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Abstract 

Approximately 1.05 million dry tonnes of biosolids are produced each year in the 

UK. Their application to land has the potential to cause not only environmental pollution but 

result in the bioaccumulation of heavy metals in the food chain. Nevertheless, they are a 

viable option for crop fertilisation and could contribute to relieving the issues associated with 

hidden hunger. This thesis attempts to determine if the use of Bestways Fertiliser (granular 

biosolids) impacts on soil biology or chemistry, through the use of contrasting soils at 

Broxton Cheshire and Harper Adams University between 2007 and 2014, across a range 

of combinable and forage crops. 

Initial investigations focused on the changes biosolids had to metal fractionation 

within the soils. Sequential extraction procedures were designed to remove elements bound 

to different factions within the soil. Results demonstrated that biosolids did not increase 

heavy metals in any fraction of either soil type but did increase concentrations of 

phosphorus by 214% in the iron/manganese bound fraction. 

Long-term leaching studies evaluated elemental mobility following biosolids 

applications.  Results showed that long term applications of biosolids increased Copper 

concentrations in Broxton soils by 110% and 315% in Harper soils. 

To assess changes in plant-available elemental concentrations, mesocosm studies 

were investigated together with a long-term field experiment.  Mesocosm investigations 

demonstrated that biosolids could produce similar yields to conventional fertilisers and 

concentrations in plant tissues (grain) were not raised above those grown with conventional 

fertilisers. 

To determine the effect biosolids had on microorganism populations, a twelve-month 

soil respiration study was investigated.  It was concluded that biosolids increased respiration 

at 100% and 200% application rates, but decreased respiration at 400%. 

Overall conclusions suggest that the risk to the food chain from heavy metals is low, 

but the impact of heavy metal leaching rates into ground water must be studied further. 
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Chapter 1. 

Introduction 

 

1.1. Land and crop productivity 

Agriculture is at the interface of human society and the environment (Olesen and 

Bindi, 2002). The world population currently stands at 7.6 billion, with a projected growth to 

11.2 billion by 2100 (United Nations, 2017). Food production must increase by 60-110% to 

meet the needs of this global population increase (Alexandratos and Bruinsma, 2012; 

Pradhan et al., 2015; Tilman et al., 2011), with crop production supplying multiple food 

chains. Whilst grain has always been produced for human and animal consumption, it is 

now also increasingly being used for biofuels. This is adding additional pressure to a system 

which is already under considerable stain. Whilst the demand for food increases, agriculture 

must either increase the area of land suitable for farming or increase the productivity of land 

already in production. Creating more land for agricultural production raises environmental 

problems through increased carbon dioxide (CO2) emissions, with the equivalent of 4 billion 

tonnes of CO2 being released annually due to deforestation (FAO, 2017). Since the 1960’s, 

the amount of grain produced has more than doubled, whilst there has only been a 9% 

increase in land made available for crop production (Godfrey et al., 2012; Pretty, 2008). 

Improving land productivity can only be achieved sustainably by enhancing its quality. 

Generally, agricultural land can be split into two farming systems, intensive and extensive. 

Intensive systems focus on high inputs and outputs with the aim to produce as much food 

as possible. Extensive farming is thought to be more sustainable, whilst also remediating 

land originally used by intensive systems (Biala et al., 2007). 

 Efficient crop fertilisation is a key agronomic feature to attaining the increased yields 

required to support a growing population. Approximately 91.8 million tonnes of nitrogen 

fertiliser are applied to land to support crop growth globally. Crops require nutrients at 

various rates depending on a number of factors, including soil type, yield potential and 

previous crop demands. Currently, the production or mining of inorganic fertilisers 

consumes large amounts of fossil fuels, making production unsustainable. However, 

fertiliser applications currently need to be increased by 45-75% for N, 22-46% for P2O5 and 

more than double for K2O, compared to 2010 (Pradhan et al., 2015).  Fertiliser production 

can be very expensive, for example, 37.88 million Kilojoules are required, on average, to 

produce one tonne of nitrogen urea (Sawyer et al., 2010). This is due to the main source of 

energy being natural gas. Due to this direct economic link, as fossil fuels become less 

common and increasingly difficult to source, the costs of fertilisers will also increase. In 

addition, many soils require phosphate enriched fertilisers to produce optimum yields.  
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1.2 Limitations to crop yield improvements 

Conventional, and more recently, genetically modified breeding of crops, has 

enabled agriculture to increase its yields to the levels we recognise today. For example, 

developments such as reducing wheat crop height, which enables greater nitrogen 

application rates without the crops lodging, has resulted from such advances (Hawkesford 

et al., 2013).  Regardless of yield projections required to sustain population growth, merely 

creating more agricultural land and applying additional fertiliser will not ensure sustainability. 

 With increasing pressure on agriculture to produce enough food for a growing 

population, it is not only the quantity of food being produced that is of great concern, but the 

quality. Whilst 800 million people globally are affected by insufficient food for their needs, 

an estimated 2 billion suffer from hidden hunger (Welch and Graham, 2002). Hidden 

hunger, a deficiency in essential micronutrients, increases the risk of early mortality and 

morbidity, impacting on the quality of life.  Iron (Fe) and Zinc (Zn) are two of the main 

elements that are considered part of the Hidden Hunger problem. Zinc deficiency has been 

strongly linked with stunting and immunity problems in children (MacDonald, 2000), with 

17% of the global population at risk of deficiency (Black et al., 2013). In 2013 a Hidden 

Hunger Index (HHI) was developed to help document the global distribution and incidence 

of this problem. It was anticipated that this tool would stimulate investment and a targeted 

response to help tackle the problem (Muthayya et al., 2013). Ruel-Bergeron et al., (2015) 

developed the HHI further to account for changes over time. They observed that, overall, 

hidden hunger improved, effecting 6.7% less people from 1995 to 2011, with Zn and vitamin 

A deficiencies showing the greatest improvements. It was noted that the HHI may be 

unreliable when monitoring Zn deficiencies in 0-5-year olds, which may be the result of 

multiple other causes. 

 Zinc deficient soils are generally the cause of cereal grain Zn deficiencies. Not only 

is the grain deficient in the element, but crop yield can also be halved (Hussain et al., 2010).  

It is thought that up to a third of the population could be suffering from Zn deficiency, with 

that value varying between 4 and 73% depending on the country (Alloway, 2008b). Poor 

soils are often the cause of this deficiency, and issues such as extremes in pH, salinity and 

high phosphorus concentrations can exacerbate the problem. Diets which contain a high 

proportion of cereals present a problem due to their high phytate (inositol hexaphosphate) 

content, which binds with Zn, reducing its ability to be absorbed in the gastrointestinal tract 

(Alloway, 2008b). Conversely, phytate is thought to bind more readily with calcium (Ca), 

inhibiting its absorption, yet, its ramifications are less pronounced (Nissar et al., 2017). 

Currently the main approach to overcome Zn deficiency in humans is biofortification in 

wheat (Hussain et al., 2010). Whilst other management methods exist, for example, 

supplementation and food diversification, these are less sustainable in the long-term and/or 

not possible. The absence of complications resulting from the inhibition of Ca absorption 
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may be compensated through the addition of Ca to wheat-based products such as bread. 

The Food Standards Agency (FSA) in the UK require all wheat flour (with certain exceptions) 

to be fortified with iron and calcium carbonate to counteract this interaction (FSA, 1998). 

 

1.3 Sustainable fertiliser sources 

Whilst nitrogen can be produced via the Harbour-Bosch process (Takahashi, 2004), 

new phosphorus (P) and potassium (K) sources are only available through mined 

resources, unless recycled. With the projected necessity to increase the quantity of 

fertilisers available to meet crop requirements, these natural resources are becoming 

increasingly depleted. Globally, P availability has been well documented in the last decade 

due to depletion of rock P (Koppelaar and Weikard, 2013; Cooper et al., 2011; Cordell et 

al., 2009). Once converted into phosphate, it is no longer possible to convert back into its 

original elemental form, therefore it has limited recyclability. Concern regarding ‘peak 

phosphorus’ resulted in an 800% increase in the price of P in 2008 (Cordell and White, 

2011).  Peak Phosphorus is a term originally generated from Peak Oil or Peak Fossil Fuel. 

It is used to describe when the maximum output of phosphorus has been reached, thus 

implying that all phosphorus extraction after this point in time will diminish. Whilst there is a 

large amount of debate with regards to the validity of such a claim (IFDC, 2010) it is still 

having a financial impact upon the P market. Increasingly poor-quality P will be extracted 

from the earth to meet fertiliser demands, contaminating the soil and posing health risks via 

the food chain (Grant, 2011). Rock P is often associated with cadmium contamination, 

which can bioaccumulate in organs such as the kidneys and liver, causing irreversible 

damage (Bernard, 2008). Cadmium concentrations in P fertilisers have recently been under 

debate by the European Union with regard to a universal limit due to these health concerns 

(Gilbert, 2018) 

Whilst inorganic fertilisers are more popular in agriculture compared to organic 

manures, they provide no additional benefits to the soil other than those presented in the 

form of nutrients. Organic fertiliser provides the additional benefit of adding organic matter 

(OM) to the soil. Organic matter supports microbial life by providing a food source which is 

eventually degraded into humus. Humus is plant and animal material that has undergone 

humification, creating high molecular weight compounds, that when combined, form 

hydrophilic polyelectrolytes called humus. The active humus pool is the most important as 

it supplies energy and mineral requirements for soil microbes, consequently supporting 

plant growth (Banwart et al., 2015). 

 Although organic fertilisers are widely used, they are often spread inaccurately, with 

varying nutrient contents and transport costs are dictated by farm location; the high water 

content of organic manures makes them costly to transport. For example, a high density of 

dairy farms in the west of the UK means cattle slurry is relatively common, whereas in the 
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east, its availability is limited as the majority of farms are arable.  Nevertheless, this problem 

goes beyond cost, as it has substantial impacts on the OM content of the soil. Organic 

matter is essential for reducing erosion, increasing water holding capacity and ensuring a 

sustainable microbial population. Soils with low organic matter often have issues with soil 

erosion, flooding, and poor yields (FAO, 2005). Soils containing high levels of OM often 

have a lower bulk density, improved aggregation and a higher cation exchange capacity 

(the ability of a soil to hold exchangeable cations). Other notable benefits from increasing 

OM are an increase in nitrogen content and improvement in crop yield (Whitmore et al., 

2017; Song et al, 2015). With an ever-increasing population, desiring a diet richer in meat 

(Revell, 2015), the prevalence of organic manures will only continue to increase. Whilst 

organic manures may be less predictable in terms of their nutrient release, they are still 

widely used, with 65% of UK farms using organic manures in 2016 (DEFRA, 2017). Cattle, 

pig and poultry manures make up 93% of all manure applications with 23% of cereal and 

oilseed rape crops and 85-90% of maize crops receiving manure annually (AIC, 2015). 

 Another organic source of nutrients comes from the treatment of human sewage 

sludge, specifically biosolids. These are less widely used, being applied to approximately 

1.5% of all UK agricultural land (Water UK, 2013). Sewage sludge is one of the earliest 

forms of fertiliser used by humans (Kalavrouziotis, 2017). It is a bi-product of waste water 

treatment and has the potential to be a valuable, renewable resource. It contains the 

macronutrients nitrogen (N) and P along with a range of micronutrients such as copper (Cu), 

zinc (Zn) and manganese (Mn). Nevertheless, depending on their end use, different 

management practices must be applied prior to their application, by either treating them 

conventionally or through enhanced treatment. Conventionally treated biosolids are suitable 

for crops that are combined, used for animal feed or harvested grass and forage crops. 

They cannot be used on fruit, vegetable, horticultural or grazed crops without time 

restrictions due to pathogen risks associated with biosolids (Table 1.1).  Conventionally 

treated sewage sludge must first be treated to decrease the pathogen load. Pathogens 

include, Echerichia coli (0157:H), listeria, norovirus and microsporidia (spore-forming 

unicellular parasites) (Smith et al., 2004). However, the reduced pathogen level of 

enhanced biosolids means they are suitable for all the previously mentioned crops and can 

therefore be used in a wider range of situations (ADAS, 2001). Whilst their use is permitted 

legally, under specific contracts they may not be approved. This is evident from growers 

producing grains for whiskey production (Lewis, 2012. Pers Comm. Mr P. Lewis is a lecturer 

at Harper Adams University). 

A typical 23 Mg ha-1 application of biosolids (cake) to a field would add 3.5 Mg of OM 

(Geneco, not dated). Its influence on crop yield potential is substantial enough that a 

temperate field with a Soil Organic Matter (SOM) content below 3.4% is thought to not meet 

its yield potential (Loveland and Webb (2003).  
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Biosolids produced from diverse Waste Water Treatment Works (WWTW) differ due 

to their treatment methods and ultimately, vary in the type of product being applied to land. 

Whilst WWTW’s follow the same general treatment structure, the machinery and chemicals 

used affect the end product. Warman and Termeer (2005) proposed that chemical 

flocculants used in some waste water treatment facilities can decrease P mineralisation and 

therefore crop availability. Common flocculants include ferric sulphate, (used in large 

WWTW’s) ferrous chloride (used in smaller WWTW’s) and aluminium sulphate (used when 

iron based products don’t work) (Gray, 2010). Such flocculants therefore increase element 

concentrations (e.g. iron and aluminium) in resulting sludge. 

Adding further to their variability, biosolids also contain other heavy metal(loid)s 

including arsenic (As), lead (Pb) and silver (Ag). Historically, biosolids have been treated 

with caution due to their heavy metal contamination and are under regulation to limit the risk 

posed by their use. Permissible limits for heavy metal contamination in soil are monitored 

to reduce the risk of bioaccumulation and environmental damage (Table 1.2), but evidence 

suggests that the level of contamination in biosolids has decreased over time (Table 1.3). 

It is now an offense to allow or knowingly permit a water course to be contaminated, which 

is the likely cause encouraging the decrease in heavy metal load. Whilst this decrease is 

beneficial, biosolids still pose an environmental risk, which must be monitored. One problem 

created by producing a drier biosolids product (e.g. granules instead of cake) is that these 

contaminants will be further concentrated, increasing the risk they pose. 

The wastewater treatment industry is strictly monitored for the quality of water being 

released into the environment, but historically, little concern has been given to the quality 

of the biosolids being produced as a by-product of this process. Whilst there are many 

guidelines and regulations regarding the use of biosolids, The Safe Sludge Matrix, (ADAS, 

2001), Sewage Sludge Use in Agriculture Regulations (1989) and the Biosolids Nutrient 

Management Matrix (ADAS, 2014), are examples of regulations applied for its safe use. 

The Biosolids Assurance Scheme (2014) was created to further improve confidence in the 

industry, whilst reassuring producers and consumers, that biosolids were safe. Aimed at 

sludge recyclers and processors, the scheme became compulsory at the end of 2017, 

requiring all 11 UK water and sludge processing companies to meet a minimum quality 

standard. The scheme is funded through levy payers and managed by Assured Biosolids 

Limited. Audits are completed by a third-party company before a NSF Certificate can be 

awarded. The expectation is to increase confidence in biosolid usage due to the positive 

impact they can have on soils physical properties. Studies by Pascual et al. (2009), 

Koutroubas et al. (2014) and Lloret et al. (2016), have all demonstrated soil improvements 

such as electrical conductivity, cation exchange capacity and organic matter content. 

Kumpiene et al. (2008) revealed that the addition of biosolids may also have the potential 

to decrease the bioavailability of heavy metals in soils.  



6 

 

Table 1.1. Application restrictions for conventionally and enhanced treated sludge’s (ADAS, 

2001). 

  Sludge treatment 

Crop Conventionally treated  Enhanced treated 

Fruit 
 

No 
 

10 month harvest interval 
applies 

 

Salad 
 

30 month harvest 
interval required 

 

10 month harvest interval 
applies 

 

Vegetable 
 

12 month harvest 
interval required 

 

10 month harvest interval 
applies 

 

Horticulture 
 

No 
10 month harvest interval 

applies 
 

Combinable 
and animal 
feed crops 

 

Yes 
 

Yes 
 

Grass and 
forage (grazed) 

 

Deep injection or 
ploughed in only. 3 

week no grazing and 
harvest interval 

 

3 week no grazing and no 
harvest interval applies 

 

Grass and 
forage 

(harvested) 

No grazing in the 
same season as 

application. 3 week no 
harvest interval 

3 week no grazing and no 
harvest interval applies 

 

 

1.4 Effect of biosolids on soil properties 

A review by Sharma et al. (2017) outlined the positive effects of biosolids application 

on soil properties and is summarised in Table 1.4. Adair et al. (2014) showed that biofuel 

crops (Brassica napus and Camelina sativa) could reach similar or greater yields when 

grown using biosolids as a nutrient source compared with conventional fertilisers. This study 

used two application rates, 316 kg ha-1 N and 158 kg ha-1 N with the higher application rate 

producing almost double the seed yield of any other treatment. Conversely, seed oil content 

was greatest when the crop was grown with urea as the only source of nutrients. Fernadez 

et al (2009) revealed that biosolid applications caused a reduction in crop yield with higher 

and more frequent applications rates. Whilst the results from each of these experiments 

may show contrasting conclusions, each study has one commonality, their biosolids 

differed.  

The application of biosolids to land used for crop production has been well 

documented. Deeks et al. (2013) used the same biosolids used in this experimental series 

and showed, that when supplemented with additional N and K to meet a crops nutrient 

requirements, biosolids produced similar yields to that of commercially available, inorganic 
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fertilisers. Whilst this study was carried out over several years, it was only completed at one 

field site, with biosolids being supplemented with additional fertiliser on each occasion. 

Thus, there was no definitive conclusion as to whether biosolids could produce similar yields 

when used on their own as the additional inorganic N and K additions may have hidden the 

true potential of the biosolids. Additional inorganic N and K would have been utilised by the 

plant differently and therefore may have been favourably used and may have also affected 

the uptake of other nutrients. 
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Table1.2. Permitted levels of heavy metals in soil at the respective soil pH (DEFRA, 2006). 

 

PTE  
Maximum permissible concentration 

of PTE in soil (mg kg-1 dry solids)  

Maximum 

permissible 

average 

annual rate 

of PTE 

addition 

over a 10 

year period 

(kg ha-1)  

     pH  pH  pH  pH(1)   

      5.0<5.5  5.5<6.0 6.0-7.0  >7.0    

Zinc 200 200 200 300 15 

Copper  80 100 135 200 7.5 

Nickel  50 60 75 110 3 

For pH 5.0 and above  

Cadmium 3 0.15 

Lead  300 15 

Mercury  1 0.1 

*Chromium  400 15 

*Molybdenum 4 0.2 

*Selenium  3 0.15 

*Arsenic  50 0.7 

*Fluoride  500 20 
1 Must contain >5% CaCO3 

*Not listed under Directive 86/278/EEC 
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Table 1.3. Chronological decrease in sewage sludge heavy metal concentrations (mg kg-1) 

from 1983 to 1996.  

 

    Year     

Element 1983 1990 1996 
Reduction between 
1983 and 1996 (%) 

Zn 1319 922 792 40 

Cu 703 574 568 19 

Ni 107 65 57 47 

Cd 14 5 3.3 76 

Pb 462 201 221 52 

Hg 5 3.5 2.4 52 

Cr 312 208 157 50 
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Table 1.4. Physical, chemical and biological changes recorded following biosolids 

applications (adapted from Sharma et al. (2017). 

 

Soil property Impact Reference 

Physical 
  

pH Decreased 
Sastre et al. (1996), Roca-Pérez et al. (2009), 
Xue and Huang (2013) and Lloret et al. (2016) 

Aggregate stability Increased Roca-Pérez et al. (2009) 

Bulk density Decreased Veeresh et al. (2003) 

Water holding 
capacity 

Increased Veeresh et al. (2003) 

   
Chemical   

Heavy metals Increased 
Latare et al. (2014), Koutroubas et al. (2014); 

Marguí et al., 2016 and Lloret et al. (2016) 

Micronutrients Increased 
Latare et al. (2014), Koutroubas et al. (2014) 

and Lloret et al. (2016) 

Macronutrients Increased 

Sastre et al. (1996), Singh and Agrawal (2007, 
2009, 2010b,c),Roca-Pérez et al. (2009), Xue 

and Huang (2013), Latare et al. (2014) and 
Lloret et al. (2016) 

Electrical conductivity Increased 

Singh and Agrawal (2007, 2009, 2010b,c), 
Roca-Pérez et al. (2009), Xue and Huang 

(2013), Latare et al. (2014) and Lloret et al. 
(2016) 

Cation exchange 
capacity 

Increased 
Singh and Agrawal (2007, 2009), Xue and 

Huang (2013), Latare et al. (2014) and Lloret 
et al. (2016 

   

Biological   

Microbial biomass Increased 
García-Gil et al. (2004), Sanchez-Monedero et 
al. (2004), Xue and Huang (2013) and Lloret et 

al. (2016) 

Enzyme activity Increased 

Carbonell et al. (2009), García-Gil et al. 
(2000), Sastre et al. (1996), Xue and Huang 
(2013) and Carbonell et al. (2009) and Xue 

and Huang (2013) 

Microbial populations Increased Sastre et al. (1996) 

Microbial activity Increased 

Debosz et al. (2002), García-Gil et al. (2004), 
Carbonell et al. (2009), Xue and Huang 

(2013), Lloret et al. (2016) and Sánchez-
Monedero et al. (2004) 
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This thesis aims to study the impact of Bestways fertiliser (enhanced treated biosolids 

produced by Southern Water in 2011) on both the environment and crop production. A 

range of laboratory, glasshouse and field experiments were established to meet the 

following objectives:  

1. Detail the chemical properties of the biosolids: The investigations reported within 

this thesis have used a single batch of biosolids that have been analysed to 

determine their physicochemical properties (further details can be found in Chapter 

2). 

2. Understand the bioavailability of metal(loid)s present in the biosolids and determine 

their potential to cause contamination. 

3. Quantify the impact on soil biology following short and long-term biosolid 

applications. 

4. Assess the effect of biosolids on crop growth and quantify their impact on crop 

metal(loid) uptake. 

 

 

1.5 Chapter Details 

Chapter 2. Background information. 

The chapter quantifies the biosolids used throughout the experiments, together with 

details relating to previous applications at a field site in Broxton, Cheshire, where biosolids 

were applied annually between 2008 and 2014.  

 

Chapter 3. Sequential extraction investigations.  

The chapter investigates metal partitioning in two contrasting soil types following 

biosolids incorporation. The chapter investigates where heavy metals (Ag, As, Cu, Fe, Mn, 

Pb and Zn) from biosolids are potentially bound in soils and their probability to cause 

contamination. 

 

Chapter 4. Long-term leaching investigations. 

The chapter details the potential of biosolids to leach heavy metal contaminants (Ag, 

As, Cu, Fe, Mn, Pb and Zn) following their addition to soils over the long-term. Leaching of 

total organic carbon (TOC) is also investigated in this chapter and the role it plays in metal 

ion mobility.  

 

Chapter 5. The impact of biosolid applications on soil biology. 

The chapter investigates the impact of long- and short-term biosolid applications on 

soil biology by assessing microbial activity through respiration (carbon dioxide evolution), 

microbial biomass examined by adenosine triphosphate (ATP) soil concentrations and 
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microarthropod populations, examined using the QBS method developed by Parisis et al., 

(2000).   

 

Chapter 6. The impact of biosolids on crop growth and grain nutrient concentrations. 

The chapter investigates the application of biosolids on crop yield and grain metal 

uptake. Field and glasshouse studies investigate the effect of biosolids applications on a 

range of cereals and the translocation of Ag, As, Cu, Fe, Mn, Pb and Zn into the grain. 

 

Chapter 7. Conclusions and future considerations.  

The study is analysed for its practical implications on the use of biosolids in 

agriculture, assessing their impact on the soil environment and plant growth and providing 

recommendations for their future use by the industry. 

 

The central null hypothesis for the work within this thesis is that the application of 

biosolids to soil does not have a detrimental effect on soil biology, chemistry or resulting 

crop yield. 

Due to the nature of the work contained in this thesis, no single literature review is 

presented; instead, a review of the relevant literature is covered at the start of each 

individual chapter.  

Due to the term heavy metals being ambiguous in the literature, its use in this thesis 

will refer to both heavy metals and heavy metalloids. 
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Chapter 2.  

Background to the research. 

2.1 The Wastewater Treatment Process 

As with all organic manures, their chemical composition is very variable. Biosolids 

are no exception, resulting from the changes in daily input (influent) to the Waste Water 

Treatment Works (WWTW). In contrast to Water Treatment Works (WTW) who use ground 

and surface waters, its main constituents are industry wastewater, household waste and 

storm surges (Southern Water, no date). Whilst most WWTW follow, broadly the same 

treatment process (Figure 2.1), each may employ different chemical techniques across the 

different treatment stages, adding further to their variability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Generalised flow of wastewater treatment. 

 

 

 

Preliminary 
Treatment 

Primary Treatment 
(sedimentation) 

Secondary Treatment 
(biological) 

Tertiary Treatment 
 

Sludge Treatment 

Disposal of Water to 
Rivers 
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Each treatment step is established with specific aims (Gray, 2010); 

1. Preliminary treatment - aiming to remove large solids and grit. 

 Water with low levels of contamination and debris may be directly released following 

preliminary treatment via long sea outfalls. 

2. Primary treatment – removal of settleable solids. 

Addition of chemicals such as iron (III) sulphate (Fe2(SO4)3) or iron (III) chloride 

(FeCl3) are added to aid coagulation. 

3. Secondary treatment - organic matter is oxidised by microorganisms. 

Applied to all effluent being discharged to inland waters 

4. Tertiary treatment – removal of residual BOD, contaminants and nutrients. 

Used for higher quality water due to eutrophication where discharge is made to a 

lake or groundwater. 

5. Sludge treatment – dewatering, stabilisation and disposal of sludge. 

Sludge treatment differs depending on the end disposal route. 

 

The implementation of the Urban Waste Water Treatment Directive (91/271/EEC) resulted 

in a change to sludge disposal aims (EC, 1991); 

1. Sludge must be reused where possible, whilst limiting the impact on the environment 

2. No disposal is permitted at sea 

3. Total toxic, persistent and bioaccumable contaminants must be reduced with time. 

 

Overall, the aim of the directive was to produce clean water as it was returned to the 

environment. Until this directive was introduced, 27% of all sludge was disposed at sea 

(25% via boats and 2% via pipelines). With this no longer being an option, the disposal of 

biosolids to agricultural land was deemed as the Best Practical Environmental Option 

(BPEO) (Bacon et al., 2001). 

 

 

2.2. Southern Water Biosolids 

Southern Water produced granulated biosolids for a short period of time, marketed 

under the name Bestways Fertilisers. The batch used for the work presented in this thesis 

originated from the Ashford Wastewater Treatment Works at Bybrook (Grid reference TR 

02080 43327). This WWTW currently services a population of approximately 104,000. It is 

described as a large filter works, containing six primary sedimentation tanks, 16 rock filter 

beds and eight radial humus tanks (for secondary treatment) with three plastic media 

nitrifying tertiary filters, alongside six deep bed sand filters. The only chemical addition to 

the WWTW was iron (III) sulphate, acting as a coagulant for phosphorus (P) (Veesam, 2017. 

Pers Comm, Ms M. Veesam, a Senior Process Scientist at Southern Water). 
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The site also supported a large sludge treatment centre where the resulting sludge 

was mixed with imported sludge from smaller WWTW’s before being thickened. Following 

mixing, the sludge underwent Mesophilic Anaerobic Digestion (MAD) at 35⁰C for 14 days to 

allow bacteria to decompose organic matter. Methane gas and carbon dioxide (CO2) 

resulting from this process were then recycled to a combined heat and power plant on site. 

Following MAD, the sludge was dewatered in a decanter centrifuge, decreasing the water 

content, with the extracted water returning back to the WWTW for treatment. The resulting 

sludge cake was then stored for four months to decrease bacterial load (Kent County 

Council, 2005). Finally, the biosolids were processed through a Drum Dryer creating 

granulated biosolids (Figure 2.2) (Andritz Separation, 2012). The resulting product contains 

approximately 5% water, reduced from 96% (Gray, 2010). 

 

 

Figure 2.2. Bestways Fertiliser produced by Southern Water. 

 

Thermal treatment of biosolids for the production of granules is an optional step, not 

often utilised by WWTW’s. It has the added benefit of allowing farmers to apply biosolids 

through a conventional fertiliser spreader at a time suitable to them, rather than relying on 
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contractors. It also decreases the odour associated with their application. Whilst it produces 

a product with a higher treatment level than sludge cake (enhanced and conventional 

respectively), which can be used on a wider range of crops (ADAS, 2001), the process 

involves heating sludge to 260⁰C for 30 minutes in some cases (Gray, 2010). Where 

anaerobic digestion is part of the sludge treatment process, the resulting methane gas can 

be used as fuel, although large capital and operational costs are often the most influential 

factors when this additional treatment is considered. The cost in 2011 for drying biosolid 

was thought to add an approximately £150 per tonne to the costs of incineration (Per 

comms. K. Chaney, Harper Adams University).  Importantly for agriculture, up to 65% of the 

OM can be oxidised during this process, reducing its value to soils compared with sludge 

cake (Gray, 2010). 

