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Abstract 

The objectives of this thesis were to determine the effects of Algae (ALG), a 

supplement high in docosahexaenoic acid (DHA), on the biohydrogenation rate of DHA in 

vitro, and the effect feeding ALG to dairy cows had on milk FA profile and indicators of 

fertility. The first study was conducted in vitro to determine the effect of different inclusion 

levels of ALG or fish oil (FO) on the biohydrogenation of DHA. Results showed that DHA 

was extensively biohydrogenated at all time-points but was lower at the higher inclusion 

levels of ALG. The first cow study investigated the effect of rate of inclusion of ALG (0, 50, 

100 or 150 g/ALG per cow/d) on milk and cheese FA profile, and cheese taste. The 

results demonstrated differences (P < 0.05) in milk fat yield, diet digestibility and milk and 

cheese FA profiles, but no difference (P > 0.05) in DM intake, milk yield, or cheese yield. 

A number of cheese taste attributes were affected. Milk and cheese DHA content were 

increased by 0.29 g/100 g. The second cow study determined the effect of long-term 

feeding of ALG on milk FA profile, and indicators of fertility. Cows were fed 100 g/ALG per 

day from 3 weeks post calving for 14 weeks. Results showed no differences (P > 0.05) in 

DM intake, milk yield or milk fat yield, but there were differences (P < 0.05) in the milk FA 

profiles and milk progesterone levels, with milk DHA content increasing in the ALG fed 

cows from week 2 of study onwards, and peaking at week 14 at 0.38 g/100 g. Plasma 

concentrations of the prostaglandin F2α metabolite were not significantly (P = 0.126) lower 

in ALG fed cows who had improved overall conception rates (55.6 % v.48 %). It was 

concluded from these experiments that supplementation of 100 g/ALG per cow/d is the 

most appropriate inclusion level to increase milk DHA content, avoiding rumen adaptation 

and negative effects on animal performance. 
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CHAPTER 1: Literature Review 

1.1 Introduction 

There is a large body of evidence to support the beneficial effects of long chain 

omega-3 polyunsaturated fatty acids (LC n-3 PUFA) on human health, especially 

regarding cardiovascular diseases (CVD) (De Lorgelil and Salen, 2012; Gibbs et al., 

2010). Many studies have concluded that the majority of the population, especially those 

in Western countries are failing to meet the recommended daily intake (>0.2g a day) of LC 

n-3 PUFA, (Calder, 2018; Meyer, et al. 2003), emphasising the need for strategies to 

increase the availability and consumption of these essential fatty acids. There is currently 

a considerable amount of interest in altering the fatty acid composition of milk and cheese 

as an alternative dietary source of the two main LC n-3 PUFA eicosapentaenoic acid 

(EPA) and docosahexaenoic acid (DHA) (Vargas-Bello-Perez et al., 2015). Fish oils and 

microalgae (ALG) have been shown to have the potential to enhance the LC n-3 PUFA 

content of ruminant products when they are supplemented in the diet (Chow et al., 2004).  

An added benefit to feeding ALG is the positive effect fat supplementation has on 

the reproductive performance of dairy cows (Rodney et al., 2015). Fertility in dairy cows 

has declined over the past five decade (Rodney et al., 2015). There is considerable 

interest in finding ways to prevent the increase in in-fertility and culling of cows which are 

unable to conceive. Improvements in fertility are caused by the type of fatty acid (FA) 

supplemented and not just an increase in energy intake (Staples et al., 1998). 

Supplementing dairy cows with n-3 FA have shown to improve indicators of fertility 

(Ambrose et al., 2006, Petit and Twagiramungu, 2006). Microalgae is rich in the LC n-3 

PUFA DHA, and may increase the uptake of DHA into membrane phospholipids, the 3 

series of prostaglandins (PG) are involved in improving the environment for embryo 

implantation and survival by decreasing the secretion of PG metabolites (Dong Hyeon et 

al., 2016). 

Relatively few studies have been conducted on ALG, mainly due to the difficulty in 

obtaining sufficient quantities at an economic price (Stamey et al., 2012). Developments in 

the production of ALG have however meant that a commercial source is now available 

(Stamey et al., 2012).  

 

1.2 Lipids 

1.2.1 Classifications 

Lipids, along with carbohydrates, proteins and nucleic acids, are one of the four 

major classes of biologically organic molecules found in all living organisms (Whitney and 

Rolfes, 2013). Lipids are a group of substances which are insoluble in water but soluble in 

organic compounds and are found in plant and animal tissue (Starr et al., 2016). They 
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exist as components of biological membranes and act as electron carriers and substrate 

carriers in enzymatic reactions (McDonald et al., 2011). Lipids can be divided into two 

major sub-classes; neutral lipids which lack a free polar group and contain long 

hydrophobic hydrocarbon chains such as triacylglycerol, waxes and terpenes, and polar 

lipids; which include polar hydrophilic groups such as phospholipids and glycolipids 

(Lordan et al., 2017). Fats and oils are major form of energy storage in both plant and 

animals (Whitney and Rolfes, 2013).  

 

1.2.2 Triglyceride 

Lipids are esters of FA with the trihydric alcohol glycerol; when all three alcohol 

groups are esterified by FA, the compound is a triacylglycerol (or triglyceride; Figure 1) 

(Starr et al., 2016). Triglycerides are synthesised through a series of condensation 

reactions which combine a hydrogen atom from the glycerol and from a hydroxyl group of 

the FA, forming a molecule of water; leaving a bond between the molecules (Whitney and 

Rolfes, 2013). The positions occupied by the FA chain are not identical, and are 

designated as positions sn-1, sn-2 and sn-3 (McDonald et al., 2011). The different 

positions are recognisable by enzymes, leading to different reactions at different positions 

(McDonald et al., 2011). Triacylglycerols can exist as simple triacylglycerols when all three 

of the FA residues are the same, or as mixed triacglycerols when more than one FA is 

involved in the esterification (Starr et al., 2016). Under the influence of lipase, the process 

of fat breakdown may take place (McDonald et al., 2011). During lipolysis one or two FA 

residue may be removed from the glycerol producing FA mixtures of mono- and 

dicylglycerols with a free FA (McDonald et al., 2011). When lipolysis occurs in edible fat it 

may be rendered unacceptable to the consumer (Whitney and Rolfes, 2013). Lipolysis 

occurs before the hydrogenation of fats in the rumen and is discussed in section 1.6.2. 

