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Abstract 

 

Potato cyst nematodes (PCN), Globodera rostochiensis and Globodera pallida, cause in 

excess of £25M in losses to the UK potato industry per annum. Nematicides are used by 

potato growers to manage PCN, and protect yield. However, increasingly restrictive 

legislation within the European Union (EU), could instigate the retraction of nematicides 

from the region in the near future. Alternative management strategies, such as 

biofumigation, are therefore being evaluated for their potential to replace nematicides.  

Biofumigation involves the incorporation of glucosinolate (GSL) rich plant residues into 

soil for pest management. Upon tissue disruption, GSL’s are liberated from biofumigant 

plant cells, and are subsequently enzymatically hydrolysed to form toxic volatile organic 

compounds (VOC’s). The VOC’s are chemically similar to the synthetic fumigant 

nematicide currently used for PCN management within the EU, and have been found to 

consistently reduce field populations of PCN by c.40-50% in previous studies. However, 

biofumigation efficacy is dependent on a number of agronomic factors, many of which 

are poorly understood. This project investigated the effect of soil moisture conditions at 

biofumigant incorporation on biofumigation efficacy against PCN. Commercially 

available maceration and incorporation implements were also sourced and evaluated for 

their effectiveness in generating, and placing PCN suppressive biofumigant material into 

soil. 

 

Soil moisture investigations in the glasshouse found Brassica juncea biofumigation to 

reduce Globodera pallida viability by between 17-43%, and that efficacy could be 

improved by up to 14.3 % under certain soil moisture conditions. Soil moisture of 50% of 

field capacity was found to be more effective for biofumigation than 0, 25, 75 and 100% 

of field capacity, and water saturated soil. This could be due to an optimal water to air 

ratio within soil pores for VOC diffusion, and retention within soil. However, evidence is 

also presented which could suggest, that the optimal soil moisture condition for 

biofumigation, may be dependent upon the quantity of biofumigant biomass incorporated 



     

 
 

into soil, and the depth of biofumigant incorporation. Further work is required. In-vitro 

studies were then carried out which investigated the effect of water films surrounding 

PCN cysts, on the efficacy of biofumigant VOC’s. There was no evidence that water films 

might act as a barrier to biofumigant VOC contact with encysted PCN eggs. 

 

Maceration and incorporation implements, and combinations of implements, were 

investigated in field experiments for their effect on biofumigation efficacy against PCN. 

Biofumigation efficacy ranged between 27-34% for three geographically separated sites, 

over two years. A flail topper was found to improve biofumigation efficacy against G. 

pallida by 7% when compared to a roll conditioner. However, further investigation of 

haulm topper tines and shear-plate positioning provided no evidence that the implement 

set-up of topping implements, might influence biofumigation efficacy against PCN. 

Incorporation implements; spader, plough and rotavator, facilitated no extra efficacy 

against PCN when analysed in isolation to the effects of maceration implement, despite 

incorporating biofumigant material to diverse working depths, and despite producing 

contrasting soil structure. However, a separate analysis showed a flail-spader implement 

combination to produce a c.8% more effective biofumigation of G. pallida than a roll 

conditioner-rotavator combination. Further work is therefore required.  Biofumigant 

biomass ranged between 14-48 t ha-1 fresh weight for field studies, and equivalent to 0-

100 t ha-1 for glasshouse studies. Glucosinolate contents ranged between 3-12 µmol g-1 

dry weight between studies, with 2-propenyl (sinigrin) being the dominant GSL. Clearly, 

biofumigation could have an important role to play in the future management of PCN. 
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Common Abbreviations, Units & Symbols 
 

‘A’    assessment biofumigant pots in glasshouse experiment 1 

AChE   acetyl cholinesterase enzyme 

AHDB   Agricultural and Horticultural Development Board  

AITC   allyl-isothiocyanate  

ANOVA   analysis of variance  

BCN   beet cyst nematode 

bsp    British standard pipe unit of measurement  

c.    circa 

Cq    quantification cycle  

CV    coefficient of variation  

cv.    cultivar or variety 

‘D’    discard biofumigant pots in glasshouse experiment 2 

DMDS   dimethyl disulphide 

DMS   dimethyl sulphide 

DNA   deoxyribonucleic acid 

EU    European Union 

EV    electron volt  

g    unit related to gravitational force 

g    grams 

GB    Great Britain  

GC-MS   gas chromatograph-mass spectrometer 

GSL   glucosinolate  

h    hour 

H2    hydrogen carrier gas  

ha    hectare 

HAU   Harper Adams University 

HPLC   high performance liquid chromatography 

‘I/A’    incorporation/assessment biofumigant pots in glasshouse experiment 2 

IS    glucosinolate internal standard  

ITC    isothiocyanate  

J1-5   potato cyst nematode juvenile moult stages 1-5 

kg     kilogram 

km    kilometre  

L    litre 

LSD   least significant difference 

m    metre 



    

 
 

M    million 

mg    milligram  

mm    millimetre 

mM    millimolar  

min    minute 

mL    millilitre  

MITC   methyl-isothiocyanate  

mol    unit for quantification of a substance relative to carbon -12 

M/Z    unit for mass and charge of an ion 

n    nano 

N    nitrogen 

OM    organic-matter 

P    probability value in statistics 

Pa     pathotype group nomenclature for Globodera pallida 

PCN   potato cyst nematode  

PCR   polymerase chain reaction 

Pf     nematode population final sample date 

pH    power of hydrogen (measure of acidity/alkalinity) 

Pi     nematode population initial sample date 

PRD   potato root diffusate  

Ps     nematode population secondary sample date 

PTFE   polytetrafluoroethylene  

PTO   power take-off 

R    denotes a glucosinolate sidechain of variable length 

RDF   residual degrees of freedom 

Ro    pathotype group nomenclature for Globodera rostochiensis  

rpm    revolutions min-1 

s    seconds 

SEM   standard error of the mean  

t    metric tonne 

TDR   time domain reflectometer  

TE    a chelating agent in PCR    

thsds   thousands 

USA   United States of America 

UK    United Kingdom 

UV    ultraviolet radiation 

v/v    volume per volume  

VOC   volatile organic compound 



    

 
 

W    watt 

w/v    weight per volume 

 

 

°C    temperature in centigrade 

°    degree symbol  

µ    micro 

%    percent 

£    pounds sterling  

$    United States of America dollars 

®    registered trademark  

©    copyright 

™    unregistered trademark 

-1    representative of a unit within another unit  

-2    squared 

-3    cubed 

♂    male 

♀    female 

≤    less than or equal to 
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Literature Review  1 
 

A review of literature relevant to the potato cyst nematodes and their management in 

potato production systems in the United Kingdom  

 

1.1  The European potato  

1.1.1 Ancestry  

Potato plants belong to the Solanaceae plant family and originate from South America 

where they have been cultivated as a food crop for over 8,000 years (Lutaladio & 

Castaldi, 2009). During that time, indigenous people frequently cross pollinated 

successful landraces for improved agricultural traits such as edible tuber yield and 

palatability (Hawkes, 1978; Spooner et al., 2005). It is believed that all domesticated 

potatoes today descend from four wild relatives within the Solanum brevicaule complex 

although the most widely accepted immediate relative is the Andean potato Solanum 

tuberosum ssp. andigena (Jones, 1970; Spooner et al., 2005). Subspecies andigena was 

first imported into Europe as a botanical curiosity following colonial exploration and 

settlement of South America in the 16th and 17th centuries (Jones, 1970; Spooner et al., 

2005). Subsequent selection for early formation of tubers under temperate conditions 

resulted in sufficient genetic shift for the classification of European subspecies, 

tuberosum (syn. Irish Potato) (Jones, 1970; Hawkes, 1978; Haydock, 1990). The 

domesticated European potato is better suited to long summer photoperiods than 

subspecies andigena and has comparatively high and uniform tuber yield (Hawkes, 

1978). These characteristics, as well as the long storage potential and self-propagating 

qualities of the tubers, hereafter referred to as ‘seed’ when relating to self-propagation, 

have given rise to the global distribution and cultivation of the potato  (Hawkes, 1978). 

 

1.1.2 Physiology 

Potato plants are dicotyledonous perennial angiosperms easily identified by a paired 

arrangement of pinnately compound leaves on stems, of which there are several per 
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plant. Their canopies can grow to between 300-1000 mm in height, and roots typically 

between 400-500 mm depth (Cutter, 1992). Flowers form near the end of branches in a 

five-point star arrangement with pigmentation dependent on variety. True botanical 

seeds form after flowering within tomato-like fruits of c.15-20 mm diameter (Cutter, 

1992). The rooting system is composed of fine fibrous and adventitious roots, whilst 

stolon’s form before canopy emergence at basal nodes of the hypocotyl (Cutter 1992). 

Stolon’s generate the edible tubers which are composed of c.70-80% water and 20-30% 

solids. The solid fraction of tuber yield typically comprises 16-20% carbohydrates (95% 

starch), 0.1-0.2% fats, 2.5-3.2% nitrogenous compounds (including proteins), 0.8-2% 

minerals, and a remaining 0.6% fibre (Bajaj, 1987). Potato tubers are highly nutritious, 

globally distributed, and are the primary non-cereal source of carbohydrate worldwide 

(FAO, 2015). Figure 1.1 illustrates a pinnately compound potato leaf (A), potato fruits 

containing true botanical seed (B) and a potato tuber (C) from the variety Desiree. Figure 

1.2 shows a commercial potato crop prior to canopy closure. Differences in biomass can 

be observed between plants, which could be due to variability of seed size and spacing 

at planting, in addition to other seed and field factors (Bremner & Taha, 1966). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1:  Potato leaf (A), fruits (B) and tuber (C) from the potato variety Desiree. The 

scale relates approximately to the length of the potato tuber. 

c.50 mm 
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Figure 1.2:  Commercial potato crop (variety: Arsenal) prior to canopy closure at c.60 

days after planting, highlighting a two ridged bed of 1.8 m width. 

 

1.1.3 Production and demand  

Potatoes are grown in at least 150 countries worldwide, and are the seventh most 

economically important world crop (FAO, 2015). The United Kingdom (UK) is the 16th 

most economically important potato crop producer worldwide at a gross market value of 

c.US$664M per annum, and the eighth most economically important potato producing 

nation (FAO, 2015). Given a meagre 0.71% share of the total world potato cropped land, 

but impressive economic standing amongst potato producing nations, the UK is 

considered one of the world’s most effective producers of the crop (AHDB, 2017).  

Average ware (potatoes for human consumption) yield in the UK is c.2.5 times (c.47 t ha-

1) greater than the world average which is notably due to high fertiliser and water inputs, 

efficiency and effectiveness of mechanised production strategies and compound 

approaches to pest and disease management (FAO, 2015; AHDB, 2017).  

Mechanisation, has led to larger potato farming enterprises in the UK, which through 

1.8 m 
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economies of scale, have been able to invest heavily into the newest and most efficient 

and effective technologies, thereby maximising yields (AHDB, 2017). Potatoes in the UK 

are typically established into stone-free beds which are conventionally generated by 

autumn ploughing followed by spring time light cultivations, bed-tilling and stone 

separating. Mechanisation has changed the face of UK potato production over the last 

50 years, resulting in an approximate 97% decline in Great Britain (GB) in the number of 

growers specifically, and a 60% decline in the planted area for only a 10% decline in total 

yield per annum (AHDB, 2017). Figure 1.3 shows lightly cultivated land being bed-tilled. 

Figure 1.4 shows tilled beds being stone separated prior to potato planting which is 

illustrated in Figure 1.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3:  Tilling (A) of shakerator cultivated ground (B) using a 5.4 m wide Grimme 

bed-tiller. The working width of the tiller, which generates 3 beds during cultivations, is 

highlighted.  
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Figure 1.4:  De-stoning (A) of tilled-beds (B) using a ScanStone 1.8 m width stone 

separator.  

 

Figure 1.5:  Potato planting into single 1.8 m wide destoned beds using a Standen belt 

planter.  

1.8 m 

A 
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The potato industry in GB is currently accounted for by approximately 2000 growers who 

collectively use 116,000 ha of land to grow the national crop each year, of which c.18% 

constitutes fresh ware crop, c.30% processing crop, c.37% pre-pack fresh and c.15% 

seed (AHDB, 2017). Approximately 55% of the total area is accounted for by East Anglia 

and Yorkshire, which are predominantly ware producing regions, whilst Scotland 

accounts for 23% of the total land and is the UK’s primary seed producing region due to 

its cool seasons and subsequent unsuitability for aphid virus vectors (AHDB, 2017). A 

further 11% is accounted for by the West Midlands in England, and the remainder 

distributed across England and Wales (AHDB, 2017). Great Britain produced 5.22M 

tonnes of potatoes in 2016, of which c.15% was exported (AHDB, 2017). When 

combined with import potatoes this equates to c.100 kg of potatoes consumed per head 

of the UK population per annum, providing c.7% of the energy intake of a UK citizen each 

year (AHDB, 2017; FAO, 2015; Bates et al., 2010). High domestic demand has led to a 

near mono-varietal cropping pattern of the nation’s favourite varieties; Maris Piper, M. 

Peer, Melody, Lady Rosetta and Markies being particularly well established (30% of the 

planted area in 2016) (AHDB, 2017). Rigid consumer demand has, however, also 

selected for pest and disease pressures of which the potato cyst nematodes (PCN) 

Globodera rostochiensis (Wollenweber, 1923 [Behrens, 1975]) and Globodera pallida 

(Stone, 1973) are the most economically important pests to the UK crop; attributable to 

c.9% of the total annual UK potato crop loss (Haydock & Evans, 1998a; Evans & Brodie, 

1980). 

 

1.2  Potato cyst nematodes  

1.2.1 Taxonomy 

Potato cyst nematodes Globodera rostochiensis and G. pallida are bilaterally 

symmetrical worm-like invertebrates belonging to the cyst nematode subfamily 

Heteroderinae of the Hoplolaimidae family of the Nematoda (Decraemer & Hunt, 2013). 

Initially believed to be a strain of the beet cyst nematode (BCN) Heterodera schactii, 

PCN have undergone several taxonomic reclassifications in recent history worth noting 
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when reviewing the available literature. Wollenweber (1923) recognised a single species 

he named Heterodera rostochiensis ‘the potato strain of beet cyst nematode’ after the 

Rostock region of Germany he originally isolated his population from. Skarbilovich (1959) 

later proposed a reclassification to Heterodera (Globodera) rostochiensis after the 

characteristic globose shape of mature females. In 1973, Stone identified Heterodera 

pallida as a separate species to Heterodera rostochiensis, and two years later Behrens 

(1975) elevated the subgenus Globodera to genus. Our taxonomic understanding of 

these nematodes remains unchanged since 1975, although some researchers question 

whether newly discovered species, such as Globodera ellingtonae, might also be 

considered PCN (Handoo et al., 2012).  

 

1.2.2 Morphology and physiology  

There are few morphological differences between the two PCN species. Cysts, which 

are the globose body remains of fertilised females (Figure 1.6), range between c.250-

1000 µm diameter, and the vermiform bodies of invasive juveniles (Figure 1.7) between 

c.350-500 µm length. Qualitative differences in colour can be made between cysts. 

Mature G. pallida females are white/yellow and later tan light brown, whereas G. 

rostochiensis females are golden in their mature stage and later tan dark brown as cysts 

(Turner & Subbotin, 2013). Quantitative differences are more difficult to make, although 

the Granek’s ratio, which is the distance between the anus and vulva divided by the 

diameter of the vulva, is a good morphological diagnostic for differentiating species from 

cyst examinations. Additionally, the number of cuticular ridges between anus and vulva 

can be used for species determination. Granek’s ratio values above three are broadly 

associated with G. rostochiensis, and below three with G. pallida (Turner & Subbotin, 

2013). Stylet length and knob shape are good diagnostics for differentiating invasive 

juveniles, although these methods are now secondary to techniques such as isoelectric 

focussing, enzyme-linked immunosorbent assay, or more commonly, polymerase chain 

reaction (PCR) (Fleming & Marks, 1982; Schots et aI., 1992; Nakhla et al., 2010). 
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Figure 1.6:  Globodera pallida potato cyst nematode cyst (Source: Victoria Taylor, Arcis 

Bio. Ltd.).  

 

 

Figure 1.7:  Globodera pallida potato cyst nematode eggs and juvenile (Source: V. 

Taylor, Arcis Bio. Ltd.). 

c.800 µm 

c.100 µm 
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The physiology between PCN species differ subtly, as discussed later in the embryo 

development and hatching and chemotaxis divisions of this chapter. Globodera pallida 

hatch over a lengthier period than G. rostochiensis, are more persistent in soil, hatch at 

lower soil temperatures and metabolise lipids more slowly (Lane & Trudgill, 1999; 

Robinson et al., 1987). Consequently, G. pallida is the more successful PCN species in 

temperate regions, as discussed later in the management sections of this chapter. 

Physiological differences are also notifiable within species. Historically PCN have been 

separated into pathotypes by schemes proposed by Canto-Saenz & de Scurrah (1977) 

and by Kort et al. (1977), of which the latter is used in the UK. The Kort et al. (1977) 

scheme uses a number of Solanum clones to subdivide PCN into pathotypes based upon 

their virulence to the clones; Ro1-Ro5 for G. rostochiensis, and Pa1 and Pa2/3 for G. 

pallida respectively.  However, the pathotyping scheme has been criticised, notably by 

Trudgill (1985) who recognised that the authors had used an arbitrary methodology for 

determining the resistance of Solanum clones which were later used to determine PCN 

pathotypes. Kort et al. (1977) proposed that a Pf/Pi value (which is the ratio of cysts after 

potatoes compared to before potatoes) of ≤1 indicated varietal resistance to PCN. 

However, as Trudgill (1985) suggests, Pf/Pi measurements can be too readily influenced 

by nematode and environmental factors to be used as a measure of nematode virulence 

or plant resistance, for example; variability in the initial PCN population density, variability 

in the vigour of plant growth, and variability of the nematode in response to different 

environmental conditions. Despite these weaknesses, the scheme has been relatively 

unchallenged until recently. Eves-van den Akker et al. (2015) believe that PCN could be 

more effectively separated into virulence groups by assessment of mitochondrial 

deoxyribonucleic acid (DNA), however, this new approach is still being validated.     

 

1.2.3 Origins and distribution  

Potato cyst nematodes are indigenous to South America where they coevolved with their 

potato hosts (Turner & Evans, 1998). Globodera pallida originates north of Lake Titicaca 

along the Peruvian/Bolivian border, and G. rostochiensis originates further to the south 



    

10 
 

below 15.6° latitude where temperatures are warmer (Jones & Jones, 1984; Turner & 

Evans, 1998). Potato cyst nematodes are, however, now globally distributed over at least 

65 countries following their introduction into Europe in the late 1840’s and subsequent 

export to colonies and allied countries worldwide (Turner & Evans, 1998). It is widely 

accepted that the search for late blight (Phytophthora infestans) resistant potatoes 

following the Irish potato famine (1845-1846), as well as the use of Peruvian guano as 

fertiliser in the 19th century, are the primary vehicles through which PCN migrated to 

Europe, after which tuber exports and unchecked soil contaminated cargoes, such as 

military equipment used in World Wars I and II are suggested to have further distributed 

both species (Inagaki & Kegasawa, 1973; Jones & Jones, 1984; Jones, 1970).  Cysts 

could also have been distributed locally by wind under dry field conditions, water under 

flooded field conditions, and during soil cultivations (Decker, 1981; Turner & Subbotin, 

2013). Today, cysts are most commonly transported by farm machinery, which easily 

facilitates the spread of PCN within fields, and between fields, if not properly cleaned. 

Clods of PCN infested soil can cling to tractors and implements only to fall off during 

work, leading to localised PCN hotspots in fields.  

 

The first report of PCN in the UK was made in Lincolnshire in 1924, however, PCN have 

been suggested to be in the UK since at least 1900 (Morgan, 1925; Jones, 1970). The 

last published PCN survey (limited to just England and Wales) found that PCN were 

present in 64% of potato cropped fields, of which 67% of the populations were G. pallida, 

8% were G. rostochiensis, and the remainder were mixed populations (Minnis et al, 

2002). The higher presence of G. pallida populations in the UK today has been 

suggested to be a result of the nation’s preference for Maris Piper potatoes which confer 

resistance to G. rostochiensis but not G. pallida (Minnis et al, 2002). A more recent, but 

as yet unpublished survey, suggests the total PCN infested area in England and Wales 

to have declined to 48% (Pers. Comm. Katarzyna Dybal; PhD Research Student at 

Harper Adams University). The decline could indicate improved management, but could 

also be a consequence of different field sites being sampled between surveys. There is 
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also a possibility that as the national potato growing area has declined between surveys, 

growers have selected PCN free land to continue growing on as opposed to fields with 

high PCN populations. Only pathotypes Ro1, Pa1 and Pa2/3 are currently present in the 

UK for G. rostochiensis (Ro) and G. pallida (Pa) (AHDB, 2015). See Marks & Brodie 

(1998), and Minnis et al. (2002) for global and UK PCN distribution maps respectively. 

 

1.2.4 Lifecycle  

Potato cyst nematodes are specialised sedentary endoparasites with several survival 

strategies. Some populations can persist for 30 years between host crops as encysted 

juveniles, and then at low-moderate population levels (c.1-50 eggs g-1 soil), multiply by 

up to 50 times in a lifecycle (Haydock & Evans, 1998b; Wale et al., 2011). 

 

1.2.4.1 Embryo development and hatching 

The PCN lifecycle commences when a free-living adult male (fifth juvenile moult: J5) 

mates with a J5 female (Figure 1.8: A, B). Embryos known as first stage juveniles (J1) 

develop in the female to form egg encased vermiform second stage juveniles (J2), of 

which there can be up to 600 per female adult (Figure 1.8: B) (Wale et al., 2011; Jones 

& Jones, 1984). The female subsequently dies and detaches from the root system to 

surrounding soil (Figure 1.8: B,C), however, during the terminal stages of the J5 female’s 

life, signals may be transmitted to developing J1/J2 juveniles to influence juvenile 

hatching behaviour  in response to a declining host plant photoperiod (Perry et al., 2013). 

The signals which are indicative of unfavourable conditions for further potato parasitism 

halt juvenile activity through an arrested developmental mechanism known as obligate 

diapause which is not broken until an extended period of chilling and reheating has been 

experienced over several weeks, such as a winter period going into the spring season 

(Perry et al., 2013). These temperature fluctuations are experienced whilst eggs are still 

in the body remains of their dead female parent (cyst) (Figure 1.8: B, C) (Duncan, 1995).  

Cysts protect PCN eggs and are formed following polyphenol oxidase tanning of the 

cuticular tissues of a recently dead female.  
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Figure 1.8:  Generic potato cyst nematode life-cycle. Note/ nematode moults within this 

figure are only approximately to scale. 

A) J5♂ attracted to J5♀ 

and mates, fertilising J1 
eggs, then dies 

C) Encysted J2’s in dormancy in 

the soil (some dead and some 
viable due to natural decline) 

D) J2 hatching from viable 

eggs after breaking diapause 
and quiescence 

E) J2 chemotaxis through soil 

and root invasion                                        

F) J2/3 syncytium formation and 

gender determination (♀/♂) 

G♂) J4 male cuticle 
formation in the root  

G♀) J4 female emerges 

from the root to the soil 

H) Free-living J5 ♂ migrates 

from the root to the soil, and 
mates with a J5♀fertilising J1 

eggs 

J) New encysted J2’s in soil 

Root transverse section 

Syncytium 

Vascular 
bundle 

PCN  

Cortex 

Epidermis  

B) Fertilised J5 ♀ dies and 

detaches to the soil surrounding 
roots as a cyst encasing viable 
eggs 

I) Fertilised J5 ♀ dies and 

detaches to the soil 
surrounding roots as a cyst 
encasing viable eggs 

Figure by William Watts (Harper Adams University) 

c.1 mm 
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Juveniles do not hatch continuously from eggs. Obligate diapause is the first mechanism 

which prevents PCN hatching in the absence of a host (Turner & Subbotin, 2013). The 

second mechanism is obligate quiescence, which is an arrested developmental state 

only broken by favourable edaphic conditions such as soil temperature (hatching initiates 

between c. 5-11°C for both species although c.16°C is optimal for mass G. pallida hatch 

and c.20°C for G. rostochiensis) and by stimulation from host potato root diffusates 

(PRD) after obligate diapause has broken (Kaczmarek, 2014; Turner & Subbotin, 2013). 

Potato root diffusate permeates the egg shell of J2 PCN which mediates loss of Ca2+ 

from the egg shell, which in turn allows the release of trehalose from the perivitelline fluid 

surrounding the egg encased juvenile nematode in exchange for water (Turner & 

Subbotin, 2013; Perry et al., 2013). Water hydrates the juvenile which initiates metabolic 

activity. The juvenile then either commences stylet probing and cutting of the egg shell 

to begin hatching, or undergoes a further quiescent stage known as facultative 

quiescence (Figure 1.8: C, D) (Perry et al., 2013).  

 

Facultative quiescence is the third dormancy stage and is less stable than those 

previously mentioned. Facultative quiescence is induced when conditions suddenly 

become unfavourable after breaking obligate quiescence, which could be due to 

changing environmental conditions and/or the absence of suitable host cues during or 

after breaking obligate quiescence (Perry et al., 2013). Potato cyst nematodes in this 

stage of dormancy are partially hydrated and metabolically active which leads to 

spontaneous hatching thereafter. Spontaneous hatching in the absence of PRD along 

with predation losses and physical damage to encysted juveniles is included in the 

‘natural decline’ of PCN populations between host crops (most often 10-30% per annum 

depending on season, population, soil biota and PCN species; G. pallida typically 

declining more slowly than G. rostochiensis, although up to 50% decline per annum has 

been recorded) (Devine et al., 1999; Winslow & Willis, 1972; Whitehead, 2002). A final 

dormancy strategy, facultative diapause, is initiated in unhatched juveniles when 

environmental cues indicate the onset of a winter period, and therefore, poor conditions 
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for parasitism. This stage is again terminated by increasing soil temperatures in the 

spring (Turner & Subbotin, 2013; Perry et al., 2013). When environmental conditions and 

host cues are suitable, between 70-80% of encysted juveniles can hatch (Figure 1.8: D) 

(Rawsthorne & Brodie, 1986; Kaczmarek, 2014). The remaining 20-30% ensure that a 

PCN population persists even in a poor season when a host might die prematurely. 

Typically, G. pallida eggs hatch more uniformly in the presence of a host than G. 

rostochiensis (Kaczmarek, 2014). It is possible that this characteristic is a factor which 

leads to higher natural decline in G. rostochiensis than G. pallida, as encysted juveniles 

frequently break diapause but not quiescence.  

 

1.2.4.2 Chemotaxis and root invasion 

After hatching, a J2 nematode initiates host location using its amphids; a pair of 

chemoreceptive organs located on either side of the nematode head next to the mouth 

(Duncan, 1995). The J2 follows gradients of PRD in soil water and from soil air by 

swimming along water channels between soil colloids to the potato host roots (Figure 

1.8: E) (Duncan, 1995; Reynolds et al, 2011). This is known as long-distance chemotaxis 

which describes general J2 movement towards higher PRD semiochemical 

concentrations (Reynolds et al, 2011). Long distance chemotaxis can initiate from up to 

c.800 mm away from the host roots (Turner & Rowe, 2006). The J2 then follows short-

distance attractants to locate potato roots, and then local attractants to orientate itself to 

a preferred invasion site near the point of emergence of lateral roots from primary roots 

or at root tips (Reynolds et al, 2011; Jones & Jones, 1984). Second stage juveniles 

proceed to probe and pierce the root epidermis with their stylet, using subventral 

oesophageal proteins known as Egase enzymes (β-1, 4-endoglucanase) to soften the 

root tissues, initially by cleaving cellulose bonds in the epidermis (Figure 1.8: E) (Perry 

et al, 2013; Smant et al, 1997; Smant et al, 1998). This enables the J2 to enter the root 

cortex through which it migrates within one to five minutes to the vascular bundle 

(Duncan, 1995; von Mende et al., 1998). The J2 makes a series of precise stylet thrusts 

at the vascular bundle to break through the pericycle and establishes a feeding tube 
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through which it draws nutrition during parasitism (Duncan, 1995; Turner & Subbotin, 

2013). This exploratory stage within the PCN lifecycle persists for approximately 11 days 

in G. rostochiensis before lipid reserves in the J2 are exhausted and the juvenile dies 

(Perry, 1998). Globodera pallida, with higher lipid content and lower lipid metabolism 

could potentially survive for longer during this ‘free-living’ period (Haydock & Evans, 

1998a; von Mende et al., 1998). 

 

1.2.4.3 Moult development and mating 

Once a feeding tube has been established, the J2 nematode injects saliva from its 

pharyngeal glands into the chosen plant cell and then the contents are withdrawn into 

the J2 (Turner & Subbotin, 2013). This action enlarges roots cells within the affected 

area by breaking down the cell walls to form a single cavernous nutrient transfer cell 

known as a syncytium (Figure 1.8: F) (von Mende et al., 1998). The size of the syncytium 

is critical in determining the gender to which the J2 becomes; a large syncytium with 

greater nutrient transfer potential leads to the development of a female nematode whilst 

a smaller syncytium results in the development of a male nematode (Grundler et al., 

1991). The development from J2 to J3 moult typically takes around seven days after 

which the J3 becomes distinguishable from J2 by its newly developed genital primordia 

and rectum. The male J3 has a single testis and the female has paired ovaries (Turner 

& Subbotin, 2013). However, J3 moults are very alike in appearance when viewed using 

a dissection microscope and so researchers do not routinely distinguish between the 

genders (Figure 1.8: F).  

 

During the J3 moult stage, females form a globose shape and develop a reproductive 

system and eggs, after which they are considered a J4 moult (Figure 1.8: G♀). The J4 

female body subsequently ruptures the root cortex and epidermis to become exposed to 

the rhizosphere for mating (Figure 1.8: H) (Turner & Subbotin, 2013). The J3 male moult 

stage develops at the same rate as the female, however, only requiring c.1% of the 

nutrition of a developing female, the male remains comparatively small and saccate 
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(Turner & Subbotin, 2013; Evans & Trudgill, 1992). During the fourth moult, males reform 

their body to a vermiform J5 male approximately three times the length of a J2, within 

the cuticle of their J3 body (Figure 1.8: G♂, H) (von Mende et al., 1998). The adult J5 

male subsequently emerges and migrates through the rhizosphere, following 

pheromones to root exposed J5 females with which it mates and completes its 

generations life-cycle (Figure 1.8: H, I, J). The composition of the female sex 

pheromones of PCN is still unknown. They are, however, known to be the sole attractant 

of males to females for copulation (Riga et al., 1996). Potato root exudates have been 

shown to be ineffective in stimulating mature males (Riga et al., 1996). Furthermore, the 

pheromone attractants are known to be secreted from the whole body of the mature 

female PCN, and to be required at an accumulated concentration for mature males to be 

attracted into mating (Green & Greet, 1972). The concentration of sex pheromone 

required for mating is unknown. Each male can fertilise several females, however, they 

only survive for around 10 days after emergence (Evans, 1970). Developmental time 

from J3 moult to mature J5 moults can be as short as 20 days depending upon 

environmental conditions (Turner & Subbotin, 2013; von Mende et al., 1998). A PCN 

lifecycle can take between 30-50 days to complete, although will often extend up to 100 

days (Turner & Subbotin, 2013). 

 

1.2.5 Crop damage   

Intracellular migration of J2 PCN through the roots of potato causes localised root 

damage which generates root galleries. More extensive root damage occurs when PCN 

advance to J3 moults and establish syncytium (Schmitt & Ferris, 1998). Phloem are 

damaged through feeding and photosynthate drained from the vascular system to the 

syncytium. This can reduce leaf size, internode length and the numbers of stems, 

although the root system biomass is most notably reduced (Schmitt & Ferris, 1998; 

Schans & Arntzen, 1991). Xylem are also damaged during nematode exploration of the 

vascular bundle, which in combination with reduced root biomass can lead to poor water 

and nutrient uptake, particularly of nitrogen, phosphorus and potassium (Figure 1.9). This 
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can cause moisture stress and stunting in the plant, and sometimes plant death (Figure 

1.10) in intolerant varieties (Trudgill, 1986). In peat soils such as the Fenland of East 

Anglia, potato plants can withstand far greater PCN parasitism without a yield reduction 

due to the fertility and moisture retentive capacity of the high organic-matter (OM) peat. 

Light sandy soils which are common throughout the remainder of East Anglia and the 

English Midlands, can be prone to severe PCN damage at low population densities due 

to poorer fertility and low water retention properties (Schmitt & Ferris, 1998). 

 

 

Figure 1.9: Potato cyst nematode damage induced phosphorous deficiency (purple leaf 

coloration) of the potato variety Taurus. 

 

 

 

 

 

 

 

c.50 mm 



    

18 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10: Severe potato cyst nematode damage causing stunting and plant death of 

the intolerant potato variety Marfona. The scale indicates a single ridge width from a 1.8 

m wide two ridged bed. 

 

During J4 and J5 female moults, PCN rupture the root cortex as they emerge from roots 

which causes extensive physical damage to roots, in addition to the nutrient sink they 

maintain on the infested plant (Turner & Subbotin, 2013; Schmitt & Ferris, 1998). The J5 

male moult also damages roots as it emerges but due to its much smaller and vermiform 

shape, damage is localised and low level.  It is estimated that PCN population densities 

as low as 5-10 eggs g-1 soil can inflict economic damage in untreated intolerant potato 

varieties and that PCN are accountable for c.£25-50M in losses to the UK crop per 

annum (Twinning et al., 2009; Wale et al., 2011; Winslow & Willis, 1972). Potato cyst 

nematode damage is easily identifiable in the field as circular or elliptical patches of dead 

or stunted plants. Infested plants can also be lifted and cysts observed on their roots by 

eye after tuber initiation (Figure 1.11). To prevent PCN population increases and damage 

it has been estimated that management strategies need to be at least 94% effective 

(Wale et al., 2011). Achieving this high level of control is a challenge for growers and so 

0.9 m 
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many use several strategies between potato crops. Care should also be taken to manage 

fungal pathogens such as Rhizoctonia solani, which interact synergistically with PCN 

and enhance yield losses (Back et al., 2006).  

 

Figure 1.11: Globodera pallida potato cyst nematode cysts (marked *) on roots.  

 

1.3  Potato cyst nematode management  

Potato cyst nematode management practices are used by growers to try and achieve 

economically viable yields in both the short and long term. Emphasis is placed on 

keeping PCN populations below threshold levels (Whitehead & Turner, 1998). This can 

be achieved using cultural, biological and chemical management methods. Historically, 

cultural control methods have been defined as practices used to prevent the distribution 

and proliferation of PCN through simple field and potato variety selections, and sanitary 

techniques (Brown, 1978). Biological control involves the application of predatory or 

parasitic organisms to soil to reduce PCN populations (Brown, 1978; Stirling 1991). 

Chemical management relies on the application of toxic compounds to soil used to kill or 

paralyse encysted and migratory juveniles (Haydock et al., 2013). However, before a 

PCN management strategy can be implemented, the scale of PCN infestation should be 

c.5 mm 



    

20 
 

identified. Appropriate management techniques can then be selected to reduce PCN to 

sub-threshold population levels on an individual field basis.   

 

1.3.1 Sanitation and potato cyst nematode sampling 

Sanitation includes any method used to prevent PCN movement between fields and 

farms or to prevent population increases on self-set ‘volunteer’ plants from previous 

cropping (Turner & Subbotin, 2013). European Council Directive 69/465/EEC (OJEC, 

1969) first recognised the need for sanitary procedures for PCN management in Europe. 

However, poor knowledge of factors influencing PCN movement and population 

dynamics, in addition to overestimating the effectiveness of resistant potato varieties and 

synthetic management tools, led to increasing PCN populations. New European 

legislation; Directive 2007/33/EC, addresses some of those weaknesses (OJEU, 2007). 

Ware potatoes can be produced on infested land, however, an extensive management 

programme should be followed in compliance with other pesticide approvals and 

agronomic practice legislation (Regulation EC/1107/2009 and Directive 2009/128/EEC). 

Additionally, designated areas for ‘cull soil’ and cleaning of potato equipment between 

operations is now required. Dr Andy Evans recently suggested at the 2017 Potatoes in 

Practice industry event (Dundee, UK) that where practical, fields with high PCN 

populations should be cultivated or harvested after other potato fields as an extra 

measure used to limit PCN distribution between fields (Pers. Comm. Dr Andy Evans: 

Nematologist at Scotlands Rural College). Control of volunteer plants is less well defined 

in the legislation but now common practice in the UK regardless. Cereal crops typically 

follow potato in the UK so that a broad-leaf herbicide such as Butoxone DB Extra®, 

Nufarm UK (2, 4-DB + MCPA) or Hiker®, Dow AgroSciences (Florasulam + Fluroxypyr) 

can be used for volunteer management (Lainsbury, 2016). In high PCN risk situations, 

planting of natural windbreaks (hedges and small wooded areas) can be adopted to 

prevent wind dispersal of PCN in small soil aggregates (Turner & Subbotin, 2013). The 

new European Union (EU) directive also sets a harmonized soil sampling system for 

determining PCN presence in fields, which requires 0.5% of the total national ware crop, 
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and 100% of the national seed crop to be sampled each year for PCN. This sampling 

system is useful for surveying PCN occurrence and movement in the UK in addition to 

limiting the opportunity for PCN distribution on seed stocks (OJEU, 2007). 

 

1.3.2 Crop rotation 

Crop rotation describes a cyclic order of cropping which begins and ends with a like crop; 

for instance, potato-wheat-barley-oilseed rape-wheat-potato. A good rotation should be 

sufficiently complex to limit the build-up of crop diseases and pests by staggering like 

crops which would have similar pest and disease susceptibilities. Long rotations allow 

time for natural viability decline of an organism which in PCN is mostly influenced by 

spontaneous hatching, predation by natural enemies and physical damage to cysts and 

eggs by cultivations (Lane & Trudgill, 1999; Stirling, 1991; Haley, 2004). Rotation can be 

an effective PCN management strategy, however, potato production economics typically 

require potatoes be grown every 4-6 years which is too short to benefit from the 10-30% 

natural decline expected per annum (Lane & Trudgill, 1999). Furthermore, G. pallida 

decline more slowly than G. rostochiensis between potato crops, so additional 

management practices are often required to achieve economic potato yields where this 

species is present (Turner & Subbotin, 2013). Hancock (1988) suggests rotation lengths 

of 7-8 years for effective PCN management, which corroborates with historical records 

describing a seven-course potato rotation used in South America by the Incas (Haydock 

& Evans, 1998a). Table 1.1 has been adapted from Haydock & Evans (1998b) and 

illustrates the expected number of viable PCN eggs in soil over a ten year period for an 

initial population of 100 viable eggs g-1 soil declining naturally between 10-50% per 

annum. Population density categories; low, medium and high, have been assigned to 

the expected viable eggs g-1 soil figures for each year at each decline rate whereby 0-10 

eggs is considered low, 11-59 eggs is considered medium, and 60-100 eggs is 

considered a high PCN population density. 
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Table 1.1: Natural rotational decline of a ‘high’ 100 eggs g-1 soil PCN population over 

ten years at decline rates between 10-50% (Adapted from Haydock & Evans, 1998b). 

 

1.3.3 Resistant and tolerant potato varieties 

The ability of a plant to restrict or prevent a parasite from multiplying is known as 

resistance (Nijboer & Parleviet, 1990). Mechanisms of PCN resistance in potato include 

vacuolation of syncytial cytoplasm, necrosis around an invasion site and enclosure of 

syncytium (Hoopes et al., 1978). All restrict or degenerate feeding sites sufficiently to 

inhibit juvenile growth or cause death. Giebel (1982) suggested that Egases used by 

PCN during root invasion can hydrolyse glycosides found in some resistant potato plant 

roots which causes a release of phenolic aglycones, subsequently causing the necrosis 

of invasion sites as mentioned. The H1 gene, common to the variety Maris Piper, confers 

a robust monogenic resistance to G. rostochiensis pathotypes Ro1 and Ro4 which 

causes juvenile death by syncytium degradation (Huijsman, 1955; Hoopes et al., 1978).  