 

2.3   Four year biosolids experiment 

Prior to this study commencing in 2012, four years of biosolid applications were 

made to a field site in Cheshire.  Field experiments investigated biosolid effect on yield at 

Fields Farm, Broxton, Cheshire, UK (53° 5' 7.3896'' N 2° 46' 47.5824'' W). The trial (1.4 ha 

arable block and 0.1 ha grassland plots) was situated in a 7.4 ha field and had received 

applications of biosolids annually since 2008, with harvest data being collected from 2009 

under two different projects; KTP Organo-Mineral Fertiliser (OMF) (2007-2010) and END-

O-SLUDG (2011-2014) (Table 2.1).This site was selected due to its poor soil condition (e.g. 

poor drainage) therefore providing the potential to show improvements in soil quality 

following annual applications of biosolids.  
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Table 2.1. Chemical analysis of the Bestways biosolids fertiliser (n=30). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 1.4 ha arable block was split into 4 subsections (Figure 2.3), each being planted 

with a different crop annually, simulating a rotation scenario observed in commercial 

environments (Table 2.2). Grass plots were cut for silage, three times annually to simulate 

that of commercial crops (Figure 2.4). 

 

 

 

 

 

 

 

 

 

Figure 2.3 Arable field plan at Broxton, Cheshire, under the KTP OMF, and END-O-

SLUDGE projects. 

Element mg kg-1 

Al 7743.01 

P 3.09 

Cr 200.29 

Mn 841.07 

Fe 56012.57 

Ni 587.08 

Cu 676.56 

Zn 916.78 

As 5.77 

Mo 7.18 

Ag 6.18 

Pb 197.66 

OM% 61.40 

Conventional 
Biosolids 
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Figure 2.4. Grass field plan at Broxton, Cheshire. 

 

 

 

Table 2.2 Crop rotation history at Broxton, Cheshire.  

 

 

Two treatments were applied throughout the experimental series, biosolids and 

conventional fertiliser (Table 2.4). Nitrogen (N), phosphorus (P) and potassium (K) were 

adjusted according to crop requirements using RB209 (DEFRA, 2011) (Table 2.2). All 

fertiliser applications were made using a commercial Kuhn Aero Spreader. The pneumatic 

spreader ensured an even spread of fertiliser across the width of the boom, reducing 

variability. During the 2008/2009 and 2010/2011 seasons, conventional applications were 

made with no phosphate as soil analysis indicated no additional P was required to meet the 

crops growth demands (P index 3). From 2011/2012 onwards, phosphate was applied at 

the same rate as biosolids to ensure that this was not a limiting factor, and consequently 

affecting the results. 

Full details of the trial series up to 2010/2011 are available in Deeks et al. (2013). 

Using a One-way ANOVA to test for statistical significant, overall no significant differences 

(p>0.05) were observed between yields, with the exception of winter wheat harvested 

between 2008/2009. In this instance the conventionally treated crop yielded 20% higher 

than that of the crop receiving biosolids. Crop yield was lower than the UK average, but this 

was attributed to local weather and soil conditions (Deeks et al. 2013). The significant 

difference observed between 2008/2009 was thought to be due to the low number of grains 

produced as Thousand Grain Weight (TGW) was not significantly different between the two 

Crop row 2008/2009 2009/2010 2010/2011 2011/2012 

1 Winter wheat Forage maize Winter wheat Winter oats 

2 Winter wheat Spring wheat Winter Barley Triticale 

3 Oilseed rape Winter wheat Spring beans Winter wheat 

4 Forage maize Spring Oilseed rape Oilseed rape Winter wheat 
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treatments (41.1g for Conventionally treated and 42.0g for Biosolids treated) indicating that 

the weight of the grains produced were similar.  

Soil cores were collected from each plot, taking 20 to a depth of 15cm, from 2008 

onwards to assess the impact of the treatments on soil parameters (Table 2.5). Analyses 

conducted by NRM laboratories revealed that macronutrient concentrations were adequate 

to support crop growth, in accordance with Defra 2010. 
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Table 2.3 Soil nutrient status for each year, following the respective treatments. 

 2008 2009 2010 2011 

 Baseline Conventional Biosolids Conventional Biosolids Conventional Biosolids 

pH 7.10 6.88 6.88 7.18 7.08 6.85 6.85 

P (mg kg-1) 24.00 28.00 25.25 21.00 18.50 20.75 20.50 

K (mg kg-1) 115.00 131.75 145.00 117.00 98.75 98.00 94.00 

S (mg kg-1) 5.00 8.50 12.00 4.75 4.00 6.75 7.75 

Ca (mg kg-1) 2204.00 2228.50 2290.50 2284.00 2215.50 2107.50 2008.50 

Mn (mg kg-1) 39.00 31.75 30.75 42.00 38.75 37.50 37.50 

Cu (mg kg-1) N/A N/A N/A N/A N/A 4.73 4.80 

Zn (mg kg-1) N/A N/A N/A N/A N/A 3.83 3.78 

CEC (meq 100g-1) 14.1 N/A N/A N/A N/A N/A N/A 
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The experimental work detailed in this thesis builds on previous investigations 

(Deeks et al., 2013; Smith et al., 2015). Due to biosolids high variability, all experiments 

detailed in this thesis have used the same batch produced by Southern Water. On arrival, 

the biosolids were re-mixed, sub-sampled and subsequently analysed (Table 2.1). 

Chemical analysis was completed via microwave digestion (Mars 6, CEM, UK) and 

metal(loid)s analysed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). 

Organic Matter percentage (OM%) was determined by Loss on Ignition (LOI). 
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Table 2.4. Nutrient content applied to the plots under their respective treatment and year. 

 

a) 

 2008/2009  2009/2010  2010/2011 

  
Conventional (kg 

ha-1) Biosolids (kg ha-1)   
Conventional (kg 

ha-1) 
Biosolids (kg 

ha-1)   
Conventional (kg 

ha-1) 
Biosolids (kg 

ha-1) 
Crop 
row N P K N P K  N P K N P K  N P K N P K 

1 195 0 70 195 51 70  120 0 100 120 31 100  195 0 70 195 51 70 

2 195 0 70 195 51 70  195 0 70 195 51 70  120 0 70 120 31 70 

3 105 0 70 105 30 70  195 0 70 195 51 70  0 0 70 15 31 70 

4 120 0 100 105 31 100   70 0 60 70 15 60   70 0 70 70 15 70 

 

 

b) 

  2011/2012 scenario A   2011/2012 scenario B 

  
Conventional (kg 

ha-1) 
Biosolids (kg ha-1) 

  
Conventional (kg ha-1) Biosolids (kg ha-1) 

Crop 
row 

N P K N P K 
  

N P K N P K 

1 90 45 65 90 45 65   90 45 65 90 45 65 

2 90 45 65 90 45 65  90 45 65 90 45 65 

3 165 60 75 165 60 75  165 60 75 165 60 75 

4 165 60 75 165 60 75   165 60 75 165 60 75 
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Table 2.5. Mean soil nutrient and pH properties between 2008 and 2011. 

 

  2008 2009 2010 2011 

  Pre-applications Biosolids Conventional Biosolids Conventional Biosolids Conventional 

pH 7.10 6.88 6.88 7.08 7.18 6.85 6.85 

P (mg/l) 24.00 25.25 28.00 18.50 21.00 20.50 20.75 

K (mg/l) 115.0 145.0 131.8 98.8 117.0 93.5 98.0 

S (mg/l) 5.00 12.00 8.50 4.00 4.75 7.75 6.75 

Ca (mg/l) 2204 2291 2229 2216 2284 2009 2108 

Mn (mg/l) 39.00 30.75 31.75 38.75 42.00 37.50 37.50 

Cu (mg/l) 4.50 - - - - 4.80 4.73 

Zn (mg/l) 4.60 - - - - 3.78 3.83 
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Nutrient differences between biosolids and conventionally-treated plots were not 

observed over time. It is not clear from this data if the nutrients applied as biosolids were 

able to support growth on their own, without the addition of inorganic fertilisers, such as N. 

Further testing would be required to assess what impact the two fertiliser treatments had on 

the grain/forage produced. 

 

2.4 Spreader tests for commercial applications 

Spreader tests were completed in conjunction with Spreader and Sprayer Test Ltd. 

in August 2011. These tests enabled the biosolid granules to be characterised and tested 

for their spreadability. These results were compared with commercially available urea 

fertiliser (Table 2.6). 

 

Table 2.6. Comparison of the characteristics of biosolids to urea. 

 

  Biosolids Urea 

Density (kg L-1) 0.67 0.79 
Strength 
(kg/Force) 2-10 3-5 

Granule size distribution 

<2mm (%) 5 0 

2-3.3mm (%) 20 10 
3.3-4.74mm 
(%) 70 90 

>4.75mm (%) 5 0 

 

 

The comparison of the two materials revealed that there was a considerable 

difference between the two products. Biosolids are lighter and require substantially more 

force to crush compared to urea, demonstrating that whilst they are likely to be able to 

undergo the forces projected by a spinning disk spreader, they may not be able to spread 

as far due to their lower density. Their size distribution is also spread over a larger range 

than that of urea. This may result in the reduced flow of material when spreading as they 

are likely to form a mass. Spreader tests showed that biosolids could reach 24m (the normal 

spreading distance for most farmers). 

The research in this thesis aims to profile the biosolids produced by Southern Water 

(Bestways Fertiliser). By profiling their chemical release through laboratory-based 

sequential extractions and leaching experiments, it is hoped that the risk posed by this 

product to the environment will be detailed for both short- and long-term applications. 

 Investigations will then focus on the impact of field applications to soil biology 

specifically microarthropod numbers and carbon dioxide evolution. Finally, an assessment 



25 

 

of how biosolids compare to conventional fertilisers in relation to crop production, showing 

how they may impact crop yield, will be evaluated. 

The soil at the two experimental locations (Harper Adams University and Broxton, 

Cheshire) was profiled (Table 2.7). 

 

 

Table 2.7. Soil profiles of the experimental sites at Harper Adams University and Broxton, 

Cheshire. 

 

 Detail Broxton, Cheshire 
Harper Adams 

University 

Sand (2-0.063mm)     
(w/w%) 

51 73 

Silt (0.063-0.002mm) 
(w/w%) 

26 16 

Clay (<0.002mm)      
(w/w%) 

23 11 

Textural class Sandy Clay Loam Sandy Loam 
   

pH (1:10) 7 7.6 
P (mg kg-1) 23.6 60.8 
K (mg kg-1) 156.6 350 

Mg (mg kg-1) 111.6 82 
Pseudo-total Ag (mg kg-1) 0.16 0.01 
Pseudo-total As (mg kg-1) 5.5 4.74 
Pseudo-total Cu (mg kg-1) 27.28 16.74 
Pseudo-total Fe (mg kg-1) 5950.83 7514.94 
Pseudo-total Mn (mg kg-1) 310.36 199.62 

Pseudo-total Pb (mg kg-1) 39.71 15.43 

Pseudo-total Zn (mg kg-1) 127.39 71.2 
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Chapter 3. 

Metal partitioning in biosolids-amended soils. 

 

3.1 Introduction 

To understand the potential benefits and risks of any fertiliser input, it must be assessed 

for its effects on soil chemistry. Chemical binding of metals in soils determines their mobility 

and therefore influences toxicity (Ma and Rao, 1997). Chemically partitioning elements 

allows an understanding as to their quantity and likely reactivity, thus enabling assessments 

to be made regarding the short-term availability. Yet, single extractant methodologies only 

allow quantification of single fraction groups. No single extractant can currently be used to 

indicate what may replenish such fractions if they were removed from the system and total 

metal concentrations (the concentration of all of the element found in the soil) are not truly 

representative of what is bioavailable (available to be absorbed by a living system) and thus 

the hazards they pose to animals and humans through the soil-plant pathway. 

 Sequential extractions are multi-step techniques used to investigate such metal 

partitioning in soils. A range of extractants, with increasing extraction strength, are shaken 

with soil, partitioning metals bound with decreasing mobility at each stage. Such partitioning 

allows each fraction to be assessed individually, whilst also providing details as to the 

quantity of an element that could replenish concentrations should they be removed from the 

soil via translocation or leaching. Tessier et al. (1979) developed the original heavy metal 

sequential extraction procedure, with similar methods such as the Community Bureau of 

Reference (BCR) being developed later.  The Tessier, BCR and other techniques broadly 

follow the same procedure, with the Tessier methodology being split into five stages; 

1. Exchangeable fraction; removes metals adsorbed to the surface of sediment 

through the alteration of its ionic composition. 

2. Carbonate bound fraction; removes metals through changes in pH 

3. Fe/Mn oxide fraction; removes metals though reduction  

4. Organically bound fraction; removes metals bound or organic matter through 

oxidation. 

5. Residual fraction; removes metals through the breakdown of silicate structures. 

 

BCR methodology combines the first two stages of the Tessier method and follows a 

general protocol. 

 

The exchangeable fraction (stage 1 and 2 of the Tessier method) is assessed using 

acetic acid, which affects the adsorption of heavy metals in the exchangeable fraction. 
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Acetic acid displaces ions from the exchange sites, affecting a soils sorption-desorption 

processes. 

The reducible fraction (Stage 3 of the Tessier method) is extracted using hydroxyl 

ammonium chloride, which interferes with the heavy metals bound to iron and manganese 

oxides. These oxides form nodules and concretions under alternating oxidizing – reducing 

conditions (Lichthouse et al, 2012).  

The organically bound fraction (stage 4 of the Tessier method) uses hydrogen peroxide 

and ammonium acetate to fractionate metals bound to organic matter and sulphides. 

Organic matter (in the form of humic and fluvic acids) bind to metals due to its peptisation 

and complexation properties. Organic matter can be broken down in a natural environment 

to releases heavy metals into soil solution in oxidising conditions and therefore it is an 

important fraction to assess (Tessier et al., 1979). 

The final fraction (residual fraction) is normally extracted using hydrochloric acid (HCl), 

nitric acid (NHO3) and hydrofluoric acid (HF). These acids release heavy metals bound to 

the soils silicates and minerals within the soils crystal structures – a fraction all other extracts 

were not able to release. This is the only fraction that would not be released in to soil solution 

under normal environmental conditions (Hartley, 2004). 

Fractions can then be analysed using Inductively Coupled Plasma – Mass Spectrometry 

(ICP-MS). Extractants are not able to fractionate individual elements, instead they extract 

by a binding group. 

 Kim and McBride (2006) proposed that the extraction order undertaken when 

conducting sequential extractions using the BCR methodology should not impact on the 

concentrations of metals extracted. This implies that the extractants have a degree of 

selectivity. It was determined that the reverse extraction did not produced results consistent 

with an independent extraction technique (citrate-bicarbonate-dithionite extraction), 

specifically being unable to quantify the concentration of zinc (Zn) and cadmium (Cd). It was 

suggested that the extractants were too strong to be selective in nature. Yet, copper (Cu) 

concentrations were similar regardless of the technique used. The experiment concluded 

that the reliability of the BCR technique was dependent on the reagents used, the order of 

the extraction and the metals under investigation. 

Sequential extractions are normally used on soil to assess their heavy metal contents, 

especially where organic amendments are added as they have the potential to increase 

heavy metal concentrations. The extent to which these heavy metals are available to a plant 

are influenced by immobilisation, reduction and evaporation processes, along with a plants 

ability to modify its rhizosphere (Grobelak and Naproa 2015). Such applications often result 

in changes to soil pH. Perez-Esteban et al. (2013) suggested that Cu concentrations were 

reduced in the bioavailable fractions (water extractable, exchangeable, carbonate bound 

and Fe/Mn bound) through increases in pH and organic matter using compost amended 
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with horse and sheep manure. Results also indicated that these applications decreased the 

translocation of Cu and Zn to Atriplex halimus (Fodder Shrub), thus reducing the potential 

for bioaccumulation (accumulate in the cells of living tissues) in the food chain. This is 

important as heavy metals that bioaccumulate in tissues have the potential to increase to 

such levels where they may become toxic. 

Shober (2007) analysed the effect of biosolid applications on heavy metal 

concentrations across five farms using the BCR methodology. Results indicated a 

significant increase in Cu and Zn, in all fractions when compared with an untreated control. 

However, the untreated control soil was taken from a separate field, with the assumption 

that heavy metal concentrations were similar prior to any biosolids being applied. Each field 

received a different application rate and at different frequencies and intervals. The 

experiment also provided no details as to which isotope of Cu was used for analysis. Whilst 

Cu with the atomic mass of 63 is more abundant, it has a polyatomic interference with 

phosphorus (P) and therefore may show falsely elevated levels. This interference is 

substantially lower with 65Cu. Yet, Nogueira et al. (2010) concluded that no significant 

increase in Cd or lead (Pb) concentrations occurred in field soil receiving a range of 

application rates (ranging from 0 to 127.5 Mg ha-1 dry solids per annum) following nine years 

of biosolid applications. However, concentrations of Zn did increase overall. 

Two hypotheses have been proposed regarding the application of biosolids to soils 

in which sequential extractions are key. The Plateau and Time-bomb hypotheses contrast 

in theory whereby biosolids will prevent the excessive uptake of heavy metals into plant 

tissues due to the addition of organic matter which is also found in their composition 

(Plateau hypothesis), compared with the mineralisation of organic matter which will release 

heavy metals in the soil into readily available forms, following biosolids applications. 

McBride (1995) suggests that the organic matter provides protection against the release of 

heavy metals into solution, through it being resistant to decomposition, yet the exact details 

regarding OM bring resistant to decomposition are not given. This would suggest that the 

heavy metal and OM content of the biosolids being added to the soil were always consistent, 

or that the OM applied could always compensate for any increase in heavy metal 

concentrations. We know this hypothesis to be incorrect through studies where biosolid 

applications have increased soil heavy metal contents (Malinowska, 2017; Sanchez-Martin 

et al., 2007;  Parkpain et al, 2000) and increases in plant tissue contents (Evanylo et al., 

2006). 

In contrast, the Plateau hypothesis states that the addition of biosolids to soil increases 

the amount of heavy metals taken up by plants initially, however this is only a short term 

reaction until the exchange sites in the biosolids become dominant, causing a plateau effect. 

This reaction is only possible under the following conditions; 
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1. If the plateau is not reached and the biosolids applications are stopped, then the 

plant tissue concentrations will not be affected 

2. If the plateau is reached and applications continue to be made, the tissue 

concentrations will not exceed those found at the plateau. 

Chang et al. (1997) found that following 10 years of biosolids applications, no plateau was 

ever reached. It showed a continual increase in both plant and soil tissue concentrations for 

Cd. 

 The Time-Bomb hypothesis relies on the heavy metals binding irreversibly to the 

OM/sulphide fraction, whilst the Plateau hypothesis relies on the heavy metals in the 

biosolids accumulating in the more bioavailable fractions. 

Sequential extractions have been used on biosolids directly. Fuentes et al. (2004) 

assessed BCR sequential extractions on a range of sewage sludge types e.g. non-stabilised 

and anaerobically digested) to quantify if the heavy metal contamination levels were greater 

than those permitted by European Union (EU) legislation. It was determined that the metal 

content did not exceed these limits, however, such data could have been gained through 

total digestion techniques. This data itself does not give any indication as to how the 

biosolids might react in soil as characteristics such a pH and organic matter could have a 

substantial influence on the release of heavy metals from each type of biosolid. In addition 

to this, no detail is given regarding how applicable these biosolids are to other batches 

produced making recommendations that the anaerobic sludge should not be applied due to 

its high Cr content, unclear to interpret. 

Elements may also readsorb to the soil once in solution. Due to these issues there 

is some debate as to the reliability of sequential extractions.  The Tessier methodology 

(Tessier, 1979) has been shown to result in the redistribution of heavy metals, even through 

the use of weak extractants at stage one (Quan and Bi (1993); Ajayi and Vanloon (1989); 

Kheboian and Bauer (1987)). Other research found that changes in the volume of reagent 

used resulted in different concentrations of elements being extracted. Rauet et al. (1999) 

found that increasing the volume of reagent used from the normal 8 ml and 20 ml (following 

the Tessier methodology), to 50 ml, a significant increase to the concentration of the metals 

was recorded. However, despite these concerns Ho and Evans (2000) found that the 

amount of reabsorption was lower than originally thought and therefore should not invalidate 

any results obtained using such extraction techniques. Kim and McBride (2006) suggest 

that lowering the pH of all reagents to 1.5-2 may prevent reabsorption. Although sequential 

extraction techniques have been broadly used, they cannot be compared to single 

extraction procedures. 

The addition of biosolids to soils by Grobelek and Napra (2015) showed a decrease in 

Cd concentration in the exchangeable fraction, indicating that biosolid applications may 

decrease the availability of some heavy metals in the more available fractions. However, 



30 

 

bioavailability was decreased most significantly though the addition of biosolids with triple 

super phosphate (TSP) when observing Zn, Cd and Pb concentrations. Whilst such 

additions may show a positive effect when considering environmental and food chain 

contamination, their application together in a real agricultural environment is very unlikely. 

Biosolids provide excess P to plant requirements. Adding large quantities of biosolids to 

soils over time is likely to increase soil concentrations, possibly resulting in environmental 

pollution.  Antille et al. (2014) indicated the availability of phosphorus in the same biosolids 

as used in this thesis were substantially below expectations. Under current guidelines 

provided by DEFRA in RB209, it is estimated that 50% of P is available within the first year 

post application (DEFRA, 2008). Antille et al. suggested that this may actually be as low as 

6.5%. This methodology involved the incubation of soil for several months at 25⁰C. Whilst 

this may provide a more realistic approach in assessing plant available P, compared with 

microwave digestion, it does not represent any detail with regards to what pools the P is 

found in, nor is the incubation temperature representative of the climatic conditions for most 

temperate countries. 

Sanchez-Martin et al. (2007) looked at applying two application rates of biosolids (20 g 

and 200 g kg-1 soil) to two differing soil types. Their experiment involved incubating soil at 

25⁰C for 18 months before heavy metals were analysed using BCR. Overall, an increase in 

heavy metal concentrations were recorded, irrespective of the soil type used, however, the 

regulatory limits for heavy metal content in soils were never reached. It was noted that the 

OM content of the soils increased between 3.5 and 7 times in the soils receiving 200 g/kg 

of biosolids. Heavy metal concentrations only increased above untreated soils in the 

residual fraction, indicating that following a single application of biosolids to soil, they did 

not pose an environmental risk but could be advantageous in terms of their effect on OM. 

Whilst this experiment provides an insight into the release of heavy metals from biosolids, 

it would not be representative of soil temperatures in the UK and therefore may not be 

indicative of what would happen in UK soils. 

 Contrasting results regarding heavy metal concentrations (e.g. Perez-Esteban et al., 

2013 and Shober, 2007) make comparing biosolid applications difficult to apply to different 

situations. Whilst many studies show the effect of biosolid applications, often these biosolids 

are in different forms (e.g. cake, liquid and granules). The aim of this chapter was to 

establish the partitioning of heavy metal within two contrasting soil types treated with 

biosolids, using the same methodology on each. It is essential to understand the chemical 

bonding and thus the potential for environmental contamination and bioaccumulation that 

the biosolids pose in order to understand how these biosolids may best be applied to field 

soils in the UK. Heavy metal sequential extractions using the BCR method were carried out 

on Harper Adams University Farm soil and Broxton Cheshire soil, following one application 

of biosolids. The BCR methodology was created in 1987 to try to eliminate such variation in 
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analytical techniques for metal detection in soils, therefore, this technique was selected for 

analysing the biosolid treated soils in this chapter (Fuentes et al., 2004). The BCR 

methodology only differs from Tessier in the first two stages; with BCR combining stage one 

and two into a single step. The BCR technique was compared with the Tessier methodology 

by Zhang et al. (1998). They concluded that there was no significant difference between the 

results from the two techniques. This was further supported by Rosado et al. (2016).   

A further sequential extraction was carried out on  biosolids treated soil from Broxton 

to assess the accumulation of P following 8 successive years of applications to assess 

whether inorganic P fertilisers may be appropriate to apply alongside biosolids to decrease 

heavy metal availability. 

 

3.1.1 ICP-MS analysis 

Heavy metals are often found at the parts per billion or parts per trillion level. Whilst 

these concentrations are low, they have the potential to bioaccumulate in tissues. This 

therefore requires accurate analytical equipment to enable their detection and monitoring. 

Several pieces of equipment are available to monitor their concentrations, however no 

single methodology is suitable for all scenarios (Soondan et al., 2014).  Atomic absorption 

spectrometry (AAS), inductively coupled plasma-optical emission spectrometry (ICP-OES) 

and inductively coupled plasma-mass spectrometry (ICP-MS) are some of the more 

commonly used analytical instruments for environmental monitoring (ThermoFisher 

Scientific, no date).  

Atomic absorption spectrometry can be used to detect up to 70 different elements. It 

measures elemental concentrations by passing a light source through the atoms of a 

sample, whereby the atoms absorb energy. Differences in the amount of light emitted 

verses the amount of light reaching the detector can then be converted in to concentrations 

of an element. Different forms of AAS exist, with accuracy differing depending on the type 

used (e.g. flame atomic absorption spectrometry detects to parts per million and graphite 

furnace atomic absorption spectroscopy detects to parts per billion) (Helaluddin et al., 

2016). This method of detection has few problems with interferences between elements but 

may require a large sample volume. Its sample throughput is also very slow when analysing 

multiple elements (Helaluddin et al., 2016). 

Inductively coupled plasma-optical emission spectrometry works by generating photons 

from the sample, whereby the specific wavelengths can be measured. Element 

concentrations can then be calculated as the number of photos are directly proportional to 

the concentration of the element (ThermoFisher Scientific, no date). Whilst ICP-OES can 

detect to the parts per billion level, it is often used for samples containing high total dissolved 

solids and samples with higher elemental regulatory limits. Its sample throughput is superior 
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to that of AAS, with approximately 60 elements being analysed in just one minute 

(Helaluddin et al., 2016; Soondan et al., 2014 and ThermoFisher Scientific, no date). 

Inductively coupled plasma mass spectrometry allows the detection of elements at 

levels too low for atomic absorption or inductively coupled plasma-optical emission. Its 

ability to detect such low concentrations has resulted in it being known as the most powerful 

technique (Soondan et al., 2014). With the potential to detect elements at the parts per 

trillion level, its isotopic analysis allows data to be collected to detect low levels of 

environmental contamination. When compared with ICP-OES, it has few elemental 

interferences (when using a collision cell) and can quantify the concentration of all elements 

in less than one minute. Its cost in comparison to AAS and ICP-OES is normally 

substantially higher and samples may require further dilution in order to be processed when 

compared to ICP-OES (Helaluddin et al., 2016). 

 The ICP-MS can be broken up into the following nine sections (PerkinElmer Inc., 

2011); 

1. Sample induction system – take up the sample into the ICP-MS via the nebuliser 

and spray chamber. The sample forms an aerosol here. 

2. Torch and RF coil – the coil encircles one end of the torch, generating a plasma 

when a radio frequency passes through the coil. Plasmas are generally between 

6000 and 8000°C. The plasma creates and ion of the elements in the sample 

3. Sample interface – the interface between the high temperature in the plasma and 

the rest of the operating system 

4. Vacuum system – produces a vacuum in the system to allow the ions to travel. 

5. Collision cell – Not present on the ICP-MS at Harper Adams University, but allows 

the user to remove interference of other elements in the ICP-MS which may distort 

the results. 

6. Ion optics/ ion deflector – guides the ions into the quadrupole where neutrons and 

photos pass are discarded 

7. Mass spectrometer – filters ions based on their mass-to-charge ratio 

8. Detector – counts the ions via dynodes 

9. Data handling – interprets the output from the dynodes and allows the instrument to 

be controlled. 

 

Whilst the ICP-MS is able to detect substantially lower levels of elements that other 

instruments, it has some drawbacks.  

 The largest problem with element detection when using an ICP-MS is interference. 

This can occur in two different forms. Isobaric interferences are those which result from 

different isotopes sharing a similar mass (e.g. Fe and Ni both having an isotope with a mass 

of 58). This type of interference can be avoided through the use of a different element. 
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Polyatomic interferences are more difficult to avoid, without the use of a collision cell. They 

result from the collision of two or more elements (e.g. argon (Ar) and chlorine (Cl)). Argon 

and Cl combine to for ArCl+  which has the same mass as arsenic 75. Therefore, without 

the use of a collision cell to separate the combined ions from the elemental ones, it is likely 

that the concentration data produced would be incorrect. In instances such as this, the Cl 

can be omitted from the ICP-MS, by not introducing it in the first instance, for example using 

nitric acid instead of hydrochloric acid. However, element such as calcium (Ca) are found 

in large concentrations in soil and have the potential to cause a polyatomic interference with 

nickel (Ni) due to the presence of oxygen (O) in the sample. In such instances where a 

collision cell is not available, a different isotope for Ni should be selected. A full list of 

polyatomic interferences was produced by May and Wiedmeyer (1998). 

