental burden 

between different edible co-products and poultry ABP. Four methods were used in the 

study: 

- Mass allocation (MA): the mass of the edible co-products and poultry ABP was 

used to divide the environmental burden from the previous stages and waste 

management. 

- Economic allocation (EA): the mass weighted economic value of the edible co-

products and poultry ABP was used to divide the environmental burden from the 

previous stages and waste management. 

- Main product (MP): the edible co-products take the entire environmental burden 

from the previous stages and waste management. 

- System expansion (SE): the system was expanded to include the avoidance of 

products from other products systems by the further processing of poultry ABP. 

- Pseudo process subdivision: economic allocation in evisceration and partitioning 

according to electricity use in the portioning of three groups of products: whole 

chicken, fresh portions and frozen portions. 

7.4.2.1 Poultry meat processing 

Allocation factors for the edible co-products (and poultry ABP) of poultry meat processing 

are presented in Table 28. Economic allocation factors were derived from data produced 

by VION for the economic value for the different fractions. As the economic value of 

different fractions was confidential only the factors are presented. 
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Table 28 Allocation factors for edible co-products and poultry by-products arising 
from poultry processing 

Edible co-products and 
poultry by-products 

Mass 
allocation 

(%) 

Economic 
allocation 

(%) 

Main product approach / System 
expansion 

Mass allocation 
(%) 

Economic 
allocation (%) 

whole chickens (final) 3.49 3.59 5.98 3.67 

quarters, halves 0.15 0.22 0.25 0.22 

wings 6.52 4.26 11.16 4.36 

fillets 22.08 69.91 37.79 71.54 

legs, drums, thighs 20.80 18.82 35.60 19.25 

trims 0.90 0.41 1.54 0.42 

Edible offal 4.49 0.53 7.69 0.54 

Category 3 poultry by-
products  

    

Offal + bone 34.79 2.26 0 / n.a. 0 / n.a. 

Feathers 6.77 0.02 0 / n.a. 0 / n.a. 

 

When system expansion was applied, poultry ABP processing was included within the 

product system of the edible co-products. It was assumed that PPAP and HFM replaced 

the production of soya bean meal, and that PRF displaced the production of soya oil, both 

produced from soya bean (Figure 38). The life cycle inventory for soya bean processing 

was taken from Nielsen et al. (2003). The inventory was modified to enable economic 

allocation factors to be derived using values taken from The World Bank (2011) and to 

use soya bean produced in Brazil. The life cycle inventory for soya bean processing 

presented by Nielsen et al. (2003) employed system expansion to include the avoidance 

of rapeseed oil production by the production of soya bean oil. In the current study, this 

system expansion was not appropriate as both co-products (soya bean meal and oil) are 

required. The life cycle inventory for the production of Brazilian soya bean was taken from 

the Ecoinvent databases (Ecoinvent Centre, 2010). When using system expansion, 

allocation was still required as there are various edible co-products. In this instance 

allocation was performed based on both mass and economics. 
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Figure 38 System expansion, processes avoided by processed category 3 poultry 
by-products (PAP: Processed Animal Protein) 

 

Pseudo process subdivision results were obtained by economic allocation at evisceration 

and using process subdivision to divide the electricity use in portioning for three groups, 

whole chicken, fresh portions and frozen portions. Electricity use in portioning was 163, 

191, and 715 kJ per kg of whole chicken, fresh portions, and frozen portions respectively. 

These were calculated as the electricity use intensity in the whole year for those three 

groups. Emissions of refrigerant fluid in portioning were ascribed according to the 

electricity use. All the other flows in portioning were ascribed according to the mass. 

7.4.2.2 Category 3 by-products processing 

The production of co-products from the processing of poultry ABP presents two problems. 

As data on economic inputs to the poultry processing plant was integrated (Table 29) it 

was difficult to allocate inputs to the two poultry ABP streams, offal + bone, and feathers. 

Similarly, the rendering of offal + bone produces two poultry rendered products, PPAP and 

PRF. 

 Multiple input mass allocation was performed based on the mass of offal + bone and 

feathers processed by the poultry ABP processing plant. Economic input allocation was 

performed based on the proportion of potential revenue from the rendering process and 

the potential revenue from the feather hydrolysis process. The potential revenue from the 

rendering process was calculated as the difference between the economic values of the 

PPAP and PRF produced and the offal + bone processed. Similarly, the potential revenue 

from the feather hydrolysis process was calculated as the difference between the 

economic value of the HFM produced and the feathers processed. Administrative and 
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maintenance costs were not included. Allocation factors for poultry ABP processing (input 

allocation) and poultry rendered products are presented in Table 29. 

Table 29 Allocation factors for poultry by-products processing (input) and poultry 
rendering products (output) 

Input Output 

Process Economic 
allocation 

(%) 

Mass 
allocation 

(%) 

Co-product Economic 
allocation 

(%) 

Mass 
allocation 

(%) 

Rendering 54.2 79.0 

 

PPAP 59.55 61.65 

 PRF 40.45 38.35 

Hydrolysis 45.8 21.0 HFM n.a. (100%) n.a. (100%) 

PPAP = Poultry processed animal protein 
PRF = Poultry rendered fat 
HFM = Hydrolysed feather meal 
 

7.4.3 Calculation 

The Simapro 7.3 ® software package (PRe Consultants, 2011) was used to model the 

products system. Climate change was assessed using the Greenhouse Gas Protocol 1.01 

impact assessment method (The Greenhouse Gas Protocol, 2010). Only emissions that 

are considered to contribute to Climate change are reported (e.g. biogenic CO2 emissions 

from the combustion of animal derived material such as MRF are not reported). 

7.5 Results 

The GHG emissions of different edible co-products and poultry ABP obtained using 

different co-product handling approaches are presented in Table 30. As stated, when 

system expansion was used poultry ABP (and the avoided production of substitutes) were 

included in the product system of the edible co-products. Similarly, when main product 

allocation was used, all the GHG emissions were allocated to the edible co-products of 

poultry processing. When economic allocation, mass allocation, and the main product 

approach were used, there was little difference in GHG emissions between the two 

rendering fuel scenarios for each edible co-product or poultry ABP produced. However, 

when system expansion was used the effect of fuel scenario on GHG emissions was 

slightly greater (Table 30). 
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Table 30 Greenhouse gas emissions of the edible co-products and by-products of 
the poultry processing (kg CO2 / kg) 

Co-
products 

RFS Economic 
allocation 

Mass 
allocation 

Main product 
approach 

System expansion 

Economic 
allocation 

Mass 
allocation 

Economic 
allocation 

Mass 
allocation 

whole 
chickens 

1 2.098 2.042 2.147 3.495 2.001 3.257 

2 2.100 2.044 2.149 3.498 1.901 3.095 

fillets 1 6.465 2.042 6.616 3.495 6.165 3.257 

2 6.470 2.044 6.621 3.498 5.859 3.095 

quarters, 
halves 

1 3.015 2.042 3.086 3.495 2.876 3.257 

2 3.018 2.044 3.088 3.498 2.733 3.095 

legs, 
drums, 
thighs 

1 1.847 2.042 1.891 3.495 1.762 3.257 

2 1.849 2.044 1.892 3.498 1.674 3.095 

wings 1 1.334 2.042 1.365 3.495 1.273 3.257 

2 1.335 2.044 1.367 3.498 1.209 3.095 

trims 1 0.924 2.042 0.946 3.495 0.881 3.257 

2 0.925 2.044 0.947 3.498 0.838 3.095 

edible 
offal 

1 0.239 2.042 0.244 3.495 0.228 3.257 

2 0.239 2.044 0.245 3.498 0.216 3.095 

Mass 
weighted 
edible 
co-
product 

1 3.415 2.042 3.495 3.495 3.257 3.257 

2 3.418 2.044 3.498 3.498 3.095 3.095 

Category 
3 by-
products         

offal and 
bone 

1 0.133 2.042 0.000 0.000   

2 0.133 2.044 0.000 0.000   

feathers 1 0.005 2.042 0.000 0.000   

2 0.005 2.044 0.000 0.000   

RFS: Rendering fuel scenario 1 = 100% natural gas and scenario 2 = 100% category 1 rendered 
fat 

 

When mass allocation was used, GHG emissions of each edible co-product were equal 

for all the edible co-products and poultry ABP (2.042 kg CO2/kg). However, when 

economic allocation was used the results ranged between 0.005 and 6.470 kg CO2e/kg 

depending on their relative economic value, with fillets having the highest GHG emissions. 

When system expansion or the main product approach were used during the first step of 

co-product handling, economic allocation resulted in different edible co-products having 
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different GHG emissions, with the most valuable edible co-products having the highest 

and the least valuable having the lowest GHG emissions. For example, when natural gas 

was used as a fuel during rendering, GHG emissions for chicken fillets were 6.616 and 

6.165 kg CO2/kg fillet when the main product approach and system expansion were used 

respectively whereas, GHG emissions for edible offal were 0.244 and 0.216 kg CO2/kg 

edible offal when the main product approach and system expansion were used 

respectively. 

The mass weighted mean GHG emissions for all products illustrate the main effect of 

different co-product handling approaches for partitioning between edible meat and by-

products. When mass allocation was used, edible co-products have the lowest GHG 

emissions because they are divided equally between all the edible co-products and 

poultry ABP. However, when the main product approach was used, edible co-products 

have the highest GHG emissions. When system expansion was used the GHG emissions 

associated with edible co-products were slightly lower than those produced using the main 

product approach. With system expansion edible co-products gain credits from the 

avoidance of soya bean meal and oil. The difference between the GHG emissions of 

edible co-products when either the main product approach or system expansion was used 

was 7 and 12% depending on the fuel scenario used. When economic allocation was 

used GHG emissions for edible co-product are mid-way between those of system 

expansion and the main product approach. No results can be obtained for poultry ABP 

when system expansion was used. Poultry ABP have null GHG emissions when the main 

product approach was used and low GHG emissions when economic allocation was used. 

The contribution of broiler production (at the farm gate) to the GHG emissions of edible 

co-products and poultry ABP is presented in Table 31. Regardless of which rendering fuel 

scenario, broiler production accounted for approximately 93% of the GHG emissions 

associated with production of each edible co-product or poultry ABP when employing 

main product or allocation. When system expansion was adopted the contribution of 

broiler production was different depending on the fuel scenario (100 and 105% for fuel 
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scenario 1 and 2). A contribution of greater than 100% is explained by the fact that the 

poultry processing system gains credits from avoidance of the production of soya bean 

meal and soya oil. 

Table 31 The contribution of on farm broiler production (%) to the greenhouse gas 
emissions of edible co-products and poultry by-products 

Rendering 
fuel 

scenario 

Economic 
allocation 

Mass 
allocation 

Main product 
approach 

System expansion 

Economic 
allocation 

Mass 
allocation 

Economic 
allocation 

Mass 
allocation 

1 
93.1% 93.1% 93.1% 93.1% 99.9% 99.9% 

2 
93.0% 93.0% 93.0% 93.0% 105.1% 105.1% 

Rendering fuel scenario 1 = 100% natural gas and scenario 2 = 100% category 1 rendered fat 

The GHG emissions obtained with pseudo process subdivision indicating the contribution 

from animal production are presented in Table 32. Under this co-product handling 

approach, the results ranged between 2.672 and 2.779 kg CO2 per kg co-product group. 

The lowest relative contribution from broiler production (90.2%) and the highest GHG 

emissions were calculated for the frozen portions. 

Table 32 Greenhouse gas emissions (kg CO2/kg) and contribution of on farm broiler 
production (%) according to pseudo process subdivision for whole chicken, fresh 
portions and frozen portions 

 
whole chicken fresh portions frozen portions 

RFS 1 2 1 2 1 2 

GHG (kg CO2 / kg) 2.672 2.674 2.686 2.689 2.776 2.779 
broiler production 
contribution (%) 93.8 93.7 93.3 93.2 90.2 90.2 

RFS: Rendering fuel scenario 1 = 100% natural gas and scenario 2 = 100% category 1 rendered 
fat 

 

The GHG emissions associated with production of poultry rendered products are 

presented in Table 33. The results vary considerably depending on the co-product 

handing approach adopted for poultry processing, the allocation approach adopted for 

poultry ABP processing and the rendering fuel scenario used. The GHG emissions of 

PPAP were highest (8.423 kg CO2/kg PPAP) when mass allocation was used for both 

poultry processing and poultry ABP processing, and natural gas was used as a fuel during 

rendering. However, they were lowest (-0.099 kg CO2/kg PPAP) when the main product 

approach was adopted for poultry processing, economic allocation was used for poultry 
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ABP processing, and category 1 rendered fat was used as a fuel during rendering. The 

GHG emissions of PRF and HFM were highest (8.672 and 9.587 kg CO2/kg respectively) 

when mass allocation was used for poultry processing, economic allocation was used 

poultry ABP processing and natural gas was used as a fuel during rendering. However, 

the lowest GHG emissions for PRF (-0.178 kg CO2/kg PRF) were obtained when the main 

product approach was adopted for poultry processing, mass allocation was adopted for 

poultry ABP processing and category 1 rendered fat was used as a fuel in rendering. For 

HFM the lowest GHG emissions (-0.489 kg CO2/kg HFM) were obtained when main 

product approach was used for poultry processing, economic allocation was used for 

poultry ABP processing and category 1 rendered fat was used a fuel for rendering. 

Table 33 Greenhouse gas emissions of poultry rendered products (kg CO2/kg) 

Poultry  
processing 
co-product 
handling 
method 

Economic allocation Mass allocation Main product 
approach 

Poultry by-
products 
processing 
co-products 
handling 
method 

Economic 
allocation 

Mass 
allocation 

Economic 
allocation 

Mass 
allocation 

Economic 
allocation 

Mass 
allocation 

  RFS       

PPAP 1 0.967 1.201 7.943 8.423 0.482 0.698 

2 0.387 0.325 7.369 7.555 -0.099 -0.178 

PRF 1 1.056 1.201 8.672 8.422 0.526 0.698 

2 0.422 0.325 8.046 7.554 -0.108 -0.178 

HFM 1 1.552 0.758 9.675 8.881 1.531 0.736 

2 -0.468 -0.166 7.662 7.966 -0.489 -0.188 

PPAP = Poultry processed animal protein 
PRF = Poultry rendered fat 
HFM = Hydrolyzed feather meal 
RFS: Rendering fuel scenario 1 = 100% natural gas and scenario 2 = 100% category 1 rendered 
fat 
 

7.6 Discussion 

7.6.1 Data 

The discussion of data is limited to energy use during poultry processing and poultry ABP 

processing. For both of these processes energy use was the main contributor to GHG 
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emissions. The energy use and GHG emissions arising from broiler production are 

presented in Chapter 6 and constitute the most important contribution to GHG emissions 

associated with production of both edible co-products and poultry ABP. 

In the processing plant studied the relative yield of edible co-products and poultry ABP 

was 55% and 39% respectively. However, it is important to realise that the plant studied 

produced both eviscerated whole chickens and chicken portions. The yield of edible co-

product would be increased and yield of poultry ABP reduced if the plant only produced 

eviscerated whole chicken. 

During the evisceration stage, process heat and electricity use was 169 kJ and 228 kJ/kg 

broiler live weight, whereas, during the portioning stage heat and electricity use was 71 kJ 

and 214 kJ/kg eviscerated whole chicken. The electricity and heat use is similar to other 

facilities of the same company. With a yield of 0.702 kg eviscerated whole chicken per kg 

broiler live-weight the total process heat and electricity used during broiler processing was 

218 kJ and 379 kJ/kg broiler live-weight respectively (Table 26). Hence, the evisceration 

stage accounted for 77% and 60% of the process heat and electricity use during poultry 

processing. Data on energy use during poultry processing in the literature is limited. 

Energy use for poultry slaughtering in Finland has been reported to be 792 kJ and 

between 1728-1764 kJ/kg slaughtered bird for process heat and electricity use 

respectively (The Finnish Environment, 2002). Similarly, energy use for poultry 

slaughtering reported in the Danish LCA food databases is 360 kJ and 720 kJ/kg live-

weight for process heat and electricity respectively (Nielsen et al., 2003). Energy use in 

the current case study was comparatively low in relation to other published studies. The 

electricity use in portioning according to process subdivision was 163, 191, and 715 kJ per 

kg of whole chicken, fresh portions, and frozen portions respectively. This indicates that 

depending on the proportion of fresh or frozen products produced the average electricity 

use intensity can be considerably from plant to plant. 