Due to the robustness and widespread inclusion of this gene in breeding programmes, 

G. rostochiensis now poses a reduced threat to UK crops, however, only polygenic 

resistance is available for G. pallida. Moreover, use of H1 varieties has selected for G. 

pallida in the UK so that this species now poses a greater threat to potato production 

(Minnis et al., 2002). Using a scale of 1-9 where 1 is equivalent to no resistance and 9 is 

Population 
density category

10 20 30 40 50

0 100 100 100 100 100 HIGH
1 90 80 70 60 50

2 81 64 49 36 25

3 73 51 34 22 13

4 66 41 24 13 6

5 59 33 17 8 3

6 53 26 12 5 2

7 48 21 8 3 1

8 43 17 6 2 0

9 39 13 4 1 0

10 35 11 3 1 0
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less than 1% susceptible, only Panther scores an 8 for G. pallida resistance in 

Agricultural and Horticultural Development Board (AHDB) Potatoes Division validated 

experiments (OJEU, 2007; AHDB, 2015). A further 3 varieties score 6 whilst all other 

varieties are at least 15% susceptible (AHDB, 2015). The varieties Arsenal, Innovator, 

Eurostar and Performer are suggested as having a score of 9, however, the AHDB have 

not validated these varieties (AHDB, 2015). Although G. pallida resistant varieties are 

limited, tolerant varieties can be used to achieve economic yields in the presence of 

PCN. Tolerance describes the ability of a potato plant to withstand or recover from PCN 

parasitism (Trudgill, 1991). Tolerant varieties usually have large root systems which 

compensate for the nutrient sink effects of PCN parasitism. However, tolerance of 

damage is independent of resistance so that where a PCN tolerant but non-resistant 

potato variety is grown, PCN populations can increase to levels which would greatly 

reduce yield in a subsequent intolerant crop (Trudgill, 1991). Ideally a potato variety 

should be resistant and tolerant of PCN. Whilst some new varieties offer resistance and 

tolerance to PCN, they tend to be only suitable for the processing industry. Figure 1.12 

shows the resistant and tolerant variety Arsenal and Figure 1.13 the resistant but 

intolerant variety Innovator at c.90 days after planting on a field site with over 100 PCN 

eggs g-1 soil. 
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Figure 1.12: Resistant tolerant potato cv. Arsenal ground cover at c.90 days after 

planting, on a site with c.100 potato cyst nematode eggs g-1 soil. The scale indicates a 

single ridge width from a 1.8 m wide two ridged bed. 

Figure 1.13: Resistant intolerant potato cv. Innovator ground cover at c.90 days after 

planting, on a site with c.100 potato cyst nematode eggs g-1 soil. The scale indicates a 

single ridge width from a 1.8 m wide two ridged bed. 

0.9 m 

0.9 m 
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1.3.4 Trap cropping 

Trap crops stimulate PCN hatch and root invasion, but either do not support PCN 

development, or are terminated before new cysts are formed (Scholte, 2000a). A close 

relative of potato, Solanum sisymbriifolium (Figure 1.14), the Sticky Nightshade, is 

resistant to both PCN species and has been recorded to reduce PCN populations by up 

to 80% when grown for 150 days under field conditions (Timmermans et al., 2006; 

Scholte, 2000a). However, some field populations of PCN appear to hatch less readily 

than others when in the presence of S. sisymbriifolium, which is a potential limitation to 

the technique (Scholte, 2000a). Solanum sisymbriifolium can also be difficult to establish 

and requires a full growing season be set aside in the UK for PCN to be reduced 

effectively. Solanum sisymbriifolium seed and establishment are also costly at c.£285 

ha-1 and c.£70-100 ha-1 respectively (Sparkes, 2013). Solanum sisymbriifolium is 

therefore only justifiable for fields with high populations of susceptible PCN. Furthermore, 

current advice suggests the crop be planted between May and July in Northern Europe 

which poses a workload clash with other on farm operations such as blight spraying, 

harvest of early potato crops and second planting of seed crops (Timmermans et al., 

2007). Black Nightshade, Solanum nigrum (Figure 1.15), is fully resistant to G. 

rostochiensis but only partially resistant to G. pallida (Scholte, 2000a). It is also 

suggested to be less tolerant of PCN than S. sisymbriifolium (Scholte, 2000b), however, 

Figure 1.15 presents some anecdotal evidence that the tolerance of the trap crop is quite 

high. Solanum nigrum is commonly considered a weed species and so perhaps less 

likely to be used for PCN reduction in commercial systems than S. sisymbriifolium. 

However, the trap crop has an emerging interest in the industry and has recently been 

showcased at the 2017 AHDB strategic potato farm demonstrations for the West at 

Shawbury, Shropshire (UK). Alternatively,  partially resistant and tolerant discard 

potatoes known as ‘chats’ could be planted later in the year between cash crops and 

grown for approximately 6-8 weeks to stimulate hatching and invasion. This technique 

would produce a market for the waste potatoes which are less expensive to purchase 

and easier to establish than S. sisymbriifolium, however, management of volunteers 
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would be crucial to prevent virulent G. pallida strains overcoming the currently available 

partial resistance in these potato varieties (Pers. Comm. Dr Ivan Grove: Principal 

Lecturer and Nematologist at Harper Adams University & Peter Blaylock: Independent 

Potato Agronomist). Additionally, care to ensure cysts did not form and detach from roots 

to soil whilst growing the crop would have to be taken (Scholte, 2000a). Trap cropping 

maintains a following in the UK with S. sisymbriifolium products DeCyst and Foil-sis 

promoted by UK agronomy companies Greenvale AP and Branston Ltd respectively, and 

Barworth Agriculture promoting S. nigrum products. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14: Potato cyst nematode trap crop Solanum sisymbriifolium, at c.50 days after 

planting on a site with c.100 PCN eggs g-1 soil. 
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Figure 1.15: Potato cyst nematode trap crop Solanum nigrum, at c.50 days after planting 

on a site with c.100 PCN eggs g-1 soil. 

 

1.3.5 Biological control  

Biological control is the term used to describe methods of reducing pest populations 

using their natural enemies. For PCN management these currently include 

nematophagous fungi and bacteria (Stirling, 1991; Kerry, 1988). Nematophagous fungi 

parasitise nematodes, or capture nematodes using specialised hyphal nooses (Stirling, 

1991). Most are obligate parasites although some also have facultative saprophytic 

survival strategies such as Purpureocillium lilacinus and Pochonia chlamydosporia 

(Karssen et al., 2013; Kerry, 1988). Whilst facultative species tend to be less efficacious 

than obligate parasites, they represent the greatest opportunity for long term nematode 

suppression on account of their persistence in soil (Kerry, 1988). Nematophagous fungi 

with endoparasitic lifecycles colonise the body of their host with assimilative hyphae, 

zoosporgania, resting spores or conidiophores (Stirling, 1991). Infection of the nematode 

host is achieved either through successful chemo-location by motile flagellated 

zoospores which encyst near the anus of a parasitized nematode through successful 

c.40 mm 
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adhesion of spores to nematodes and subsequent body assimilation by hyphae, or by 

ingestion of conidia which germinate in the gut of a nematode (Stirling, 1991). 

Ectoparasitic nematophagous fungi are perhaps better recognised and include the 

trapping fungi which form hyphal nooses to ensnare motile nematodes (Stirling, 1991). 

The facultative endoparasitic fungi P. chlamydosporia has been found 70% effective in 

reducing multiplication of G. pallida in the glasshouse, and 51% effective in the field when 

granular applied (Crump, 1998; Tobin et al., 2008). Purpureocillium lilacinus is another 

promising facultative endoparsitic fungus which has been found 48-70% effective in 

countering PCN damage in potato when applied as a tuber dip at planting (Davide and 

Zorilla, 1983). Other PCN parasitic nematophagous fungi include Trichoderma 

harzianum and Plectospaerella cucumerina, however, results remain inconsistent and 

field scale validation and commercial production of these biocontrol products is currently 

limited (Dandurand & Knudsen, 2016). The endoparasitc bacterium Pasteuria penetrans 

offers another option which could potentially be used for PCN management but is 

currently unavailable commercially (Pers. Comm. Dr Keith Davies: Senior Lecturer and 

Nematologist investigating P. penetrans for management of potato cyst nematodes at 

the University of Hertfordshire). Pasteuria penetrans is persistent in soil and resilient to 

nematicides and so has development potential (Karssen et al., 2013). 

 

1.3.6 Nematicides and nematostats 

Nematicides are chemical compounds which are lethal to nematodes whilst nematistats, 

or nematistatics, are chemical compounds which provide sub-lethal effects used to 

disrupt nematode behaviour (Haydock et al., 2013; Hague & Gowen, 1987). Many 

nematicidal substances are available worldwide although only metam-sodium (example 

Metham 510®, Certis) and dazomet (Basamid®, BASF) are currently registered for use 

in the UK (Lainsbury, 2016). Both liberate biocidal methyl-isothiocyanate (MITC) gas 

upon contact with soil and so are typically autumn applied to allow the toxicant to 

decompose before planting of a potato crop (Lainsbury, 2016; Cremlyn, 1991). Methyl-

isothiocyanate is liberated from metam-sodium in response to a decline from normal 
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atmospheric pressure and contact with soil water after liquid injection, and from dazomet 

after granules breakdown in a hydrolysis reaction with soil water (Figure 1.16) (Cremlyn, 

1991; Hague & Gowen, 1987). Isothiocyanates are strong electrophilic reagents which 

are suggested to move through soil water and air by diffusion, permeating cysts and 

degrading proteins and essential enzymes in encysted juveniles (Hague & Gowen, 1987; 

Kawakishi & Kaneko, 1985). Soil moisture should range between 30-70% of field 

capacity at application for optimal PCN reduction, and soil temperature be above 15°C 

for optimal MITC release, movement and retention in soil (Hague & Gowen, 1987; 

Haydock et al., 2013). Methyl-isothiocyanate tends to be more efficacious against PCN 

than nematistat compounds. Up to 80% reduction in PCN egg viability can be achieved 

when applying fumigants such as metam-sodium to light land. However, efficacy is 

greatly reduced on organic soils where the fumigant is adsorped by OM (Haydock & 

Evans, 1998a; Hague & Gowen, 1987; Cremlyn, 1991). Application costs can also be 

prohibitive so that fumigation is only used for management of high PCN infestations 

under certain environmental conditions.  

 

Nematistats are granular products applied to depths of 100-200 mm from specified 

incorporation equipment during the crop establishment stage i.e. bed-tiller, stone 

separator, other rotary based tillers (Figure 1.17), whereupon the active substance 

diffuses into soil water (Woods & Haydock, 2000; Woods et al., 1999; Lainsbury, 2016; 

Hague & Gowen, 1987). Figure 1.18 indicates the damage that could be expected in 

PCN infested fields when granular nematistats are poorly, or intermittently applied. 

Approved compounds for UK use include organophosphates fosthiazate (Nemathorin®, 

Syngenta) and ethoprophos (Mocap®, Certis) and the oxime-carbamate oxamyl 

(Vydate®, DuPont), however, ethoprophos is currently suggested to offer only a useful 

reduction of PCN rather than control (Lainsbury, 2016). All inhibit acetylcholine esterase 

(AChE) enzyme which impairs movement in invasive PCN leading to lipid depletion and 

often death by starvation (Haydock et al., 2013; Hague & Gowen, 1987). Potato cyst 

nematodes can recover from AChE inhibition, however, root invasion is sufficiently 
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delayed in many instances so that early damage to potato plants is greatly reduced 

(Hague, 1979; Haydock & Evans, 1998a). Additionally, fosthiazate and oxamyl provide 

good systemic movement in potato xylem and phloem and so have some action against 

PCN in-vivo (Hague & Gowen, 1987). Granular nematistats offer in excess of 59% 

control of PCN, but are less costly than fumigants in the UK and therefore more routinely 

relied upon (Tobin et al., 2008).  Moisture guidelines for application mention only that soil 

should be damp and that soil temperature should be in excess of 15°C for optimal PCN 

suppression (Hague & Gowen, 1987; Lainsbury, 2016). However, soil temperatures are 

often much lower than 15°C at planting in the UK and so these guidelines are impractical 

for the UK situation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.16: Metam-sodium (A) and dazoment (B) hydrolysis and rearrangement to 

methyl-isothiocyanate (Source: Adapted from Cremlyn, 1991). 
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Figure 1.17: Refilling the hoppers of a 1.8 m wide Jones Engineering bed-tiller with 

oxamyl nematostat. 

 

Figure 1.18: Potato cyst nematode damage patches (dark areas) in a potato field with 

poor and intermittent nematistat incorporation (Source: Dr Ivan Grove, Harper Adams 

University). Scale indicates the width of three 1.8 m wide potato beds. 
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A major limitation to the continued use of nematicides and nematistats in the UK could 

be the enforcement of EU Regulation (EC)1107/2009 which threatens to initiate a phase 

out of pesticides on a hazard basis (OJEU, 2009; Hillocks, 2012). The regulation is also 

currently limiting new products coming to the market. Alternative management options 

are therefore required. Several ‘natural’ nematicides reliant on aldehydes, ketones, 

linolenic acids and chitin based products are available and believed to be more 

acceptable to legislators although the efficacy of these products remains questionable in 

addition to their commercial availability, longevity and classification as nematicides 

(Haydock et al., 2013; OJEU, 2009). Well established products which are reliant on 

sulphides found in garlic (Allium sativum), such as the dimethyl disulphide (DMDS) 

fumigant Paladain® (Arkema) or granular NEMguard® (Certis), could also offer potential 

as PCN management tools. However, neither are currently registered for management 

of PCN in the UK. Another alternative is the use of brassica green manure plant residues 

for the biological fumigation (biofumigation) of PCN (Ngala et al., 2014). Biofumigation 

currently falls outside of European pesticide legislation but utilises similar compounds to 

MITC and so poses the potential to replace nematicides and nematostats should they be 

retracted from industry (OJEU, 2009; Haydock et al., 2013).  

 

1.4  Biofumigation  

1.4.1 Introduction to biofumigation 

The term ‘Biofumigation’ was coined in the early 1990’s to describe the suppression of 

soil-borne weeds, pests and pathogens following exposure to toxic volatile gases, 

principally isothiocyanates (ITC), liberated from brassica root and leaf tissues after 

mechanical maceration (Kirkegaard et al., 1993; Angus et al., 1994) (Figure 1.19). The 

volatile organic compound (VOC) emitting tissues are best incorporated into soil (Figure 

1.20), and where possible, the soil surface sealed using either a mechanical smear roller, 

plastic film or irrigation to improve VOC retention and the overall efficacy of the technique 

(Matthiessen et al., 2004; Lord et al., 2011). The most common biofumigant species used 

for PCN management in the UK today include Brassica juncea (syn. Indian mustard), 
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Eruca sativa (syn. rocket/arugala) and Raphanus sativus (syn. oil-raddish) (Figures 1.21-

3), however, many other brassica species are also available (Ngala et al., 2014; Lord et 

al., 2011).  

Figure 1.19: Rear mounted 2 m wide hammer-tine flail-topper used to macerate a 

Brassica juncea biofumigant crop. 

Figure 1.20: A 2 m wide rotary-tiller (rotavator) used to incorporate a Brassica juncea 

biofumigant crop. 
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Figure 1.21: Brassica juncea biofumigant crop at early-flowering.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.22: Eruca sativa biofumigant crop at mid-flowering. 
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Figure 1.23: Raphanus sativus biofumigant crop pre-flowering. 

 

1.4.2 Background to biofumigation of potato cyst nematodes 

Morgan (1925) first documented pest suppression by brassica VOC’s when she 

observed reduced PCN (identified as H. rostochiensis at this time) incidence on the roots 

of potato plants grown in close proximity to white mustard Sinapis alba. Triffitt (1930) 

repeated the work and identified PCN suppression was achieved through a biochemical 

mechanism, determined that the mechanism could be activated in both root and plant 

tissues in white mustard specifically, and also proved that white mustard biochemistry 

was implicated in reducing the size of surviving PCN cysts on potato roots. Ellenby 

(1945a) discovered that ITC’s were responsible for brassica mediated PCN suppression, 

and also found that ITC’s could have sub-lethal effects on PCN, resulting in reversible 

paralysis where exposure time and/or ITC concentrations were insufficient to kill the 

nematodes. These observations developed into further experiments aimed at improving 

the efficacy of ITC’s against PCN, primarily by investigation of carrier materials for 

concentrated mustard oil extracts (Ellenby 1945b; Ellenby, 1951). The research was 

probably inspired by Smedly (1939) who had researched talcum powder as a carrier for 

c.100 mm 
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synthetic ITC oils to be worked into soil in a similar manner to modern granular 

nematostats. However, the research was eventually stifled following the introduction and 

widespread uptake of new, economical, highly efficacious and reliable fumigant 

nematicides (Cremlyn, 1991). Novel synthetic nematicides now rarely enter the industry 

due to increasingly restrictive legislation.  The application of ITC liberating compounds 

to soil on talcum powder granules specifically, is so similar to other scrutinised pesticides 

that product registration is unlikely (Hillocks, 2012). Only green manure residue 

applications appear to be feasible for management of PCN at the current time. There 

are, however, many factors which influence the efficacy of this technique which need 

consideration, principally the occurrence and successful enzymatic hydrolysis of 

glucosinolates (GSL’s) which liberate biofumigant VOC’s such as ITC’s upon 

degradation. 

 

1.4.3 Glucosinolate-myrosinase system 

Glucosinolates are secondary plant metabolites which are chemically diverse of a single 

side-chain (designated ‘R’). They have a characteristic core which includes a 

thiohydroximate anion attached to a sulphate residue (referred to as the aglycone 

moiety) and a glucose moiety (Figure 1.24) (Agerbirk & Olsen, 2012; Ettlinger & 

Lundeen, 1956). The GSL class of glucosides is currently known to include 132 variants 

which can be classified according to their precursor amino acids such as methionine, 

tryptophan or tyrosine, or more routinely by the structure of their side-chain; aliphatic 

(alkyl or alkenyl), aromatic or indolyl (Figure 1.24) (Agerbirk & Olsen, 2012; Fenwick et 

al., 1983; Ettlinger & Lundeen, 1956). Glucosinolates are themselves biologically inactive 

(Buskov et al., 2002) and thermally and chemically stable secondary plant metabolites, 

however, GSL degradation products such as ITC’s are unstable, reactive and toxic (Holst 

& Williamson, 2004; Agerbirk & Olsen, 2012). It is the diversity and structure of side-

chain most specifically which dictates the possible range of biocidal VOC’s a GSL might 

degrade into following tissue disruption. Thioglucoside glucohydrolase enzymes known 
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as myrosinases then catalyse the degradation via enzymatic hydrolysis (Agerbirk & 

Olsen, 2012; Andréasson et al., 2001; Bones & Rossiter, 1996).  

 

 

 

 

 

 

 

 

 

 

Figure 1.24: Generic glucosinolate described by Ettlinger & Lundeen (1956) detailing (A) 

glucose moiety, (B) thioglucoside linkage, (C) variable ‘R’ chain, (D) thiohydroximate anion 

core structure, (E) O-link, (F) sulphate residue. 

 

Unlike GSL’s, which are stored within protein storage vacuoles of non-specific plant cells, 

myrosinases are located in specialised GSL lacking idioblasts commonly referred to as 

myrosin cells (Andréasson et al., 2001). Glucosinolates and myrosinases remain 

compartmentalised in intact tissues, however, damaged tissues liberate cellular contents 

which enables GSL-myrosinase interaction. In the presence of water, myrosinase 

cleaves the thioglucoside linkage between glucose and aglycone moieties (Figure 1.25: 

B, C, D) (Bones & Rossiter, 1996; Holst & Williamson, 2004). Following liberation of a 

sulphate, the GSL aglycone rearranges to one of several VOC’s including the biocidal 

ITC’s and nitriles (Figure 1.25: E, F, G) (Andréasson et al., 2001; Holst & Williamson, 

2004). The presence of ferrous ions, myrosinase-interacting proteins and the pH of 

hydrolysis are all factors known to influence the profile of hydrolysis products, however, 

under neutral pH conditions, ITC’s are commonly formed from the degradation of most 

GSL’s (Figure 1.25: F) (Holst & Williamson, 2004; Grubb & Abel, 2006).  
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Figure 1.25: Enzymatic hydrolysis of glucosinolate to isothiocyanate and other volatile 

organic compounds detailing (A) a generic glucosinolate structure, (B) myrosinase and 

water used in glucosinolate hydrolysis, (C) a generic unstable aglycone structure 

following cleaving of the thioglucoside linkage during hydrolysis, (D) free glucose moiety, 

(E) hydrogen sulphate, (F) a generic isothiocyanate structure, and (G) other volatile 

organic compounds which could be produced by glucosinolate hydrolysis (Adapted from 

Bones & Rossiter, 1996; Holst & Williamson, 2004; Andréasson et al., 2001). 
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1.4.3.1 Factors affecting glucosinolate hydrolysis product formation  

All ITC’s arrange within a pH range of c.5-8 although more consistently between pH 6-7 

(Figure 1.25: F). The β-hydroxy and indolylmethyl ITC’s are the most volatile, rapidly 

cyclising to form oxazolidin-2-thiones and alcohols, or ascorbigen when in the presence 

of ascorbic acid at hydrolysis (Holst & Williamson, 2004). Other ‘stable’ ITC’s have been 

identified as sulphide precursors in some instances; a chemical group most commonly 

associated with the pungency of alliums which also exhibit nematicidal properties 

(Pecháĉek et al., 1997; Bending & Lincoln, 1999). Nitriles are more commonly produced 

at pH 5 and below, whilst thiocyanate formation conditions are still unclear (Holst & 

Williamson, 2004). Epithionitriles, however, are common where hydrolysis occurs in the 

presence of myrosinase-interacting epithiospecifier protein (Figure 1.25: G) (Bones & 

Rossiter, 1996). Non-volatile hydrolysis products are associated with indolyl GSL’s, 

whilst aromatic and aliphatic GSL’s form ITC’s and other biocidal VOC’s (Bones & 

Rossiter, 1996). Selection of plants abundant in GSL’s belonging to these two groups is 

therefore essential for pest management (Kirkegaard & Sarwar, 1998; Mithen, 1992). 

 

1.4.4 Mode of action and characteristics of isothiocyanates 

Isothiocyanates are highly reactive electrophiles which interact at their ‘R’ side-chains 

with nucleophilic thiol, sulphide and amino groups of amino acids and proteins 

(Kawakishi & Kaneko, 1985; Romanowski & Klenk, 2000). The interactions are non-

specific which explains their biocidal properties. The toxicity of aromatic ITC’s to a 

species of free-living ciliate (Tetrahymena pyriformis) correlates strongly with the 

reactivity of aromatic ITC’s to the thiol group of the cysteine residue of glutathione which 

is essential in respiration (Schultz et al., 2005). Isothiocyanate interaction, particularly of 

highly reactive ITC’s, prevents the utilisation of oxygen by the ciliate for metabolic 

activity. Provided that the concentration and exposure duration of ITC’s is sufficient, 

respiratory disruption will cause death of the exposed organism (Miller et al., 2000). 

Respiratory inhibition has also been recorded against plant parasitic nematodes in MITC 

investigations (Chitwood & Perry, 2009). The efficacy of ITC’s against nematodes is also 
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known to be influenced by factors including ITC-lipid solubility, ITC volatility and ITC 

hydrophobicity. Lipid-soluble ITC’s (e.g. 2-phenethyl) are able to permeate phospholipid 

membranes to interact more widely with intracellular functions which kill nematodes, 

whilst more volatile ITC’s (e.g. 2-propenyl) disperse evenly when in gaseous form which 

increases ITC-target organism exposure under suitable conditions (Holst & Williamson, 

2004; Sarwar et al., 1998). Similarly, hydrophobicity of ITC’s could be influential of ITC 

movement and contact with PCN in soil. Water could limit ITC exposure to PCN in wetter 

soils where ITC hydrophobicity is high, but could also act as a carrier of ITC to PCN 

where ITC hydrophobicity is low. To the author’s knowledge, this research area has not 

yet been investigated.  

 

1.4.5 Toxicity of glucosinolate hydrolysis products to potato cyst nematodes 

At least eight in-vitro studies have recorded mortality of PCN following exposure to GSL 

hydrolysis products (Buskov et al., 2002; Ngala et al., 2015a; Brolsma et al., 2014; Lord 

et al., 2011; Wood et al., 2017; Ellenby, 1945a; Serra et al., 2002; Ellenby, 1951). Toxicity 

of VOC’s, principally ITC’s, arising from the hydrolysis of 2-propenyl (syn. sinigrin), 3-

butenyl (syn. gluconapin), benzyl (syn. glucotropaeolin), 2-phenylethyl (syn. 

gluconasturtiin), 4-methylsulfinyl-3-butenyl (syn. glucoraphenin), 4-hydroxybenzyl (syn. 

glucosinalbin), 2-hydroxy-3-butenyl (syn. progoitrin), ethyl (syn. glucolepidiin), 4-

(methylsulfinyl)butyl (syn. glucoraphanin), methyl (syn. glucocapparin) and 2-hydroxy-2-

phenylethyl (syn. glucobarbarin) GSL’s have been reported. The formulation type for 

aqueous solutions used in the experiments, GSL or ITC concentrations in solution and 

exposure times vary between studies, however, the hydrolysis products of 2-propenyl, 

benzyl and 2-phenylethyl GSL’s are consistently more toxic to PCN than other 

alternatives. Biofumigants rich in these GSL’s could be preferable for PCN management. 

Figure 1.26 illustrates the chemical structure of 2-propenyl, benzyl and 2-phenylethyl 

isothiocyanates in comparison to MITC. As discussed, larger ITC’s such as 2-phenylethyl 

are more reactive than smaller ITC’s but also less volatile and more hydrophobic. 
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Figure 1.26: Chemical structure of 2-phenylethyl, benzyl, 2-propenyl and methyl 

isothiocyanates (Adapted from Cremlyn, 1991). 

 

Tables 1.2-1.4 summarise all of the known in-vitro literature reporting PCN mortality after 

exposure to GSL hydrolysis products specifically arising from 2-propenyl, benzyl and 2-

phenylethyl GSL’s. Tables 1.2-1.4 clearly demonstrate the purity of GSL and ITC 

aqueous solutions to influence efficacy. Plant extract solutions are less efficacious than 

pure extracts at comparable concentrations of compounds in solution, and at comparable 

exposure times. This could indicate that achieving effective biofumigation in a field 

situation might be increasingly challenging. Hatching suppression and hatching 

stimulation of encysted PCN eggs has also been documented after exposure to GSL 

hydrolysis products in-vitro, notably by Ellenby (1945a & 1951), Valdes et al. (2011), 

Brolsma et al. (2014), Ngala et al. (2015a) and Wood et al. (2017).  
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1.4.6 Biofumigation potential 

To be effective, brassica green manures need to successfully fumigate soil. This is 

influenced by several factors, principally the profile and concentration of GSL’s, and the 

quantity of plant tissue incorporated into soil (Kirkegaard & Sarwar, 1998). Although the 

toxicity of ITC’s can be used in the selection of biofumigants, it is important to consider 

the variation in GSL profile and the concentration of GSL’s in different plant organs, at 

different developmental stages, within and between brassica species, and between 

plants grown under winter or summer seasons (Booth et al., 1991; Kiregaard & Sarwar, 

1998; Rosa et al., 1996; Charron et al., 2005).  

 

In general, high biofumigation potential crops can achieve greater than 40 µmol GSL g-1 

dry-weight tissue (Kirkegaard & Sarwar, 1998; Lord et al., 2011). Glucosinolate 

concentration and biomass peak at around mid-flowering in most brassica species with 

GSL concentrations having been recorded in excess of 100 µmol GSL g-1 dry-weight 

tissue in field grown brassicas in the summer e.g. B. juncea cv. ISCI 99 (Ngala et al., 

2014). Biomass can also vary greatly between and within species. Fresh biomass of c.70 

t ha-1 has been recorded in field grown B. juncea biofumigants drilled at seed-rates of 

c.10 kg ha-1 in the UK, and biomass of B. juncea found to be approximately double that 

of E. sativa (Ngala et al., 2014; Watts et al., 2014). Day length, intensity of solar radiation 

and temperature are also factors known to influence GSL accrual in brassica tissues 

(Engelen-Eigles et al., 2006). Light is essential for photosynthesis which yields glucose, 

an essential component of all GSL’s (Agerbirk & Olsen, 2012). Glucosinolate 

concentration in tissues is therefore often higher in summer-grown biofumigants when 

day lengths are longer (Kirkegaard & Sarwar, 1998; Rosa et al., 1996; Charron et al., 

2005). Sulphur and nitrogen availability to biofumigant plants is also known to influence 

GSL accrual in tissues as both represent essential elements in GSL biosynthesis (Booth 

et al., 1991). Nitrogen is also essential in the biosynthesis of proteins which influences 

the quantity of biofumigant biomass produced. Typically, rates of c.60-100 kg ha-1 of 

nitrogen are applied to biofumigants with sulphur (Lazzeri et al., 2004) applied as 



    

46 
 

sulphate at a ratio of 5:1 (Pers. Comm. Dr Matthew Back: Reader in Nematology at 

Harper Adams University investigating nutrient applications to biofumigant crops for 

AHDB Potatoes). Other general agronomic considerations, such as plant available water 

in soil, and pest pressure, will also affect biofumigation potential in some situations, so 

the agronomy of these crops is as important as for a cash-crop if optimal biofumigation 

potential is to be achieved.  

 

1.4.7 Brassica biofumigant green manures  

Several seed companies now supply brassica species which they report to have 

biofumigation properties. The most widely recorded variety in the literature is B. juncea 

cv. ISCI 99 which has high concentrations of 2-propenyl GSL in its tissues (Ngala et al., 

2014), and can achieve high fresh biomass under summer growing conditions (c.40-70 

t ha-1) (Figure 1.27) (Lazzeri et al., 2004). Brassica juncea cv. ISCI 99 supplied by High 

Performance Seeds, Washington State, United States of America (USA), was used in 

approximately one third of all papers presented at the 5th International Symposium of 

Biofumigation held at Harper Adams University in Shropshire (UK) in 2014. Other seed 

suppliers include Joordens Zaden, Kessel (Holland), and PH Petersen, Lundsgaard 

(Germany). Many studies have evaluated biofumigant varieties for their biofumigation 

potential (Bellostas et al., 2007; Ngala et al., 2014; Watts et al., 2014), however, none 

as comprehensively as a seminal study completed by Kirkegaard & Sarwar (1998). 

 

Kirkegaard & Sarwar (1998) screened 76 diverse brassica accessions from 13 brassica 

plant species in their ‘biofumigation potential’ field studies near Canberra, Australia in 

1998. Biofumigants were grown to mid-flowering, then assessed for biomass and GSL 

content. The most widely screened species included Brassica napus (syn. oilseed rape), 

Brassica campestris (syn. field mustard), and B. juncea which accounted for 47 of the 76 

accessions.  Brassica nigra (syn. black mustard), Brassica carinata (syn. Ethiopian 

mustard) and B. juncea were found to have the highest ITC-liberating GSL 

concentrations in root and shoot tissues of 13 species under investigation but were 
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shown to vary greatly in fresh biomass (2.38-28.97 t ha-1). In their work, mid-flowering 

date ranged from 106-190 days between Sinapis arvensis and B. oleracea respectively. 

Brasica juncea and B. nigra varieties were characterised by having a GSL profile 

dominated by 2-propenyl, moderate biomass and a maturation period of c.116-148 days. 

Other species were shown to have highly variable GSL profiles depending upon the 

variety tested. Brassica juncea is suitable for a wide range of cropping situations and is 

a potentially useful biofumigant species on account of its biofumigation properties. This 

goes some way to explaining why B. juncea cv. ISCI 99 is a popular biofumigant variety 

today. Other popular varieties in the UK include E. sativa cv. Trio produced by Joordens 

Zaden, and R. sativus cv. Bento produced by PH Petersen, which each produce high 

concentrations of 2-phenylethyl GSL’s in tissues (Watts et al., 2014; Ngala et al., 2014).  

 

Figure 1.27: Typical Brassica juncea cv. ISCI 99 crop of c.50 t ha-1 fresh-weight.  

 

1.4.8 Optimising biofumigation 

Aside from variety selection and agronomy, several factors have been suggested which 

could be manipulated to enhance biofumigation success. The literature base is, however, 
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poorly populated and in need of expansion (Mattner et al., 2008). Morra & Kirkegaard 

(2002) suggest only 1% of hydrolysable GSL is normally activated during biofumigation 

due to difficulties in breaking down plant tissues at the maceration stage (often mid-

flowering) (Figure 1.28), whilst Gimsing & Kirkegaard (2006) report the highest 

concentration of ITC’s in soil treated with biofumigation occurs within 30 min of plant 

maceration and incorporation. It is therefore essential that plants have high biofumigation 

potential to compensate for low GSL-ITC conversion and persistence in soil, but also 

important that maceration and incorporation effectiveness be improved to better utilise 

the potential biofumigants have to reduce pests.  

 

Figure 1.28: Poor to moderate quality of biofumigant residue expected when macerating 

a Brassica juncea crop with most flail-toppers.  

 

1.4.8.1 Biofumigant maceration and incorporation technique 

Lazzeri et al. (2004) suggest that biofumigant crops should be ground and ploughed into 

soil to maximise ITC release from tissues. The most appropriate mechanical implements 

to achieve effective grinding of biofumigant tissues is not discussed, and no evidence is 

presented to support ploughing residues in place of other tillage methods. Matthiessen 

c.150 mm 

c.100 mm 
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et al. (2004) observed that a bladed mulcher (which probably refers to a grass mowing 

implement) only facilitated c.5% of the ITC output from brassica tissues as those 

macerated with a hammer implement (which probably refers to a flail-topper), indicating 

that decisions can be made regarding maceration implement selection which could 

optimise biofumigation. Matthiessen et al. (2004) suggest the bladed implement was 

ineffective because it cut biofumigant tissues, whereas the hammer implement caused 

widespread tissue damage by liquefying the tissues, subsequently leading to greater 

GSL hydrolysis.  A bladed implement is more likely to cut plant material by acute bending 

force, as opposed to a blunt implement which is likely to macerate plant material through 

a combination of torsion and bending forces which cause more widespread tissue 

damage (Persson, 1987). However, Mathiessen et al. (2004) did not quantify the different 

maceration qualities between maceration treatments, and so their treatments have not 

yet been fully evaluated. Neither did they statistically analyse their data. 

 

Morra & Kirkegaard (2002) first illustrated the principal of enhanced ITC release from 

blunt macerated tissues in in-vitro work comparing fresh B. juncea tissues versus freeze-

treated tissues. The frozen tissues released approximately twenty-six times the level of 

ITC of that released from fresh tissues due to more widespread cellular damage, 

however, no study has yet linked higher ITC output from a maceration implement to 

enhanced pest suppression. Moreover, no study has yet compared biofumigant 

incorporation techniques to determine whether it is also an important factor influencing 

pest suppression. The only work to have investigated incorporation implements to date, 

merely compared the effect of incorporated and non-incorporated residues on the 

concentration of ITC’s in soil, whereby the incorporation of tissues into soil increased soil 

concentrations of ITC’s (Matthiessen et al., 2004).  

 

1.4.8.2 Soil conditions for successful biofumigation 

Soil moisture has also been investigated as a factor influencing biofumigation success. 

Initial in-vitro work by Morra & Kirkegaard (2002) found a trend (although not supported 
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statistically) which suggested ITC release from tissue could be approximately doubled 

by manipulating soil moisture regime. It was proposed that the trend for enhanced ITC 

release from tissues under higher soil moistures could have been due to more effective 

GSL hydrolysis in soil. However, further investigation is required to validate the current 

thinking. Matthiessen et al. (2004) expanded the work of Morra & Kirkegaard (2002) in 

their field work, and found up to a c.ten-fold increase in ITC’s measured in soil irrigated 

with 42 mm of water immediately after tissue incorporation (water was manually applied 

to pipes embedded in field soil). The authors mentioned that soil moisture prior to the 

additional application was approximately field capacity, so that after irrigation, soil would 

have been waterlogged.  

 

Whilst enhanced GSL hydrolysis could explain the higher concentrations of ITC in soil in 

the Matthiessen et al. (2004) study, it is also possible that soil moisture aided the 

retention of ITC’s in soil by blocking ITC movement and forcing ITC’s into soil solution; 

hence the higher soil concentrations of ITC (Simpson et al., 2010; Lembright, 1990). If 

this is true, the diffusion potential of the ITC’s, which is critical to efficacy, may have been 

greatly reduced. Lembright (1990) reports that fumigant diffusion is 10-30,000 times 

greater through soil pore airspace than soil pore water. More work is therefore needed 

to understand the role of soil moisture for biofumigation of PCN. Past work investigating 

the efficacy of synthetic fumigants against soil borne pests found that approximately 42% 

of field capacity was optimal for fumigation (Lembright, 1990). This lends support to the 

hypothesis that ITC’s may have been concentrated in soil water in the Mathiessen et al. 

(2004) study where they would have been less effective against soil borne targets such 

as PCN. Soil temperatures are also advised to be no lower than 12°C to ensure effective 

volatilisation of liquid fumigants, and ensure effective diffusion of a fumigant through soil 

air (Lembright, 1990; Lane & Trudgill, 1999). Soil temperatures below the threshold level 

can lead to low fumigant volatility and high fumigant solubility, detrimentally influencing 

efficacy (Lembright, 1990). It is therefore probable that this is the case for biofumigant 

VOC’s too. 
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It should also be noted that some soils are less suitable for biofumigation. High OM soils 

have reduced free MITC concentrations in fumigant experiments, after sorption of ITC’s 

to soil humus (Matthiessen et al., 1996). The ITC’s 2-propenyl and benzyl have also been 

shown to readily sorb to soil OM in in-vitro work, where the larger benzyl ITC was shown 

to be more strongly sorbed to OM than 2-propenyl ITC; probably a result of its higher 

reactivity and lower volatility (Gimsing et al., 2009). Work by Price et al. (2005) has also 

shown ITC concentrations in headspace above soil to be higher when B. juncea tissues 

were incorporated into sandy soil compared to a high OM clay in soil column 

experiments. Gimsing & Kirkegaard (2009) suggest this could be explained by the 

generally higher sorbtive properties of clays. Otherwise, the clay soil could have had a 

higher volumetric water content which may have aided retention of ITC’s better than the 

sand (Simpson et al., 2010). In general, damp sandy soils or sands covered in plastic 

film are likely to be the most receptive to biofumigation due to their larger pore spaces 

and lower water holding capacities (Lembright, 1990). Price et al. (2005) found a c. three-

fold increase in brassica derived ITC retention in soils covered with plastic film compared 

to a bare surface. There are therefore clearly opportunities to optimise biofumigation for 

enhanced pest suppression in the field. Blunt maceration techniques which fully 

incorporate biofumigant material into soil are likely to be most appropriate for 

biofumigation. Sandy soils of low OM, at soil moisture contents of approximately 50% of 

field capacity, at temperatures in excess of 12°C, are also likely to be the most receptive 

to biofumigation. 

 

1.4.9 Management of potato cyst nematodes using biofumigation 

At least 8 studies have now measured and reported PCN mortality following 

biofumigation in the glasshouse and the field, and investigated at least 9 different 

brassica species (Table 1.5). Efficacy has ranged between 0-95%, between and within 

species, and between studies investigating the same variety; notably B. juncea cv. ISCI 

99 (Brolsma et al., 2014; Ngala et al., 2014). Clearly, disparities are likely to be 
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explainable by some of the previously mentioned agronomic factors, such as GSL profile, 

GSL concentration in tissues, the quantity of biomass incorporated into soil, the 

expediency and method of tissue maceration and incorporation, the soil condition and 

possibly the hydrolysis reaction conditions. It is therefore worth considering the studies 

which record negative results first, to determine whether the poor efficacy recorded in 

these studies can be explained.  

 

Valdes et al. (2011) investigated the effect of root diffusates and plant extracts of S. alba, 

R. sativus and B. napus on the hatching of G. rostochiensis in-vitro, and the effect of 

incorporated tissues from the same brassicaceous species on G. rostochiensis viability 

in pot tests. Valdes et al. (2012) then expanded upon the earlier work by investigating 

the effect of incorporated S. alba tissues on the viability of G. rostochiensis in field soils. 