 

Null-hypotheses:  

1. The application of biosolids to soil does not increase heavy metal contamination 

within any fraction, irrespective of soil type applied to. 

2. The application of biosolids to soil has no impact on the P content of the soil in any 

fraction. 

 

Chapter objectives; 

1. Determine if a single application of biosolids to contrasting soil types has changed 

the concentrations of Ag, As, Cu, Fe, Mn, Pb and Zn and if there has been any effect 

on the fractions in which these elements are found (water extractable, 

exchangeable, Fe/Mn bound, organic matter/sulphide bound, residual). 

2. Determine if long term applications of biosolids to the Broxton field site have 

increased the concentration of P in soils and investigate which fractions (water 

extractable, exchangeable, Fe/Al bound, Ca bound, residual) phosphorus is 

associated with. 

3. Determine if long term applications of biosolids to the Broxton field site have 

increased the concentration of P in soils and investigate which fractions (water 

available, labile, Fe/Al bound, Ca bound and residual) phosphorus is associated with 

to suggest whether additional P applications could be beneficial for controlling heavy 

metal release. 
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3.2 Methodology 

3.2.1 Preparation of soil samples 

Bulk (500 g) untreated surface soil samples (0-20 cm) were collected using a 

stainless-steel auger from Broxton, Cheshire and Four Gates Field, Harper Adams 

University Farm. Further bulk samples were collected using the same methodology for the 

P sequential extractions from the treated plots detailed in Chapter 2. The bulked samples 

were formed from taking multiple sore cores from the untreated area before being 

subsampled for experimental purposes.  All sample were returned to the laboratory, air dried 

(30 ⁰C) and subsequently ground with a pestle and mortar before being passed through as 

<2 mm sieve, to ensure uniformity of soil particle size. The sieve was cleaned between 

samples using sand and a high-pressure air gun to ensure no cross contamination between 

samples. Each soil was then treated with the respective treatment (Table 3.1) and left to 

equilibrate for one month. 

All reagents were sourced from Fisher Scientific (Loughborough, UK) and were of 

analytical reagent grade. To each sequential extraction, an additional extraction step was 

incorporated to establish the quantity of metals would be water extractable. Harper Adams 

University Farm soils consisted of 3 treatments, 4 replicates and 5 extractants whilst 

Broxton soil analysis was completed in triplicate (3 treatments, 3 replicates and 5 

extractants). 

 

Table 3.1. Sequential extraction treatments applied to Broxton and Harper Adams 

University Farm soils. 

 

Treatment N (kg ha-1) P (kg ha-1) K (kg ha-1) 

Untreated 0 0 0 

Conventional 
160 (ammonium 

nitrate) 
55 (triple Super 

Phosphate (TSP)) 
45 (muriate of 
Potash (MOP)) 

Biosolids  
160 (urea and 

available N from 
biosolids) 

55 (biosolids) 
45 (muriate of 
Potash (MOP)) 

 

3.2.2 Sequential extraction procedure for heavy metals 

Sequential extractions of heavy metals was carried out using the modified Community 

Bureau of Reference (BCR) methodology developed by Sungur et al. (2014). All extractions 

were carried out in Nalgene polypropylene centrifuge tubes (50 ml). 
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Stage 1: Water extractable 

Soil (1.00 g) was mixed with deionised water (40 ml), then shaken on an orbital 

shaker for 2 hours (170 rpm). Samples were then centrifuged at 3000 rpm for 10 minutes 

to separate the aqueous extract from the soil. The supernatant was then decanted into a 

separate centrifuge tube and stored at 4°C until further analysis. 

 

Stage 2 – Exchangeable metals 

 0.11 mol L-1 acetic acid (40 ml) was added to the soil residual from stage 1. Samples 

were placed on an orbital shaker for 16 hours (170 rpm). Subsequently, samples were 

centrifuged for 10 minutes (3000 rpm). The supernatant was decanted into separate tubes 

and stored at 4°C. 

 

Stage 3 – Fe and Mn bound 

0.5 mol L-1 hydroxylammonium chloride (40 ml) was then added to the soil residual 

from stage 2. This was then shaken on an orbital shaker for 16 hours. The aqueous solution 

was then separated from the residue as described in stage 1 and the supernatant stored at 

4°C. 

 

Stage 4 –Organic matter and sulphide bound 

8.8M hydrogen peroxide (H2O2) (10  ml) was added to the residue from stage 3. This 

was shaken for 1 hour (170 rpm). Samples were then placed in a water bath (85°C) until 

nearly dry and allowed to cool. A further 10ml of 8.8M H2O2 was added to each sample, 

shaken then evaporated again under the same conditions. Ammonium acetate (50 ml) was 

then added to the near dry soil residue and shaken for 16 hours. Each sample was then 

centrifuged following the procedure in stage 1 with the resulting supernatant being 

separated and stored at 4°C. 

 

Stage 5 – Residual fraction  

Soil (0.20 g) was placed into Teflon digestion vessels. Concentrated nitric acid, 14M 

(10 ml) was then added following the procedure outlined in section 2.3, stage 5. 

 

3.2.3 Phosphorus sequential extraction procedure 

A sequential extraction procedure developed by Kostyanovsky et al. (2015), 

specifically for P fractionation, was used for this study. Air dried soil samples (2.00 g) 

were weighed into Nalgene polypropylene centrifuge tubes (50 ml), and all extractions 

were carried out in the tubes to minimise soil loss  
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Stage 1: Water extractable 

To each tube, purite water (18.2 MΩ)  (30 ml) was added. They were then placed 

on an orbital shaker for two hours (170 rpm), at room temperature. Samples were then 

centrifuged at 3000 rpm for 10 minutes. The supernatant was then decanted into a separate 

centrifuge tube and stored at 4°C until further analysis.  

 

Stage 2: Exchangeable P  

1M KCl (30 ml) was then added to the soil residue from stage 1. This mixture was 

then shaken for 2 hours, at room temperature. The aqueous solution was then separated 

from the residue as described in stage 1. The supernatant was stored at 4°C.  

 

Stage 3: Fe and Al Bound 

0.1M NaOH (30 ml) was added to the soil residue from stage 2. This was then left 

to shake for 17hrs, at room temperature. The aqueous solution was separated from the 

residue, as previously described. The supernatant was stored at 4°C.  

  

Stage 4: Ca bound 

0.5M HCl (30 ml) was mixed with the soil residue from stage 3. This was then shaken for 

24 hours, at room temperature. The resulting aqueous solution was separated as described 

above, the supernatant stored at 4°C.  

  

Stage 5: Residual fraction  

The residual fraction from stage 4 was then allowed to air dry. This was then crushed 

to a fine powder in the centrifuge tube using a glass rod. Soil (0.20 g) was then added to 

Teflon digestion vessels and HNO3 (10 ml) added. Soils were then digested with 

concentrated (14M) nitric acid (HNO3) in a MARS 6 microwave digester (CEM, UK) (section 

2.6). 

 

3.2.4 Microwave digestion of soils, biosolids and Certified Reference Material 

Samples were digested using a CEM Mars Xpress Microwave digestion instrument. 

Soil was weighed (0.20 g) into Teflon digestion vessels (120 ml) to which analytical grade 

14 M HNO3 (10 ml) was added. The digestion procedure was as follows;  

 Ramping to 180 °C  (20 minutes) 

 Holding at 180 °C (20 minutes) 

 Vessel cooling (20 minutes)  

Samples were filtered through Whatman 42 filter paper into acid washed volumetric flasks 

(25 ml). Once filtered, each sample was made to volume using purite water (18.2 MΩ) and 
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stored in centrifuge tubes (50 ml) at 4⁰C prior to analysis. Certified Reference Material 

(CRM) of Bowens Kale (1974) was digested to determine recoveries. 

 

3.2.5 Elemental analysis 

Samples were quantified using Inductively Coupled Plasma-Mass Spectrometry 

(ICP-MS) (X-series 2 ICP-MS, Thermo Scientific MA, USA). 

Nitric acid digest samples (1 ml) were diluted with purite water (9 ml) before being prepared 

for ICP-MS analysis using the following sample preparation method; 

 4.85 ml sample solution 

 100 µl HNO3 (14M) 

 50 µl internal standard solution (1 ppm gallium (Ga)) 

Samples were vortex mixed for 5 seconds to ensure they were mixed uniformly. 

The following isotopes of each element were analysed, 107Ag, 75Ag, 65Cu, 57Fe, 55Mn, 

208Pb, 66Zn and 31P. The ICP-MS plasma was running under vacuum at 6000°C. Whilst each 

of these elements may not be the most abundant, they were chosen to avoid polyatomic 

and isobaric interferences which may have skewed the results. Hydrochloric acid was not 

used during the microwave digestion to reduce the risk of isobaric interference. Phosphorus 

has the potential to result in an isobaric interference due to the mass of Ag and P forming 

49Ti, however, Kunze et al. (1998) found this to be undetectable. 

Lake Ontario Water (CRM TMDA 64.2) was used as a water reference material 

(Table.3.2). This was to ensure that the values being produced by the ICP-MS were within 

the accepted range of the reference sample. TMDA is universally available reference 

material for liquid samples with heavy metal contamination. 

 

Table 3.2.TMDA recoveries using ICP-MS. 

Element 
Recovery 

(ppm) 

TMDA 
64.2 

reference 
value 
(ppm) 

Tolerance 
(+/-) 

Recovery 
% 

Mn 0.2746 0.295 0.0223 93.085 

Fe 0.282 0.306 0.0271 92.157 

Cu 0.2712 0.274 0.0241 98.978 

Zn 0.2856 0.310 0.0265 92.129 
 

Sequential extraction samples were prepared using the supernatant, without any 

additional dilution. For NaOH extractions, an additional dilution step was necessary due to 

precipitation of humic acids. 
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3.2.6 Statistical analysis 

All sequential extractions were analysed using Genstat (VSN International, 18th edition). 

Pseudo-totals were analysed using a one-way analysis of variance (ANOVA), with 

interactions between treatments and extractants being analysed using a split-plot ANOVA, 

using the treatment as the whole plot and extractants as the sub-plot.  A post-hock 

Bonferroni test, with a significance level of 0.05, was used to determine statistical 

differences for interactions. Significance was deemed to occur if p<0.05, however results 

with a p>0.05 <0.1 were deemed to be of interest. 

 

3.3 Results 

3.3.1 Heavy Metal Sequential Extractions 

3.3.1.1 Harper Adams University Farm  

Sequential extractions were carried out on both the Harper Adams University Farm soils 

(sandy loam) and the Broxton, Cheshire soils (clay loam).  

No difference in pseudo-total heavy metal concentrations was recorded for any 

treatment in the Harper Adams University Farm soils (p>0.05), thus indicating that the 

addition of any fertiliser did not affect the overall concentration.  

No elements showed a treatment-extractant interaction indicating that the biosolids 

did not increase the concentration of As, Ag, Mn, Fe, Pb or Zn following one application. 

Coefficient of variations varied substantially with some cv% being as high as 218%, which 

could be due to natural variation in the soil or interferences on the ICP-MS (Figure 3.1). 

Such interferences as P with Cu detection and calcium (Ca) with Fe may have increased 

the concentrations of some elements detected. Only 31P can be analysed on an ICP-MS. 
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Figure 3.1 Partitioning of pseudo-total elemental concentrations, a) Fe, b) Mn, c) Zn, d) Cu, 

e) Pb, f) As, g) Ag extracted using Sungur et al. (2014) on Harper Adams University Farm 

soil, following one application of biosolids. Note: graphs are presented with different mg kg 

scales due to the large variation in concentrations recovered. Residual d.f =24 
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3.3.1.2 Broxton, Cheshire sequential extractions 

Significant differences were recorded between treatments in the Broxton, Cheshire 

soils, although none of these increases were recorded in biosolids treated soils when 

compared to the untreated soils (Figure 3.2). Pseudo-total concentration differences were 

recorded for Mn (p=0.005) with biosolids soils being significantly lower on average than both 

conventionally treated and untreated soils. Iron, Pb and As concentrations were also found 

to be close to significant (p=0.062, 0.069 and 0.075 respectively). However in each instance 

the biosolids treated soil had the lowest concentration. 

Interactions were recorded between extractant and treatment in the Broxton soils. 

In the residual fraction, untreated soils were higher in As concentration (4.72 mg kg-1) 

compared with the biosolids treated soil (2.81 mg kg-1). Conventionally treated soil 

concentrations were not statistically different from either biosolids treated or untreated soils 

(3.76 mg kg-1). Biosolids treated soils recorded lower Fe concentrations (p<0.001) 

compared with the untreated and conventionally treated soils (2811 mg kg-1, 4637 mg kg-1 

and 3835 mg kg-1 respectively). Lead concentrations were also lower (p<0.001) in biosolids 

treated soils with 17.82 mg kg-1 compared with 27.99 mg kg-1 for untreated soils and 23.54 

mg kg-1 in conventionally treated soils. 

The only fraction showing significant differences between treatments outside of the residual 

fraction, was the Fe/Mn bound fraction with Mn. Untreated soils had the highest 

concentration of Mn (161.37 mg kg-1) when compared with conventionally treated soil 

(130.12  mg kg-1). The lowest concentration was again found in the biosolids treated soil 

(75.85 mg kg-1). No other elements showed a significant difference between treatments at 

any fraction. 

 

Further analysis comparing the two sites heavy metal content showed significant 

differences for all elements, except for Zn (Table 3.3). However, different inputs make such 

comparisons difficult to attribute directly to the treatments used. 

 

Table 3.3. Heavy metal statistical differences between two soil types. 

Element p value 

Site with 
higher 

concentration cv% 
Residual 

d.f. 

Ag <0.001 Broxton 51.7 24 

As 0.018 Harper 54.9 24 

Cu 0.002 Broxton 24.7 24 

Fe <0.001 Harper 61.5 24 

Mn <0.001 Broxton 11.3 24 

Pb <0.001 Broxton 27.5 24 

Zn 0.782 N/A 73.9 24 
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Overall, the lower concentrations of heavy metals in Broxton, Cheshire soils would suggest 

that a single application of biosolids does not increase the concentration of any of the heavy 

metals considered above those seen in conventionally treated or untreated soils. 
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Figure 3.2. Pseudo-total elemental concentrations a) Fe, b) Mn, c) Zn, d) Cu, e) Pb, f) As, 

g) Ag extracted using Sungur et al. (2014) on Broxton, Cheshire soils, following one 

application of biosolids. Note: graphs are presented with different mg kg-1 scales due to the 

range of concentrations recovered. Residual d.f. 36. 
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3.3.2 Phosphorus sequential extractions (Broxton, Cheshire soil).  

Following the results from Grobelek and Napra (2015) suggesting that the application of P 

in addition to biosolids may decrease their mobility, a phosphorus sequential extraction was 

carried out on the Broxton Cheshire soils to assess what impact repeated applications had 

on the P concentration of soil from the treated plots (Figure 3.3.). The analytical protocol for 

this experiment is presented in sections 3.2.3, 3.2.4 and 3.2.5. Biosolids treated soils were 

higher in P in the Fe/Al bound fraction (836.3 mg kg-1) compared to both the untreated and 

conventionally treated soils (355.6 mg kg-1 and 391.1 mg kg-1 respectively). This therefore 

suggests that the biosolid applications are increasing the concentration of P within one 

fraction of the soil. No other fractions showed a significant difference between treatments. 

No P was removed in the exchangeable fraction indicating that all exchangeable P had 

already been removed in the water exchangeable fraction. This fraction represented less 

than 1.5% of the total P.  

  

  

 

 

 

 

 

 

 

  

  

  

Figure 3.3 Partitioning of P extracted using Kostyanovsky et al. (2015) from Broxton, 

Cheshire soils following eight years of applications of fertilisers.  n=5  

 

 

 

 

Figure 3.3 Partitioning of P extracted using Kostyanovsky et al. (2015) from Broxton, 

Cheshire soils following eight years of applications of fertilisers.  Residual d.f. 30 
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3.4 Discussion 

When considering the environmental risk posed by an organic amendment such as 

biosolids, many are assessed on their total elemental concentration or available fractions 

rather than considering the chemical partitioning of each element. Sequential extractions 

show both total concentration and the chemical partitioning of elements within soil. They 

can be used to indicate which elements pose the greatest environmental risk and therefore 

influence application guidelines. All fractions are considered to be bioavailable to plants with 

the exception of the residual fraction (Zang et al., 2015). However, whilst each of these 

fractions may have the potential to become bioavailable, the increased bonding strength 

seen with each step would suggest that the OM and sulphide bound fraction is less likely to 

become plant available before the Fe/Mn bound fraction, yet this would be dependent on 

soil conditions. 

Two contrasting soil types were assessed for their heavy metal contents following a 

single application of biosolids and conventional fertiliser to untreated soil. A direct 

comparison of the two soil types (Table 3.2) showed significant difference between all 

elements, with the exception of Zn, yet no soil type was significantly higher in all elements. 

Due to the site management practices being historically different, with differing fertiliser 

regimes and cropping histories, it is difficult to compare the two sites directly. Literature 

discussing the direct comparison of heavy metal partitioning following the application of 

biosolids on two differing soil type is minimal with only Sanchez-Martin et al. (2007) showing 

comprehensive data. However, whilst the Sanchez-Martin et al. (2007) study uses two 

different soil types (loamy sand and a sandy loam), there was only a few percent difference 

in the sand, silt and clay composition. A more controlled study looking at a single soil type, 

amended with compost may be required to enable a direct comparison, thus reducing the 

impact of variation in characteristics such as pH. 

Individually the two sites analysed in this chapter showed contrasting results. Harper 

Adams University Farm showed no increase in pseudo-total heavy metal concentrations, or 

an interaction between treatment and extractant. This would suggest that a single 

application of biosolids did not increase the concentration of any heavy metal in any fraction 

of the soil. Whilst this suggests that the biosolids do not pose an increased risk following a 

single application, this would also suggest that the biosolids do not increase the more 

bioavailable fractions for beneficial heavy metals (Zn, Cu, Fe and Mn) and thus may not be 

suitable for rectifying micronutrient deficiencies.  

In contrast, the Broxton soils showed differences between treatments for pseudo 

totals of Mn, with As, Fe, and Pb having p values less than 0.1 and thus possibly being of 

interest.  

Interactions were recorded for As, Fe, and Pb in the residual fraction, with the 

untreated and conventionally treated soils being higher than the biosolids treated soil in 
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each instance. This fraction is considered the most stable fraction and therefore the least 

likely to be mobilised and either leach or enter the food chain. For all elements except Mn, 

the largest fraction was the residual fraction overall accounting for 69% (Ag), 84% (As), 

88% (Cu), 74% (Fe), 63% (Pb), and 89% (Zn). With only 0.4% (Ag), 3% (As), 1% (Cu), 1% 

(Fe), 1% (Pb), and 2% (Zn) found in the water exchangeable and exchangeable fractions. 

Manganese was the only element to show a significant difference in a fraction that was not 

the residual fraction. Biosolid treated soils showed the lowest concentration of Mn in this 

fraction, with conventionally treated soil being higher and the untreated soil being the 

highest. 

The residual fraction for Mn only accounted for 16% of the total, with the water 

exchangeable and exchangeable fractions accounting for 14%. This difference in fraction 

proportions may be explained by the largest fraction being the Fe/Mn bound fraction yet 

does not explain Fe being most concentrated in the residual fraction. Iron was added in the 

form of ferric sulphate as part of the waste water treatment process and therefore should 

increase Fe concentrations in biosolid amended soils. The methodology used in this chapter 

does not use HF acid as required for the total extraction of elements from soil due to health 

and safety restrictions. Therefore, the lack of Fe concentration increase observed, may be 

due to Fe being bound in the residual fraction that was not digested into solution. Whilst the 

recovery values for the TMDA were within the tolerance limits presented in the certificate of 

the certified reference material, Mn, Fe and Zn were all below 95% recovery. Whilst there 

is no official guidance for acceptable percentage recovery, it is believed that recovery 

should be above 95%. The addition of a collision cell to the ICP-MS may improve the 

recovery values for further research, improving confidence in the data collected. It is 

therefore likely that the values presented are below the true concentrations in the samples. 

The data collected from the two soil types contrast with much of the data currently available. 

Shober (2007) found a significant increase in Cu and Zn concentrations in all fractions 

following biosolids applications. With Parkpain et al. (2000) also finding that Cu, Zn and Mn 

all increasing in the bioavailable fractions following biosolid applications. However, much of 

this work has been done on biosolids in a cake or liquid form and so differences may be 

attributed to the type of product being used. 

The P sequential extractions indicated that total P extracted was significantly higher 

overall in the biosolids treated soil than the untreated or conventionally treated soils. This 

therefore indicates that the P additions made via the biosolid applications are accumulating 

in the soil. From this experiment it is not possible to explain whether this is due to too much 

P being applied over time, or a lack of P uptake into the plants. It may be that the addition 

of P in the conventionally treated soil was not large enough for it to oversupply the crops 

demands, or that the applications had not been made over a long enough period for the 

conventionally treated soil to record significantly greater concentrations compared to the 
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untreated. The Fe/Al bound fraction was the largest fraction for the biosolids treated soil 

and significantly larger than the untreated and conventionally treated soils. This can be 

explained by the addition of ferric sulphate for the extraction of phosphorus from the 

wastewater at the treatment works (Per. Comms. Mamatha Veesam, Senior Process 

Scientist, Southern Water). Ferric sulphate is used as a coagulant to remove P. It causes 

the P to precipitate as salts which then coagulate, reducing the P in the waste water. Whilst 

ferric sulphate is used in this instance, other common salts used for removing P from waste 

water include ferrous chloride and aluminium sulphate. Two of the influencing factors with 

regards to which compound is used to aid the extraction of P from wastewater are the size 

of the WWTW and the cost of the compound used (Gray 2011). No P was found in the 

exchangeable fraction, indicating that all P that would have normally been found here was 

removed by the water extractable stage, indicating that acid rain may not be required for P 

to enter groundwater. This fraction represented less than 1.5% of the total P in the soil, 

whilst the Fe/Al bound fraction represented 61%. No significant differences between 

treatments regarding the concertation of P was found in this fraction, suggesting that 

biosolids were not adding to this fraction. Whilst the movement of P from the Fe/Al fraction 

to the more bioavailable fractions would be dependent on a number of factors (including 

pH, water content and time), the idea of adding excess P to the soil alongside biosolid 

applications may not be considered good practice. Eutrophication is thought to be 

predominantly caused by the erosion of soil into water systems and therefore the Fe/Al 

fraction, would not have to become mobile and plant available in order for it to impact the 

environment. The exact mechanism by which this happens is still not clear and thought to 

be more complicated than previously thought (Ekholm and Lehtoranta, 2012), however, it 

would be irresponsible to make such applications, using current understanding. 

It should be noted that the methodology of sequential extractions is beyond that 

which would be seen in the natural environment. Sahuquillo et al. (1999) identified that the 

pH of the extractants used in a sequential extraction procedure is a key factor influencing 

the concentration obtained. This was confirmed by Davidson et al. (1999). The BCR 

methodology requires one extractant to be altered as low as pH 2, indicating how difficult it 

would be for a plant to extract these metals. This therefore suggests that whilst such 

methods are useful for understanding the fractionation of elements, they may not be 

representative of the potential for being translocated into a plant. A review by Zimmerman 

and Weindorf (2010) suggests that sequential extractions should be used with other 

analytical techniques to analyse a soils metal fractionation accurately as reabsorption is 

likely to underestimate the more mobile fractions, whilst overestimating the oxidisable and 

residual fractions. 

Following the sequential extraction analysis across a range of heavy metals, in 

contrasting soil types, both null hypotheses must be rejected as both heavy metal and P 
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concentrations were found to vary in different fractions of soil. These differences were 

predominantly recorded in the residual fraction, with the untreated soil containing higher 

concentrations than the biosolids treated soils and therefore the risk posed to the 

environment is deemed low from these results. It is evident from the biosolid analysis that 

they contain heavy metals. Whilst the application rates used here were suitable for a cereal 

crop, they were low when compared to soil volume. The dilution effect in the soil may explain 

why increases were not observed from these biosolid additions. 

 

3.5 Chapter Conclusions 

Sequential extractions indicate that the risk of environmental contamination is low 

following one application of biosolids to soil. Many heavy metal concentrations were 

significantly lower in the residual fraction of the biosolid treated soil from Broxton indicating 

that there must be either increased plant uptake or leaching of these elements. No 

significant differences were recorded between biosolids treated and untreated soils from 

Harper Adams University Farm in available fractions, suggesting that single applications do 

not increase plant available Ag, As, Cu, Fe, Mn, Pb and Zn levels. Applications of TSP 

made alongside the application of biosolids has been suggested as a possible way to 

reduce heavy metal mobility in soils. Following seven years of applications to the soil, 

biosolids were found to have increased the P concentrations overall, specifically in the 

Fe/Mn bound fraction. This would suggest that applications of TPS alongside biosolids, 

would not be a responsible way of limiting heavy metal contamination. Heavy metal 

extraction data would suggest that such instances recorded by Grobelek and Napra (2015) 

are not a problem that would warrant these applications anyway. Zimmerman and Weindorf 

(2010) suggest that BCR may underestimate the concentration of heavy metals in the 

bioavailable fractions. This, along with the suggestion that the carbon in the biosolids may 

increase the mobility and thus leaching of heavy metals from the soil should be studied 

further. 
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Chapter 4. 

The leaching potential of biosolids. 

 

4.1. Introduction 

The application of biosolids to land, not only increases soil organic matter (SOM) but adds 

nutrients required for plant growth yet, they also potentially add heavy metal contaminants. 

Whilst some of these elements are beneficial to human and animal diets, at certain 

concentrations they pose health and environmental risks if their concentrations become too 

high. Understanding the implications associated with biosolid applications would enable 

them to be applied more efficiently. Historically, biosolids have contained very high 

concentrations of heavy metals, however, they have been increasingly stabilised to improve 

their potential as a fertiliser (Islam et al., 2012). The most mobile elemental fractions have 

the potential to be translocated into plant tissues (Chapter 6) or leached from soils. Leaching 

can be defined as the movement of nutrients held in the labile fraction, downwards through 

the soil profile (Lehmann and Schroth, 2003). This process removes nutrients from surface 

soil horizons (O, A and B) either resulting in plants needing to extend their root systems to 

reach the nutrients, or loss of nutrients to ground water. Generally, for nutrients to be 

leached from soil, field capacity of the soil must be exceeded, however, leaching may also 

occur in dry clay soils following heavy rain (Alloway, 2013). Whilst all soils are susceptible 

to leaching, some are at greater risk, for example sandy soil with a low SOM content.  

Both nitrogen (N) and phosphorus (P) are the most documented elements being 

leached, with high nitrate levels in soil posing a risk to human health and phosphorus 

leaching being associated with eutrophication of freshwater systems. Whilst restrictions are 

in place to prevent excessive N and P applications (e.g. Nitrogen Vulnerable Zones and 

Biosolids Nutrient Matrix), little consideration has been given to the potential movement of 

heavy metals from biosolids in soils and any potential associated risks. 

Currently in the UK, several documents are available with recommendations on how 

to apply biosolids, thereby restricting their impact on both the environment and the food 

chain, whilst still allowing soils to benefit from their nutrient content and OM. Nevertheless, 

most of these guidelines are formed from data only accounting for total heavy metal content, 

and not related to the labile fraction in soils (Speir et al., 2003). Some metals are non-

essential, posing an environmental and/or health risk, whilst others are essential to life but 

toxic in high concentrations. Such risk emphasises the need to understand the bioavailable 

fraction of soil heavy metals.  

Several factors affect leaching and consequently the potential of biosolids to harm 

the environment and contaminate food chains. 
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4.1.1.Soil pH and leaching potential 

Soil pH is one of the most important factors affecting the availability of heavy metals 

(Harter, 1983). Key factors influencing pH in soils include the decomposition of organic 

matter and rainfall. The production of carbon dioxide (CO2) from the decomposition of the 

organic matter, in combination with rainfall, results in the release of H+ ions acidifying soils. 

Organic matter decomposition through microbial activity can also decrease soil pH through 

the production of ammonia and hydrogen sulphide, which following oxidation, produces 

nitric and sulphuric acids. 