The data on poultry ABP processing was provided by one plant that processed both offal 

and bone (rendering) and feathers (hydrolysis). The heat production of this plant was 
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integrated therefore discussion of the data is based on the total mass of poultry ABP 

processed. Process heat and electricity use was 2281 kJ and 177 kJ/kg poultry ABP 

processed respectively. During ABP processing, thermal energy is used primarily to 

evaporate water. In the current study, the yield of poultry rendered products was 0.26 

kg/kg poultry ABP processed (Table 27). Energy use for the rendering of mammalian ABP 

has been reported in Chapter 4, with thermal energy use being 1357 kJ and 2646 kJ, and 

electricity use being 260 kJ and 375 kJ/kg category 3 and category 1 ABP processed 

respectively. These values correspond to rendered product yields of 0.57 kg and 0.40 

kg/kg ABP processed, for category 3 and 1 ABP respectively. In the current study, thermal 

energy use was midway between the values reported for category 3 and 1 mammalian 

ABP. However, the amount of water removed by evaporation was higher. Data on energy 

used during poultry ABP processing in the US has been reported by Lopez et al. (2010). 

Process heat and electricity use were 2439 kJ and 230 kJ/kg offal and bone respectively 

with a rendered product yield of 0.40 kg/kg poultry ABP processed. Again thermal energy 

use was similar, but rendered product yields were higher than those reported in the 

current study. This may be related to the greater integration of the plant for which data is 

reported here. The energy use in poultry ABP rendering is in good agreement with values 

in the literature and in particular with energy use in mammalian ABP rendering in the UK. 

7.6.2 Co-product handling approaches 

In the current study the GHG emissions of edible co-products differed greatly depending 

on the co-product handling approach adopted. When the main product approach was 

used, GHG emissions for the mass weighted co-products were 71% higher than those 

obtained using mass allocation. In the case of chicken fillets, the highest GHG emissions 

were obtained using the main product approach with economic allocation and the lowest 

using mass allocation. In the case of poultry rendered products, GHG emissions varied 

greatly depending on the co-product handling approach adopted during poultry 

processing. 
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In the UK, ABP are defined by legislation (EC, 2009). However, in this paper the criterion 

as to whether a by-product is treated as a co-product or a waste is whether or not it had a 

positive or negative economic value (Guinee et al., 2004). For the purposes of LCA 

methodology, ABP with negative economic value are treated as wastes. System 

expansion is always used for disposal of wastes (economic flows with negative value). In 

the system studied, poultry blood was considered a waste and was destroyed with energy 

recovery in a FBC power plant. However, poultry blood is classified under EU legislation 

as category 3 materials (EC, 2009), which could potentially be processed to produce 

poultry blood meal. In this scenario, poultry blood may attract a positive economic value 

and would have to be treated as an additional poultry ABP. 

Economic allocation approach appears to be well suited to poultry processing, where 

GHG emissions for both edible co-products and poultry ABP are required. Economic 

allocation is justified by the fact that the purpose of poultry production and processing is to 

meet a demand for poultry meat. However, some of the environmental burden should also 

be attributed to category 3 poultry ABP that have a positive economic value. At the other 

extreme, using the main product approach, the entire environmental burden is attributed 

to the edible co-products. This approach was adopted in Chapter 4 for beef derived ABP, 

the disposal of which represented a cost to meat producers in the UK. 

When system expansion was used, GHG emissions were only obtained for edible co-

products. Poultry rendered products are used mainly to replace marginal protein and fat 

sources, in this case Brazilian soya bean (including agricultural and land transformation 

emissions). The avoidance of soya bean meal and soya oil reduced the GHG emissions of 

edible co-products in comparison to the main product approach or economic allocation. 

This is similar to the system expansion for milk production presented by Flysjö et al. 

(2011a). The extent of the reduction in GHG emissions also varied slightly depending on 

the type of fuel used in poultry ABP processing. 

Arguably, when the objective of the study is to calculate the potential environmental 

impact of food production systems, system expansion is an appropriate approach to use, 
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as the system is expanded to include the effects associated with disposal of unavoidable 

by-products. System expansion included the replacement of Brazilian soya bean meal and 

soya oil. The results may have been slightly different if soya bean meal and soya oil had 

been sourced from other parts of the world, or if other protein and fat sources had been 

used. In the study of soya bean processing used (Nielsen et al., 2003), soya bean meal 

and soya oil are produced at a ratio of 4.6:1. In the current study, the production ratio of 

poultry protein meals (PPAP+HFM) to PRF was 2.8:1. The requirement for additional 

marginal oil was not included in the system modelled because analysis of the 

consequential loops arising from this system was not part of the scope of the study. 

Consequential loops for soya bean meal have been studied by Dalgaard et al. (2008). 

However, if the marginal oil source used had been palm oil from Malaysia instead of soya 

oil, the GHG emissions would have increased by 3-4 %, suggesting the marginal oil used 

had a minor (but not negligible) effect on the GHG emissions of edible co-products (in the 

current case study). If palm oil had been chosen only to complete the avoidance of fat by 

the production of PRF by the extended poultry meat system, the change in the GHG 

emission of the edible products would have been lower than 3-4%. 

When main product, economic allocation or mass allocation were used, GHG emissions 

for edible co-products were slightly lower when natural gas was used as a fuel for poultry 

ABP processing. This is because in the system modelled, surplus category 1 (and 2) 

rendered fat was used for the production of biodiesel, which avoided the production and 

use of fossil diesel (Figure 37).  More credits were gained from the use of rendered fat to 

replace fossil diesel, than were gained from the use of rendered fat to replace natural gas. 

However, when system expansion was used, GHG emissions for the edible products were 

higher when natural gas was used as a fuel. Although this seems counter intuitive, this 

occurred principally because the amounts and destinies of different category rendered 

products are different. When employing system expansion, additional credits for offset of 

fossil fuels are gained when category 1 rendered fats are used as fuel (Chapter 4). 
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As the production of both edible co-products and poultry ABP is dependent on the 

demand for poultry meat, the demand for poultry ABP does not influence their production 

volume. Therefore economic allocation seems to be an appropriate approach to allocate 

GHG emissions between edible co-products and poultry ABP. However, the production of 

different edible co-products may be influenced by demand; therefore mass allocation may 

be more appropriate at this stage (the mass weighted result for all edible co-products). 

The difference in GHG emission for poultry rendered products using different co-product 

handling combinations is considerable, and mainly associated with the contribution from 

broiler production. For example, when mass allocation was used during poultry 

processing, GHG emissions for poultry rendered products were higher than those of 

edible co-products. When mass allocation was used a significant proportion of the 

environmental burden associated with broiler production was attributed to the poultry 

rendered products. During rendering or hydrolysis, poultry rendered products are dried. 

Therefore, a higher mass of birds is required to produce 1.0 kg of poultry rendered 

product than would be required to produce 1.0 kg of poultry fillet. There are also additional 

GHG emissions associated with the use of natural gas as a fuel during poultry ABP 

processing. Alternatively, when the main product approach or economic allocation was 

used during poultry processing, GHG emissions for poultry rendered products were 

significantly lower, and in some cases negative results were obtained when category 1 

(and 2) rendered fat was used as a fuel (associated with the credits of the Category 1 

system). As the production of different poultry rendered products (PPAP, MRF, HFM) is 

dependent of poultry ABP supply and not demand driven, mass allocation would seem to 

be an appropriate approach to allocate GHG emission between different poultry rendered 

products. 

Process subdivision is highest in the hierarchy of co-product handling choices according 

to both BSI (2008b) and ISO (2006a, b). In the current study, a pseudo process 

subdivision method was used to divide between whole chicken, fresh portions, and frozen 

portions. For example, there are fillets, wing, legs that either leave the plant fresh or are 
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cold stored to be sold later in the year. The electricity use in portioning was 3.7 times 

higher in the case of frozen portions. However, the GHG emissions associated with frozen 

portions were only 3% higher than those of the fresh portions, mainly because broiler 

production is the most important contributor. Process subdivision is well suited to account 

for the differences in processing. 

7.6.3 Greenhouse gas emissions of poultry rendered products 

Category 3 poultry rendered products are mainly used as protein and fat sources in pet 

foods. The GHG emissions associated with mammalian rendered products have been 

reported in Chapter 4. In the UK disposal of mammalian ABP represents a cost to the 

producer and therefore for LCA purposes they were considered to be wastes, which do 

not carry any of the environmental burden associated with their production. In the current 

study, poultry ABP had a positive economic value and were therefore considered to be 

valuable co-products which should carry some of the environmental burden associated 

with their production. When mass allocation was used to allocate the environmental 

burden between category 3 mammalian processed animal protein (PAP) and mammalian 

rendered fat (MRF), GHG emissions for PAP or MRF ranged from 0.05 to 0.29 kg 

CO2e/kg depending on the relative proportions of natural gas and MRF used as fuels 

during the rendering process (Chapter 4). Assuming economic allocation is used during 

poultry processing and mass allocation is used during poultry ABP processing, GHG 

emissions for PPAP or PRF ranged between 0.325 and 1.201 kg CO2/kg depending on 

the fuel used during poultry ABP processing. The higher values are attributable to the fact 

that poultry rendered products carry some of the environmental burden associated with 

their production. If the main product approach was used during poultry processing, and 

poultry ABP were considered to be wastes similar to mammalian ABP, GHG emissions for 

PPAP or PRF ranged between -0.178 and 0.698 kg CO2e/kg. On average between 2006 

and 2008, the UK rendering industry derived 75% of its thermal energy from category 1 

MRF and 25% from natural gas. Using this scenario, GHG emissions for mammalian PAP 

and MRF were 0.15 and 0.15 kg CO2/kg respectively (Chapter 4). Assuming economic 
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allocation was used for poultry processing and mass allocation was used for poultry ABP 

processing, GHG emissions for PPAP or PRF and HFM were calculated to be 0.544 and 

0.065 kg CO2/kg respectively. 

Dalgaard et al. (2008) reported consequential GHG emissions for soya bean meal of 

0.721 and 0.344 kg CO2e/kg depending on whether palm or rapeseed oil were used as 

marginal oil sources respectively. The same study reported attributional GHG emissions 

of 0.726 and 0.901 kg CO2/kg depending on whether economic or mass allocation was 

used. The GHG emissions associated with land transformations were not included. Their 

results included oceanic transport; however this is a minor contributor in relation to 

agricultural associated GHG emissions. In the current study, the value used for soya bean 

(Ecoinvent Centre, 2010) included GHG emissions associated with land transformations 

and was considerably higher than those reported by Dalgaard et al. (2008). The GHG 

emissions associated with PPAP and HFM (when produced with 75% rendered fats) are 

lower than those reported for soya bean meal by Dalgaard et al. (2008) and significantly 

lower than those for Brazilian soya bean meal calculated from the Ecoinvent databases 

(Ecoinvent Centre, 2010). The main reason for this difference reflects the fact that the 

objective of soya bean production is to produce soya bean meal. Consequently, they carry 

the environmental burden associated with agricultural production (and land 

transformation). If economic allocation is used during poultry processing the contribution 

of broiler production to the GHG emissions of poultry rendered products is relatively low. 

In addition, when category 1 rendered fat is used as fuel for poultry ABP processing, 

additional credits are provided to the poultry ABP processing system. 

7.7 Conclusions 

The use of different co-product handling approaches during poultry processing and poultry 

ABP processing produces different GHG emissions for different edible co-products and 

poultry rendered products. Allocation is essential in attributional studies where results are 

required for all the co-products and by-products produced. As the main purpose of meat 

production systems is to produce meat, economic allocation should be used to allocate 
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GHG emissions between the edible co-products and by-products. However, as no co-

product or by-product is considered to be more desirable than another, process 

subdivision or mass allocation should be used following initial separation. When the 

objective of the study is to investigate the environmental burden of the whole food system, 

the system should be expanded to include the effects associated with disposal of 

unavoidable by-products.  

Provided economic allocation is used during poultry processing to allocate GHG 

emissions between edible co-products and by-products, the GHG emissions of poultry 

rendered products such as PPAP, PRF and HFM are lower than those of alternatives 

such as soya bean meal and soya oil. Using this co-product handling approach, the GHG 

emissions of poultry rendered products depends largely on the relative proportion of 

category 1 rendered fat and natural gas used as fuels during poultry ABP processing.  
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8 The effect of inclusion of ingredients derived from terrestrial animal by-product 

on the greenhouse gas emissions of animal production: A case study of 

salmonid feed production in UK 

8.1 Abstract 

The influence of the inclusion of terrestrial animal derived by-products in salmonid diets 

was analysed from a Climate Change perspective using LCA methodology. Four 

formulations were evaluated: conventional (based on fish and vegetable derived 

ingredients), maximised fish meal, maximised feather hydrolysed meal plus porcine 

haemoglobin meal, and maximised poultry by-product meal. Fuel use in the processing of 

poultry derived ingredients was evaluated with rendered fats and natural gas. Two 

sources of fish derived ingredients were evaluated: white fish by-products and small 

pelagic fisheries. Three co-product handling combinations were used: economic and mass 

allocation, and an additionally defined combination. 

Results indicated that when using mass allocation the inclusion of animal by-product 

derived ingredients results in higher GHG emissions than the conventional formulation. In 

contrast results based on economic allocation indicated that the inclusion of animal by-

product derived ingredients results in lower GHG emissions than conventional or 

maximised fish meal formulations. It is argued that economic allocation is adequate for 

animal by-product systems, as they are unavoidable by-products of meat production, 

whose demand does not influence their production volume. 

8.2 Keywords 

Salmon, feed, co-product, by-product, life cycle assessment, carbon footprint 

8.3 Introduction 

The environmental impact of different food production systems has increasingly been 

studied in recent years, in particular employing quantitative methodologies such as life 

cycle assessment (LCA) (Pelletier et al., 2007; Roy et al., 2009; Calderón et al., 2010; de 

Vries and de Boer, 2010; Cerutti et al., 2011; Henriksson et al., 2011; Milani et al., 2011). 
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Generic LCA, standardised by ISO standards (ISO, 2006b; a) can be used to evaluate 

different environmental impacts. Greater global awareness of the impacts of Climate 

Change has led to further LCA specification towards the study of only greenhouse gas 

(GHG) emissions; such studies may be referred to as Carbon Footprints (BSI, 2008b). 

Land based animal production is one the most important contributors to Climate Change, 

accounting for 18% of global GHG emissions (Steinfeld et al., 2006). In contrast, fisheries 

and aquaculture are regarded as a relatively minor contributor to global GHG emissions 

(FAO, 2008b). However aquaculture is the animal food production sector with the highest 

growth rate. Globally farmed salmon, trout and smelts production increased from 1.4 to 

2.3 million tonnes between 1999 and 2008 (FAO, 2008a); an increase of 64%. This trend 

is likely to continue, as one half of the wild fish stocks (for which information is available) 

have been fully exploited, and therefore the increasing demand for fish in the future will 

have to be met by aquaculture (FAO, 2008b; Cressey, 2009). Total land based animal 

meat production in 2008 was 279 million tonnes (FAO, 2011). Salmonids are among the 

most heavily farmed aquatic species in the Western world and although salmonid farming 

is not currently a major meat producing sector, the rapid development of this sector has 

driven interest in quantifying its environmental burden. 