No effect of biofumigation on PCN viability was recorded in either study, although 

enhanced hatching was recorded. Neither study reported the GSL content of biofumigant 

plants used in experimental work which casts some doubt on the quality of the work, and 

only Valdes et al. (2012) provides details of the biofumigant species and variety used. In 

this case, S. alba cv. Zlata was investigated, which has been documented to be lacking 

in 2-propenyl, benzyl or 2-phenylethyl GSL’s (Bohinc et al., 2013). Furthermore, the 

maceration and incorporation technique adopted by Valdes et al. (2012) would appear 

to be non-conventional and probably sub-optimal. A grass-mower was used as opposed 

a flail-topper, which as previously reviewed, is a superior maceration implement 

(Matthiessen et al., 2004). The biofumigant residue was then manually incorporated into 

soil using a spade. This overall methodology is unlikely to have been conducive for 

generating sufficient quantities of biofumigant VOC’s for PCN suppression, or have 

incorporated tissues expediently enough to make best use of biofumigant VOC’s 

(Matthiessen et al., 2004; Gimsing & Kirkegaard, 2006). Overall, the choice of variety 

and incorporation strategy may have influenced the findings in this study.  
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The glasshouse work reported by Valdes et al. (2011) is even more questionable of 

methodology. Here, the authors report that PCN were exposed to a ratio of 25 g of 

biofumigant residue to 1 cm3 of soil. If assumed at the field level where approximately 

300 mm depth of soil would be worked during biofumigant incorporation, this quantity of 

biomass equates to c.75,000 t ha-1 of material. The calculation used to generate this 

figure is as follows;   

 

∑ 100 * 100 = 103 [cm2 per 1 m2], * 103 = 107 [cm2 per 1 ha], * 30 [incorporation depth in 

cm] = 308 [cm3 of soil to be biofumigated per 1 ha], * 25 [g of biofumigant material per 

cm3 of soil] = 759 [g biofumigant material per 1ha of soil biofumigated], / 102 = 756 [kg 

biofumigant material per 1 ha of soil biofumigated], / 102 = 753 t ha-1 biofumigant 

material per 1 ha of soil biofumigated.  

 

This can only be seen as a very large addition of plant material to a small proportion of 

soil. Logically, the figures suggested by Valdes et al. (2011) must be incorrect, or the 

experiment performed under conditions unrepresentative of any field situation and 

therefore the results be questionable. In addition to the weaknesses mentioned above, 

only Valdes et al. (2012) reported the soil pH that biofumigant residues were incorporated 

into (pH 5.2 and 6.7 for two experiments respectively), which as reviewed earlier, could 

have a strong impact on the arrangement of biofumigant VOC’s produced. It is possible 

that the biofumigation carried out on the site with a soil of pH 5.2 might have been 

predominantly nitrile based rather than ITC (Figure 1.25). Furthermore, neither study 

provides details of fertiliser inputs or the soil moisture during plant growth or at 

biofumigant incorporation. In summary, it appears that these studies have some 

important ommissions which might have negatively influenced biofumigation efficacy. 

 

A similar study carried out by Brolsma et al. (2014) investigated the efficacy of 2-propenyl 

ITC against G. pallida in-vitro, and the incorporated tissues of B. juncea on G. pallida 

viability in a pot test. Brolsma et al. (2014) also reported no effect of biofumigation against 
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PCN. Furthermore, their study appears to be more rigorous than those previously 

mentioned and used known biofumigant varieties, grown under appropriate conditions. 

PCN were also exposed to residue levels in soil which would equate to c.60 t ha-1 of 

material, which is far more representative of a real field situation. The calculation used 

to generate this figure is as follows;  

 

∑ 100 * 100 = 103 [cm2 per 1 m2], * 103 = 107 [cm2 per 1 ha], * 30 [incorporation depth in 

cm] = 308 [cm3 of soil to be biofumigated per 1 ha], * 1.6 [typical bulk density of soil g 

cm3] = 488  [weight of soil to be biofumigated in g], / 102 = 485 [weight of soil to be 

biofumigated in kg], / 4 [kg weight of soil used in reported experimental work] = 125, * 

50 [g weight of biofumigant material used in reported experimental work] = 606 

[equivalent of biofumigant material used in experimental work, on the hectare basis in 

g], / 105 = 60 t ha-1 biofumigant material. 

 

However, critical mistakes may have been made which could explain the poor 

biofumigation recorded in this study. Biofumigant material was poorly macerated using 

hand-pruning shears, and then weighed before being introduced to soil. This 

methodology would probably be slow and offer a potentially poor disruption of 

biofumigant tissues when compared to blunt methodologies, such as using a garden 

shredder (Lazzeri et al., 2004). The authors do not record the pH of soil into which 

residues were incorporated, which could as previously mentioned be influential of the 

arrangement of hydrolysis products produced after maceration. Furthermore, the authors 

did not record soil moisture at incorporation. These omissions cast doubt on the results 

of this study. Moreover, the GSL concentrations in plant tissues are c.20% of that 

recorded by Lord et al. (2011), and c.10% of that recorded by Ngala et al. (2014). The 

crop reported by Brolsma et al. (2014) is therefore likely to have had much lower 

biofumigation potential than the other studies. 
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Several other studies have reported positive results despite some weaknesses. A study 

reported by Lord et al. (2011) investigated a range of 22 brassicaceous accessions from 

16 species for biofumigation efficacy against G. pallida. Experiments used leaf extracts 

in-vitro and incorporated biofumigant residues in soil columns. A high-powered blender 

was used to macerate biofumigant material before introducing it to soil columns. This 

methodology would have achieved much greater maceration of plant material than that 

of the previous studies. Lord et al. (2011) report up to 95% efficacy against G. pallida 

when using B. juncea varieties specifically. A study reported by Ngala et al. (2014) 

investigated biofumigation of G. pallida in the field, using R. sativus, B. juncea and E. 

sativa and commercially available tractor mounted implements; a flail-topper immediately 

followed by a rotavator (as illustrated in Figures 1.19 and 1.20), for biofumigant 

maceration and incorporation. This methodology would have achieved a much finer and 

expediently incorporated biofumigant residue than that achieved by Valdes et al. (2012). 

Neither Lord et al. (2011) or Ngala et al. (2014) report the soil moisture at incorporation 

or the fertiliser rates used in their experiments. Lord et al. (2011) also omit soil pH data, 

however, both studies reported biofumigation effects up to 95% efficacy.  

 

A single experiment study reported by Watts et al. (2014) investigated several 

commercially available varieties and biofumigant blends for management of PCN, and 

also found positive results with c.42% efficacy as an average. Watts et al. (2014) do not 

report the GSL profile or concentration of GSL’s in biofumigant tissues, or the soil pH or 

moisture at incorporation. Furthermore, their biomass figures are questionable after a 

non-conventional biomass assessment methodology, however, appropriate fertiliser 

applications were made and the crops grown at a suitable time of year. Furthermore, the 

maceration and incorporation methodology involving a flail topper and terradisc-plough 

combination were expedient, and in line with the current best practice suggested by 

Lazzeri et al. (2004) and Matthiessen et al. (2004). Table 1.5 shows some of the core 

material discussed from each study surrounding biofumigants species and variety, GSL 

profiles, the type of study undertaken and the mortality recorded. Biomass and GSL 
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concentrations are omitted but have been discussed here sufficiently. Other authors 

have recorded reduced PCN incidence on potatoes following biofumigation, however, 

these are not considered mortality data specifically (Morgan, 1925; Triffitt, 1930; Aires et 

al., 2009; Fatemy & Sepideh, 2016). Similarly, authors have recorded hatching 

suppression and stimulation in some instances (Ellenby, 1945a; Ellenby, 1945b; Ellenby, 

1951; Brolsma et al., 2014). 

 

1.4.10 Alternative biofumigation strategies 

Alternative biofumigation strategies include partial biofumigation, which involves the 

growing of a biofumigant crop but not its incorporation into soil. Glucosinolates are 

released from the roots of the biofumigant during growth and enzymatically hydrolysed 

by soil microbes (Ngala et al., 2015b). This technique has been found up to 30-35% 

efficacious in reducing Globodera pallida in a recent study and is well suited to winter 

hardy biofumigant species with large GSL containing tap roots, such as R. sativus (Ngala 

et al., 2015b). Its major benefit over conventional biofumigation is that it is low intensity 

and in the UK, growers could also receive payments for such crops under environmental 

‘greening schemes’ whilst reducing PCN populations. The technique is currently in need 

of further research to determine whether it is more suitable for biofumigation of PCN than 

the more established classical approach. Defatted seed meals offer another alternative, 

are high in GSL content and have been found effective in reducing the root knot 

nematode Meloidogyne incognita on zucchini in Italy (Lazzeri et al., 2009). Defatted seed 

meals have also been used to suppress weed seed germination and so pose the 

potential to be the second generation of biofumigant products. Research is also on-going 

in Italy to register biofumigant liquids which use water and oil as carriers of defatted seed 

meals (Pers. Comm. Dr Luca Lazzeri: Biofumigation Researcher at the Centre for 

Industrial Crops, Rome).  
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1.5  Conclusion and identification of the research gap 

In conclusion, biofumigation poses good potential as an alternative or complimentary 

method for PCN management, however, it lacks consistency in many instances. 

Biofumigation is a highly complex technique reliant on maximising GSL content and 

biofumigant biomass, then accessing that potential effectively and delivering ITC at 

sufficient concentration in soil for an adequate duration to achieve maximum PCN 

mortality. Of all the known biofumigation factors, those surrounding hydrolysis appear to 

be least understood. The literature documents the type and concentration of GSL’s 

required to reduce PCN in the field. However, there is little data on maceration and 

incorporation of biofumigant residues into soil for PCN management, despite some 

encouraging initial studies documenting differences in ITC emission from tissues treated 

with different maceration implements. Furthermore, there is currently no understanding 

of whether soil moisture enhances or negatively influences biofumigation efficacy against 

PCN. Studies have suggested ITC concentrations may be enhanced in soils at high soil 

moisture contents, however, further work is required. Mechanisms for enhanced ITC 

release from biofumigant tissues as affected by type of maceration implement, or the soil 

conditions at incorporation, need to be investigated.  

 

1.5.1 General PhD aims 

i) Determine whether soil moisture conditions at biofumigant incorporation are 

influential of biofumigation efficacy against PCN. 

ii) Determine whether cutting implement selection/set-up for biofumigant 

maceration, influences biofumigation efficacy against PCN. 

iii) Determine whether tillage implement selection/set-up for biofumigant 

incorporation, influences biofumigation efficacy against PCN. 

iv) Investigate mechanisms for enhanced PCN suppression for soil moisture, 

maceration and/or incorporation factors, subject to positive results. 
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General Materials & Methods  2 

 

 

2.1   Introduction  

This chapter describes the general materials and methods which are common to most 

or all of the experiments reported in this thesis. Where changes in materials or methods 

were made in an experiment, description and justification of those changes are reported 

in the relevant chapter. This chapter is structured into three sections; the first describes 

general methods used in experimental design and data analysis, the second describes 

common soil sampling and quantification methods, and the third describes the 

biofumigant material used in experiments and glucosinolate (GSL) and volatile organic 

compound (VOC) quantification. 

  

2.2  Experimental design and analysis 

In all instances, experimental design was initiated with the calculation of the replicates 

required to effectively determine differences between selected treatments. This was 

based upon the projected variation of the test material, often potato cyst nematode (PCN) 

egg viability, and the expected difference to be found between treatments after the 

method of Berndston (1991). Variation in natural PCN viability was expected to be 

around 3-15% (Danquah, 2012), whilst treatment differences were determined in a more 

arbitrary manner due to lack of supporting literature. Often, the number of projected 

replicates would be impractical for experimental work and so the maximum realistic 

number of replicates would be selected for further experimental design. Skeleton 

analysis of variance (ANOVA) were created for each potential experiment to ascertain 

whether the minimum requirement of 15 residual degrees of freedom (RDF) could be 

achieved (Mead et al., 1993).    Treatment spatial allocation within experiments were 

then randomly allocated using the random numbers function in Microsoft Excel 2013® to 

generate a fully randomised block design. Efforts were made to follow the same 

experimental design methodologies for pilot studies as used for full experimental work, 
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although due to low replication this could not always be achieved. Where practical, 

factorial experiments were designed so that treatments could be analysed individually 

and by shared characteristics. Statistical analyses were performed using GenStat® (15th 

Edn.). Common analyses included ANOVA with multiple comparisons (Tukeys test at 

95% confidence), repeated measures ANOVA using least significant difference (LSD) at 

99% confidence for multiple comparisons, and linear regression. 

 

2.3   Soil sampling and quantification  

2.3.1 Soil sampling for potato cyst nematode quantification 

Prior to any experimental work, contact was made with local growers to Harper Adams 

University (Shropshire, United Kingdom [UK]) and Frontier Ag Ltd. (Norfolk, UK) to locate 

PCN infested sites.  The identified PCN infested field sites were then sampled using a 

gridded sampling approach to generate a crude PCN population density estimate for 

areas of each field. A semi-circular soil corer of 20 mm diameter was used to collect 

approximately 20 x 1 kg samples for areas ranging between c.1-2 ha, at 0-300 mm depth 

per coring. Sampling sites were marked either using plastic canes, or by DGPS using a 

Garmin eTrex 20® (c.3 m accuracy, 95% typical) system when sampling in standing 

crops prior to harvest. Typically, tramlines were followed during sampling, with samples 

taken approximately 2 m from a tramline at regular intervals to ensure samples were 

collected from uncompacted field soil. Soil was then air-dried in cloth bags for c.72 h at 

25°C before being sieved using a 10 mm aperture sieve to remove large stones and 

break soil clods for PCN extraction. After sampling and PCN quantification, experiments 

could be positioned in areas of acceptably high PCN presence and uniformity. 

Experimental plots were then sampled by taking approximately 25 cores per plot at each 

sampling time; before biofumigant planting as a population initial (Pi) and eight-weeks 

post biofumigant incorporation, termed population secondary (Ps) rather than population 

final (Pf) which normally describes samples taken after potato cropping. Potato cyst 

nematodes were also collected in bulk from field sites to produce cyst cultures for 

glasshouse and in-vitro experiments.  
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2.3.2 Potato cyst nematode extraction and quantification  

Potato cyst nematode cysts were extracted from 200 g of air-dried soil from a collected 

soil sample using the established Fenwick can method (Fenwick, 1940) in combination 

with a secondary flotation method using a conical flask to further separate cysts from 

organic-matter (OM) (Morgan, 1925). Samples of extracted material were dried in silk 

sachets at 25°C for 24 h, then transferred to a gridded aluminium counting slide for cyst 

counting using a binocular microscope at x20 magnification (Shepherd, 1986). Potato 

cyst nematodes were differentiated from other cysts morphologically, then fifty of the 

cysts counted from each sample were hand extracted using forceps and soaked in 1 mL 

of water for seven days, followed by seven days in a 0.05% w/v Meldola’s blue staining 

solution, and finally a 24 h period in distilled water. Processed cysts were crushed using 

an aluminium crushing block and glass slide after the method of Reid (1955), washed 

into a 100 mL boiling tube using distilled water, and made up to 50 mL.  The 50 mL egg 

suspension was then agitated and 2 mL extracted and pipetted into a 2 mL capacity 

counting slide. Egg number was determined by counting full eggs and free juveniles 

within 1 mL of egg suspension on the counting slide grid, using a binocular microscope 

at x40 magnification. Eggs were considered dead if stained, and viable if unstained after 

the method of Ogiga & Estey (1975).  Using the data collected, PCN were quantified as 

total and viable PCN eggs g-1 soil, total and viable eggs cyst-1, and as an overall viability 

percentage of the total present PCN eggs using Equations 2.1-3. Figure 2.1 shows the 

Fenwick can and conical flask set-up, and Figure 2.2 shows laboratory tools used in the 

extraction and quantification of PCN from float material. Figure 2.3 and 2.4 show a 

gridded aluminium counting slide with float material containing PCN cysts. Figures 2.5 

and 2.6 show viable and dead eggs after Meldolas Blue staining.   

 

Equation 2.1 

 

 

 

Water volume of the egg 

suspension in mL  
PCN eggs g-1 soil    = 

Cysts used to generate the 

egg suspension 

Number of cysts counted in 

200 g air-dry soil 

Weight of extraction soil in 

g 

X 
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Equation 2.2 

 

 

 

 

 

Equation 2.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Fenwick can (A) used for potato cyst nematode cyst flotation from soil, and 

conical flask (B) used to reduce organic-matter in the float. The scale is relative to the 

height of the conical flask. 

 

X 

Water volume of the egg 

suspension in mL 
PCN eggs cyst-1      = 

Cysts used to generate the 

egg suspension 

Number of eggs counted in 1 

mL of egg suspension 
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100 

PCN egg viability %    = 

Total number of eggs counted 

in 1 mL of egg suspension 

Viable number of eggs 

counted in 1 mL of egg 

suspension 

c.250 mm 

B 

A 



    

64 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Laboratory tools: aluminium crushing block (A); glass slide (B); gridded 

counting slide (C); counter (D); watch-glass (E); watch-glass slide (F); 5 mL pipette (G); 

forceps (H); 2 mL counting slide (I); 100 mL boiling tube (J). The scale indicates the width 

of the counting slide. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Float material containing potato cyst nematode cysts (A), scattered on a 

gridded aluminium counting slide.  The scale indicates the width of the counting slide. 
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Figure 2.4: Globodera pallida potato cyst nematode cysts (marked *) in float material 

scattered on a gridded aluminium counting slide.  The scale indicates the diameter of a 

single cyst. 

Figure 2.5: Viable Globodera pallida potato cyst nematode egg determined using 

Meldolas Blue stain (Source: Katarzyna Dybal, Harper Adams University).The scale 

indicates the length of a egg. 

c.700 µm 

c.100 µm 
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Figure 2.6: Dead Globodera pallida potato cyst nematode eggs determined using 

Meldolas Blue stain (Source: Katarzyna Dybal, Harper Adams University).  The scale 

indicates the length of individual eggs. 

 

Cysts were mass extracted from damp soil for glasshouse and in-vitro work using the 

previously described method. However, larger samples of c.1 kg were used to make cyst 

extraction more time efficient and float dried as previously described. Float material was 

then sprinkled onto the top of the long edge of a smooth paper-board (c.100 x 200 mm), 

and cysts rolled from the float by gentle tapping of the paper board. All but spherical 

debris was separated from cysts in this way which enabled faster hand extraction of cysts 

for experimental work. Viability quantification of encysted eggs used in glasshouse and 

in-vitro work was performed using the Meldolas blue method as used for field work. 

Figure 2.7 shows the rolling technique using a paper-board. Shepherd (1986) provides 

comprehensive detail of most of the methods described here. 

 

 

 

c.100 µm 
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Figure 2.7: Globodera pallida cyst extraction (A) from float material (B) using a paper-

board and ‘rolling’ technique.  The scale indicates the width of the board. 

 

2.3.3 Potato cyst nematode species determination  

Potato cyst nematode species was determined for each population using a real time 

polymerase chain reaction (PCR) assay adapted from those published by Nakhla et al. 

(2010) and Bulman & Marshall (1997). Twenty-five cysts per sample, of which there were 

three per PCN population, were washed in 1000 μL of Tris-EDTA (TE) buffer (10 mM 

Tris-HC1, 1 mM EDTA, pH 8.0) using a vortex for c.15 s per sample, before the buffer 

was removed and replaced with 150 μL of fresh TE. Cysts were crushed in the TE using 

a micropestle and c.10 mg of activated carbon applied to the TE mix. Samples were 

vortexed for a further 15 s and then heated to 100°C for 5 min, vortexed for a further 30 

s, then centrifuged at 12,000 rpm for 5 min to produce a purified deoxyribonucleic acid 

(DNA) supernatant. A 100 μL sample of supernatant was then used for PCR. The master 

mix was TakyonTM No Rox Probe Master Mix dTTP Blue. The PCR primers and probes 

for G. pallida detection were as follows; PITSpf (5’-ACGGACACATGCCCGCTA-3’), 

PITSp4 (5’-ACAACAGCAATCGTCGAG-3’) and TaqMan probe GFAMp (5’-

100 mm 

A 

B 
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ACATGAGTGTTGGGGTGTAAC-3’) labelled FAM. Globodera rostochiensis detection 

relied upon the primers PGrtf (5’-TCTGTGCGTCGTTGAGC-3’), Prostor (5’-

CGCAGACATGCCGCAA-3’) and a TaqMan probe GYYp (5’-

CGCAGATATGCTAACATGGAGTGTAG-3’) labelled Yakima Yellow. The cycling 

parameters (TakyonTM activation: 95°C/180 s, denaturation 95°C/10 s, 

annealing/extension 58°C/60 s) used in the method were altered to those previously 

published to optimise the assay for the equipment available (Bio-Rad CFX96TM). Species 

were determined present for Cq values below 30 in accordance with standard procedure 

to prevent false positives. Globodera pallida and G. rostochiensis DNA extracts were 

provided by the Food and Environment Research Agency and included in each test as a 

positive controls. Appendix 8.1.4 shows PCR analysis for all cyst populations used in 

experimental work where all PCN were identified to be G. pallida.  

 

2.3.4 Soil moisture and temperature 

Determination of the capillary water/ field capacity range of soil and compost was 

common to experimental work. Field capacity was determined by saturating soils and 

measuring moisture decline from saturation using an IMKO® HD2 model Time Domain 

Reflectrometer (TDR) and TRIME-PICO 64 sensor to generate a water retention curve. 

Field capacity expressed as moisture by volume was determined for each soil, and 

individual units of field capacity converted to a volume of water which could then be used 

to maintain soil moistures for growing crops within the easily available range and to 

maintain soil moisture treatments in relevant experimental work (Bailey, 1990; Saeed, 

2008). Figure 2.8 shows the TDR being used to measure the moisture of soil in a pot. 

The TDR was also used to measure soil temperature for field experiments. 
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Figure 2.8: IMKO® HD2 model Time Domain Reflectrometer (A) and PICO-TRIME 64 

sensor (B) being used to measure soil moisture.  

 

 

 

 

 

2.3.5 Other common soil methods 

Soil texture was classified for all experiments by NRM Laboratories using a 

sedimentation methodology and the UK soil texture triangle. Soil pH and OM was also 

determined by NRM Laboratories for all soils using standard methods detailed by 

Jackson et al. (1986). See Appendices 8.1.1-8.1.3 for results. 

 

2.4  Biofumigant materials and methods 

2.4.1 Biofumigant selection 

Brassica juncea cv. ISCI 99 produced by High Performance Seed Inc. (Washington 

State, USA) was selected as the biofumigant to be used for all experiments reported in 

this thesis on account of its commercial availability worldwide and widely documented 2-

propenyl (sinigrin) GSL content, as previously reviewed in Chapter 1 (Table 1.5). Tozers 

Seeds Ltd. (Surrey, UK) supplied all the biofumigant seed used in this research. The 

A 
B 
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seed resembles condiment mustard seed and is approximately 1.5 mm in diameter as 

shown in Figure 2.9. 

 

Figure 2.9: Brassica juncea cv. ISCI 99 biofumigant seed.  

 

2.4.2 Quantifying glucosinolate profile and concentration of Brassica juncea plants 

Plant samples were taken from both field and glasshouse crops for GSL quantification 

after the methods of Ngala et al. (2014). Three plants per plot were collected from the 

field, whilst in the glasshouse one plant per pot was taken as standard. The roots of 

these samples were washed, samples bagged (not sealed) and labelled, and then 

samples taken to the laboratory for freezing with liquid nitrogen within 2 h of sampling. 

Where samples were transported over long distances, plants were propped upright and 

a small amount of water introduced to sample bags to cover roots. This maintained plant 

turgor and reduced stress during transportation to the laboratory for processing. Flash 

frozen samples were stored at -80°C prior to freeze-drying which was performed using 

a Girovac Ltd. GVD6/13 NKI dryer. Freeze-dried samples were then milled using a 

Retsch GmbH cyclone mill-twister© and powder samples stored at -18°C prior to GSL 

extraction and analysis. Figures 2.10-2.12 show example plant samples immediately 
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after harvest, liquid nitrogen freezing of plant material and freeze-dried and milled 

samples prepared for crude GSL extraction. 

Figure 2.10: Harvested Brassica juncea biofumigant plants ready for biomass 

assessment and freezing for glucosinolate assessment. 

 

 

 

 

 

 

 

Figure 2.11: Liquid nitrogen freezing of Brassica juncea samples. The scale is 

approximately equal to the width of the bag containing B. juncea samples. 

c.150 mm 
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Figure 2.12: Freeze-dried and milled Brassica juncea biofumigant plant material ready 

for crude glucosinolate extraction. 

 

Extraction and analysis of GSL’s by High Performance Liquid Chromatography (HPLC) 

was performed according to the method of Ngala et al. (2014). Samples of freeze-dried 

and milled B. juncea powder (0.3 g) were introduced to 15 mL polypropylene tubes, 

before GSL’s were extracted using 4 mL of 70% v/v HPLC grade methanol in a water 

bath at 80°C for 10 min. Polypropylene tubes were preheated in the bath for 1 min prior 

to hot methanol introduction, and then agitated at 2 min intervals during the methanol 

phase. After boiling, the samples were centrifuged at 5000 x g using a Beckman AvantiTM 

30 high-speed compact centrifuge for 3 min at 4°C. Each sample was extracted twice 

and the supernatant combined in a 15 mL polypropylene tube, followed by the addition 

of a 200 µL glucotropaeolin (5 mM) internal standard (IS) isolated from cress (Lepidium 

sativum). The IS was generated using the described extraction procedure, followed by 

freeze-drying of the cress seed supernatant to generate a crude GSL powder extract. 

This was subsequently quantified using a GSL standard by HPLC. The combined 

extracts were then adjusted to 5 mL using cold 70% v/v methanol and capped. Samples 
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were either stored at -18°C, or processed by ion-exchange purification and enzymatic 

desulfatation (Wathelet et al., 2004). 

 

An Agilent series 1100 HPLC© system equipped with a reverse-phase gradient HPLC 

column (Spherisop® RP-C18 ODS-2, 250 x 4.6 mm) of 5 µm particle size was used for 

the separation and measurement of desulphoglucosinolates. The mobile phase 

consisted of eluent A (deionised water) and eluent B (70% v/v acetonitrile). Column 

temperature was regulated to 30°C, then 10 µL of each sample auto-injected into the 

column for analysis. A linear gradient was performed for each sample at a flow rate of 

1.5 mL min-1 from 0-30% eluent B over 18 min, held at 30% eluent B for 1 min, then 

returned to 0% eluent B for 1min.  A further 6 min per sample was used to establish 

equilibrium within the column, followed by a 2 min post-run duration. Ultraviolet (UV) 

detection of desulphoglucosinolates was determined at 229 nm. Individual GSL 

concentrations (µmol g-1) were determined using Equation 2.4. The relative response 

factors of glucosinolates were obtained from ISO (1992). 

 

Equation 2.4 

 

 

 

 

 

 

 

Figure 2.13 shows the boiling methanol crude extraction of glucosinolates from freeze-

dried B. juncea powder, Figure 2.14 shows the purification step using ion-exchange 

columns, and Figure 2.15 shows the HPLC instrument used in the analysis of the GSL 

content of B. juncea material. 

 

Peak area of 

glucosinolate of interest 
Glucosinolate 

concentration = 
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X X 
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Figure 2.13: Crude extraction of glucosinolates from freeze-dried Brassica juncea 

material (A) using boiling methanol (B).  

 

 

 

 

 

 

 

 

Figure 2.14: Purification and enzymatic desulfatation of glucosinolates from crude 

Brassica juncea glucosinolate extracts. The scale is approximately equal to the length of 

the glass pipettes. 

A 
B 

c.200 mm 
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Figure 2.15: Agilent series 1100 HPLC© system used in the glucosinolate analysis of 

Brassica juncea biofumigant extracts. 

 

2.4.3 Quantifying volatile organic compounds from macerated Brassica juncea plant 

material 

Volatile organic compounds released from macerated B. juncea tissues within glassware 

or in soil were collected using Tenax-TA sorbent tubes. Tenax-TA sorbent was selected 

for experimental work due to its long storage potential after VOC sampling, and for the 

ease with which Tenax-TA sorbent tubes can be used in the field versus other 

techniques. Papadopoulos & Alderson (2007) have previously demonstrated that Tenax-

TA is a suitable sorbent material for biofumigant VOC entrainment. All Tenax-TA VOC 

entrainment was passive. In laboratory work, B. juncea material and G. pallida cysts 

were introduced into glassware with sorbent tubes attached, whilst in field work sorbent 

tubes were fitted to custom made steel sheaths knows as VOC MOLE’s and then 

introduced to soil for VOC entrainment. Tenax-TA entrained B. juncea VOC’s were then 

desorbed from sorbent tubes using a UNITY series 2 thermal desorption unit (Markes 

International, Llantrisant, UK) by heating the sorbent tube to 250°C for 10 min under a 
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H2 flow rate of 20 mL min-1. The desorbed compounds were collected in a general-

purpose C4-C32 carbon cold trap (Markes International) at -10°C before ballistic heating 

to 300°C to ensure a sharp injection of VOC’s into the capillary column of the gas 

chromatograph-mass spectrometer (GC-MS). The temperature programme of the GC-

MS was from 40°C (held for 5 min) to 280°C (held for 2 min) at 15°C min-1 (total run time: 

23 min). The GC instrument was an Agilent 7890B with a HP-5MS column: 30 m x 0.32 

mm x 0.25 μm, injection temperature: 250°C, splitless injection). The MS instrument was 

an Agilent 5977A mass selective detector, 70EV, scan range: 50-500M/Z, source 

temperature: 230°C, quadrupole temperature: 150°C, solvent delay: 0 min). Brassica 

juncea VOC detection was achieved by comparing spectra with a mass spectra database 

(NIST MS search 2.2; National Institute of Standards and Technology, USA). Tenax-TA 

sorbent tubes were reconditioned in the thermal desorption unit at 335°C for 15 min after 

each desorption to prevent carry-over contamination between samples. Figure 2.16 

shows the GC, MS and thermal desorption units. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16: UNITY series 2 thermal desorption unit (A) Agilent 7890B gas 

chromatography instrument (B) and Agilent 5977A mass spectrometer (C) used in 

Brassica juncea volatile analysis. 
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Glasshouse Experiments  3 
 

Investigation of soil moisture as a factor influencing the efficacy of biofumigation 

against potato cyst nematodes 

 

3.1  Introduction  

Previous studies have suggested that volatile organic compound (VOC) concentrations 

might be increased in biofumigant treated soils by manipulation of soil moisture prior to, 

or immediately after incorporation. Morra & Kirkegaard (2002) recorded a doubling of 

isothiocyanate (ITC) concentrations in pot soils where moisture conditions approached 

saturation, in comparison to drier soils of approximately 80% of field capacity. Field work 

by Matthiessen et al. (2004) showed up to a ten-fold increase in ITC concentrations in 

biofumigant treated soil where irrigation was applied, even up to 24 h after incorporation. 

In both studies, soil moisture was suggested to have a role in reactivating or enhancing 

the glucosinolate (GSL) hydrolysis reaction. However, the increase in ITC concentrations 

recorded in soil could instead be explained by enhanced retention of ITCs in soil, by soil 

moisture impeded off-gassing (Simpson et al., 2010; Lord et al., 2011). The mechanism 

for high ITC concentrations in biofumigant treated soils at high soil moisture, is therefore 

unknown. Furthermore, no study is known to have related the moisture content of soil to 

biofumigation efficacy against a soil borne pest, or to have investigated soil moisture as 

a barrier between biofumigant VOC’s and a soil borne pest. This chapter aims to uncover 

whether soil moisture has a role in biofumigation by measuring the viability of PCN eggs, 

exposed to a range of soil moisture conditions, with and without biofumigation treatment, 

over a ‘realistic to the field’ range of incorporated biomass quantities.  

 

3.1.1 Chapter aim  

i)   Determine whether soil moisture conditions at biofumigant incorporation 

influence the efficacy of Brassica juncea biofumigation against PCN. 
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3.1.2 Chapter null hypothesis 

i) Soil moisture content does not influence the efficacy of B. juncea biofumigation 

against PCN. 

 

3.2  Materials and methods: glasshouse experiment 1 

3.2.1 Experiment objectives 

i) Quantify the effect of B. juncea biofumigation on PCN egg viability over a range 

of soil moisture conditions. 

ii)  Quantify the biomass and GSL content of the B. juncea biofumigant material 

used in experimental work. 

 

3.2.2 Experimental design  

Glasshouse experiment 1 was carried out between February and July 2014 at Harper 

Adams University (HAU) (Newport, Shropshire [UK]) to address whether soil moisture 

conditions at biofumigant incorporation can be influential of biofumigation efficacy 

against PCN. The experiment consisted of two factors; ‘soil moisture’, for which four 

levels were selected (25, 50, 75 and 100% of field capacity), and ‘biofumigant’, for which 

two levels were selected (with and without the addition of B. juncea material into pots).  

The soil moisture treatment range of 25-100% of field capacity was deemed to represent 

the full range expected in the field at biofumigant incorporation (Environment Agency, 

2018). Brassica juncea material was grown in pots of compost using methodologies 

which will be described in Section 3.2.4.1, and then incorporated into pots containing 

medium textured sandy clay loam soil at the relevant soil moisture treatment conditions. 

The medium textured soil was representative of many potato producing soils in the UK. 

As illustrated in Figures 3.1 and 3.2, treatments were arranged in a randomised block 

design and replicated seven times, providing 56 experimental units (pots). Replication 

was sufficient to enable treatment differences of 5-15% in PCN egg viability to be 

determined for background variation levels in viability of 2-7% between replicates of like 

treatments (Berndtson, 1991). The design had 42 residual degrees of freedom (RDF). 
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Figure 3.1: Treatment key for glasshouse experiment 1. Border colour is an indicator of 

B. juncea biofumigant treatment, and fill colour is an indicator of soil moisture treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Glasshouse experiment 1 design showing the allocation of treatments 1-8 to 

PCN containing pots of field soil. Blocks are represented using Roman numerals (I-VII). 
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3.2.3 Experimental set-up 

Three core materials were required to carry out glasshouse experiment 1; B. juncea 

biomass (i), silk sachets containing PCN cysts (ii), and pots of field soil stabilised at 

treatment soil moisture conditions (iii). The set-up of this experiment was therefore split 

into preliminary stages relevant to the production of the three primary materials before 

the experiment could be properly initiated. Table 3.1 shows the months leading up to the 

initiation of glasshouse experiment 1 and the time allocated to producing the three core 

materials. 

 

Table 3.1: Table illustrating the time allocated to producing B. juncea biomass, PCN cyst 

sachets and pots of field soil stabilised at soil moisture conditions for glasshouse 

experiment 1. 

 

 

 

3.2.4 Core experimental materials  

3.2.4.1  Brassica juncea biomass production 

Brassica juncea seed was sown into John Innes no.2 compost in trays in February 2014 

(Table 3.1), then healthy and uniformly sized seedlings selected prior to the formation of 

true-leaves for transplantation into pots also containing John Innes no.2 compost. A total 

of 90 pots were planted with B. juncea plants so that there were 56 pots for experimental 

use, surrounded by 34 guards. Figure 3.3 shows the growing arrangement for the 56 

pots described (seven blocks of eight pots). Pots marked ‘I’ were used for incorporation 

into B. juncea biofumigation treated pots after moisture stabilisation of field soil. Pots 

Production of materials Feb Mar Apr May Jun Jul

i: Brassica juncea  biomass

ii: Cysts and cyst sachets

iii: Field soil stabilised at treatment 

soil moisture conditions

Glasshouse 

experiment 1 

set-up and in 

progress
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marked ‘A’ were spares from which two pots were randomly selected per block for crop 

assessments to produce supporting data sets. The position of ‘I’ and ‘A’ biofumitgant 

pots was randomly assigned. See Appendices 8.1.1-8.1.3 and 8.1.5 for John Innes no.2 

compost analysis and field capacity curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Brassica juncea growing arrangement for glasshouse experiment 1. Blocks 

are represented using Roman numerals (I-VII). Units marked ‘I’ indicate B. juncea pots 

which were used for incorporation as treatments. Units marked ‘A’ indicate B. juncea 

pots which were used for crop assessments to generate supporting data, such as dry-

matter. 
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The planting density in B. juncea pots (200 mm diameter) was equivalent to an 8 kg ha-

1 seed rate (17 seedlings per pot). Seedlings were placed equidistantly within pots, split 

between three rows, using a bespoke planting plate to mark transplant positions (Figure 

3.4). Each pot was maintained at between c.65-95% of field capacity for the duration of 

plant growth (see Appendix 8.1.5 for the John Innes no.2 field capacity curve). Pots were 

measured twice weekly to maintain soil moisture conditions. The glasshouse day/night 

temperatures  were set at 15-5°C respectively, with a 16 h photoperiod using 400W SON-

T light bulbs. Figure 3.5 shows B. juncea plants two weeks after transplanting, and Figure 

3.6 shows plants approximately three weeks before incorporation in May 2014 (Table 

3.1). The plants were harvested at 12 weeks, during mid-flowering. 

 

 

 

 

 

 

Figure 3.4: Bespoke B. juncea transplant plate for a 200 mm diameter pot (equivalent 

to 8 kg ha-1 seed rate). 
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Figure 3.5: Brassica juncea plants at approximately two weeks after transplantation of 

seedlings. Outer pots were guards. Roman numerals and arrows indicate blocking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Brassica juncea plants at the budding stage, approximately three weeks prior 

to incorporation into pots. Blocks are indicated by Roman numerals. 
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3.2.4.2 Potato cyst nematode cyst sachets 

Fifty-six bespoke 250 μm nylon mesh parcels known as ‘cyst sachets’ were made to hold 

50 individual PCN cysts each, using a 200 mm Packer® heat sealer. The population 

used was identified as Globodera pallida (see Appendix 8.1.4 for PCR analysis). Cysts 

were obtained from a field named Larkshall 10a near Wretham, Thetford (UK) (grid 

reference: TL 91650 89375) in October 2013 using the soil sampling and PCN 

quantification techniques described in Section 2.3.1 and 2.3.2.  The cysts used in this 

experiment were only preliminary graded during the extraction procedure and so ranged 

between 250-1000 μm in diameter.  The sachets, which resembled tea bags, were 

square and approximately 900 mm2 in size. Figure 3.7 shows cyst sachets and size 

graded G. pallida cysts. Soil texture, pH and organic matter for the Larkshall 10a site can 

be found in Appendices 8.1.1-8.1.3. The site was not unusual in any of these parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: 500 μm test sieve (A), 250 μm nylon mesh cyst sachets (B), and graded G. 

pallida cysts below 500 μm in size (C) and above 500 μm in size (D). The scale indicates 

the approximate length of a cyst sachet. 
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3.2.4.3 Field soil and stabilisation of moisture conditions  

Sandy clay loam soil was collected from Black Brook Meadow field (Beard, 1988) at HAU 

(grid reference: SJ 71003 20717) in March 2014 (Table 3.1). The soil was selected for 

its medium texture, and pH which was within the acceptable range for biofumigation (see 

Appendices 8.1.1 – 8.1.3). The soil was air-dried until it could be graded using a 20 mm 

diameter sieve. Fifty-six 200 mm diameter pots were filled with the soil approximately 

one month before B. juncea incorporation, and then soil moisture stabilised according to 

treatments using the methodology described in Section 2.3.4 (see Appendix 8.1.5 for the 

Black Brook Meadow field capacity curve).  