  Generally, research suggests that metals become increasingly available with 

decreasing pH. A pH decreases in soil can be caused by a number of things, including the 

use of ammonium fertilisers and acid rain. Blake and Goulding (2002) demonstrated that a 

decrease in soil pH below 4.0 mobilised Cd, whilst pH 5.0 - 6.0 mobilised manganese (Mn), 

cadmium (Cd), zinc (Zn), nickel (Ni) and copper (Cu). Such changes in pH affect the 

availability of heavy metals and their potential to reach phytotoxic concentrations, therefore 

impacting on the suitability of the land for growing crops. Studies have revealed conflicting 

results regarding the effect biosolids have on soil pH.  Speir et al. (2003) indicated that 

annual additions of 100 Mg ha-1 of biosolids significantly reduced pH. Consequently, it was 

found that Cu, Ni and Zn concentrations were all higher in ground waters, as well as 

increased Zn concentrations in plant tissues. Subsequent liming of the treated soil reduced 

Zn concentrations from 27 to 0.04 mg kg-1, indicating that leaching may be managed, should 

contamination occur. Stehouwer et al. (2006) coa three-year leaching study following the 

application of biosolids at 134 Mg ha-1 to a reclaimed mine site in Pennsylvania. Lysimeters 

were inserted to a depth of 1 m to collect water samples from biosolids-treated and 

untreated soils. It was observed that biosolids had caused a reduction in pH, which was 

most prominent in the first year following application, whilst Mn, Cu, Ni, lead (Pb) and Zn 

became more mobile. It was proposed that this may be a result of the decrease in pH 

mobilising the heavy metals. It should be noted that the applications detailed by Stenhouwer 

et al. (2006) were not clear as to the nature of the biosolid (i.e. solid or liquid) and an 

assumption was made that they used cake material based on the units used for their 

application rate. For both Speir et al. (2003) and Stehouwer et al. (2006), the applications 

rates are very high compared with those in the UK, where cake would normally be applied 

closer to 20t/ha. This therefore makes the interpretation of their results to UK farming 

situations less clear. 

Islam et al. (2013) undertkook a large field scale experiment studying the effects of 

biosolids on heavy metal accumulation. They showed no difference in soil pH following 25 

years of biosolid applications, and this may be due to the biosolids having been treated with 

lime to stabilise them prior to application.  
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4.1.2 Soil Carbon and leaching potential 

Another critical factor affecting heavy metal mobility is soil carbon. Soil carbon is 

critical for food production, climate regulation and biodiversity. Carbon is readily lost from 

the soil through a range of processes (Figure 4.1) and therefore it is important to ensure 

adequate additions are made to compensate for such loses. Sandermand and Baldock 

(2010) provide evidence that global soil carbon levels are decreasing; with one of the main 

causes being agriculture. To maintain food production at their current levels, soil carbon 

must be maintained, however dissolved organic carbon can also affect heavy metal mobility 

in soils by the organic acids acting as a chelating agent (Alloway, 2013; Sherene, 2009). 

Whilst increasing heavy metal mobility will remove them from the rhizosphere, reducing the 

risk of bioaccumulation in plant tissue, it also increases the risk of contamination to ground 

water (Alloway 2013). 

Fang et al. (2016) found that when sewage sludge compost was added to the soil 

(48 Mg ha-1), the dissolved organic matter content increased leaching of heavy metals from 

soils. Subsequently, Ni and Zn concentrations leached from sewage sludge compost 

treated soils with a pH greater than seven, were “several orders of magnitude higher” than 

the untreated soil. This was directly attributed to the higher dissolved organic matter content 

being higher in the waters from the sewage sludge compost treated soils. 

Biosolids have been shown to increase the Total Organic Carbon (TOC) of soils. Wijesekara 

et al. (2017) found that following biosolids applications (70 t/ha), there was a 45% increase 

in TOC. Whilst this was linked to an increase in the crop biomass produced, no soil heavy 

metal analysis was carried out, hence the true hazard potential of the applications was not  

assessed. 

Ferraz and Lourenco (2004) proposed the use of a Langmuir-type model to predict 

the maximum amount of a contaminant in a leaching solution. The model demonstrated that 

by increasing organic matter (OM), an increase in heavy metal concentrations occurred. 

However, the methodology required to produce the data for the model uses pH solutions 

between 2.1 and 3. Whilst again, this shows the ultimate potential of an element to be 

leached, it does not indicate directly any impacts of increased OM.  
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Figure 4.1. Atmospheric losses of carbon from soil 

 

4.1.3 Techniques for assessing leaching 

Historically, extraction methods such as ethylenediaminetetraacetic acid (EDTA) 

have provided a number that has related heavy metal extraction to bioavailability. 

Manouchehri et al. (2006) describe EDTA as a powerful chelating agent as it competes at 

surface sites of the solid soil phase, extracting metal cations from the soil into solution 

(Manouchehri and Bermond, 2006). Often work using EDTA involves using a range of 

concentrations indicating a lack of uniform testing using this technique (Manouchehri et al. 

2006; Khalkhalian et al. 2006; Lo and Yang, 1999). Manouchehri and Bermond (2006) 

reviewed work using EDTA to extract metals from soil and found that the percentage 

removal varied dramatically between papers (e.g. 10 - 99% removal of Pb was achieved) 

with a range of leaching steps used across the research also (1 - 7 steps were recorded).  

Other techniques such as diffusive gradient thin films (DGT) have been used to monitor the 

diffusion of metals in soil solution with a chelating resin. The DGT probe is inserted to 

remove metal ions, and is designed to work similarly to a plant root, by decreasing the metal 

concentration locally. This allows the movement of ions, via diffusion, in the soil solution to 

the probe and the release of more labile metals from a different pool. The replenishment of 

this pool is then thought to represent what is accessible to a plant root. Dočekalová et al. 

(2012) suggest that such a method is simple and reliable for the assessment of the available 

metal pool, suggesting that it is a quick method that provides more accurate results than 

EDTA extraction techniques, yet such techniques were not detailed in the research. Parker 

et al. (2017) suggest that whilst DGT may be suitable to use as a monitoring tool for heavy 
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metals, especially in place of total extraction procedures which were felt to not correspond 

with the concentrations found in pore waters.  

 Hartley et al. (2004) utilised leaching columns to conduct a modified Dutch Leaching  

column test on three contaminated soils. Using acidified water (pH4) long-term leaching 

experiments were carried out to evaluate the leaching potential of As over time. This 

technique allowed a longer-term assessment for the leaching to be undertaken and thus the 

impact of adding any input to soil to be assessed quickly, whilst using the movement of 

water as the key driver of the reaction. 

Although heavy metal release from biosolids has been studied, much of the work 

has been done using strong acids or techniques which are not applicable to what plants can 

readily absorb. Furthermore, the work has often been completed over a short period of time. 

Here, a series of experiments build on the knowledge obtained in Chapter 3, whilst 

attempting to explain the longer-term implications of biosolid applications to soils. 

 

 

Chapter aims: Evaluate the leaching potential of heavy metals and TOC from biosolids 

using novel techniques. 

 

Chapter objectives:  

Quantify the leaching of heavy metals and TOC from biosolids over repeated wetting and 

drying periods. 

Quantify the leaching potential of heavy metals and TOC from biosolid treated soils in 

comparison to untreated soils. 

 

Null hypothesis: There is no difference between heavy metal or carbon contents of the 

leachate collected from biosolids-treated soils, when compared to untreated soil. 

 

 

 

 

 

 

 

 

 



53 

 

 4.2 Methodology 

4.2.1 Wet and Dry experiment  

A series of wet and dry periods were enacted on biosolids suspended in purite water 

to assess the leaching behaviour of heavy metals over time. This study was established 

using water at pH 4 and 7 to assess the impact on heavy metal release. 

 

Experimental design 

Nalgene polypropylene tubes (50 ml) were filled with biosolids (5 g) taken from a 25 

kg subsample. Each tube was then filled with 50 ml purite water (18.2 MΩ) and placed on 

a rotary shaker (170 rpm) for 24 hours. Water was tested to ensure the pH was between 

6.8 and 7.2 before being placed in the tubes. Supernatants were filtered through Whatman 

42 filter papers before being stored at 4 ⁰C. Analysis was carried out on pH (Jenway 3510), 

heavy metals using ICP-MS (X-series 2 ICP-MS, Thermo Scientific MA, USA) and TOC 

(TOC-VE/SSM-5000A, Shimadzu, Tokyo, Japan). The biosolids were then left to dry at 

room temperature for 48 hours before the process was repeated. In total, 10 cycles were 

completed. Five replicates were used for each cycle.  

The experiment outlined above was repeated using purite water (18.2 MΩ) adjusted 

to pH 4 (HNO3 14 M). This enabled a comparison of biosolid heavy metal leaching at 

contrasting pH levels. 

 

4.2.2 Leaching column experiments 

A laboratory experiment was established to assess the leaching potential of metals from 

biosolids at two applications rates 0 kg ha-1 N and 500 kg ha-1 total N (Table 4.1) The 500 

kg ha-1 total N application rate was chosen due to the Biosolids Nutrient Management Matrix 

guidelines (ADAS, 2014), with this rate being double the recommended rate. This therefore 

represents where poor application accuracy occurred. Soil was collected from untreated 

areas of the field before being amended (they had received no fertiliser in seven years). 
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Table 4.1. Application details for the untreated Modified Dutch Leaching experiments; a) 

Broxton field soil, b) Harper Adams University Farm soil 

 

a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The experiment was repeated using two soil types; untreated soil from Broxton, 

Cheshire and Harper Adams University Farm soil. Bulk, untreated soil samples were air 

dried at 30 ⁰C and then sieved (<2 mm) to remove stones. Subsamples of soil (500 g) were 

then mixed with the respective concentrations of biosolids. Biosolid application rates were 

calculated assuming applications were made to the surface before being incorporated to a 

depth of 20 cm (shallow plough depth). Samples were left to homogenise for 24 hours 

before being placed in the leaching columns. Leaching columns (XK50 Pharamacia Biotech; 

20 cm length, 5 cm internal diameter) were fitted with Whatman pre-filters (pore size 1.5 

µm) and sealed using Gold Label Pond Aquarium Sealer. This sealant contains no 

contaminants and therefore would not result in any contaminant leaching into the samples. 

Following application, this was left to set for 48 hours.  

A reservoir of deionised water, adjusted to pH 4 using HNO3 (14 M) was pumped 

using a peristaltic pump at a flow rate of 1 ml min-1 (Hartley et al. 2004). Water entered each 

leaching column through the base, ensuring water filled the entire column before exiting via 

tubing at the top (Figure 4.2). Leachate was collected in 5 litre water containers at 

predetermined volumes (Table 4.3). Each treatment was carried out in triplicate. 

 

Treatment application rate Details 

0 kg ha-1 N Untreated control 

  

500 kg ha-1 N 

500 kg ha-1 total N applied as biosolids 

(double the permitted application rate 

under The Biosolids Nutrient 

Management Matrix) 

  

b)  

Treatment application rate Details 

0 kg ha-1 N Untreated control 

  

500 kg ha-1 N 

500 kg ha-1 total N applied as biosolids 

(double the permitted application rate 

under The Biosolids Nutrient 

Management Matrix) 



55 

 

A further leaching experiment was carried out using the same methodology but using 

treated soils from Broxton, Cheshire, which had received eight years of biosolid and 

conventional fertiliser applications (Table 4.2). 

 

Table 4.2. Treatments for the Broxton field experiment Modified Dutch leaching columns. 

 

Treatment  Details 

Untreated Untreated control 

Biosolids Soil that had received biosolid 
applications for 8 years 

Conventional Soil that had received conventional 
fertiliser applications for 8 years. 

 

 

Table 4.3. Volumes of water used in the Modified Dutch Leaching investigation and the 

equivalent time based on the average annual rainfall of 660 ml for Harper Adams University 

1981-2010 (Met Office, no date).  

Fraction 

(K) 

Volume 

(ml) 

Rainfall 

equivalent 

(years) 

1 300 0.45 

2 600 0.91 

3 1500 2.27 

4 3000 4.55 

5 6000 9.09 

6 15000 22.73 

7 30000 45.45 

 

 

Sub-samples (50 ml) were taken from each container at the designated volume and stored 

at 4⁰C. 
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4.2.3 Elemental analysis 

Samples were quantified using Inductively Coupled Plasma-Mass Spectrometry 

(ICP-MS) (X-series 2 ICP-MS, Thermo Scientific MA, USA). 

Wet and dry and all leaching samples were analysed without dilution, using the following 

volumes; 

 4.85 ml sample solution 

 100 µl HNO3 (14M) 

 50 µl internal standard solution (1 ppm gallium  (Ga)). 

Samples were vortex mixed for 5 seconds to ensure they were mixed uniformly. Limits of 

detection (LOD) and limits of quantification (LOQ) are shown in Table 4.5 

Lake Ontario Water (CRM TMDA 64.2) was used as a water reference material 

(Table.4.4). This was to ensure that the values being produced by the ICP-MS were within 

the accepted range of the reference sample. TMDA is a commercially available reference 

material suitable for water sample validation on an ICP-MS. 

 

Table 4.4.TMDA recoveries using ICP-MS. 

Element Recovery 

TMDA 
64.2 
reference 
value 

Tolerance 
Recovery 

% 

Mn 0.279 0.295 0.0223 94.576 

Fe 0.282 0.306 0.0271 92.157 

Cu 0.271 0.274 0.0241 98.905 

Zn 0.289 0.310 0.0265 93.226 

 

Table 4.5. LOD and LOQ of ICP-MS (Garbarino and Taylor, 1996) 

Element LOD (mg L-1) LOQ (mg L-1) 

55Mn 0.00006 0.00023 
63Cu 0.00002 0.00010 
66Zn 0.00008 0.00039 
75As 0.00060 0.00240 

 

 

4.2.4 Statistical analysis 

All data sets were analysed using Genstat (VSN International, 18th edition). Statistical 

deemed of interest.  

Each of the leaching and wet and dry experiments were analysed using a one-way analysis 

of variance (ANOVA) to determine differences between total concentrations leached. A 
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repeated measures ANOVA was then used to analyse the leached concentrations over time 

and as an interaction between treatment and time, with significance between factors being 

determined by the least significant difference (LSD).  

Correlations between heavy metals and TOC were assessed using Pearson’s correlation 

on both the wet and dry and Modified Dutch Leaching Column experiments. Where means 

were not found to differ between pH in the wet and dry experiment, datasets were combined. 

 

 

 

 

Figure 4.2 Modified Dutch leaching investigation.  

 

 

4.3 Results  

4.3.1 Wet and dry experiment (Figure 4.3) 

Iron 

Concentrations extracted using pH 4 water were greater (p=0.025) than pH7 water (12.72 

mg L-1 and 6.12 mg L-1 respectively). This indicates that under acidic conditions, Fe may be 

more mobile. This may be due to a change in the cation exchange capacity of the biosolids, 

with Fe being displaced by H+ ions. No difference was recorded between time points 
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although the p value was close to significance (p=0.058). The greatest concentration was 

recorded in the first sample. No interaction between pH and fraction was recorded. 

 

Copper 

Mean concentrations extracted showed no differences between pH4 and pH 7 

(p=0.966) with 3.60 mg L-1 and 3.58 mg L-1 respectively extracted. A difference was 

recorded in concentrations extracted over time with the following statistical difference 

recorded between the fractions; 24>48>72>96>120=144=168=192=216=240 (p<0.001). 

No interaction was recorded between pH and time (p=0.282). 

 

Manganese 

Manganese concentrations did not differ between the two pH’s (p=0.064) with 1.194 

mg L-1 extracted using pH4 water and 0.801 mg L-1 extracted using pH 7 water. Manganese 

concentrations extracted over time did differ (p<0.001), with the highest concentration being 

extracted at 24 hours, with the following statistical differences between the time points 

24>48=72=96<120>144=168=192=216=240. An interaction was recorded with the 

concentration of Mn being extracted from pH 4 water being more concentrated after 24 

hours, when compared with pH 7. 

 

Zinc 

No differences were recorded between the total concentrations of Zn extracted 

between the two pH treatments (p=0.156) with pH 4 extracting 1.049 mg L-1 and pH7 

extracting 0.906 mg L-1 respectively. A difference was recorded regarding the extraction of 

Zn over time (p<0.001), with the largest concentration being extracted in the first 24 hours 

(0.183 mg L-1). A second peak in the concentration of Zn was found at 120 hours, being 

significantly higher than the times preceding and following (except at 24 hours). No 

interaction was recorded (p=0.108). 

 

Arsenic 

Arsenic concentrations did differ between the two pH solutions (p=0.012) with pH 4 

extracting 0.078 mg L-1 and pH 7 extracting 0.060 mg L-1. A difference in the amount of As 

extracted over time was also recorded with all fractions significantly decreasing in As 

concentration compared to the previous fraction, except 192, 216 and 240 hours which were 

statistically similar to each other. An interaction was recorded (p=0.003) with pH 4 recording 

higher concentrations of As at 24, 48 and 120 hours.  
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Lead 

A statistical difference was recorded between the concentration of lead extracted by 

the two pH solutions (p=0.016), with pH 4 extracting 0.069 mg kg-1 and pH 7 extracting 

0.046 mg L-1 on average. A significant change in concertation was recorded over time 

(p=0.026). Pb concentrations peaked between 96 and 120 hours. An interaction was 

recorded with pH 4 having a higher concentration of Pb at 120 hours when compared with 

pH 7. 

 

Silver 

No differences were recorded between treatments (p=0.329) with both pH4 and pH7 

extracting very small concentrations (0.013 mg L-1 and 0.017 mg L-1 respectively). A 

difference was recorded between the concentrations extracted over time with the 24, 48 

and 72 hour time points extracting more Ag than all the other time points (p=0.002). No 

interaction was recorded between pH and time.  

 

Total Organic Carbon (TOC) 

Mean concentrations of TOC leached did not differ between pH4 and 7 treatments 

(p=0.429) (1865 mg L-1 and 1627 mg L-1 respectively). No difference was seen regarding 

TOC release over time (p=0.097), No interaction (p=0.880) was recorded between pH and 

time (Figure 4.4). 

A Pearson’s Correlation was carried out to assess the relationship between TOC 

and elements being released over time. Due to the difference in mean concentrations 

extracted using pH 4 and 7 water, As, Fe and Pb were assessed at both pH’s for correlations 

with TOC (Figure 4.5 a, b and c). The data found that As was positively correlated at pH 4 

only (p<0.045). Iron and Pb were not found to positively correlate at either pH. Copper was 

the only element to correlate with TOC when the data sets from pH 4 and 7 were combined 

(p= 0.011) however this was a weak correlation as the R2 value was just 0.269. 
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Figure 4.3. Heavy metal release from biosolids following 240 hour wetting and drying regime 

at pH 4 and 7. a - g are presented in order of decreasing concentrations. Residual d.f. 65. 
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Figure 4.4 Models for the release of TOC from biosolids at pH4 and 7 following a series of 

wet and dry cycles (n=5).    

 

 

 

 

 

 

 

 

 

 

 

pH 7; y = 5E-06x4 - 0.0027x3 + 0.5884x2 - 53.172x + 1764.8
R² = 0.9575 R= 0.9785

pH4; y = 4E-06x4 - 0.0025x3 + 0.5307x2 - 46.514x + 1530.5
R² = 0.9767 R=0.9882 
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Figure 4.5a. Pearson’s correlations between TOC and heavy metals where the pH was 

shown not to affect the concentration of heavy metal leached.  
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Figure 4.5b. Pearson’s correlations between TOC and heavy metals, where pH was 

deemed to affect the concentration of the element extracted. Correlation displayed is for 

concentrations extracted using water adjusted to pH 4.  
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Figure 4.5c. Pearson’s correlations between TOC and heavy metals, where pH was 

deemed to effect the concentration of the element extracted. Correlation displayed is for 

concentrations extracted using water adjusted to pH 7.  
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4.3.2 Modified Dutch Leaching Experiments 

4.3.2.1 Broxton 0 kg ha-1 N and 500 kg ha-1 total Nitrogen (N) (Figure 4.6) 

Iron 

Total Fe concentrations extracted from the two treatments did not differ from each 

other (p=0.940) with untreated samples containing 47.60 mg L-1 on average compared to 

treated soils averaging 46.8 mg L-1. Difference (p<0.001) in Fe extracted was recorded 

between the fractions, with the following differences in fractions; 1=2<3=4<5=6<7. No 

interaction was recorded between treatments and fractions however the p value was 0.061. 

The largest difference between treatments was recorded at fraction 7 with the mean 

concentration of Fe leached being 13.87 mg L-1 for biosolids treated and 20.36 mg L-1 for 

untreated. 

 

Manganese 

Total concentrations of Mn under the two treatments did not differ (p=0.987) with 

untreated soil producing an average of 13.30 mg L-1 compared to 13.40 mg L-1 under the 

biosolids treated soil. A difference was recorded for Mn concentrations from different 

fractions with the highest concentration being recorded in fractions 5 and 6 (3.75 mg L-1 and 

2.98mg L-1 respectively). The lowest concertation was produced in the first fraction with no 

difference recorded between any other fractions. No interaction was recorded between 

treatment and fraction (p=0.179). 

 

Arsenic 

Mean concentrations of As extracted under the two treatments were not different 

overall (p=0.695), indicating that applying biosolids did not increase the extractable As 

content. The amount of As extracted did differ between fractions (p=0.120). No interactions 

between treatment and exposure time were recorded (p=0.515). It should be noted that 

soils contain large amounts of calcium (Ca) which is known to interfere with As and therefore 

these results may have been impacted upon due to this. 

 

Copper 

Differences in leachate Cu concentrations were recorded between treatments 

(p=0.029) with biosolids treated soil leaching 0.07 mg L-1 and untreated soils leaching 0.063 

mg L-1. A difference in concentrations (p=0.007) was recorded between fractions, with 

fractions 6 and 7 containing higher concentrations. No interaction was recorded between 

treatment and fraction for Cu concentrations (p=0.389). 
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Zinc 

On average a greater (p=0.027) concentration of Zn was extracted from biosolids 

treated soils (0.217 mg L-1) compared to untreated soil (0.055 mg L-1). No difference 

(p=0.072) was recorded for fraction. No interaction was recorded between treatment and 

fraction (p=0.218). 

 

Silver 

Total concentrations of Ag extracted using the Modified Dutch Leaching Columns 

showed no difference between untreated and biosolids treated soil (p=0.419). Whilst there 

was a more than ten-fold difference between the concentrations of Ag extracted under the 

untreated and biosolids treated soil (0.012 mg L-1 and 0.0206 mg L-1 respectively), the 

dataset was very variable, recording a cv% of 572.3%. No differences were recorded 

between the fractions (p=0.377), nor was there an interaction recorded (p=0.402). 

 

Lead 

Mean concentrations of lead extracted overall were not different between treatments 

(p=0.604) indicating that a single application of biosolids did not increase the leachable Pb. 

The amount of lead leached over time did not change (p=0.088) with the first fraction being 

statistically lower than the last fraction. No interaction was recorded (p=0.280) 

 

TOC 

Mean concentrations of carbon from each treatment did not differ (p=0.434) with 

untreated averaging 2744 mg L-1 and biosolids treated averaging 3109 mg L-1 total TOC 

leached. A difference in TOC release was recorded overall with regards to fractions 

(p<0.001). Excluding fractions 1 and 2, each following fraction was significantly larger than 

the preceding fraction, with fraction 7 being the largest (1346.3 mg L-1). No interaction 

(p=0.135) was recorded between fraction and treatment (Figure 4.7). 

 Positive correlations between TOC and heavy metals were recorded for Ag, As, Cu, 

Fe and Zn (p=0.0478, 0.0221, p<0.001, p<0.001 and p=0.02 respectively) (Figure 4.8a).  

Strong correlations were only found to occur with Cu and Fe (R2=0.912 and 0.930 

respectively) with all other R2 values being less than 0.5. No correlation was found between 

TOC and Mn or Pb (Figure 4.8b).  

 

 

 

 



67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Mean elemental leachate concentrations extracted using the modified Dutch 

leaching experiment on Broxton soil with biosolids being applied at 500 kg ha-1 N. Note, 

graphs are presented in decreasing order of concentration due to the wide range of 

concentrations extracted (±SE). Residual d.f. 23.  All concentrations were within the limits 

of detection for the ICP-MS used (Table 4.5).  
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Figure 4.7. Mean TOC leached from Broxton soil following a single application of biosolids 

using the Modified Dutch leaching test (± S.E.).  Residual d.f. 23 
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Figure 4.8a. Pearson’s correlations of TOC and heavy metals that showed a significant 

correlation (p<0.05) from the Modified Dutch Leaching columns using soil from Broxton 

Cheshire.  
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Figure 4.8b. Pearson’s correlations of TOC and heavy metals that showed a significant 

correlation (p>0.05) from the Modified Dutch Leaching columns using soil from Broxton 

Cheshire.  
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4.3.2.2 Harper Adams University Farm soils 0 kg ha-1 N and 500 kg ha-1 N (Figure 4.9) 

 

Compositional differences between Broxton and Harper Adams University soils can be 

found in Table 2.7. 

 

Iron 

No difference was recorded in the total concentration of Fe from each treatment 

(p=0.957), however a difference was recorded between fractions (p<0.001) with fraction 5 

being higher in Fe than all preceding fractions. Fraction 6 was larger still. Fraction 7 was 

the largest fraction with a concentration of 21.505 mg L-1. No interaction was recorded 

between treatment and fraction (p=0.095). 

 

Manganese 

A difference in the total concentration of Mn was recorded between treatments 

(p=0.023) with untreated soils leaching higher concentration (9.3 mg L-1) compared to 

treated soil (2.14 mg L-1 ). This indicated that the addition of biosolids to soil decreased the 

overall Mn leached on average over a 45 year period. Fraction was also significant with 

fractions 1 and 2 being lower in Mn when compared with fractions 6 and 7. Fraction 6 was 

the largest fraction overall. No interaction was recorded between treatment and fraction 

(p=0.134).  

 

Arsenic 

Concentrations of arsenic were different between treatments (p=0.007), with 

biosolid treated soils leaching 0.924 mg L-1  and untreated soil leaching 0.484 mg L-1. No 

difference in concentration released over time were recorded (p=0.437). P values indicated 

no interaction between treatment and fraction (p=0.154). 

 

Copper 

Total Cu concentrations were significant between untreated (0.156 mg L-1) and 

biosolids treated soils (0.492 mg L-1) (p=0.042), indicating that biosolids increased the 

concentration of Cu leached from the soil overall. No differences between fractions were 

recorded (p=0.174). No interaction was recorded (p=0.225). 

 

Zinc 

No differences were recorded for mean Zn concentrations between treatments 

(p=0.479), fractions (p=0.306) or an interaction between the two factors (p=0.425). This 

therefore indicates that the leaching of Zn out of biosolids soil did not increase following one 

application of biosolids when compared to background soil concentrations. 
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Lead 

Mean concentrations of lead were not different between treatments (p=0.164) with 

biosolids treated soil leaching 0.0045 mg L-1 compared to 0.0025 mg L-1 from untreated 

soils. Concentrations released over time did differ (p=0.014), with the highest concentration 

being recorded in fraction 5. An interaction was recorded between treatment and fraction, 

with leachate from biosolids treated soils in fraction 5 having a higher concentration of Pb 

than untreated soils. 

 

Silver 

No differences were recorded for total Ag concentrations between treatments 

(p=0.866), fraction (p=0.681) or interactions between the two factors (p=0.098). This 

therefore indicates that the leaching of Ag out of biosolids soil did not increase following 

one application of biosolids when compared to background soil concentrations. 

 

 

TOC 

Concentrations of TOC leached from the two treatments did not differ (p=0.372) 

indicating that the concentration of carbon leach was not influenced by the addition of 

biosolids. The amount of TOC released over time did differ (p<0.001) (Figure 4.10). Fraction 

5 was larger than all preceding fractions, which were all statistically similar to each other. 

Fraction 6 and 7 were larger than 5 but not different from each other. No interactions 

between treatment and time was recorded (p=0.668) 

 Correlations were found between TOC and heavy metals for Ag, Fe and Mn 

(p=0.010, p<0.001 and p=0.015 respectively) (Figure 4.11a). Correlations for Fe and Mn 

were positive whereas Ag was negative indicating that as TOC increased, Ag 

concentrations decreased. All other elements showed no significant differences (Figure 

4.11b).  
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Figure 4.9. Mean elemental leachate concentrations extracted using the modified Dutch 

leaching investigation on Harper Adams University Farm soil following a single application 

of biosolids.  Note, graphs are presented in decreasing order of concentration due to range 

of concentrations extracted. Error bars signify ± SE. Residual d.f. 23. 

SEM 0.831 SEM 0.772 

SEM 0.047 SEM 0.002 

SEM 0.076 SEM 0.002 

SEM 0.005 
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Figure 4.10. Mean TOC of leachate using the Dutch Modified Leaching experiment on 

Harper Adams university soil following a single application of biosolids (± S.E.). Residual 

d.f 23. 
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Figure 4.11a. Pearson’s correlations of TOC and heavy metals that showed a significant 

correlation (p<0.005) from the Modified Dutch Leaching columns using soil from Harper 

Adams University.  
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Figure 4.11b. Pearson’s correlations of TOC and heavy metals that showed no significant 

correlation (p>0.005) from the Modified Dutch Leaching columns using soil from Harper 

Adams University.  
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4.3.2.3 Broxton seven years of field applications, untreated, conventional and 

biosolid treated soils (Figure 4.12) 

 

Iron 

Iron concentrations leached from soils did not differ (p=0.067) however they were 

close to significant. Biosolids treated soils leached 84.4 mg L-1 compared to 40.0 mg L-1 

from conventionally treated soils and 47.6 mg L-1 from untreated soils. A significant 

difference was recorded between fractions with the concentration increasing in each 

fraction. Fraction 7 had the largest mean concentration of Fe in the leachate (31.14 mg L-

1). An interaction was found to occur (p=0.034), with leachate from biosolids being recorded 

at higher concentrations in fraction 6 and 7 than both conventionally treated and untreated 

soils. 