There have been several LCA studies on salmonid farming systems (Ellingsen and 

Aanondsen, 2006; Gronroos et al., 2006; Aubin et al., 2009; Ayer and Tyedmers, 2009; 

d'Orbcastel et al., 2009; Ellingsen et al., 2009; Pelletier et al., 2009; Boissy et al., 2011) 

and in general of aquaculture systems (Henriksson et al., 2011). Pelletier et al. (2009) 

found the average GHG emissions of salmon produced in Norway, the UK, Canada and 

Chile were 1.790, 3.270, 2.370 and 2.300 kgCO2e/kg live weight, respectively. Ayer and 

Tyedmers (2009) found the GHG emissions of salmonid farming systems in Canada were 

2.073, 1.900, 2.770 and 28.200 kgCO2e/kg live weight for conventional marine net-pen 

system, marine floating bag system, land-based saltwater flow-through system, and land 

based freshwater recirculating system, respectively (the latter used significantly higher 

amounts of electricity and is regarded as a niche technology). Aubin et al. (2009) 



157 
 

calculated GHG emissions of 2.753 kgCO2e/kg live weight rainbow trout cultured in flow-

through systems in France. The GHG emissions of conventional salmonid production are 

similar or slightly higher than those of broiler chicken production (1.798 and 1.395 

kgCO2e/kg live weight for UK (Chapter 6) and US (Pelletier, 2008) production, 

respectively). It should be noted that broiler chicken production is regarded as the most 

efficient animal protein production system (Pelletier, 2008). Relatively low GHG emissions 

intensity and low production volume when compared to main land based meat production 

systems indicates that salmonid farming is arguably not a major contributor to Climate 

Change as yet. 

There is general agreement that feed production is the most important contributor to 

Climate Change in the life cycle of farmed salmonids (aside from the highly energy 

intensive land based recirculating systems in which the relative contribution of feed 

production is diluted by the electricity used but still is similar in magnitude to that in other 

systems). Pelletier et al. (2009), Aubin et al. (2009), and d'Orbcastel et al. (2009) 

quantified the relative contribution from feed production as 94%, 73% and between 88% 

and 91%, respectively. This indicates that the GHG emission intensity of farmed salmonid 

systems is very sensitive to their Feed Conversion Ratio (FCR) and the GHG emissions 

intensity of the feed production system. Again this is similar to findings for broiler chicken 

production by Pelletier (2008) and Chapter 6. 

Animal by-products are secondary products of the animal production chain, whose 

allowed uses are specified in EU legislation (EC, 2009). Under this legislation, poultry and 

porcine by-products (i.e. feathers, offal and bone, porcine blood) are classed as category 

3 materials that can be used as pet food ingredients but must not enter the human food 

chain (including farmed animals feeds). In contrast fish by-products (fish trimmings) can 

be used in farmed animals feeds (both aquatic and terrestrial non-ruminant). Globally, it 

has been estimated that in 2006 aquaculture used 68% and 89% of the fish meal and oil 

produced, respectively (Tacon and Metian, 2008). Sources of fish biomass to produce fish 

meal and oil vary significantly from country to country (Peron et al., 2010). Pelletier et al. 
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(2009) presented annual average formulations for farmed salmonid feeds for 4 important 

salmon producing countries, which varied radically in source of fish biomass. Globally, the 

main source of fish biomass for the production of fish meal and oil are different small 

pelagic species caught for this purpose (Peron et al., 2010). 

From a Climate Change perspective, the inclusion of animal by-products as ingredients in 

salmonid feeds has been a subject of disagreement (Papatryphon et al., 2004; Pelletier 

and Tyedmers, 2007; Pelletier et al., 2009). Pelletier and Tyedmers (2007) and Pelletier et 

al. (2009) recommended that salmonid feed formulations should avoid animal by-products 

(both aquatic and land based) and recommended that inclusion of dedicated vegetable 

sources of fats and proteins should be maximised. Pelletier and Tyedmers (2007) 

indicated that the environmental impacts are much larger when using fish biomass from 

by-products from highly energy intensive fisheries in the production of fish meal and oil 

than from small pelagic species from energy efficient dedicated fisheries (reduction 

fisheries). The authors stated that this is contrary to the prescriptions of major organic 

aquaculture standards and previous findings by Papatryphon et al. (2004). Papatryphon et 

al. (2004) stated that the use of fish biomass from by-products results in a lower Climate 

Change impact than that from dedicated fisheries. Ellingsen and Aanondsen (2006) 

recommended the use of vegetable protein and fat sources instead of fish derived 

ingredients in the feeding of salmon. Boissy et al. (2011) found that the partial 

replacement of vegetable biomass instead of small dedicated pelagic fish biomass 

resulted in a 6% decrease in the GHG emissions associated with trout feeds; however it 

resulted in an 18% increase in salmon feeds. The difference was related to the GHG 

intensity of the production of the substitute vegetable feed ingredients used in each feed 

(not the same for trout and salmon). Neither Ellingsen and Aanondsen (2006) nor Boissy 

et al. (2011) included ingredients derived from terrestrial animal by-products in their 

evaluations. 

In comparison to Papatryphon et al. (2004), Pelletier and Tyedmers (2007) suggested the 

reason for their radically different results was due to the co-product handling approach 
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used. Papatryphon et al. (2004) used allocation based on the economic value of co-

products and by-products whilst Pelletier and Tyedmers (2007) and Pelletier et al. (2009) 

used allocation based on gross energy content as recommended by Ayer et al. (2007). 

Ayer et al. (2007) reviewed different co-product handling strategies used in the LCA of 

seafood products (fisheries and aquaculture) and found that economic allocation is the 

most common approach. However they stated that this approach seems arbitrary and 

proposed that a better approach would be the use of the gross energy content in the co-

products as they argued that it represents in a more realistic manner the biophysical flows 

for alternative feed productions strategies. Pelletier and Tyedmers (2007) also 

demonstrated that life cycle impact assessment results are very similar using either gross 

energy content or mass allocation. It is well documented, that different co-product 

handling methods is one of the reasons for different results and non-comparability among 

LCA studies of similar products (Azapagic and Clift, 1999b; Cederberg and Stadig, 2003; 

Heijungs and Guinee, 2007; Reap et al., 2008; Thomassen et al., 2008a; Cherubini et al., 

2009; Flysjö et al., 2011a). 

It seems that the inclusion of animal by-products derived ingredients in salmonid feeds 

provides either Climate benefits or costs depending on the co-product handling approach 

employed. However, the GHG emission intensity of terrestrial animal by-product derived 

ingredients production has not been taken into account properly in previous studies. The 

terrestrial animal by-product processing industry (in the UK) produces meal and proteins 

using different fractions of natural gas and category 1 mammalian rendered fat (a biofuel) 

for their thermal requirements (Chapter 4). It has been shown that terrestrial animal by-

product derived proteins and fats have relatively low GHG emissions provided: (i) they 

have low value or no value at all and therefore under the used methodological choices 

regarding co-product handling the contribution from their production is very low or null, 

and (ii) in their processing they offset the production of fossil energy (Chapters 4 and 7). 

The main objective of the current study was to compare the GHG emissions associated 

with the production of four alternative salmonid feed formulations in the UK (one 
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conventional, one with maximised inclusion of fish meal, one with maximised inclusion of 

poultry by-product meal and one with maximised inclusion of feathers hydrolysed meal 

plus porcine haemoglobin meal) under different co-product handling combinations taking 

into consideration the type of fuel employed in the UK terrestrial animal by-product 

processing industry. Two alternative sources of fish biomass were evaluated: fish by-

product (from white fish fisheries for human consumption) and a small pelagic species 

from reduction fisheries. 

8.4 Materials and Methods 

8.4.1 System description, calculation and data sources 

Figure 39 illustrates the salmonid feed production system modelled in this study and Table 

34 presents the salmonid feed formulations evaluated, which were provided by a UK 

salmonid feeds production company. All four feeds were formulated to provide the same 

nutritional specification using a least cost ration formulation software package.  Vitamins 

and other supplements were excluded from the analysis as their inclusion rates were very 

low (Table 34). 

Salmonid feeds 

production
Ingredients 

production

Water

Heat

(natural gas)

T

British

electricity

Chemicals
Waste water 

treatment

Solid waste 

landlfill

1 kg salmonid feed

 

Figure 39 Salmonid feed product system (T: transport) 

 

The functional unit of the system was 1 kg of each feed formulation at the plant gate. The 

calculation was assisted by the Simapro 7.3 software package (PRe Consultants, 2011). 

Life cycle GHG emissions results were obtained using the Greenhouse Gas Protocol 1.01 

impact assessment method (The Greenhouse Gas Protocol, 2010). Biogenic CO2 
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emissions (e.g. from the combustion of rendered products - Chapter 4) were not included 

as it was considered they do not result in a net gain of CO2 in the atmosphere. 

Table 34 Salmonid feed formulations used in the study 

Ingredients Conventional 

Maximised 
poultry 

processed 
animal 
protein 
(Max 

PPAP) 

Maximised 
hydrolysed 

feather meal+ 
porcine 

haemoglobin 
meal (Max 
HFM+PHM) 

Maximised 
fish meal 
(Max FM) 

Fish meal 20.00 15.00 15.00 45.45 

Poultry processed animal protein   16.00     

Hydrolysed feather meal     10.00   

Porcine haemoglobin meal     4.00   

Vegetable ingredients
 

47.95 41.25 41.3 29.17 

Fish oil 29.77 27.27 28.65 25.05 

Other components
a 2.28 0.48 1.05 0.33 

a 
Other components: minerals and vitamins 

 

GHG emissions from poultry by-product derived ingredients (poultry by-product meal and 

hydrolysed feathers meal) were taken from Chapter 7. It is recognised that in the UK, the 

GHG emissions associated with poultry by-product derived ingredients depend on the 

type of fuel used in their processing (category 1 mammalian rendered fat (MRF) or natural 

gas); therefore formulations that included these ingredients were evaluated when either 

100% of thermal energy used for ABP rendering was derived from MRF or natural gas.   

The product system used in this study for the production of porcine haemoglobin meal is 

presented in Figure 40. GHG emissions associated with UK pig production were taken 

from Williams et al. (2006). The model was developed further under the DEFRA-funded 

project IS0222 and modified for this study to express environmental burdens on a live-

weight rather than deadweight basis as 3.027 kgCO2e per kg live weight pig at the farm 

gate (AG Williams, pers. comm., 2011). Data on energy use in pig slaughtering were 

taken from The Finnish Environment (2002). Data on the yields of different co-products 

and waste flows from pig slaughtering were taken from EBLEX (2006); a summary of 

these product flows is presented in Table 35. Economic flows in porcine blood processing 

were provided by one UK porcine blood processing plant (Table 36). 
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Figure 40 Porcine processed by-products system (T: transport) 

 

Table 35 Economic flows for the slaughtering of 1 kg of live weight pigs (The 
Finnish Environment, 2002; EBLEX, 2006) 

Co-products Units 

 Pig meat kg/kg 0.699 

Porcine petfood kg/kg 0.014 

Porcine blood kg/kg 0.041 

Inputs/Outputs   

Electricity kJ/kg 972 

Heat (as content in natural gas) kJ/kg 1,728 

Category 3 porcine by-product kg/kg 0.147 

Waste to landfill kg/kg 0.1 

 

Table 36 Economic flows for the processing of 1 kg of porcine blood for one UK 
blood processing plant 

Co-products Unit 

 Porcine Plasma kg/kg 0.049 

Porcine Haemoglobin Meal kg/kg 0.123 

Porcine Haemoglobin Liquid kg/kg 0.042 

Inputs/Outputs   

Electricity kJ/kg 267.4 

Heat (as content in natural gas) kJ/kg 766.8 

Water kg/kg 1.274 

Chemicals kg/kg 0.000696 

Waste water m3/kg 0.001274 
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Sources of fish biomass to produce fish meal and fish oil may be very different (Pelletier et 

al., 2009; Peron et al., 2010). Therefore two main sources of fish derived ingredients were 

evaluated for each formulation: fish meal and oil derived from fish by-products (fish 

trimmings from the white fish processing industry for human consumption) and derived 

from small pelagic species fisheries. The latter are the most common source of fish 

biomass for the production of fish meal and oil (Peron et al., 2010). The life cycle 

inventory for the production of fish meal and oil derived from a small pelagic species (sand 

eel) was taken from Nielsen et al. (2003), but modified to use British electricity and to 

express the results based on allocation. In the original system modelled, system 

expansion was used to include the avoidance of rapeseed oil by the co-production of fish 

oil. This modification was required as both fish meal and oil are required in the salmonid 

feed product system modelled. 

Figure 41 illustrates the fish meal and oil product system based on white fish by-product. 

The life cycle inventories for white fish fishing (assumed Danish cod) and processing were 

taken from Danish food LCA databases (Nielsen et al., 2003). Data on energy use and 

production yields of fish meal and oil during the rendering of fish by-products were 

provided by a UK plant (Table 37).  
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White fish by-product meal

White fish by-product oil
 

Figure 41 White fish by-product meal and oil product system (T: transport) 
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Table 37 Economic flows for the rendering of 1 kg of fish by-product for one UK by-
product processing plant 

Co-products Unit 
 

Fish by-product meal kg/kg 0.205 

Fish by-product oil kg/kg 0.09 

Inputs/Outputs   

Electricity kJ/kg 209 

Heat (as content in natural gas) kJ/kg 1,512 

 

Life cycle inventories for the production of wheat, beans, corn, sunflower seeds, and Dark 

Distilled Grains (DDGS) (a by-product of ethanol) from rye were taken from Ecoinvent 

databases (Ecoinvent Centre, 2010). Sunflower seed processing co-product yields (oil 

and meal) and electricity and heat inputs in processing were taken from Ragaglini et al. 

(2011). Energy (electricity and heat) use associated with the processing of corn to co-

products (starch, oil, gluten feed and gluten meal) was taken from Pelletier (2006). The 

corn process co-products and by-products yields were taken from ERS/USDA (2011). 

The soya bean to soya meal and oil processing life cycle inventory was taken from 

Nielsen et al. (2003) and modified to use Brazilian soya beans from Ecoinvent databases 

(Ecoinvent Centre, 2010). For the latter, GHG emissions associated with land 

transformation were also included. Data on energy use and yield of soya protein 

concentrate during the processing of soya bean meal was assumed to be similar to the 

processing of peas to peas protein concentrate and was taken from Apaiah et al. (2006), 

as performed by Pelletier et al. (2009). 

Life cycle inventories for British electricity, heat from natural gas, chemicals, water, waste 

water treatment, landfill and transport were taken from Ecoinvent databases (Ecoinvent 

Centre, 2010). Road transport distance in every instance required was assumed as 200 

km. 

8.4.2 Co-product handling combinations 

A co-product can be defined as “any of two or more products coming from the same unit 

process or product system” (ISO, 2006a). A by-product is “a secondary product obtained 
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during the manufacture of a principal commodity” (Meeker and Hamilton, 2006). Three co-

product handling combinations were employed in the current study: 

- Mass allocation (MA): All the co-product handling problems in the system were 

solved based on mass of co-products and by-products. 

- Economic allocation (EC): All the co-product handling problems in the system were 

solved based on the mass weighted economic value of the co-products and by-

products. 

- Economic allocation – mass allocation (EC-MA): The co-product handling for the 

separation of co-products from by-products (fish meat from fish by-products, pig 

meat from pig by-products, poultry meat from poultry by-products, sunflower oil 

from sunflower meal, corn starch from corn by-products, ethanol from DDGS, soya 

bean meal from soya oil, wheat grains from wheat straw) was performed based on 

the mass weighted economic value of co-products and by-products. Further co-

product handling (if needed) was performed based on mass allocation (fish by-

product rendering co-products, porcine blood processing co-products, poultry by-

products processing co-products). Co-product handling in systems only processing 

co-products (small pelagic species rendering co-products) was based on economic 

allocation; under this co-product handling combination it is arguable that this could 

have been performed based on mass; however for these co-products both factor 

sets are similar. 

There is one exception to these co-products handling combination rules. The life-cycle 

inventory for cod landed at the harbour reported by Nielsen et al. (2003) includes system 

expansion to account for avoidance of the by-catch. 