 

 

 

 

 

 

 

 

Figure 1.1. The structure of a triglyceride adapted from Starr et al., (2016) 
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1.2.3 Glycolipids 

In glycolipids two of the alcohol groups of the glycerol are esterified by FA and the 

third is linked to a sugar residue, such as galactose (McDonald et al., 2011). They are 

involved in cellular recognition, which is important to the immune response system and 

help maintain the stability of cell membranes (Schnaar, 2004). The lipids of grasses and 

clovers are predominantly (60 %) galactolipids, which form the majority of the dietary fat of 

ruminants (McDonald et al., 2011). Monogalactosyl is the main type of galactolipids of 

grasses, but some digalactosyl compounds are also present (McDonald et al., 2011). 

There are five major FA in forage plant, (C16:0, C18:0, C18:1n-6, C18:2n-6 and 18:3n-3) 

(Van Soest, 1994). The FA associated with galactolipids of grasses and clovers contain 

high amounts of linoleic (C18:2n-6; LA) and α-linolenic acids (C18:3n-3; ALA) (Van Soest, 

1994). As the plant matures the concentration of galactolipids declines as the proportion 

of leaves to stem changes (Van Soest, 1994). Galactolipids can be broken down by 

rumen microoragnisms to release galactose, FA and glycerol (McDonald et al., 2011). 

 

1.2.4 Phospholipids 

Phospholipids are a major component of cell membranes consisting of a 

hydrophilic head group and hydrophobic tail, and forms a lipid bilayer due to their 

amphiphilic characterisation (Lordan et al., 2017). The FA composition of phospholipids 

varies, but usually the sn-2 position contains an unsaturated fatty acid (UFA) such as 

C18:1 cis-9, LA, ALA, arachidonic acid (AA) or EPA, whereas sn-1 position contains a 

saturated fatty acid (SFA) (Lordan et al., 2017). The ratio of UFA to SFA of the 

phospholipid is very important, as the degree of saturation directly affects the fluidity of the 

cell membrane and cellular processes, such as the formation of lipid rafts (Lordan et al., 

2017). The lipid rafts are involved in carrying SFA, which are involved in the processes of 

apoptosis and cellular proliferation, and UFA which act as precursors for the synthesis of 

eicosanoids. 

 

1.3 Fatty acid structure and nomenclature 
1.3.1 Fatty acid nomenclature 

Fatty acids are hydrocarbon derivatives that are present in the form of fat and oils 

in all living organisms (Nelson and Cox, 2005).The FA exist as hydrocarbon chains of 

various lengths from 4 – 36 carbons that terminate with a carboxyl group at one end and a 

methyl group at the other, and are held together by simple bonds (Berg et al., 2012; Fig 

1.2). 
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Figure 1.2. The structure of the saturated fatty acid C16:0 (Berg et al., 2012). 

 

Fatty acids differ from one another by the length of the hydrocarbon chain, degree of 

unsaturation and by the position and configuration of the double bonds in the chain which 

can affect the extent of rancidity and lipolysis (Robinson and Wilbey, 1998). Fully SFA are 

unbranched and contain no double bonds, whereas UFA contain one or more double 

bonds (Robinson and Wilbey, 1998). Those containing one double bond are known as 

monounsaturated FA (MUFA), and those containing two or more double bonds are termed 

polyunsaturated fatty acids (PUFA) (Ruxton et al., 2004). The position of the double bond 

in the chain may change location, but generally the first double bond will occur between 

carbons 9 and 10 counting from the methyl group in higher plants and animals (Prasad, 

2013). The configuration of the bond will change the spatial arrangement of the molecules 

in the FA despite it having the same molecular formula, because a double bond cannot 

rotate (Berdanier and Berdanier, 2015). This restricted rotation forms geometric isomers 

called cis and trans (Nelson and Cox, 2005). A cis isomer will have the hydrogen atoms 

on the same side of the double bond, whereas the trans isomer will have the hydrogen 

atoms on opposite sides of the double bond (Gurr, 1987; Fig 1.3). 

 

 

Figure 1.3. The difference between a cis and trans bond found in unsaturated fatty acids, 

adapted from Nelson and Cox (2005). 

 

Carboxyl group 
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Many FA have common names which are usually derived from the plant or animal 

they were first isolated from. For example palmitic acid was discovered in palm oil 

(Berdanier and Berdanier, 2015), but as more FA were discovered other means were 

required. Simple methods of naming these FA has been developed based on the 

International union of Pure and Applied Chemistry (IUPAC) and nomenclature that are 

more technically clear and descriptive. The straight chain hydrocarbon name is modified, 

the final ‘e’ in the hydrocarbon name exchanged for ‘oic’; for example hexadecane 

becomes hexadecanoic (C16:0). If a FA has one double bond in the hydrocarbon chain 

an ‘e’ is exchanged for the ‘a,’ resulting in hexadecenoic, two double bonds leads to 

hexadecadienoic, and three double bonds will be hexadecatrienoic (Berg et al., 2012). 

The configuration of the bond is also shown by adding cis or trans in front of a number 

which specifies at which carbon the unsaturated double bond occurs, which will be the 

first carbon of the pair involved in the bond counting from the methyl end (Berg et al., 

2012). The systematic names for FA may be abbreviated and given a shorthand 

designation which specify the chain length and number of double bonds separated by a 

colon (Nelson and Cox, 2005). For example oleic acid, an 18 carbon long FA with one 

double bond is C18:1. The exact position of the double bonds are then indicated by a 

superscript number following a ∆ delta  symbol if naming from the carboxyl end of the FA 

or by the n symbol if naming from the methyl end, therefore cis ∆ 9,12-18:2 and 18:2n-6 

both represent LA (Berg et al., 2012, Table 1.1). 
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Table 1.1. Some of the most common fatty acids and other essential fatty acids found in 

plant and animal organisms (Berg et al., 2012).  