 

3.2.5 Experiment initiation  

Once B. juncea plants reached maturity, pots of field soil were arranged according to the 

experimental design shown in Figures 3.1 and 3.2. Brassica juncea plants destined for 

incorporation as outlined in Figure 3.3, were then weighed, to quantify biomass, whilst 

standing in their pots. Whole plants from a single pot were macerated using a Viking® 

GE150 garden shredder, then the root and foliar residues placed into a bag (Figure 3.8) 

into which soil from a relevant field soil pot was introduced. The bag was shaken for 30 

s until B. juncea material was well mixed into the soil. The bag contents were then 

emptied into the original field soil pot until half full (c.100 mm depth). A G. pallida cyst 

sachet was then introduced to the pot where it was placed centrally (Figure 3.9) before 

the remaining soil and B. juncea mix was used to fill the pot. Soil from non-B. juncea 

treatments was also shaken and cyst sachets placed into pots in the same manner as 

for B. juncea treatments. This methodology enabled a rapid maceration and 

incorporation of B. juncea material so that ITC losses could be minimised. The soil 

moisture of individual pots was measured after incorporation. Water (c.100-200 mL) was 

then applied to raise moisture to treatment levels and seal the soil surface of pots.  Lids 

were placed over the top of pots to reduce moisture evaporation. Figure 3.10 shows the 

experiment after incorporation of B. juncea into relevant pots. Pots were left for eight-
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weeks (July 2014), then G. pallida sachets extracted and nematode mortality quantified 

using methods described in Section 2.3.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Brassica juncea residue prior to homogenisation with soil. The scale 

indicates the approximate, average chop length of biofumigant material. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Central placement of a cyst sachet in a field soil pot. The scale indicates the 

approximate length of a cyst sachet. 
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Figure 3.10: Glasshouse experiment 1 showing field soil pots after B. juncea 

incorporation. Blocks I-VII run numerically from left to right, and are represented using 

Roman numerals and arrows. 
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3.3  Materials and methods: glasshouse experiment 2 

3.3.1 Experiment objectives 

i) Quantify PCN cyst contents and viability following treatment with a range of 

incorporated B. juncea biomass quantities over a specified range of soil moisture 

conditions. 

ii) Quantify the biomass and GSL content of B. juncea material used in experimental 

work. 

  

3.3.2 Experimental design 

Glasshouse experiment 2 was carried out between January and June 2016 at HAU 

(Table 3.2). The experiment consisted of the same two factors as glasshouse experiment 

1; ‘soil moisture’, of which the level was increased to six (0, 25, 50, 75 and 100% of field 

capacity, and water saturated soil), and ‘biofumigant’, which was expanded to include 

five levels (0, 25, 50, 75 and 100 t ha-1 equivalent fresh biomass).  The general material 

production stages remained similar to glasshouse experiment 1 but with modifications to 

accommodate the increased number of experimental units (pots). As illustrated in 

Figures 3.11 and 3.12, treatments were arranged within the experiment in a randomised 

block design and replicated four times. The design was sufficiently replicated to enable 

treatment differences of 10-15% in PCN egg viability to be determined for background 

variation levels in egg viability of between 3-4% between replicates of like treatments 

(Berndston, 1991). The design had 87 RDF. 
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Figure 3.11: Treatment key for glasshouse experiment 2. Border colour indicates B. 

juncea biofumigant treatment, fill colour indicates soil moisture treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Glasshouse experiment 2 design showing allocation of treatments 1-30. 

Blocks are represented using Roman numerals (I-IV).  
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3.3.3 Experimental set-up 

The same three core materials required to carry out glasshouse experiment 1 were 

required for glasshouse experiment 2; B. juncea biomass (i), silk sachets containing PCN 

cysts (ii), and pots of field soil stabilised at treatment soil moisture conditions (iii). The 

set-up of this experiment was therefore dominated by the production of those three 

primary materials. Table 3.2 shows the months leading up to the initiation of glasshouse 

experiment 2 and the time allocated to the production of the three core materials. 

 

Table 3.2: Table illustrating the time allocated to producing B. juncea biomass, PCN cyst 

sachets and pots of field soil stabilised at soil moisture conditions for glasshouse 

experiment 2. 

 

 

 

 

3.3.4 Core experimental materials  

3.3.4.1 Brassica juncea biomass production 

Brassica juncea seed was sown into John Innes no.2 compost in trays in January 2016 

(Table 3.2) and transplanted to pots of compost using the same methodology as the first 

glasshouse experiment. Pot size was increased to 250 mm diameter to try and reduce 

the watering frequency required to maintain plants within a 65-95% of field capacity 

range throughout the growing period.  The planting density in B. juncea pots remained 

equivalent to an 8 kg ha-1 seed rate. However, the number of transplanted seedlings 

increased to 26 plants per pot. All other materials and methods for growing B. juncea 

Production of materials Jan Feb Mar Apr May Jun

i: Brassica juncea  biomass

ii: Cysts and cyst sachets

iii: Field soil stabilised at treatment 

soil moisture conditions

Year: 2016
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experiment 2 
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remained consistent with the first glasshouse experiment. Figure 3.13 shows the growing 

arrangement for B. juncea plants (seven blocks of six pots). The number of B. juncea 

pots was reduced from that of the first glasshouse experiment due to the use of smaller 

pots in the main experiment and therefore a reduced biomass requirement. Additionally, 

plant material for assessment was taken from the same pots used for biofumigation 

treatment in the main experiment. Biomass from pots marked ‘I/A’ was used for 

incorporation into biofumigation treated pots after moisture stabilisation of field soil, and 

for crop assessments. Biomass from pots marked ‘D’ was discarded. The selection of 

biomass from ‘I/A’ pots versus ‘D’ pots was made on the day of incorporation, and was 

based upon the uniformity of plant physiology, which was assessed visually. Figure 3.14 

shows B. juncea plants approximately one week before incorporation in April 2016. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Brassica juncea pot arrangement for glasshouse experiment 2. Blocks are 

represented using Roman numerals (I-VI). Units marked ‘I/A’ indicate B. juncea pots 

which were used for incorporation as treatments and for crop assessments to generate 

supporting data. Units marked ‘D’ indicate B. juncea pots which were surplus to 

requirements and therefore discarded. 
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Figure 3.14: Brassica juncea plants at budding to early flowering, approximately one 

week prior to incorporation into pots, viewed side on to block I. 

 

3.3.4.2 Potato cyst nematode cyst sachets  

Fifty G. pallida cysts, obtained from the same field as for glasshouse experiment 1, were 

graded to 500-1000 μm in size using the sieve illustrated in Figure 3.7, and then placed 

into cyst sachets. A total of 120 cyst sachets were produced for glasshouse experiment 

2. Cysts were graded in an attempt to reduce background variation in the experiment 

(Twomey et al., 1995) in response to having fewer replicates of treatments than in 

glasshouse experiment 1. Due to the high number of cysts required, the production of 

cysts sachets took from January to March 2016 (Table 3.2). 

 

3.3.4.3 Field soil and stabilisation of moisture conditions  

Sandy clay loam soil was again collected from Black Brook Meadow field at HAU for use 

in glasshouse experiment 2, and processed in the same manner as for glasshouse 

experiment 1. 
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3.3.5 Experiment initiation  

Brassica juncea plants were macerated using the Viking® GE 150 garden shredder in 

April 2016, and the residues weighed into 30.7, 61.4, 92.0 and 122.7 g biomass 

quantities used to represent 25, 50, 75 and 100 t ha-1 respectively. The residues were 

mixed into soil and G. pallida sachets placed into field soil pots in the same manner as 

for the first glasshouse experiment. The 200 mm diameter pots used in glasshouse 

experiment 1 were replaced with smaller 125 mm diameter pots  due to the greater 

number of experimental units in glasshouse experiment 2, and glasshouse space 

restrictions. The pots were arranged in the HAU glasshouse according to the design 

shown in Figure 3.12. Soil moisture within pots was stabilised before biofumigation as 

for glasshouse experiment 1. Figure 3.15 shows the experiment after incorporation of B. 

juncea material into relevant pots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Glasshouse experiment 2 showing field soil pots after B. juncea 

incorporation. Blocks I-IV run numerically from back to front. 
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3.4  Assessments  

3.4.1 Potato cyst nematode 

Globodera pallida egg viability and eggs cyst-1 were quantified for glasshouse 

experiments 1 and 2 as described in Section 2.3.2 using Equations 2.2 and 2.3.  

 

3.4.2 Biofumigant   

3.4.2.1 Biomass (fresh and dry-weight) 

In glasshouse experiment 1, pots were weighed prior to plant maceration whilst plants 

were in-situ. Plants were then removed from compost for maceration and the compost 

filled pots reweighed so that the reduction in weight represented the fresh B. juncea plant 

weight per pot. This methodology enabled an expedient incorporation of B. juncea 

material, although introduced some variability into the first glasshouse experiment in 

terms of the quantity of biomass used per experimental pot. In glasshouse experiment 

2, whole B. juncea pots were macerated, and predetermined fractions of fresh biomass 

used for incorporation into field soil filled experimental pots. This methodology enabled 

uniform treatment levels of biomass to be used in the experiment. From the total 

macerated biomass from a single pot in glasshouse experiment 2, a 30 g subsample was 

taken for biomass dry-matter assessment. A single plant from two randomly selected 

assessment (‘A’) B. juncea pots per block (Figure 3.3) was collected, dried, and used to 

assess dry-matter for glasshouse experiment 1.  Plant samples for both experiments 

were dried using a forced air oven at 105°C for 48-72 h and the percentage dry-matter 

calculated using standard methods (Jackson et al.,1986). Fresh and dry-weight biomass 

figures were then converted to t ha-1 equivalent units for ease of comparison between 

glasshouse and field work using Equation 3.1. 

 

Equation 3.1 

 

 

 

Biomass (fresh or dry) 

calculated per pot in g 

Biomass t ha-1     = 

The number of pots per hectare 

calculated using pot surface area 

1,000,000 

X 
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3.4.2.2 Glucosinolate content of tissues 

Plant samples were collected from glasshouse experiment 1 for glucosinolate analysis. 

However, the samples were lost during storage due to a freezer malfunction. A single 

plant from each assessment (‘I/A’) pot (Figure 3.13) was collected and processed for 

glasshouse experiment 2 using the methodologies described in Section 2.4.2. 

 

3.5  Data analysis  

Data were analysed by analysis of variance (ANOVA) and regression with groups using 

GenStat® 16th Edn. (VSN International). Treatment effects for ANOVA analysed data 

were compared using Tukey’s multiple range test at 95% confidence. Regression with 

groups analysis generated three linear and three polynomial models for each data set, 

from which the model which accounted for the greatest percentage of variance was used. 

Models varied in complexity. Coefficient of variation (CV) values were calculated using 

Microsoft® Excel 2016. Figures were generated using Microsoft® Excel 2016. 

 

3.6  Results: glasshouse experiment 1 

3.6.1 Brassica juncea biomass and dry-matter 

The dry-matter of plants at incorporation was 13.9%. The standard error of the mean 

(SEM) was 0.85%. No difference was found in the mean quantity of fresh-weight B. 

juncea biomass (P = 0.054) produced for each block of B. juncea pots (Figure 3.16 i). 

However, fresh-weight B. juncea biomass ranged between equivalent to 58.1-78.5 t ha-

1 between blocks I-VII, which represents a large degree of variation (Figure 3.16 i). No 

difference was found in the mean quantity of fresh-weight biomass incorporated into 

different B. juncea treatment pots (P = 0.859) (Figure 3.16 ii). Mean fresh-weight biomass 

ranged between equivalent to 69.6-72.4 t ha-1 between treatments 1, 2, 3 and 4 

(equivalent to 25, 50, 75 and 100% of field capacity soil moisture treatment respectively) 

indicating the randomisation of B. juncea pots across treatments was effective (Figure 

3.16 ii).  
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Figure 3.16: Mean fresh-weight B. juncea biomass (converted to t ha-1) analysed by 

block (i) and soil moisture treatment (ii) factors using one-way ANOVA. Error bars 

represent the SEM.  

 

3.6.2 Globodera pallida egg viability % following treatment with and without Brassica 

juncea biofumigation at different soil moisture levels 

The viability of encysted G. pallida eggs measured eight weeks after biofumigation 

indicated a negative effect of biofumigation on G. pallida viability (P < 0.001) (Figure 3.17 

i and iii). However, soil moisture treatment had no effect on the viability of G. pallida (P 

= 0.100) and there was no interaction between soil moisture and biofumigation on G. 

pallida viability (P = 0.682) (Figure 3.17 i and ii). Biofumigation was found to cause a 

40.6% mean reduction in G. pallida egg viability. Biofumigation efficacy ranged between 

35.0-43.1% for soil moisture treatments between 25-100% of field capacity compared to 

pots where no B. juncea material was incorporated. Figure 3.17 i shows a one-way 

ANOVA analysis of G. pallida viability as affected by treatments 1-8 (25, 50, 75 and 100% 

of field capacity with and without biofumigation) which illustrates the effect of 

biofumigation and absence of any soil moisture effect on G. pallida viability. This is 

further supported by general ANOVA analyses in plates ii and iii where data was 

analysed at the factor level. The CV of G. pallida egg viability for the B. juncea treatments 

in Figure 3.17 i and iii was 18.8%, whilst for the untreated treatments the CV was 6.4%. 
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The CV’s of egg viability for soil moisture levels in Figure 3.17 ii were; 24.3% for 25% of 

field capacity, 29.8% for 50% of field capacity, 32.0 for 75% of field capacity and 30.1% 

for 100% of field capacity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Globodera pallida viability after exposure to B. juncea biofumigation 

treatment over a range of soil moisture conditions. Plate i shows a one-way ANOVA 

analysis whilst plates ii and iii were produced after a general ANOVA analysis. Error bars 

represent the SEM. Lettering above data labels indicates differences as determined 

using Tukey’s test.  
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3.6.3 The influence of Brassica juncea biomass quantity on Globodera pallida viability 

% at different soil moisture levels 

Figure 3.18 shows how G. pallida viability is influenced by increasing B. juncea biomass 

in soil with different soil moisture conditions (25-100% of field capacity, plates i-iv). Only 

15.9% of the variance in G. pallida viability could be explained overall, by variation in the 

quantity of B. juncea biomass incorporated into pots. No grand regression could be fitted 

to the complete data set due to the large scatter of data points (P = 0.158), and no 

significantly different relationships between biomass and G. pallida viability were 

observable between regressions (P = 0.104). However, a moderate-strong positive 

correlation existed between biomass and G. pallida viability for 25% of field capacity, and 

a moderate-strong negative correlation relationship existed for 100% of field capacity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: Globodera pallida viability as influenced by different quantities of B. juncea 

biomass and levels of soil moisture. Soil moisture groups have been presented as 

individual plates (i-iv) for ease of comparison. 
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3.6.4 Effect of soil moisture and Brassica juncea biofumigation on the number of 

Globodera pallida eggs cyst-1 

Figure 3.19 shows the total number of G. pallida eggs cyst-1 for treatments and for B. 

juncea biomass and soil moisture in factor based analyses. No effect of B. juncea on G. 

pallida eggs cyst-1 was observed between treatments when measured 8 weeks after 

biofumigation (P < 0.228) (Figure 3.19 i). Neither soil moisture or B. juncea biomass 

factors were found to effect G. pallida eggs cyst-1 either (P = 0.656 and P = 0.109 

respectively), and there was no interaction between soil moisture and B. juncea 

biofumigation on G. pallida eggs cyst-1 (P = 0.153) (Figures 3.19 ii-iii). Eggs cyst-1 ranged 

between 135-213 for treatments 1-8 (Figure 3.19 i). The CV of G. pallida eggs cysts-1 for 

the B. juncea treatments in Figure 3.19 i and iii was 37.6%, whilst for the untreated 

treatments the CV was 32.5%. The CV’s of eggs cyst-1 for soil moisture levels in Figure 

3.19 ii were; 38.9% for 25% of field capacity, 32.8% for 50% of field capacity, 32.9 for 

75% of field capacity and 38.4% for 100% of field capacity. 
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Figure 3.19: Globodera pallida eggs cyst-1 after exposure to B. juncea biofumigation 

over a range of soil moisture conditions. Plate i shows a one-way ANOVA analysis whilst 

plates ii-iii were produced using general ANOVA analysis. Error bars represent the SEM.  

 

3.7  Results: glasshouse experiment 2 

3.7.1 Brassica juncea dry-matter and glucosinolate content at incorporation 

The dry-matter of plants at incorporation was 11.4%. The SEM was 0.03%. 2-propenyl 

GSL (sinigrin) content of combined leaf and stem tissues varied between 3.7-5.0 µmol 

g-1 dry tissue between biofumigant rows. Mean 2-propenyl GSL content was 4.2 µmol g-

1 dry tissue and the SEM 0.30 µmol g-1 dry tissue (Appendix 8.2.4). 2(S)-hydroxy-3-

butenyl (epiprogoitrin) and 2(R)-2-hydroxy-3-butenyl (progoitrin) were also observed in 

B. juncea tissues at c.0.9 and 1.8 µmol g-1 dry tissue respectively. 
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3.7.2 Globodera pallida egg viability % following treatment with different quantities of 

Brassica juncea material and different levels of soil moisture 

A negative effect of B. juncea biofumigation on G. pallida viability was observable eight 

weeks after B. juncea incorporation (P < 0.001) (Figure 3.20). Up to a 51.2% difference 

in efficacy was observed against G. pallida between extreme biomass/soil moisture 

treatments. However, neither biomass or soil moisture effects on B. juncea efficacy 

against G. pallida were easily separable with a one-way ANOVA analysis (Figure 3.20). 

Simple general ANOVA analyses at the B. juncea biomass and soil moisture factor levels 

were more revealing (Figure 3.21 i and ii).  Overall, biofumigation was found to cause a 

16.5-31.1% reduction in G. pallida viability between extremes of incorporated fresh-

weight B. juncea biomass (0-100 t ha-1), with notable differences in efficacy between 0, 

25 and 75-100 t ha-1 fresh-weight biomass (Figure 3.21 i). Analysis of soil moisture 

effects on G. pallida viability found a negative impact of 50% of field capacity moisture 

treatment at B. juncea incorporation on the viability of G. pallida eggs compared to 0% 

of field capacity (P = 0.010) (Figure 3.21 ii). No other moisture levels could be separated. 

An extra 14.3% efficacy was achieved when performing biofumigation at 50% of field 

capacity for the full range of incorporated biomass quantities compared to 0% of field 

capacity (Figure 3.21 ii). No interaction was observed between the quantity of B. juncea 

biomass incorporated into soil and the moisture level of soil on the efficacy of 

biofumigation against G. pallida in this instance (P = 0.127). Treatment CV’s from Figure 

3.20 ranged between 3.7 and 41.2%. The egg viability CV’s for B. juncea biomass in 

Figure 3.21 i were; 12.4% for 0 t ha-1, 20.2% for 25 t ha-1, 22.8% for 50 t ha-1, 30.4% for 

75 t ha-1 and 28.0% for 100 t ha-1. The egg viability CV’s for soil moisture levels in Figure 

3.21 ii were; 24.7% for 0% of field capacity, 28.9% for 25% of field capacity, 26.0% for 

50% of field capacity, 26.9% for 75% of field capacity, 22.0% for 100% of field capacity 

and 28.1% for saturated soil. The 25, 50 and 75% of field capacity moisture levels 

appeared optimal compared to 25 and 100% of field capacity and saturated moisture 

levels overall (Figure 3.21 ii).
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Figure 3.20: Globodera pallida viability after exposure to quantities of B. juncea material ranging between the equivalent of 0-100 t ha-1 fresh-weight 

biomass and soil moisture ranging between 0% of field capacity and water saturated soil. One-way ANOVA analysis. Error bars represent the SEM. 

Lettering above data labels indicates differences as determined using Tukey’s test. 
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Figure 3.21: Globodera pallida viability after exposure to quantities of B. juncea material 

ranging between the equivalent of 0-100 t ha-1 fresh-weight biomass (i), and soil moisture 

ranging between 0% of field capacity and water saturated soil (ii). General ANOVA 

analysis. Error bars represent the SEM. Lettering above data labels indicates differences 

as determined using Tukey’s test. 

 

3.7.3 The influence of Brassica juncea biomass quantity on Globodera pallida viability  

% for grouped soil moisture levels; 25, 50 and 75% of field capacity, and 0 and 

100% of field capacity combined with saturated soil 

The 25-75% of field capacity bars from Figure 3.21 ii appear to be very similar, whilst 

also appearing to be different to the 0 and 100% of field capacity, and saturated soil bars. 

Similarly to the first grouping, the 0 and 100% of field capacity, and saturated soil bars 

appear to be closely aligned. Given that the 0 and 50% of field capacity bars can be 

separated statistically, it appears logical to carry out further group based correlation and 

regression analyses, taking into account the clear biomass effects from Figure 3.21 i. 
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3.22 when comparing R and R2 values. Using the linear models in Figure 3.22, 

biofumigation efficacy against G. pallida can be shown to be improved under optimal soil 

moisture conditions by 6.0, 8.6, 11.7, 15.3 and 19.5% for inclusions of fresh-weight B. 

juncea material equivalent to 0, 25, 50, 75 and 100 t ha-1 respectively compared to the 

same inclusions of material into soil under sub-optimal moisture conditions. Using the 

polynomial models in Figure 3.23, biofumigation efficacy against G. pallida can be shown 

to be improved under optimal soil moisture conditions by 3.9, 9.9, 14.8, 17.0, and 15.8% 

for inclusions of fresh-weight B. juncea material equivalent to 0, 25, 50, 75 and 100 t ha-

1 respectively compared to the same inclusions of material into soil under sub-optimal 

moisture conditions. Both linear and polynomial models show strong negative 

relationships between the quantity of B. juncea material incorporated into soil and G. 

pallida viability. 

 

Figure 3.22: Globodera pallida viability as influenced by different quantities of B. juncea 

biomass and grouped levels of soil moisture. Error bars represent the SEM. 
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Figure 3.23: Globodera pallida viability as influenced by different quantities of B. juncea 

biomass and grouped levels of soil moisture. Error bars represent the SEM. 
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3.25 i and ii). No interaction was observed between the quantity of B. juncea biomass 

incorporated into soil and the moisture level of soil on G. pallida eggs cyst-1 in this 

instance, although P was approaching significance (P = 0.057). Treatment CV’s from 

Figure 3.24 ranged between 14.1 and 80.8%. The egg cyst-1 CV’s for B. juncea biomass 

in Figure 3.25 i were; 56.7% for 0 t ha-1, 52.3% for 25 t ha-1, 40.9% for 50 t ha-1, 55.0% 

for 75 t ha-1 and 58.1% for 100 t ha-1. The eggs cyst-1 CV’s for soil moisture levels in 

Figure 3.25 ii were; 51.2% for 0% of field capacity, 47.9% for 25% of field capacity, 57.8% 

for 50% of field capacity, 61.9% for 75% of field capacity, 41.1% for 100% of field capacity 

and 67.5% for saturated soil. 
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Figure 3.24: Globodera pallida eggs cyst-1 after exposure to quantities of B. juncea material ranging between the equivalent of 0-100 t ha-1 fresh-weight 

biomass and soil moisture ranging between 0% of field capacity and water saturated soil. One-way ANOVA analysis. Error bars represent the SEM. 

Lettering above data labels indicates differences as determined using Tukey’s test
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Figure 3.25: Globodera pallida eggs cyst-1 after exposure to quantities of B. juncea 

material ranging between the equivalent of 0-100 t ha-1 fresh-weight biomass (i), and soil 

moisture ranging between 0% of field capacity and water saturated soil (ii). General 

ANOVA analysis. Error bars represent the SEM.  
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Figure 3.17. Biofumigation effects ranged between a 35.0 and 43.1% viability reduction 

between 25-100% of field capacity soil moisture extremes, with a mean reduction in egg 

viability in the region of 40.6%. These figures are around half that recorded in previous 

studies investigating B. juncea cv. ISCI 99 for management of G. pallida, and so efficacy 

was considered to be moderate/low (Ngala et al., 2014; Lord et al., 2011). This could be 

due to the methodology employed, whereby PCN were not exposed to biofumigant 

VOC’s during plant growth as partial biofumigation, but merely at the incorporation stage. 

Whilst a clear biofumigation effect on G. pallida viability was observable in glasshouse 

experiment 1, no such effect was observable relative to the moisture condition of soil, 

neither was an interaction between biofumigation and soil moisture condition found in 

terms of G. pallida egg viability. The absence of a soil moisture effect on biofumigation 

efficacy against G. pallida was a little unexpected in light of the robust experimental 

methodology employed and indications from separate studies that VOC levels should 

have been substantially higher in the wetter soil (Morra & Kirkegaard., 2002; Matthiessen 

et al., 2004). However, the VOC concentration in soils was not quantified in this 

experiment.  

 

The experimental design for glasshouse experiment 1 was replicated sufficiently well to 

enable treatment differences of 5-15% in G. pallida egg viability to be determined for 

background variation levels in egg viability of between 2-7% as previously described 

(Berndtson, 1991). In a one-way ANOVA analysis there appeared to be an 8% difference 

in mean PCN viability between soil moisture extremes for B. juncea biofumigant treated 

soils, and a 6% difference for a simplified general ANOVA analysis (Figure 3.17 i and ii). 

The CV of G. pallida egg viability was therefore investigated to check whether the 

experiment had the power to determine differences of 6-8% in egg viability. The CV of 

G. pallida egg viability for B. juncea treatments in Figure 3.17 i and iii was 18.8%, whilst 

for the untreated treatments the CV was 6.4%. Using a replicate calculator provided by 

Berndston (1991) it was determined that seven replicates was insufficient to determine 

a 6-8% difference in B. juncea efficacy against G. pallida. In excess of 100 replicates 
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would have been necessary given the variation in egg viability and so no conclusions 

could be made regarding the importance or role of soil moisture in biofumigation of PCN.  

 

However, untreated G. pallida were observed to have far less variation in egg viability 

than biofumigation treated. This indicated that biofumigation treatment had introduced a 

high level of variation into glasshouse experiment 1 which could have been masking soil 

moisture treatment effects, particularly in light of a potential trend for increasing efficacy 

against G. pallida with increasing soil moisture (Figure 3.17 i). It is probable that variation 

in the quantity of B. juncea biomass incorporated into soil was responsible for the 

variation in suppression of G. pallida. Although biomass did not differ significantly 

between blocks and so could not be used as a covariate in viability analyses, fresh-

weight B. juncea biomass ranged between equivalent to 58.1-78.5 t ha-1 between blocks 

I-VII which represented a substantial level of variation when trying to determine 

potentially small soil moisture effects on biofumigation efficacy (Figure 3.16).  

 

In an attempt to increase replication in the analysis of data, soil moisture effects on G. 

pallida viability was analysed at the factor level (Figure 3.17 ii and iii). This meant that B. 

juncea biofumigant treated and untreated treatments for like soil moisture conditions 

were amalgamated for analysis, providing 14 replicates for each soil moisture level under 

analysis in place of seven in a one-way ANOVA analysis. However, egg viability CV’s 

also rose in this analysis to 24.3% for 25% of field capacity, 29.8% for 50% of field 

capacity, 32.0 for 75% of field capacity and 30.1% for 100% of field capacity. Using the 

Berdston (1991) replicate calculator, several hundreds of replicates would have been 

required to prove a 6% difference between soil moisture treatments given the 

background variation in egg viability. This type of analysis was therefore ineffective in 

this instance in determining whether soil moisture has a role in biofumigation of G. 

pallida. 
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3.8.1.2 Discussion of results analysed by regression with groups 

Further viability analysis investigated potential relationships between G. pallida viability 

and the quantity of B. juncea biomass incorporated into soil, grouped by soil moistures 

25, 50, 75 and 100% of field capacity (Figure 3.18). This was carried out in response to 

the large range in biofumigant biomass produced in glasshouse experiment 1. No grand 

regression could be fitted to the data, and no difference was found between individual 

regressions for 25, 50, 75 and 100% of field capacity groups. However, only 28 data 

points were analysed in total, so proving statistical significance was challenging. A 

reasonably convincing trend for decreasing biofumigation efficacy at 25% of field 

capacity as biomass inclusion into soil increased from c.60 to 80 t ha-1 was shown, whilst 

increasing efficacy was true for 100% of field capacity soil moisture conditions for 

biomass quantities between equivalent to c.50-90 t ha-1. Both regressions showed 

moderate to strong relationships between biomass and G. pallida viability indicating that 

biomass quantity in conjunction with soil moisture could have some importance in 

influencing biofumigation efficacy against G. pallida. However, only seven data points 

were used to generate each regression, which suggests caution should be taken in data 

interpretation.  

 

It is possible that where low quantities of B. juncea biomass were incorporated into soil 

(c.50 t ha-1) lower soil moisture conditions (25-50% of field capacity) were preferable 

because those moisture conditions enabled volatile movement whilst also ensuring 

volatile retention in soil, similarly to methyl-ITC studies carried out by Simpson et al. 

(2010). Where the quantity of B. juncea biomass being incorporated into soil was high 

(c.90 t ha-1) it is possible that biomass had a structural effect on soil whereby biofumigant 

residues created a more open soil structure with a greater number of macropores and 

therefore a greater potential for loss of VOC’s to the atmosphere. Sultani et al. (2007) 

present evidence to suggest a linear relationship between increasing the number of soil 

macropores in soil as the quantity of green manure amendment to soil is increased. In 

their work, a 23 t ha-1 fresh weight legume amendment to soil increased the number of 
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soil macropores by 41% compared to an unamended control supporting the hypothesis 

that at low soil moisture conditions, biofumigant VOC’s could be lost to the atmosphere 

where high biomass quantities are incorporated into soil. Under such a situation, higher 

soil moisture conditions could help retain VOC’s in soil by limiting off-gassing (Simpson 

et al., 2010). Where soil moisture conditions are high, incorporation of low quantities of 

B. juncea biomass into soil could cause biofumigant VOC’s to become 

compartmentalised in soil, or to be absorbed by soil water, reducing the diffusion 

potential of the VOC’s and negatively influencing efficacy (Lembright, 1990). Further 

work is required to investigate these hypotheses. Figure 3.18 could be alluding to the 

importance of biofumigant VOC’s being in a gaseous phase in soil for maximum efficacy, 

rather than when being held in soil moisture as the work of Matthiessen et al. (2004) 

might suggest.  

 

3.8.2 Globodera pallida viability (glasshouse experiment 2) 

3.8.2.1 Discussion of results analysed by analysis of variance 

Glasshouse experiment 2 investigated six levels of soil moisture; 0, 25, 50, 75, 100% of 

field capacity and saturated soil, with the addition of B. juncea biofumigant material into 

soil at five levels equivalent to 0, 25, 50, 75 and 100 t ha-1 for suppression of G. pallida. 

Biomass quantity was controlled in glasshouse 2 to try to reduce the variation in G. 

pallida egg viability observed in the first glasshouse experiment following biofumigation 

treatment. A wide range of incorporated biomass quantities were investigated given that 

biomass would appear to be a primary factor influential of biofumigation success against 

G. pallida in glasshouse experiment 1. The large number of soil moisture and B. juncea 

biomass permutations in glasshouse experiment 2 resulted in 30 treatments. Only four 

replicates of each treatment could be feasibly achieved in glasshouse experiment 2, so 

other methods of reducing background variation in G. pallida egg viability were 

investigated and adopted. Cysts were graded to 500-1000 µm to increase the number of 

eggs used in egg counts and to stabilise the number of eggs used in counts owing to 

lower variation of eggs cyst-1 in larger cysts than in smaller cysts (Twomey et al., 1995). 
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It was anticipated that grading cysts and controlling biomass might be sufficient 

improvements to the experimental methodology to reduce G. pallida egg viability CV’s 

post biofumigation treatment, which might enable soil moisture effects to be observed if 

present. The design was sufficiently replicated to enable treatment differences of 10-

15% in PCN egg viability to be determined for background variation levels in egg viability 

of between 3-4% between replicates of like treatments (Berndston, 1991) 

 

The headline results for glasshouse experiment 2 surrounded the effects of treatments 

on G. pallida egg viability shown in Figures 3.20-21. One-way ANOVA analysis shown 

in Figure 3.20 was not very revealing as the variation in egg viability between four 

replicates of each treatment masked potential effects on G. pallida viability between 

treatments. Coefficient of variation values ranged between 3.7 and 41.2% between 

treatments which resulted in only a few treatment differences in G. pallida viability being 

separable for just four replications of each treatment. However, general ANOVA 

analyses shown in Figure 3.21 were revealing.  

 

General ANOVA biomass assessment amalgamated all soil moisture levels sharing the 

same level of biomass (Figure 3.21 i), and all biomass levels sharing the same levels of 

soil moisture (Figure 3.21 ii). In the first instance this increased replication from four to 

24 for each biomass treatment analysed, and in the second instance 20 replications of 

each soil moisture treatment were achieved. Using this methodology, differences in B. 

juncea biomass quantity on biofumigation efficacy against G. pallida in terms of viability 

were seen between equivalent to 0-25 t ha-1 fresh biomass, and then between 25 t ha-1 

fresh biomass and 75-100 t ha-1 fresh biomass. The effect of 50 t ha-1 fresh biomass on 

G. pallida viability could not be separated from either 25 or 50 t ha-1 fresh biomass. 

Efficacy ranged between 16.5-31.1% when carrying out a general ANOVA biomass 

analysis, with a mean reduction in egg viability in the region of 26.0%. These figures are 

quite low compared to most of the literature, but still generally in line with previous studies 

investigating B. juncea cv. ISCI 99 for management of G. pallida (Ngala et al., 2014; Lord 
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et al., 2011). It is possible that the reduction in size of incorporation pots in glasshouse 

experiment 2 may be responsible for reduced biofumigation efficacy in the experiment 

due to an increased soil-pot surface area, leading to greater loss/off-gassing of VOC’s 

from pots. Alternatively, the GSL content of B. juncea tissues in glasshouse experiment 

2 might have been very low, or as described for glasshouse experiment 1, partial 

biofumigation effects could be missing as a result of the incorporation methodology used. 

This is unknown due to the loss of GSL samples from glasshouse experiment 1, although 

the GSL concentrations recorded for glasshouse experiment 2 (see Section 3.7.1 and 

Appendix 8.2.4) can be considered very low at c.4.2 µmol 2-propenyl GSL g-1 dry weight 

compared to other studies investigating B. juncea cv. ISCI 99 for management of PCN 

(Lord et al., 2011; Ngala et al., 2014). The low GSL concentrations in biofumigant 

material could be due to biofumigant plants not receiving fertiliser, due to plants being 

free from herbivory or water stress, or could be due to the set-up of the HPLC instrument 

used to quantify GSL’s (Hopkins et al., 1999; Textor & Gershenzon, 2009). As a 

secondary observation, the increase in efficacy observed with increasing inclusion of B. 

juncea biomass into soil is in line with Lord et al. (2011) who recorded increasing mortality 

of G. pallida in soil in conjunction with increased GSL concentrations in soil. Because 

different quantities of the same plant material were used in this experiment, the same 

explanation is probable in this instance. 

 

Differences in efficacy against G. pallida were also observed in general ANOVA analyses 

for different soil moisture conditions. An extra 14.3% efficacy was achieved when 

performing biofumigation at 50% of field capacity for the full range of incorporated 

biomass quantities compared to 0% of field capacity (Figure 3.21 ii). This is the first 

known instance where soil moisture has been shown to influence biofumigation efficacy 

against a soilborne pest. Generally, 25-75% of field capacity appeared to be the optimal 

range of soil moisture for B. juncea biofumigation of G. pallida. If the regression analyses 

observed for B. juncea biomass and G. pallida viability from glasshouse experiment 1 

are accurate then the interpretation of the soil moisture results from glasshouse 
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experiment 2 could be more complex than simply maintaining soil moisture conditions 

between 25-75% for biofumigation of G. pallida. Given the data presented for glasshouse 

experiment 1, it is possible that 25% of field capacity is preferable for inclusions of c.25 

t ha-1 fresh biomass into soil, that 50% of field capacity is preferable for inclusions of c.50 

t ha-1 fresh biomass into soil, and that 75% of field capacity is preferable for inclusions of 

c.75 t ha-1 fresh biomass into soil. However, clearly more research is required to support 

these hypotheses and to understand biomass/soil moisture interactions. 

 

Egg viability CV’s ranged between 12.4-30.4% when data was analysed by biomass 

factor, and by 22.0-28.9% when analysed by soil moisture factor (Figures 3.21 i and ii). 

Using the Berdston (1991) replicate calculator, it would appear that biomass related 

effects on G. pallida viability were easily proven due to large effect sizes. However, soil 

moisture treatment effects on G. pallida viability were near the point of being 

undetectable due to background variation in G. pallida viability and a small effect size of 

14.3% efficacy between extremes of moisture. Berndston (1991) suggest that for a 

background CV of 20% in egg viability, an effect size no less than c.20% should be 

detectable for c.20 replications. Clearly future work investigating the role of soil moisture 

in biofumigation of PCN would be well advised to increase replication from that used 

here to nearer 30 replications.  

 

3.8.2.2 Discussion of results analysed by regression with groups 

Further analysis of the soil moisture and B. juncea biomass data discussed, was 

presented in Figures 3.22 and 3.23. The effect of B. juncea fresh biomass on G. pallida 

viability was assessed with soil moisture data from 25, 50 and 75% of field capacity 

grouped as optimal moisture conditions, and 0 and 25 % of field capacity data combined 

with saturated data grouped as suboptimal soil moistures. Figure 3.22 showed a linear 

model whilst Figure 3.23 showed a polynomial model which was generally more 

explanatory than the linear model. Using the linear models, biofumigation efficacy 

against G. pallida was shown to be improved under optimal soil moisture conditions by 
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6.0, 8.6, 11.7, 15.3 and 19.5% for inclusions of fresh-weight B. juncea material equivalent 

to 0, 25, 50, 75 and 100 t ha-1 respectively, compared to the same inclusions of material 

into soil under sub-optimal moisture conditions. The primary point to draw from this 

analysis is to reiterate that B. juncea biofumigation efficacy against G. pallida increased 

in line with the quantity of biomass incorporated into soil, similarly to the work of Lord et 

al. (2011) with GSL regressions. Also, soil moistures of 25-75% of field capacity were 

consistently more effective for biofumigation of G. pallida across a full 25-100 t ha-1 range 

of fresh biomass inclusions into soil, than 0 and 100% of field capacity and saturated soil 

grouped. Using the polynomial models in Figure 3.23, biofumigation efficacy against G. 

pallida can be shown to be improved under optimal soil moisture conditions by 3.9, 9.9, 

14.8, 17.0, and 15.8% for inclusions of fresh-weight B. juncea material equivalent to 0, 

25, 50, 75 and 100 t ha-1 respectively, compared to the same inclusions of material into 

soil under sub-optimal moisture conditions. Generally the polynomial model shows an 

increase in efficacy for the optimal soil moisture range as biomass increases to 100 t ha-

1. However, efficacy does reduce marginally for the final 100 t ha-1 fresh biomass level. 

This might be due to variation in the model. Both optimal and sub-optimal soil moisture 

regressions are very strong. The flattening of efficacy between 50-100 t ha-1 fresh 

biomass could be evidence that biomass has a structural effect on soil, and that at fresh 

biomass equivalent to 100 t ha-1 incorporated into a pot of 200 mm depth, higher soil 

moisture conditions are required to retain VOC’s in soil. In this instance efficacy may 

have dropped slightly in response to loss of biofumigant VOC’s to headspace above pots 

(Sultani et al., 2007; Simpson et al.,2010; Gao & Trout, 2006). Again, this hypothesis 

needs further investigation.  

 

3.8.3 Globodera pallida eggs cyst-1 (glasshouse experiments 1 and 2) 

For the results discussed so far, nematode data has been expressed as percentage G. 

pallida viability. However, percentages do not take account of the range over which data 

points spread, which can sometimes lead to inaccurate conclusions if treatments 

influence the total number of nematodes in an analysis rather than, or in addition to their 
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viability. The number of G. pallida eggs-1 cyst was therefore investigated and presented 

in Figures 3.19, 3.24 and 3.25 as a means of quantifying both cyst uniformity for viability 

analysis (Twomey et al., 1995), and as a control analysis for any potential B. juncea 

biofumigation effect on eggs cyst-1. No study is known to have investigated biofumigation 

treatment effects on PCN eggs cyst-1. However, work presented by Ngala et al. (2014) 

reported a reduction in eggs g-1 soil following biofumigation treatment of G. pallida in the 

field. This reduction could be explained by a loss of eggs from cysts due to biofumigation, 

by natural decline, or by predation of G. pallida by antagonists (Sections 1.3.2 and 1.3.5). 