 

Manganese 

Manganese concentrations on average showed no difference between treatments 

(p=0.714) indicating that biosolid applications over 8 years did not increase the risk of it 

leaching from soil. A significant difference was recorded between fractions.  Fractions 

showed the following significance in concentrations 1=2=3=4=5<6=7.  A significant 

interaction was recorded (p=0.034) with both conventionally treated and biosolids treated 

soils leaching more Mn at fraction 7. 

 

Copper 

No differences were recorded between the average concertation of Cu leached from 

each soil (p=0.439) with Cu concentrations in biosolids treated soils leaching 0.038 mg L-1 

conventionally treated soils leaching 0.117 mg L-1 and untreated soils leaching 0.063 mg L-

1. No differences were recorded between fractions, with no interaction between treatment 

and fraction being recorded.  

 

Arsenic 

Total As concentrations did not differ between treatments (p=0.085) however, 

biosolids and conventionally treated soil did leach substantially more As than untreated soils 

(0.439 mg L-1 from biosolid treated soils, 0.558 mg L-1 from conventionally treated soils and 

0.077 mg L-1 from untreated soils). Biosolids are known to contain As but the As in the 

conventionally treated fertiliser may be the result of contamination in bedrock. 

Concentrations of As leached did not differ with time (p=0.397). No interaction was recorded 

between fraction and treatment. 
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Zinc 

Mean concentrations of Zn leached from each soil showed no difference between 

treatments (p=0.638) indicating that biosolids did not increase the concentration of Zn in 

leachate overall. A difference was recorded between the fractions with fractions 1, 6 and 7 

being statistically similar. All other fractions were similar to each other but lower than fraction 

1,6 and 7. No interaction was recorded between exposure time and treatment (p=0.575).  

 

Lead 

No differences were recorded in the total amount of Pb leached from different soil 

treatments (p=0.100). No differences in Pb concentrations leached over time were recorded 

(p=0.406). No interaction between fraction and treatment was recorded (p=0.124).  

 

Silver 

Untreated soil leached more (p=0.003) Ag on average than biosolids and 

conventionally treated soil (0.00018 mg L-1, 0.00000 mg L-1 and 0.00013 mg L-1 

respectively). A difference was also recorded between fractions with fraction 7 having a 

higher Ag concentration than all other fractions (p<0.001). An interaction was recorded 

between treatment and fractions (p<0.001) with the leachate from untreated soil being 

significantly higher in Ag than both the conventionally and biosolids treated soils in fraction 

7 only. 

 

TOC 

No differences were recorded in total TOC leached from each treatment (p=0.171). 

A difference was found for time with fraction 7 containing the highest TOC concentration. 

Fractions showed the following statistical significance in concentrations 1=2=3<4<5 <6 <7. 

An interaction (p=0.004) between treatment and fraction was recorded, however no 

differences were observed between treatments at any one fraction (Figure 4.13). TOC 

concentration was shown to positively correlate with Ag (p=0.018), Fe (p<0.001), Mn 

(p<0.001) and Zn (p=0.044) indicating that as TOC increases, as does the concentration of 

each of these elements (Figure 4.14a). No other elements showed a significant correlation 

with TOC (Figure 4.14b). 
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Figure 4.12. Mean elemental leachate concentrations of heavy metals extracted using the 

Dutch Modified Leaching experiment on Broxton soil following eight years of biosolid 

applications.  Note, graphs are presented in decreasing order of concentration due to range 

of concentrations extracted (± S.E.). Residual d.f. 23 
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Figure 4.13. Mean TOC of leachate using the Dutch Modified Leaching experiment on 

Broxton soil following eight years of biosolid applications. Error bars signify +/- SEM. 

Residual d.f. 23 
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Figure 4.14a. Pearson’s correlations between TOC and Ag, As, Cu and Fe for the soil at 

Broxton, Cheshire, which had received seven years of biosolids applications. 
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Figure 4.14b. Pearson’s correlation for TOC and Mn, Pb and Zn for the soil at Broxton, 

Cheshire, which had received seven years of biosolids applications. 
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4.3.2.4 Broxton 500 kg ha-1 N and Broxton seven years of applications 

  

The leaching data collected from the two leaching assessments containing Broxton 

soils were analysed to assess if there was an accumulative increase in heavy metal 

concentration when comparing a single application of biosolids to 8 years of applications. 

No statistical differences were recorded between the two leaching sets for Ag, Mn, As, Pb 

or Zn. (p=0.402, p=0.168, p =0.153, p=0.412 and p=0.367 respectively). Copper 

concentrations were higher in the leachate from soils receiving a single application of 

biosolids (0.077 mg L-1) compared with leachate from soils which had received multiple 

applications (0.038 mg L-1). Conversely, Fe concentrations were found to be statistically 

higher in leachate from soils that had received seven years of applications indicating that 

biosolids were increasing the concentration of Fe in leachate (p=0.002). Following a single 

application of biosolids to soils (500kg ha-1 total N), Fe concentrations were 46.8mg L-1 but 

after seven years of applications, concentrations leached were 84.4 mg L-1. No other 

elements showed statistical differences between the two  treatments. 

 No statistical differences were recorded between the mean TOC values of the two 

treatments (p=0.501) indicating that multiple applications of biosolids to soil did not increase 

TOC content in leachate compared to a single application. 

 

 

4.4. Discussion  

Biosolids, like other organic manures, have the potential to increase a soils organic 

matter content and improve structure resulting in increased crop yields and reducing the 

impact of modern day farming practices on ecosystems. Whilst their applications have been 

linked with environmental contamination and bioaccumulation of heavy metals in crop 

tissues, they also have the potential to supplement diets through biofortification. In order for 

their applications to made responsibly, their leaching potential must be understood to 

assess what elements may pose dangers in different soil types and under different soil pH’s. 

Wet and dry experiments using two contrasting pH levels (4 and 7) established what 

elements would leach from the biosolids in the absence of soil. Results indicated that only 

Fe, As, and Pb concentrations were different between the pH’s with each of these elements 

leaching more under pH4 conditions. Concentrations of Pb were found to increase with 

decreasing pH by Stenhouwer et al. (2006), however, in contrast to the results obtained 

here, Stenhouwer et al. (2006) also found that Mn, Cu and Zn concentrations increased 

with decreasing pH.  Reddy et al. (1995) suggests that the speciation of an element may be 

an important factor regarding the release of nutrients at different pH levels. Reddy et al. 

(1995) found that at neutral pH levels, the dissolved organic carbon was the key factor 

regarding the release of heavy metals into soil solution, yet at lower pH levels, the free ionic 
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forms of an element were more important. However, it was also found that with decreasing 

pH, dissolved carbon levels also decreased, which contrasts with the data collected here. 

No significant differences were recorded for TOC under the two pH treatments.  

For all elements, except Pb, the first 24 hours leached the highest concentration, 

indicating that the biosolids released the largest proportion of readily available heavy metals 

rapidly. For example, in the first 24 hours the following percentage of the total concentration 

extracted were leached, Zn 18%, Mn 43%, Fe 32%, Cu 40%, Ag  25%, As 32%. In contract, 

Pb leached only 5% of the total concentration extracted in the first 24 hours, with the highest 

concentration being found at 96 and 120 hours. Lead concentrations are often found at very 

low levels in biosolids and therefore they have not been widely studied for their release 

rates (Department of Environment and Conservation, 2012 and Brown, no date). Arsenic 

and Pb were the only elements to show an interaction between pH concentration and time, 

with As being more concentrated at 24, 48 and 120 hours under the pH4 solution and Pb 

being more concentrated at 120 hours under pH4 solution. This corresponded with their 

release patterns and was similar to the two peak timings of TOC release, yet, whilst As was 

found to positively correlate with TOC at pH 4, Pb was not. The second peak in TOC release 

was much smaller than the first, and may indicate the water reaching the core of the 

granules. 

Whilst the increase in Fe, As and Pb concentration at pH4 suggests that with 

decreasing pH mobility increases, few agricultural fields are found with such low pH levels 

and therefore, further research should study at which pH such differences are recorded for 

each element to determine the extent of the hazard posed. 

Modified Dutch Leaching column experiments showed contrasting result for the two 

soil types (soil compositional differences are detailed in Table 2.7). Concentrations of 

elements leached from Broxton soils (0 kg ha-1 and 500 kg ha-1 N) did not differ when 

comparing biosolids treated to untreated soils, with the exception of Cu and Zn. 

Concentrations of Zn leached were on average more than three times higher from soils 

treated with 500 kg ha-1 N as biosolids compared to untreated soil, indicating that there may 

be a greater chance of Zn uptake into plants, which may help with the issues associated 

with hidden hunger. However, under Harper Adams University Farm soil, As and Cu 

concentrations were found to increase under the 500 kg ha-1 N as biosolids treatment. 

Whilst Cu is required in the human diet for metabolic processes and therefore its 

translocation into plants may not be an issue if below regulatory levels, As is no longer 

considered beneficial. Daily tolerable intake levels for As are currently under review, but Pb 

levels are provided due to its lack of use for protective health. The uptake of Cu and Zn into 

the grain and their concentration in drinking water would therefore need to be studied to 

determine how much of a risk this poses.  
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Where differences in the concentrations leached from fractions occurred,  they all 

occurred in the last 3 fractions, indicating that the greatest threat to the environment possibly 

occurs years after application. Interactions between treatments and time in the Broxton soils 

were not recorded.  

Conversely, in the Harper Adams University Farm soils, Mn leachate concentrations 

were found to be significantly higher in the soil treated with 0 kg ha-1 N as biosolids. This 

indicates that the application of biosolids to soil at 500 kg ha-1 N resulted in Mn becoming 

more mobile. Arsenic leachate concentrations from the same soil were significantly higher 

in the biosolids treated soils (500 kg ha-1 N as biosolids), indicating that a single application 

of biosolids to this soil, may result in increased As concentrations, however no interaction 

between time and treatment was recorded and therefore this risk does not appear to be 

elevated with time. Again, the hazard this poses is dependent on the levels reaching water 

courses and being translocated into plants.  

Total leached TOC concentrations were not found to differ for either soil type, under 

each treatment, however both the Harper Adams University Farm and Broxton soils saw 

the largest concentration recorded in the fractions 6 and 7, indicating that TOC leaching 

increases with time. No interaction between fraction and treatment was recorded and 

therefore the application of biosolids does not increase the risk of TOC leaching, even over 

several decades. However, the work by Wijesekara et al. (2017) suggested that biosolid 

applications increase TOC cannot be supported by the data in this chapter. This may be 

due to a difference in application rates and the type of biosolids used. 

Previous experimental work has suggested that with increasing dissolved organic 

carbon, the concentration of heavy metals increase (Fang et al. 2016), which concurs with 

some of the correlation data presented here. Total organic carbon was found to increase 

over time in both the Broxton and Harper Adams University Farm soils. Correlations 

between elements and TOC indicated positive relationships between for Fe and Mn in the 

leachate from Harper Adams University Farm soils and Ag, As, Cu, Fe and Zn in Broxton 

soils. Schaecke et al. (2002) found that the Zn, Cd, Cu, Ni and Cd were all correlated with 

the DOC and could be mobilised up to 50cm down through the soil profile in 11 years. 

However they did not study any correlation with Fe. Liptzin and Silver (2009) found that Fe 

reduction (the reduction of Fe (III) to Fe(II)) was correlated with increasing carbon. Ferrous 

iron (Fe (II)) has high water solubility compared to Fe (III) yet, in oxidising environments 

Fe(III) is more common. Whilst the leaching columns would not be fully representative of 

the reducing environment found in soils, it indicated that Fe may become lost from the 

agricultural system to ground water. 

Soils were collected from the field experiments at Broxton following seven years of 

biosolid applications to assess how multiple applications would impact on the leaching of 

heavy metals. 
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Water leached from untreated soils recorded a higher concentration of Ag when 

compared to soil treated with biosolids and conventional fertilisers. Leached Ag 

concentrations were very low (0.00018 mg kg-1 being the highest mean), but still within the 

limit of detection of the ICP-MS. Therefore even a small amount of contamination from a 

source other than the soil, may have impacted on the result. Iron concentrations were close 

to significant, with biosolids soils having almost double the concentration when compared 

to the untreated and conventionally treated soils. There was a low number of residual d.f. 

for this experiment (2) and therefore with more replicates, this may become a significant 

result. Should that occur, there may be a risk associated with multiple applications of 

biosolids to soils and the leaching of Fe into ground waters. Silver, Fe, Mn and Zn 

concentrations released were highest from fraction 7. Arsenic, and Pb did not show any 

difference in concentrations with fraction. Total organic carbon concentrations showed no 

significant difference between treatments. 

The comparison of total heavy metal contents of the two biosolids treated soils from 

Broxton (following a single application and seven years of applications), showed only an 

increase in Fe following seven years of applications. However, Cu concentrations were 

higher in the leachate from soils receiving a single application of biosolids. This therefore 

suggests that multiple applications of biosolids, over multiple years only results in the 

increase of Fe in soil leachate and that the concentration of all other heavy metals studied 

does not increase. Such increases in Fe concentrations could pollute ground waters. Iron 

is expensive to remove from waste water but is necessary if levels become excessive as a 

diet too rich in Fe, can cause cirrhosis of the liver and heart disease. High levels of Fe in 

water can also result in it becoming darker in colour as well as changing its taste which 

would need to be rectified before being used for human consumption (Kumar et al., 2017). 

Again, TMDA recoveries for Fe, Mn and Zn were all below 95% however they were 

all above 92%. This may indicate that the concentrations presented here are slightly lower 

than the true values. The addition of a collision cell to the ICP-MS could improve element 

recovery. 

 The data presented in this chapter cannot support the null hypothesis as heavy 

metal and TOC concentrations have been found to differ between biosolids amended soils 

and untreated soils. 

 

4.5. Chapter conclusions 

 Whilst the results from this chapter indicate the concentration of the elements in the 

leachate are dependent on the soil type, biosolid application only increased the leachate 

concentration of As and Cu in Harper Adams University Farm soils and Cu and Zn in 

Broxton soils following a single application of biosolids. Total organic carbon was found to 

positively correlate with a number of elements in both Broxton and Harper Adams University 
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soils, indicating that it may be a contributing factor to their mobilisation. Overall, the impact 

of any increase in leachate concentration cannot be assessed due to a lack of information 

regarding the dilution of the elements into ground waters and what is likely to be 

translocated into edible plant tissues. Such factors will dictate the final concentrations for 

the leachate at these two endpoints and therefore impact what hazard may be associated 

with them. Therefore it is recommended that the concentration of heavy metals be studied 

in the grain of plants to see if the concentrations differs and correlates to the results found 

here.  
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Chapter 5. 

Biological Indicators to Assess Biosolid-Treated Soils  

 

5.1 Introduction 

Soil health is an important aspect when considering the sustainability of food 

production. Linked intrinsically with greenhouse gas emissions and water pollution, soil 

health impacts on many parts of everyday life. The UK Government has pledged to ensure 

all soils are managed sustainably by 2030, indicating the level of importance soils have on 

society (House of Commons, 2016). 

Many agricultural procedures for the maintenance of soil can be attributed to cross 

compliance schemes, whereby farmers receive payments for making soil improving 

measures. Yet the impact of such practices on soil biology is not considered under these 

schemes. European legislation regulates biosolids only on its chemical and bacterial 

content (Artuso et al., 2011), yet they have the potential to support soil  populations through 

their organic matter (OM). Biological indicators of soil health are often focused on three 

main aspects (Knoepp et al, 2000); 

1. Soil structure development 

2. Nutrient storage 

3. Biological activity 

Whilst each of these aspects are important, soil biology population dynamics are the 

unifying factor influencing each. 

Currently there is no general consensus regarding assessment of soil quality (Gil-

Sotres et al., 2005), and there is a necessity to standardise methods and sampling 

strategies (House of Commons, 2016; Swift et al., 2004), especially following application of 

organic amendments to agricultural land. 

For agriculture, applications of organic manures are a key input for maintaining or 

improving the sustainability of soil (Melero et al., 2008; Zhao et al., 2009; Rani et al., 2014), 

but over time, they will affect soil organism communities and it is therefore essential to 

monitor these effects (Nannipieri et al., 2003). As the most economical way to dispose of 

biosolids, land application is viewed to be the most effective strategy (Singh and Agrawal, 

2008). This practice has been shown to provide essential nutrients and enhance soil 

physical and biological properties (Coors et al., 2016). Containing six times the amount of 

organic matter (OM) found in slurry (Kabirinejad and Hoodaji, 2012), granulated biosolids 

offer the possibility to add beneficial OM to soil, without the large volumes of water 

associated with slurries. 
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5.1.1 Methods of assessing soil biological health 

 Earthworms have been cited as the single most important group of soil organisms 

in moist temperate conditions regarding their effects on soil structure (Coleman et al., 2004). 

As such, they are often used as bio-indicators of soil quality (Crittenden et al., 2014; Bartz 

et al., 2013; Birkas et al., 2004). They are intimately linked with pedogenesis (Edwards and 

Bohlen, 1996), improving and maintaining fertility and aggregate stability (Marinissen, 

1994). Earthworms predominantly feed on OM and soil fungi (The Earthworm Society of 

Britain, no date). With biosolids containing OM, they have the potential to support population 

growth. Kizilkaya and Hepsen (2004) found that biosolid applications increased the nutrient 

availability of soil following through monitoring earthworm casts. Casts represent what has 

been digested by the earthworms. During this process of digestion, earthworms break down 

organic matter, increasing the mobility of elements. Whilst this can be beneficial, Kisilkaya 

and Hepsen (2004) found that with increasing biosolid application rates, levels of 

dehydrogenase decreased. Dehydrogenase is an intracellular enzyme, linked to the 

decomposition of OM. This enzyme’s activity can be impacted upon due to heavy metal 

contamination and therefore it was proposed that this was the reason for the recorded 

decrease. 

 Populations of earthworms have also been found to decrease following biosolid 

applications. Waterhouse et al. (2014), found populations of earthworms decreased 100% 

when biosolids had been applied. This experiment, along with Kizilkaya and Hepsen (2004) 

were both carried out in either a laboratory or glasshouse environment, which may have 

introduced an element of stress, causing changes to population dynamics which may not 

have been seen in a field. 

Culliney (2013) emphasised that the use of earthworms as biological indicators of 

soil health is often over used. Whilst they are easy to collect without specialist equipment, 

they cannot be fully representative of all soil biota as they represent only one member of 

the Oligochaeta class, whilst globally, it is estimated that soils contain 25% of all living 

species (European Commission, 2010). 

As an alternative, arthropods are thought to represent approximately 85% of soil 

biota. More specifically, the microarthropod group, including Collembola (springtails) and 

Acari (mites) undertake a range of roles in soil food webs, providing an invaluable link for 

energy transfer between microflora and fauna to macrofauna (Coleman et al., 2004).   

Soil dwelling Acari are a large subclass of Arachnida. Oribatids are the characteristic 

mites of the soil and of the 9000 species documented, most inhabit the soil (Culliney, 2013). 

Acari have been found in soils ranging in pH and nutrient status, in addition to being found 

at depths up to 10 m (Kethley, 1990). Species range in feeding types, from dead plant 

material to nematodes and fungi. Oribatids are the most populous group numerically and 
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are therefore the most documented. They can loosely be grouped into 4 categories based 

upon their feeding modes; 

1. Macrophytophages – feeding on plant material and some fungi 

2. Microphytophages – feeding on fungi, bacteria and microflora 

3. Panphytophages – feeding on fungi, bacteria, microflora and plant materials 

4. Coprophagous – feeding on faecal material in addition to fungi, bacteria, microflora 

and plant material 

Due to this range of feeding styles, Acari are thought to be essential for decomposition and 

nutrient cycling within the soil (Moore et al., 1988). 

 Minor and Norton (2004) reported that biosolids had a beneficial effect on 

Mesostigmatid mite populations, one year after lime stabilised biosolids were applied. Yet 

Oribatid populations were found to decrease under the same treatment in a willow planting. 

This experiment used high application rates (1400 kg ha-1 total nitrogen), which would not 

be permitted under UK regulations. 

Collembola are another large group of important microarthropods. Currently, more 

than 6500 species have been identified (Verma and Paliwal, 2010). Similarly to oribatids, 

they have a relatively slow reproductive rate of 1-4 generations per annum and prefer a 

moist soil environment. Collembola as a group can be divided by their feeding methods, 

masticators and fluid feeders. Whilst they can feed on a greater range of foods than Acari, 

the majority are fungivorous. Applications of biosolids and the population dynamic of 

Collembola have detrimental impact on reproduction. Population numbers were unaffected 

in adults, but statistically lower at 2 Mg ha-1 application rates. Yet, this experiment was 

similar to those where earthworms were the target organism, whereby it was carried out  in 

a laboratory environment. 

Microbial activity in soils can be measured using a range of methods, each having 

its own limitations. Fliessbach et al. (1994) studied the effect of heavy metal contaminated 

sewage sludge application on the soil microbial biomass carbon. They showed that 

following 10 annual applications a low metal contaminated sludge increased the soil 

microbial biomass carbon. Whilst the same effect was seen for a high metal contaminated 

sludge, this was less pronounced. It was also found that high metal contaminated sewage 

sludge increased respiration substantially over that of low metal contaminated sewage 

sludge.  

The collection of microarthropods from soil poses many challenges and it is 

generally agreed that no single method exists that is suited to all microarthropods (Akoijam 

et al., 2013; Kuenen et al., 2009; Robertson et al, 1998). Broadly, methods are classified 

as mechanical or dynamic. Mechanical include those which physically separate 

microarthropods from the soil through physical force, normally by flotation. In contrast, 

dynamic methods expel microarthropods from the soil using an external heat and/or light 
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source. Method selection is normally determined by the general behaviour of the 

microarthropods (Robertson et al, 1998). Whilst the selection of the appropriate collection 

method is critical to ensure samples are representable to the field, the method of 

identification is also important. Parisi et al., (2001) developed a method for assessing 

microarthropods, namely the Qualita Biologica de Suolo (QBS), a biological soil quality 

assessment using an eco-morphological index (EMI).  The index allows for simple 

evaluation of microarthropod and arthropod communities by assigning scores to the 

organisms edaphic adaptations. The method does not require identification to species level. 

Whilst other methods for evaluating soil quality based on microarthropods exist, they are 

either very simple, using a general classification system, or involve taxonomic identification 

to species level (Bernini et al, 1995). Whilst taxonomic identification is the most accurate, 

few people possess the level of training required for accurate identification and therefore, it 

is not a tool available for use for most research. The QBS uses simple taxonomic 

identification, based on the theory that as soil quality improves, so does the level of eu-

edaphic adaptation. The method evaluates microarthropods for their morphological eu-

edaphic features. Such features include, reduced or absent eyes, loss of pigmentation and 

loss of appendages. The system works on the provision of and Eco-Morphological Index 

(EMI) score being given to microarthropods extracted from the soil. Eu-edaphic receive the 

highest score of 20, with epi-edaphic microarthropods receiving a score of 1. Hemi-edaphic 

receive a score depending on the degree of morphological adaptation. Morphological 

groups may be assigned a single value or values may range depending on the variation 

between species within the group. Where two EMI scores can be applied to one group, e.g. 

collembola, only the higher score is counted as part of the QBS. The EMI score is only 

applied to the sample once, irrespective of the number of microarthropods present in the 

sample. The QBS is the sum total of the EMI scores. 

 

5.1.2 Risks to soil biology  

The Woburn Market experiment is a well-documented example of how organic 

manure applications can result in decreased microbial activity. The experiment was 

established to compare the ability of different fertilisers to improve a sandy loam soil. 

Following 19 years of annual inorganic fertiliser, sewage sludge and Farm Yard Manure 

(FYM) applications, it was noted that the clover plants receiving sewage sludge appeared 

yellow and stunted. Following a series of analyses which were not detailed, it was 

determined that soil cadmium (Cd) and zinc (Zn) levels were affecting the rhizobia, reducing 

N2 fixation (Giller et al., 2009). Previously, McGrath (1987) in McGrath et al., (1988) 

indicated that Cd and lead (Pb) were too insoluble to directly impact upon yield. A further 

experiment using soil from the original experimental site, showed that the visible symptoms 

(decreased yield and yellow plants) were due to a lack of nitrogen fixation (McGrath et al 
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1988). Further studies by Chaudri et al., 2000; Chaudri et al., 1992 and  Chaudri et al., 

1992, also support this theory through demonstrating effects of low level Cd (<3 mg kg-1) 

contamination in soils. This experimental site has also been used to demonstrate the long-

term effects of heavy metal contamination on soil biota, with adenosine triphosphate (ATP) 

levels in sewage sludge plots being recorded at approximately half that of the other plots in 

the experiment. Inversely, the sewage sludge treated plots recorded a high respiration rate, 

indicating that biota within the soil were suffering from stress. 

Mossa et al., (2017) demonstrated that high application rates of biosolids (1000 – 

2000 mg kg-1 Zn) caused stress to soil microbial diversity through the accumulation of Zn 

concentrations, yet at lower concentrations (700-1000 mg kg-1 Zn) microbial and fungal 

populations were at their most diverse. Whilst this study shows that biosolids have the 

potential to both increase and decrease the microbial and fungal populations in soil, the 

application rates were far in excess of those currently permitted under UK legislation.  

Charlton et al., (2016) revealed that microbial carbon was reduced by 7-12% due to elevated 

Zn and copper (Cu) concentrations, following eight years of sewage sludge application.  

Parisi et al. (2005) studied the effect of sewage sludge applications on 

microarthropod QBS scores. Two out of three sites showed higher QBS scores than 

untreated soils, however details regarding how many years of applications, what rates of 

applications and the exact QBS score were unclear. No increase in the concentrations of 

Cu, Zn, Pb and Hg were recorded in the soil, yet Cd was recorded to have bio-accumulated 

in earthworm tissues. 

Recently Austruy et al. (2016) recorded microarthropods in soils with 30,000 mg kg-

1 Pb, they also recorded an increase in abundance, but a decrease in the diversity of the 

microarthropods recorded where carbon/nitrogen (C/N) ratio increase. Migliorini et al. 

(2004) studied the effect of shooting grounds on microarthropod numbers. Pellets from 

shotgun cartridges contain a range of heavy metals (Cu, Zn, Pb etc), and their use can 

result in an increase in the heavy metal concentration found in the soil. Migliorini et al. (2004) 

found that such increases did not universally decrease microarthropod populations and that 

Collembola, among other species, increased in number. Symphylan however decreased. 

Whilst this study shows that microarthropod populations may not be limited by heavy 

metals, it is a very different environment with less soil disturbance than is experienced under 

agricultural systems. 

Whilst many studies look at the direct effect of heavy metals on microarthropod 

populations, Caruso et al. (2009) suggest that heavy metals may affect other soil organisms 

(e.g. fungi) which results in the heavy metals indirectly effecting Acari populations. However, 

each of these studies show exceptional situations where one or more heavy metals are 

found at particularly high concentrations. Jerome et al. (2013) noted that there is a need for 

further experimental work to investigate the direct effect of biosolid applications on soil 
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microarthropod populations. Whilst the study looks at “long term applications”, a range of 

biosolid types are applied to plots 4 years out of 10. Results indicated that the application 

had no beneficial or detrimental effect on soil microarthropods. 

Soil biology is key to ensuring sustainable, productive soils. The application of 

biosolids to soil has been predominantly been completed in a lab/glasshouse environment. 

Whilst this allows a controlled study and no loss of organisms to the area surrounding 

experimental site, it may also have introduced stress, impacting on the results. The effect 

of thermally dried biosolid applications has not been studied in a field environment. Due to 

the potential chemical changes to the biosolids, their impacts, or benefits, may not be the 

same as sludge liquids or cakes and therefore should be studied to understand their impact. 

Chapter aim: Analyse the response of soil biology to biosolids applications. Samples 

were taken from the Broxton field site and fresh applications were made to a field site at 

Harper Adams University to assess both the short and long-term impacts of biosolid 

applications.   

 

Chapter Objectives; 

 Assess microarthropod community response to both long and short-term 

applications of biosolids 

 Assess the response of soil respiration to different application rates of biosolids over 

a 12-month period. 

 Assess how earthworm numbers respond to biosolid applications. 

 

Null Hypothesis: The application of biosolids has no impact on the soil biology, irrespective 

of the number of applications or rates applied. 

 

N.B. the term microarthropods used in the following experiments also refers to arthropods. 

 

 

5.2 Methodology 

5.2.1 Soil Respiration experiment 

 

A 12-month experiment was established at Fourgates field, Harper Adams 

University (SJ 70878 19482) in November 2016.  A randomised block design consisting of 

twenty plots, (5 treatments and 4 replicates) measuring 2 m x 2 m, were marked out and 

surrounded by plywood boarding (Figure 5.1), Boarding was  used as a walkway to reduce 

the risk of treatments transferring between plots. Applications were made by hand to each 

plot and immediately raked into the top 2 cm of soil to aid incorporation. 
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Applications were made in accordance with the maximum permitted rates under the 

Biosolids Nutrient Management Matrix  (250 kg ha-1 N) (ADAS, 2014) (Table 5.1). 