Carbon skeleton Systemic name Common name 

C4:0 Butanoic acid Butyric acid 

C6:0 Hexanoic acid Caproic acid 

C8:0 Octanoic acid Caprylic acid 

C10:0 Decanoic acid Capric acid 

C12:0 Dodecanoic acid Lauric acid 

C14:0 Tetradecanoic acid Myristic acid 

C14:1 cis-9- tetradecanoic acid Myristoleic acid 

C16:0 Hexadecanoic acid Palmitic acid 

C16:1 cis-9- hexadecanoic acid Palmitelaidic acid 

C17:0 Heptadecanoic acid Margaric acid 

C18:0 Octadecanoic acid Stearic acid 

C18:1n-9 trans-9- octadecenoic acid Elaidic acid 

C18: 1n-10 trans-10- octadecenoic acid Isooleic acid 

C18:1n-11 trans-11- octadecenoic acid Vaccenic acid 

C18: 1n-12 trans-12- octadecanoic acid - 

C18:1n-9 cis-9- octadecenoic acid Oleic acid 

C18:2n-6 cis-9, 12- octadecadienoic acid Linoleic acid (LA) 

C18: 2n-9 cis-9, trans-10- octadecadienoic acid  cis-9, trans-10 CLA1 

C18: 2n-10 trans-10, cis-12 octadecadienoic acid trans-10, cis-12 CLA1 

C20:0  Eicosanoic acid Arachidic acid 

C18:3n-3 

C20:4n-6 

cis-9,12,15 octadecenoic acid 

cis-7,10,13,16- docosatetraenoic acid 

α-Linolenic acid (ALA) 

Arachidonic acid (AA) 

C20:5n-3 cis-5,8,11,14,17- eicosapentaenoate Eicosapentaenoic acid (EPA) 

C22:0 Docosanoic acid Behenic acid 

C22:5n-3 cis-7, 10, 13, 16, 19- docosapentaenoic acid Docosapentaenoic acid (DPA) 

C22:6n-3 cis-4,7,10,13,16,19 - docosahexanoic acid Docosahexaenoic acid (DHA) 

1Conjugated linoleic acid  

 

1.3.2 Elongation and desaturation of FA 

The ability to synthesise different FA is important to all organisms, as lipids play an 

important role in many cellular activities (Nelson and Cox, 2005). Not only are they the 

principal store for energy but they are important in pigmentation, transportation, hormone 

development, anchors for membrane proteins and are involved in extracellular and 

intracellular messaging (Nelson and Cox, 2005). 

Fatty acids are synthesized by numerous enzymes that together are called fatty 

acid synthase and require the involvement of malonyl-CoA an intermediate produced from 

acetyl-CoA (Wakil, 1960). Palmitate, a C16:0 FA is constructed by a repeated four step 
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sequence, involving condensation, reduction, dehydration and a final reduction step (Berg 

et al., 2012). Once formed, free palmitate is released from further elongation making it the 

principal product of the fatty acid synthase system in animal cells (Berg et al., 2012). In 

certain plants such as coconut and palm, the chain is terminated earlier, resulting in 90% 

of FA in the oils of these plants containing between 8 and 14 carbons long (Nelson and 

Cox, 2005).  

Elongation is the process by which a two-carbon unit is added to the carboxyl end 

of the FA, which is donated by malonyl-CoA in a catalyzed reaction (Berg et al., 2012). 

Palmitic acid may be lengthened to form C18:0 or even longer SFA through the fatty acid 

elongation system (Leonard et al., 2004). This system has been known since the 1960’s 

and a review by Wakil (1960) described how it was favoured over the idea of total FA 

synthesis from acetyl CoA. Elongation of FA in the mammary gland by elongase is limited 

(Mida et al., 2012), mammary lipogenesis will be discussed later in section 1.6.6. 

When SFA are oxidised a double bond is introduced to the carbon chain, a 

process called desaturation (Leonard et al., 2004, see Figure 1.4). Desaturation of SFA 

may occur in plants such as grass, and ALG, where more than one double bond is 

introduced to C16:0 and C18:0. First the MUFA C16:1 (palmitoleate) and 18:1 (oleate) are 

produced (Leonard et al., 2004). These FA are the two most common monounsaturated 

FA in animal tissues and have a single cis bond between C-9 and C-10 (Berg et al., 

2012).  Further desaturation of C18:1 cis-9 will produce LA, and ALA (Monroig et al., 

2013). Further elongation and desaturation of ALA results in the formation of EPA and 

DHA, which are important n-3 FA (Figure 1.5).  

 

Figure 1.4. Palmitic acid, a 16 carbon long SFA is elongated to form C18:0, and 

desaturation of this SFA leads to the production of C18:1 cis-9, this can be further 

desaturated to form LA in terrestrial plants, marine phytoplankton and some protozoa and 

insects but not in mammals (Leonard et al., 2004). 
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Polyunsaturated fatty acids may be classified as either n-3, n-6 (omega-6) or n-9 

(omega-9) based on the location of the last double bond. Unlike plants mammals lack the 

enzyme to introduce double bonds past carbon 9 in the hydrocarbon chain (Berg et al., 

2012) making LA and ALA essential fatty acids which must be obtained from the diet 

through the consumption of plant material. Arachidonic acid, EPA and DHA however can 

be synthesised by mammals from dietary intake of LA and ALA (Abedi and Sahari., 2014).  

The conversion efficiency to AA, EPA and DHA however is very low (Abedi and Sahari., 

2014; Sinclair et al., 2007; Gerster, 1998). Plourde and Cunnane (2007) reported that in 

vivo studies in humans ≈5% of ALA is converted to EPA and <0.5% of ALA is converted to 

DHA. The direct uptake of these LC (long chain) -PUFA from the diet is therefore a more 

effective means to alter tissue or milk composition (Ruxton et al., 2004). 

 

 

Figure 1.5. α-Linolenic acid, a 18 carbon long PUFA undergoes desaturation and 

elongation to form a C24:6 fatty acid which is then oxidised to produce DHA. The 

synthesis of DHA from ALA does occur in mammals, but the conversion efficiency is very 

low. Adapted from Rizzi et al., (2013) 

 

1.3.3 Metabolism of fatty acids to eicosanoids of series 1, 2 and 3 

 Eicosanoids include PG, thromboxanes (TX), leukotrienes (LT) and lipoxins (LX) 

compounds which are derived from 20 carbon PUFA (Mayes and Botham., 2003). These 
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eicosanoids are considered to act as local hormones functioning through G-protein-linked 

receptors to stimulate their biochemical effects (Mayes and Botham., 2003). 