 

Glasshouse experiment 1 found no effect of biofumigation or soil moisture on eggs cyst-

1 (Figure 3.19 i-iii). However, CV’s ranged between 32.8 and 38.4% between analyses, 

which represents a high level of variation. Berndston (1991) suggests that for the level 

of replication used in glasshouse experiment 1, only effect sizes in excess of 30-65% 

would be determinable for the analyses used in Figure 3.19. Therefore, no effect of 

biofumigation or soil moisture condition at B. juncea biofumigant incorporation on eggs 

cyst-1 were observed, but neither were those two factors shown to not be influential of G. 

pallida eggs cyst-1. No effect of biofumigation or soil moisture on G. pallida eggs cyst was 

observed in glasshouse experiment 2 either (Figures 3.24 and 3.25 i-ii). However, P 

values were near the significance threshold for biomass and soil moisture factors. The 

100 t ha-1 biomass treatment had c.23% fewer G. pallida eggs cyst-1 than other biomass 

treatments which, given the greater quantity of toxic material incorporated into soil, 

appears to be a feasible result. Biofumigant VOC’s such as allyl-ITC are known to 

degrade proteins, as discussed in Section 1.3.6 (Kawakishi & Kaneko, 1985; 

Romanowski & Klenk, 2000). It is therefore plausible that eggs cyst-1 could have been 

reduced following biofumigation due to chemical degradation of egg shells leading to 

decomposition. Alternatively, G. pallida juveniles could have hatched prematurely in 

response to biofumigation; also discussed in Chapter 1, Section 1.4.5 (Ellenby, 1951). 

However, the CV’s of different biomass treatments ranged between 40.9-58.1% which is 

very high, and higher than in glasshouse experiment 1. A more controlled experiment 
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investigating the effects of biofumigant biomass on eggs cyst-1 is required to come to any 

meaningful conclusion. Soil moisture analysis was similar. The 75% of field capacity and 

saturated treatments were c.26% lower than other soil moisture treatments, but CV’s 

were very high at 41.1-61.9%. Clearly, grading cysts to improve the uniformity of 

numbers of eggs cyst-1 in glasshouse experiment 2 did not sufficiently counter the effects 

of reducing replications between experiments. It is possible that the 75% of field capacity 

and saturated treatments did enable a reduction in G. pallida eggs cyst-1 compared to 

the other moisture conditions. If so, immediate areas for further investigation should 

focus on the importance of soil pore air space in relation to soil water, and the effect of 

this on biofumigant VOC diffusion through soil and subsequent contact with PCN 

(Lembright, 1990).  

 

3.8.4 Conclusions 

In conclusion, the null hypothesis for this chapter that ‘soil moisture level is not influential 

of B. juncea biofumigation efficacy against PCN’ has been disproved and the chapter 

aim to ‘determine whether soil moisture conditions at biofumigant incorporation are 

influential of biofumigation efficacy against PCN’ can be considered answered. Soil 

moisture is an important factor in biofumigation of G. pallida, although, the mechanisms 

for enhanced biofumigation under certain soil moisture conditions remains obscure. 

 

Manipulation of soil moisture has been shown to improve biofumigation efficacy against 

G. pallida in pots by up to 14.2% when analysing mean soil moisture treatment levels 

equivalent to 25, 50, 75, 100 % of field capacity and saturated soil. Approximately 50% 

of field capacity appears to be most appropriate for biofumigation of G. pallida, although 

results may indicate that for fully optimised biofumigation of G. pallida, soil moisture 

should be manipulated between 25-75% of field capacity, depending on the fresh weight 

of the biofumigant crop being incorporated into soil. In general, it would appear that 25% 

of field capacity would be appropriate for incorporation of c.25 t ha-1 fresh weight B. 

juncea crops, whilst for c.50 t ha-1 crops, 50% of field capacity would be preferable, and 
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for crops in excess of c.75 t ha-1, 75% of field capacity conditions would be preferable. 

However, further study is required to support the observations of glasshouse experiment 

1. Furthermore, whilst increasing biofumigant biomass from equivalent to 25-75 t ha-1 

appeared to improve biofumigation efficacy against G. pallida in general, no 

improvement in biofumigation efficacy was observed for crops in excess of 75 t ha-1. It is 

possible that at high inclusions of biomass into soil, off-gassing of biofumigant VOC’s 

increases, which could reduce exposure of PCN to biofumigant VOC’s. It would therefore 

appear that soil moisture may have an important role in retaining biofumigant VOC’s in 

soil. However, the role of soil moisture in aiding or limiting VOC movement in soil is 

unknown. Two immediate areas for further research appear clear  i) investigation of the 

concentration of VOC’s in soil and in headspace above soil treated with different 

quantities of biofumigant material and different soil moisture conditions, and ii) 

investigation of the role of moisture films surrounding cysts as barriers to biofumigant 

VOC’s reaching encysted eggs. Whilst the potential for moisture films to influence G. 

pallida exposure to biofumigant VOC’s has not generally been discussed, it is clearly an 

area in need of investigation in light of the known hydrophobic qualities of biofumigant 

VOC’s, and the clear evidence that moderately high soil moistures are beneficial for 

biofumigation efficacy. If moisture films surrounding cysts are found to limit VOC 

exposure to PCN, the timing of biofumigant incorporation could be dictated by soil 

moisture conditions to ensure both VOC retention in soil, and exposure to PCN. In other 

analyses, biofumigation effects on eggs cyst-1 was quantified, but no evidence of a 

reduction in G. pallida eggs cyst-1 was found. All project objectives, save for completing 

GSL analysis for glasshouse experiment 1, were achieved. 

 

3.8.4.1 Recommendations 

1  Practice biofumigation for G. pallida management under soil moisture conditions 

within a 25-75% of field capacity range. 

2 For low biomass crops (c.25 t ha-1 fresh-weight) aim to incorporate into soils of 25-

50% field capacity, for moderate biomass crops (c.50 t fresh-weight) ha-1 aim to 
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incorporate into soils of 50% field capacity, and for high biomass crops (c.75 t fresh-

weight) aim to incorporate into soils of c.50-75% field capacity where practical. 

3  Aim to produce B. juncea crops between 50 and 75 t ha-1 fresh-weight. 
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Field Experiments  4 

 
Investigation of commercially available tractor mounted maceration and incorporation 

implements and their set-up, for improved biofumigation of potato cyst nematodes 

 

4.1  Introduction  

Plant tissues are made up of parenchyma, collenchyma and sclerenchyma cells 

(Hopkins, 1999). Each cell type has unique structural properties which can influence the 

rigidity or plasticity of the plant tissues they form (Hopkins, 1999; Brett & Waldron, 1996). 

The strength of plant tissue is therefore dependent on the composition and arrangement 

of cells within tissues (Persson, 1987). To achieve effective tissue damage, which is 

critical to the release of volatile organic compounds (VOC’s) from biofumigants, 

maceration techniques should apply a range of stresses to plant tissues, such as 

bending, shear, torsional, tensional and compressional stresses (Morra & Kirkegaard, 

2002; Persson, 1987). Cutting techniques are generally less effective in causing tissue 

damage than blunt maceration techniques, because they predominantly rely on shear 

stress for maceration, which only inflicts localised cellular damage to tissues (Persson, 

1987). Blunt techniques apply several stresses to plant tissues in unison, which generally 

causes more widespread damage (Persson, 1987). Field and in-vitro work has shown 

blunt ‘mulching’ techniques to increase isothiocyanate (ITC) release from biofumigant 

tissues by more than two orders of magnitude compared to cutting techniques (Morra & 

Kirkegaard, 2002; Matthiessen et al., 2004). The results suggest greater liberation of 

myrosinase and glucosinolates (GSL) from blunt macerated biofumigant plant tissues 

(Holst & Williamson, 2004). However, no study is known to have quantified the effect of 

maceration technique on biofumigation success against a soil borne pest.  

 

In field work, the incorporation of macerated biofumigant tissues into soil has been found 

to influence soil concentrations of ITC’s. Matthiesen et al. (2004) recorded a three-fold 

increase in ITC concentrations in soil where tissues were incorporated, rather than left 
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at the soil surface. In a separate glasshouse study, thorough mixing of biofumigant 

tissues into soil was shown to enhance biofumigation efficacy against the root knot 

nematode Meloidogyne incognita by between 57-80% compared to nematodes exposed 

to concentrated layers of biofumigant tissues in soil (Roubtsova et al., 2007). These 

studies would suggest that mixing of biofumigant material in soil is important in aiding 

the distribution of biofumigant VOC’s through soil, which could increase nematode 

exposure to VOC’s, subsequently influencing efficacy. However, no field work is known 

to have investigated incorporation technique as a method of improving biofumigation 

efficacy against soil borne pests directly. In other research, Woods & Haydock (2000) 

found that the incorporation depth of granular nematostats into field soil was important 

for management of potato cyst nematodes (PCN), and that nematostats could be worked 

too deeply into soil, leading to a dilution effect of the toxicant and a reduction in efficacy. 

This could also be true for the incorporation of biofumigant material. It is therefore 

important to investigate a range of primary tillage implements, diverse working depths 

and mechanisms of tilling, to identify whether the placement of biofumigant material in 

soil, and the structure of soil after biofumigant incorporation, are important for 

management of soilborne pests such as the PCN Globodera rostochiensis and 

Globodera pallida. This chapter therefore, investigates methods of macerating and 

incorporating the tissues of Brassica juncea biofumigant plants into soil for improved 

biofumigation of field populations of PCN. 

  

4.1.1 Chapter aim  

i) Determine if maceration and/or incorporation implement selection and set-up can 

be influential of B. juncea biofumigation efficacy against PCN. 

 

4.1.2  Chapter null hypothesis 

i)   Neither maceration or incorporation implement selection or set-up will affect B. 

juncea biofumigation efficacy against PCN. 
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4.2 Materials and methods: field experiments 1 and 2 (Hungry Hill, Norfolk and 

Crossroads, Shropshire) 

4.2.1 Experiment objectives 

i) Quantify PCN cyst contents and viability following B. juncea biofumigation 

treatment achieved with several diverse maceration and incorporation 

implement combinations, and compare to appropriate controls. 

ii)  Quantify the biomass and GSL content of B. juncea biofumigant material used 

in experimental work. 

iv)  Quantify soil penetrometer resistance, temperature and moisture at B. juncea 

incorporation. 

 

4.2.2 Experimental design  

Field experiments 1 and 2 were carried out in tandem between 2014 and 2015 at two 

UK locations, one in Norfolk and another in Shropshire respectively. The two 

experiments were identical in design and only differed in a few supporting data 

assessment methodologies, which will be discussed later in Section 4.4. The shared 

design of the experiments consisted of two factors; the ‘maceration implement’ used to 

break down B. juncea material, of which there were two levels under investigation; a 3 

m John Deere® 131 mower roll conditioner, and a 3 m reversible Kuhn® flail topper, and 

the ‘incorporation implement’ used to work B. juncea material into soil, of which there 

were three levels under investigation; a 3 m Imants® series 47 SX rotary spader with 

counter-rotating smear roll, a 3 m Krone® s-bladed rotary tiller or rotavator, and a 

Kverneland® reversible two-furrow mouldboard plough with no. 8 plough bodies. 

Maceration implements were selected, based upon their diverse mechanisms of 

conditioning plant material, and incorporation implements for their diverse working 

depths and mechanisms of incorporating material into soil by either inversion or rotary 

action. Figures 4.1-4.4 and Figures 4.5-4.7 show the maceration and incorporation 

implements used in this work. 
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Figure 4.1: Reversible Kuhn® flail topper maceration implement (A), and direction of 

implement travel (B).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Rotor and direction of rotation (A), curved solid body v-tines (Kuhn 6061900) 

(B) and flail roll (C) within flail topper maceration implement. The direction of implement 

travel is also shown (D).  
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Figure 4.3: John Deere® 131 mower roll conditioner maceration implement (A), and 

direction of implement travel (B). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: John Deere® 131 mower roll conditioner with mower discs (A) and their 

direction of rotation, and rolls and their direction of rotation (B). The direction of 

implement travel is also shown (C). 
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Figure 4.5: Imants® series 47 SX rotary spader incorporation implement (A) with 

counter-rotating smear roll (B). Also shows rotor position (C). The direction of implement 

travel is shown (D), and the direction of rotatin for the smear roll and spader rotor.  

 

 

 

 

 

 

 

 

Figure 4.6: Krone® s-bladed rotary tiller or rotavator incorporation implement, showing 

the rotor position and direction of tine rotation (A), and the direction of implement travel 

(B).   

B

A 

C

D

A 

B 



    

127 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Kverneland® reversible two-furrow mouldboard plough incorporation 

implement with no. 8 plough bodies (A).  

 

Flail toppers, such as the 3 m reversible Kuhn® used in this work, are characterised by 

a rotating shaft, also known as a rotor, which is orientated at 90° to the direction of travel 

(Persson, 1987). The rotor often rotates in the opposite direction as the forward travel of 

the tractor so that material is cut in an upwards direction (Persson, 1987). Tines are 

attached to the rotor which cut standing plant material by shear stress, the bite or residue 

length of the plant material being determined by the forward speed of the tractor, 

implement rotor speed, and the distance of the tine from the rotor at the point of plant 

impact (Persson, 1987; Srivastava et al., 2006). In contrast, roll conditioners such as the 

John Deere® 131, cut standing plants near the base of the stem using a disc set-up, 

then feed the cut plants through a set of intermeshing crimping rolls which apply a range 

of blunt maceration forces to plant material (Persson, 1987). These two implement types 

were therefore found to be sufficiently contrasting in their mechanisms of plant 

conditioning, to be investigated. Furthermore, both implements could be front mounted 

to enable a rear mounted incorporation implement to be used for a single pass system. 

A 
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Mouldboard ploughs such as the Kverneland® reversible two-furrow used in this work, 

are drawn implements which cut soil at depths of approximately 250 mm. The soil then 

moves from the share, which is the cutting component of the plough, to the mouldboard, 

which is the characteristic curved plate section of the plough. The mouldboard turns the 

soil so that it is completely inverted (Srivastava et al., 2006). Rotary tillers or spaders 

such as the 3 m Krone® or Imants® series 47 SX used in this work, are powered 

implements. They each have a powered rotor orientated at 90° to the direction of travel, 

which rotates in the same direction as the forward travel of the tractor. Tines are attached 

to the rotor which then work soil by shattering it and mixing it, rather than by inversion 

(Srivastava et al., 2006). The working depth of these implements is determined by the 

power of the tractor, physical strength of the implement, and the type of tines attached 

to the rotor. Most rotary tillers typically work to c.200 mm, whilst spaders often work to 

c.400 mm in depth (Srivastava et al., 2006). The three implements therefore offered 

contrasting working depths, methods of biofumigant residue placement, and tilth quality 

with which to assess the effect of incorporation technique on biofumigation of PCN. 

 

The effect of plant maceration and incorporation implement treatment combinations on 

biofumigation efficacy against PCN was compared to a non-B. juncea treated control 

treatment, and a partial biofumigation control where B. juncea plants were grown but not 

macerated or incorporated into soil. The partial biofumigation control enabled the full 

effects of different maceration and incorporation implement combinations on 

biofumigation efficacy to be calculated, omitting biofumigation efficacy during plant 

growth. As illustrated using Table 4.1 and Figure 4.8, treatments were arranged in a 

randomised block design and replicated six times each providing a total of 48 

experimental units (field plots) in each experiment. The shared experimental design was 

replicated sufficiently to enable treatment differences of 5-20% in PCN egg viability to be 

determined for background coefficient of variation (CV) values in egg viability of between 

2-8% between replicates of like treatments (Berndston, 1991). The design had 35 

residual degrees of freedom. 
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Table 4.1: Treatment codes for field experiments 1 and 2 showing levels for maceration 

and incorporation factors. Font colour indicates maceration implement and fill colour 

indicates incorporation implement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Field experiments 1-2 design showing the allocation of treatments to potato 

cyst nematode infested plots. Blocks are represented using Roman numerals (I-VI). 

Treatment 
code 

Biofumigant Factor 1: Maceration 
implement

Factor 2: Incorporation 
implement

R/s Grown, macerated and then incorporated Roll conditioner Spader

F/s Grown, macerated and then incorporated Flail topper Spader

R/r Grown, macerated and then incorporated Roll conditioner Rotivator

F/r Grown, macerated and then incorporated Flail topper Rotivator

R/p Grown, macerated and then incorporated Roll conditioner Plough

F/p Grown, macerated and then incorporated Flail topper Plough

P BIO Partial biofumigant control (biofumigant 

grown but left standing)

UNT Untreated control (no biofumigant grown)

UNT R/s R/p F/s F/p R/r

R/r P BIO R/r UNT F/r P BIO

F/p R/p F/r R/s F/s R/s

F/r F/s P BIO F/p UNT R/p

UNT P BIO F/s R/s F/p F/s

F/r F/p R/r F/r R/p R/r

F/s R/r UNT R/p R/s P BIO

R/p R/s P BIO F/p F/r UNT

II IV VI

I III V
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4.2.3 Experimental set-up 

4.2.3.1 Experimental sites 

Field sites in Norfolk and Shropshire were selected for initial assessment of PCN for 

experimental work. From initial inspection, two field sites were carried forward, one for 

each county, based upon the population density and uniformity of PCN in fields. High 

PCN densities of high uniformity were most desirable. A site near Cromer known as 

‘Hungry Hill’ (UK ordinance survey grid reference: TG 24572 39281, Norfolk, UK) was 

found to have PCN densities of 10–200 eggs g-1 soil across the site, from which an area 

of 1 ha typically ranging between 50–150 viable eggs g-1 soil was selected for extensive 

sampling. A site near Shrewsbury known as ‘Crossroads’ (UK ordinance survey grid 

reference: SJ 62604 17602, Shropshire, UK) was also selected. This site was found to 

have PCN densities ranging between 10-500 eggs g-1 soil from which a 1 ha block 

ranging between 120-500 eggs g-1 soil was selected. Extracted PCN were further 

quantified as the species Globodera pallida in both instances using real time polymerase 

chain reaction (PCR) (Appendix 8.1.4). Table 4.2 shows the duration of the Hungry Hill 

and Crossroads experiments between PCN sample collection stages.  

 

Table 4.2: Table illustrating the duration of field experiments 1 and 2 (Hungry Hill, Norfolk 

and Crossroads, Shropshire respectively). 

 

 

 

4.2.3.2 Experiment construction and maintenance  

Brassica juncea was direct drilled at the Hungry Hill site in the first week of August 2014 

using a Vaderstad® Rapid A 600S seed drill, and canes erected to mark experimental 

Experimental stage Jul Aug Sept Oct Nov Dec Jan

i: Soil sampling for potato cyst 

nematodes

ii: Brassica juncea growing term

Year: 2014-2015
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dimensions. The site was drilled with B. juncea seed over two separate days, two days 

apart, due to a calibration error by the drill operator, and the need to collect extra seed 

to establish the experimental area. In total, approximately 10 kg ha-1 seed was 

established, with the over drilled area receiving a seed-rate of approximately 12 kg ha-1, 

and the remainder of the experiment receiving an approximate 8 kg ha-1 seed-rate. Plant 

counts were recorded approximately 6 weeks after drilling to take account of this 

variation. No difference in plant counts were observed between blocks or treatments at 

6 weeks post drilling, or between treatments at incorporation. However, differences in 

plant counts were observable between blocks at incorporation. The results are shown in 

Appendices 8.2.1 – 8.2.2 

 

Plot dimensions were 9 by 9 m, with inter-block and plot buffers of 5 m width to enable 

machinery movement at incorporation without damage to neighbouring plots. However 

approximately 1 ha-1 of B. juncea was drilled and then inter-block and plot traffic lanes 

were established using a flail topper only on the day of incorporation. This methodology 

ensured B. juncea material in plots was as representative of a field grown B. juncea 

biofumigant crop as possible on the day of incorporation by helping to prevent easy entry 

of pests such as pigeons, rabbits or deer into the experiment which might damage 

individual plots. Brassica juncea plants growing in untreated control plots were 

desiccated from the whole hectare crop at second true leaf stage using Diquat (as 

REGLONE®, Syngenta) contact herbicide two weeks after planting. Figure 4.9 shows a 

Diquat treated control plot surrounded by standing mustard before establishment of inter-

block and plot traffic lanes. Nitrogen (N) fertiliser (as NITRAM® 34.5% N, CF Fertilisers) 

was applied to each site using a 12 m Kuhn fertiliser applicator at a rate equivalent to 40 

kg N ha-1 to enhance biomass and GSL production (Agerbirk & Olsen, 2012). The 

Crossroads site was established using a 3 m modified pneumatic plot drill (believed to 

be constructed from Lemken® and Accord® parts) with shoe type coulters and press 

wheels. Figure 4.10 shows the Hungry Hill experimental site immediately after traffic 

lanes had been established on the day of incorporation. The Hungry Hill experiment 
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received two 25 mm irrigation applications using a rain gun in late August and early 

September due to dry weather conditions. The Crossroads site did not receive any 

irrigation. All other methodologies remained consitent between the two experiments. The 

Crossroads experiment was, however, noticeably infested with cabbage root fly larvae 

(Delia radicum) which was subsequently scored approximately seven weeks after drilling 

(see Appendix 8.2.3). No difference in cabbage root fly damage was observed between 

treatments, but blocks were shown to have variable damage symptoms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Diquat treated control plot (A) in standing mustard (B) prior to inter-block and 

plot traffic lane establishment. 

 

 

 

 

 

 

 

B 

A 
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Figure 4.10: Traffic lanes (A) established in B. juncea crop on the day of incorporation 

to generate individual plots (B). 

 

4.2.4 Brassica juncea biofumigant incorporation procedure 

Once inter-block and plot traffic lanes had been established, incorporation could be 

undertaken. A John Deere® 6810 was used to mount the maceration implements, the 

roll conditioner being front mounted and the flail rear mounted. A John Deere® 7280R 

was required to mount and power the spading implement due to its size, whilst a John 

Deere 6400 was used to mount the plough, and then the rotavator. The John Deere® 

6810 was used to macerate an entire plot which required three passes, whereby on the 

third pass, either John Deere® 7280R or 6400 tractors could begin their first pass for 

respective incorporation implements. This methodology enabled an expedient 

incorporation (c.2 min maceration to incorporation) whilst also limiting damage to 

neighbouring plots. Forward speed during implement operations was undertaken at c.3 

km h-1. Figure 4.11 shows a biofumigation treated plot as ‘A’, a partial biofumigation plot 

‘B’ and an untreated plot ‘C’ once all plots receiving biofumigation had been treated. 

 

A 

B 
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Figure 4.11: Brassica juncea biofumigant treated (A), partial biofumigation treated (B) 

and untreated plots (C). 

 

4.3  Materials and methods: field experiment 3 (Roys Corner, Shropshire) 

4.3.1 Experiment objectives 

i) Measure PCN egg viability and eggs cyst-1 following B. juncea biofumigation with 

several diverse flail tine and shear-plate maceration implement treatments 

compared to appropriate untreated controls. 

ii)  Quantify the biomass and GSL content of B. juncea biofumigant material. 

iv) Develop and apply a methodology for collecting B. juncea biofumigant volatile 

organic compounds from soil for quantification. 

 

4.3.2 Experimental design  

Field experiment 3 was carried out between September 2015 and June 2016 near 

Shrewsbury in Shropshire. The experiment, which was the second Shropshire 

experiment, was structurally identical to the previous 2 experiments, but varied in the 

compliment of treatments under investigation. Field experiment 3 focussed on 

A 

B 
C 
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maceration implement set-up. The design had two factors; the type of ‘flail tine’ fitted to 

a 5.4 m wide Grimme® KS5400 haulm/flail topper, and the ‘shear-plate’ position on a 

KS5400 topper. The tine factor consisted of three levels; pig-tail tine (Grimme® KS5400 

rotor shaft item number 089.00399), knife tine (rotor shaft item number 089.00409) and 

a combination of the two tines. The shear-plate factor had two levels, termed open and 

closed shear-plate (distance between tine and shear-plate: c.100 and 10 mm 

respectively).The two types of tine were selected for their differences in area of cutting 

face, which in the pig-tail type tine was approximately 7-8 times greater than that of the 

knife tine. Similarly, the diversity of shear-plate set-up was of interest in offering a 

counter-shear setting for the tines, and an almost absent counter-shear setting. All B. 

juncea treatments were incorporated using a Grimme® GF600 rotavator with two bed 

loosening tines fitted to increase working depth (Grimme® GF600 loosening tine item 

number 200.71602). Figures 4.12-4.18 show the haulm topper and rotavator mounting, 

which in this instance enabled a single pass operation, bed-loosening tines, and then 

flail tines and combinations of tines, and shear-plate positioning.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Deutz-Fahr® 9 series tractor with front mounted Grimme® KS5400 haulm 

topper (A), and rear mounted Grimme® GS600 rotavator (B). 

A 
B 
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Figure 4.13: Grimme® GS600 rotavator with bed-loosening tines (A). The scale relates 

approximately to the length of the bed-loosening tines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Pig-tail tines (A) arranged on a Grimme® KS5400 haulm topper rotor (B). 

The scale relates approximately to the length of a pig-tail tine. 

A 
c.400 mm 
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B 

c.230 mm 
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Figure 4.15: Knife tines (A) arranged on a Grimme® KS5400 haulm topper rotor (B). 

The scale relates approximately to the length of a knife tine. 

 

 

Figure 4.16: Pig-tail tine/knife tine combination arranged on a Grimme® KS5400 haulm 

topper rotor.  
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Figure 4.17: Open shear-plate position (A) on a Grimme® KS5400 haulm topper with 

pig-tail tines (B). The scale shows the approximate distance between tine and shear-

plate. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Closed shear-plate position (A) on a Grimme® KS5400 haulm topper with 

pig-tail tines (B). The scale shows the approximate distance between tine and shear-

plate. 
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The effect of maceration implement set-up on biofumigation efficacy against PCN was 

compared to a non-B. juncea, untreated control treatment, and a ‘partial biofumigation’ 

control as in the previous field experiments. Maceration implement tines and shear-plate 

setting were manipulated to produce different quality biofumigant residues for 

incorporation into soil. The partial biofumigation treatment consisted of B. juncea plants 

which were grown but not macerated or incorporated into soil. As illustrated using Table 

4.3 and Figure 4.19, treatments were arranged in a randomised block design and 

replicated six times each providing a total of 48 experimental units (field plots), the same 

as the previous two field experiments.  
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Table 4.3: Treatment codes for field experiment 3 showing levels for maceration 

implement, tine and shear-plate factors. Font colour is an indicator of shear-plate setting 

and fill colour is an indicator of tine selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Field experiment 3 design showing the allocation of treatments to potato 

cyst nematode infested plots. Blocks are represented using Roman numerals (I - VI). 

UNT P/O PK/O P/C PK/C K/O

K/O P BIO K/O UNT K/C P BIO

PK/C PK/O K/C P/O P/C P/O

K/C P/C P BIO PK/C UNT PK/O

UNT P BIO P/C P/O PK/C P/C

K/C PK/C K/O K/C PK/O K/O

P/C K/O UNT PK/O P/O P BIO

PK/O P/O P BIO PK/C K/C UNT

VIIVII

VIIII

Treatment 
code

Biofumigant Factor 1: Shear plate 
setting

Factor 2: Tines 

P/O Grown, macerated and then incorporated Open Pig-tail 

P/C Grown, macerated and then incorporated Closed Pig-tail

K/O Grown, macerated and then incorporated Open Knife

K/C Grown, macerated and then incorporated Closed Knife

PK/O Grown, macerated and then incorporated Open Pig-tail and knife 

combination

PK/C Grown, macerated and then incorporated Closed Pig-tail and knife 

combination

P BIO Partial biofumigant control (biofumigant 

grown but left standing)

UNT Untreated control (no biofumigant grown)
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4.3.3 Experimental set-up 

4.3.3.1 Experimental sites 

The second Shropshire site was sampled for initial assessment of PCN for experimental 

work, and found suitable to be carried forward given time constraints. The site known as 

‘Roys Corner’ (UK ordinance survey grid reference: SJ 62018 17108, Shropshire, UK) 

was found to have PCN densities of 2–50 eggs g-1 soil across the site, from which an 

area of 1 ha typically ranging between 5–30 viable eggs g-1 soil was selected for 

extensive sampling. Extracted PCN were further quantified as the species Globodera 

pallida using PCR (Appendix 8.1.4). Table 4.4 shows the duration of field experiment 3 

between PCN sample collection stages. 

 

Table 4.4: Table illustrating the duration of field experiment 3 (Roys Corner, Shropshire). 

 

 

 

4.3.3.2 Experiment construction and maintenance  

Brassica juncea was direct drilled at the third field experiment site in the first week of 

September 2015 using the modified Lemken®/Accord® plot drill, and canes erected to 

mark experimental dimensions. The site was drilled with B. juncea at a 10 kg ha-1 seed-

rate. Plot dimensions were consistent with the first two experiments at 9 by 9 m, with 

inter-block and plot buffers of 5 m width to enable machinery movement at incorporation 

without damage to neighbouring plots. A full 1 ha-1 block of B. juncea was drilled and 

inter-block and plot traffic lanes established using the same methodologies as for the 

previous field experiments. Brassica juncea plants growing in untreated control plots 

were also desiccated using Diquat (as REGLONE®, Syngenta) contact herbicide two 

weeks after planting, in keeping with the previous field experiments, and fertiliser applied 

Experimental stage Sept Oct Nov Dec Jan Feb Mar Apr May Jun

i: Soil sampling for potato 

cyst nematodes

ii: Brassica juncea growing 

term

Year: 2015-16
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using the same methodologies as for the previous experiments. The fertiliser rate was 

increased to equivalent of 100 kg N ha-1 in an attempt to force rapid growth due to the 

lateness of drilling. This was only partially successful and so blocks were fleeced to 

ensure the plants survived from winter 2015 to spring 2016 when they were incorporated. 

A double layer of 18 g m2 fleece (Brinkman UK Ltd.) was applied to the site in December 

2015, and removed in March 2016. 

 

4.3.4  Brassica juncea biofumigant incorporation procedure 

Once inter-block and plot traffic lanes had been established, incorporation could be 

undertaken. A series 9 Deutz-Fahr® tractor was used to mount both the Grimme® 

KS5400 maceration implement and Grimme®GS600 rotavator. This methodology 

enabled an expedient incorporation. Care had to be taken to avoid damaging or 

trafficking partial biofumigation or untreated plots, particularly in light of the large size 

and wide working width of the implements. Forward speed during implement operations 

was undertaken at c.3 km h-1. Plants were incorporated in mid-April 2016. 

 

4.3.5 Development of a methodology for collecting Brassica juncea biofumigant 

volatile organic compounds from soil  

A secondary line of experimentation was carried out during the experiment construction 

and maintenance period, to develop a method of capturing biofumigant VOC’s from plots 

at field experiment 3, immediately after incorporation. A thermal desorption gas 

chromatography-mass spectrometry (GC-MS) method was available at Harper Adams 

University (HAU) for the analysis of Tenax-TA entrained B. juncea VOC’s. Additionally, 

Markes International were known to produce stainless steel and aluminium sheaths for 

Tenax-TA tubes which could be introduced to soil for VOC collection. These ‘VOC-

MOLE’s’ had been notably shown to effective for enabling biofumigant VOC’s to be 

captured from pot soil in work carried out by Papadopoulos & Alderson (2007). However, 

modified steel tubes with 28, rather than the commercially available 14 hole MOLEs, 

were shown most effective in capturing ITC’s. A commercially available MOLE was 
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therefore bought and a mild-steel replica manufactured, in addition to a replica with the 

addition of 16 further smaller holes (See Figures 4.20-4.22). A small pilot field experiment 

was then undertaken at HAU which evaluated the three ‘MOLEs’. A B. juncea 

biofumigant crop of approximately 30 t ha-1 fresh-weight was flail-topped and the 

macerated tissues rotivated into soil using the Krone® rotavator from the Hungry Hill and 

Crossroads experiments. Each MOLE was then immediately introduced to the freshly 

cultivated soil and Tenax-TA tubes collected and replaced from each tube, whilst in-situ, 

at 6, 12, 24, 48 and 72 h after B. juncea incorporation. Two replicates of each MOLE 

treatment for each time point were taken. There were two incorporation events to 

generate the two replicates, four days apart. The custom made MOLE with 32 holes 

along its primary body section was found to be most effective for capturing B. juncea 

biofumigant VOC’s in the pilot study and so was manufactured and used in the third field 

experiment for VOC capture. All final modified MOLEs were manufactured from stainless 

steel (Figure 4.23). The dimensions of each tube can be found in Appendix 8.3.1, and 

the results from this method development be found in Appendix 8.2.5.  

Figure 4.20: Commercially available stainless steel and aluminium 16 hole Markes 

International VOC-MOLETM.  



    

144 
 

 

Figure 4.21: Harper Adams University mild steel 16 hole replica MOLE.  

 

Figure 4.22: Harper Adams University mild steel 32 hole custom MOLE.  
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Figure 4.23: Harper Adams University stainless steel 32 hole custom MOLE fitted with 

a Tenax-TA tube.  

 

4.4  Assessments  

4.4.1 Potato cyst nematode sampling and quantification 

Globodera pallida eggs g-1 soil, egg viability and eggs cyst-1 were quantified for 

experiments as described in Section 2.3.2 using Equations 2.1 to 2.3.  

 

4.4.2 Quantifying Brassica juncea biofumigant biomass and glucosinolate content in 

the field 

Prior to B. juncea maceration, three 0.33 by 0.33 m areas of crop were randomly selected 

for each plot of each experiment, and plants counted to determine plants m2. A total of 

ten plants were taken from the final area and weighed both fresh and after forced air 

oven drying at 105°C for c.48-72 h to generate a fresh and dry mean plant weight. This 

weight was used in conjunction with plant counts to project dry and fresh-weight biomass 

in t ha-1 as illustrated in Equation (4.1). This methodology is similar to that used by Ngala 

et al. (2014). A further three plants were also collected from each plot and stored for later 
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GSL assessment as described in Section 2.4.2. From these samples, one sample was 

analysed per block of each field experiment as a reference measurement. Samples from 

‘partial biofumigation’ plots were processed for GSL analysis.  

  

Equation 4.1 

 

 

 

4.4.3 Quantification of soil conditions 

Temperature and moisture conditions were determined at incorporation for the Hungry 

Hill and Crossroads experiments as detailed in Appendices 8.1.6 – 8.1.7 using the 

methodologies described in Section 2.3.4 and field capacity curves shown in Appendix 

8.1.5. Soil texture, pH and organic-matter (OM) were also determined for each site from 

soil samples taken prior to B. juncea planting (Appendix 8.1.1 – 8.1.3). 

 

4.4.4 Soil penetration resistance 

Soil penetrometer resistance was measured at the Crossroads site on each replicated 

plot to determine the working depth of implements and general soil structural properties 

following treatment. A MEXE soil assessment cone penetrometer was used; a model 

A2451 fitted with a 12.8 mm diameter 30° cone. Penetrometer resistance data were 

collected at three points per plot, between depths of 0-400 mm, at depth increments of 

100 mm. Penetration resistance was not recorded at any other site. 

 

4.4.5 Quantification of Brassica juncea biofumigant bite/section length  

Macerated B. juncea tissue samples (c.100 g fresh-weight) were collected from each plot 

of the Roys Corner site. The samples were collected immediately after maceration of B. 

juncea plants but before incorporation of the tissues into soil. The samples were 

transported to the laboratory and ten tissue sections selected randomly from each 

sample bag to be measured lengthways. The mean tissue section length for each 

Number of plants 

counted (0.33 * 0.33 m) 

Biomass t ha-1     = 

Weight in g of a single 

biofumigant plant (fresh 

or dry) 

40,000 

1,000,000 

X 

X 
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treatment was then calculated. The effect of maceration implement on the bruising of B. 

juncea tissues was not quantified. Figure 4.24 shows the approximate range in B. juncea 

tissue bite/section length found in the field at the Roys Corner experiment.  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.24: Typical range in B. juncea tissue bite/section length observed after 

maceration at field experiment 3 (Roys Corner, Shropshire). The scale shows 

approximately, the average length of biofumigant residue post maceration. 

 

4.4.6 Quantification of volatile organic compound release into soil from Brassica 

juncea biofumigant material after incorporation  

Twenty-four custom made 32 hole MOLEs complete with Tenax-TA tubes were placed 

at the centre of each plot for blocks II, III, VI at the Roys Corner site. The tubes were 

introduced to soil immediately after B. juncea incorporation and left in-situ for 72 h to 

enable passive entrainment of allyl-isothiocyanate (AITC) and other VOC’s. Tenax-TA 

tubes were then taken to the laboratory and samples analysed using the thermal 

desorption GC-MS methodology previously described in Section 2.4.3. Figures 4.25-4.27 

show custom MOLEs in B. juncea treated, partial biofumigation treated and untreated 

plots.  

c.100 mm 
c.100 mm 
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Figure 4.25: Custom made 32 hole MOLE placed in a biofumigation treated plot at field 

experiment 3 (Roys Corner, Shropshire).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26: Custom made 32 hole MOLE placed in a partial biofumigation treated plot 

at field experiment 3 (Roys Corner, Shropshire).  
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Figure 4.27: Custom made 32 hole MOLE placed in an untreated plot at field experiment 

3 (Roys Corner, Shropshire).  

 

4.5  Data analysis 

Data were analysed by general and repeated measures analysis of variance (ANOVA), 

by T-test, and where data sets were combined, by probability calculation using a 

cumulative upper F-variance ratio test. All data was analysed using GenStat® 16th Edn. 

(VSN International). Treatment effects for ANOVA analysed data were compared using 

Tukey’s test at 95% confidence or Fischer’s protected least significant deifference (LSD) 

at 99% confidence. Figures were generated using Microsoft® Excel 2016. 

 

4.6  Results: field experiment 1 (Hungry Hill, Norfolk) 

4.6.1 Brassica juncea biofumigant biomass and glucosinolate content 

Mean plant dry-matter at incorporation was 13.6% when analysed by block, and 13.5% 

when analysed by treatment. The standard errors of the mean (SEM) for dry-matter were 

0.43% and 0.31% respectively. No difference was found in the quantity of fresh or dry-

weight B. juncea biomass between treatments (P = 0.795 and P = 0.470 respectively) 
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(Figure 4.28 ii). However, fresh-weight B. juncea biomass did vary between blocks (P = 

0.027). Multiple comparisons using Tukeys multiple range test, Fischer’s protected LSD 

and the Bonferroni technique at 95% confidence were unable to indicate where 

differences occurred (Figure 4.28 i). Dry-weight B. juncea biomass did not vary between 

blocks (P = 0.186) (Figure 4.28 i). Fresh-weight biomass ranged between equivalent to 

20-31 t ha-1 between blocks, and 22-27 t ha-1 between treatments. Dry-weight biomass 

ranged between equivalent to 3-4 t ha-1 between blocks and between treatments. 2-

propenyl GSL (sinigrin) content of combined leaf and stem tissues varied between 2.5 

and 3.7 µmol g-1 dry tissue between blocks I-VI. Mean 2-propenyl GSL content was 3.0 

µmol g-1 dry tissue and the SEM 0.15 µmol g-1 dry tissue (see Appendix 8.2.4). 2(S)-

hydroxy-3-butenyl (epiprogoitrin) and 2(R)-2-hydroxy-3-butenyl (progoitrin) were also 

observed in B. juncea tissues at c.0.7 and 0.7 µmol g-1 dry tissue respectively. 

 

 

 

 

 

 

 

 

 

Figure 4.28: Brassica juncea biofumigant biomass t ha-1 for field experiment 1 (Hungry 

Hill, Norfolk), analysed by block (i) and treatment (ii) factors using one-way ANOVA. 

Treatment key: roll conditioner - R; flail - F; spader - s; plough - p; rotavator - r; partial 

biofumigant – PBIO. Error bars represent the SEM.  