Applications greater than these recommendations were made to assess what would happen 

if inaccurate spreading were to occur. 

A respirometer (LCpro+, ADC Bioscientific Ltd, UK) was used to measure Net 

Carbon Dioxide Exchange Rate (NCER) and soil temperature (°C) each month (Figure 5.2). 

Metallic collars (16 cm (L), 10 cm (W), 10 cm (H)) were inserted into the soil to a depth of 5 

cm, 30 minutes prior to each plot being assessed. This ensured any carbon dioxide losses 

resulting from the soil disturbance had dissipated. Collars were positioned to avoid any 

vegetation which may also affect the result.  NCER readings were converted using the 

equation presented in Figure 5.3. Following each assessment, plots were weeded by hand 

to limit vegetation growth for the following months (Figure 5.4.). Herbicides were not applied 

to the site as their application interferes with enzyme and microbial activity within the soil 

(Singh and Ghosal, 2013, Soil Association, no date). 

 

5.2.2 ATP  

Three soil cores (10 cm) were taken from each plot of the respiration experiment 

and bulked for ATP analysis (Section 5.3).  From each bulked sample, 1 g was mixed with 

deionised water (10 ml) in a polypropylene tube (13 ml, Sarstedt, UK) before being shaken 

manually and vortexed. A  Clean Trace Water Plus ATP swab (3M, UK) was then inserted 

and mixed (5 seconds) within the top 1 cm of the soil solution. The swab was then tapped 

twice and inserted back into the receptacle. This was then shaken (5 seconds) before being 

analysed in a V3.0R luminescence meter (Biotrace Ltd., UK). The luminescence is caused 

by a reaction between luciferine and luciferase in the presence of ATP.  The resulting value 

can then be converted to ng ATP g-1 soil. This value represents microbial activity (Dickinson 

et al., 2006). 

 

5.2.3 Microarthropod assessments 

During the 11th month of the respiration experiment, Tullgren samples were taken 

from the 0% and 400% application rate plots to assess differences in microarthropod 

numbers and QBS scores. Samples were not taken at the end of the experiment due to 

fears over declining weather conditions. Metal collars with a 5 mm wire mesh on the upper 

edge were knocked into the ground, until flush with the surface. Each collar was then 

extracted using a spade, with any excess soil outside the collar being removed. The collars 

were placed above funnels, beneath 60 watt bulbs for a period of 7 days. As the soil dried, 

the microarthropods migrated down the soil column, away from the heat and into a 30ml 

centrifuge tube containing 70% industrial methylated spirits (IMS). Samples were collected 

after seven days. These tubes were then replaced after seven days to assess if this was 
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sufficient time to capture the microarthropods contained. Following another 7 days samples 

were placed into petri-dishes and observed under a binocular microscope (MH4 

Microscope; TEC Microscopes LTD, UK), with each QBS group being counted and scored 

according to Parisi et al., (2005). 

A further Tullgren experiment was established at Broxton, Cheshire in the field plots 

(Figure 2.3) to assess the effect of multiple applications of biosolids and conventional 

fertilisers on the microarthropod populations. Due to the original experimental design of the 

field, further samples were collected from the surrounds of the experimental area as an 

untreated control. 

 

 

Block 4 0% 200% 400% 100% 50% 

Block 3 100% 50% 200% 0% 400% 

Block 2 200% 100% 400% 0% 50% 

Block 1 400% 200% 0% 50% 100% 

 

Figure 5.1. Respiration experiment design. 

 

 

Table 5.1. Weight of biosolids (in kilograms per hectare of total nitrogen) for each treatment. 

All applications were made in December 2016, with first assessment being taken a week 

after the applications were made. 

 

Application rate 

Months 

Biosolid application 
rate (kg ha-1 total N) 

0% 0 

50% 125 

100% 250 

200% 500 

400% 1000 
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Figure 5.2. ADC respirometer with metal collars in situ. Wooden boards were used to 

prevent compaction. The collar was positioned to avoid any visible weeds which may 

respire, impacting on the result. 

 

 

NCER (µmol m2 sec-1) x 0.01201(µmol weight of carbon in grams) = NCER (g C m2 sec-

1) 

NCER (g C m2 sec-1) x 60 = g C m2 min-1 

NCER (g C m2 min-1) x 60 = g C m2 hr-1 

NCER (g C m2 hr-1) x 24 = g C m2 day-1 

NCER (g C m2 day-1) x 365 = g C m2 yr-1 

NCER (g C m2 yr-1)/1000 = kg C m2 yr-1 

 

Figure 5.3 The NCER conversion calculations used for the respirometer. 
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Figure 5.4. The respiration plots, pre and post-weeding. 

 

 

5.2.4 Earthworm assessments 

              Earthworms were quantified at the experimental site at Broxton, Cheshire in 2012 

and 2013 following crop harvest. These counts were taken in the same plots (conventionally 

treated and biosolids treated plots) as the yield and Tullgren experiments (Figure 2.3). An 

additional data set was collected from a grass silage experiment in the same field (Figure 

2.4). 

Following the crop harvest each year a 1 m x 1 m wooden quadrate was placed in 

the centre of each plot (grass plots n=6; arable plots, n=12). A 10 ltr solution containing 90 

g of mustard powder (Coleman’s, Unilever, UK) was then poured evenly over the area 

outlined by the quadrat. Earthworms that surfaced inside the quadrat were then collected 

and stored in 70% IMS for counting and weighing. After 10 minutes, another solution of 

mustard powder (90 g in 10 ltr water) was applied to the soil. Following the 20 minutes 
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sampling period, a 20 cm (W) x 40 cm (L) x 20 cm (H) core was dug using a spade and 

placed on a plastic sheet. This core was then manually sorted through to collect any 

remaining earthworms (Cunningham, 2003). 

 

5.2.5 Statistical analysis 

All analyses were completed using Genstat (VSN International, 18th edition). 

Respiration data was analysed using a linear mixed model fit by restricted maximum 

likelihood (REML) to account for the interaction between month and temperature. Data was 

transformed using a fourth root transformation due to a left skew. 

Tullgren counts were assessed using generalised linear model (GLM analysis), with 

ATP and earthworms being analysed using analysis of variance (ANOVA).  

Due to the variability of soils and biosolids data producing a p value less than 0.05 

was deemed to be statistically significant, whilst data with p values between 0.05 and 0.1 

was deemed to be of interest. 

 

5.3 Results 

5.3.1 Respiration experiment 

An ANOVA analysis comparing months, showed that overall, November had 

significantly lower NCER values compared to all other months, with May having significantly 

higher NCER compared to all other months (p<0.001) (Figure 5.5). NCER showed a 

difference overall between the 0% and 100% application rates (p=0.032) and 0 and 200% 

application rate (p<0.001), when values were averaged over the 12 months of the 

experiment (Figure 5.6). This analysis accounted for month and temperature as covariates. 
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Figure 5.5. Mean NCER and temperature recorded over a twelve-month period (n = 4, ± S.E.) 
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Figure 5.6. Mean values of the NCER readings taken across 12 months under each 

treatment (±S.E.). Residual d.f. 23 

 

5.3.2 ATP 

The data showed a significant difference for the variables month and temperature, 

as would be expected. ATP showed no difference (p<0.323) across any treatment or any 

month, indicating no change in microbial biomass (Figure 5.7). When compared with NCER, 

for each unit increase in ATP, a 0.2 decrease was seen in NCER. This was attributed to the 

large variability of the ATP data collected (cv% 114.3). 

November ATP data was higher than other months, however, the error bars in Figure 5.7 

indicate a large amount of variation.
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Figure 5.7. Mean ATP concentrations for each treatment over 12 months (n=5). Error bars represent ± SE. 



102 

 

A mean of the total year ATP data under each treatment was calculated (Figure 5.8) to 

simplify and clarify the data shown in Figure 5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. Mean ATP for each application rate over 12 months. Error bars signify ± SE. 

Residual d.f. 237. 

 

5.3.3 Microarthropod Counts at Harper Adams University Farm 

Six out of the 12 microarthropod groups collected after seven days showed 

significant differences, with all significant groups, except the Acari and Diplopodia, recording 

a higher count in the 400% application group compared to the 0% application group (Table 

5.2a). This may be attributed to the additional carbon applied through the higher biosolids 

applications. Acari, may have been a different feeding type and therefore not utilising the 

additional carbon found under the higher application rate. Following another seven days 

(Table 5.2b), Acari, Collembola (8) Diptera larvae and Arachnida were the only 

microarthropods to be found in the samples. Of these, Acari and Collembola showed 

significant difference (p<0.001), with the 0% application rate being the highest. Yet, it should 

be noted that these significances can be attributed to a large number of Acari and 

Collembola (8) being found in on sample alone (57 of each group were found in one 

sample). This therefore, may not be representative of the true result. 
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Overall, when both data sets are combined, the data indicates that seven of the 12 

groups showed significant differences overall. Again, all groups showed a significantly 

higher count for the 400% application rate, with the exception of the diplopodia and the 

Acari (Figure 5.2c).  

The QBS scores for the microarthropods collected at seven and 14 days showed no 

significant differences, nor was there a significant difference when the two data sets were 

combined (Table 5.3). 

Following the statistical analysis of the 0 and 400% application plots, it was decided 

to assess the 100% application rate to see if any further information could be gained from 

the experiment (Table 5.4). 
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Table 5.2. Tullgren microarthropod counts for 0% and 400% application rates at a)7 days post-collection, b) 7-14 days post-collection and c) 

mean totals. 

 

*Numbers in brackets denote the QBS score allocated depending on euedaphic features. 
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Table 5.3. The mean QBS scores for 7 and 14 days post-collection and the overall total 

 

Application 
rate 

7 
days 

14 
days Total 

0% 65.7 12.8 67.0 

400% 70.9 8.5 71.0 

p vale 0.333 0.403 0.501 

cv% 17.5 107.5 19.5 

SEM 11.34 10.89 12.77 

Residual d.f. 10 10 10 
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Table 5.4. Mean microarthropod counts for 0, 100 and 400% application rates. 

 

 

 

 

 

 

 

Application 
rate Acari 

True 
insect Coleoptera 

Collembola 
(1) 

Collembola 
(8) 

Collembola 
(20) 

Diptera 
larvae Diplopodia Cullicidae Paurpoda Arachnida Elateroidea 

0% 127.80c 0.33  0.58a 2.25a 18.67a 8.25b 0.67 0.50 1.58a 1.42a 0.00 0.58a 

100% 34.40 a 0.99  1.75b 26.5b 39.60c 5.20a 0.63 0.17 9.91b 1.08a 0.00 0.25a 

400% 109.80 b 0.36  0.36 a 3.64a 24.20b 15.90c 0.00 0.09 2.36a 6.01b 0.16 1.45 b 

p vale <0.001 0.064 0.001 <0.001 <0.001 <0.001 0.200 0.125 <0.001 <0.001 0.118 0.003 

Residual df 32 32 32 32 32 32 32 32 32 32 32 32 
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The inclusion of the additional application rate resulted in significant differences for six 

microarthropod groups. Significantly fewer Acari were recorded in the 100% application 

plots (p<0.001) when compared to the 0% and 400% application rates. Conversely, 

significantly more Cullicidae and Elateroidea were recorded in the 100% application rate 

plots compared with the other two treatments (p<0.001). Significantly great number of 

Coleoptera were recorded in the 100% application rate compared to the plots receiving the 

0 and 400% application rate. Collembola (1) counts were significantly higher in the 100% 

plots compared to the 0 and 400% plots.  

QBS scores showed no significant differences between the treatments, however the results 

were trending towards significance between 0 and 400% application rates (Table 5.5) 

 

Table 5.5. Mean QBS scored for the three applications rates, 12 months after the first 

biosolid application. 

 

  Mean 

0% 67.1 

100% 84.2 

400% 70.8 

p value 0.065 

cv% 24.5 

SE 5.24 

Residual d.f. 33 

 

 

5.3.4 Tullgren Counts at Broxton, Cheshire 

The number of microarthropod groups recorded at the Broxton site (16) were greater 

than those at Harper (12). This may be attributed to either the difference in soil type and 

geographic location. 

Significant differences in microarthropod counts were recorded in Acari (p<0.001), 

Arachnida (p=0.007), Tipulidae larvae (p<0.001), Symphyta (p<0.001) and Elateroidea 

lavae (<0.001), along with all classifications of Collembola (p<0.001).  Acari counts were 

significantly higher under the biosolids treatment when compared with the untreated and 

conventional treatments. Symphyta counts were significantly higher in biosolids and 

untreated Tullgrens, when compared with conventional fertiliser Tullgrens. Tipulidae larvae 

were significantly higher in biosolids Tullgrens when compared to the conventional 

treatment, but there was no significant difference between biosolids and untreated or 

conventional and untreated. Arachnida were also significantly higher in the biosolids treated 

Tullgrens compared to the untreated control but were not significantly different to 

conventional fertilisers (Table 5.6.). Treatments effected the different groups of Collembola 

differently, with Collembola (1) having the highest counts under biosolid treated and 
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untreated soils, Collembola (8) highest under biosolid treated soils and Collembola (20) 

highest under untreated soils. Elateroidea populations were highest in the biosolids treated 

soils, with untreated soils having the lowest population counts statistically (p<0.001). 

QBS scores allocated for the eu-edaphic features of each microarthropod group also 

showed a significant difference (p=0.003), with microarthropods collected from biosolid 

treated Tullgrens scoring significantly higher than both the control and the conventional 

fertiliser Tullgrens (Table 5.7). 
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Table 5.6. The Tullgren counts for different microarthropod groups under different fertilisers at Broxton, Cheshire. 
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Table 5.7. The QBS scores for the Tullgren counts from the Broxton, Cheshire field site. 

 

Fertiliser 
type 

QBS 

Biosolids 79.9 b 

Conventional 69.3 a 

Untreated 70.4 a 

p value 0.003 

CV% 12.5  

SEM 2.21 

residual df 32 

 

 

To further explain the differences in the microarthropod counts, soil carbon was measured 

for each treatment (Figure 5.9). Results indicated that no significant differences were 

recorded between treatments (p=0.066) however, they were close to significance between 

plots receiving the 0% application rate and the 400% application rate, with untreated soil 

containing 1.7% carbon, conventionally treated soil containing 1.76% carbon and biosolids 

treated soil containing 1.87% carbon. The precision for this equipment is 0.00025% and 

thus should be capable of identifying small differences in C between the treatments. 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.9. Mean soil carbon under 0%, 100% and 400% application rates, 12 months after 

the first biosolid application was made. Residual d.f. 15. 

 

SEM 0.060 
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 5.3.5 Earthworm Counts, Broxton Cheshire 

2012 

No significant difference was recorded between the number (p=0.389) or weight 

(p=0.402) of earthworms collected under biosolids or conventionally treated soil in the 

arable rotation (Figure 5.10). Similarly, no significance was recorded between treatments 

for either the number (p=0.860) or weight (p=0.508) in the glass land (Figure 5.11 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Mean number (a) and total weight (b) of earthworms collected in 2012 from the 

arable plots. Error bars signify ± S.E. Residual d.f. 11. 
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Figure 5.11. Mean number (a) and total weight (b) of earthworms collected in 2012 from the 

grassland plots. Error bars signify ± S.E. Residual d.f. 5. 

 

 

2013 

Whilst the mean number of earthworms collect in 2013 was substantially higher, 

there was no significant difference between treatments, however this was close to 

significance (p=0.072). There was also no significant difference between the weight of the 

earthworms collected (p=0.120) (Figure 5.12). No significant differences were also seen 

between treatments for the grassland plots for either number (p=0.676) or weight (p=0.388) 

(Figure 5.13).  
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Figure 5.12. Mean number (a) and total weight (b) of earthworms collected in 2013 from the 

arable plots. Error bars signify ± S.E. Residual d.f. 5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 Mean number (a) and total weight (b) of earthworms collected in 2013 from the 

grassland plots. Error bars signify ± S.E. Residual d.f. 5. 

 

Due to the lack of significance in the two datasets, an F test was used to see if the data 

could be combined to make the analysis statistically stronger. Each F test produced a p 

value > 0.001 indicating that the two years differed too significantly to combine data sets. 
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5.4 Discussion.  

Soil microorganisms are fundamental for the maintenance of a healthy, productive, 

sustainable soil. They assist with the recycling of nutrients and the breakdown of SOM to 

SOC, improving soil drainage and water holding capacity, whilst reducing erosion. However 

modern practices such as cultivations and the application of pesticides have seen a 

decrease in microbial activity (Lo, 2010). Often organic manures, such as biosolids, are 

cited as beneficial to the soil as they help replenish SOM, feeding these organisms (Zhen 

et al, 2014; Fageria, 2012). However, biosolids contain heavy metals which may 

detrimentally impact on such microorganisms. The work presented in this chapter looked to 

explain the impact of both long and short-term biosolids applications on soil biology using a 

range of assessment methods.  

Soil respiration data indicated increased respiration from plots receiving 100% and 

200% application rates when compared to the untreated plots. This would suggest that 

when biosolids are applied at sufficient quantities, microbial respiration increases, however, 

over applications (400% application rate) decreases respiration back to the a level seen 

when no application is made. A similar response to higher biosolid application rates was 

seen by Artuso et al. (2011), whereby, application rate at 2 Mg ha-1 increased Collembola 

populations but applications at 5 Mg ha-1 and above decreased populations. This was not 

attributed to heavy metal accumulation in the soil, but instead, ammonia production, 

resulting in a lack of oxygen. The biosolids used in this work contain low concentrations of 

available nitrogen and therefore the amount of ammonia released is unlikely to have caused 

such a response.  It is however, unclear as to whether the increase at 100% and 200% 

application rates is due to microbial stress or an increase in the microbial populations 

present. Tan et al. (2011), suggests that soil  carbon dioxide (CO2) levels peak in May and 

decrease to their lowest in October. Whilst the data set represented here indicate that the 

highest levels of CO2 were obtained in May, the lowest were reached in November. During 

the collection of the NECR data in November, the ground was found to be  very wet which 

may explain the low CO2 recordings. Weather details for the year can be found in Appendix 

1.Stres et al. (2008) suggest that microbial activity may decrease in wet environments due 

to low oxygen supplies, which would concur with results detailed by Artuso et al. (2011) but 

would have occurred via a different mechanism. They also suggest that changes in 

microbial community structure may result from environments experiencing extreme soil 

moisture contents.  

ATP analysis of the soil showed no significant differences between the treatments 

or months, indicating that the application rate of biosolids did not affect the level of ATP 

found in the soil. It should, however be noted that this data was very variable (cv 114.3%) 

indicating that the methodology and/or technique may not have been robust enough. A 

study by Whitley et al. (2015) investigated the variability and precision of such swabs across 
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a range of manufacturers. It was concluded that the precision of this technique was too poor 

to be valuable, yet Dickinson et al. (2006) used the same technique and did not question 

their reliability. An alternative method for assessing soil ATP analysis is one outlined by 

Jenkinson and Oades (1979). This involved the ultra-sonification of soil with trichloroacetic 

acid (TCA) amongst other reagents. However, in order to prevent TCA from binding ATP 

strongly, preventing its accurate extraction, bipyridinium dichloride (also known as 

Paraquat) must be added. As Paraquat is now a banned pesticide in the UK this 

methodology is also not without problems. Jenkinson and Oades (1979) methodology can 

be completed without paraquat, however its extraction if less efficient resulting in data only 

comparable to itself. 

Tullgrens at the Harper Adams University site saw a significant difference in the 

counts of six groups identified using the QBS score categories to compare the 0 and 400% 

application rates. Whilst an additional count was carried out on the 100% application rate 

plots, this occured three weeks later and therefore these values may not be comparable to 

the 0 and 400% application rate due to changes in soil conditions. Both Acari and diplopodia 

showed decreased counts under the 400% application rate, with six groups, (Collembola 

(1, 8 and 20), Paurpoda, Arachnida and Elateroidea) showing increased counts compared 

to the 0% application rate. Whilst the QBS method of identifying microarthropods is suitable 

for scientists to classify microarthropods into categories without having a detailed 

knowledge of species identification, it makes interpretation difficult. Often identification to 

species level is required to determine their role ecologically and thus importance to soil 

habitats in detail.  

Data collected here may suggest that Acari are not being supported by the addition 

of biosolids, indicating that they may not be coprophilous Acari and instead may rely on 

fungi and plant material as a food source. Further research would look to identify what 

species the Acari are and thus why there was a significant decrease in their numbers. 

Diplopodia also showed a significant decrease in their number, yet it should be noted that 

only seven were recorded across the 0 and 400% treatments, therefore, there were few 

data points supporting this significance. An increase in the number of Collembola were seen 

in the 400% application rate plots when compared to the control. This would indicate that 

biosolids were helping to support their survival. Rusek et al. (1998) suggests that the larger 

euedaphic Collembola can only occupy the surface horizons whilst the smaller euedaphic 

Collembola can occupy both the surface and deep horizons. Their feeding is considered to 

be highly specialised and thus control much of their population dynamic (Parkinso, 1983). 

When comparing the 0 and 400% application rates, data would suggest that the Collembola 

were actively feeding on the biosolids (or a by-product of) at a range of levels, indicating 

that this supporting food may have been reaching beyond the soil’s surface horizon. Whilst 

Collembola are an important microarthropod with regards to the breakdown of SOM to SOC, 
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they also serve as a food source for larger organisms such as Arachnida. This may explain 

the increase in Arachnida in the 400% plots. 

Low counts recorded from the second week of the Tullgren samples indicates that 

the additional time did not impact on the QBS score for each treatment, and therefore it 

would be recommended that the Tullgren samples be left under lights for one week rather 

than two. It is believed that although there may have been other microarthropods within the 

samples, that the soil become very dry and hard before these organisms could move down 

and out of the soil column, entrapping them inside. When the soil was disposed of, it was 

noted that the samples split into planes. The number of microarthropods in the sample at 

the end of the two weeks was not quantified, however, this may be useful to quantify in 

future to add further clarity as to which methodology is best.  

Overall, QBS scores did not show a significant increase between 0% and 400% treatments 

at the Harper Adams University site, however when the 100% application rate treatment 

was added this was close to significance. This data should be treated with caution and 

instead should be repeated, as detailed above. 

The Broxton site noticeably supported different microarthropods than the 12 Harper 

Adams site (16 in total). This may be attributed to either the length of the biosolid 

applications or most probably the soil type and geographic location. Six of the 

microarthropod groups showed significant differences. In contrast to the Harper Adams 

University site, Acari showed a significant increase in number under the biosolids treatment 

when compare to the untreated and conventional treatments. Again, in contrast to the 

Harper Adams University site, each Collembola group showed no significant difference 

between treatments. Without identifying the species in each sample, further specific 

explanation as to why these differences occurred is not possible as the differences in the 

counts between the two sites may be attributable to reproductive strategies, their respective 

lengths or their species. Arachnida, Tipulidae larvae and Elateroidea all had significantly 

higher counts under the biosolids treatments compared with the untreated. Whilst 

Collembola are a beneficial microarthropod within the soil, Elateroidea and Tipulidae larvae 

are a pest in agricultural systems. Elateroidea only feed on plant roots but Tipulidae larvae 

may feed on organic matter, of which the biosolids applied here contained 61.4% and 

therefore may be acting as a food source to aid their survival. Such increases could result 

in farmers increasing pesticide applications to control the problem, causing the death of 

non-target organisms. Collembola (20) numbers were highest in the untreated and lowest 

in the conventionally treated plots. Both the biosolids and conventional plots received 

inorganic fertilisers to meet plant requirements and as such, this may have resulted in 

changes in population dynamics through ammonification. Another factor these two 

treatments had in common was the cultivations. The use of farm machinery has been shown 

to detrimentally impact earthworms. For example. populations of earthworms have been 
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shown to decrease from 319 individuals per square meter to almost undetectable following 

the cultivations associated with a single crop of potatoes (Curry et al., 2002). 

In contrast to the QBS scores obtained at the Harper Adams University Farm site, 

the Broxton mesocosms showed a higher QBS score in plots receiving biosolids than 

untreated and conventionally treated plots. This increase would suggest that on the whole, 

biosolids are supporting a wider range of microarthropods than conventional treatments, 

yet it cannot be said if this increase, which was not seen at the Harper Adams University 

Farm site, was due to the number of applications, or the experimental site location. Further 

applications would be needed at the Harper Adams University Farm site to determine this. 

Earthworms are often used as a biological indicator of soil health (Crittenden et al., 

2014; Bartz et al., 2013; Birkas et al., 2004). The method of mechanical extraction used in 

this work has allowed the assessment of earthworms from biosolid and conventionally 

treated plots. Results indicated that there were no significant differences between the 

treatments in the 2012 and 2013 data sets, however the 2013 data had a p value 0.072, 

with the biosolids treated soils having a higher mean count. When this method is compared 

with that of the Parisi (2005) QBS assessments, it is suggested that whilst earthworms are 

easier to extract and quantify, they do not fully represent the effect on the broader 

microorganism spectrum and therefore should only be used in conjunction with other 

assessment methods. Sandor et al. (2015) indicate that mustard extraction for earthworms 

may not be the most consistent method. The mustard is applied to the soil as it acts as an 

irritant to the earthworms, causing them to surface. However, Sandor et al., (2015) suggest 

that the effect of mustard may not be equal to all species and that some may be more 

susceptible than others. Another issue with this method is the lateral movement of the 

mustard solution outside of the frame. Whilst this would not be a problem on flat ground, 

any slope results in some loss and therefore unequal distribution and/or application to the 

plot, leaving the potential for anomalous results. 

The data presented in this chapter would suggest that the application of biosolids to soil, 

does impact on soil biology, therefore the null hypothesis cannot be accepted. 

 

5.5 Chapter conclusions 

The impact biosolids have on soil biology is not currently considered when 

applications to land are made, yet, they have the potential to support populations through 

increased OM content but also cause toxicity to the same organisms. The application of 

biosolids to soil has been assessed using a range of techniques to understand the impacts 

they may have on different organisms. Respiration data showed an increase in NCER at 

100% and 200% application rates, but a decrease at 400%, indicating that biosolids may 

increase soil respiration at certain levels, but also could decrease respiration at excessive 
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application rates. It is unclear if this increase in respiration is a result of increased 

populations or increased stress on the same population numbers. 

Tullgren counts showed contrasting results between the two soil types, with the 

Harper Adams University Farm site showing no difference in QBS scores, and Broxton 

showing an increase under biosolids treated plots. This may be attributed to the higher 

number of applications made to the Broxton site. 

Earthworm counts found no statistical differences in the two years assessments 

were made at the Broxton field site. When comparing this data to the data collected for QBS 

scores, it is evident that earthworm assessments only represent a small proportion of soil 

organisms, and may not be wholly representative. 
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Chapter 6 

The yield response of crops to biosolid applications 

 

6.1 Introduction 

The ever-increasing global population (currently 7.6 billion but forecast to grow to 

11.2 billion by 2100) (United Nations, 2017) will inevitably produce more sewage, requiring 

responsible disposal routes.  The UK currently produces 1.05 million tonnes of dry solids 

each year, with 85 % already being utilised by agricultural and energy industries. However, 

the potential increases in population also mean that food production must increase by 

between 60 and 110 % to meet consumer demands (Pradhan et al., 2015; Alexandratos 

and Bruinsma, 2012; Tilman et al., 2011). Global malnutrition problems associated with low 

nutrients in grains can only be exacerbated by such demands. Biosolids are often cited as 

a useful source of plant nutrients (Sharma et al., 2017; Adair et al., 2014; Binder 2002) and 

therefore, may be a suitable organic amendment to meet such pressing demands. 

Plants nutrients can be split into two categories, macro and micronutrients. Macro 

nutrients are those which are required in large quantities such as nitrogen (N), phosphorus 

(P), potassium (K) and sulfur (S). Micronutrients are those that are still essential for plant 

growth but are required in smaller quantities. These nutrients include magnesium (Mg), 

manganese (Mn), sodium (Na), copper (Cu), zinc (Zn), boron (B), molybdenum (Mo). Macro 

and micronutrients requirements vary depending on the crop and the geographic location 

in which they are grown, amongst others. Whilst excessive applications of nutrients such as 

nitrogen (N) will result in the crop lodging and failure to meeting the specification of 

processors, the impact of excessive applications go beyond this and have the potential to 

affect the surrounding environment.  

Biosolids generally contain the macronutrients N and P amongst a range of 

micronutrients (Chapter 2). The ratio of N and P in biosolids, however, is not in the same 

proportions that are required by plants. Biosolids have a greater proportion of P than total 

N. This can result in soil receiving a higher rate of P than required if biosolids are applied 

as the sole fertiliser. This could result in environmental pollution and eutrophication of water 

systems. The Biosolids Nutrient Management Matrix was introduced in 2014, in hope to 

limit biosolid applications to areas requiring P (ADAS, 2014). Improper disposal of biosolids 

could potentially cause contamination of the food chain and ground waters, in addition to 

the degradation of land (Shober et al., 2007. Whilst other disposal options have been 

explored (for example incineration), they often result in a waste that still needs disposing of, 

for example ash. Biosolid applications to land have many benefits over that of commercially 

available, inorganic fertilisers. Whilst they increase organic matter and provide 
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micronutrients in addition to macronutrients through one fertiliser, they also act as a slow 

release fertiliser (AHDB, 2017).  