Prostaglandins and TX are products of the prostaglandin H synthase pathway (PGHS), 

which consists of two enzymes, cyclooxygenase and peroxidase (Figure.6). The substrate 

for their synthesis is AA which is released from the phospholipid through the action of 

phospholipase A2 (Lordan et al., 2017). The activity of phospholipase A2 can be stimulated 

by the binding of oxytocin to the oxytocin receptors (Mattos et al., 2000). Arachidonic acid 

can be acquired either from the diet or synthesised de novo from LA, and is stored in the 

phospholipids of the cellular plasma membrane (Mattos et al., 2000). The products of the 

PGHS pathway (PG2 and TX2) are called prostanoids and may be converted to PGD2, 

PGE2, PGF2α, TXA2 and prostacyclin (PGI2) (Mattos et al., 2000). The lipoxygenase 

pathway competes against the PGHS pathway for the same AA substrate. Synthesised 

from the later pathway are the LT4 and LX4 eicosanoids which have important roles in 

inflammation and the resolution of inflammation (Mattos et al., 2000). 

Polyunsaturated FA have major roles in the endocrine system, with different series 

of PG deriving from different PUFA (Otto et al., 2014). The 1 and 2 series derive from n-6 

FA and are involved in uterine involution and subsequent sequential ovulation post-partum 

(Otto et al., 2014). The 3- series PG are derived from n-3 FA and are involved in 

improving the environment for embryo implantation and survival by decreasing the 

secretion of prostaglandin metabolites, resulting in increased lifespan of the corpus luteum 

(Dong Hyeon et al., 2016).  
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Figure 1.6. The metabolism of dietary n-6 and n-3 polyunsaturated fatty acids. The 

amount of each fatty acid incorporated depends on the amount of precursor present in the 

diet. Adapted from Mattos et al., (2000) and Mayes and Botham, (2003). ∆6 = activity of 

∆6 desaturase; ∆5 = activity of ∆5 desaturase; ∆4 = activity of ∆4 desaturase; E* = 

elongation.  

 

1.4 Fatty acids and human health  

1.4.1 Uptake of EPA and DHA into cell membranes  

Essential FA are nutrients of primary importance for human health, and decades of 

research has demonstrated the significance of an adequate intake of n-3, a sub class of 

essential PUFA in the prevention of several diseases, particularly CVD (Astorg et al., 

2004). The most important n-3 FAs regarding human health are EPA and DHA.  Both of 

these FA are termed very LC n-3 PUFA due to the length of their hydrocarbons, with EPA 

having 20 carbons and DHA having 22 carbons in its chain. They are found in high 

amounts in seafood, especially fatty fish and in supplements like FO and cod liver oil. 

They may be synthesised from ALA as described in fig 1.5 (section 1.3.2), but the 

capacity of this pathway is extremely limited (Williams and Burdge, 2006). The pathway 

involves enzymes which are shared with the conversion of LA to AA. In many Western 
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diets the intake of LA is much greater than ALA, favouring the conversion of LA to AA over 

the conversions of ALA to EPA and DHA (Calder, 2014).  

All FAs, including EPA and DHA are transported in the bloodstream esterified into 

triacylglycerols, phospholipids and cholesterol esters as components of lipoproteins and 

non-covalently bound to albumin in the non-esterified form (Calder, 2014). They are found 

in cell membranes esterified into phospholipids and stored in adipose tissue esterified into 

triacylglycerols. The FA composition of cell membranes are important in determining the 

physical characteristics of that cell membrane, how they change to external stimuli and 

the functional activities of membrane bound proteins (Marventano et al., 2015). The 

proportion of EPA to DHA within any of the functional pools differ, but often DHA is 

present in a greater amount than EPA, especially in regions of the eye and brain (Calder, 

2014). It was reported that DHA contributed to 18% of FA in adult human brain grey 

matter, and Makrides et al., (1994) reported an average DHA content of 8 and 12 % in 

infant cerebral cortex and retina respectively, whilst EPA concentrations were less than 

0.05 and 0.1% respectively. 

Increased intake of EPA and DHA are reflected in blood lipid, blood cell, and many 

tissue pools. Rafts (which are cell membrane domains) have specific lipid and FA 

composition and act as a platform for intracellular signalling pathways, EPA and DHA can 

modify raft formation, modifying intracellular signalling pathways and transcription factors 

(Alessandri et al., 2004). A second consequence of increased EPA and DHA in cell 

membrane phospholipids, and the decreased abundance of AA, is the effect on the 

biosynthesis of various PG, TX and LT, discussed in section 1.3.3. As both n-3 and n-6 

PUFAs compete for the same metabolic enzymes, an imbalance in the n-3:n-6 ratio may 

result in altered equilibrium in cell membrane composition (Marventano et al., 2015).  

 

1.4.2 Human health benefits of EPA and DHA 

1.4.2.1 Cardiovascular disease 

Cardiovascular diseases includes heart disease, cerebrovascular disease, and 

peripheral vascular disease. The major causes of death as a result of CVD are heart 

attacks and strokes (Calder, 2014). Mensink et al, (2003) reported that the replacement of 

SFA with PUFA reduces the risk of CVD, based on changes in plasma cholesterol. 

Williams and Burdge (2006) reported how human experimental studies, animal 

experiments and cell-culture studies, have shown the beneficial effects of consuming oily 

fish for the uptake of LC n-3 PUFA into the body, and the associated health benefits. 