 

4.6.2 Globodera pallida viability at Pi and Ps  

The Hungry Hill site had a mean G. pallida population of 20 total eggs g-1 soil before 

drilling B. juncea (SEM of 1.5 eggs g-1 soil). No difference was observed in G. pallida 
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viability between treatments when assessed prior to B. juncea drilling (P = 0.996); 

hereafter termed the initial (Pi) sample date (Figure 4.29 i). The Hungry Hill population 

was 93.6% viable at Pi overall. Differences were observed in G. pallida viability between 

treatments at the population secondary (Ps) sample date, eight-weeks after 

biofumigation (P < 0.001) (Figure 4.29 ii). Partial biofumigation was ineffective in 

reducing G. pallida viability, but biofumigation treatments were found to reduce G. pallida 

viability by c.34% overall when compared to the untreated control. No difference in 

biofumigation efficacy was observed between maceration and incorporation implement 

combination treatments using a one-way ANOVA (Figure 4.29 ii). A factor based general 

ANOVA was used to further investigate the importance of maceration and incorporation 

implement selections for biofumigation of G. pallida (Figures 4.29 iii and Figure 4.29 iv). 

No difference in biofumigation efficacy against G. pallida was observable between 

incorporation implements; spader, plough and rotavator (P = 0. 637) (Figure 4.29 iii). 

However, maceration implement selection was found to be influential of biofumigation 

efficacy against G. pallida (P < 0.001) (Figure 4.29 iv). Globodera pallida viability after 

biofumigation with flail treatment was 12.5% lower than G. pallida treated with 

biofumigation using the roll conditioner, where the flail was compared directly to the roll 

conditioner treatment (Figure 4.29 iv). Overall, biofumigation with the flail was 39% 

effective, whilst biofumigation with roll conditioner was 30% effective when compared to 

the control from Figure 4.29 ii, with a clear 7% difference in viability between implements 

overall. No factor interaction was observed (P = 0.492). Soil moisture was investigated 

for integration into the Ps analysis as a covariate data set (Figure 4.29 ii) due to 

differences being found between treatments in general ANOVA analyses (Appendix 

8.1.6). However, the data set was not found useful as a covariate (P = 0.917) and so 

was discarded from the analysis. The crop fresh and dry weight biomass, soil 

temperature conditions at incorporation and plant density at incorporation were 

measured, but not investigated as covariates due to no differences being found between 

treatments in general ANOVA analyses. See Sections 4.6.1 and Appendices 8.1.7 – 

8.2.2 for data sets. Egg viability CV’s for treatments 1-8 in Figure 4.29 i ranged between 
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2.3-4.2% with a general CV of 3.0%. Egg viability CV’s for untreated and partial 

biofumigation treatments in Figure 4.29 ii were 6.8 and 7.7% respectively, whilst 

combined biofumigation treatments in Figure 4.29 ii ranged between 6.0 and 19.9% with 

a general CV of 15.3%. Egg viability CV’s analysed at the factor levels in Figures 4.29 iii 

and iv were 13.6 and 15.1% for roll conditioner and flail topper treatments respectively, 

and 15.3, 14.3 and 17.1% for spader, plough and rotavator treatments respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29: Globodera pallida viability before and after biofumigation at field experiment 

1 (Hungry Hill, Norfolk), analysed by treatment, incorporation and maceration factors 

using ANOVA. Globodera pallida viability for all treatments at Pi, is illustrated in plate i, 

whilst plate ii shows G. pallida viability for all treatments at Ps. Plates iii and iv show G. 

pallida viability analysed by maceration and incorporation factors at Ps. PBIO and UNT 

represent partial biofumigation and untreated treatments respectively. Error bars 

represent the SEM. Lettering above data labels indicates Tukey’s test groupings.  
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4.6.3 Globodera pallida cysts 200 g-1 soil and eggs cyst-1 at Pi and Ps 

Figure 4.30 i shows the mean number of G. pallida cysts extracted from plots at Hungry 

Hill at Pi and Ps sample times. Approximately 56-68 G. pallida cysts 200 g-1 soil were 

retrieved for Pi and Ps samples respectively. There was no difference in the number of 

cysts retrieved between sampling times (P = 0.309). However, assessment of eggs cyst-

1 between sample times showed a reduction in eggs at Ps compared to at Pi (P < 0.001) 

(Figure 4.30 ii). Mean G. pallida eggs cyst-1 were reduced from 168 to 94 between 

sample times. More detailed analysis of treatments at Pi showed no difference in G. 

pallida eggs cyst-1 between treatments (Figure 4.30 iii) (P = 0.732). The same analysis 

for Ps also found no difference in G. pallida eggs cyst-1 between treatments (Figure 4.30 

iv) (P = 0.106). Factor based eggs cyst-1 analysis showed no difference between 

incorporation implements; spader, plough and rotavator (P = 0.399) (Figure 4.30 v).  No 

difference in eggs cyst-1 was observed for roll conditioner and flail topper maceration 

implements either (P = 0.755) (Figure 4.30 vi), and no interaction was observed between 

biofumigant incorporation and maceration technique on G. pallida eggs cyst-1 (P = 0.087). 

Soil moisture data was investigated for integration into the Ps analysis as a covariate 

data set due to differences being found between treatments in one-way ANOVA analyses 

(Appendix 8.1.6). However, soil moisture data were not useful as covariates (P = 0.400) 

and so were discarded from further analyses. Brassica juncea fresh and dry weight 

biomass, soil temperature and plant density at incorporation were measured, but data 

were not investigated as covariates due to no differences having been found between 

treatments in one-way ANOVA analyses. See Sections 4.6.1 and Appendices 8.1.7 – 

8.2.2 for data sets. Coefficient of variation values for cysts 200 g-1 soil at Pi and Ps sample 

times were 83.2 and 91.1% respectively (Figure 4.30 i), whilst eggs cyst-1 CV’s for Pi and 

Ps samples were 28.2 and 55.8% respectively (Figure 4.30 ii). Eggs cyst-1 CV’s for 

treatments 1-8 ranged between 6.1 and 36.4% at Pi (Figure 4.30 iii), and between 31.0 

to 76.1% at Ps (Figure 4.30 iv). Eggs cyst-1 CV’s analysed at factor levels in Figures 4.30 

v and vi were 55.5 and 59.0% for roll conditioner and flail topper treatments, and 38.8, 

72.5 and 62.1% for spader, plough and rotavator treatments respectively.   



    

154 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.30: Globodera pallida cysts 200 g-1 soil and eggs cyst-1 before and after 

biofumigation at field experiment 1 (Hungry Hill, Norfolk), analysed by sample date, 

treatment and incorporation and maceration factors using two sided T-tests, one-way 

and general ANOVA. Globodera pallida cysts 200 g-1 soil is illustrated for both Pi and Ps 
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sample dates in plate i, whilst plate ii shows total eggs cyst-1 for Pi and Ps sample dates. 

Plates iii and iv show G. pallida eggs cyst-1 analysed by treatment factor for both Pi and 

Ps samples. Plates v and vi show eggs cyst-1 for the Ps data set analysed by maceration 

and incorporation factor levels. PBIO and UNT represent partial biofumigation and 

untreated treatments respectively. Error bars represent the SEM. Lettering above data 

labels indicates differences as determined using Tukey’s test. 

 

4.7  Results: field experiment 2 (Crossroads, Shropshire) 

4.7.1 Brassica juncea biofumigant biomass and glucosinolate content 

Mean plant dry-matter at incorporation was 11.8% when analysed by block and by 

treatment. The SEM’s for dry-matter were 0.28% and 0.27% for block and treatment 

respectively. No difference was found in the quantity of fresh or dry-weight B. juncea 

biomass between blocks (P = 0.926 and P = 0.941 respectively) or treatments (P = 0.407 

and P = 0.639 respectively) (Figure 4.31 i and ii). Fresh-weight biomass ranged between 

equivalent to 12-15 t ha-1 between blocks I-VI overall, and between 10-17 t ha-1 between 

treatments, indicating large variation in fresh biomass within blocks. Dry-weight biomass 

ranged between equivalent to 1-2 t ha-1 between blocks and between treatments. 2-

propenyl GSL (sinigrin) content of combined leaf and stem tissues was found to vary 

between 3.2 and 26.4 µmol g-1 dry tissue between blocks I-VI. Mean 2-propenyl GSL 

content was 7.9 µmol g-1 dry tissue and the SEM 3.30 µmol g-1 dry tissue (See Appendix 

8.2.4). 2(S)-hydroxy-3-butenyl (epiprogoitrin) and 2(R)-2-hydroxy-3-butenyl (progoitrin) 

were also observed in B. juncea tissues at c.1.8 and 2.4 µmol g-1 dry tissue respectively. 
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Figure 4.31: Brassica juncea biofumigant biomass t ha-1 for field experiment 2 

(Crossroads, Shropshire), analysed by block (i) and treatment (ii) factors using one-way 

ANOVA. Treatment key: roll conditioner - R; flail - F; spader - s; plough - p; rotavator - r; 

partial biofumigant – PBIO. Error bars represent the SEM. 

 

4.7.2 Globodera pallida viability at Pi and Ps 

The Crossroads site had a mean G. pallida population of 262 total eggs g-1 soil at Pi 

(SEM of 12.2 eggs g-1 soil). No difference was observed in G. pallida viability between 

treatments when assessed at Pi (P = 0.983) (Figure 4.32 i). The Crossroads population 

was 88.3% viable overall. Differences were observed in G. pallida viability between 

treatments at the Ps sample date (P < 0.001) (Figure 4.32 ii). Partial biofumigation was 

effective in reducing G. pallida viability by c.23%, whilst full biofumigation treatments 

were c.27% effective when compared to the untreated control. Partial biofumigation and 

full biofumigation effects were, however, inseparable (Figure 4.32 ii). No difference in 

biofumigation efficacy was observed between maceration and incorporation implement 

combination treatments when using a one-way ANOVA (Figure 4.32 ii). However, 

general ANOVA analyses were revealing (Figures 4.32 iii and Figure 4.32 iv). No 

difference in biofumigation efficacy against G. pallida was observable between 

incorporation implements; spader, plough and rotavator (P = 0.466) (Figure 4.32 iii), 

however, maceration implements could be separated (P = 0.003) (Figure 4.32 iv). 
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Biofumigation with flail treatment was 4% more effective in reducing G. pallida viability 

than biofumigation using the roll conditioner (Figure 4.32 iv). Overall, biofumigation with 

the flail was 29% effective, whilst biofumigation with roll conditioner was 25% effective in 

reducing G. pallida viability when compared to the control from Figure 4.32 ii. No factor 

interaction was observed (P = 0.214). Soil moisture (Appendix 8.1.6) and soil 

penetrometer resistance (Section 4.7.4) were investigated for integration into the Ps 

analysis as covariates (Figure 4.32 ii) due to differences being found between treatments 

in one-way and repeated meaures ANOVA analyses. Neither were found useful as 

covariates (P = 0.966 and P = 0.459 respectively) and so were discarded from the 

analysis. Cabbage root fly damage, soil temperature conditions at incorporation, the crop 

fresh and dry weight biomass and plant density at incorporation were also measured, 

but not investigated as covariates due to no differences being found between treatments 

in one-way ANOVA analyses. See Sections 4.7.1, and Appendices 8.1.7 – 8.2.3 for 

discarded data sets. Egg viability CV’s for treatments 1-8 in Figure 4.32 i ranged between 

2.9-6.5% with a general CV of 4.8%. Egg viability CV’s for untreated and partial 

biofumigation treatments in Figure 4.32 ii were 6.2 and 18.6% respectively, whilst 

combined biofumigation treatments in Figure 4.32 ii ranged between 8.0 and 12.5% with 

a general CV of 11.0%. Egg viability CV’s analysed at the factor levels in Figures 4.32 iii 

and iv were 9.7 and 11.5% for roll conditioner and flail topper treatments respectively, 

and 10.3, 11.1 and 11.8% for spader, plough and rotavator treatments respectively. 
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Figure 4.32: Globodera pallida viability before and after biofumigation at field experiment 

2 (Crossroads, Shropshire), analysed by treatment, incorporation and maceration factors 

using one-way and general ANOVA. Globodera pallida viability before biofumigation for 

all treatments at Pi, is illustrated in plate i, whilst plate ii shows G. pallida viability for all 

treatments at Ps. Plates iii and iv show G. pallida viability analysed by maceration and 

incorporation factors at Ps. PBIO and UNT represent partial biofumigation and untreated 

treatments respectively. Error bars represent the SEM. Lettering above data labels 

indicates differences as determined using Tukey’s test.  

 

4.7.3 Globodera pallida cysts 200 g-1 soil and eggs cyst-1 at Pi and Ps  

Figure 4.33 i shows the mean number of G. pallida cysts extracted from plots at the 
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g-1 soil were retrieved for Pi and Ps samples respectively. There was no difference in the 

number of cysts retrieved between sampling times (P = 0.270). No differences were 

found in eggs cyst-1 between Pi and Ps sample times (P = 0.793) (Figure 4.33 ii). Mean 

G. pallida eggs cyst-1 were 249 and 253 for Pi and Ps sample times respectively. More 

detailed analysis of treatments at Pi showed no difference in G. pallida eggs cyst-1 

between treatments (Figure 4.33 iii) (P = 0.915). The same analysis for Ps also found no 

difference in G. pallida eggs cyst-1 between treatments (Figure 4.33 iv) (P = 0.943). 

Factor based eggs cyst-1 analysis showed no difference between incorporation 

implements; spader, plough and rotavator (P = 0.541) (Figure 4.33 v).  No difference in 

eggs cyst-1 was observed for roll conditioner and flail topper maceration implements 

either (P = 0.653) (Figure 4.33 vi), and no interaction was observed between biofumigant 

incorporation and maceration technique on G. pallida eggs cyst-1 (P = 0.792). Soil 

moisture and penetrometer resistance data were investigated for integration into the Ps 

analysis as covariates (Figure 4.33 ii) due to differences being found between treatments 

in one-way ANOVA analyses (Section 4.7.4 and Appendix 8.1.6). However, data were 

not useful as covariates to primary analyses (P = 0.242 and P = 0.616 respectively) and 

so were discarded from further analyses. Brassica juncea fresh and dry weight biomass, 

soil temperature, plant density at incorporation and cabbage root fly damage was 

measured, but data were not investigated as covariates due to no differences found 

between treatments in one-way ANOVA analyses. See Sections 4.7.1 and Appendices 

8.1.7 – 8.2.3 for data sets. Coefficient of variation values for cysts 200 g-1 soil at Pi and 

Ps sample times were 20.1 and 19.2% respectively (Figure 4.33 i), whilst eggs cyst-1 

CV’s for Pi and Ps samples were 28.7 and 30.0% respectively (Figure 4.33 ii). Eggs cyst-

1 CV’s for treatments 1-8 ranged between 18.4 and 41.8% at Pi (Figure 4.33 iii), and 

between 15.4 and 50.6% at Ps (Figure 4.33 iv). Eggs cyst-1 CV’s analysed at factor levels 

in Figures 4.33 v and vi were 38.8 and 22.5% for roll conditioner and flail topper 

treatments, and 29.8, 25.3 and 40.1% for spader, plough and rotavator treatments 

respectively.  
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Figure 4.33: Globodera pallida cysts 200 g-1 soil and eggs cyst-1 before and after 

biofumigation at field experiment 2 (Crossroads, Shropshire), analysed by sample date, 

treatment and incorporation and maceration factors using two sided T-tests, one-way 
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and general ANOVA. Globodera pallida cysts 200 g-1 soil is illustrated for both Pi and Ps 

sample dates in plate i, whilst plate ii shows total eggs cyst-1 for both Pi and Ps sample 

dates. Plates iii and iv show G. pallida eggs cyst-1 analysed by treatment factor for both 

Pi and Ps samples. Plates v and vi show eggs cyst-1 for the Ps data set analysed by 

maceration and incorporation factor levels. PBIO and UNT represent partial 

biofumigation and untreated treatments respectively. Error bars represent the SEM.  

 

4.7.4 Soil penetrometer resistance following biofumigation  

Figure 4.34 (i-iv) illustrates trends in soil penetrometer resistance following incorporation 

whereby spader treatments appeared to generate a looser soil structure at depth (200-

400 mm) than plough treatments, which produced a looser structure than the rotavator 

overall, and compared to untreated and partial biofumigation controls. Table 4.5 supports 

these observations whereby the spader is shown to produce a looser mean soil structure 

for depths 100-400 mm than the plough, which was shown to produce a looser mean soil 

resistance than the rotavator which was shown to not alter soil penetrometer resistance 

from the partial biofumigation or untreated control plot soils (P < 0.001). Table 4.6 shows 

in more detail where differences in soil penetrometer resistance occured at individual 

100 mm depth increments from 100-400 mm depth using repeated measures ANOVA. 

Significant differences from the untreated control were observed for spader treated plots 

at 200, 300 and 400 mm depth, and for plough at 200 and 300 mm depth (P < 0.001). 

Partial biofumigation plots appeared to have the same penetrometer resistance as the 

untreated. Interactions between selected incorporation and maceration implement 

combinations were shown to influence both mean soil resistance (P = 0.027) (Tables 4.5 

and 4.6), and soil resistance at different depths (P = 0.021) although this effect could not 

be attributed to a single implement combination or depth (Table 4.6). Soil penetrometer 

resistance was shown to increase in tandem with the depth of measurement, as might 

be expected (Table 4.6). However, no effect of maceration implement selection alone, 

or effect of simply growing a B. juncea crop on mean soil penetrometer resistance was 

observed (P = 0.993 and P = 0.502 respectively) (Table 4.5), or at different soil depths 
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(P = 0.647 and P = 0.086 respectively) (Table 4.6).  Mean penetrometer resistance 

ranged between 0.65 and 1.18 Mpa for incorporation implements at 0-400 mm depth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.34: Soil penetrometer resistance of plots at field experiment 2 (Crossroads, 

Shropshire), treated with (i) plough combinations, (ii) spader combinations, (iii) and 

rotavator combinations in comparison to untreated controls and partial biofumigation 

plots. Plate iv shows all plough, spader and rotavator implement combinations in 

comparison. Error bars represent the SEM. 
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Table 4.5: Mean penetrometer resistance (MPa) of B. juncea treated plots analysed by 

factors incorporation, maceration and crop using general ANOVA. Lower-case lettering 

indicates differences in mean penetrometer resistance which is attributable to 

incorporation implements according to Tukeys multiple range test (95% confindence). 

  

 

 

 

 

 

 

Table 4.6: Penetrometer resistance (MPa) of B. juncea treated plots analysed by factors 

soil depth, incorporation, maceration and crop using repeated measures ANOVA. 

Differences in penetrometer resistance at depth between incorporation implements and 

reference depths according to the untreated control, as determined using Fishers LSD,  

are signified by an asterisk (*).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean soil resistance (Mpa) SEM P-value CV% (35 df)

0.89 0.03 <0.001

0.95 0.03 0.993

0.95 0.07 0.502

0.92 0.05 0.027

0.65 a 0.03

0.85 b 0.04

1.18 c 0.03

1.12 c 0.07

Factors & Interactions

Incorporation

8.6
Maceration

Crop

Inc.*Mac.

Inc. implements
Spader

<0.001 12.7
Plough

Rotavator

Untreated

Mean soil resistance (Mpa) SEM P-value CV% (120 df)

0.95 0.02 <0.001

0.89 0.05 <0.001

0.95 0.05 0.647

0.95 0.09 0.086

0.89 0.07 0.021

Spader 100 0.29 0.01

200 0.25 0.01

300 0.32 0.04

400 1.75 0.10

Plough 100 0.29 0.04

200 0.47 0.06

300 0.70 0.07

400 1.94 0.05

Rotavator 100 0.37 0.03

200 1.05 0.03

300 1.30 0.05

400 2.01 0.04

100 0.46 0.12

200 0.88 0.07

300 1.17 0.12

400 1.97 0.05

Untreated (UNT)

Depth*Inc.*Mac.

Inc. implement (depth mm)

Factors & Interactions

Depth

16

Depth*Inc.

Depth*Mac.

Depth*Crop

Significance (*) compared to 
'UNT' reference level

*

*

*

*

*
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4.8 Results: field experiments 1 and 2 combined (Hungry Hill, Norfolk and 

Crossroads, Shropshire) 

4.8.1 Globodera pallida viability at Ps 

F-variance ratio calculations were carried out to assess whether primary G. pallida data 

sets from the first two field experiments could be combined in an effort to improve viability 

analyses. The Pi  data sets could not be combined as the cumulative upper probability 

F-variance ratio test employed found the variation between data sets was not 

comparable (P = 0.038). However, the same assessment of Ps data sets, allowed data 

between experiments to be combined (P = 0.193), as shown in Figure 4.35 i. The 

combined site analysis produced a mean G. pallida population of 141 total eggs g-1 soil 

at Ps (SEM of 13.8 eggs g-1 soil).  One-way ANOVA of the combined data sets showed 

an effect of partial biofumigation on G. pallida viability in the region of c. 16% efficacy 

compared to the untreated control, an effect of plough and rotavator combinations with 

the roll conditioner in the region of c. 27% efficacy, and an effect of spader and flail 

combination in the region of c. 37% efficacy when compared to the untreated control (P 

< 0.001). All other implement combinations were inseparable from the implement 

combinations just mentioned (Figure 4.35 i). There is clearly an effect of partial 

biofumigation on G. pallida viability, and clearly differences in full biofumigation efficacy 

between implement combinations, with the spader and flail combination reducing G. 

pallida viability by up to 8% more effectively than other common maceration and 

incorporation implement combinations. Again, no difference in biofumigation efficacy 

against G. pallida was observable in factor based analyses between incorporation 

implements alone; spader, plough and rotavator (P = 0.673) (Figure 4.35 ii). Maceration 

implement selection was again found to be influential of biofumigation efficacy against 

G. pallida in general ANOVA analysis (P = 0.006) (Figure 4.35 iii). No factor interaction 

was observed (P = 0.500).  
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Figure 4.35: Globodera pallida viability after biofumigation for both field experiment 1 

and 2 (Hungry Hill, Norfolk and Crossroads, Shropshire respectively) as a combined 

analysis. Data was analysed by treatment, incorporation and maceration factors using 

one-way and general ANOVA. Globodera pallida viability after biofumigation for all 

treatments is illustrated in plate i, whilst plates ii and iii show G. pallida viability analysed 

by maceration and incorporation factor levels respectively. PBIO and UNT represent 

partial biofumigation and untreated treatments respectively. Error bars represent the 

SEM. Lettering above data labels indicates differences as determined using Tukey’s test. 
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4.9  Results: field experiment 3 (Roys Corner, Shropshire) 

4.9.1 Brassica juncea biofumigant biomass and glucosinolate content 

Mean plant dry-matter at incorporation was 12.6% when analysed by block, and by 

treatment. The SEM’s for dry-matter were 0.17% and 0.20% respectively. No difference 

was found in the quantity of fresh or dry-weight B. juncea biomass between blocks (P = 

0.821 and P = 0.794 respectively) or treatments (P = 0.701 and P = 0.420 respectively) 

(Figure 4.36 i and ii). Mean fresh-weight biomass ranged between 44 and 52 t ha-1 when 

analysed by block and by treatment. Dry-weight biomass ranged between equivalent to 

4 and 6 t ha-1 between blocks and between treatments. 2-propenyl GSL (sinigrin) content 

of combined leaf and stem tissues was found to vary between 2.4 and 4.2 µmol g-1 dry 

tissue between blocks I-VI. Mean 2-propenyl GSL content was 3.5 µmol g-1 dry tissue 

and the SEM 0.27 µmol g-1 dry tissue (See Appendix 8.2.4). 2(S)-hydroxy-3-butenyl 

(epiprogoitrin) and 2(R)-2-hydroxy-3-butenyl (progoitrin) were also observed in B. juncea 

tissues at c.1.0 and 1.7 µmol g-1 dry tissue respectively. 

 

 

Figure 4.36: Brassica juncea biofumigant biomass t ha-1 for field experiment 3 (Roys 

Corner, Shropshire), analysed by block (i) and treatment (ii) factors using one-way 

ANOVA. Treatment key: pig-tail tine – P; knife tine – K; pig-tail/knife tine – PK; open 

shear-plate – O; closed shear-plate – C; partial biofumigant – PBIO. Error bars represent 

the SEM.  
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4.9.2 Globodera pallida viability at Pi and Ps 

The Roys corner site had a mean G. pallida population of 24 total eggs g-1 soil at Pi (SEM 

of 2.8 eggs g-1 soil). No difference was observed in G. pallida viability between treatments 

when assessed at Pi (P = 0.886) (Figure 4.37 i). The Roys Corner population was 75.0% 

viable at Pi overall. Differences were observed in G. pallida viability between treatments 

at the Ps sample date (P = 0.020) (Figure 4.37 ii). Partial biofumigation was ineffective 

in reducing G. pallida viability, but all biofumigation treatments except for the knife-tine 

and closed shear-plate maceration set-up were found to reduce G. pallida viability when 

compared to the untreated control, by c.31% overall. No difference in biofumigation 

efficacy was observed between any other tine and shear-plate set-up combinations using 

a one-way ANOVA (Figure 4.37 ii). A factor based general ANOVA analysis was used to 

further investigate the importance of maceration implement tine and shear-plate 

selections and set-up for biofumigation of G. pallida (Figures 4.37 iii and iv). No 

difference in biofumigation efficacy against G. pallida was observable between tines; 

knife, pig-tail or the combination of both tine types (P = 0.791) (Figure 4.37 iii). Similarly, 

shear-plate set-up was not found to influence biofumigation efficacy against G. pallida 

(P = 0.874) (Figure 4.37 iv). Brassica juncea fresh and dry weight biomass, and plant 

density at incorporation were measured, but not investigated as covariates due to no 

differences being found between treatments in one-way ANOVA analyses. See Section 

4.9.1 for biomass and Appendix 8.2.2 for plant counts. Egg viability CV’s for treatments 

1-8 in Figure 4.37 i ranged between 5.8-11.4% with a general CV of 8.7%. Egg viability 

CV’s for untreated and partial biofumigation treatments in Figure 4.37 ii were 33.2 and 

19.5% respectively, whilst combined biofumigation treatments in Figure 4.37 ii ranged 

between 9.2 and 36.6% with a general CV of 23.1%. Egg viability CV’s analysed at factor 

levels in Figures 4.37 iii and iv were 20.6 and 26.1% for tine and shear-plate treatments 

respectively, and 17.0, 27.1 and 25.1% for pig-tail, knife and pig-tail/knife tine 

combination treatments respectively. 
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Figure 4.37: Globodera pallida viability before and after biofumigation at field experiment 

3 (Roys Corner, Shropshire), analysed by treatment, tine and shear-plate factors using 

one-way and general ANOVA. Globodera pallida viability for all treatments at Pi, is 

illustrated in plate i, whilst plate ii shows G. pallida viability for all treatments at Ps. Plates 

iii and iv show G. pallida viability analysed by tine and shear-plate factor levels at Ps. 

PBIO and UNT represent partial biofumigation and untreated treatments respectively. 

Error bars represent the SEM. Lettering above data labels indicates differences as 

determined using Tukey’s test. 
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4.9.3 Globodera pallida cysts 200 g-1 soil and eggs cyst-1 at Pi and Ps 

Figure 4.38 i shows the mean number of G. pallida cysts extracted from plots at Roys 

Corner, at Pi and Ps sample times. Approximately 93-68 G. pallida cysts 200 g-1 soil were 

retrieved for Pi and Ps samples respectively. The number of cysts retrieved from soil was 

lower at Ps than at Pi (P = 0.037). However, no differences were found in eggs cyst-1 

between Ps and Pi sample times (P = 0.149) (Figure 4.38 ii). Mean G. pallida eggs cyst-

1 were 54 and 41 for Pi and Ps sample times respectively. More detailed analysis of 

treatments at Pi showed no difference in G. pallida eggs cyst-1 between treatments 

(Figure 4.38 iii) (P = 0.253). The same analysis for Ps also found no difference in G. 

pallida eggs cyst-1 between treatments (Figure 4.38 iv) (P = 0.224). Factor based eggs 

cyst-1 analysis showed no difference between tine treatments; knife, pig-tail or balanced 

combination (P = 0.486) (Figure 4.38 v).  No difference in eggs cyst-1 was observed for 

open and closed shear-plate position treatments either (P = 0.372) (Figure 4.38 vi), and 

no interaction was observed between tine and shear-plate set-ups on G. pallida eggs 

cyst-1 (P = 0.816). Brassica juncea fresh and dry weight biomass, and plant density at 

incorporation were measured, but data were not investigated as covariates due to no 

differences being found between treatments in one-way ANOVA analyses. See Sections 

4.9.1 and Appendix 8.2.2 for discarded data sets. Coefficient of variation values for cysts 

200 g-1 soil at Pi and Ps sample times were 57.2 and 91.1% respectively (Figure 4.38 i), 

whilst eggs cyst-1 CV’s for Pi and Ps samples were 60.0 and 126.7% respectively (Figure 

4.38 ii). Eggs cyst-1 CV’s for treatments 1-8 ranged between 40.0 and 65.7 at Pi (Figure 

4.38 iii), and between 53.7 and 168.3% at Ps (Figure 4.38 iv). Eggs cyst-1 CV’s analysed 

at factor levels in Figures 4.38 v and vi were 142.4 and 75.5% for open and closed shear-

plate position treatments, and 155.3, 52.9 and 76.7% for knife, pig-tail or combination 

tine treatments respectively.  
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Figure 4.38: Globodera pallida cysts 200 g-1 soil and eggs cyst-1 before and after 

biofumigation at field experiment 3 (Roys Corner, Shropshire), analysed by sample date, 

treatment and tine and shear-plate factors using two sided T-tests, one-way and general 

ANOVA. Globodera pallida cysts 200 g-1 soil is illustrated for both Pi and Ps sample dates 
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in plate i, whilst plate ii shows total eggs cyst-1 for both Pi and Ps sample dates. Plates 

iii and iv show G. pallida eggs cyst-1 analysed by treatment factor for both Pi and Ps 

samples. Plates v and vi show eggs cyst-1 for the Ps data set analysed by tine and shear-

plate factor levels. PBIO and UNT represent partial biofumigation and untreated 

treatments respectively. Error bars represent the SEM. Lettering above data labels 

indicates differences as determined using Tukey’s test. 

 

4.9.4 Brassica juncea bite/section length  

Figure 4.39 i shows one-way ANOVA analysis of the section length of B. juncea 

biofumigant tissues after maceration with different tine and shear-plate set-ups. Open 

shear-plate positioning produced a tissue section length of c.300 mm, irrespective of flail 

tine; knife, pig-tail or balanced combination. The pig-tail tine combined with a closed 

shear-plate position produced a finer chop than the open shear plate positions at 

approximately c.180 mm long tissue section lengths (P < 0.001). The remaining closed 

shear-plate treatments were inseparable from all other treatments. General ANOVA 

analyses revealed shear-plate set-up to be influential of B. juncea tissue section lengths 

after maceration (P < 0.001) (Figure 4.39 ii) but that tine type was not influential of tissue 

section length (P = 0.416) (Figure 4.39 iii). Tine and shear-plate set-up was not found to 

interact in a way which would influence B. juncea tissue section length (P = 0.240).  
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Figure 4.39: Brassica juncea biofumigant tissue section length at field experiment 3 

(Roys Corner, Shropshire), analysed by one-way (i) and general ANOVA (ii and iii). Error 

bars represent the SEM. Lettering above data labels indicates differences as determined 

using Tukey’s test. 

 

4.9.5 Brassica juncea biofumigant volatile organic compounds measured in soil  

Three primary B. juncea VOC’s were observed in soil at the Roys Corner site; dimethyl 

sulphide (DMS), dimethyl disulphide (DMDS) and AITC. Samples were collected 72 h 

after biofumigation. No difference in VOC peak areas could be determined between any 

of the treatments for DMS, DMDS or total VOC outputs analyses when using a one-way 

ANOVA (P’s 0.297, 0.583 and 0.277 respectively) (Figures 4.40 i, ii, iv). Differences in 

VOC output between treatments were present for AITC (P = 0.048), however, neither 
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Tukey or Fischers protected LSD multiple comparisons were able to indicate where 

treatment differences occurred (Figure 4.40 iii). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.40: Tenax-TA entrained B. juncea volatile organic compounds from soil at field 

experiment 3 (Roys Corner, Shropshire), collected 72 h after incorporation, analysed by 

one-way ANOVA. Plate i shows DMDS, plate ii shows DMS, plate iii shows AITC and 

plate iv shows the total combined VOC concentrations observed in B. juncea treated soil. 

Treatment key: pig-tail tine – P; knife tine – K; pig-tail/knife tine – PK; open shear-plate 

– O; closed shear-plate – C; partial biofumigant – PBIO; untreated - UNT. Error bars 

represent the SEM.  
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respectively) (Figures 4.41 i and ii). No interaction was observed between tine and shear-

plate selection and set-up on VOC release from B. juncea tissues (P = 0.193). Further 

one-way ANOVA analysis was carried out to determine whether the quantities of each 

VOC captured from soil were comparable. Initial analysis found the peak area data set 

had a positive skew.  The data set was square-root transformed which normalised data. 

Differences were subsequently observed between the peak areas of DMS, DMDS and 

AITC (P = 0.034) (Figure 4.42). Allyl ITC was present in soil at a higher concentration 

than DMS, but could not be separated from DMDS. Overall, AITC accounted for 44% of 

the total VOC peak area in soil, composed of DMS, DMDS and AITC. The remaining 

56% was made up of DMS at 25% and DMDS at 31%. 

 

 

 

 

 

 

 

 

 

Figure 4.41: Factor based analysis of Tenax-TA entrained B. juncea volatile organic 

compounds from soil at field experiment 3 (Roys Corner, Shropshire), collected 72 h 

after incorporation, analysed by general ANOVA. Plate i shows AITC peak areas for tine 

factor levels, plate ii shows AITC peak areas for shear-plate factor levels. Error bars 

represent the SEM. 
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Figure 4.42: Analysis of Tenax-TA entrained B. juncea volatile organic compound peak 

areas for dimethyl sulphide, dimethyl disulphide and allyl isothiocyanate collected from 

soil at field experiment 3 (Roys Corner, Shropshire) at 72 h after incorporation, analysed 

by one-way ANOVA. Treatment key: dimethyl sulphide – DMS; dimethyl disulphide – 

DMDS; allyl isothiocyanate – AITC. Error bars represent the SEM. Lettering above data 

labels indicates differences as determined using Tukey’s test. 

 

4.10  Discussion 

The primary aim of the work described in this chapter was to determine whether 

maceration and/or incorporation implement selection and set-up can be influential of B. 

juncea biofumigation efficacy against PCN. The chapter null hypothesis stated that 

neither maceration or incorporation implement selection or set-up has an effect on B. 

juncea biofumigation efficacy against PCN. Overall, maceration implement selection was 

found important in influencing biofumigation efficacy against G. pallida, with a flail 

implement being more effective for B. juncea biofumigant maceration than a roll 

conditioner when assessing efficacy by analysis of G. pallida viability. However, no 

evidence could be found that incorporation implement was influential of biofumigation 

a
1,140

ab
1,382

b
2,013

0

500

1000

1500

2000

2500

3000

DMS DMDS AITC

Pe
ak

 a
re

a 
(s

qu
ar

e-
ro

ot
 tr

an
sf

or
m

ed
)

Biofumigant volatile



    

176 
 

efficacy. Similarly, maceration implement set-up was not found to influence biofumigation 

efficacy against G. pallida in this instance. 

 

4.10.1  Field experiment 1 (Hungry Hill, Norfolk) 

4.10.1.1 Globodera pallida viability  

The Hungry Hill experiment investigated two maceration implement levels; roll 

conditioner and flail topper, in combination with three incorporation implement levels; 

spader, plough and rotavator, compared to an untreated control, and a partial 

biofumigation control, where B. juncea plants were grown but not incorporated into soil 

for suppression of G. pallida. The partial biofumigation control was included following 

recent observations by Ngala et al. (2014), where G. pallida populations were found to 

decline in the field in response to just growing B. juncea plants. The partial biofumigation 

control was therefore essential in separating the effects of maceration and incorporation 

away from any other brassica mediated efficacy. As reviewed in Chapter 1, similar 

observations for other brassica plants have been made by other authors (see Sections 

1.4.2 and 1.4.10). The headline results for the Hungry Hill experiment, and other field 

experiments discussed hereafter, surrounded the observable effects of treatments on G. 

pallida egg viability, as shown in Figure 4.29.  

 

Figure 4.29 i showed no difference in egg viability between treatments at Pi, and only 

low levels of variation in egg viability between treatments. Egg viability was therefore 

highly uniform before biofumigation, which presented a good opportunity to observe 

biofumigation treatment effects at Ps, if they were present. Figure 4.29 ii shows a clear 

biofumigation effect, with G. pallida viability being reduced by c.34% compared to the 

untreated control using full biofumigation. However, no differences in efficacy were 

observable between biofumigation treatments using different maceration-incorporation 

implement combinations. Similar to the glasshouse experiments of Chapter 3, 

biofumigation treatment was shown to increase variation in G. pallida egg viability. This 

can be detrimental to statistical analyses when trying to determine the significance of 
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small numerical differences between treatment means. Egg viability CV values increased 

from c.3% at Pi to 15% at Ps for biofumigation treatments, whilst egg viability CV values 

only increased from c.3% at Pi to 7% at Ps for untreated and partial biofumigation 

treatments. Using a replicate calculator provided by Berndston et al. (1991), it can be 

shown that to prove a 10% difference between treatments, as found between the roll 

conditioner-rotavator implement combination treatment and the flail topper-spader 

implement combination treatment (Figure 4.29 ii), an egg viability CV of no greater than 

c.4% would be acceptable for 6 replicates of each treatment. Therefore, the increase in 

egg viability variation in response to biofumigation may have masked differences 

between treatments, owing to potentially small effect sizes between treatments. 

Certainly, the level of replication for the Hungry Hill experiment was too low to determine 

any probable difference between maceration and incorporation implement combinations. 

However, Figure 4.29 ii shows each treatment using a roll conditioner, to compare less 

favourably in terms of efficacy against G. pallida than flail topper treatments, when simply 

observing means.  Therefore, factor based analyses were applied to data, whereby data 

was amalgamated according to shared incorporation and maceration implements 

(Figures 4.29 iii and iv).  

 

In factor based analyses, egg viability CV’s were shown to remain stable whilst 

replication was effectively increased through a simplification of analysis. Incorporation 

implement was not found to influence efficacy against G. pallida in this instance (4.29 iii), 

which was in contrast to the work of Roubtsova et al. (2007). It is possible that 

incorporation implements were not diverse enough in their placement of B. juncea 

material in soil, for differences in biofumigation efficacy against G. pallida to be observed 

between them. Alternatively, selection of incorporation implement type is not important 

for field scale biofumigation.  Maceration implement, however, was found to be influential 

of biofumigation efficacy against G. pallida (4.29 iv). An extra 7% efficacy was achieved 

when practising biofumigation with the flail topper in comparison to a roll conditioner. 

Whilst the quality of macerated B. juncea biofumigant tissues produced by each 
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implement was not assessed in this experiment, it was visually clear that the roll 

conditioner treated B. juncea material had a much longer section length than that of the 

flail topper; c.400 mm compared to c.200 mm, and that flail topper treated B. juncea 

sections showed signs of greater tissue trauma. It is possible that the quantity of B. 

juncea material fed into roll conditioner rolls was not conducive to effective bruising of 

tissues and that the rolls should have been adjusted from the factory set-up to facilitate 

bruising. The roll conditioner, which was sourced from the HAU farm, was typically used 

to mow lucerne (Medicago sativa) for ensiling or hay, and so was set-up to process crops 

of c.40 t ha-1 fresh weight. The B. juncea crop at Hungry Hill achieved an average fresh 

weight biomass in the region of just 25 t ha-1 (Figure 4.28 i and ii), probably due to the 

moderate quantity of fertiliser applied and the dryness of the season during early plant 

growth. The biomass represented only c.63% of the quantity of material usually fed 

through the roll conditioner implement which could have led to suboptimal biofumigant 

tissue damage by the roll conditioner. Whilst it is clear that the flail topper maceration 

implement is superior to the roll conditioner here, resulting in higher biofumigation 

efficacy against G. pallida, the roll conditioner implement may need further investigation 

in future. It is improbable that the shorter chop length of flail treated B. juncea material 

was the primary determining factor between maceration implements. As described in the 

introduction to this chapter, widespread tissue damage is caused by the application of 

several stresses to plant tissues, which in biofumigation results in a greater release of 

VOC’s from biofumigant tissues (Matthiessen et al., 2004; Morra & Kirkegaard., 2002; 

Persson, 1987). Therefore, the roll conditioner is unlikely to have been as effective as 

the flail topper in causing widespread tissue damage in this instance, as visually 

apparent. However, this hypothesis needs further investigation. 