Table 38 presents the allocation factors used in the study. Allocation factors associated 

with poultry by-product derived ingredients were presented in Chapter 7. The only 

ingredient not requiring co-product handling was beans. Ecoinvent databases are based 

on economic allocation. When required for wheat, DDGS, sunflower meal, the allocation 

was modified to be based on mass. 
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Table 38 Allocation factors used in the product system 

Process Co-products and by-
products 

Allocation factors Data Sources 

Mass Economic 

White fish by-product  
rendering 

Fish meal (white fish by-
product) 

69.49 76.98 Mass: yields 
Price: Fish meal and 
soya bean oil 
(assumed as fish 
oil) 
(Indexmundy, 2011) 

Fish oil (white fish by-
product) 

30.51 23.02 

White fish processing White fish fillet 50.00 98.20 Mass and prices: 
personal contact 
with UK white fish 
processing 
companies White fish by-product 

50.00 1.80 

Sand eel rendering Fish meal (small pelagic 
species) 

82.78 87.65 Mass: yields 
Price: Fish meal and 
soya bean oil 
(assumed as fish 
oil) 
(Indexmundy 2011) 

Fish oil (small pelagic 
species) 

17.22 12.35 

Porcine plasma 
processing 

Porcine plasma 23.00 67.57 Yields and prices 
provided by blood 
processer 

Porcine haemoglobin 
liquid 

19.49 1.23 

Porcine haemoglobin 
meal 

57.52 31.20 

Pig slaughtering Pig meat 92.82 99.83 Yields: (EBLEX, 
2006) 
Prices: (EBLEX, 
2006; BPEX, 2011) 

Porcine pet food 1.80 0.12 

Porcine blood 5.39 0.05 

Soya bean milling Soya bean meal 82.14 63.37 Yields 
Ecoinvent(Ecoinvent 
Centre, 2010) 
(Indexmundy, 2011) Soya bean oil 

17.86 36.63 

Corn processing Corn starch 64.02 59.81 (ERS/USDA, 2011) 

Corn oil 3.15 14.88 

Corn gluten feed 27.44 14.68 

Corn gluten meal 5.39 10.64 

Sunflower seed 
processing 

Sunflower oil 35.60 76.18 Yields (Ragaglini et 
al., 2011) 
Prices: (Agri 
Commodities, 2011) 
(Forex, 2011) Sunflower meal 

64.40 23.82 

Processing of rye 
grains 

Ethanol 50.00 97.70 Ecoinvent(Ecoinvent 
Centre, 2010) 

DDGS
a 50.00 2.30 

Wheat production Wheat grains 62.14 92.50 Ecoinvent(Ecoinvent 
Centre, 2010) 

Wheat straw 37.86 7.50 
a
DDGS: Dark Distilled Grains 

8.5 Results 

Figure 42 presents the GHG emissions for each salmonid feed formulation based on both 

small pelagic species and white fish by-product derived ingredients and for the three co-

product handling approaches. 



167 
 

 

Figure 42 Greenhouse gas emissions associated with the production of salmonid 
feed (kgCO2e/kg feed) (EA: economic allocation, EA-MA: economic allocation – 
mass allocation, MA: mass allocation, Max FM: Maximised fish meal,  Max PPAP (f: 
NG): Maximised poultry processed animal protein produced using natural gas as 
fuel in poultry by-product processing, Max PPAP (f: MRF): Maximised poultry 
processed animal protein produced using mammalian rendered fat as fuel in 
poultry by-product processing, Max HFM (f:NG) + PHM: Maximised hydrolysed 
feather meal produced using natural gas as fuel in poultry by-product processing + 
porcine haemoglobin meal, Max HFM (f:NG) + PHM: Maximised hydrolysed feather 
meal produced using mammalian rendered fat as fuel in poultry by-product 
processing + porcine haemoglobin meal) 

 

Results based on small pelagic species fish biomass ranged between 0.848 and 1.155, 

0.891 and 1.155, and 1.226 and 2.746 kgCO2e/kg feed for EA, EA-MA, and MA co-

product handling combinations respectively. When EA or EA-MA were employed the 

minimum GHG intensity was calculated for the formulation Max HFM+PHM based on 

MRF as a fuel for ABP processing and the maximum GHG emissions intensity was 

calculated for the Conventional formulation. However, when MA was employed the 

minimum GHG intensity was calculated for the formulation maximised FM and the 
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maximum GHG intensity was calculated for the Max HFM+PHM based on MRF as a fuel 

for ABP processing. For Max PPAP, GHG emissions where 9%, 13% and 6% lower when 

MRF was used as a fuel in ABP processing in comparison to natural gas for EA, EA-MA, 

and MA co-product handling combinations respectively. For Max HFM+PHM, GHG 

emissions where 19%, 9% and 3% lower when MRF was used as a fuel for ABP 

processing in comparison to natural gas for EA, EA-MA, and MA co-product handling 

combinations respectively. 

Results based on white fish by-product biomass ranged between 0.685 and 0.965, 0.765 

and 1.000, and 3.223 and 4.404 kgCO2e/kg feed for EA, EA-MA, and MA co-product 

handling combinations respectively. When EA or EA-MA were employed the minimum 

GHG intensity was calculated for the formulation Max HFM+PHM based on MRF as a fuel 

for ABP processing, and the maximum GHG intensity, was calculated for the Conventional 

formulation. However, when MA was employed the minimum GHG intensity was 

calculated for the Conventional formulation and the maximum GHG emissions intensity for 

the Max HFM+PHM based on natural gas as a fuel for ABP processing. For Max PPAP, 

GHG emissions where 10%, 14% and 3% lower when MRF was used as a fuel in ABP 

processing in comparison to natural gas for EA, EA-MA, and MA co-product handling 

combinations respectively. For Max HFM+PHM, GHG emissions where 23%, 11% and 

2% lower when MRF was used as a fuel for ABP processing in comparison to natural gas 

for EA, EA-MA, and MA co-product handling combinations respectively. 

When employing EA and EA-MA, each feed including fish biomass derived from white fish 

by-products had lower GHG emission intensity in comparison to those with fish derived 

biomass from small pelagic species (17% on average). In contrast, when employing MA, 

each formulation including fish biomass derived from small pelagic species had a lower 

GHG emissions associated in comparison to fish derived biomass from white fish by-

products (48% on average). 
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8.6 Discussion 

8.6.1 Formulations 

All the formulations evaluated in this study (Table 34) used high inclusion rates of fish 

derived ingredients (between 25.05 % and 29.77 %, and 15.00 % and 45.45 % fish oil and 

meal respectively). The maximised fish meal formulation had a total inclusion rate of fish 

derived ingredients of 70.50 %. The remaining three formulations had fish biomass 

derived ingredient inclusion rates of between 42.27 % and 49.77 %. Formulations with 

maximised inclusion of terrestrial animal by-product derived ingredients had the lowest 

inclusion rates of fish derived ingredients. The conventional formulation had the highest 

inclusion rate (47.95 %) of vegetable derived ingredients and 49.77 % of fish derived 

ingredients. 

Pelletier et al. (2009) used a total inclusion rate of vegetable derived ingredients of 33.5 % 

and fish derived ingredients of 66.5 % for the average UK salmonid feed formulation in 

2007. The formulation utilised by Pelletier et al. (2009) had a higher inclusion rate of fish 

derived ingredients than the conventional in the current study. Tacon and Metian (2008) 

estimated inclusion rate ranges of fish meal and fish oil of between 25 % and 46 % and 20 

% and 35 %, respectively (total fish biomass derived ingredients of between 45 and 64%) 

in UK salmon feed production in 2006. Both Pelletier et al. (2009) and Tacon and Metian 

(2008) agreed that of the countries studied UK farmed salmon are fed with the highest 

proportion of fish derived biomass. 

The feeds used in the current study were formulated to evaluate the inclusion of two 

contrasting sources of fish derived ingredients and terrestrial animal by-product derived 

ingredients and therefore can be considered hypothetical. The fish derived ingredient 

inclusion rates are in concordance with the ranges for UK salmonid feeds reported by 

Tacon and Metian (2008). 
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8.6.2 Greenhouse gas emissions 

The GHG emissions for the formulations investigated ranged between 0.685 and 4.404 

kgCO2e per kg salmonid feed (Figure 42), which are in the same order of magnitude as 

ranges in the literature. Pelletier and Tyedmers (2007) calculated GHG emissions 

between 0.690 and 1.400 kgCO2e per kg feed, Pelletier et al. (2009) between 1.430 and 

2.290 kgCO2e per kg feed, Papatryphon et al. (2004) between 1.120 and 1.560 kgCO2e 

per kg feed, and Boissy et al. (2011) between 1.45 and 1.96 kgCO2e per kg feed. 

The highest GHG emissions were obtained for each formulation based on mass allocation 

and white fish by-product derived ingredients, principally because white fish fishing is 

highly energy intensive and the use of mass allocation partitions the GHG emissions 

equally between all the outcomes of fish processing (co-products and by-products). With 

this co-product handling approach and source of fish biomass, the conventional 

formulation had the lowest GHG associated emissions, mainly because this formulation 

had the highest inclusion rate of vegetable derived ingredients. 

There is a considerable difference in the results when using mass allocation regarding the 

source of fish biomass. The main reason for this is energy use in fishing. White fish 

fisheries use significantly more energy than small pelagic species fisheries. Using the life 

cycle inventories for the fishing of cod and sand eel (Nielsen et al., 2003), the GHG 

emissions associated with 1 kg of landed fish were calculated as 1.18 and 0.17 kgCO2e 

respectively. In addition, the energy used in the rendering of sand eel is 1,332 and 145 kJ 

thermal energy and electricity respectively per kg (Nielsen et al., 2003). These values are 

lower than those reported here for rendering of fish by-products in the UK (1,512 and 209 

kJ thermal energy and electricity respectively per kg (Table 37)). In addition, the product 

system for fish meal and oil derived from fish by-products included the fish processing 

stage, where the fish fillets (edible parts) are separated from the fish by-products (Figure 

41). Small pelagic species are fished for the production of fish meal and oil and therefore 

are sent directly from the harbour to the fish rendering plant. 
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When mass allocation was employed formulations that included porcine haemoglobin 

meal had the highest GHG emissions, regardless of whether small pelagic species or 

white fish by-products were used as the source of fish biomass. With this co-product 

handling approach porcine haemoglobin meal was the ingredient with the highest GHG 

associated emissions (20.307 kgCO2e/kg). This occurred because the GHG emissions 

associated with pig production and slaughtering are distributed among all the co-products 

and by-products based on mass. In addition, since blood has a relatively low dry matter, 

the yield of blood derived products (plasma, haemoglobin liquid and haemoglobin meal) is 

0.21 kg products per kg of blood (Table 36). In contrast, GHG emissions of 0.691, 0.375 

kgCO2e/kg porcine haemoglobin meal were calculated when employing EA-MA and EA, 

respectively because when using economic allocation the contribution of pig production 

and slaughtering was very low (Table 38). 

When the source of fish ingredients was small pelagic species and mass allocation was 

used, both conventional and maximised fish meal had similar and relatively low GHG 

emissions. With mass allocation terrestrial animal by-product derived ingredients had 

relatively high GHG emissions. An insight on the GHG of poultry by-product derived 

ingredients with different co-product handling approaches can be found in Chapter 7. 

The results for economic allocation and economic-mass allocation were very similar; this 

was expected because by-product derived co-products had similar prices on a mass 

basis. Contrary to mass allocation, GHG emissions based on these approaches were 

lower when the source of fish derived ingredients was white fish by-products in 

comparison to small pelagic species. When economic allocation was used, formulations 

that included terrestrial derived animal by-products had lower GHG emissions than the 

conventional formulation. With this approach, the conventional formulation had the highest 

GHG emissions for each source of fish derived ingredients. The use low value by-product 

biomass results in Climate Change benefits when employing economic allocation (Table 

38). 
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For each formulation and co-product handling approach that included poultry by-product 

derived ingredients, the GHG emissions were lower when these ingredients were 

produced using rendered fats instead of natural gas as a fuel in the rendering process 

(Chapter 7). 

All the formulations included at least 42.27 % and up to 70.50 % ingredients derived from 

fish biomass, and therefore the GHG emissions associated with these ingredients were 

very important in determining the GHG intensity of each formulation. When co-product 

handling was based on mass, using a low energy dedicated small pelagic fishery derived 

product  instead of a high energy fishery derived white fish by-product as source for fish 

derived ingredients resulted in lower GHG emissions. This is in agreement with the 

findings of Pelletier and Tyedmers (2007) using gross energy based allocation.  Similarly, 

when co-product handling was based on economic value, using a low value fish by-

product derived product instead of small pelagic species as source for fish derived 

ingredients resulted in lower GHG emissions. This is in agreement with the findings of 

Papatryphon et al. (2004) using allocation based on economic value. 

It should be noticed that there are three rendering processes included in the different feed 

production systems: the poultry by-product, the white fish by-product and the small pelagic 

species rendering. The results when using economic allocation are very similar for 

formulations including fish by-product and poultry by-product derived ingredients. 

Variation in energy intensity in rendering can be important, for example, rendering of 

mammalian material can have different energy intensity (Chapter 4). Therefore it is difficult 

to provide a strong conclusion about whether it is better from a Climate Change 

perspective to use either fish by-product or terrestrial animal by-products in farmed 

salmon feeds when employing economic allocation (as the contribution from production 

and processing is very low). However it is clear that with this co-product handling 

approach, ingredients derived from animal by-products (terrestrial or aquatic) have a 

relatively low GHG emission intensity in comparison to other ingredients in the system 

(e.g. small pelagic species). 
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The focus of this study has been the replacement of protein sources, while the fish oil 

inclusion rate has been kept similar in each feed. Fish oil and meal are co-produced from 

the same material. Use of fish oil without concurrent use of fishmeal would not seem ideal. 

The GHG emissions of replacing fish oil with vegetable derived oils has been studied by 

Boissy et al. (2011). 

The “Other components” (vitamins and minerals) have not been included in the 

assessment of GHG emissions of the different formulations. The Conventional formulation 

has the highest inclusion rate of these components (2.28%) (Table 34). It is not expected 

that their inclusion would radically affect the GHG emission comparison performed in this 

study. 

8.6.3 Co-product handling and the use of animal derived by-products in feeding 

farmed animals 

The use of terrestrial animal derived by-products in feeding farmed animals (water or land 

based) is currently not permitted in the EU (EC, 2009). However, the European 

Commission is currently re-considering the use of poultry derived processed animal 

protein to farmed pig and farmed fish and pig derived processed animal protein to farmed 

birds and farmed fish (fish derived material is already allowed to be use in the feeding of 

non-ruminants) (Gleadle, 2011). When economic allocation was used to partition the 

inputs and outputs in the product system, the inclusion of poultry by-product, porcine 

blood, and fish by-product derived ingredients in salmonid feed formulations resulted in 

lower GHG emissions than conventional formulations. When mass allocation was used 

the situation was different and salmonid feeds derived from vegetable protein sources and 

low energy intensive dedicated reduction fisheries had lower GHG intensity. 

The results for mass allocation are in agreement with the main findings by Pelletier and 

Tyedmers (2007) and Pelletier et al. (2009) based on gross energy content allocation. 

Mass allocation factors are in very good agreement with energy allocation factors, as 

presented by Pelletier and Tyedmers (2007), which is reasonable as it can be expected 

that for livestock systems the chemical composition of the edible part will be fairly similar 
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to that of the animal by-products resulting in similar allocation factors for energy or mass 

based allocation. Ayer et al. (2007) and Pelletier and Tyedmers (2007) argued that 

economic allocation is not ideal, as economic values reflect market failures and do not 

reflect the material and energy flows in co-product streams. However, Ayer et al. (2007) 

also acknowledged that from a conservation perspective the use of economic allocation 

may seem appealing, as the economic revenue is the driver for production. This argument 

would seem appropriate in the case of animal by-products. In general, the basis for 

assessment based on products is that the environmental impact of the economy is related 

to the consumption of products (and services), directly by their use and indirectly by their 

production and final disposal (Tukker and Jansen, 2006). 

Based on LCA results some studies have recommended that salmonid diets should be 

more vegetarian (Ellingsen and Aanondsen, 2006; Pelletier and Tyedmers, 2007). 

Although this seems in principle appealing, demand for animal products is increasing and 

the production of animal by-products is unavoidable. Animal by-product prices may vary 

over time; however it is not likely that their demand will influence their volume of 

production. Their production volume is dominated by the demand of the main commodity 

(the edible animal parts). With an increasing demand for animal products and provided 

that animal by-products are not being used for human consumption, it seems logical that 

they are used to minimise the need (at least partially) for marginal proteins and fats such 

as soya bean meal and palm oil, which incur GHG emissions associated with land 

transformation. 