Results from these studies and others indicate that consumption of EPA and DHA 

reduces the risk of CVD outcomes in Western populations (Alessandri et al., 2004; 

Marventano et al., 2015). Chronic inflammation is the cause of many CVD and the anti-

inflammatory effect of long chain n-3 PUFA lowers inflammation, and can lower the 
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concentrations of plasma triacylglycerol and blood pressure (Swanson et al., 2012). The 

results of these modifications include improved blood flow and reduced build-up of fatty 

deposits within the blood vessel walls. Intakes of LC n-3 PUFA in people with CVD has 

also been investigated, with several studies reporting a lower death rate in patient 

receiving LC n-3 PUFA (Hibbeln et al., 2006).  Doses of 500-900 mg of EPA + DHA a day 

for 2 years, 885 mg/d of EPA + DHA for 1 year, 3.5 years, 3.9 years and 5 years have 

been studied (Tavazzi et al., 2008; Yokoyama et al., 2007). Three mechanisms have been 

suggested for the therapeutic effects on LC n-3 PUFA regarding reduced likelihood of 

myocardial infarction (e.g heart attack) and mortality. These mechanisms are discussed 

by Calder (2014) and include altered cardiac electrophysiology seen as lower heart rate, 

increased heart rate variability, and fewer arrhythmias, making the heart more able to 

respond to stress. Secondly the anti-thrombotic action results in lowered likelihood of clot 

formation, or weaker clots that are unable to stop blood flow to affected organs.  Thirdly is 

the anti-inflammatory effect of LC n-3 PUFA, which stabilises atherosclerotic plaques 

preventing their rupture. The European Food Safety Authority (2012) suggest that the 

intakes of n-3 PUFAs should be 2-4 g a day to reach clinically relevant effects on 

preventing CVD, and intakes of 250 mg a day are sufficient for the maintenance of 

general cardiovascular health in healthy adults and children (Marventano et al., 2015).  

 

1.4.2.2 Cancer 

 There is inconsistency in findings from studies investigating the effects of LC n-3 

PUFA consumption and risk of colorectal, prostate, and breast cancers, but many 

prospective and case studies suggest the risk is lowered (Calder., 2014). In addition to 

lowering the risk of developing cancer, Elia et al., (2006) reported that supplementing 

patients with existing cancer with EPA and DHA improved their appetite, energy intake, 

body weight and quality of life. Other studies have also reported higher physical activity, 

and less fatigue in cancer patients supplemented with 2.9 and 1.8 g of EPA and DHA (van 

der Meij et al.,2012; Mocellin et al., 2007). The LC n-3 PUFA, EPA and DHA can directly 

influence cancer cells, they exert a range of biological activities that may influence tumour 

cell proliferation and sustainability, with DHA promoting cell apoptosis (Marventano et al., 

2015; Zarate et al., 2017). They also replace the n-6 FA AA in cell membranes resulting in 

reduced production of mediators that drive tumour cell proliferation and tumour growth. It 

has also been reported that response to chemotherapy is improved, although the 

mechanism behind this is unclear (Calder, 2014).  

 

1.4.2.3 Brain development 

The amount of DHA in the brain increases rapidly with growth, and an adequate 

supply of LC n-3 PUFA seems essential for optimal visual, neural and behaviour 
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development (Calder, 2014), therefore LC n-3 PUFA have important roles in brain function 

throughout life. Lower levels of EPA and DHA have been found in blood of children with 

attention deficit hyperactivity disorder and autistic disorders, suggesting that these 

disorders could be related to FA deficiencies (Richardson., 2004). It has also been 

reported by Hibbeln (1998) that there is a correlation between high annual fish 

consumption and lower prevalence of depression, again suggesting a protective effect of 

LC n-3 PUFA against mental health issues. Recent studies have also reported low blood 

levels of LC n-3 PUFA in patients suffering dementia, and post mortem studies have 

reported lower levels of DHA in the brains of Alzheimer’s disease sufferers (Cunnane et 

al., 2012; Tully et al., 2003).  

 

1.4.3 Consumption of EPA and DHA 

Dietary habits of humans has changed drastically over the past 10 000 years, 

despite their genetic profile remaining pretty similar, leading to the development of 

diseases (Marventano et al., 2015). This has led to the implementation of dietary 

guidelines in all aspect of human nutrition. Policies implemented in most developed 

countries recommend a decrease in the consumption of SFA and an increase in the 

consumption of LC n-3 PUFA from fish and plant sources (Simopoulos, 2016). Most 

studies have concluded that the majority of the population, especially those in Western 

countries are failing to meet the recommended daily intake of LC n-3 PUFA (>0.2g/d) 

(Meyer et al., 2003), emphasising the need for strategies to increase the availability and 

consumption of these essential FA. It is estimated that the mean current intake of LC n-3 

PUFA for UK adults is 244 mg/d (Gibbs et al., 2010), considerably below the 

recommended intake of 450 mg/person/d (SACN/COT, 2004). The ratio of n-6 to n-3 and 

their effect on health is becoming increasingly important in recent research due to their 

opposing physiological functions, signifying a balance in their consumption is important for 

homeostasis and development (Schmitz and Ecker, 2008). Kris-Etherton et al., (2000) 

stated how this ratio has decreased in the diet over the years in the United States from 

12.4:1 to 10.6:1, but it is still much higher than the recommended value of 2.3:1 (Kris-

Etherton et al., 2000). However Bernard et al., (2013) stated that this ratio has actually 

increased over the last decade in many Western counties suggesting that Western diets 

are deficient in n-3 PUFA, and have excessive amounts of n-6 PUFA (Simopoulos, 2008). 

To reach the desired ratio, at least a 4-fold increase in the consumption of n-3 PUFA in 

the form of DHA and EPA is needed. This may be accomplished by increasing fish 

consumption or supplementation, but the future sustainability of these sources are 

uncertain (Williams and Burdge, 2006). Kris-Etherton et al., (2000) suggest alternative 

strategies through the use of biotechnology or food enrichment.  
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Marine fish like mammals rely on the dietary acquisition of essential FA. Fish will 

acquire these FA through the consumption of phytoplankton that are the abundant natural 

producers of LC n-3 PUFA at the base of the food chain (Givens et al., 2000). Concerns 

regarding the sustainability of the continued use of FO supplements in fish stocks by 

aquaculture has recently been raised (Naylor et al., 2001) as natural resources that 

provide these oils are in danger of being exhausted (Napier and Sayanova 2005). Plant 

oils and animal fats have been used in fish feeds as an alternative way to supply their 

dietary energy requirement. Torstensen et al., (2005) conducted a study on feeding 

Atlantic salmon 75% or 100% vegetable oil as a FO replacement and reported that with a 

reduction in dietary FO there was also a reduction in the levels of LC n-3 PUFA content in 

the fish meat. 

Lock et al., (2014) discussed how nutritional quality is increasingly an important 

consideration in food choice by consumers because of their growing awareness of the link 

between diet and health. Much research is investigating ways of manipulating animal 

feeds in an attempt to increase n-3 content of eggs, milk, and meat (Scollan et al., 2014). 