 

Partial biofumigation was not proven to reduce G. pallida viability in the Hungry Hill 

experiment (Figure 4.29 ii). This could be due to a low effect size as there does seem to 

be some drop in viability in the partial biofumigation treatment compared to the untreated, 

which is in line with the results of Ngala et al. (2014). However, biofumigation effects for 
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Hungry Hill can only be attributed to the maceration and incorporation of B. juncea plant 

tissues into soil. No interaction was found between maceration and incorporation 

implement on biofumigation efficacy against G. pallida in factor based analyses either. 

Provided that material is incorporated into soil with some expediency (Matthiessen et al. 

2004; Gimsing & Kirkegaard, 2006), it would appear that incorporation implement may 

be an unimportant biofumigation factor. However, it should be noted that the B. juncea 

biofumigant material incorporated in the Hungry Hill experiment had a lower GSL content 

than biofumigant crops used in other studies investigating B. juncea cv. ISCI 99 for 

management of G. pallida; c.4.4 µmol g-1 dry tissue versus c.10-120 µmol g-1 dry tissue 

(Ngala, 2015; Lord et al., 2011). This explains the poorer efficacy recorded for the Hungry 

Hill site than in other published work, which could potentially lead to an underestimation 

of the role of incorporation implement in biofumigation of G. pallida here. Some caution 

should therefore be taken in these results (see Section 4.6.1 and Appendix 8.2.4 for GSL 

data).  

 

Glucosinolate concentrations are likely to have been lower than Ngala (2015) 

specifically, who developed the methodology used in this study, due to several factors. 

Factor i) lateness of GSL sample collection; GSL concentrations decline in tissues in 

response to a decline in ultraviolet (UV) radiation, ii) due to a conservative fertiliser 

regime, lacking in sulphur, which may have limited GSL biosythesis, and iii) due to the 

use of different tissue samples for high performance chromatography (HPLC) (Björkman 

et al., 2011; Ngala, 2015).  Ngala (2015) used only foliar tissues for GSL assessment in 

his field work, whereas the GSL results recorded here were composed of both leaves 

and stems. It is understood that plant organs differ in GSL concentrations, and that 

leaves are amongst the most GSL rich plant organs (Kirkegaard & Sarwar, 1998). 

Glucosinolate concentrations could therefore be expected to be lower here than in the 

work recorded by Ngala (2015). However, GSL concentrations fall comfortably within the 

range expected of B. juncea recorded by Kirkegaard & Sarwar (1998), who found 
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concentrations to typically vary between 0.1-18.7 µmol g-1 dry tissue as an average of 

whole top growth for 14 different accessions. 

 

4.10.1.2 Further Globodera pallida quantification: cysts, eggs cyst-1, and eggs g-1 soil 

As discussed in Chapter 3, interpretation of treatment effects on G. pallida egg viability 

could be distorted if treatments influence the total number of nematodes in an analysis 

rather than, or in addition to their viability. Furthermore, the wide variability in natural 

PCN population densities in soil, which could range anywhere between 1 and several 

hundred eggs g-1 soil, could be influential of the accuracy of viability percentage analyses 

in field experiments, and therefore influence the quality of analyses and the fairness of 

comparison between experiments (Turner & Subbotin, 2013; Lane & Trudgill, 1999). It is 

therefore important to quantify the number of nematodes used in viability analyses.  

 

Figure 4.30 i shows the mean number of G. pallida cysts retrieved from plots at Pi and 

Ps sample times, using 200 g of air-dried soil. No difference was observed in numbers 

of cysts extracted from soil, which was an indication that the sampling and extraction 

methodology was consistent between sample times for the Hungry Hill experiment. 

However, G. pallida eggs cyst were found to decline between the two sample times from 

168 eggs cyst-1 to 94 eggs cyst-1 (Figure 4.30 ii). This meant that the G. pallida population 

density declined from c.47 eggs g-1 soil to 31 eggs g-1 soil, a decline of 34% over 6-7 

months.  No evidence of any individual treatment effects on G. pallida eggs cyst-1 were 

observable at Pi or Ps sample times compared to the untreated control (Figure 4.30 iii 

and iv), indicating that the decline could have been due to in-field factors. The 

consistency in numbers of cysts retrieved from soil between sample times would suggest 

that the same population hotspots were being sampled between sample times, and 

therefore cysts size should have been similarly uniform. It would appear to be logical that 

the decline in G. pallida eggs cyst-1 could be due to natural decline, and potentially in-

field antagonists such as Purpureocillium lilacinum and Pochonia chlamydosporium, as 

reviewed in Chapter 1 (Sections 1.3.2 and 1.3.5).  
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Factor based analysis of biofumigation using incorporation and maceration implements 

revealed no effect of implement selection on G. pallida eggs cyst-1, indicating no 

biofumigation induced decline in cyst contents related to individual implements (Figure 

4.30 v and vi). The observation that biofumigation does not influence egg numbers 

specifically, is in line with glasshouse experiments discussed in Chapter 3, but is in 

contradiction to the findings of Ngala et al. (2014) where G. pallida population densities 

were shown to decline in the field, in response to biofumigation. It could be, as supported 

by GSL data, that the biofumigation achieved by Ngala et al. (2014) was superior to that 

achieved at Hungry Hill. Alternatively, quantifying biofumigation effects only a few 

months after biofumigation at Hungry Hill, may not have allowed time for eggs to die or 

degrade. Given the uniformity between G. pallida eggs cyst at each sample time, rather 

than between them, the viability analyses previously discussed can be considered fair 

and robust in comparison of treatment effects. Additionally, moderately high number of 

nematodes used to calculate viability percentages can be considered as adding strength 

to viability analyses for the Hungry Hill experiment. 

 

4.10.2  Field experiment 2 (Crossroads, Shropshire)  

4.10.2.1 Globodera pallida viability  

The Crossroads experiment was a repeat of the Hungry Hill experiment, running in 

tandem although geographically separated. Figure 4.32 shows G. pallida egg viability at 

Crossroads field at Pi and Ps sample dates, in single and multiple factor analyses.  

 

Figure 4.32 i showed no difference in egg viability between treatments at Pi, at similar 

levels of variation in egg viability between treatments to that of the Hungry Hill 

experiment. Egg viability was therefore highly uniform before biofumigation, which, 

similarly to the Hungry Hill experiment, presented a good opportunity to observe 

biofumigation treatment effects at Ps if they were present. Figure 4.32 ii shows a clear 

biofumigation effect compared to the untreated control, with G. pallida viability being 

reduced by c.27% compared to the untreated control using full biofumigation. However, 
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no differences in efficacy were observable between biofumigation treatments using 

different maceration-incorporation implement combinations, or between full 

biofumigation treatments and the partial biofumigation control, which could be separated 

from the untreated control. This analysis therefore indicated no effect of macerating and 

incorporating B. juncea biofumigant tissues into soil on G. pallida viability above that of 

growing a B. juncea crop. The results of this experiment support the premise of reducing 

G. pallida populations by partial biofumigation, as reported by Ngala et al. (2014). 

 

However, the Crossroads crop was poor on account of a cabbage root fly infestation (see 

Appendix 8.2.3). On a scale of 0-5, where 0 represented an undamaged B. juncea plant, 

and 5 represented a B. juncea plant where the primary root had been sheared off through 

damage, plants at the site had an average index of 2.5 by block and by treatment 

analyses, indicating partial root shearing. Consequently, fresh weight biomass was 

extremely low at c.14 t ha-1 (Figure 4.31 i and ii). This quantity represents approximately 

35% of the standard weight of material fed through the roll conditioner implement per 

hectare. The roll conditioner therefore induced very little tissue damage above that 

achieved by mower discs. A further effect of the cabbage root fly damage, was a thin 

and lignified crop, which did not break down easily with the flail topper. Glucosinolate 

concentrations were recorded to be higher than the Hungry Hill experiment at 12.1 µmol 

g-1 dry tissue total, probably in response to the cabbage root fly damage, although a lack 

of irrigation at the Crossroads site may have also contributed to higher GSL levels in 

tissues (See section 4.7.1 and Appendix 8.2.4 for GSL data) (Textor & Gershenzon, 

2009; Björkman et al., 2011). Whilst root GSL’s were not quantified, it is probable that 

these were also present in tissues at high concentrations. The work of Ngala et al. 

(2015b) and Textor & Gershenzon (2009) would suggest that loss of GSL’s from roots to 

soil may have been enhanced by cabbage root fly damage. This could have led to 

microbial breakdown of 2-popenyl GSL in soil and an enhanced partial biofumigation 

effect in the Crossroads experiment compared to the Hungry Hill experiment. This could 

explain why partial biofumigation was as effective as full biofumigation in this instance.  
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Analysis of treatment CV’s again indicated that replication was insufficient to prove small 

differences between biofumigation implement combinations given the variation in egg 

viability within treatments at Ps (Figure 4.32 ii) (Berndston et al., 1991). However, Figure 

4.32 ii showed a similar pattern to that observed at Hungry Hill, whereby treatments using 

a roll conditioner compared less favourably in terms of efficacy against G. pallida than 

flail topper treatments when simply observing means.  Therefore, factor based analyses 

were applied to data, whereby data was amalgamated according to shared incorporation 

and maceration implements (Figures 4.32 iii and iv).  

 

In factor based analyses, egg viability CV’s were shown to remain stable whilst 

replication was effectively increased through a simplification of analysis, the same 

observation as were made for Hungry Hill. Incorporation implement was not found to 

influence efficacy against G. pallida in this instance (4.32 iii), which was again in contrast 

to the work of Roubtsova et al. (2007) but in support of the first field experiment. This 

observation adds weight to the premise that incorporation implement may be of low 

importance in field scale biofumigation, provided incorporation is swift. For instance, a 

spader or rotavator which could be mounted to the same tractor as a flail, may only be 

more appropriate for biofumigation than a plough in practical terms. Maceration 

implement was again found to be influential of biofumigation efficacy against G. pallida 

(4.32 iv). An extra 4% efficacy was achieved when practising biofumigation with the flail 

topper than with a roll conditioner. Roll conditioner treated B. juncea material had a 

longer section length than that of the flail topper in the Crossroads experiment; c.400 

mm compared to c.200 mm. Similarly to the Hungry Hill experiment, flail topper treated 

B. juncea sections showed visual signs of greater tissue trauma than roll conditioner 

treated. The flail topper appeared to again be the superior maceration implement for 

biofumigation. No interaction was found between maceration and incorporation 

implement on biofumigation efficacy against G. pallida overall.  
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4.10.2.2 Further Globodera pallida quantification: cysts, eggs cyst-1, and eggs g-1 soil 

Figure 4.33 i shows the mean number of G. pallida cysts retrieved from plots at Pi and 

Ps sample times, using 200 g of air-dried soil. No difference was observed in numbers 

of cysts extracted from soil, which was an indication that the sampling and extraction 

methodology was consistent between sample times in this experiment, similarly to the 

Hungry Hill experiment. Globodera pallida eggs cyst-1 were found to remain consistent 

between the two sample times, at 249 and 253 eggs cyst-1 for Pi and Ps sample times 

respectively (Figure 4.33 ii).The mean G. pallida population density at the Crossroads 

experiment remained consistent between sample times at 250-265 eggs g-1 soil between 

sample times.  No evidence of any individual treatment effects on G. pallida eggs cyst-1 

were observable at Pi or Ps sample times either (Figure 4.33 iii and iv). Factor based 

analysis of biofumigation treatments using diverse incorporation and maceration 

implements, also showed no effect of implement selection on G. pallida eggs cyst-1 

(Figure 4.33 v and vi). The conclusion from these analyses in combination, indicates no 

decline in cyst contents related to biofumigation, or biofumigation carried out using 

different incorporation and maceration implements. The observation that biofumigation 

does not influence egg numbers specifically, is again in line with glasshouse experiments 

discussed in Chapter 3, and with the results for the Hungry Hill experiment. Viability 

analyses can again be considered fair and robust in comparison of treatment effects due 

to high uniformity in G. pallida counts between sample times and treatments. Although 

the B. juncea crop grown for the Crossroads experiment was poor, the high G. pallida 

counts at the field site, and their high uniformity, would have been beneficial for viability 

analyses in providing high resolution, fair and comparable viability data.  

 

4.10.2.3 Penetrometer resistance  

The working depth of incorporation implements and general structural properties of soil 

was assessed at the Crossroads experiment following biofumigation, using a cone 

penetrometer. Figure 4.34 visually depicts the working depths of each implement, and 

general penetrometer resistance at 100 mm depth increments, from 0-400 mm depth. 
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Figure 4.34 is supported statistically by Tables 4.5 and 4.6 where the spader is shown 

to work to approximately 400 mm depth, the plough to 300 mm depth and the rotavator 

to c.150 mm depth, although penetrometer resistance did not differ from untreated or 

partial biofumigation controls in the case of the rotavator. Penetrometer resistance 

readings did, however, show both the spader and the plough to produce a looser soil 

structure than the rotavator, and the spader a looser soil structure than the plough. It was 

therefore surprising that the spader implement, which produced a soil condition more 

conducive for fumigation and for retention of biofumigant VOC’s in soil, should not have 

facilitated a higher biofumigation efficacy than other incorporation implements in both 

Hungry Hill and Crossroads field experiments (Whitehead, 1998; Cremlyn, 1991; Lord et 

al., 2011). It is possible that the spader may have worked the B. juncea tissues too deep 

into soil, diluting the material which was already low of GSL concentration, negatively 

influencing efficacy in a similar way to when granular nematicides are applied too deep 

(Woods & Haydock, 2000). Alternatively, a looser soil structure may have facilitated 

greater sorption of biofumigant VOC’s to OM, which again, could have negatively 

influenced efficacy. Gimsing et al. (2009) have shown AITC readily sorps to soil OM 

which supports this hypothesis. Assessment of soil bulk density could have given more 

detail on soil pore space after spader treatment than penetrometer resistance alone, and 

so should be considered in future studies.  

 

4.10.3  Combined analysis for field experiments 1 and 2 (Hungry Hill, Norfolk and 

Crossroads, Shropshire) 

4.10.3.1 Globodera pallida viability  

Due to a seemingly consistent pattern of biofumigation effects between Hungry Hill and 

Crossroads experiments, methods of assessing variance between experiments were 

investigated. An F-variance ratio test was used to determine whether core viability data 

sets could be combined between field experiments, to increase replication and tease out 

potentially small treatment effects obscured by background levels of variation (Mead et 

al., 1993). The Pi data sets could not be combined, although Ps data could be.  
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Figure 4.35 i shows a partial biofumigation effect on G. pallida viability, which is 

separable from the untreated control, full biofumigation effects which are separable from 

the partial biofumigation control, and differences in efficacy between full biofumigation 

treatments using different implement combinations. The most effective implement 

combination was a flail topper-spader combination, which was 8% more effective in 

reducing G. pallida viability than the roll conditioner-rotavator treatment. It would appear 

that the spader could have been responsible for some of the biofumigation efficacy 

observed in this analysis, although still not to any level which would justify the expense 

of running such an implement versus other implements already widely available on 

farms. Given that penetrometer results from the Crossroads experiment showed the 

spader to have the greatest working depth and to produce the loosest soil structure, it is 

possible that B. juncea biofumigant material was worked into soil in a slightly more 

effective way with the spader, and that encysted G. pallida eggs were better exposed to 

VOC’s than with other implement combinations (Whitehead, 1998). It is likely that the 

spader was more effective in retaining B. juncea biofumigant VOC’s in soil where they 

could be effective against G. pallida. Both the depth of incorporation and the use of a 

powered smear roller could have limited VOC off-gassing for the flail topper-spader 

treatment in this instance (Cremlyn, 1991). Roubtsova et al. (2007) found in their soil 

column work, that mixing biofumigant material into soil improved biofumigation efficacy 

against root knot nematodes, whilst Lord et al. (2011) have shown the importance of 

sealing biofuimigant VOC’s in soil for biofumigation efficacy against G. pallida, supporting 

the hypotheses presented here. Further work should be carried out to investigate 

placement of biofumigant material in the field and the importance of sealing soil after 

biofumigation. It is possible that a repeat of the work carried out here with a higher 

biomass crop might find larger treatment effects and be able to cast further light on the 

importance of incorporation implements in biofumigation of PCN generally. It is quite 

possible that incorporation is an important biofumigation factor, but that its importance in 

biofumigation is second to the quality of biofumigant crop and the effectiveness of 

maceration strategy. Therefore, incorporation implement might only become important 
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in influencing biofumigation efficacy against PCN when incorporating high biomass, high 

GSL crops. A further point for consideration; Chapter 3 indicated that high biomass B. 

juncea crops could be implicated in influencing soil structure after incorporation. 

Therefore, the spader, which is likely to be involved in diluting biofumigant material within 

soil as previously discussed, particularly where high biomass crops are incorporated, 

could mitigate the potential effects of biofumigant biomass on soil structure. This could 

then reduce the risk of VOC loss to headspace above soil by off-gassing, by presenting 

a more effective physical barrier to VOC movement, in a similar way to soil moisture or 

plastic films (Simpson et al., 2010; Lord et al., 2011). If true, the spader could be a far 

superior implement for incorporation of high biomass biofumigant crops. 

 

Factor based analyses (Figure 4.35 ii and iii) again showed no overall effect of 

incorporation implement on biofumigation efficacy, and no interaction between 

incorporation and maceration implement effects on G. pallida viability. Maceration 

implement was again found to influence biofumigation efficacy against G. pallida as 

would be expected given the results of single experiment analyses (Figure 4.35 iii). 

 

4.10.4  Field experiment 3 (Roys Corner, Shropshire) 

4.10.4.1 Globodera pallida viability  

Following Hungry Hill and Crossroads field experiments, it appeared apparent that 

maceration implement had the potential to markedly influence B. juncea biofumigation 

efficacy against G. pallida. The importance of incorporation implement in biofumigation 

of G. pallida appeared to be of lower importance. Field experiment 3 was therefore 

designed to investigate the set-up of a haulm topper, which is a flail type implement, to 

determine whether implement set-up, as well as selection, could be influential of efficacy. 

Field experiment 3 investigated two shear-plate levels; open and closed, in combination 

with three flail tine levels; pig-tail tine, knife tine, and a balanced combination of pig-tail 

and knife tines, compared to an untreated control, and a partial biofumigation control.  
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No difference was observed in egg viability between treatments at Pi (Figure 4.37 i), and 

only moderately low levels of variation were found in egg viability between treatments. 

Egg viability was therefore considered moderately uniform before biofumigation, 

although not so uniform as in the previous two field experiments. Figure 4.37 ii showed 

a clear biofumigation effect, with G. pallida viability being reduced by c.31% compared 

to the untreated control. However, no differences in efficacy were observable between 

biofumigation treatments using different tine and shear-plate implement combinations. 

The knife tine with closed shear-plate treatment was inseparable from both the untreated 

and partial biofumigation treatments. Generally, biofumigation treatment was shown to 

increase variation in G. pallida egg viability in field experiment 3 which could have been 

detrimental to viability analyses. Egg viability CV values increased from c.9% at Pi, to 

23% at Ps for biofumigation treatments. Using the replicate calculator provided by 

Berndston et al. (1991), it can be shown that to prove a 9% difference between 

treatments, as found between the knife tine with closed shear-plate treatment, and the 

combined tine with closed shear-plate treatment (Figure 4.37 ii), an egg viability CV of 

no greater than c.4% would be acceptable for 6 replicates of each treatment. Therefore, 

the variation in egg viability between treatments was too high to enable treatment 

differences to be determined at the Ps timing in field experiment 3. As with Hungry Hill 

and Crossroads experiments, a factor based analysis was applied to data, whereby data 

was amalgamated according to shared tine and shear-plate levels, in an attempt to 

increase replication by simplifying the analysis (Figures 4.37 iii and iv).  

 

In factor based analyses, egg viability CV’s were shown to remain stable whilst 

replication was effectively increased through a simplification of analysis. Neither tine or 

shear-plate settings were found to influence efficacy against G. pallida (Figure 4.37 iii 

and iv). However, field experiment 3 was found to have weaknesses which were not 

present in the first two field experiments, which could have negatively influenced results. 

Fresh biomass was the highest of all three field experiments at c.48 t ha-1 fresh weight 

(Figure 4.36) and GSL concentrations in tissues slightly higher than the Hungry Hill 
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experiment at 6.2 µmol g-1 dry tissue. However, the numbers of nematodes used to 

generate viability data was poor. In general, G. pallida counts were considered in the 

moderate category (c.24 eggs g-1 soil) described by Haydock & Evans (1998b) as 

described in Section 1.3.2, which was considerably lower than in other field experiments, 

and may have negatively influenced the resolution of viability data in this instance. 

Furthermore, soil moisture conditions were visibly drier in the Roys Corner experiment 

than the Hungry Hill and Crossroads experiments, due to a spring rather than an autumn 

incorporation. Soil was probably in the region of 25-50% of field capacity as soil dust 

could be seen surrounding the rotavator during work, although soil moisture was not 

recorded in this instance. Given the high level of biomass and moderate incorporation 

depth of c.300 mm, soil moisture conditions could have been insufficient to prevent VOC 

off-gassing in this instance, and negatively influenced efficacy. Similarly, soil 

temperatures may have been too low at that time of the year for effective fumigation. No 

real conclusions could be determined as to the importance of tine and shear-plate set-

up on a haulm topper from this analysis, although the combined tine-closed shear-plate 

haulm topper set-up showed the lowest mean G. pallida viability in Figure 4.37 ii. 

 

4.10.4.2 Further Globodera pallida quantification: cysts, eggs cyst-1, and eggs g-1 soil 

Figure 4.38 i shows the mean number of G. pallida cysts retrieved from plots at Pi and 

Ps sample times, using 200 g of air-dried soil. The number of cysts retrieved at Ps was 

lower than at Pi (Figure 4.38 i), 68 versus 93 cysts 200g-1 soil respectively. However, no 

difference was found in eggs cyst-1 between sample times (Figure 4.38 ii), which 

indicated that the difference in cyst counts between sample times was simply due to 

operator inconsistencies in cyst extraction. Further treatment analyses showed no 

difference in eggs cyst-1 between treatments at Pi or at Ps sample times, indicating no 

effect of biofumigation on eggs cyst-1 (Figure 4.38 iii and iv). Furthermore, factor based 

analyses revealed no effect of tine or shear-plate biofumigation treatments on G. pallida 

eggs cyst-1 (Figure 4.38 v and vi). The consistency of egg numbers was again considered 

good for fair comparison of treatments, particularly in viability analyses. However, the 
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low G. pallida population density at field experiment 3 may have influenced the resolution 

of viability data as previously mentioned. The mean G. pallida population density at field 

experiment 3 was found to range between 25 and 13 eggs g-1 soil between sample times, 

which was lower than in other field experiments. It is probable that these low counts may 

be responsible for the high G. pallida CV’s observed in field experiment 3, and 

subsequently, poor results. Future experiments would benefit from G. pallida population 

densities near those recorded for the Crossroads experiment, c.250 eggs g-1 soil.  

 

In future, a stratified randomised technique might be used to reduce variation in field 

experiments such as the Roys Corner experiment (Mead et al., 1993).  The approach 

allocates treatments within blocks, and blocks themselves, within an experiment 

according to nematode densities. Appendix 8.4.1 shows how blocks and treatments 

might have been applied to field experiment 3 using this approach. Analysis of the Pi 

data set using the fully randomised approach showed the general block CV to be 48%, 

and treatment CV to be 76% (Figure 4.8). Using the stratified randomised approach 

shown in Appendix 8.4.1, block CV increased to 85% whilst treatment CV reduced to 

40%, indicating an increased power to determine treatment differences from a more 

uniform Pi treatment data set. Future work should adopt this strategy as a powerful 

means of reducing the effects of natural variation on field experiment results. 

 

4.10.4.3 Brassica juncea bite/section length 

The quality of macerated B. juncea tissue was quantified in field experiment 3 in terms 

of the section length of tissues. This assessment methodology did not provide any 

information on the levels of bruising of B. juncea tissues following maceration, however, 

it was deemed a simple and time efficient assessment technique which might be used in 

combination with VOC data to assess maceration differences between treatments. A 

clear difference in B. juncea section length was observed following maceration of B. 

juncea plants with the pig-tail tine with closed shear-plate, compared to all open shear-

plate treatments regardless of tine set-up (Figures 4.39 i). All other closed shear-plate 
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treatments were inseparable from the previous treatments. Brassica juncea section 

lengths ranged between c.180-300 mm following maceration, with low levels of variance 

in section length when simply viewing SEM’s. It generally appeared that a closed shear-

plate position caused a finer chop due to a closer gap between tines and shear-plate for 

B. juncea material to pass through, as anticipated (Persson, 1987). When factor based 

analysis was carried out, it was found that tine did not influence B. juncea section length, 

but that shear-plate position did (Figures 4.39 ii and iii). However, it was still unclear 

whether tine type might have influenced the level of bruising of tissues, as influenced by 

stresses other than shear, such as bending, torsional, tensional or compressional 

stresses (Persson, 1987). Tine dimensions were diverse and so could have been 

expected to inflict different levels of damage to tissues; pig-tail tine – 65 x 230 x 8 mm, 

knife – 40 x 230 x 8 mm, where the pig-tail tine cutting face was 65 mm, and the knife 

tine cutting face was 8 mm wide. However, no differences were observed. 

 

Tine speed in the Roys Corner experiment was c.32 m s-1 due to a flail rotor speed of 

1250 revolutions min-1 (rpm), and a distance between the cutting edge of each tine from 

the centre of the rotor of c.242 mm. Chancellor (1988) and McRandal & McNulty (1978) 

suggest that tine speeds in excess of 10-20 m s-1 are desirable for efficient impact cutting 

of forage crops because at these speeds, tines efficiently transfer cutting forces through 

plant material with low material acceleration.  However, for the Roys Corner experiment, 

tine speeds in excess of 10-20 m s-1 could be considered detrimental to biofumigation. 

Lower tine speeds which are less efficient in cutting should accelerate plant material by 

widely distributing cutting forces through tissues, which could lead to much greater 

cellular damage in biofumigation. Future experiments should consider tine speed and 

numbers of tines used on macerators to achieve maximum tissue bruising and cutting, 

perhaps instead of investigating tine selection as investigated here. The haulm topper 

used in the Roys Corner experiment made c.77 cuts m-1 travelled when travelling at 3 

km h-1. Due to such high tine speeds, this implement was probably sub optimal for 

maceration of biofumigant material, although the number of cuts made per meter was 
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high. Running the implement at a power take-off (PTO) speed of 540 rpm instead of 1000 

rpm would half tine speed, potentially improving the implement for biofumigation. 

However, cuts m-1 travelled could also be expected to reduce to 38.  

 

4.10.4.4 Brassica juncea volatile organic compounds in soil 

Analysis of VOC’s collected from soil using the custom made VOC moles described 

earlier, found no difference in DMS, DMDS or the combination of DMS, DMDS and AITC 

for different treatments compared to the untreated treatment (Figure 4.40). However, 

AITC concentration in soil was found to vary between treatments (Figure 4.40 iii). Multiple 

comparisons could not detect where differences occured. However, it would appear that 

the pig-tail and knife tine combination with open shear-plate might have been implicated 

in releasing AITC into soil at levels which could be separated from the untreated control, 

given that its mean was most distant from the control. This observation is interesting 

given that the combined tine with open shear-plate treatment produced one of the longest 

bite/section lengths at maceration, indicating that this combination could have applied a 

more damaging range of stresses to plant material than some of the other treatments, 

which were probably more reliant on shear stress and therefore produced a shorter 

section length, such as the pig-tail with closed shear-plate treatment (Persson, 1987). 

Factor based general ANOVA analyses were ineffective in determining differences in 

AITC output between tines or shear-plate settings, probably due to the low number of 

replications of each treatment and high background variation, despite the simplified 

analysis (Figure 4.41) (Mead et al. 1993). It is possible that the open shear-plate position, 

which produced a longer section length B. juncea residue, might have also enabled 

material to pass over the haulm topper rotor more effectively, resulting in more blunt 

maceration than when the shear-plate was closed. Other analyses investigated the 

composition of the B. juncea VOC profile, and found AITC to be more abundant than 

DMS, but not DMDS. However, the biofumigation here had perhaps a greater quantity of 

DMS and DMDS than was expected, at a combined contribution of 56% to the total VOC 

composition (Figure 4.42). Bending & Lincoln (1999) proposed that DMDS most 
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specifically, could have an important and understated role in biofumigation using B. 

juncea. Perhaps this area needs revisiting in light of these findings. 

 

4.10.5 General considerations 

The importance of soil moisture and temperature has not been discussed here in relation 

to biofumigation success against G. pallida because neither factor was found to influence 

G. pallida results when used as covariates. It is probable, given the results of Chapter 3, 

that soil moisture conditions in the field might have influenced efficacy if the differences 

between plots were greater. Similarly for temperature. However, plots were consistent 

for these measurements. Other considerations to mention include soil texture, OM and 

pH (see Appendices 8.1.1 – 8.1.3). Each site was considered a loamy sand which is 

representative of many UK potato fields, however, it may have been beneficial to 

investigate biofumigation over a wider range of soil types. Similarly, OM was found to be 

consistent between sites with a range of 1.6-2.4%. Again, this narrow range of OM does 

not reflect the full range of OM contents of UK potato growing soils which could be 

considered a weakness in this work. However, all field sites were found to have 

acceptable pH for biofumigation which ranged between 6.6-7.2 between sites, which can 

be considered positive, and conducive to ITC generation during GSL hydrolysis. Also, 

the geographical separation between Hungry Hill and the two Shropshire experiments 

can be considered beneficial in testing biofumigation in different climatic conditions, as 

can the separation of the two Shropshire sites by growing season.  

 

4.10.6  Conclusions 

In conclusion, the null hypothesis for this chapter that ‘neither maceration or 

incorporation implement selection or set-up has an effect on B. juncea biofumigation 

efficacy against PCN’ can be considered disproven in relation to maceration implement 

selection, where biofumigation using a flail topper was found to be more effective in 

suppressing G. pallida than biofumigation using a roll conditioner. However, the null 

hypothesis can be broadly accepted for incorporation implement. No difference in G. 
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pallida viability was found between biofumigation treatments analysed by incorporation 

factor for individual experiments. The spader combination with flail was shown to be the 

most effective implement combination in a combined analysis of the Hungry Hill 

experiment and the Crossroads experiment, but further work is required to determine the 

importance of the spader in this implement combination. Selection of the spader cannot 

currently be supported for most growers due to expensive running costs for a small return 

in efficacy, however, where easily available and for high biomass crops, its use may be 

justified. Similarly, no effect of maceration set-up in terms of tines or shear-plate position 

was observed on B. juncea biofumigation efficacy against G. pallida, however, results 

may have been negatively influenced by low G. pallida population densities in the field. 

The null hypothesis that maceration set-up is not influential of efficacy can be broadly 

accepted in this instance, with regard to tine and shear-plate factors, although future 

investigations might consider tine speed, numbers of tines per flail rotor and implement 

forward speed as factors influencing biofumigation efficacy against PCN. The chapter 

aim to ‘determine whether maceration and/or incorporation implement selection and set-

up can be influential of B. juncea biofumigation efficacy against PCN’ can be considered 

answered. Maceration implement selection is important in biofumigation of G. pallida. 

However, the set-up of topping implement by tine and shear-plate positioning would 

appear to be less important. Similarly, the selection of incorporation implement would 

appear to be unimportant in biofumigation of PCN. Further research could involve 

screening different B. juncea maceration qualities against PCN in-vitro, to determine the 

potential for improving biofumigation of PCN in the field by manipulation of maceration 

factors, such as tine speed. All experimental objectives were achieved. 

 

4.10.6.1 Recommendations 

1  Use a front mounted flail type implement to macerate B. juncea biofumigant crops 

for maximum suppression of G. pallida. 

2 For high biofumigation potential crops, and where readily available, consider a 

spader for incorporation of B. juncea biofumigant crops for suppression of G. pallida. 
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In-vitro Experiments  5 

 
Investigation of cyst moisture as a factor influencing biofumigation success against 

potato cyst nematodes   

 

5.1  Introduction  

Glasshouse experiments described in Chapter 3, suggested that soil moisture could be 

influential of biofumigation efficacy against the potato cyst nematode (PCN) Globodera 

pallida. Brassica juncea biofumigation efficacy was found to be c.14.3% higher where 

biofumigation was carried out at 50% of field capacity, compared to 0 and 100% of field 

capacity, and water saturated soil. However, mechanisms for the higher efficacy were 

not investigated. As reviewed in Chapter 1 (Section 1.4.8), and generally discussed in 

Chapter 3, soil moisture could have a role in enhancing glucosinolate (GSL) hydrolysis 

from incorporated biofumigant tissues, to generate volatile organic compounds (VOC) 

such as allyl-isothiocyate (AITC), and could influence VOC movement and retention in 

soil, and contact with encysted PCN eggs (Morra & Kirkegaard, 2002; Matthiessen et al., 

2004; Simpson et al., 2010; Borek et al., 1998). Of these areas, the role of soil moisture 

in influencing VOC contact with PCN cysts is perhaps the least well understood. 

However, evidence has been presented by Borek et al. (1998) which would suggest 

biofumigant VOC’s to be generally more hydrophobic than hydrophilic.  

 

A study investigating the antibacterial mechanism of action of AITC found that AITC was 

more effective in degrading the cell membranes of Salmonella, Escherichia and Listeria 

spp. bacteria when in a vapour phase, rather than in a liquid solution (Lin et al., 2000), 

which also supports Borek et al. (1998). The chemical composition of a PCN egg shell 

is similar to many bacteria (Clarke et al., 1967; Cummins, 1956), comprising of many 

similar or the same amino acids, such as glycine. It is therefore possible that encysted 

PCN are also more susceptible to ITC’s when cysts are dry. If proven to be true, this 

could have important consequences for field scale biofumigation and could influence 
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decision making around the time of biofumigant incorporation according to soil moisture 

conditions. This chapter therefore, investigates the role of cyst moisture as a factor which 

could influence B. juncea biofumigation efficacy against PCN.  

 

5.1.1 Chapter aim  

i) Determine whether B. juncea biofumigation efficacy against PCN is affected by 

the moisture condition of cysts. 

 

5.1.2  Chapter null hypothesis 

i)  Cyst moisture condition does not influence efficacy of B. juncea biofumigation 

against PCN. 

 

5.2  Materials and methods: in-vitro experiment 1 

5.2.1 Experiment objectives  

i)  Develop experimental capsules for exposing PCN to B. juncea biofumigant 

VOC’s, and for quantifying VOC compounds using Tenax-TA sorbent tubes. 

ii) Determine the quantity of B. juncea biofumigant material required for addition 

into experimental capsules, to induce approximately 50% mortality of PCN. 

iii)  Quantify B. juncea biofumigation effects on PCN cyst contents. 

iv) Quantify B. juncea biofumigant VOC’s within experimental capsules during 

experimentation. 

 

5.2.2 Experimental capsule development  

Custom made experimental capsules were required to accurately determine whether 

cyst moisture could influence B. juncea biofumigation efficacy against PCN. The 

capsules needed to be i) reusable, and therefore able to be cleaned between 

experiments without material degradation or carryover of contaminants, ii) uniform of 

internal volume and sealable, and iii) self-contained; capsules needed to house 

biofumigant material, PCN cysts exposed to relevant moisture conditions, and Tenax-TA 
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sorbent tubes for assessment of biofumigant VOC’s. To meet these criteria, the capsules 

were constructed from glass, polytetrafluoroethylene (PTFE) and silicon laboratory 

consumables, which would be uniform of dimensions, and enable cleaning and drying of 

materials between experiments; ambient air drying for PTFE and silicon components, 

and forced air drying at 105°C for glassware. Figure 5.1 shows the capsule design, 

providing a description of core components. Capsules are hereafter referred to as volatile 

organic compound exposure capsules (VOCEC’s). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Custom-made VOCEC, composed of a 40 mL glass vial (A), custom made 

Tygon® R-3603 plastic tubing/ 400 µm diameter PTFE mesh, detachable ‘cyst basket’ 

(B), 70 mm cut section of a glass Pasteur pipette (C), polypropylene cap fitted with a 3 

mm thick PTFE-silicone septa (D), Tygon® R-3603 plastic tubing connecting glass 
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pipette and Swagelok® fitting components (E), and Swagelok® fitting for Tenax-TA 

sorbent tube attachment (F). 

 

5.2.2.1 Construction procedure for volatile organic compound exposure capsules 

Each VOCEC was made from a 40 mL glass vial fitted with a 3 mm diameter septum cap 

with composite PTFE-silicone septa (Sigma-Aldrich®) (Figure 5.1 A and D). Septum 

caps were each pierced using forceps, and then a shortened glass Pasteur pipette (ISO 

7712) (Fisherbrand®) inserted into each cap; reduced from 150 to 70 mm in length using 

a hardened steel needle file (Carl Kammerling int.) (Figure 5.1 C). The junction between 

the cut pipette and the septum cap was glued using adhesive (Super Glu, Bostik). 

Sections of Tygon® R-3603 plastic tubing (part number: AAC1S1504) were then cut to 

10 and 20 mm length sections. The 10 mm sections were glued to a PTFE mesh sheet 

(c.400 µm diameter) using the adhesive, and left to dry. Once dried, the Tygon® R-3603 

plastic tubing sections were cut from the mesh to produce ‘cyst baskets’ for suspending 

G. pallida cysts within individual VOCEC’s, above B. juncea biofumigant material (Figure 

5.1 B). The 20 mm Tygon® R-3603 plastic tubing sections were used to attach 

Swagelok® fittings to cut glass pipettes, and glued in place using the adhesive (Figure 

5.1 E and F). 

 

5.2.3 Experimental design  

In-vitro experiment 1 was carried out between September and October 2017 at the 

Harper Adams University (HAU) nematology laboratory facility. The experiment 

consisted of one factor; ‘number of B. juncea leaf discs’ introduced into each VOCEC for 

exposure to PCN. Figure 5.2 shows the experimental design, for which five levels were 

selected; 0, 1, 2, 4, and 8 B. juncea leaf discs. Treatments were arranged in a 

randomised block design and replicated four times each. Replication was sufficient to 

enable treatment differences of 15% in PCN egg viability to be determined for 

background variation levels in egg viability of between c.4% between replicates of like 

treatments (Berndston, 1991). The design had 12 residual degrees of freedom (RDF). 
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Figure 5.2: In-vitro experiment 1 design showing the spatial allocation of treatments 1-5 

to VOCEC’s. Blocks are represented using Roman numerals (I-IV).  

 

5.2.4 Core experimental materials 

5.2.4.1 Brassica juncea leaf discs  

Brassica juncea leaves were collected from discard ‘D’ pots from glasshouse experiment 

2 (see Figure 3.13) in April 2016. Leaf discs were cut from leaves using a stainless-steel 

20 mm diameter cork-borer (Figure 5.3), and then discs stacked between layers of 250 

µm nylon mesh (Figure 5.4) before being flash frozen with liquid nitrogen, and stored at 

-20°C. See Section 3.7.1 and Appendix 8.2.4 for the dry-matter and GSL content of 

plants from glasshouse experiment 2. Note, only leaves were used in this experimental 

work whereas leaves and stems were combined in dry-matter and GSL analysis in 

glasshouse experiment 2. 

 

5.2.4.2 Potato cyst nematodes  

Cysts were obtained from Lodge 1 field near Shawbury, Shropshire (UK) (grid reference: 

SJ 58768 25337) in April 2017, before potato planting. The PCN were identified as G. 

pallida by polymerase chain reaction (PCR) (see Appendix 8.1.4 for PCR and 
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Appendices 8.1.1-8.1.3 for site specific details). Cysts were graded to between 500-1000 

µm in size, as per glasshouse experiment 2 (see Section 3.3.4.2), in an attempt to reduce 

variation in egg contents (Twomey et al., 1995). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Brassica juncea leaf (A), 20 mm diameter leaf discs (B), and a stainless-

steel cork borer (C). Scale indicates the diameter of leaf discs.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Brassica juncea leaf disc (A) separated by layers of 250 µm nylon mesh (B).  