Global meat production increased from 233 to 279 million tonnes between 2000 and 2008 

production (FAO, 2011); an increase of 19%. This trend is expected to continue with meat 

production projected to more than double from 1999-2001 to 2050 (Steinfeld et al., 2006). 

This will not only result in a significant increase in the production of animal by-products, 

but will also likely result in more forest land being converted to pastures and arable land to 

produce feed ingredients. This land transformation could be minimised through more 

widespread use of animal by-products. For example, animal by-products could replace at 
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least partially the use of marginal soya bean meal in the UK salmonid farming sector. 

However, it is likely that the soya bean meal would be used in another livestock 

production system or in the petfoods sector (where animal by-products are currently 

mostly used). Consequently the major problem is not the production of marginal feed 

ingredients itself, but the global growth of the animal production system. This provides a 

defensible argument to use economic allocation to divide the environmental burden of 

animal products and by-products, as the driver for its expansion is the delivery of animal 

food for human consumption. 

From a research perspective, it seems that each co-product handling situation should be 

analysed independently, however it is has been argued that there is a need to harmonise 

co-product handling (Flysjö et al., 2011a). The British Standard for Carbon Footprint of 

products and services (BSI, 2008b) prescribes that when allocation cannot be avoided, it 

should be based on economic value, indicating that in attributional Carbon Footprint 

studies in the UK, it is likely that economic allocation would be the method of choice. 

Recently Boissy et al. (2011) evaluated the partial replacement of small pelagic species 

derived fish biomass with vegetable derived material in the feeding of farmed salmonids 

using economic allocation as the main method for co-product handling (they did not 

include either aquatic or land based animal by-products). Economic allocation has been 

also used as co-product handling method in a recent study on poultry feeds production 

(Nguyen et al., 2012). 

It has been shown that co-product handling is in fact a very important issue when 

analysing the life cycle impact assessment results of the inclusion of animal by-products 

derived ingredients in farmed animals feed formulations (in particular salmonid feeds in 

the current study). However specific practices of some parts of the production chain 

should be considered. For example, the processing of animal by-products uses significant 

proportions of rendered fats (biofuels) instead of fossil fuels to fulfil their thermal 

requirements in the UK (Chapter 4). This is an issue that should be taken into account 

when quantifying the Climate Change impact from animal by-product derived ingredients. 
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It is acknowledged that there are no technical impediments for the use of biofuels in the 

production chain of other ingredients (e.g. in the rendering of fish biomass), however this 

is a mature practice associated with the terrestrial animal by-product rendering sector, as 

low value rendered fats are actually products of the terrestrial animal by-products 

processing industry. It is important to notice that the use of rendered fats may vary from 

plant to plant and year to year, therefore scenarios with different fuels are useful to have a 

broad perspective on this issue. 

8.6.4 Additional considerations 

In the current study the only environment impact category studied was Climate Change. 

Other environmental impacts should be considered when the environmental and resource 

sustainability of farmed (aquatic or terrestrial) animals (or feeding them) is studied. The 

availability of animal by-product biomass to replace significant amounts of small pelagic 

species has not been evaluated. Furthermore, the shift of animal by-products from being 

used as ingredients in petfoods to animal feeds would require consequential assessment 

to quantify net environmental benefits. A broader perspective in sustainability assessment 

would include not only the environmental but also the social and the economic dimensions 

(Guinee et al., 2010). The use of caught fish in feeding farmed fish is perceived as 

ecologically inefficient and seems associated with an social issue when there is 

competition for small pelagic species for either food for vulnerable parts of the society in 

developing countries or feed for high value fish species (Tacon and Metian, 2009; Bostock 

et al., 2010). 

8.7 Conclusion 

The inclusion of animal by-product derived ingredients in salmonid feed formulations 

results in lower GHG emissions on a feed mass produced basis when they substitute part 

of vegetable or small pelagic species fish derived ingredients. These findings are strongly 

dependent on the co-product handling method used to partition between edible animal 

products and by-products (economic allocation). GHG emissions of feed formulations 

including land-based animal by-products are reduced when rendered fats are used as fuel 
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for rendering instead of fossil fuels because of the emissions credits associated with the 

rendering of null value animal by-products. Economic allocation is perceived as an 

appropriate co-product handling approach for this type of system since the need for 

marginal feed ingredients is driven by the global expansion of the livestock production 

sector. Consequential assessment would be required to prove net benefits of a change in 

the destiny of ABP derived products. 
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9 General discussion 

9.1 Novel contribution 

In general rendering is not a commonly known industry (publicly and academically). Prior 

to this research study the energy use and GHG emission intensity of the UK rendering 

process (presented in Chapters 4 and 7) had not been investigated and thus the research 

presented can be considered a novel contribution to knowledge. Rendering is the main 

process by which a significant amount of biomass arising from the animal production and 

meat processing industries (30 – 50% the live weight produced) is processed. It is 

therefore important to quantify its Climate Change relevance in the context of animal 

production (presented in Chapters 5 and 7 – system expansion). 

In addition, the research presented in this thesis is considered an important contribution to 

knowledge because it provides a robust source of data on economic flows for the 

rendering process. These economic flows can be used in life cycle assessment studies of 

rendered products (for the production of pet foods, animal feeds and biofuels) and can be 

included in system expansion in LCAs of animal products. Consequently in addition to the 

direct contribution to knowledge contained in this thesis, the research has the potential to 

contribute to knowledge indirectly (i.e. through the work of others). For example, the un-

allocated economic flows in rendering reported in Chapter 4 can be used in LCA studies 

on biodiesel derived from rendered fats using similar or different co-product handling 

approaches and system boundaries to those used here. 

Broiler production is one of the most important meat production systems (representing 

40% of the meat produced in the UK); however studies on its GHG emissions are not 

abundant. Furthermore, there have been no published LCA studies on the GHG 

emissions of broiler production based on direct farm data in the UK. Chapter 6 constitutes 

one study of the fossil energy use and GHG emission intensity of conventional broiler 

production in the UK. Chapter 6 adds to the publicly available literature on economic 

flows, energy use and Climate Change impact of meat production systems. 
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Co-product handling (e.g. allocation and system expansion) is one of the most discussed 

topics in LCA methodology. Chapter 7 presented a new case study on different ways to 

deal with the co-production problem in poultry processing systems and thus demonstrates 

an important contribution to knowledge. There are no previous peer reviewed studies 

which have included a detailed discussion of co-product handling in the poultry production 

system. In fact, there are no detailed studies on poultry products and by-products that 

present simultaneous LCA results for final poultry meat products and rendered products. 

Published LCA studies on the production of salmonid feeds, and in particular the inclusion 

of animal by-products as ingredients, had not previously taken into account the fact that 

rendered products can be produced with rendered fats as fuels for the rendering process. 

Chapter 8 presented that in spite of the previously discussed issues in the literature 

related to co-product handling, it is also important to take into consideration the use of 

rendered fats as fuels for the rendering processes. The use of rendered fats as fuels for 

rendering resulted in GHG emission credits. 

Although it was not an objective of the thesis per-se, the potential for energy self 

sufficiency of the UK rendering industry was screened. The procedure for estimation can 

be found in Appendix C. The UK rendering industry produces different categories of 

rendered products. Under current EU legislation category 1 rendered products must be 

destroyed by combustion. During the years 2006 to 2008 sufficient quantities of category 

1 rendered products were produced to satisfy both the thermal energy and electricity 

requirements of the UK rendering industry. This means that the rendering industry is not 

necessarily an energy consumer, but an energy producing system and this is the main 

reason why they provide GHG emission credits (provided rendered products substitute 

products or energy systems with higher GHG emission intensity). 
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9.2 Additional considerations 

9.2.1 Co-product handling and the animal by-product system 

One important methodological choice was the use of economic allocation and the 

consequential system boundary establishment for mammalian and poultry rendering 

systems (Section 2.3.4). It should be noted that if mammalian ABP had a positive price, 

mammalian rendered products would need to be modelled using a similar approach to 

poultry derived rendered products (Chapter 7). In addition the treatment of MBM has been 

included in the category 1 rendering product system because it was not associated with a 

positive economic value. If this situation were to change, the system would not gain 

credits from the avoidance of highly carbon intensive electricity. The effect on category 3 

mammalian rendered products would be similar to that of using carbon neutral electricity 

as avoided electricity presented in the sensitivity analysis of Chapter 4 (GHG emissions of 

category 3 mammalian rendered products would be higher). 

If a new EU risk assessment permitted the inclusion of poultry rendered products in non-

ruminant farm animal diets (Gleadle, 2011), it may have an effect on their prices. This 

would possibly require an update in the prices and consequently the economic allocation 

factors in Chapter 7 would need to be revised. However, the economic allocation factors 

would not change radically as the price of the edible part is (and is likely always to be) 

significantly higher than that of the by-products. 

Increase in biodiesel production could create a demand for rendered fats to be used in the 

production of biodiesel. If all the rendered fats produced were to be used in the production 

of biodiesel, the rendering industry would have to rely on fossil fuels for their fuel 

requirements, with the consequential effect on the GHG emissions from rendered 

products (Chapters 4 and 7) and meat production systems (Chapters 5 and 7). 

When using system expansion, soya bean has been used as a marginal source of protein 

and oil, or palm oil as the source of oil. It has been assumed that the use of rendered 

products would be associated with the avoidance of the production of these marginal crop 

derived ingredients. Both soya bean and palm have relatively high GHG emissions 
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because their production is associated with agricultural emissions and with land 

transformation. In the case of soya bean meal as a source of protein, it is difficult to 

assure a net avoidance of soya bean meal production. If soya bean meal is partially 

displaced by poultry animal processed protein and hydrolysed feather meal, another 

source of protein would be needed in the production of petfoods (where the poultry meals 

are currently being used). It is likely that petfood manufacturing would use a marginal 

protein (possibly soya bean meal). Therefore careful examination of the consequential 

effects on different systems is needed to prove net GHG emission reductions. 

The inclusion of ABP management in the meat production system provided GHG emission 

credits to the edible products (Chapters 5 and 7 – system expansion). However, the effect 

of the fuel used in rendering was different for beef (Chapter 5) and chicken (Chapter 7), 

because in the former the rendered fat was produced within the same system, whist in the 

latter the rendered fat was outsourced (from the category 1 rendering system – Chapter 

4). 

A question that arises: What is the ideal final use of animal by-products from a Climate 

Change perspective? To answer this question would require the whole system (including 

the use of animal by-products and substitutes) to be modelled because effects in one 

system can have knock on effects on others. The integrated modelling of the GHG 

emissions of the whole food-petfood-oleochemicals system would minimise the need for 

co-product handling. This approach was neither in the objectives nor scope of this 

research project. The need for an integrated systems analysis has already been 

addressed for important interlinked protein systems that include milk and beef (Flysjö et 

al., 2011a). 

In the current work economic allocation has been perceived as the most adequate co-

product handling method when results for GHG emissions associated with rendered 

products are required, for example when the GHG emissions of an application is being 

calculated (e.g. animal diets - Chapter 8). However, it is important to note that production 

of animal by-products is an important part of the food chain and therefore it could be 
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argued that the most appropriate way of dealing with the animal by-product processing 

system is to include it as part of the meat production system as in Chapter 5 and Chapter 

7 (system expansion). This is in fact closer to the ideal case of modelling the whole food 

production system. Furthermore, system expansion is in a higher tier than allocation as 

recommended by the ISO standards for LCA (ISO, 2006b; a) and de BSI Standards for 

Carbon Footprint (BSI, 2008b). 

9.2.2 Other alternatives to treat animal by-products 

The research presented did not attempt to compare the Climate Change impact (in terms 

of GHG emissions per kg ABP) of treating animal by-products by rendering against 

alternative disposal methods (e.g. centralised and decentralised anaerobic digestion, the 

biomal process, direct incineration). This would be particularly important for the evaluation 

of alternative disposal options for non-ruminant on-farm fallen stock. Non-ruminant 

mortalities (Category 2 animal by-products) are permitted to be used as feedstock for 

anaerobic digestion. Anaerobic digestion or co-digestion appear to be an appealing option 

to transform solid organic waste into biogas because they can use a great variety of 

feedstock materials (Khalid et al., 2011). The biomal process consist in fine crushing the 

animal by-products and co-combusting them together with other fuels (e.g. wood chips, 

peat or municipal waste) in a fluidised bed combustion system to produce both heat and 

electricity (Biomal). 

In contrast to Category 2 material, legislation requires Category 1 animal by-products to 

be incinerated directly or after rendering. Whilst the current study has investigated the 

Climate Change impact of using Category 1 rendered products as fuels (as presented in 

Chapter 4), it has not attempted to compare the impact of generating energy through the 

direct incineration of Category 1 slaughterhouse material (i.e. material that has not been 

rendered). 

Currently category 3 rendered products are used in the oleochemical industry and 

petfoods, but could also be used in farmed animal feeds provided that new risk 

assessments indicate that this is acceptable from an animal and human health 



184 
 

perspective. In particular, that their use as feed ingredients does not constitute a risk of 

disease transmission. Rendering is the main technology used to dry animal by-products to 

produce feed ingredients. In fact, rendering technology is even used in the production of 

fish meal and oil from dedicated small pelagic reduction fisheries. Consequently, it seems 

that there are no other alternative treatment methods for Category 3 material (that is to be 

used as feed ingredients) whose Climate Change impact could be compared to that of the 

rendering process. Improvements within rendering technology have not been studied. 

9.2.3 Other environmental impact categories 

Only the Climate Change impact has been assessed in this study. Climate Change is 

currently a priority in environmental policy, however it can be argued that environmental 

sustainability is not only about GHG emissions. In this study, one important issue that has 

driven the conclusions has been the use of rendered fats as fuel for the production of 

rendered products. The use of rendered fats as fuels has only been assessed with a 

Climate Change perspective. 

Previous research has indicated that use of biofuels may either increase or decrease NOx 

emissions. The use of biodiesel derived from vegetable fats as fuel for internal combustion 

engines causes reduced tailpipe emissions of all pollutants, with the exception of NOx that 

has been shown to increase depending on the level of substitution (Hansen et al., 2006; 

Mirheidari et al., 2012). In contrast the use of biofuels derived from crops and crop 

residues in boilers results in reduced NOx emissions (Saidur et al., 2011). 

Therefore research is needed to comprehensively characterise the emissions produced 

from the combustion of rendered fats and MBM in order to fully understand their 

environmental impact. NOx emissions are associated with several impact categories that 

include: Acidification, Eutrophication, and Photo-oxidant formation. The current work has 

not endeavoured to evaluate these indicators. 

9.2.4 Recommendations for further work 

The recommendations for further work related to this thesis are presented below: 
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 The inclusion of other impact categories. As discussed in section 9.2.3 a more 

comprehensive approach would include more impact categories, in particular those 

associated with emissions from the combustion of biofuels. The economic flows in 

the rendering process have already been presented in this work. Therefore this 

would require the inclusion of natural flows associated with additional impact 

categories. In the particular case of NOx, data on emissions from the combustion 

of rendered products in industrial boilers and FBC systems would be needed and 

compared with emissions arising from similar systems based on fossil fuels. 

 Comparison from a life cycle perspective of the different alternatives for processing 

category 1 and category 2 animal by-products as discussed in section 9.2.2. 

Centralised and on-farm decentralised options of anaerobic digestion and other 

possible options could be of interest. A detailed comparison would include the 

modelling of the environmental burden (or credits) of the treatment processes and 

the final use of the different outputs of each alternative (for example in the case of 

anaerobic digestion: including the digestion process and the final use of biogas 

and digestate produced). 