Some major obstacles which are faced are the added expense and “off” flavours in food 

products as well as the extensive biohydrogenation of LC n-3 PUFA that takes place in 

the rumen (Wood and Enser, 2017). Because of these complications eggs are the only 

animal product available on the market which are enriched with n-3 FA (Bruneel et al., 

2013; Lewis et al., 2000).  

Ruminant products have been criticized for their higher level of SFA and low levels 

of PUFA (Lock et al., 2014). This is mainly due to extensive rumen biohydrogenation of 

dietary PUFA (Lourenco et al., 2005), (see section 1.6). This however has led to a miss-

perception of dairy products having negative health benefits, whereas in reality they 

include important high-quality protein, and many minerals and vitamins (Lock et al., 2014). 

There is currently considerable amount of interest in in altering the FA composition of milk 

and cheese as an alternative source for EPA and DHA. The amount of PUFA in dairy 

products is as low as 2%, whereas the percentage of SFA is as high as 70% (Elgersma et 

al., 2006). A diet low in SFA, and cholesterol is advised by nutritionist in many countries 

(Lichtenstein et al., 2006), but the intake of SFA currently exceeds the recommended 

levels by 10-11% of total energy intake (Kliem and Shingfield, 2016). Milk fat is a complex 

lipid that contains over 400 different FAs, with SFA containing 4-18 carbons, C18:1 cis-9, 

C18:1 trans and LA being the most abundant (Glasser et al., 2008). The milk fatty acids 

composition of mammals is linked to intrinsic (animal breed, genotype, lactation, and 

pregnancy stages) or extrinsic (environmental) factors (Chilliard and Ferlay, 2004) with 

milk fat containing between 65 and 75 g SFA/ 100g of total FA. Lactation stage is linked to 

lipid storage during early lactation, but otherwise has little effect on the FA profile of milk, 

whereas diets can have marked effects on milk FA composition. Altering milk fat 



20 
 

composition offers the opportunity to lower consumption of SFA without requiring a 

change in consumers eating habits. Milk fat can be altered by feeding cows with oilseeds, 

plant oils and marine lipids (Kliem and Shingfield, 2016). The altered FA profile will differ 

according to oil source fed, form of lipid and degree of processing and the basal diet of the 

cow.  

There is insufficient evidence to conclude on whether altering milk fat composition 

would lower CVD risk, but the available data suggests a beneficial effect (Mensink et al, 

2003). Changes to the cows diet therefore provides an easy way for farmers to rapidly 

modulate milk FA composition (Chilliard and Ferlay, 2004). Lucas et al., (2005) also 

reported how cheese making technology has a minimal effect on FA composition. Cheese 

was made from cow and goats milk using four different cheese making technologies, the 

cheese FA profile was similar to that of the milk used to produce it, the only difference was 

seen between samples made from different species or those fed different diets (Lucas et 

al., 2005), therefore changes in the nutrition of ruminants in order to modify cheese FA is 

also possible. In another recent study, Manuelian et al., (2017) examined how specie, 

breed and the type of cheese produced may vary cheese FA content, and reported a that 

hard cheese (moisture content <35 %) had higher content f PUFA compared to the soft 

cheeses (moisture > 45%). 

 

1.5 Fatty acids sources for ruminants 

1.5.1 Forages 

The type of forages consumed by dairy cows has a large effect on both nutritional 

and sensorial characteristics of milk and dairy products (Kalac and Samkova, 2010). Dairy 

cows derive FA for milk fat synthesis from the diet and rumen microorganisms (400-450 

g/kg), from de novo biosynthesis in the mammary gland (500 g/kg) and from metabolism 

of adipose tissue (<100 g/kg) (Kalac and Samkova, 2010).  

Forages, either fresh or preserved, make up the staple component of ruminant 

diets (Van Soest, 1994).  The total FA content in forages ranges between 20-50 g/kg dry 

matter (DM; Kalac and Samkove, 2010). There are five major FA in forage plant, (C16:0, 

C18:0, C18:1n-6, LA and ALA) (Van Soest, 1994), making forages important sources of 

precursors of n-3 and n-6 series of FA, and the cheapest and safest sources of FA in 

ruminants diets. The concentration of each individual FA varies depending on the plant 

species, growth stage, temperature and light intensity (Table 1.2; Dewhurst et al., 2001). 

In two consecutive years (2003 and 2004) Wyss et al., (2006) investigated the FA 

composition of three grass/clover mixtures over three cuts in both years. Mixture A 

contained only grasses, mixture B grasses and red clover, and mixture C contained 

grasses, red clover and lucerne. The dominant FA was ALA in all three mixtures, varying 

between 8.6 and 12.8 g/kg DM. The highest values in 2004 were found in the 2nd cut and 



21 
 

the lowest in the 3rd cut, whereas no trend was found in 2003. The concentration of ALA 

was higher in 2003 compared to 2004, which was suggested to be because of the higher 

amount of cocksfoot grass, a finding in agreement with Dewhurst et al., (2001) who 

reported a higher concentration of ALA in ryegrass compared to cocksfoot. The 

concentrations of all other major FA was very similar between mixtures and years. Alves 

et al., (2011) examined the effect of ensiling and silage additives on FA composition of 

ryegrass and maize, and reported no difference in the FA content (g/100 g FA) of LA and 

ALA during ensiling. In contrast Kalac and Samkove (2010) reported a decrease in LA and 

ALA content of maize and grass silages when exposed to air for up to 24 hrs, which is 

what occurs to silages prior to feed out due to the opening of clamps. 

 

Table 1.2.  Fatty acid composition of different grass species cut in July 

Species Fatty acid content (g/kg DM) 

 C16:0 C18:0 C18:1n-1 LA ALA 

Dactylis glomerata 3.91 0.92 0.45 2.85 10.56 

Festuca 

arundinacea 
4.21 1.06 0.96 2.55 11.98 

Festuca pratensis 4.09 0.99 1.04 2.74 10.95 

L. x boucheanum 4.32 0.98 1.44 3.28 10.51 

Lolium multiflorum 3.05 0.94 0.84 2.26 6.94 

X Festulolium 3.96 0.87 1.22 3.04 10.39 

Lolium perenne 4.30 1.01 1.24 2.90 11.42 

Phleum pratense 4.05 1.05 1.05 3.18 10.43 

Data from Dewhurst et al., 2001 

  

1.5.2 Oils 

Dairy cows need a tremendous amount of energy in order to support the demands 

of maintenance, milk production and reproduction (Van Saun and Sniffen, 1996). 