 

6.1.1 Biosolids and crop yield 

 Penarete et al. (2013) carried out a yield experiment comparing 3 different types of 

biosolids (dehydrated, thermally dried and lime stabilised) at two application rates (100% 

and 200% required N rate), with inorganic fertiliser and untreated plots of sugarcane. 

Results indicated no significant differences between treatments, suggesting that biosolids 

had the potential to produce similar yields to that of inorganic fertilisers, regardless of their 

physical form, or application rate. 

 Following 17 years of biosolid applications, Miah et al. (2012) completed pot 

experiments assessing the effects of biosolids on barley yields. Results suggested that 

barley receiving inorganic fertilisers were significantly higher yielding than those receiving 

biosolids. This was attributed to a potassium (K) deficiency, as K levels are low in biosolids 

generally (AHDB, 2017). During the 17-year period of application the treated ground had 

been cropped with barley (Hordeum vulgare L.) maize (Zea mays L.) and rye (Secale 

cereale L.). Their biosolid treatments contained 0.07 – 0.5% K and therefore it was likely 

that the lack of K input over several years impacted on yield. Fernandez et al. (2009) also 

reported a decrease in barley yields from biosolid applications. Composted and thermally 

dried biosolids were applied to the soil at two applications rates (20 and 80t/ha) for three 

years. Barley grown in composted biosolids yielded better than the thermally dried biosolids, 

with this being attributed to the more stabilised organic matter. Overall, better yields were 

achieved at the lower biosolids application rate. The release of nutrients from thermally 

dried biosolids is known to be slower and therefore may explain the difference in the crop 

yields. 

Binder et al. (2002) found that the optimum application rate of biosolids to maize 

crops (441 kg ha-1 N) had a similar use efficiency to that of inorganic fertilisers. However, 

this application rate is very high compared to an inorganic fertiliser, where closer to 150 kg 

ha-1 N would be used. Whilst the organic N can be utilised by plants, it must first be 

converted to inorganic forms (ammonium or nitrate) to be utilised. Such high rates could 

increase the risk of leaching into ground water. Kuotroubas et al. (2014) also studied the 

effect of a range of biosolid applications on crop growth. Wheat (Triticum aestivum L.) was 

grown over two years using the application rates 20, 40 and 60 Mg ha-1 and compared to 

inorganic fertilisers and an untreated control. In year one, differences between treatments 

were recorded with the 60 Mg ha-1 application rate producing a similar yield to the inorganic 

fertiliser. Both the 20 Mg ha-1 and 40 Mg ha-1 application rates were lower the 60 Mg ha-1, 

however they were still statistically higher than the control. In year two the 60 Mg ha-1 

biosolids treatments was the highest yielding treatment, with all other treatments being 
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similar. This application rate experiment poses conflicting results to those found by 

Fernandez et al. (2009) 

Previous experimental work on the Broxton field site (Chapter 2) (Deeks et al., 2013) 

found only one crop (out of 11 grown) with a significant difference in yield (conventionally 

treated wheat yielded higher than biosolids treated wheat), however, no data was collected 

on the heavy metal content of the grain produced under any of the crops. 

 

6.1.2 Heavy metals in biosolid treated crops 

Concentrations of heavy metals in biosolids vary depending on the input and the 

treatment wastewater receives at waste water treatment works (WWTW), therefore the 

concentration found in crops must be expected to vary (Table 6.1). Daily intake 

recommendations have been provided by World Health Organisation (WHO, 2018) (Table 

6.2) 

 

Table 6.1. Normal concentration range of heavy metals in cereal grain (Gramss and Voigt, 

2013). 

 

 

 

 

 

 

 

 

Table 6.2. Recommended maximum daily intakes of heavy metals for the average adult. 

 

Element Limit Human health impacts 

As <0.05 mg L-1 Limit is under review 

Ag No data No benefit to health 

Cu 0.5 mg kg-1 bw/day 

Excess can cause liver 

cirrhosis 

Fe 0.8 mg kg-1/day Excess can cause liver failure 

Mn 0.16 mg kg-1/day Excess can cause Manganism 

Pb No level No benefit to health 

Zn 0.3-1 mg kg-1 bw/day 

Excess can cause Cu 

deficiency 

*milligrams per kilogramme of body weight per day (mg kg -1 bw/day)  

 

Element mg kg-1 

Cu 2-20 

Fe 26-90 

Mn 14-30 

Zn 10-100 

  

As 0.2 

Pb 0.2 
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Mengel and Kirkby (2010) suggested that elements considered essential for plant 

growth should be classified into 1 of 4 groups. Of the elements discussed in this thesis, P 

is classified as group 2 (nutrients that are important in energy storage or structural integrity), 

Mn is group 3 (nutrients that remain in ionic form) and Fe, Mn and Cu in group 4 (nutrients 

involved in redox reactions). However, such classification is difficult to apply as some 

elements should fall into multiple categories (e.g. Mn could be group 3 and 4). 

Mantovi et al. (2005) completed field experiments in Italy over a period of 12 years. 

Three fields underwent a rotation on an annual basis between wheat, maize and sugar beet 

(Beta vulgaris), with each crop having three replicates in each field. Each crop received a 

low and a high rate of biosolids with additional N in the form of urea. Biosolids were applied 

as liquid, dewatered (cake) and compost material individually. The annual applications of 

biosolids were found to increased soil fertility. This was evidenced by increases in soil 

organic matter, with the higher rate of biosolids application showing the greatest impact. 

The greatest effect was observed in the biosolids compost. The soils showed increased 

alkalinity over the 12 year period which is also thought to have resulted in an increase in 

nutrient availability. Nitrogen increases were thought to have occurred due to organically 

bound N in the biosolids. Increases in P content are thought to be due to both phosphate in 

the biosolids but also a change in the pH, making the P more available (pH change was 

from 7.8 to 8.0). 

A significant increase of Zn and Cu was recorded in the topsoil of the highest 

biosolids treatment. Cadmium (Cd) increases was recorded in the plots treated with 

inorganic fertilisers. This was accounted for through applications of superphosphate, which 

is increasingly showing high Cd levels. Importantly, after 12 years of biosolid applications, 

the levels of all heavy metals remained below the EU regulatory limits. Wheat grain from 

biosolid treated plots showed an increase in N, P, Zn and Cu compared to inorganic 

fertiliser. N and Cu showed increases in sugar beet and Cu in maize grain. Lead was not 

detectable in the wheat grain or sugar beet, whilst Cd was not detectable in maize. This is 

attributed to the increase in soil organic matter limiting their availability. Zinc and Cu showed 

increases in the plant tissue analysis compared with inorganically treated grain. This is 

thought to have been caused by changes in pH. 

 The effects of biosolids on grain heavy metal concentrations have been documented 

to last beyond the duration of the applications. Granato et al. (2004) studied the effects of 

biosolid applications on heavy metal contamination of grain and soils following 10 years of 

applications. Whilst soil organic carbon was found to decrease rapidly, heavy metal 

contamination differed. Zinc and Ni concentrations were not statistically lower in 1995-1997 

compared with 1985-1987. However, Cd and Cu concentrations did decrease. In maize, 

both grain Cu and Zn tissue concentrations remained similar when comparing maize grown 

https://en.wikipedia.org/wiki/Beta_vulgaris
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in 1985-1987 to grain grown 1995-1997, but grain concentrations of Cd and Ni, along with 

leaf Cd Cu, Ni and Zn concentrations decreased. 

Conflicting results from the literature do not provide a clear message regarding the 

most likely yield impact biosolids may have on crops. Generally, it is thought that biosolids 

increase heavy metal concentration in grain, yet this cannot be certain due to the different 

types of biosolids available and their differing elemental compositions. Work by Deeks et al. 

(2013) on the Broxton field site indicated that when used in conjunction with inorganic 

fertilisers, thermally dried biosolids have the potential to produce similar yields to 

conventional fertilisers, with the exception of one wheat crop. 

Following on from the sequential extraction and leaching data collected in Chapters 3 and 

4, experiments were established to assess how crops were affected by biosolids 

applications. Yield studies were undertaken at Broxton, Cheshire as a continuation of 

previous field experiments, in addition to two mesocosm glasshouse studies. Grain was 

analysed from selected field studies and mesocosm experiments to assess if biosolid 

applications impacted on the grain elemental composition. 

 

 

Chapter aim: To analyse yield response of grain crops to biosolids applications in both field 

and glasshouse conditions.  

 

Chapter Objectives; 

 Assess the response of crop yield to biosolid applications over a three-year period 

in a field situation 

 Assess the effect of biosolid application on soil pore water, grain yield and elemental 

composition under two soil types in mesocosms. 

 

Null Hypothesis: The application of biosolids has no impact on the yield of any crop, or its 

grains elemental composition.  
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6.2 Methodology 

6.2.1 Broxton Yield Experiments 

Three years of field experiments were established in accordance with the 

experimental plan in Figures 2.3 and 2.4. These experiments (occurring between 2012 -

2014) were a continuation of this work, with all treatments remaining in the same location 

(Figure 6.1). The arable plot area was cultivated by the resident farmer in an East to West 

direction and drilled North to South, with all fertiliser applications made using a pneumatic 

Kuhn Aerospreader to ensure uniformity for the applications, in conjunction with the work 

detailed in Chapter 2. A range of crops were grown, deemed suitable to the geographical 

location (Table 6.3) at suitable seed rates for the time of drilling (Table 6.4). All plots were 

maintained in accordance with commercial practice, following recommendations from 

BASIS qualified advisers. Fertiliser application rates were given by a FACTS qualified 

advisor (Table 6.5). Biosolid applications were made to meet crop P requirement, with 

additional inorganic fertilisers being used to ensure the crop had sufficient N and K. Nitrogen 

was applied in the form of urea with biosolids, whilst the conventional treatment N source 

was ammonium nitrate. Such decisions were made to follow commercial practice where 

possible (i.e. ammonium nitrate being the most common form of N used in the UK), whilst 

not causing a hazard through the use of an oxidising agent with a carbon source. All 

treatments received the same quantities of nutrients to limit the effect of difference sources 

of nutrients on the crop. Muriate of Potassium (MOP) was used for all K applications and 

conventional P applications were made using Triple Superphosphate (TSP). Cereal and 

oilseed rape (OSR) (Brassica napus L.) plots were harvested using a Wintersteiger Nursery 

Master plot combine (Wintersteiger, Germany), with plot weights and grain quality 

assessments being completed in the laboratory. All cereal and OSR yields were adjusted 

for moisture content (8% OSR and 15% cereals), with the moisture being determined using 

a Sinar GrainPro 6070 (Sinar Technology, UK). Thousand Grain Weights (TGW) were 

established using a FarmTec CountAmatic Console and feeder (FarmTec, UK) and a Kern 

KB2000 – 2N (Kern and SOHN GmbH, Germany) balance. Specific weights were taken 

using a Chondrometer. Due to poor establishment, the spring oilseed rape (OSR) was not 

harvested in 2012/2013.  
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Table 6.3. Cropping history of the Broxton field experiment, harvest years 2012- 2014. 

 

Row 2011-2012 2012-2013 2013-2014 

4 

Avena sativa L.(winter oats 

var. Gerald 

Brassica napus L. (Spring 

OSR var. Ability) 

Hordeum vulgare L. 

(spring barley var. 

Shuffle) 

3 

Triticosecale (triticale var. 

Grenado) 

Zea mays L. (maize var. 

Ballade) 

Hordeum vulgare L. 

(spring barley var. 

Shuffle) 

2 

Triticum aestivum L. 

(winter wheat var. Solstice) 

Hordeum vulgare L. 

(spring barley var. 

Shuffle) 

Hordeum vulgare L. 

(spring barley var. 

Shuffle) 

1 

Triticum aestivum L. 

(winter wheat var. Solstice) 

Hordeum vulgare L. 

(spring barley var. 

Shuffle) 

Hordeum vulgare L. 

(spring barley var. 

Shuffle) 

 

 

 

 

Table 6.4. Seed rates for each crop of the Broxton field experiment. 

 

Harvest 
Year Crop Seed rate (m2) 

2012 Winter oats 350 

2012 Triticale 300 

2012 Winter wheat 250 

2013 Spring oilseed rape 120 

2013 Maize 10 

2013 Spring barley 250 

2014 Spring Barley 250 
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Table 6.5. Macronutrient applications made to the Broxton field experiment over 3 years. 

Applications were made to meet P requirements in each instance. 

 

Year Crop N (kg ha-1) 
P (kg 
ha-1) 

K (kg ha-

1) 

2012 Winter oats 130 45* 60 

2012 Triticale 190 45* 60 

2012 Winter Wheat 190 65* 60 

2013 
Spring Oilseed 

Rape 70 60* 20 

2013 Maize 60 55* 20 

2013 Spring Barley 110 45* 60 

2014 Spring Barley 110 45* 60 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Broxton, Cheshire field site with its four cropping rows (1-4). Each block 

contained 2 treatments (biosolids and conventional fertilisers) and 6 replicates. 
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6.2.2 Mesocosm Studies (Broxton and Harper Adams University Farm soils) 

Mesocosms studies were undertaken to enable an assessment of fertiliser 

treatments in controlled conditions. This also allowed an increase in the residual degrees 

of freedom in comparison to the field experiments. A low residual degree of freedom means 

each data point has a larger influence on a result, thus it is likely to incur error. 

Two Mesocosm experiments were established to study the effect of biosolid 

applications on the contrasting soil types (Figure 6.2 and Figure 6.3). Bulk soil samples 

(taken to a depth of 20cm) were collected from the Broxton field  experiment and transported 

to Harper for experimentation. For the Harper Adams mesocosms, bulk soil was collected 

from the top 20cm of Fourgates field (SJ 70878 19482). Following the results from the 

Broxton Mesocosm experiment (investigated outdoors at Harper Adams University), 

additional treatments were added to the Harper Adams University Farm soil experiment 

under glasshouse conditions. Treatment lists for both experiments are shown in Tables 6.6 

and 6.7. Inorganic fertilisers can contain ranging heavy metal concentrations which may 

cause additions to the soil inadvertently (Table 6.8). 

 Different conditions were used due to time restrictions on the experiments and 

therefore the plants grown under glass would have had accelerated growth and therefore 

may have utilised the treatments applied differently when compare with outdoor studies. 

A 16 hour, 15 ⁰C day, 8 hour, 5 ⁰C night cycle was implemented with a minimum 

natural light threshold set at 30 Klux. Any additional light requirements were met by 400W 

sodium lights. Mesocosms were watered every two days for both experiments. 
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Plot 22 23 24 

Block 8 8 8 

Entry Biosolids Untreated Conventional 

Plot 19 20 21 

Block 7 7 7 

Entry Conventional Biosolids Untreated 

Plot 16 17 18 

Block 6 6 6 

Entry Untreated 3 Biosolids 

Plot 13 14 15 

Block 5 5 5 

Entry Biosolids Untreated Conventional 

Plot 10 11 12 

Block 4 4 4 

Entry Conventional Biosolids Untreated 

Plot 7 8 9 

Block 3 3 3 

Entry Untreated Conventional Biosolids 

Plot 4 5 6 

Block 2 2 2 

Entry 3 Biosolids Untreated 

Plot 1 2 3 

Block 1 1 1 

Entry Biosolids Untreated Conventional 

 

Figure 6.2. Experimental design for the Broxton field soil mesocosms. n=8 
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  Treatment 

1 Untreated 

2 Conventional 

3 Biosolids + Conventional 

4 Biosolids (250kg/kg N) 

5 Biosolids (500kg/h N) 

6 
Biosolids at conventional 

rate 

 

 

Figure 6.3. Experimental design for the Harper Adams University Farm field soil 

mesocosms. n=4. 

 

Table 6.6 Treatment list and application rate equivalent for the spring wheat crop grown in 

Broxton field soil. All treatments were applied at GS 28. Numbers in brackets indicate the 

amount of nutrients supplied from the biosolids alone. 

 

Treatment N (kg ha-1) P (kg ha-1) K (kg ha-1) 

Untreated 0 0 0 

Conventional 160 55 45 

Biosolids + Conventional 160 (3) 55 (55) 45 (0) 

 

 

Plot 22 23 24 

Block 4 4 4 

Entry 2 6 5 

Plot 19 20 21 

Block 4 4 4 

Entry 1 3 4 

Plot 16 17 18 

Block 3 3 3 

Entry 3 6 2 

Plot 13 14 15 

Block 3 3 3 

Entry 5 4 1 

Plot 10 11 12 

Block 2 2 2 

Entry 4 5 6 

Plot 7 8 8 

Block 2 2 2 

Entry 2 1 3 

Plot 4 5 6 

Block 1 1 1 

Entry 1 5 2 

Plot 1 2 3 

Block 1 1 1 

Entry 4 6 3 
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Table 6.7. Treatment list and application rate equivalent for the spring wheat crop grown in 

Harper Adams University Farm soil. All treatments were applied at GS 28. 

 

Treatment N (kg ha-1) P (kg ha-1) K (kg ha-1) 

Untreated 0 0 0 
Conventional 160 55 45 

Biosolids + Conventional 160 55 45 
Biosolids (250kg ha-1 total N) 250* (485) 45 
Biosolids (500kg ha-1 total N) 500* (970) 45 

Biosolids at conventional rate (using 
total N) 

160* (310) 45 

N.B. * signifies the application rate met through biosolids alone.  

 

 

 

 

Table 6.8. Average heavy metal concentrations of inorganic fertilisers used as the 

conventional treatment. 

 

 

 

 

 

 

 

 

 

For both experiments (Figure 6.4 and 6.5) plastic containers (n=24, 30 litre, 40 cm 

diameter, 33 cm high) were filled with soil (8 replicates for each treatment) and planted with 

15 spring wheat seeds (Triticum aestivum.L. var. Belvoir) sown at approximately 2 cm deep 

in each mesocosm. Upon germination, seedlings were thinned to 12 plants to ensure equal 

populations in each mesocosm. Plants removed through thinning were selected due to poor 

establishment, close proximity to other plants and poor health. Plants were grown until grain 

maturity (growth stage 92), when they were hand harvested. 

 

Element mg kg-1 

Cu 12.9 

Fe ND 

Mn ND 

Zn 12.5 

As ND 

Ag ND 

Pb ND 
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Figure 6.4. First three replicates from the experiment at growth stage 61, with the white peg 

indicating untreated, blue for biosolids and yellow for conventionally treated mesocosms. 
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Figure 6.5. Harper Adams Mesocosm experiment post-fertilisation with grid lines 

demonstrating the experimentation blocking. 
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6.2.2.1 Soil Pore water sampling and collection 

Two rhizon soil moisture samplers (consisting of a 10 cm porous PVS tube) were 

inserted 10 cm from the base of each mesocosm, at a 45-degree angle. A Leur-Lock 

connector was then used to connect a syringe to establish a vacuum, allowing soil pore 

water samples to be extracted (Hartley et al., 2010). Soil pore waters were collected 

fortnightly until the crop began to senesce when watering was reduced to once weekly.   

Following pore water collection, samples were stored in a fridge at 4ºC until 

processing for pH and heavy metal. Heavy metal analysis for Fe, Cu, As, Ag, Pb, Mn and 

Zn was completed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (X-

series 2 ICP-MS, Thermo Scientific MA, USA). Each pore water sample was analysed in 

accordance with the procedure outlined in section 2.7. Samples were analysed in triplicate. 

 

6.2.2.2 Wheat yield 

Each mesocosm was harvested once the crop had reached Growth Stage (GS) 92, 

with the ears being separated from the straw. All samples were oven dried (60 ˚C) for 48 

hours to remove any water, ensuring differences in weight were due to grain fill the grain 

and not maturity. The number of tillers and ears were counted and weighed before the ears 

were threshed (Walter-Winterstiger 1 GD 180 STA, Austria) with the grain, counted and 

weighed. 

 

6.2.2.3 Grain analysis 

Grain from each plot was passed through a Perten 100 mill producing a flour. 

Subsamples (0.20 g) were digested using a Mars 6 microwave digester using the 

methodology outlined in section 3.2.4.  

Grain samples were quantified using Inductively Coupled Plasma-Mass 

Spectrometry (ICP-MS) (X-series 2 ICP-MS, Thermo Scientific MA, USA). 

Wet and dry and all leaching samples were analysed without dilution, using the following 

volumes; 

 4.85 ml sample solution 

 100 µl HNO3 (14M) 

 50 µl internal standard solution (1 ppm gallium  (Ga)). 

Samples were vortex mixed for 5 seconds to ensure they were mixed uniformly. 

Lake Ontario Water (CRM TMDA 64.2) was used as a water reference material 

(Table.6.9). This was to ensure that the values being produced by the ICP-MS were within 

the accepted range of the reference sample. 
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Table 6.9.TMDA recoveries using ICP-MS. 

Element Recovery 

TMDA 
64.2 

reference 
value 

Tolerance 
Recovery 

% 

Mn 0.276 0.295 0.0223 93.559 

Fe 0.283 0.306 0.0271 92.484 

Cu 0.266 0.274 0.0241 97.080 

Zn 0.284 0.310 0.0265 91.613 

 

6.2.3 Statistical analysis 

All data was analysed using GenStat (VSN International, 18th edition). One-way analysis 

of variances (ANOVA’s) was used to analyse yield and grain heavy metal data from the 

Broxton field site and mesocosm experiments. A repeated measures ANOVA was 

completed on all pore water data. Significant differences were recorded at p<0.050. Where 

statistical differences were found, a post hoc test (Tukey) at a 5% probability was used to 

establish significance between treatments and times. 

 

 

6.3 Results 

6.3.1 Broxton Field Yield Experiment 

2011/2012 season 

No differences were recorded between treatments for yield (p=0.112), Specific 

Weight (SW) (p=0.157) or Thousand Grain Weight (TGW) (p=0.095) indicating that fertiliser 

type did not impact on oat yield. Similarly, no significant differences were recorded for wheat 

yields with p values of 0.183, 0.065 and 0.069 for yield, SW and TGW respectively. Results 

were close to significant for SW and TGW with biosolids having the higher mean yield for 

both. Triticale did show significant differences for yield however (p=0.033) with biosolids 

producing 3.26 Mg ha-1 and conventional fertiliser producing 2.6 Mg ha-1. Both SW and 

TGW showed no significant difference between treatments (p=0.560 and 0.725 

respectively) (Figure 6.6). 
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Figure 6.6. Yield for 2011/2012 cropping season. Residual d.f. oats 5; triticale 5, wheat 11. 

Error bars signify ± SE. 

 

 

2012/2013 season 

The spring OSR crop was not taken to harvest due to extensive pigeon damage 

during its establishment. The maize crop showed no differences in fresh yield (p=0.184), 

dry yield (p=0.332) or dry matter content (p=0.148). However, a difference was recorded 

between treatments for barley, with conventional fertiliser producing a higher yield (4.46 Mg 

ha-1 compared to 3.61 Mg ha-1) (p=0.002) (Figure 6.7). Whilst no significant differences were 

recorded for the SW (p=0.252), conventional fertiliser produced a higher TGW (55.43 g 

compared to 51.45 g) indicating the conventional fertilisers produce heavier grain (p<0.001).  
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Figure 6.7. Yields for the 2012/2013 cropping season. Residual d.f. maize 5; barley 11, 

SOSR not harvested. Error bars signify ± SE. 

 

 

2013/2014 season 

For the final year of the field yield experiment, the cropping area was uniformly drilled 

with barley. No difference was recorded between the treatments for yield (p=0.130) (Figure 

6.8), however SW was higher for biosolids treated grain (p=0.005). No difference was 

recorded for the TGW. 
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Figure 6.8. Yield for the 2013/2014 cropping season. Residual d.f. 11. Error bars signify ± 

SE. 

 

  

Selected crops from the three-year rotation were digested and analysed for heavy 

metal content based on their yield results. Triticale showed differences for Ag, As, Fe, Pb 

and Zn; conventionally treated grain had a greater concentration of each element. Copper 

and Mn were close to showing a statistical difference between treatments (p=0.066 and 

p=0.059 respectively, with the highest concentration being found in the conventionally 

treated grain. Spring barley (harvested 2013) showed no significant difference between any 

of the elements, whilst a significant difference in 2013/2014 was only recorded between 

treatments for Mn concentration with again, conventionally treated grain being significantly 

higher (Table 6.10). 
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Table 6.10. Grain digest results from selected crops at Broxton Cheshire; a) 2011/2012 

triticale, b) 2012/2013 spring barley, c) 2013/2014 spring barley. 

          

a)        

Treatment 
Ag (mg 
kg-1) 

As (mg 
kg-1) 

Cu (mg 
kg-1) 

Fe (mg 
kg-1) 

Mn (mg 
kg-1) 

Pb (mg 
kg-1) 

Zn (mg 
kg-1) 

Biosolids 0.06 0.18 53.70 77.80 23.80 6.22 185.10 

Conventional 0.10 0.22 60.20 100.80 38.50 6.78 202.20 

p value 0.021 0.019 0.066 0.044 0.059 0.010 0.033 

cv% 20.5 8.0 7.0 13.3 27.5 2.5 4.1 

SEM 0.007 0.006 1.620 4.860 3.500 0.066 3.230 

Residual d.f 3 3 3 3 3 3 3 

        
b)        

Treatment 
Ag (mg 
kg-1) 

As (mg 
kg-1) 

Cu (mg 
kg-1) 

Fe (mg 
kg-1) 

Mn (mg 
kg-1) 

Pb (mg 
kg-1) 

Zn (mg 
kg-1) 

Biosolids 0.05 0.14 16.60 87.20 14.86 0.91 50.20 

Conventional 0.06 0.16 17.370 76.90 17.14 1.15 54.20 

p value 0.549 0.407 0.433 0.488 0.187 0.337 0.388 

cv% 71.1 26.4 13.5 42.8 24.6 56.7 21 

SEM 0.011 0.011 0.664 10.140 1.134 0.169 3.160 

Residual d.f 10 10 10 10 10 10 10 

        
c)        

Treatment 
Ag (mg 
kg-1) 

As (mg 
kg-1) 

Cu (mg 
kg-1) 

Fe (mg 
kg-1) 

Mn (mg 
kg-1) 

Pb (mg 
kg-1) 

Zn (mg 
kg-1) 

Biosolids 0.09 0.16 20.01 88.00 13.26 0.55 45.80 

Conventional 0.08 0.18 17.58 141.00 16.17 0.59 38.50 

p value 0.609 0.309 0.207 0.142 0.001 0.889 0.125 

cv% 46.1 35.2 23.1 70.4 10.0 130.1 25.2 

SEM 0.011 0.017 1.252 23.200 0.426 0.213 3.070 

Residual d.f 11 11 11 11 11 11 11 

 

 

 

6.3.2 Broxton Mesocosm Experiment 

6.3.2.1 Pore water analysis 

Concentrations of Ag and Mn were below the LOD and LOQ and so no results are 

presented for these elements.   

 Differences between treatments were recorded for Cu and Fe only with all other 

elements recording p values greater than 0.05. Pore waters from biosolids treated soils 

recorded higher concentrations of Cu overall, compared to both untreated and 

conventionally treated soils. Pore water samples taken from untreated soils yielded less Fe 

than biosolid and conventionally treated soil pore water. The majority of the data was within 
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the limits of Detection (LOD) and limits of quantification, however Pb concentrations were 

very low and therefore these results should be treated with caution. 

 Differences between timings were recorded for all elements except Pb, however, 

there was no single timing in which each element was found at its highest concentration. 

Arsenic levels peaked at sample timing 4 but remained similar for the remaining sample 

times. Copper concentrations increased at sample timing 5 and remained similar until the 

final sample timing when concentrations decreased back to the concentration of the first 4 

sample times. The first two sample timings were the highest for iron, with sample times 2 

and 3 being statistically similar to each other. The remaining sample times did not 

statistically differ from each other. Zinc concentrations in pore water samples were 

statistically similar for the first three sample times, decreasing at sample 4. Concentrations 

then increased and remained statistically similar at sample timings 5, 6, 7 and 8 before 

decreasing again at sample time 9. An interaction between time and element concentration 

was only recorded for Fe. At sample times 1, 2 and 3, the pore waters extracted from 

untreated soils recorded lower concentrations than both the pore waters taken from 

biosolids and conventionally treated soils. No differences were recorded between 

treatments and any other time points (Figure 6.9). 

No significant difference was recorded between treatments with regards to pH of the 

pore water (p=0.455), with no difference being recorded over time (p=0.190). No interaction 

between treatment and time was recorded. 

 

6.3.2.2 Wheat yield  

 Grain weight and number of grains produced were all significantly higher where 

biosolids and conventional fertiliser had been applied (p<0.001) (Figure 6.10, 6.11 and 6.12) 

compared with untreated pots.  However, there was no significant difference between 

biosolids and conventionally treated mesocosms. Biosolid and conventionally treated grain 

had a higher TGW average than the untreated control (p=0.049). 