 Simultaneous modelling of the GHG emissions of all the systems affected by 

changes in the destiny or final use of animal by-products. This would potentially 

include: (i) production of various farmed animal systems, (ii) meat processing, (iii) 

production of marginal fats and proteins, (iv) production of oleochemicals, (v) 

rendering, (vi) petfoods manufacturing, (vii) production of animal feeds, (viii) 

alternative disposal options for on-farm mortalities, (ix) several alternatives for 

production of bioenergy, and any other systems that may be interlinked. Modelling 

the GHG emissions of such a system would help to identify what the ideal use is of 

animal by-products derived biomass. Such a model could be developed in a way 

that it could support the analysis of issues not only related to animal by-products 

but in general to animal derived food systems. 
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10 Conclusions 

 Mammalian derived rendered products in the UK have lower CO2 emissions 

compared to substitute vegetable oils and protein meals, because mammalian 

ABP were treated as wastes within LCA methodology. Consequently, they do not 

carry any of the environmental burden associated with their production. In addition, 

a significant percentage of the thermal energy required for rendering was derived 

from combustion of MRF that does not contribute to fossil CO2 emissions. The 

system also gains credits from the production of biogenic electricity from the 

combustion of MBM. 

 The inclusion of animal slaughtering and ABP rendering in the system boundaries 

of meat processing does not radically affect the GHG emissions associated with 

meat production. The treatment of ABPs by rendering provides credits to the meat 

production system through the avoidance of products such as fossil fuels, and 

marginal protein meals and fats. 

 The use of different co-product handling approaches during poultry processing and 

poultry ABP processing produces different GHG emissions for different edible co-

products and poultry rendered products. Provided economic allocation is used 

during poultry processing to allocate GHG emissions between edible co-products 

and by-products, the GHG emissions of poultry rendered products such as PPAP, 

PRF and HFM are lower than those of alternatives such as soya bean meal and 

soya oil. Using this co-product handling approach, the GHG emissions of poultry 

rendered products depends largely on the relative proportion of category 1 

rendered fat and natural gas used as fuels during poultry ABP processing. 

 Allocation is essential in attributional studies where results are required for all the 

co-products and by-products produced. When the objective of the study is to 

investigate the environmental burden of the whole food system, the system should 

be expanded to include the effects associated with disposal of unavoidable by-

products. 
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 The inclusion of animal by-product derived ingredients in salmonid feed 

formulations results in lower GHG emissions on a feed mass produced basis when 

they substitute part of vegetable or small pelagic species fish derived ingredients. 

These findings are strongly dependent on the co-product handling method used to 

partition between livestock co-products and by-products. GHG emissions of feed 

formulations including land based animal by-products are reduced when rendered 

fats are used as fuel for rendering because of the emissions credits associated 

with the category 1 rendering system. Economic allocation is perceived as an 

appropriate co-product handling approach for this type of system since the need 

for marginal feed ingredients is driven by the global expansion of the livestock 

production sector. 

 Results for GHG emissions of rendered products are strongly dependent on the 

way their production is ascribed (co-production handling used to divide the inputs 

and outputs between animal edible products and by-products) and the GHG 

emission intensity of the energy carriers used in their production. 
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Table A-1 Greenhouse gas emissions results and some methodological characteristics of beef production systems studies 

Study Geograph
ical 
Coverage 

Functional 
unit (FU) 

Approach to 
economic 
and natural 
flow 
calculation 

Co-product 
handling 

Scope and greenhouse gas (GHG) emissions sources 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EF EU MM SM CG LT TA S C WM  

(Subak, 
1999) 

United 
States and 
Africa 

1 kg CW 

US yield 54% 

Sahelian yield 

61% 

Literature Main product 

 

Y Y Y Y Y N Y NA NA NA NA US feetlot 

14.8 kg CO2e 

Sahelian pastoral 

8.4 kg CO2e 

(Phetteplac
e et al., 
2001) 

United 
States 

1 kg live 
weight gain 
per year for 
different type 
of operations 

National 
Statistics, 
simulation, 
literature 

Not required Y Y Y Y Y N N NA NA NA NA Cow-calf 

20.6±3.9kg CO2e 

Stocker 

14.4±2.3kg CO2e 

Feedlot 

5.66±0.24kg CO2e 

Cow-calf through feedlot 

15.5±2.3kg CO2e 

(Williams et 
al., 2006) 

 

England 
and Wales 

1 tonne CW 

55% yield 

(here 
presented on 
kg) 

National 
statistics, 
literature and 
databases. 

 

Based on 
system 
modelling. 

Economic 
allocation 

 

Relation between 
dairy and beef is 
included in the 
model 

 

System expansion 

Y Y Y Y Y Y N NA NA NA NA Weighted average 

16 kg CO2-eq 

Non-organic 

15.8 kg CO2e 

Organic 

18.2 kg CO2e 

100% suckler 
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Study Geograph
ical 
Coverage 

Functional 
unit (FU) 

Approach to 
economic 
and natural 
flow 
calculation 

Co-product 
handling 

Scope and greenhouse gas (GHG) emissions sources 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EF EU MM SM CG LT TA S C WM  

for manure 
fertilising 

25.5 kg CO2e 

Lowland 

15.6 kg CO2e 

Hill & upland 

16.4 kg CO2e 

 

Average based on LW  

6.888 kg CO2e 

(pers. comm. Williams 2011) 

(Casey and 
Holden, 
2006a) 

 

Ireland 1 kg LW per 
year 

Real farm data 

Literature and 
databases 

Feeds are from 
databases that 
sometimes require 
co-product 
handling 

Y Y Y Y Y N N NA NA NA NA Conventional 

13 kg CO2e 

Agri-environmental 

12.2 kg CO2e 

Organic 

11.1 kg CO2-eq 

(Casey and 
Holden, 
2006b) 

Ireland 1 kg LW per 
year 

National 
statistics 

Literature and 
databases 

 

Mass allocation 
milk and meat 

 

Feeds are from 
databases that 
sometimes require 
co-product 

Y Y Y Y Y N NR NA NA NA NA 11.26 kg CO2-eq 
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Study Geograph
ical 
Coverage 

Functional 
unit (FU) 

Approach to 
economic 
and natural 
flow 
calculation 

Co-product 
handling 

Scope and greenhouse gas (GHG) emissions sources 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EF EU MM SM CG LT TA S C WM  

handling 

(Ogino et 
al., 2007a) 

Japan 1 kg CW 

40% yield 

National 
statistics 

literature 

databases 

Meat output: main 
product 

 

Feed not very 
clear, but it seem 
from databases 

Y Y Y Y N N NR NA NA NA NA 36.4 kg CO2-eq 

(Vergé et 
al., 2008) 

Canada 1 kg LW 

 

National 
statistics 

Literature 

databases 

Main product for 
feeds 

Y Y Y Y Y Y NR NA NA NA NA 10.37 kg CO2-eq 

(Weidema 
et al., 
2008b) 

Europe 1 kg slaughter 
weight 

Input-output 
tables, 
National 
Statistics, 
process data 
(hybrid), 

Databases 

Economic 
allocation 

Y Y Y Y Y Y Y Y Y Y Y 28.7 kg CO2e 
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Study Geograph
ical 
Coverage 

Functional 
unit (FU) 

Approach to 
economic 
and natural 
flow 
calculation 

Co-product 
handling 

Scope and greenhouse gas (GHG) emissions sources 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EF EU MM SM CG LT TA S C WM  

(Edward-
Jones et al., 
2009) 

Wales 1 kg LW Real farm data 

Literature 

databases 

Economic 
allocationbetween 
lamb, beef, cull 
ewes and 

Wool 

 

Feed 

Not clear if it was 
required for feeds 

Y Y Y Y Y N NR NA NA NA NA Conventional 

9.7 – 38.1 kg CO2-eq 

Extensive 

18.8 – 132.6 kg CO2-eq 

(Cederberg 
et al., 
2009a) 

Sweden 1 kg CW 
(based on 
statistics 
associated 
with CW) 

National 
statistics, 
industry, 
literature, 
databases 

hybrid 

Allocation between 
milk and beef 
based on feed 
requirements to 
cover the dairy 
cow´s milk 
production, 
maintenance and 
pregnancy 

 

Feeds: economic 
allocation 

 

When manure is a 
by-product: with 
system expansion 

 

Y Y Y Y Y N
 

N N
*
 N* NA NA 19.8 kg CO2e 
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Study Geograph
ical 
Coverage 

Functional 
unit (FU) 

Approach to 
economic 
and natural 
flow 
calculation 

Co-product 
handling 

Scope and greenhouse gas (GHG) emissions sources 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EF EU MM SM CG LT TA S C WM  

(Nguyen et 
al., 2010a) 

Europe 1 kg CW 

Suckler cow-
calf 

51 – 58% 

Yield 

European 
level data 

Literature 

databases 

Allocation between 
milk and beef 
based on feed 
requirements to 
cover the dairy 
cow´s milk 
production, 
maintenance and 
pregnancy 

 

Soya bean meal – 
oil  with system 
expansion 

Y Y Y Y Y N Y N NA NA NA Suckler cow-calf 

27.3 kg CO2-eq 

84.1 kg CO2-eq (including 
land transformation) 

Dairy bull calf 12 months 

16.0 kg CO2-eq 

62.4 (including land 
transformation) 

Dairy bull calf 16 months 

17.9 kg CO2-eq 

63.6 (including land 
transformation) 

Dairy bull calf 24 months 

19.9kg CO2-eq 

69.5 (including land 
transformation) 

(Peters et 
al., 2010) 

Australia 1 kg CW 

53% yield 

Real farm, 
national level 
statistics and 
literature 

hybrid 

Mass allocation Y Y Y Y Y N NR Y Y NA NA Organic system in Victoria 

8.2 – 11.5 kg CO2-eq 

Premium system in New 
South Wales 9.8 – 10.2 kg 
CO2-eq 

Grain finished 
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Study Geograph
ical 
Coverage 

Functional 
unit (FU) 

Approach to 
economic 
and natural 
flow 
calculation 

Co-product 
handling 

Scope and greenhouse gas (GHG) emissions sources 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EF EU MM SM CG LT TA S C WM  

9.9 kg CO2-eq 

Grass Finished 

12 kg CO2-eq 

(Beauchemi
n et al., 
2010) 

Western 
Canada 

1 kg CW 

60% yield 

Farm 
simulation 

national 
statistics 

and literature 

Main product for 
carcass yield 

 

Feeds are 
produced on farm 
so not required 

Y Y Y Y Y N NR NA NA NA NA CW 

21.73 kg CO2-eq 

LW 

13.04 kg CO2-eq 

 

 

(Pelletier et 
al., 2010b) 

Upper 
Midwester
n United 
States 

1 kg LW Real farm data 

Literature and 
databases 

 

Gross energy 
content 

Y Y Y Y Y N NR NA NA NA NA Feedlot 

14.8 kg CO2-eq 

Backgrounding/Feedlot 

16.2 kg CO2-eq 

Pasture 

19.2 kg CO2-eq 

(Cederberg 
et al., 2011) 

Brazil 1 kg CW 
(based on 
statistics 
associated 
with carcass 

National 
statistics, 
literature, 
databases 

Main product 

 

Land 
transformation 

Y Y Y Y Y N
* 

Y N
c
 N

c
 NA NA Newly deforested land 

726 kg CO2-eq 

Legal Amazon Region 
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Study Geograph
ical 
Coverage 

Functional 
unit (FU) 

Approach to 
economic 
and natural 
flow 
calculation 

Co-product 
handling 

Scope and greenhouse gas (GHG) emissions sources 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EF EU MM SM CG LT TA S C WM  

weight, -global 
average of 
carcass 
produced by 
cattle head) 

 

 

 

emissions 
between timber 
and pasture land 
based on carbon 
content and 
logging data 

 

No feedlots, only 
pastures 

180 kg CO2-eq 

Average Brazil 

44 kg CO2-eq 

(Foley et al., 
2011) 

Ireland 1 kg CW Farm 
simulation, 
national 
statistics, 

databases 

Main product 

 

Feeds: databases 
with sometimes 
already are 
allocated 

Y Y Y  Y Y N N NA NA NA NA Average based in National 
Farm Survey 

23.1 kg CO2e 

Steer Moderate. 

19.7kg CO2e 

Steer Intensive. 

22.0 kg CO2e 

Bull Moderate. 

18.9 kg CO2e 

Bull Intensive 

20.4kg CO2e 

(Beauchemi
n et al., 
2011) 

Canada 1 kg CW Farm 
simulation 

national 
statistics 

Not required 

Main product for 
carcass yield 

Y Y Y Y Y N Y NA NA NA NA CW 

19.89 - 23.14kg CO2e 

LW 
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Study Geograph
ical 
Coverage 

Functional 
unit (FU) 

Approach to 
economic 
and natural 
flow 
calculation 

Co-product 
handling 

Scope and greenhouse gas (GHG) emissions sources 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EF EU MM SM CG LT TA S C WM  

and literature  11.99 – 13.88 kg CO2e 

(Veysset et 
al., 2010) 

France 1 tonne LW 
over a year 

 (here 
presented on 
kg) 

Farm 
simulation 

national 
statistics 

and literature 

Main product / not 
required 

Y Y Y Y Y Y N NR NR NA NA calf-to-weanling and 
fattened females 

16.6 kg CO2e 

calf-to-weanling 

100% grassland farm 

17.1 kg CO2e 

calf-to-beef Beef 

steers production 

14.9kg CO2e 

 

(Lesschen 
et al., 2011) 

Europe 1 kg edible 
beef defined 
as 0.9 of CW 

Yield 58% 

European and 
national 
statistics, 
simulation and 
literature 

Mature dairy cows 
were attributed to 
the dairy cow 
sector, whereas 
GHG emissions 

related to calves 
and heifers were 
attributed to the 
beef sector 

Feed from seeds 
seem based on 
mass or some 
simple approach 

Y Y Y Y Y N N NA NA NA NA Average EU-27 

22.6 kg CO2e 

Range for different countries 

~17 - ~42 kg CO2e 
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Study Geograph
ical 
Coverage 

Functional 
unit (FU) 

Approach to 
economic 
and natural 
flow 
calculation 

Co-product 
handling 

Scope and greenhouse gas (GHG) emissions sources 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EF EU MM SM CG LT TA S C WM  

(Eady et al., 
2011) 

Australia 1 kg LW Real farm 
data, national 
statistics 
literature, 
databases 

Economic 
allocation 

NR Y Y Y Y N N NA NA NA NA Gympie 

17.5 - 22.9 kg CO2e 

Arcadia Valley 

11.6 to 15.5 kg CO2e 

(Capper, 
2011) 

 

United 
States 

1 billion kg 

(here 
presented on 
kg) 

National 
statistics 
literature, 
databases 

Biological 
allocation between 
beef and dairy 

Y Y Y Y Y N N N N N N 17.945 kg CO2e 

Y: Yes, it is included 
N: No, it is no included 
NR: not required 
NA: not applicable 
F: feed (production and delivery if required) 
MM: manure management (direct and/or indirect) 
SM: soil management (direct and/or indirect) 
EF: enteric fermentation 
EU: energy use (on-farm) 
TA: transport of finished animals from farm to slaughtering (not necessarily required in every study, some studies may include transport of animal between farms) 
CG: capital goods (production and maintenance) 
LT: Land use change transformation (only required for marginal production) 
S: slaughtering (inputs and outputs) 
C: Consumption 
WM: Final waste management 
CW: carcass weight 
LW: live weight 
N

c:
 Energy and capital goods for slaughtering and transport to Europe included in associated extended document (Cederberg et al., 2009b) 
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Table A-2 Greenhouse gas emissions results and some methodological characteristics of lamb production systems studies 

Study Geographic
al Coverage 

Functional 
unit (FU) 

Approach to 
economic and 
natural flow 
calculation 

Co-product 
handling 

Scope and GHG emissions sources 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EF EU MM SM CG LT TA S C WM  

Williams et 
al.(2006) 

 

England and 
Wales 

1 tonne CW 

47% yield 

(here 
presented 
on kg) 

National statistics, 
literature and 
databases. 

 

Based on system 
modelling. 

Economic 
allocation 
between mutton 
and meat. 