Concentrates are higher in energy density than forages, but to maintain rumen function, 

adequate dietary effective fibre is required in order to reduce the risk of subacute rumen 

acidosis (SARA) (Zebeli et al., 2012), therefore concentrate usage in the diet is limited. 

The use of supplemental fats and oils in dairy cow ration has developed over the past few 

decades, and is now considered standard practice (National Research Council, 2001). 

Fats are higher in energy density than carbohydrates and proteins (9 v 3.75 v 4 kcal per g) 

and are supplemented in order to increase the energy density of the diet leading to 

increased energy intake if dry matter intake (DMI) is not decreased (Harvatine and Allen, 

2006). With an increased energy intake, the dairy cow will have an improved energy 

balance, milk production and reproduction (Zebeli et al., 2012). Fat supplements differ in 



22 
 

FA source, form and type, and will consequently result in different production effects 

(Harvatine and Allen, 2006). Feeding excessive amount of UFA can reduce methane 

(CH4) emissions, but it can also lead to a reduction in feed intake, which must be avoided 

(Bayat et al., 2018). Modifying the FA content of animal products such as milk and meat to 

improve product quality, by increasing the content of PUFA is of great interest, especially 

for the consumer due to the health benefits of PUFA (Marventano et al., 2015). Omega-3 

FA also have a positive influence on the reproductive and immune systems of dairy cows 

(Santos et al., 2008). Calcium salts are high in palmitic acid (C16:0), and are made from 

palm oil or soyabean. Higher levels of C16:0 are delivered to the cow in order to increase 

milk fat yield, as C16:0 is found in high concentrations in milk (Lock et al., 2013; Vyas et 

al., 2012). A diet enriched in LC-FA can result in a higher production of propionate and a 

lower production of acetate and butyrate, decreasing milk fat (Weisbjerg et al., 2008). It 

has also been reported that diets rich in PUFA such as rapeseed oil may inhibit the 

formation of precursors for milk fat in the rumen, and also inhibit de novo synthesis, 

referred to as milk fat depression in dairy cows (see section 1.6.6; Bauman and Griinari, 

2001). Increasing the dietary supplementation of a specific FA does not mean that this FA 

will be increased in the milk or meat. This is due to biohydrogenation in the rumen, which 

is discussed in section 1.6.4. Protected fats and oils have been developed that are less 

susceptible to rumen biohydrogenation, with the FA of these rumen protected fats passing 

through the rumen to be digested and absorbed post-ruminal, and possibly be 

incorporated into milk fat (Jenkins and Bridges, 2007). Table 1.3 shows the different FA 

composition of a number of oilseeds. 

 

Table 1.3. Average FA content (g/100 g total FA) of various commonly used fat sources 

Oil source Fatty acid content (g/100 g FA) 
  C14:0 C16:0 C16:1 C18:0 C18:1 LA ALA EPA DHA 
Linseed 
(n=22) 

0.1 6.1 0.1 3.4 18.8 16.3 54.4 - - 

Rapeseed 
(n=24) 

0.2 4.8 0.3 2.1 60.5 20.8 9.2 - - 

Soybean 
(n=44) 

0.1 11.4 0.1 4.1 22.3 53.5 7 - - 

Sunflower 
seed (n=13) 

0.1 5.1 0.1 4.3 21.6 66.8 0.2 - - 

Data from Glasser et al, 2008. 

 

1.5.3 Marine oils 

 Marine oil supplementation of ruminant diets is a strategy used to increase the 

intake of beneficial FA, such as EPA and DHA, which are then incorporated into products 

such as milk and meat (Chow et al., 2004). Many studies have been conducted on 

supplementing ALA rich oils (such as linseed) to ruminants as they are able to be 
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elongated to EPA and DHA (Barcelo-coblijn and Murphy, 2009; Mach et al., 2013). The 

conversion of ALA to these LC PUFA is however extremely low and inefficient (Plourde 

and Cunnane, 2007). Fish oil contain a high natural source of n-3, in the form of EPA and 

DHA, Table 1.4 shows the various FA composition of FO used in a number of animal 

studies. Fish oil supplementation has been shown to increase the concentrations of 

desirable FA, conjugated linoleic acids (CLA), EPA and DHA in milk, but also causes a 

decrease in milk fat content (Kairenius et al., 2015). Therefore the quantity used must be 

minimised in order to reduce the negative impact of feeding PUFA (Kairenius et al., 2015). 

Another problem regarding FO is its availability. There is already competition for FO as 

human nutritional supplement, which is starting to threaten its supply for aquaculture feed 

(Shepherd and Bachis, 2014). The growth in the demand for FO and the insecure supply 

are causing price inflation of FO (Shepherd and Bachis, 2014). This has led to an increase 

in the use of vegetable oils as a substitute for FO in aquaculture feeds, reducing the n-3 

content of fish (Shepherd and Bachis, 2014). 

 An alternative source of pre-formed EPA and DHA for ruminants is ALG (Stamey 

et al., 2012). Its use in animal feed can be traced back to the 1950’s (Lum et al., 2013), 

but due to the lack of controlled growing environments, it’s only recently that technology 

has enabled ALG to be grown heterotrophically with a defined growth medium, typically 

supplemented with glucose (Bumbak et al., 2011). The controlled growing environment 

offers a more consistent nutrient profile for the ALG compared to sources of phototropic 

marine algae (Bumbak et al., 2011). Biomass densities of up to 400 g/kg DM per litre of 

water can be produced heterotrophically, the only limiter to growth being oxygen (Givens 

et al., 2000).  There is a considerable amount of interest in ALG production, as 

heterotrophic ALG offers significant opportunities either as feed supplements, biofuels or 

for the treatment of disease (Bumbak et al., 2011).Table 1.4 shows the FA composition of 

ALG used in a number of animal studies.  
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Table 1.4. Fatty acid composition (g/100 g total FA) of various FO and ALG used in ruminant feed studies 