Scale indicates the diameter of leaf discs. 

A 

B C 

20 mm 

A 

B 

20 mm 



    

201 
 

5.2.5 Experiment initiation 

A total of 50 G. pallida cysts were counted for each VOCEC, then introduced into cyst 

baskets. Brassica juncea leaf discs were taken from the freezer and transported to the 

laboratory on dry ice to prevent discs defrosting prematurely. Leaf discs were then 

individually peeled from nylon mesh using forceps to generate treatment quantities. 

Discs were submerged into distilled water for approximately 1 s to thaw (Figure 5.5), then 

introduced to VOCEC’s according to the design shown in Figure 5.2. Individual VOCEC 

caps were fitted and tightened immediately after introduction of B. juncea material, 

suspending G. pallida cysts in cyst baskets above B. juncea leaf disc material. Blank 

Tenax-TA sorbent tubes were than attached to VOCEC Swagelok® fittings for passive 

entrainment of biofumigant VOC’s (Figure 5.6). Tenax-TA sorbent tubes were removed 

after 72 h for GC-MS analysis (see Section 2.4.3). Cysts and B. juncea were left in 

VOCEC’s for a further 11 days, after which G. pallida were processed using the 

Melodolas blue staining technique as per Section 2.3.2. Laboratory conditions were 

maintained at 20°C temperature for the duration of experimental work. Figure 5.6 shows 

a single block from in-vitro experiment I. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Procedure for submerging B. juncea leaf discs (A) in distilled water, before 

introduction into VOCEC’s containing G. pallida cysts (B).  
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Figure 5.6: VOCEC arrangement for block III from in-vitro experiment 1, showing G. 

pallida cysts (A) suspended above different quantities of B. juncea leaf discs (B), with 

Tenax-TA sorbent tubes fitted for VOC entrainment (C). Scale indicates the length of a 

VOCEC fitted with a Tenax-TA sorbent tube. 

 

5.3  Materials and methods: in-vitro experiment 2 and 3 

5.3.1 Experiment objectives  

i)  Quantify the contents and viability of eggs in PCN cysts after exposure to a range 

of cyst moisture conditions in the presence of B. juncea leaf disc VOC’s.  

 

5.3.2 Experimental design  

In-vitro experiments 2 and 3 were carried out between November 2017 and January 

2018 at the HAU nematology laboratory facility. The experiments were identical of 

design, and investigated only one factor; the ‘moisture condition of cysts’ in VOCEC’s 

during biofumigation with B. juncea leaf discs. Figure 5.7 shows the experimental design, 

for which four levels were selected; soaked cysts, water film covered cysts and air-dried 

cysts, all exposed to B. juncea leaf discs, and an air-dried untreated treatment receiving 

A 

B

C 

200 mm 



    

203 
 

no. B. juncea leaf discs. Treatments were arranged in a randomised block design and 

replicated five times each. Replication was sufficient to enable treatment differences of 

10% in PCN egg viability to be determined for background variation levels in egg viability 

of between c.4% between replicates of like treatments (Berndston, 1991). The design 

had 12 residual degrees of freedom (RDF). 

 

 

Figure 5.7: In-vitro experiments 2 and 3 design, showing the spatial allocation of 

treatments 1-4 to VOCEC’s. Blocks are represented using Roman numerals (I-IV).  

 

5.3.3 Core experimental materials: Brassica juncea leaf discs and potato cyst 

nematodes 

In-vitro experiments 2 and 3 used the same B. juncea leaf discs and G. pallida population 

as in-vitro experiment 1, and processed materials using the same methodologies (see 

Sections 5.2.3.1 and 5.2.3.1). 

 

5.3.4 Experiment initiation 

A total of 50 G. pallida cysts were counted into cyst baskets for each VOCEC. Cyst 

baskets were soaked in distilled water in well plates for 7 days to generate the soaked 

cyst moisture treatment. Cysts treated with a water film were only submerged in distilled 

water immediately prior to exposure to B. juncea leaf discs. The remaining air-dried cysts 

I 2 3 1 4

II 3 1 4 2

III 1 3 2 4

IV 4 2 1 3

V 1 4 2 3

1

2

3

4
Untreated air-dried cysts: unexposed to water 

or B. juncea  leaf discs

Soaked cysts: exposed to distilled water for 7 

days prior B. juncea  leaf discs

Treatment Key

Water film covered cysts: exposed to distilled 

water for c.5 s immediately prior to B. juncea 
leaf discs

Air-dried cysts: unexposed to waterprior to B. 
juncea  leaf discs
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were only suspended above B. juncea leaf discs in VOCEC’s. Four B. juncea leaf discs 

were used per VOCEC after the results shown in Figure 5.8 where four B. juncea leaf 

discs were found to be effective in causing c.50% mortality of G. pallida eggs. The 

remaining experiment initiation methodologies and conditions remained consistent with 

in-vitro experiment 1 with the exception of Tenax-TA tubes, which were not fitted to 

VOCEC’s in either in-vitro experiment 2 or 3 due to a malfunction with GC-MS 

equipment.  

 

5.4  Assessments  

5.4.1 Potato cyst nematode 

Globodera pallida egg viability and eggs cyst-1 were quantified for in-vitro experiments 1 

and 2 as described in Section 2.3.2 using Equations 2.2 and 2.3.  

 

5.4.2 Quantification of volatile organic compounds released from B. juncea leaf discs 

Twenty Tenax-TA tubes were collected from VOCEC’s in in-vitro experiment 1, at 72 

hours after initiating the experiment. However, Tenax-TA sorbent tubes were not 

processed due to a primary malfunction with GC-MS equipment following a power outage 

at the University. The computer component of the GC-MS was irreparably damaged, and 

its replacement was too expensive to be purchased immediately after the malfunction. 

Samples are currently in storage.   

 

5.5  Data analysis  

Data were analysed by analysis of variance (ANOVA) using GenStat® 16th Edn. (VSN 

International). Treatment effects for ANOVA were compared using Tukey’s multiple 

range test at 95% certainty. A cumulative upper F-variance ratio test was used to justify 

combining in-vitro experiment 2 and 3 data sets. Coefficient of variation (CV) values were 

calculated using Microsoft® Excel 2016. Figures were generated using Microsoft® Excel 

2016. 
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5.6  Results 

5.6.1 In-vitro experiment 1: Globodera pallida viability and eggs cyst-1 after exposure 

to different quantities of Brassica juncea leaf discs 

The viability of G. pallida eggs measured approximately 14 days after exposure to B. 

juncea leaf discs in in-vitro 1 indicated a decline in viability in biofumigant treated G. 

pallida (P < 0.001) (Figure 5.8 i). Efficacy ranged between 28.4 and 50.2% between 1-4 

leaf discs. No difference was observed between B. juncea leaf disc treatments in eggs 

cyst-1 (P = 0.317) (Figure 5.8 ii).  Eggs cyst-1 ranged between 152-206, for 0 to 8 B. juncea 

leaf disc treatments. Egg viability CV’s for leaf disc treatments ranged between 8.0 and 

25.5% (Figure 5.8 i). Egg cyst-1 CV’s for leaf disc treatments ranged between 11.8 and 

36.5% (Figure 5.8 ii). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Globodera pallida viability (i) and eggs cyst-1 (ii) after exposure to increasing 

quantities of B. juncea leaf discs in in-vitro experiment 1. Plates i and ii show one-way 

ANOVA analysis. Error bars represent the SEM. Lettering above data labels indicates 

differences as determined using Tukey’s test.  
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5.6.2 In-vitro experiment 2: Globodera pallida viability and eggs cyst-1 after exposure 

to different cyst moisture conditions and biofumigation with Brassica juncea leaf 

discs 

The viability of G. pallida eggs measured approximately 14 days after exposure to B. 

juncea leaf discs in in-vitro experiment 2, indicated a decline in viability caused by 

biofumigation, but no difference in viability between different cyst moisture treatments (P 

= 0.006) (Figure 5.9 i). Efficacy ranged between 23.7 and 30.0% between cyst moisture 

treatments treated with B. juncea leaf discs. No difference was observed between cyst 

moisture treatments in eggs cyst-1 analysis (P = 0.564) (Figure 5.9 ii).  Eggs cyst-1 ranged 

between 137-177 different G. pallida cyst moisture treatments. Egg viability CV’s for G. 

pallida cyst moisture treatments ranged between 5.3 and 25.3% (Figure 5.9 i). Egg cyst-

1 CV’s for cyst moisture treatments ranged between 23.6 and 50.7% (Figure 5.9 ii). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Globodera pallida viability (i) and eggs cyst-1 (ii) after exposure to increasing 

cyst moisture conditions and biofumigation with Brassica juncea leaf discs in in-vitro 

experiment 2. Plates i and ii show one-way ANOVA analysis. Error bars represent the 

SEM. Lettering above data labels indicates differences as determined using Tukey’s test.  
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5.6.3 In-vitro experiment 3: Globodera pallida viability and eggs cyst-1 after exposure 

to different cyst moisture conditions and biofumigation with Brassica juncea leaf 

discs 

The viability of G. pallida eggs measured approximately 14 days after exposure to B. 

juncea leaf discs in in-vitro 3, indicated a decline in viability between air-dried untreated 

G. pallida cysts and air-dried cysts treated with B. juncea leaf discs. The other cyst 

moisture treatments were inseparable from other treatments (P = 0.047) (Figure 5.10 i). 

Efficacy ranged between 13.6 and 20.4% between cyst moisture treatments treated with 

B. juncea leaf discs. No difference was observed between cyst moisture treatments in 

eggs cyst-1 analysis (P = 0.468) (Figure 5.10 ii).  Eggs cyst-1 ranged between 120-155 

different G. pallida cyst moisture treatments. Egg viability CV’s for G. pallida cyst 

moisture treatments ranged between 5.5 and 14.6% (Figure 5.10 i). Egg cyst-1 CV’s for 

cyst moisture treatments ranged between 18.8 and 35.3% (Figure 5.10 ii). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Globodera pallida viability (i) and eggs cyst-1 (ii) after exposure to increasing 

cyst moisture conditions and biofumigation with Brassica juncea leaf discs in in-vitro 

experiment 3. Plates i and ii show one-way ANOVA analysis. Error bars represent the 

SEM. Lettering above data labels indicates differences as determined using Tukey’s test.  
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5.6.4 In-vitro experiment 2 and 3 combined analysis: Globodera pallida viability and 

eggs cyst-1 after exposure to different cyst moisture conditions and biofumigation 

with Brassica juncea leaf discs 

An F-variance ratio calculation was made to assess whether data from in-vitro 

experiments 2 and 3 could be combined. In both viability and eggs cyst-1 assessment, 

data could be combined (P = 0.318 and P = 0.179 respectively). The viability of G. pallida 

eggs measured approximately four weeks after exposure to B. juncea leaf discs indicated 

a decline in viability caused by biofumigation, but no difference in viability between 

different cyst moisture treatments (P < 0.001) (Figure 5.11 i). Combined efficacy ranged 

between 21.5 and 22.0% between cyst moisture treatments treated with B. juncea leaf 

discs. No difference was observed between cyst moisture treatments in eggs cyst-1  

analysis (P = 0.985) (Figure 5.11 ii).  Combined eggs cyst-1 ranged between 146-152 for 

different G. pallida cyst moisture treatments. Egg viability CV’s for G. pallida cyst 

moisture treatments ranged between 5.7 and 21.4% (Figure 5.11 i). Egg cyst-1 CV’s for 

cyst moisture treatments ranged between 28.5 and 46.9% (Figure 5.11 ii). 

 

 

 

 

 

 

 

 

 

Figure 5.11: Globodera pallida viability (i) and eggs cyst-1 (ii) after exposure to increasing 

cyst moisture conditions and biofumigation with Brassica juncea leaf discs in a combined 

analysis of in-vitro experiments 2 and 3. Plates i and ii show one-way ANOVA analysis. 

Error bars represent the SEM. Lettering above data labels indicates differences as 

determined using Tukey’s test.  
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5.7  Discussion 

The primary aim of the work described in this chapter was to determine whether B. juncea 

biofumigation efficacy against PCN can be affected by the moisture condition of PCN 

cysts. The chapter null hypothesis stated that cyst moisture condition does not influence 

efficacy of B. juncea biofumigation against PCN. Overall, the moisture condition of PCN 

cysts, G. pallida in this instance, was not found to influence biofumigation. 

 

5.7.1 In-vitro experiment 1: Globodera pallida viability and eggs cyst- 

In-vitro experiment 1 investigated five levels of B. juncea leaf disc inclusion. The primary 

objective of the work was to determine the number of B. juncea leaf discs required to kill 

approximately 50% of encysted G. pallida. This was deemed to be an average efficacy 

from the literature and so representative of the real field situation. The 50% threshold 

viability was also used because it would allow treatment effects to be separable in 

subsequent cyst moisture experimentation, if cyst moisture was found to be influential in 

B. juncea biofumigation of PCN. In this respect the experiment was successful. Four B. 

juncea leaf discs were found to cause c.50% mortality and so were taken forward as the 

leaf disc dose for other experiments. It was also observed that mean efficacy appeared 

to increase in tandem with increasing leaf disc number (Figure 5.8 i), which is a similar 

trend to that observed for increased B. juncea biomass inclusion into pot soil in 

glasshouse experiment 2 (see Figure 3.21 i). The frozen leaf disc method was adopted 

from Morra & Kirkegaard (2002) as a means of ensuring maximum cellular damage and 

release of VOC’s from B. juncea tissues and increasing the uniformity of biofumigation 

treatment between replicates. 

 

Figure 5.8 ii showed no effect of number of B. juncea leaf discs on G. pallida eggs cyst-

1, which is in support of all previous eggs cyst-1 analyses in Chapters 3 and 4. However, 

as in previous chapters, CV’s were high for eggs cyst-1 which may have obscured the 

interpretation of results; CV range of 11.8 and 36.5%. It would appear consistently 

throughout this project that biofumigation does not readily influence eggs cyst-1, 
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indicating that biofumigation efficacy is probably related only to viability, and not egg 

numbers.  Viability CV’s were higher than in other studies, possibly because of the low 

number of replicates, or possibly because the Lodge 1 G. pallida population was 

generally more variable in viability than other populations. The Lodge 1 site is known to 

be in a five year potato rotation (Pers. Comm. Matthew Wallace: Farm Manager, Lodge 

1 field), which suggests a regularity of heavy cultivations and PCN lifecycles, which is 

known to cause variability in viability of a PCN population (Turner, 1996). In future, 

populations grown in wider rotation might be preferable for this type of study. 

 

5.7.2 In-vitro experiments 2 and 3: Globodera pallida viability and eggs cyst-1 

The aim of in-vitro experiments 2 and 3 was to determine whether cyst moisture has a 

role in biofumigation PCN, by either blocking or facilitating the entry of biofumigant VOC’s 

into cysts. Neither in-vitro experiments 2 or 3 found evidence of biofumigation efficacy 

against G. pallida being influenced by cyst moisture (Figures 5.9 i and 5.10 i). Neither 

were G. pallida eggs cyst-1 affected by the moisture condition of cysts during 

biofumigation with B. juncea leaf discs. It would therefore appear than cyst moisture need 

not be considered in biofumigation of PCN, and that soil moisture should be manipulated 

simply for mazimum efficacy of biofumigant VOC’s in soil, and potentially for an 

enhanced GSL hydrolysis, rather than manipulation of biofumigant VOC entry into cysts 

(Simpson et al., 2010; Mattheissen et al., 2004). However, egg viability and eggs cyst-1 

CV’s were similarly high for in-vitro experiments 2 and 3 to in-vitro experiment 1. CV’s 

ranged between c.5.3 to 25.3% for viability analyses and 18.8 to 50.7% for eggs cyst-1 

analyses. Given the low replication in these experiments and the CV’s recorded, effect 

size differences between treatments of c.70% would be required to prove differences in 

some cases. Therefore the importance of cyst moisture could not really be fully quantified 

in this work. Data from in-vitro experiments 2 and 3 were combined after F-test analysis 

to try and reduce variation, and increase replication (Figure 5.11). However CV’s were 

still too high to determine differences between treatments for egg viability or eggs cyst-1. 

It would appear from simply looking at mean viability and eggs cyst-1 data, however, that 
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cyst moisture did not influence B. juncea VOC entry/ exposure to G. pallida eggs in the 

experiments carried out here.  

 

5.7.3 General points and considerations 

It was unfortunate that Tenax-TA sorbent tubes could not be desorbed using the GC-MS 

as this data could have provided more evidence for or against cyst moisture as a factor 

influencing biofumigation success against PCN. The VOCEC’s were generally 

successful and will be useful apparatus for other in-vitro studies. An obvious expansion 

of the work carried out here would be to repeat the work with a more uniform PCN 

population and more replication. Further studies might also consider screening benzyl or 

2-phenylethyl rich biofumigant leaf discs as VOC’s arising from these GSL’s are known 

to be less volatile and more hydrophobic than AITC, which was probably the primary 

biofumigant VOC responsible for biofumigation efficacy in this work (Borek et al., 1998). 

Therefore, cyst moisture might be influential of the efficacy of VOC’s arising from these 

GSL’s specifically. All objectives save for quantifying B. juncea VOC’s, were achieved. 

The chapter aim can largely be considered answered, and the null hypothesis accepted.
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General Discussion  6 

 
6.1  Introduction  

In recent years, pesticide regulatory legislation has become increasingly restrictive, with 

notable pesticides and classes of pesticides being recalled from commercial use in the 

European Union (EU) specifically, in response to enforcement of ‘Regulation 

(EC)1107/2009’. The legislation has been instrumental in phasing out the use of 

pesticides in the EU which are deemed to be hazardous to humans or to threaten 

biodiversity (OJEU, 2009; Hillocks, 2012). It is in this climate of uncertainty that potato 

growers require sustainable, and effective alternatives to nematicides and nematostats, 

for security of potato cyst nematode (PCN) management for the future.  

 

A wealth of literature has now been published surrounding the biofumigation technique, 

which relies on the hydrolysis of glucosinolates (GSL’s) released from macerated 

brassica tissues, to generate biocidal volatile organic compounds (VOC’s) which can be 

worked into soil for pest suppression (Bones & Rossiter, 1996; Holst & Williamson, 

2004). The GSL profiles and the concentrations of GSL’s found in brassicaceous plant 

species are known for many varieties (Kirkegaard & Sarwar, 1998; Lord et al., 2011). It 

is also understood that the GSL content of brassica plants can vary between plant 

organs, and between plants grown under diverse environmental conditions (Björkman et 

al. 2011). Several studies have now also investigated the macerated tissues of brassica 

plants for management of PCN in glasshouse and field experiments (Lord et al., 2011; 

Ngala et al., 2015b; Ngala et al., 2014), and have exposed PCN to concentrated ITC 

solutions in laboratory studies, with some success (Buskov et al., 2002; Wood et al., 

2017). However, very little research has investigated factors surrounding GSL hydrolysis 

for maximum release of VOC’s from macerated tissues (Lazzeri et al., 2004; Mattner et 

al., 2008). Very little research has investigated methods for incorporating biofumigant 

tissues into soil, or the soil conditions most conducive to release and retention of 
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biofumigant VOC’s into soil from macerated biofumigant plant tissues (Morra & 

Kirkegaard, 2002; Matthiessen et al., 2004). Furthermore, no study is known to have 

investigated these biofumigation factors for management of PCN, Globodera 

rostochiensis and G. pallida. The need for experiments to investigate these areas and 

deliver practical recommendations for potato growers was therefore clear at the 

beginning of this project, in autumn 2013. The project initiated with glasshouse 

experiments aimed at determining ‘whether soil moisture conditions at biofumigant 

incorporation might influence the efficacy of Brassica juncea biofumigation against PCN’, 

followed by three field experiments between 2014 and 2016 (Hungry Hill, Norfolk; 

Crossroads, Shropshire; Roys Corner, Shropshire) which aimed to determine ‘whether 

maceration and/or incorporation implement selection and set-up might be influential of 

B. juncea biofumigation efficacy against PCN’. In-vitro experiments were then designed 

to investigate moisture films as barriers or vehicles for biofumigant VOC exposure to 

encysted PCN following, the results of glasshouse work. 

 

6.2  Discussion of chapters  

Glasshouse experiments (Chapter 3) revealed that soil moisture is important in 

influencing B. juncea biofumigation efficacy against G. pallida, with up to a 14.3% 

increase in efficacy when practising biofumigation at 50% of field capacity compared to 

drier and wetter extremes (0 and 100% of field capacity, and water saturated soil), for a 

mean biomass quantity of c.50 t ha-1 fresh weight. This extra level of efficacy represents 

equivalent to 6-12 months of natural viability decline of G. pallida (Devine et al., 1999; 

Winslow & Willis, 1972), simply by incorporating biofumigant material into soil of an 

optimum soil moisture condition. These results could have important implications for 

potato growers, who in the Shropshire area (UK), tend to over-winter biofumigants to fit 

between cereal harvest and spring cropping (Pers. Comm. Andrew Wade: Senior 

Agronomist at Agrovista UK Ltd.). Over-wintering is known to reduce GSL content of 

biofumigant tissues (Ngala et al., 2014), whilst spring time biofumigant incorporations 

might generally result in drier soil moisture conditions than autumn incorporation. Under 
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these circumstances, irrigation could be required to achieve maximum biofumigation 

suppression of PCN. Generally, a range of 25-75% of field capacity was observed to be 

optimal for incorporation of B. juncea biomass quantities into soil in the region of 25-75 t 

ha-1 fresh weight, which is also in line with past work on synthetic fumigant nematicides 

(Lembright, 1990). Efficacy ranged between c.16-40% in soil moisture experiments. It 

was hypothesised that drier conditions might not sufficiently retain biofumigant VOC’s in 

soil, whilst wetter soil conditions might impede VOC movement and exposure to PCN. It 

was also suggested that efficacy may have been suboptimal due to the methodological 

approach used, whereby PCN were not exposed to partial biofumigation, but only 

fumigation arising from the incorporation of biofumigant tissues. It was specifically the 

hypothesis that soil moisture might act as a barrier or vehicle to PCN exposure to 

biofumigant VOCs depending upon the hydrophobicity of VOC’s, which lead to in-vitro 

experiments (Chapter 5) investigating different levels of cyst moisture condition as a 

factor influencing biofumigation efficacy against G. pallida. However, no evidence was 

observed to suggest cyst moisture was influential of biofumigation efficacy against G. 

pallida in Chapter 5. This could indicate that the soil moisture enhanced biofumigation 

efficacy observed in Chapter 3, might be related to retention of biofumigant VOC’s in soil 

and/or, enhanced GSL hydrolysis from macerated tissues (Simpson et al., 2010, 

Matthiessen et al., 2004). 

 

In other analyses of glasshouse experiment data (Chapter 3), the quantity of B. juncea 

biomass incorporated into pots was generally shown to influence G. pallida mortality. 

Evidence was presented which suggested that incorporation of high biomass quantities 

into soil might have a structural effect on soil, potentially leading to loss of VOC’s from 

soil by off-gassing where soil moisture conditions are low (c. 25% of field capacity), and 

the quantity of biomass incorporated into soil is high. Further research is required here 

to understand the interactions between biofumigant biomass quantity, level of tissue 

damage, soil moisture condition and depth of incorporation, which should have a role in 

diluting biofumigant material into soil. Ideally, biofumigant material would be pulverised 
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to release maximum quantities of biofumigant VOC’s, whilst also having a minimal effect 

on soil structure after incorporation (Sultani et al. (2007).  

 

Hungry Hill and Crossroads experiments carried out in autumn 2014 in Norfolk and 

Shropshire (Chapter 4), showed the first recording of enhanced biofumigation efficacy 

against PCN related to the implement used to macerate B. juncea biofumigant material. 

Efficacy was improved by up to 7%, again, representing c.6 months of natural decline in 

PCN by a simple selection of maceration implement (Devine et al., 1999; Winslow & 

Willis, 1972). A flail topper was found to generate a more effective biofumigation of G. 

pallida than a roll conditioner, probably due to greater levels of tissue trauma following 

cutting, but potentially due to the flailed biofumigant residue having a reduced structural 

property in soil compared to material macerated with the roll conditioner, leading to better 

retention of biofumigant VOC’s in soil as alluded to in Chapter 3.  

 

Incorporation implement was not found to influence biofumigation efficacy against G. 

pallida in Hungry Hill or Crossroads field experiments directly, although a spader-flail 

combination was c.8% more effective in reducing G. pallida viability than a roll-

conditioner-rotivator combination when data from the two sites were combined. This 

could suggest that incorporation implement selection is secondary to maceration 

implement selection, but that where a high biofumigation potential crop is grown 

(Kirkegaard & Sarwar, 1998), and an effective maceration implement is used, 

incorporation implement might enable a more effective biofumigation by generating a soil 

environment more conducive to fumigation. However, the cost of buying or hiring such a 

specialist implement is probably not justifiable given the low level efficacy increase 

spading appears to offer here compared to plough and rotavator implements. It is 

possible that the spader was too effective in working biofumigant material into soil for the 

poor to moderate level of biomass and GSL content of the field crops reported here; 

ranging between c.14-48 t ha-1 fresh weight crops with a range between c.4.4-12.1 µmol 

g-1 GSL contents in top growth. It is possible the spader diluted biofumigant tissues in 
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soil and that the looser soil structure enabled greater sorption of VOC’s to organic-matter. 

The low GSL concentrations in tissues, which are c.10 to 20 times lower than some other 

studies (Ngala et al., 2014; Kirekgaard & Sarwar, 1998) could be related to sampling 

time, which in the Crossroads and Hungry Hill experiments was in November, and in the 

Roys Corner experiment was after winter in April. It is likely that due to low ultraviolet 

levels and low plant stress, GSL concentrations were low in plant tissues (Björkman et 

al. 2011). Differences in methodology may also be responsible for differences between 

studies. Ngala et al. (2014) measured foliar GSL’s whereas all GSL analysis in this 

project assessed a composite of leaf and stem material. Leaves are generally known to 

be higher in GSL concentration than other organs in brassica plants, lending some 

weight to this hypothesis (Björkman et al. 2011) 

 

Following Hungry Hill and Crossroads experiments, it appeared clear that implement 

selection for maceration of biofumigant crops in the field might have important 

implications for biofumigation success against G. pallida (Chapter 4), particularly in light 

of the moderate levels of damage observed for even flail treated plant material in the 

field. Implement set-up was therefore investigated in the subsequent Roys Corner 

experiment   where tine and shear-plate set-ups were manipulated. No effect on G. 

pallida viability was observed for biofumigation treatment using diverse tine and shear-

plate set-up combinations, indicating flail/haulm topper maceration implement set-ups 

may not be important for biofumigation of PCN. However, the Roys Corner site had a 

low PCN population, and the experiment was over wintered which was likely to be 

suboptimal (Björkman et al. 2011).  Further consideration of the haulm topper implement 

found tine speed to be c.32 m s-1 at incorporation, which may have been too high to 

cause plant acceleration resulting in widespread tissue damage. Speeds below 15 m s-1 

would be preferable and could improve maceration procedure in future (McRandal & 

McNulty, 1978). Clearly this is an area for further investigation. It would have been 

beneficial to assess plant tissue damage more thoroughly in this work, perhaps using a 

microscopy approach. Efficacy ranged between 23-39% in field experiments overall. 
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6.3  Future work  

It is possible that maceration implements are at, or near their limit in terms of the quality 

of biofumigant residue they can produce from an engineering standing. However, other 

methods of improving biofumigation could be considered. The ‘acid growth theory’ refers 

to an auxin induced process in plants whereby the apoplast becomes acidic causing 

irreparable cellular damage within plants, and rapid enlarging of cells with water 

(Hopkins, 1999). The most common example of this is use of the herbicide 2,4-D which 

kills plants by forcing them to grow out of control by auxin induced apoplastic damage. 

Therefore, a timely application of an auxin product such as 2,4-D could have the potential 

to condition B. juncea plant before incorporation, leading to a more effective maceration. 

A further idea for future work could be to fit a water tank and nozzle set-up to the haulm 

topper used in the Roys Corner experiment. If nozzles were positioned under the haulm 

topper hood, they could mist biofumigant residues immediately before incorporation 

using the rotavator set-up. This could greatly enhance GSL hydrolysis leading to a peak 

in biofumigant VOC production, whilst aiding soil sealing post incorporation also. This 

line of enquiry would marry well with work on flail tine speed to make a logical 

continuation of this PhD. Further research might also investigate the structure of PCN 

cysts as a factor influencing biofumigation success. New cysts may be more fortified and 

therefore resilient to biofumigant VOC’s than older cysts. The VOCEC’s from Chapter 5 

could be used in this work. If such work were carried out, it may be beneficial to calculate 

the volume of air within each VOCEC and use a quantity of biofumigant material which 

would be representative of the field situation in terms of soil pore air space and 

incorporated biofumigant biomass. Such investigations could also include a range of 

temperatures and relative humidity conditions to give a more detailed view of optimal soil 

conditions for biofumigation of PCN. The implications of the ‘cyst age’ line of investigation 

could be that biofumigation be found to be best placed immediately preceding a potato 

crop, rather than at other points in the rotation.  
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6.4  Recommendations  

Immediate recommendations for growers attempting to manage PCN with biofumigation, 

would be to grow crops in excess of 50 t ha-1 fresh weight, macerate and incorporate 

using a haulm topper/flail implement combined with a rotavator or spader, and aim to 

incorporate into soils of approximately 75% of field capacity. Where a low biomass crop 

is to be incorporated, soil moisture conditions of around 50% of field capacity would be 

beneficial.    
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List of Appendices  8 

 

8.1  Supplementary soil and potato cyst nematode results 

8.1.1 Soil pH 

 

Figure 8.1: Soil pH of the seven soils or potting medias used in experimental work. 

 

8.1.2 Soil organic-matter 

Figure 8.2: Organic-matter of the seven soils or potting medias used in experimental work. 
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8.1.3 Soil texture (UK texture triangle) 

Figure 8.3: Soil textural classification by sedimentation of the seven soils or potting medias 

used in experimental work. Black Brook Meadow: sandy loam, Crossroads: loamy sand, 

Hungry Hill: loamy sand, Larkshall 10a: sand, Lodge 1: sandy loam, John Innes No. 2: 

organic sandy loam, Roys Corner: loamy sand. 

 

8.1.4 Potato cyst nematode polymerase chain reaction results 

Figure 8.4: Polymerase chain reaction analysis of potato cyst nematodes from each 

population used in experiments, showing Cq values for amplified Globodera rostochiensis 

and G. pallida DNA compared to controls using probes FAM and Yakima yellow.    
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8.1.5 Soil moisture: water retention/field capacity curves 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5: Water retention curves (field capacity) for Black Brook Meadow, Crossroads, 

Hungry Hill, John Innes No.2 compost and Roys Corner field (plates i-v respectively). 

Data points represent the mean of three replicates.  
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8.1.6 Soil moisture: field experiment conditions at Brassica juncea incorporation  

 

 

 

 

 

 

 

 

Figure 8.6: Soil moisture conditions immediately after Brassica juncea incorporation at 

field experiment 1 (Hungry Hill, Norfolk), analysed by block (i) (P = 0.699) and by 

treatment (ii) using one-way ANOVA (P < 0.001). Treatment key: roll conditioner - R; flail 

- F; spader - s; plough - p; rotavator - r; partial biofumigant – PBIO; untreated - UNT. 

Error bars represent the SEM. 

 

 

 

 

 

 

 

 

Figure 8.7: Soil moisture conditions immediately after Brassica juncea incorporation at 

field experiment 2 (Crossroads, Shropshire), analysed by block (i) (P = 0.037) and by 

treatment (ii) using one-way ANOVA (P = 0.035). Neither Tukey or Fischer’s protected 

LSD were able to determine differences between factor levels. Treatment key: roll 

conditioner - R; flail - F; spader - s; plough - p; rotavator - r; partial biofumigant – PBIO; 

untreated - UNT. Error bars represent the SEM. 
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8.1.7 Soil temperature: field experiment conditions at Brassica juncea incorporation  

 

 

 

 

 

 

 

 

Figure 8.8: Soil temperature conditions immediately after Brassica juncea incorporation 

at field experiment 1 (Hungry Hill, Norfolk), analysed by block (i) (P < 0.001) and by 

treatment (ii) using one-way ANOVA (P 0.412). Treatment key: roll conditioner - R; flail - 

F; spader - s; plough - p; rotavator - r; partial biofumigant – PBIO; untreated - UNT. Error 

bars represent the SEM. 

 

 

 

 

 

 

 

 

 

Figure 8.9: Soil temperature conditions immediately after Brassica juncea  incorporation 

at field experiment 2 (Crossroads, Shropshire), analysed by block (i) (P < 0.001) and by 

treatment (ii) using one-way ANOVA (P = 0.715). Treatment key: roll conditioner - R; flail 

- F; spader - s; plough - p; rotavator - r; partial biofumigant – PBIO; untreated - UNT. 

Error bars represent the SEM. 
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8.2  Supplementary biofumigant results 

8.2.1 Brassica juncea biofumigant plant counts at field experiment 1 (Hungry Hill, 

Norfolk), at 3 weeks post drilling 

Figure 8.10: Typical Brassica juncea establishment for experimental blocks I and II at 

field experiment 1 (Hungry Hill, Norfolk).  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.11: Typical Brassica juncea establishment for experimental blocks III and IV 

field experiment 1 (Hungry Hill, Norfolk).  
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Figure 8.12: Typical Brassica juncea establishment for experimental blocks V and VI 

field experiment 1 (Hungry Hill, Norfolk).  

 

 

 

 

 

 

 

 

 

 

Figure 8.13: Brassica juncea plant counts m2 at 3 weeks post drilling at field experiment 

1 (Hungry Hill, Norfolk), analysed by block (i) (P = 0.062) and by treatment (ii) (P = 0.685). 

Treatment key: roll conditioner - R; flail - F; spader - s; plough - p; rotavator - r; partial 

biofumigant – PBIO. Error bars represent the SEM. 
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8.2.2 Brassica juncea plant counts at field experiments 1, 2 and 3 (Hungry Hill, Norfolk 

and Crossroads and Roys Corner, Shropshire) on the day of incorporation 

 

 

 

 

 

 

 

 

Figure 8.14: Brassica juncea plant counts m2 on the day of biofumigant incorporation 

field experiment 1 (Hungry Hill, Norfolk), analysed by block (i) (P < 0.001) and by 

treatment (ii) using one-way ANOVA (P = 0.228). Treatment key: roll conditioner - R; flail 

- F; spader - s; plough - p; rotavator - r; partial biofumigant – PBIO. Error bars represent 

the SEM. 

 

 

 

 

 

 

 

 

Figure 8.15: Brassica juncea plant counts m2 on the day of biofumigant incorporation 

field experiment 2 (Crossroads, Shropshire), analysed by block (i) (P = 0.814) and 

analysed by treatment (ii) using one-way ANOVA (P = 0.787). Treatment key: roll 

conditioner - R; flail - F; spader - s; plough - p; rotavator - r; partial biofumigant – PBIO. 

Error bars represent the SEM. 
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Figure 8.16: Brassica juncea plant counts m2
 on the day of biofumigant incorporation 

field experiment 3 (Roys Corner, Shropshire), analysed by block (i) (P = 0.532) and by 

treatment (ii) using one-way ANOVA (P = 0.170). Treatment key: pig-tail tine – P; knife 

tine – K; pig-tail/knife tine – PK; open shear-plate – O; closed shear-plate – C; partial 

biofumigant – PBIO. Error bars represent the SEM.  
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8.2.3 Cabbage root fly (Delia radicum) damage to Brassica juncea plants at field 

experiment 2 (Crossroads, Shropshire), at 7 weeks post drilling 

Figure 8.17: Cabbage root fly (Delia radicum) damage index system for biofumigant 

plants at field experiment 2 (Crossroads, Shropshire).  

 

 

 

 

 

 

 

 

Figure 8.18: Cabbage root fly (Delia radicum) damage of Brassica juncea plants at field 

experiment 2 (Crossroads, Shropshire), analysed by block (i) (P = 0.012) and treatment 

(ii) (P = 0.238) using one-way ANOVA, and expressed on a 1-5 scale (Figure 8.17). 

Treatment key: roll conditioner - R; flail - F; spader - s; plough - p; rotavator - r; partial 

biofumigant – PBIO. Error bars represent the SEM. 
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8.2.4 Brassica juncea glucosinolate analysis for glasshouse experiment 2 and field 

experiments 1, 2 and 3 (Hungry Hill, Norfolk, and Crossroads and Roys Corner, 

Shropshire) 

 

 

 

Figure 8.19: Glucosinolate content of Brassica juncea plants used in experimental work. 
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8.2.5 Pilot study results for development of custom volatile organic compound 

sampling MOLE’s for field experiment 3 (Roys Corner, Shropshire) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.20: Passive entrainment of Brassica juncea biofumigant volatile organic 

compounds from field soil using a Markes International VOC MOLETM in comparison to 

two custom made MOLE’s. Plates i-iii show entrainment of allyl isothiocyanate, dimethyl 

disulphide and 2/3 butenenitrile for each MOLE respectively. Plate iv shows the mean 

quantity of the three recorded volatiles entrained from soil overall. Mole specific data 

points represent the mean of two replicates. 
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8.3      Manufactured tools for experimental work 

8.3.1 Custom made volatile organic compound MOLE drawings 

 

 

 

 

Figure 8.21: Part: volatile organic compound mole tip  



    

253 
 

 

 

 

Figure 8.22: Part: replica volatile organic compound mole pipe  
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Figure 8.23: Part: improved volatile organic compound mole pipe  
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 Figure 8.24: Part: volatile organic compound mole top 
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Figure 8.25: Volatile organic compound mole tip and pipe assembly   
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8.4   Miscellaneous supplements 

8.4.1  Alternative stratified randomised complete block design for field experiment 3 

(Roys Corner, Shropshire): block allocation by viable potato cyst nematode eggs 

g-1 soil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.26: Revised field experiment 3 design showing the allocation of blocks to plots 

using a stratified approach according to the numbers of viable eggs g-1 soil, represented 

here using the numbers within plots. Plots sharing like colours belong to the same block. 

The original block structure using Roman numerals has been left in place to illustrate the 

different structural organisation of the experiment between the original randomised 

complete block approach, and the proposed stratified randomised block approach. 

11 19 7 10 15 32

27 18 76 15 12 31

17 10 22 37 25 28

10 13 7 22 54 31

3 9 6 15 10 15

2 18 11 2 25 24

24 2 6 6 52 2

4 7 2 14 46 8

II IV VI

I III V
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Table 8.1: Treatment codes for field experiment 3 (Roys Corner, Shropshire) showing 

levels for maceration implement tine and shear-plate factors. Font colour is an indicator 

of shear-plate setting and fill colour is an indicator of tine selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.27: Revised experiment 3 design showing the random allocation of treatments 

to potato cyst nematode infested plots within stratified blocks from Figure 8.26. The 

Treatment 
code

Biofumigant Factor 1: Shear plate 
setting

Factor 2: Tines 

P/O Grown, macerated and then incorporated Open Pig-tail 

P/C Grown, macerated and then incorporated Closed Pig-tail

K/O Grown, macerated and then incorporated Open Knife

K/C Grown, macerated and then incorporated Closed Knife

PK/O Grown, macerated and then incorporated Open Pig-tail and knife 

combination

PK/C Grown, macerated and then incorporated Closed Pig-tail and knife 

combination

P BIO Partial biofumigant control (biofumigant 

grown but left standing)

UNT Untreated control (no biofumigant grown)

P/C K/C K/C P BIO PK/O PK/O

K/C PK/C P/O K/O K/O UNT

UNT P BIO UNT P/C PK/O P/C

PK/O P/O P/C K/O K/O K/C

UNT UNT P/O P BIO PK/C P/O

P BIO P/C UNT PK/O PK/C P BIO

P/O K/C K/O PK/C P BIO PK/C

P/O PK/O P/C K/C PK/C K/O

II IV VI

I III V
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original block structure using Roman numerals has been left in place to illustrate the 

different structural organisation of treatments across the experimental area i.e. the 

clustering of replicates of PK/C treatment in the original block VI. 
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