 

System 
expansion for 
manure 
fertilising 

Y Y Y Y Y Y N NA NA NA NA Weighted average 

17 kg CO2-eq 

Non-organic 

17.5 kg CO2e 

Organic 

10.1 kg CO2e 

 

Average based on LW  

7.501 kg CO2e 

(pers. comm. Williams 
2011) 

Edward-
Jones et al. 
(2009) 

Wales 1 kg LW Real farm data 

Literature 

databases 

Economic 
allocationbetwee
n lamb, beef, 
cull ewes and 

Wool 

 

Feed 

Not clear if it 
was required for 
feeds 

Y Y Y Y Y N N NA NA NA NA Conventional 

8.1 – 31.7 kg CO2-eq 

Extensive 

20.3. – 143.5 kg CO2-eq 
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Study Geographic
al Coverage 

Functional 
unit (FU) 

Approach to 
economic and 
natural flow 
calculation 

Co-product 
handling 

Scope and GHG emissions sources 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EF EU MM SM CG LT TA S C WM  

(Peters et 
al., 2010) 

Australia 1 kg CW 

47% yield 

Real farm, national 
level statistics and 
literature 

hybrid 

Mass allocation Y Y Y Y Y N N Y Y NA NA 8.3 – 7.2 kg CO2-eq 

 

(Biswas et 
al., 2010) 

Australia 1 kg LW Real farm data  

Literature 

 

Economic 
allocation for 
lamb and wool 

Y Y Y Y Y Y N NA NA NA NA Sub-clover 

5.56 

Mixed pasture 

5.09 

Y: Yes, it is included 
N: No, it is no included 
NA: not applicable 
F: feed (production and delivery if required) 
MM: manure management (direct and/or indirect) 
SM: soil management (direct and/or indirect) 
EF: enteric fermentation 
EU: energy use (on-farm) 
TA: transport of finished animals from farm to slaughtering (not necessarily required in every study, some studies may include transport of animal between farms) 
CG: capital goods (production and maintenance) 
LT: Land use change transformation (only required for marginal production) 
S: slaughtering (inputs and outputs) 
C: Consumption 
WM: Final waste management 
CW: carcass weight 
LW: live weight 
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Table A-3 Greenhouse gas emissions results and some methodological characteristics of pig production systems studies 

Study Geographic
al Coverage 

Functional unit 
(FU) 

Approach to 
economic and 
natural flow 
calculation 

Co-product 
handling 

Scope and GHG emissions sources 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EF EU MM CG LT TA S C WM  

(Cederberg 
and Flysjö, 
2004) 

Sweden 1 kg bone and fat 
free meat (58%-
59% CW) 

 

National statistics 

Industry data, 
expert judgement,  

Meat: primary 
product 

 

Feeds: 
economic 
allocation 

Y Y Y Y N N NA NA NA NA Animal welfare 

4.08 kg CO2e 

Environmental 

3.63 kg CO2e 

Product quality 

4.43 kg CO2e 

(Basset-
Mens and 
van der 
Werf, 2005) 

France 1 kg LW Generic 
management 
guidance, 

Industry data 

literature and 
databases. 

 

Economic 
allocation 
between porker 
and sow 

Y Y Y Y Y N NA NA NA NA Good Agricultural 
Practices (conventional) 

2.3 kg CO2e 

Red Label quality 

3.46 kg CO2e 

Organic 

3.97 kg CO2e 

 

(Williams et 
al., 2006) 

 

England and 
Wales 

1 tonne CW 

72% 75% 

77% yield 

(here presented 
on kg) 

National statistics, 
literature and 
databases. 

 

Based on system 
modelling. 

System 
expansion for 
manure 
fertilising 

Y Y Y Y
 

Y N NA NA NA NA Weighted average 

6.4 kg CO2e 

Non-organic 

6.3kg CO2e 

Organic 

5.6 kg CO2e 
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Study Geographic
al Coverage 

Functional unit 
(FU) 

Approach to 
economic and 
natural flow 
calculation 

Co-product 
handling 

Scope and GHG emissions sources 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EF EU MM CG LT TA S C WM  

Heavier finishing 

6.1 kg CO2e 

Indoor breeding 

6.4 kg CO2e 

 

Average based on LW  

3.027 kg CO2e 

(pers. comm. Williams 
2011) 

(Dalgaard et 
al., 2007) 

Denmark 

 

1 kg CW 

(average yield 
75%) 

Generic practices, 
industry data, 

literature, 
databases 

Feed: system 
expansion 

Y Y Y Y N N Y Y NA NA 3.6 kg CO2e 

(Weidema 
et al., 
2008b) 

Europe 1 kg slaughter 
weight 

Input-output 
tables, National 
Statistics, process 
data (hybrid), 

Databases 

Economic 
allocation 

Y Y Y Y Y  Y Y Y Y 11.2 kg CO2e 

(Verge et 
al., 2009a) 

Canada 1 kg LW National statistics 

Literature 

databases 

Main product for 
feeds 

Y Y Y Y Y  NA NA NA NA 2.31 kg CO2e 
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Study Geographic
al Coverage 

Functional unit 
(FU) 

Approach to 
economic and 
natural flow 
calculation 

Co-product 
handling 

Scope and GHG emissions sources 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EF EU MM CG LT TA S C WM  

(Cederberg 
et al., 
2009a) 

Sweden 1 kg CW (based 
on statistics 
associated with 
CW) 

National statistics, 
industry, literature, 
databases 

main product 

 

Feeds: 
economic 
allocation 

 

When manure is 
a by-product: 
with system 
expansion 

 

Y Y Y Y N N NA NA NA NA 3.4 kg CO2e 

(Pelletier et 
al., 2010a) 

United 
States 

1 kg LW General practice, 

Industry surveys, 
literature, 
databases 

Gross energy 
content 

Y Y Y Y N N NA NA NA NA Commodity 

2.47 – 3.05 kg CO2e 

Niche 

2.52 – 3.33 kg CO2e 

(Nguyen et 
al., 2010b) 

Europe 

 

1 kg CW 

75% yield 

European level 
data 

Literature 

databases 

System 
expansion for 
soya bean meal 
and fish meal 
systems 

Y Y Y Y N Y NA NA NA NA 4.812 kg CO2e 

With land transformation 

9.752 kg CO2e 

With land transformation 
and opportunity cost of 
capital 

20.798 kg CO2e 
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Study Geographic
al Coverage 

Functional unit 
(FU) 

Approach to 
economic and 
natural flow 
calculation 

Co-product 
handling 

Scope and GHG emissions sources 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EF EU MM CG LT TA S C WM  

(Lesschen 
et al., 2011) 

Europe 1 kg edible beef 
defined as 0.9 of 
CW 

Yield  

75% 

European and 
national statistics, 
simulation and 
literature 

Main product Y Y Y Y N N NA NA NA NA Average EU 

3.5 kg CO2e 

Range for different 
countries 

~2.3 - ~7.3 kg CO2e 

(Phong et 
al., 2011) 

Vietnam 1 kg LW Real farm data, 
literature,  

Economic 
allocation 
between: Pig, 
Poultry/eggs, 
Fish, Rice grain, 
Fruits, 
Vegetables 

 

Economic 
allocation  

Y Y Y Y N N NA NA NA NA 8.262 kg CO2e 

(Stone et 
al., 2012) 

 

 

United 
States 

1 head of swine 
(here presented 
on kg LW) 

Generic modern 
process, industry 
data, expert 
judgement, 
literature, 
databases 

Feed ingredients 
from databases 
already 
allocated, the 
author provides 
different 
allocation 
scenarios 

Y Y Y Y N N NA NA NA NA 4.47 kg CO2e 

Y: Yes, it is included 
N: No, it is no included 
NA: not applicable 
F: feed (production and delivery if required) 
MM: manure management (direct and/or indirect) 
SM: soil management (direct and/or indirect) 
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EF: enteric fermentation 
EU: energy use (on-farm) 
TA: transport of finished animals from farm to slaughtering (not necessarily required in every study, some studies may include transport of animal between farms)CG: capital goods (production and 
maintenance) 
LT: Land use change transformation (only required for marginal production) 
S: slaughtering (inputs and outputs) 
C: Consumption 
WM: Final waste management 
CW: carcass weight 
LW: live weight 
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Table A-4 Greenhouse gas emissions results and some methodological characteristics of poultry production systems studies 

Study Geographic
al Coverage 

Functio
nal unit 
(FU) 

Approach to 
economic and 
natural flow 
calculation 

Co-product handling Scope and GHG emissions sources 

 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EU MM CG LT TA S C WM  

(Williams et 
al., 2006) 

 

England and 
Wales 

1 
tonneC
W 

70% 
yield 

(here 
presente
d on kg) 

National statistics, 
literature and 
databases. 

 

Based on system 
modelling. 

Economic allocation 

 

System expansion for manure 
fertilising 

Y Y Y* Y N NA NA NA NA Weighted average 

4.5 kg CO2e 

Non-organic 

4.5 kg CO2e 

Organic 

6.7 kg CO2e 

Free range 

5.5 kg CO2e 

 

Average based on LW  

2.016 kg CO2e 

(pers. comm. Williams 
2011) 

(Pelletier, 
2008) 

United 
States 

1 tonne 
LW 

(here 
presente
d on kg) 

Real farm data 

Expert judgement 

Literature 

Databases 

Output 

LW not required 

 

Feeds: gross energy content 

 

Manure: system expansion 

Y Y Y N N NA NA NA NA 1.395 kg CO2e 
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Study Geographic
al Coverage 

Functio
nal unit 
(FU) 

Approach to 
economic and 
natural flow 
calculation 

Co-product handling Scope and GHG emissions sources 

 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EU MM CG LT TA S C WM  

(Weidema 
et al., 
2008b) 

Europe 1 kg 
slaughte
r weight 

Input-output 
tables, National 
Statistics, process 
data (hybrid), 

Databases 

Economic allocation Y Y Y Y Y Y Y Y Y 3.6 kg CO2e 

(Verge et 
al., 2009b) 

Canada 1 kg LW National statistics 

Literature 

databases 

GHG emissions from culled layer 
hens is ascribed to eggs 

 

Main product for feeds 

Y Y Y Y N NA NA NA NA Broilers and culled layers 

1.00 kg CO2e 

 

Turkeys 

1.44 kg CO2e 

(Cederberg 
et al., 
2009a) 

Sweden 1 kg CW 
(based 
on 
statistics 
associat
ed with 
CW) 

70% 
yield 

National statistics, 
industry, literature, 
databases 

Poultry: main product 

 

Feeds: economic allocation 

 

When manure is a by-product: with 
system expansion 

 

Y Y Y N N NA NA NA NA 1.9 kg CO2e 
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Study Geographic
al Coverage 

Functio
nal unit 
(FU) 

Approach to 
economic and 
natural flow 
calculation 

Co-product handling Scope and GHG emissions sources 

 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EU MM CG LT TA S C WM  

(Boggia et 
al., 2010) 

Italy 1 kg of 
LW 

 

Real farm data 

Literature 

databases 

Output: LW not required 

 

Feed are from databases that do 
have allocation 

Y Y Y Y N NA NA NA NA Conventional 

0.689 kg CO2e 

Organic 

0.658 kg CO2e 

Organic plus 

0.703 kg CO2e 

 

GHG has been calculated 
as non-biogenic CO2 
emission + 25*CH4 
emission 

 

(Lesschen 
et al., 2011) 

Europe 1 kg 
edible 
beef 
defined 
as 0.9 of 
CW 

Yield 
71% 

European and 
national statistics, 
simulation and 
literature 

GHG emissions from laying hens 
were attributed to eggs, whereas 
GHG emissions 

from broilers and other poultry 
were attributed to poultry 

 

Feed from seeds seem based on 
mass or some simple approach 

Y Y Y N N NA NA NA NA Average EU 

1.7 kg CO2e 

Range for different 
countries 

~0.1 - ~4.2 kg CO2e 

(Phong et 
al., 2011) 

Vietnam 1 kg LW Real farm data, 
literature,  

Economic allocation between: Pig, 
Poultry/eggs, Fish, Rice grain, 
Fruits, Vegetables 

 

Y Y Y N N NA NA NA NA 8.719 kg CO2e 
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Study Geographic
al Coverage 

Functio
nal unit 
(FU) 

Approach to 
economic and 
natural flow 
calculation 

Co-product handling Scope and GHG emissions sources 

 

 

GHG per FU 

     Cradle-to-grave  

     Cradle-to-slaughterhouse-gate    

     Cradle-to-farm-gate      

     F EU MM CG LT TA S C WM  

Economic allocation  

(Leinonen 
et al., 2012) 

United 
Kingdom 

1 tonne 
CW 

70% 
yield 

(here 
presente
d on kg) 

National statistics, 
literature and 
databases. 

 

Based on system 
modelling 
(Williams et al., 
2006) 

 

Economic allocation 

 

System expansion for manure 
fertilising 

Y Y Y* Y N NA NA NA NA Standard 

4.41 ± 0.44 kg CO2e 

Free range 

5.13 ± 0.52 kg CO2e 

Organic 

4.41 ± 0.62 kg CO2e 

 

 
Y: Yes, it is included 
N: No, it is no included 
NA: not applicable 
F: feed (production and delivery if required) 
MM: manure management (direct and/or indirect) 
SM: soil management (direct and/or indirect) 
EU: energy use (on-farm) 
TA: transport of finished animals from farm to slaughtering (not necessarily required in every study, some studies may include transport of animal between farms) 
CG: capital goods (production and maintenance) 
CG: capital goods (production and maintenance) 
LT: Land use change transformation (only required for marginal production) 
S: slaughtering (inputs and outputs) 
C: Consumption 
WM: Final waste management 
CW: carcass weight 
LW: live weight 
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Table B-1 Data sources used in the study 

Section Life cycle inventory 

Main economic flows Secondary economic flows 

Rendering process category 
1 and 3 (including 
administrative operations) 
(UK) 
See Fig 1 

Yields: collected through direct contact with 7 UK rendering plants. n.a. 

Thermal energy: 
1. The amount of fuel consumed was collected through direct contact with UK 

rendering plants.  
 
2. The amount of energy derived from mammalian rendered fat (MRF) was 

calculated using the equation: 
                        

Where,  
mfuel= mass of the fuel 
CVfuel=the calorific value of the fuel. 

 
The Gross Calorific Value (GCV) of MRF (39 MJ/kg) was provided by a rendering 
company.  
The Net Calorific Value (NCV) of MRF (36 MJ/kg)was calculated using the equation 
(Lopez et al., 2010): 

                            

Where, 
%Hfuel = the percentage of H by weight of the fuel. 
 

The %H of MRF (11%) was provided by a rendering company. 
 
3. The amount of energy derived from natural gas was collected through direct 

contact with UK rendering plants in units of MWh. It was assumed that this was 
the net calorific energy as calorific value of gaseous fuels is very variable. The 
energy density of the life cycle inventory of natural gas in UK by Ecoinvent is in 
agreement with typical figures for calorific content of natural gas in UK.  

 
Note: The average amount of energy derived from natural gas and MRF was 
calculated by adding the amount of energy derived from natural gas to the amount of 
energy derived from MRF. This average does not take into account the combustion 
efficiency for the different fuels.  

Natural gas: Ecoinvent database(Ecoinvent Centre, 2010) 

Category 1 MRF: produced by the system 
Biogenic CO2 emissions were calculated according to the equation detailed 
below and assuming all the carbon contained in MRF is completely oxidised 
to CO2. 
The Carbon Content of MRF (75%) was provided by a rendering company. 

     
          

  
 

Where, 
     = amount of biogenic CO2 emissions. 
mf = mass of biogenic fuel burnt. 
%Cf = the % C by weight of the fuel. 
 

Electricity input: collected through direct contact with 5 UK rendering plants. Ecoinvent database(Ecoinvent Centre, 2010) 

Wastewater output: collected through direct contact with 4 UK rendering plants. Ecoinvent database(Ecoinvent Centre, 2010) 

Chemicals input: collected through direct contact with 4 UK rendering plants. Ecoinvent database(Ecoinvent Centre, 2010) 

Water input: collected through direct contact with 4 UK rendering plants. Ecoinvent database(Ecoinvent Centre, 2010) 
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Table B-1 (continuation) Data sources used in the study 

Section Life cycle inventory 

Main economic flows Secondary economic flows 

Power from fluidized bed 
combustion with steam 
turbine plant (UK) for 
system expansion category 
1 MBM 

MBM input: collected through direct contact with 5 category 1 rendering plants. n.a. 

Electricity output: calculated using the equation (Yassin et al., 2009): 
                              

Where, 

     =conversion efficiency FBC plants. 
mMBM=the mass of the MBM burnt. 
NCV = the Net Calorific Value of the MBM.  
 