 

6.3.2.3 Grain analysis 

Grain elemental concentrations were statistically similar between treatments for  Ag, 

As, Cu, Fe, Pb and Zn. Grain harvested from untreated mesocosms had a lower Mn 

concentration than both biosolids and conventionally treated grain (p=0.007) (Figure 6.13), 

however, this was still within what is considered to be the normal limits (Table 6.1). 
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Figure 6.9. Elemental concentrations a) Zn, b), Fe, c) Cu, d) As, e) Pb of pore water over 

time in the Broxton mesocosm experiment. Elements are presented in order of decreasing 

concentration due to the large variability in concentrations recorded. Error bars represent ± 

SE. Residual d.f. 148. 
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Figure 6.10. Grain yield of the Broxton mesocosm study comparing different fertiliser 

treatments. Error bars indicate ±SE. Residual d.f. 14. 

 

 

 

 

 

 

 

 

 

 

Figure 6.11. Number of grains produced by the respective treatments from the Broxton 

mesocosm study. Error bars indicate ± SE. Residual d.f. 14. 
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Figure 6.12. TGW produced by the respective treatments from the Harper Adams 

mesocosm study. ± SE. Residual d.f. 14. 
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Figure 6.13. Grain elemental concentrations, a) Fe, b) Zn, c) Cu, d) Mn, e) Pb, f) Ag, g) As 

in the Broxton mesocosm experiment. Elements are presented in order of decreasing 

concentration due to the large variability in concentrations recorded. Residual d.f. 14 
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6.3.3 Harper Adams University Farm mesocosm study 

6.3.3.1 Soil Pore water  

Concentrations of Pb were not high enough (below the LOD and limits of 

Quantification (LOQ) to record on the ICP-MS and therefore no data was collected.  

No differences in the concentration of Ag, Cu, Fe, Mn or Zn were recorded overall 

in the pore waters (p>0.05). Copper was close to significance (p=0.062) with pore waters 

collected from conventionally treated soils having a higher concentration than all other 

treatments, however this cannot be explained through any historical applications of manure 

such as pig slurry. Higher concentrations of As were recorded in the untreated soil pore 

waters compared to the biosolids applied at 250 kg ha-1 total N pots. 

Differences in concentration of elements at different timings was recorded for Ag, 

Fe, Mn and Zn. The final sample was significantly higher in Ag and Zn in comparison to all 

other samples, whilst the Cu was higher at the second sample timing and Mn was higher at 

the third.  

No interactions were recorded between time and element concentration for any of 

the elements (Figure 6.14).  

Pore waters showed no difference in pH regarding treatment, but the pH did 

decrease significantly at the last sample timing (sample set 4) just before the crop was 

harvested. No interaction was recorded between treatment and time. 

 

6.3.3.2 Wheat yield 

No differences were recorded between treatments for the weight of grain (p=0.585) 

or the number of grains (p=0.543), indicating that fertiliser did not increase the yield above 

the untreated control (Figure 6.15, 6.16 and 6.17). No differences were recorded between 

treatments for TGW (p=0.533). This may indicate that applications of fertiliser to the field 

preceding the experiment were influential on the results. 

 

6.3.3.3 Grain analysis 

Grain digests indicated no significant differences between any treatments for any 

element analysed. This suggests that the application of biosolids to the mesocosm, even at 

twice the maximum rate, did not have a detrimental effect on the grain produced (Figure 

6.18) and therefore under these circumstances, did not pose a health risk to any consumers 

above what was seen the other treatments. This would also indicate that the use of inorganic 

fertiliser did not affect the uptake of heavy metals into the grain. 
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Figure 6.14. Elemental pore water concentrations, a) Zn, b) Fe, c) Cu, d) Mn, e) As, f) Ag 

over time in the Harper Adams University Farm mesocosm experiment. Elements are 

presented in order of decreasing concentration due to the large variability in concentrations 

recorded. Residual d.f. 148. 
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Figure 6.15. Grain yield of spring wheat grown in the Harper Adams University Farm 

mesocosm experiment under each treatment. Error bars indicate +/- SE. Residual d.f 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16. Number of grains produced by the respective treatments from the Harper 

Adams mesocosm study. Error bars indicate +/- SE. Residual d.f 15. 
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Figure 6.17. TGW produced by the respective treatments from the Harper Adams 

mesocosm study. Error bars indicate +/- SE. Residual d.f 15 
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Figure 6.18. Grain elemental concentrations, a) Fe, b) Mn, c) Zn, d) Cu, e) As, f) Ag in the 

Harper Adams University Farm mesocosm experiment. Elements are presented in order of 

decreasing concentration due to the large variability in concentrations recorded. Residual 

d.f. 15 
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6.4 Discussion 

Sustainable crop production is required to meet the demands of an increasing global 

population, whilst limiting the impact of food production practices on the environment.  Foley 

et al. (2011) suggested that crop yields are rising more slowly than in previous decades, 

which may pose serious problems should population forecasts be correct. Studies have 

demonstrated that fertiliser use generally, increases crop yield, with Mueller et al., (2012) 

suggesting that 45-70% increases can be expected across a range of crops when fertilisers 

are utilised. Biosolids pose a potential source of nutrients for crop and and their use in crop 

production could help alleviate a waste disposal problem, whilst contributing towards 

sustainable food production.  

A series of experiments investigated the impact of biosolids on crop yield and quality 

in comparison to commercial fertilisers. Grain was analysed to establish, what effect such 

applications may have on the use of biosolids. 

Recovery values for the ICP-MS were lower than the desired 95% for Fe, Mn and 

Zn, indicating that the values presented, may be lower than the true concentrations. 

A large field experiment (a continuation of KTP and European Commission funded 

projects) was undertaken over three years. Both oat and wheat crops showed no 

differences in yield in the 2011/2012 cropping season. Specific weight and TGW were close 

to significance in the wheat crop, with grain produced using biosolids having higher values 

for both. Both SW and TGW are measures of crop quality, with SW measuring how dense 

the grain is and TGW measuring how heavy grain is. Higher values indicate a better grain, 

which if used for seed, is more likely to germinate. The specific weight for this grain was low 

compared to normal market requirements (normally 72 kg hl-1) (Yara, no date). This may 

have been a result of poor ground and a poor growing season. Triticale yielded higher under 

plots receiving biosolids, with the grain showing significant differences in in Ag, As, Fe, Pb 

and Zn concentrations. In each instance conventionally treated grain had a greater 

concentration of each element. These concentrations were found to be high in accordance 

with levels detailed by grain Gramss and Voigt (2013). Nevertheless, where a difference in 

concentration was recorded between the treatments, conventionally treated grain had 

higher concentrations. The values provided by Gramss and Voigt (2013) were for cereal 

crops in general and not specifically triticale and therefore may not be applicable to this 

crop. The differences between concentration and treatment may be accounted for by a 

dilution effect. This may be advantageous for elements such as As and Pb which are not 

beneficial to human diet. 

In 2012/2013 maize showed no yield differences between treatment, however, 

spring barley yields and TGW’s were higher under plots fertiliser with conventional fertiliser, 

yet there were no differences in the grain element concentrations. The concentrations of 

heavy metals in this grain were within guideline limits details by Gramss and Voigt (2013). 
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With the exception of Pb, which was elevated for both treatments. All plots were drilled with 

spring barley in the 2013/2014 season. No yield differences between treatments were 

recorded, although grain Mn concentrations were higher in conventionally treated plots. 

Concentrations in grain treated with biosolids were still within the normal limits and 

therefore, whilst they concentration was significantly lower, this would not be detrimental to 

consumers. 

 Whilst oats, wheat, triticale, and maize were only grown for one season, the barley 

grown in 2012/2013 and 2013/2014 showed contrasting results, possibly indicating that 

environmental factors such as rainfall and temperature may have influenced the crops 

nutrient demands. The experimental site had a very low number of residual degrees of 

freedom (5 residual d.f where only a single row of a crop was grown), which may have 

impacted on the results also. Ideally, a residual degrees of freedom should be greater than 

12. In such instances, each data point has a greater influence on the result, when compared 

with experiments containing a higher number of residual degrees of freedom. For this 

experimental site, it may also explain why, treatment differences were not observed. 

Mesocosm yield experiments were carried out on the two soil types detailed in 

Chapters 2 and 3. Containing a higher number of residual degrees of freedom, they allowed 

a more controlled assessment of the effect of fertiliser on yield and grain heavy metal 

content. Broxton mesocosms treated with biosolids and conventional fertiliser yielded more 

than untreated mesocosms. The TGW from the mesocosms receiving fertiliser was also 

higher. Elemental grain analysis showed that Mn was significantly lower in grain from 

untreated mesocosm. This showed that the fertiliser applied was influential on crop yield. 

However, each treatment produced grain within the normal limits (Gramss and Voigt, 2013). 

Pore water Cu was higher in the biosolids treated mesocosms, whilst Fe was higher in the 

biosolids and conventionally treated mesocosms. These elements were not at elevated 

levels in the grain, indicating that if an increased amount was translocated into the plant, 

this was stored elsewhere (e.g. leaves) or that the increase in concentration was not utilised 

by the plant. A study by Garnett and Graham (2005) showed that 77 % of the Fe in the grain 

was translocated when the grain reached maturity and that the Fe was redistributed from 

the leaves, therefore possibly explaining why there was no increase in grain Fe 

concentrations in biosolids treated mesocosms. Elemental grain concentrations were all 

within the expected range (Table 6.1), with the exception of Fe in each case which was 

higher. This would suggest that no element was deficient. Cereals crops have the ability to 

alter the rhizosphere should Fe or Zn concentration be below their requirements. The 

release of phytosiderophores increases the concentration of Zn and Fe by mobilising the 

elements, however whilst the untreated grain was lower in Fe than the biosolids and 

conventionally treated mesocosms, concentrations were still within the normal range, 

indicating that Fe and Zn concentrations were sufficient for growth. 
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Biosolids in both the Broxton field and mesocosm experiments were supplemented 

with inorganic fertilisers due to the unsuitable ratio of N:P and their lack of K. This would be 

consistent with commercial practice, although it did not provide evidence of their potential 

as a product to be used on its own. Harper Adams University Farm mesocosms contained 

additional treatments to assess whether the application of biosolids on their own impacted 

on yield and grain content. There was no difference between treatments with yield or 

elemental content, indicating that the field soil had sufficient supply of nutrients to sustain 

growth. Pore water concentrations did differ between treatments with overall As 

concentrations being higher in untreated mesocosms compared to biosolids applied at 

250kg N/ha. As these mesocosms were receiving no fertiliser, this may be due to natural 

variation in concentration. The trend towards increased levels of Cu in conventionally 

treated mesocosms may be explained by contamination in the TSP used as the phosphate 

fertiliser. Whilst the concentration shown in Table 6.8 are not excessively high, Chibueze et 

al. (2012) presented data indicating how variable fertiliser contamination can be. Silver, Fe, 

Mn and Zn all showed significant changes in concentration over time, with Cu 

concentrations peaking at sample timing 2, Mn at timing 3 and Ag and Zn at timing 4. 

Fertiliser applications were made between 1 and 2 sample times and therefore the increase 

in these elements may be attributed to the addition of the fertilisers. All grain concentrations 

fell within normal limits with the exception of Fe, where concentrations were elevated under 

each treatment, indicating that this was not likely due to a treatment effect. 

  

 

6.5 Chapter conclusions 

The null hypothesis of this chapter cannot be fully accepted without further 

experimentation.  Grain yield and element concentrations show conflicting results across 

the field and mesocosm experiments. The field experiments provided conflicting data 

regarding crop yields, with similar yields being achieved for the majority of crops, yet both 

higher and lower yields were also recorded. Mesocosm experiments showed that biosolids 

could produce similar yields to conventional fertilisers in the Broxton soils, but no difference 

in yield was recorded between any of the treatments for the Harper Adams University Farm 

mesocosms. This was attributed to sufficient levels of nutrients already being present in the 

soil prior to the experiment commencing. Differences in grain concentrations were recorded 

in both the Broxton field and mesocosm experiments, however, these concentrations were 

within normal grain limits. In each case of statistical significance, grain concentrations were 

higher under conventional fertilisers, with the exception of Mn in the Broxton mesocosm, 

where Zn was significantly lower in the grain from untreated pots. Heavy metal 

concentrations were not elevated in any grain from biosolids treatments compared to the 

commercially treated crops suggesting that biosolids did not increase heavy metal 
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concentrations above conventional fertilisers. Whilst this indicates that heavy metal 

bioaccumulation is not a problem, it also would suggest that biosolids are not suitable for 

biofortification. Further work should look to vary environmental conditions to analyses how 

this may impact on crop yields and grain heavy metal concentrations. 
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Chapter 7. 

Conclusions and Suggestions for Further Work. 

 

7.1 Conclusions 

The work detailed in this thesis has profiled the Bestways Fertiliser, produced by 

Southern Water, using and developing a range of techniques, to assess their effects on soil 

chemistry and biology. This work provides a detailed account of how their application affects 

the soil environment over both the short and long term, in addition to their effect on crop 

production. As a consequence of different treatment methods, no batch of biosolids is ever 

identical and therefore they have the potential to impact the soil differently unless more is 

understood about them and their potential to cause harm. This could be achieved through 

analysing the soil and biosolids themselves, especially over time. Research often looks at 

singular scientific topics (e.g. soil chemistry) for associating a cause and effect, however, 

this thesis combined chemistry, biology and crop response to produce a more detailed 

analysis. 

Thermally dried biosolids are advantageous in comparison to other biosolid products 

such as cake due to their lower water content, resulting in them being less dense. This 

allows them to be transported further at lower costs. The UK is subject to an East-West split 

regarding organic manures, with the dairy industry supplying sufficient organic amendments 

to meet farmer demands in the West, whilst the east is mainly reliant on anaerobic digesters 

in order to add organic matter back into soil. Thermally dried biosolids offer the possibility 

of redistributing surplus biosolids in the West to the East in a more economical manor. Yet 

the drying process involved in the production of these biosolids has the potential to alter the 

chemistry of the nutrients and contaminants, in addition to concentrating them. As of March 

2018, no waste water treatment works (WWTW) produces thermally dried biosolids due to 

the expense of drying the material. Yet, some water companies are investing money into 

their production in the hope that enhanced treated biosolids will become the mainstream 

form that are applied to land. Thermally dried biosolids are classified as enhanced treated, 

therefore allowing them to be applied to a wider range of agricultural and horticultural crops. 

However, their use is still closely monitored over fears of contamination to both the 

environment and food chain. 

A series of experiments were undertaken to understand the short and long term 

mobility of heavy metals in soils amended with biosolids. Firstly, a series of sequential 

extractions were undertaken to partition the heavy metals silver (Ag), arsenic (As), copper 

(Cu), iron (Fe), manganese (Mn), lead (Pb) and zinc (Zn), into their chemical binding groups 

in two soil types. Results showed no significant increases in heavy metals in any binding 

group as a result of biosolid applications. Whilst this studied the implications associated 
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with a single application of biosolids, it suggested that biosolids were not increasing any 

chemical binding fraction in the soil. This can most likely be attributed to the low biosolid:soil 

ratio when considering their volumes. 

Grobelek and Napra (2015) suggested that the application of inorganic phosphate 

in the form of triple superphosphate (TSP) may help decrease the mobility of heavy metals 

from biosolids. However, such applications could only be made if there was no accumulation 

of phosphorus (P) in soils where biosolids were applied.  A further sequential extraction was 

undertaken to establish if the applications of P, through biosolids, had increased P 

concentration in any fraction of the soil at the Broxton field site. The data provided here, 

would suggest that the application of biosolids to soils would increase the concentration of 

P above that of conventional fertilisers, (the majority being bound to Fe/Mn). Whilst this 

might not all be immediately available to the plant, there is an increased risk of elevated 

concentrations of P entering surface waters through erosion, which may result in 

eutrophication. The lack of increase in heavy metals found following a single application of 

biosolids to the two soil types, would also suggest that the application of TSP alongside 

biosolids would not be necessary.  

Leaching experiments were carried out to assess the long-term mobility of elements 

in biosolid treated soils. In contrast to the sequential extraction experiments, leaching 

assessments show what heavy metals become available over time in water, which would 

have the potential for plants to translocate. Results from repeated wetting and drying 

investigations revealed that Fe, As and Pb concentrations all increased in water altered to 

pH 4. Stenhouwer et al. (2006) similarly showed an increase in heavy metal mobility at pH4 

for Pb, Mn, Cu and Zn, however not with the elements studied in this thesis. Modified Dutch 

leaching column experiments showed contrasting results between soil types indicating that 

this was an influential factor. Broxton soils treated with 500 kg ha-1 total N recorded Zn 

concentrations more than three times higher than leachate from untreated soils. This would 

suggest that the potential for plants to translocate Zn into tissues would also be higher. Yield 

experiments in chapter 6 found no differences in Zn grain concentrations, suggesting that 

the plant may not be utilising this additional Zn, or that it was being translocated to a non-

edible part of the plant. Tavarez et al. (2015) found that although some Zn was remobilised 

and translocated to the grain from other parts of the durum wheat plant during senescence, 

the majority of the Zn found in grain is directly soured from plant uptake. 

Copper concentrations were also higher in leachate from Broxton and Harper 

Adams University Farm soils amended with biosolids compared with untreated soil. Copper 

deficiency is a prevalent issue for cereals in Europe (Alloway, 2008), and so biosolid 

applications may help rectify such issues. The cereals grown as part of this thesis did not 

show elevated concentrations of Cu in the grain however concentrations fell within normal 
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limits (Gramss and Voigt, 2013) for all treatments, indicating that the soil was not deficient 

of Cu or Zn. 

Arsenic concentrations were also found to be elevated in leachate from the Harper 

Adams University Farm soils amended with biosolids. Whilst Cu is required in both human 

and animal diets for metabolic processes, As has no current recognised, beneficial effect 

on plants, animals or humans. However, historically As has been used as a growth promotor 

in animals.  Again, no increase in As was recorded in the grain of plants grown using 

biosolids, indicating that the application of biosolids did not increase As concentrations in 

the edible parts of the plant. Concentrations recorded were within LOD and LOQ and so 

this difference is not attributable to the equipment used. However, it may be attributable to 

changes in bedrock in the field causing localised concentration changes. Whilst this 

increase in As was recorded in the leaching columns, pore water samples from As were 

only found to be higher in untreated soils of the Harper mesocosms. There was no evidence 

to suggest that this may result from problems with detection and therefore this indicates that 

further work would be needed to understand why this occurred. 

Overall, whilst significant differences were recorded between treatments and 

leachate elemental concentrations, there appeared to be no accumulation of heavy metals 

in the grain above those recorded by untreated and conventionally treated crops.  

Total organic carbon (TOC) from the wet and dry experiment showed significant 

positive correlations for Ag, As, Cu, Fe, Mn and Zn. Harper Adams University Farm soils 

showed a positive correlation between TOC and Fe and TOC and Mn. No other significant 

correlations were recorded, however, Cu was close to having a significant result. In contrast, 

the Broxton soils receiving a single application were found to have a positive correlation 

between TOC and Cu and TOC and Fe. Total organic carbon can act as a chelating agent, 

mobilising heavy metals into solution, causing them to leach from the soil. Whilst this is 

beneficial to the plant, as it removes toxic heavy metals away from the rhizosphere, it can 

result in grain nutrient deficiency and cause groundwater contamination (Sherene, 2009). 

Dissolved organic carbon (DOC) is a constituent of TOC and is used as a water quality 

indicator. Elevated levels of DOC can interfere with the disinfection processes for water 

treatment as well as reducing the aesthetic quality of the water being produced. The data 

presented here found no increase in total TOC leached when comparing the biosolids 

treated soils with untreated soils, suggesting that this may not be a concern associated with 

these biosolids. 

 Whilst the elements in soil solution pose the greatest risk to the food chain through 

plant translocation, this fraction has also been linked with microarthropod toxicity. Poulson 

et al. (1996) and Radha and Seenayya (1992) suggest that the elements held in soil solution 

pose the greatest danger to soil microorganisms. However, many microarthropods are 

detritivores and therefore would be aiding the breakdown of SOM to SOC. Chapter 3 
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showed the functional chemical groups of heavy metals and their concentrations. The 

organic matter/sulphide bound fraction is substantial in size when compared to the fractions 

that might be considered in soil solution (water extractable and exchangeable fractions). 

Therefore, it may be that microarthropods are mobilising this fraction into solution, indirectly, 

through decomposition of SOM. Whilst this does not appear to be detrimental at Broxton, 

as most microarthropods were recorded to have higher population numbers under biosolids 

treated soils, it may explain why the 400% treatment at HAU Farm often produced lower 

counts to that of the 100% application rate.  

Earthworms and soil microarthropods are a critical part of an agricultural production 

system. By recycling plant material, they release nutrients into the soil for plants to use, 

whilst also improving soil structure and drainage.  Agricultural cultivations often damage 

populations of organisms such as earthworms. Therefore, it is important to ensure adequate 

carbon is available to support such populations. The biosolids used in these experiments 

contained 61.4% organic matter, potentially providing a good food source for soil organisms. 

Whilst earthworm populations showed no difference when extracted from plots with differing 

fertiliser regimes (Chapter 5), their heavy metal content was not studied. The information 

collected from chapter 4 would suggest that the earthworms may experience a greater 

exposure to elements such as Zn in solution over time and therefore it may be possible that 

the heavy metals could bioaccumulate in their tissues. By digesting the earthworms upon 

collection, tissues could be analysed using ICP-MS to clarify if such differences exist. 

Kizilkaya and Hepsen (2004) found a decrease in dehydrogenase enzymes following the 

application of biosolids to soil. This was attributed to an accumulation of heavy metals in 

the tissue of the earthworms but was not studied. Therefore, further research should assess 

if population growth is being prevented through such accumulations. 

Data collected from the Harper Adams University Farm respiration experiment 

suggested no increases in Adenosine triphosphate (ATP) content of the soil in the 12 

months following applications. The problems associated with the technique used to analyse 

ATP was outlined in Chapter 5, however, if each sample was analysed in triplicate, the 

variation in results, may decrease providing a different result. Respiration was shown to 

increase under 100% and 200% application rates when compared to the control. Whilst this 

may suggest that there was an increase in the number of microorganisms respiring, it may 

also be a sign of stress, where fewer microorganisms are respiring harder.  

 Microarthropod counts for Broxton and Harper Adams University Farm sites allowed 

the impact of biosolids applications on soil biology to be quantified. Harper Adams 

University Farm QBS scores showed no difference between application rates of biosolids, 

indicating that the increased respiration rates recorded under the 100% and 200% 

application rates were not only due to microarthropods. Broxton soils saw a higher QBS 

score under biosolids amended soils, indicating that biosolids may be supporting 



157 

 

microarthropods better than conventional or inorganic fertilisers. The contrasting results 

between the two sites may be a result of differing numbers of applications and reproductive 

strategies. K reproductive strategists may not have had sufficient time to benefit from the 

additional OM applied to the soil at Harper Adams University Farm site and therefore 

population increases were not observed. 

Soil microarthropods and microorganisms have the potential to increase nutrient 

availability and thus may impact on crop production (Trivedi et al., 2017). A series of field 

experiments were carried out, studying the effect on crop yield and the associated heavy 

metal contamination levels in grain. Following commercial practices as closely as possible, 

the experiments were a continuation of previous work (Deeks et al., 2013), which suggested 

that biosolids could produce similar yields to that of commercial inorganic fertilisers. The 

results from this experimental series overall, agreed with the previous investigations. Of the 

6 crops harvested, 4 produced statistically similar yields to that of commercial inorganic 

fertiliser, whilst one (triticale (Triticosecale)) produced a greater yield and another (spring 

barely (Hordeum vulgare L.)) produced a lower yield. Bestways biosolids were structurally 

very hard, with some granules requiring up to 10 kg of force to disintegrate them. This may 

have resulted in only the outer surfaces releasing nutrients, especially in dry years, and may 

explain why reduced yields were experienced during the field investigations. Biosolids are 

known as a slow release fertiliser, and applications in previous years may have impacted 

on spring crops (AHDB, 2017). This may suggest that the wet and dry leaching tests show 

a worst-case scenario of what can be released by biosolids over time. 

Grain heavy metal concentrations were found to statistically differ between 

treatments at the Broxton field site, with Ag, As, Fe, Pb and Zn concentrations being higher 

in the conventionally treated grain of triticale. Copper and Mn concentrations were near 

significance in the conventionally treated grain also. No heavy metal concentration 

differences were recorded in the spring barley 2012/2013 grain, but a higher concentration 

of Mn was recorded in the conventionally treated grain from 2013/24014. Whilst no heavy 

metals were applied intentionally through the inorganic fertiliser applications themselves, 

contamination of inorganic fertilisers is being increasingly recorded, monitored and 

regulated. For example, Cd concentration in phosphate fertilisers is already restricted in 

many countries. This, in addition to natural variation in soil heavy metal concentrations, may 

have resulted in the results recorded.  This data would suggest that the increased 

microarthropod QBS scores recorded at Broxton, did not impact on the crop yield as has 

been found by other research (Trivedi et al, 2017 and Lloyd, 2017). 

In Broxton mesocosm investigations, reduced concentrations of Mn were recorded 

in the grain grown in untreated soil. There were no untreated plots established at Broxton 

and therefore a direct comparison between the two could not be made, but it would support 
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the hypothesis that the conventional treatments were supplementing some heavy metal 

concentrations. Harper mesocosms showed no significant differences between treatments.  

Overall, results indicate that application of biosolids does not enhance grain metal 

contents and suggests that repeated applications may not be a suitable method for trace 

metal biofortification of grain. Biosolids contain metals, some of which have a protective role 

for health (e.g. Fe and Mn).  

 

Overall, the work suggests that the risk to the food chain via accumulation would be 

limited and therefore should not be a factor when considering their application. However, 

the data would suggest that application of these biosolids, would not alleviate the hidden 

hunger issue as detailed in Chapter 1. Elemental concentrations were correlated with TOC, 

with increased heavy metal mobility found to correlate with increasing TOC. The lack of 

uptake into the grain, would suggest that the elements may be leached out of the rooting 

zone of plants, possibly leading to the contamination of ground waters.  

 

 

7.2 Future work 

 

Biosolids, along with other organic manures, are very variable. Due to input changes 

and treatment differences at WWTW, nutrients and heavy metal contents for each batch will 

inevitably vary. Therefore, further work should consider profiling other granulated products, 

comparing results to establish if the biosolids used here differ in any way different to others. 

Analysis of their differing treatment techniques may also indicate if any one method has 

additional benefits or disadvantages over any other. It is believed that similar products to 

Bestways Fertiliser are in development, but no direct comparisons are currently available. 

One biosolid based product is available. Milorganite is a granulated product derived from 

biosolids. In contrast to the Bestways fertiliser biosolids, Milorganite is not a true biosolid 

product as it is formed from additional bacteria added to wastewater during the treatment 

process. These microbes die once there is no longer any nutrients in the wastewater and 

they are then harvested and granulated in a similar way to the biosolids discussed here 

(Milorganite, 2018). This poses the possibility of decreasing the heavy metal load, whilst 

using the nutrients from the biosolids. However, other additional benefits, such as addition 

of OM would not be seen from such practices. With other thermally dried biosolids currently 

in development, a comparison between the three would help understand how the biosolids 

tested here would relate on a larger scale. 

 Earthworms were quantified at the Broxton field experimental site, whereby 

earthworms were collected and weighed from the conventional and biosolids treated plots. 

Whilst this provides valuable biomass data, it does not indicate the impact of the 
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applications on earthworms at a species level. Different species are important for different 

ecological roles. For example, L. terrestris has been linked with environmental remediation 

of contaminated soils (Sizmur et al., 2011). No differences were recorded between the 

earthworm numbers of biomass in the experiments detailed in this thesis, but further work 

could have assessed the heavy metal concentrations in the earthworms and whether this 

affected species dynamics.  

Whilst the data suggests a low risk to the food chain through the application of 

biosolids, their full environmental impact has not been quantified. Several elements have 

shown greater mobility which has been attributed to TOC concentrations. However, the 

abundance of an element in soil does not necessarily indicate the level of risk it poses to 

the environment. An elements oxidation state indicates its potential to form complex 

chemical species through processes such as acid-base reactions. Further work to establish 

the oxidation state of the elements would further help profile the full risk posed through 

applying these biosolids. Donner et al. (2011) found differences between the Cu and Zn 

oxidation states depending on the age of the biosolids, with Cu (I) and Cu (II) sulphides 

being most dominant in fresh biosolids. Organic matter bound Cu (II) was found to be more 

dominant in the dried biosolids. This would expand on the results provided in Chapter 3 

where the humic and sulphide bound fractions would have likely been extracted to provide 

one value. Vodyanitskii (2016) details two contrasting standards used to allocate a hazard 

level to a heavy metal contaminant. Whilst the Russian and Dutch standards differ 

substantially with regards to what elements are considered the most and least hazardous 

when found in soils, no further details as to the oxidation state of elements has been used. 
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Appendix 1. 

Table 1. Soil temperature data recorded at 10 cm depth during the respiration experiment. 
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Table 2. Precipitation data recorded during the respiration experiment 
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