The conversion efficiency of FBC plants was 18% (Yassin et al., 2009) 
The Gross Calorific Value of MBM (19.75 MJ/kg)was provided by companies.  
The Net Calorific Value of MBM (18.5 MJ/kg)was calculated using the equation 
(Lopez et al., 2010): 

                            

Where, 
%Hfuel =the percentage of H by weight of the fuel. 
 

The %H of MBM (6%) was provided by a rendering company. 
 

MBM: produced by the system 
Biogenic CO2emissions were calculated according to the equation detailed 
below and assuming all the carbon contained in MBM is completely oxidised 
to CO2. 
The carbon content of MBM (40%) was provided by a rendering company. 

     
          

  
 

Where, 

     = amount of biogenic CO2emissions. 
mf = mass of biogenic fuel burnt. 
%Cf = the % C by weight of the fuel. 

 
Avoidance of electricity from the national grid: Ecoinvent database(Ecoinvent 
Centre, 2010) 

Ash amount to landfill: calculated using the percentage of material in a FBC plant 
that is obtained as ash. The percentage (15%) was provided through direct contact 
with 1 UK FBC plant. 

Ecoinvent database (Ecoinvent Centre, 2010) 

Transport (EU) Transport distances of200 km by lorry were assumed, which is reasonable for UK 
road distances 

Ecoinvent database (Ecoinvent Centre, 2010) 

Soybean meal for system 
expansion through 
avoidance of PAP 

Assumed to be equal to the amount of PAP produced. Ecoinvent database (Ecoinvent Centre, 2010) 
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The potential for energy self-sufficiency in the United Kingdom rendering industry 

 

The content of this appendix can be accessed as: 

 
Ramirez AD, Humphries AC, Woodgate SL, Wilkinson RG (2011) The potential for energy 

self-sufficiency in the United Kingdom rendering industry. Management of Natural 

Resources, Sustainable Development and Ecological Hazards III. Transactions: Ecology 

and the Environment volume 148. Ravage of the Planet 2011 Conference proceedings 

Edited By: C.A. Brebbia, S.S. Zubir 

DOI: 10.2495/RAV110441 

http://library.witpress.com/pages/PaperInfo.asp?PaperID=22995 

 

  

http://library.witpress.com/pages/PaperInfo.asp?PaperID=22995
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The potential for energy self-sufficiency in the United Kingdom rendering industry 

C.1 Abstract 

Animal by-products (ABPs) are co-products of meat production system that include on-

farm fallen stock and slaughterhouse co-products that are not fit for human consumption 

(different types of fat, offal and bone). Slaughterhouse co-products represent between 30 

to 50% of the life weight of farm animals. In the UK, fat, offal and bone are normally 

handled by rendering. Rendering is a process where ABP are sized and then dried to 

produce rendered products: tallow and a protein meal. Depending on the category of the 

ABP, rendered products can be used in pet foods manufacturing, the oleochemical 

industry and as biofuels (with and without further processing). The UK rendering industry 

uses both tallow and natural gas as fuel for heat production during the drying process.  A 

study of UK rendering plants was undertaken to determine the total tallow production and 

the relative proportions of tallow and natural gas used as fuels. Data on fuel and energy 

use was collected from five rendering plants, representing 50% of the ABP processed in 

the UK. The results indicate that tallow use by the UK rendering industry ranged from 15 – 

100% of total heat production with the remainder being derived from natural gas. When 

scaled up, it can be calculated that between 2006 and 2008 the UK rendering industry 

required around 5.7 PJ of heat per annum. During the same period the energy potentially 

available from rendered tallow (usable as biofuel) was 6.7 PJ. It can be concluded that 

potentially the UK rendering industry could be self-sufficient in energy use. However, use 

of tallow as a biofuel depends on the relative cost of natural gas compared to alternative 

markets for tallow. 

C.2 Introduction 

The rendering industry is accepted to play an important role in the sustainable food chain 

by transforming animal by-products (ABPs) into processed proteins in form of the Meat 

and Bone Meal (MBM) and Processed Animal Proteins (PAP) and rendered fats (tallow). 

These ABPs provide feedstock material for other industries that include pet food 

manufacturing, the oleochemical industry and the biofuel industry. ABPs are secondary 
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products of the animal agriculture and meat industries. ABPs include hides, skins, hairs, 

feathers, hoofs, horns, feet, heads, bones, toe nails, blood, organs, glands, intestines, 

muscle and fat tissues, shells and whole carcasses (Meeker and Hamilton, 2006). 

ABPs and their final uses are classified into 3 categories according to European 

Legislation (EC, 2002; 2009). Category 1 material includes animals infected or suspected 

of infection with a Transmissible Spongiform Encephalopathy, Specified Risk Material 

(SRM) which in the UK includes entire head, vertebral column, tonsils, spinal cord and 

intestines of ruminants, and entire bodies containing SRM. Category 1 materials must be 

destroyed by combustion or rendering. Category 1 rendered products can be used as 

biofuels. Category 2 materials are mostly on-farm mortalities, manure and digestive tract 

content. Category 2 rendered fats can be used in the oleochemical industry and for the 

production of fertilizers. MBM can be used as fertilizer or anaerobically digested to 

produce biogas. Category 3 materials are ABPs that are fit for human consumption or unfit 

but with no transmissible diseases. The final use of this material, besides those detailed 

for category 1 and 2, is as raw material for pet food manufacturing. When different 

category materials are mixed together they are classified as the lower category in the mix 

(EC, 2002; 2009). Normally in the UK, category 1 and 2 materials are mixed together and 

treated as category 1 materials. 

According to Woodgate (pers comm 2010) the UK rendering industry processed over 2 

million Mg of ABP between per annum between 2006 and 2008. The various uses for 

rendered protein and fat are presented in figures C-1 and C-2 respectively. Combustion 

as a fuel is the most important use for category 1 rendered fats. They are normally used 

as fuels for boilers in rendering plants. Biodiesel production is also an important use for 

every category of rendered fats. 

Rendering is an energy intensive process that involves both physical and chemical 

transformation, with the processes involving particle size reduction, heat treatment (for 

dehydration and microbial sterilization), pressing, separation and milling (Woodgate and 
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van der Veen, 2004). The combustion of fossil fuels mainly associated with energy use is 

the most important source of carbon dioxide. 

 

 

Figure C-1 Uses of rendered proteins in the UK between 2006 and 2008 Woodgate 
(pers comm 2010) 

 

 

Figure C-2 Uses of rendered fats in the UK between 2006 and 2008 Woodgate (pers 
comm 2010) 

The objective of this study was to estimate the consumption of energy by the UK 

rendering industry. Further objectives of the study were to estimate the percentage use of 

self-produced tallow by the UK rendering industry, and to analyse whether the UK 

rendering industry could be energy self-sufficient. 

C.3 Methodology 

C.3.1 Energy consumption in the UK rendering industry 

Data from six UK rendering plants were collected directly through the completion of a 

structured questionnaire. Data was collected for the years 2006, 2007, and 2008. Specific 
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data collected were ABP yield, the amount of energy consumed (i.e. electricity, tallow, and 

natural gas), and the energy content of tallow and MBM. 

The yield of protein meals and tallow produced by each rendering plant in each of the 

three years studied was gathered. Yield is defined as the percentage (in mass) of ABP 

converted to rendered product, and can be considered indicative of the water content of 

the ABP to be processed. For example, the higher the water content of the ABP to be 

processed, the lower the yield due to the evaporation of water during the rendering 

process (i.e. mass is lost from the system). 

The energy released from the combustion of fuel (natural gas or tallow) by the rendering 

plants studied was calculated using the gross calorific value of the fuel (Table C-1) and 

multiplying it by the annual amount of fuel used by each plant (Equation 1). Combustion 

efficiency was ignored as the purpose of the study was to estimate the energy used in 

fuels. The annual amount of fuel used was obtained directly from the plants records. 

The expression to calculate the (annual) heat energy use is: 

                          (1) 

Where 

        is the energy contained in the fuel x, 

        is the mass of fuel x and, 

          is the gross calorific value of fuel x (Table C-1) 

 

Table C-1 Gross calorific value of fuels 

Fuel GCV  (MJ/kg) Source 

Tallow 39 Provided by plants 

Natural gas 54 (NPL, 2008) 

 

The annual amount of electricity consumed by each plant was obtained directly from 

records regarding the annual amount of electricity purchased. 



231 
 

C.3.2 Potential for energy self-sufficiency in the UK rendering industry 

To estimate the annual amount of energy consumed for thermal energy production 

(Ethermal-required)  by the UK rendering industry, the average amount of energy consumed by 

the six plants examined in the current study (           MJ/kg ABP) was multiplied by the 

annual mass of ABP processed by the UK rendering industry (             ) according to 

equation 2.  

The amount of thermal energy that could be produced by the UK rendering industry 

(Ethermal-potential) from the combustion of tallow was calculated from the amount of category 1 

tallow produced annually (                ) according to equation 3. The potential for the 

UK rendering industry to be self-sufficient in terms of thermal energy demand was 

expressed as a ratio, referred to as the thermal self-sufficiency ratio (SSRthermal), equation 

4. 

                                          (2) 

                                              (3) 

           
                  

                 
 (4) 

To estimate the annual amount of electricity consumed by the UK rendering industry 

(Eelectric-required), the average amount of electricity consumed by the six plants examined in 

the current study (          in MJ/kg ABP) was multiplied by the annual mass of ABP 

processed by the UK rendering industry (Equation 5).  

The amount of electricity that could be produced by the UK rendering industry through the 

combustion of category 1 MBM in FCB plants was calculated by multiplying the energy 

content of MBM by the annual amount of category 1 MBM available (mMBM-avai) and by 

assuming efficiency of conversion (    )(equation 6) an efficiency of 18% taken from 

Yassin et al. (2009) 

                                           (5) 

                                        (6) 



232 
 

Where        is the Gross Calorific Value of MBM (19.8 MJ/kg as indicated by the 

rendering companies participating in the current study). 

The potential for the UK rendering industry to be self-sufficient in terms of electricity 

demand was expressed as a ratio, referred to as the self-sufficiency ratio for electricity 

(           ) and according to equation 7. 

            
                   

                  
 (7) 

C.4 Results and discussion 

C.4.1 Energy consumption in the UK rendering industry 

The six plants included in the current study processed between 40 and 50% of the annual 

ABPs processed in the UK between 2006 and 2008 and hence represent a significant 

proportion of the UK rendering industry. Five of the six plants processed mammalian 

material and only one processed poultry material. Yields varied between the different 

plants, although within plants they were reasonably stable throughout the three years of 

the study, Figure C-3. The average yield of the 6 plants was 29% protein meals and 15% 

tallow (mass of rendered products expressed as percentage of mass of ABP processed). 

Lopez et al. (2010) reported a yield of 23% protein meal and 28% tallow for beef ABP 

rendering in the US. The average yields detailed in the current study are significantly 

different to those reported in Lopez et al. (2010). This may be due to differences in the 

water content of the ABPs processed. 
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Figure C-3 Annual yields of meat and bone meal and tallow (% ABP processed) for 
6 rendering plants (A to F) in the UK between the years 2006 and 2008 

The relationship between the amount of ABP processed and energy consumption by the 6 

rendering plants used in the study is presented in Figure C-4. There is a strong linear 

relationship between the amount of ABP processed and the energy contained in 

combustion fuels (R2=0.95), and a fairly strong linear relationship between the amount of 

ABP processed and electricity consumption (R2=0.72). 

The amount of energy contained in fuels to produce thermal energy for the rendering 

process ranged between 1.4 and 3.4 MJ/kg ABP processed for the six plants studied. 

Similarly, the amount of electricity used by the six rendering plants ranged between 0.1 

and 0.4 MJ/kg ABP processed. Research by Lopez et al. (2010) reported energy 

consumption by the US rendering industry of 2.8 MJ/kg ABP processed, of which 0.3 

MJ/kg ABP was in the form of electricity and 2.5 MJ/kg ABP was provided from the 

combustion of fuels. In contrast, Ramírez et al. (2006) reported a figure for the European 

rendering industry of 1.6 MJ/kg ABP processed. The values reported by the current study 

are in reasonable agreement with the values provided by Lopez et al. (2010) and Ramírez 

et al. (2006). 
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Regarding percentage of heat and electricity, for the six rendering plants included in the 

current study, electricity accounted for approximately 8% of energy with the remaining 

attributable to thermal energy. These values are in agreement with the figures reported by 

Lopez et al. (2010) for the US rendering industry (9.4% for electricity). 

 

Figure C-4 Relationship between the amount of animal by-product processed and 
energy consumption by 6 UK rendering plants between the years 2006 and 2008 

 

The percentage of total thermal energy contained in tallow and natural gas used for the 

rendering process varied between plants, and between years as illustrated in Figure C-5. 

For example, plants B and F used only tallow, whilst plants C and E used significantly less 

tallow in 2007 and 2008 compared to 2006. The reasons for these variations probably 

reflect the relative cost of natural gas compared to alternative markets for tallow. The 

weighted average proportion of thermal process energy derived from tallow for the six 

plants was 76%, with the remaining energy being derived from natural gas. Thus, the 

rendering industry already uses a relatively high proportion of thermal energy derived from 

tallow. 
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Figure C-5 Annual percentage of thermal energy consumption derived from tallow 
for 6 UK rendering plants between 2006 and 2008 

 

C.4.2 Potential for energy self-sufficiency in the UK rendering industry 

The thermal energy requirement and the potential thermal energy production from tallow 

and the thermal self-sufficiency ratios for the UK rendering industry are provided in Table 

C-2 for the years 2006, 2007, and 2008. The self-sufficiency ratios calculated are all 

greater than 1.0, indicating that the UK rendering industries thermal demand could be 

satisfied from the combustion of category 1 tallow. The generation of thermal energy from 

the combustion of category 1 tallow reduces the demand for finite fossil fuels, whilst 

additionally reducing greenhouse gas emissions because the biomass is associated with 

a short carbon cycle (Astrup et al., 2009). However alternative uses of category 1 tallow 

(e.g. biodiesel production) should be analysed to ascertain which uses of tallow provides 

the highest climate and financial benefits. 

Table C-2 The thermal energy requirement, the potential thermal energy production 
from category 1 tallow and the thermal self-sufficiency ratios for the UK rendering 
industry between 2006 and 2008 

 2006 2007 2008 

                  (PJ) 6.8 6.5 6.8 

                 (PJ) 5.6 6.1 5.5 

           1.2 1.1 1.2 
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The electricity requirement, and the potential electricity production from meat and bone 

meal and the electricity self-sufficiency ratios for the UK rendering industry are provided in 

Table C-3 for the years 2006, 2007, and 2008. The self-sufficiency ratios calculated are 

greater than 1, indicating that the rendering industry could be self-sufficient in terms of 

electricity. Electricity obtained from MBM has climate benefits in comparison to the use of 

British electricity, which is predominantly produced from the combustion of coal which is 

associated with high carbon emissions due to the properties of the fuel and the efficiency 

of the conversion process. MBM can also be used to produce heat in the cement industry; 

however as can be seen in fig. 3 this is not currently the main use. Greenhouse gas 

emissions from alternative uses of category 1 MBM should be analysed to ascertain which 

uses of category 1 MBM provides the highest climate and financial benefits. 

Table C-3 The electricity requirement, the potential electricity production from 
category 1 MBM and the electricity self-sufficiency ratios for the UK rendering 
industry between 2006 and 2008 

 2006 2007 2008 

                   (PJ) 1.2 1.1 1.1 

                  (PJ) 0.5 0.5 0.4 

           2.7 2.3 2.3 

 

C.5 Conclusion 

The UK rendering industry produces different categories of rendered products. Under 

current EU legislation category 1 rendered products are required to be destroyed by 

combustion. During the years 2006 to 2008 sufficient quantities of category 1 rendered 

products were produced to satisfy both the thermal energy and electricity requirements of 

the UK rendering industry. Rendered products are produced from ABPs which are 

unavoidable by-products of livestock production and meat processing; consequently, they 

do not carry an associated environmental burden. The UK rendering industry could be 

self-sufficient in energy use by utilising category 1 rendered products as biofuels 
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