Oil source Fatty acid content (g/100 g FA) Reference 
 C14:0 C16:0 C16:1 C18:0 C18:1 LA ALA EPA DHA 
ALG 10.1 26.3  0.9 1.1 0.32 0.17 0.04 37.8 Boeckaert et al., (2007a) 

ALG 9.1 24.9 - 0.5 - - 0.30 1.6 42.4 Moate et al., (2013) 

ALG - 52.6 - 1.4 0.13 - 0.03 0.41 30 Sinedino et al., (2017) 

ALG 8.4 23.5 0.1 0.5 0.2 - - 1.4 39.5 Stamey et al., (2012) 

ALG 5.3 25 - 32.5 0.06 - - 1.6 24.2 Vahmani et al., (2013) 

FO 8.3 16.9 10.9 3.2 5.9 1.5 2.1 13.2 12.5 Ballou et al., (2009) 

FO 8.2 16.6 9.6 3.7 13 1.4 2.9 11.5 10.3 Fatahnia et al., (2008) 

FO 2.2 15.5 2.5 53.3 12.7 3.2 3.3 2.5 1.9 Moallem et al., (2013) 

FO - 20.8 12.4 8.4 9.7 1.7 2.0 12.6 7.8 Moussavi et al., (2007) 

FO 0.4 12.7 - 38.7 4.1 0.6 1.29 15.9 12.3 Vahmani et al., (2013) 
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1.6 Metabolic pathways 

1.6.1 Microbial ecosystem of the rumen 

  Ruminants have four compartments to their stomachs; the rumen, reticulum, 

omasum and abomasum (Membrive, 2016). The rumen is the largest compartment of the 

digestive tract and has a volume of 100 L or more in an adult dairy cow, and a volume of 

around 10 L in sheep (Hobson and Stewart, 1997). The microbial ecosystem of the rumen 

contains a very complex population of bacteria, protozoa, archea and fungi, that live in a 

symbiotic manner with the cow (Doreau et al., 2015). The rumen of a cow contains 

approximately 1010 to 1011 bacteria and 105 to 106 protozoa per mL of rumen content 

(Lock and Bauman, 2004). The normal temperature of the rumen is between 38-39 °C, 

and it has a normal pH range of 6.0 – 6.7 (Buccioni et al., 2012). Any changes to these 

conditions can influence the microbial population and its fermentation products (Buccioni 

et al., 2012).  Mammalian enzymes cannot break down cellulose or xylan, which are major 

components of forages that’s are found in ruminant’s diet (Lourenco et al., 2010). In order 

to digest the resistant polymers, the ruminant requires microbial enzymes and the 

microbes grow by fermenting sugars released through digestion into ATP (Lourenco et al., 

2010).  The main products produced through the pathway to generate ATP for microbial 

growth are volatile FA (VFA), mainly being acetic, propionic and butyric acids, and form 

the main energy substrate for ruminants (Figure 1.7) (Doreau et al, 2015). Gases (CO2 

and CH4) are also produced as waste (Russell and Wallace, 1997). Nitrogen is also 

required for microbial growth, and is obtained from plant protein or non-protein 

nitrogenous sources (Laurenco et al., 2010). Proteins are hydrolysed to amino acids and 

peptides, the amino acids then undergo deamination where an amino group is removed to 

form ammonia (Figure 1.8; Husveth, 2011). The metabolism of dietary lipid is not essential 

to provide nutrients to rumen microbes, as they are capable of synthesising their own FA 

(Lourenco et al., 2010). Lipid metabolism is important to microbes as some FA are toxic 

and can prevent their growth (Maia et al., 2010). Fatty acid metabolism in the rumen has a 

major influence on the FA composition of ruminant products, such as meat and milk 

(Jenkins et al., 2014). Through lipolysis and biohydrogenation, two major processes which 

occur during rumen fermentation (described in section 1.6.4), the FA which reach the 

duodenum and absorbed in the small intestines are different to the FA composition of the 

diet (Buccioni et al., 2012). Feed particles can remain in the rumen for two days, with the 

actual time depending on the rate of degradation of particles, which is affected by particle 

size, as particles cannot leave the rumen until they have been reduced to millimetre size 

by the combination of rumination and microbial action (Membrive, 2016). Any liquid or 

particles small enough may leave the rumen within 8-10 h (Membrive, 2016). Increased 

forage particle size has been shown to improve fibre, OM and starch digestibility (Yang et 

al., 2002), as shorter particles pass through the rumen too quick to be digested properly. 
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Figure 1.7. The main metabolic pathways for lipid, fibre and protein in the rumen and the 

role of rumen microbes. Adapted from Lourenco et al., (2010). 

 

Figure 1.8. Degradation of protein in the rumen (Husveth, 2011) 

 

Many of the bacteria population were isolated in the 1940s and 50s due to the 

development of strictly anaerobic techniques and medium that stimulated the bacterial 

habitat (Hungate 1947). Some of the more important bacterial species are listed in Table 

1.5, along with the substrate they utilise and the products of the fermentation. Many of 

these strains are discussed by Krause and Russell (1996) and detail the most 

predominant rumen bacteria involved in lipolysis. With modern techniques based on 16 

sRNA gene sequence analysis, it is believed that over 2000 different species of bacteria 

exists in the rumen (Firkins, 2010). One of the first isolate to be named was Anaerovibrio 
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lipolytica, by Hungate (1966), a gram – negative, anaerobic, curved rod bacterium which 

hydrolyses linseed oil triglycerides, and fermented glycerol. Its activity was found to be 

greatest at a pH of 7.4 and at 20-22°C, and was shown to be present in the rumen at 

around 107 ml/l (Hobson and Stewart, 1997). A diverse range of flagellated bacterium were 

isolated by Bryant and Small (1956), which were later grouped and classified as 

Butyriuibrio fibrisolvens, an important bacteria for the production of butyrate, the third most 

important VFA in the rumen. 
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Table 1.5. Important species of rumen bacteria involved in fibre, starch, and soluble sugar digestion in the rumen (from Dryden, 2008) 

        Fermentation products 

Species  Descriptiona  Important function  Energy sourcesb 
Formic 

acid 
Acetic 
acid 

Propion
ic acid 

n-
Butyric 

acid 

iso-
Butyric 

acid 

Lactic 
acid 

Succini
c acid 

Butyrivibrio 
fibrisolvens 

Gram +ve 
rods 

Fibre digestion 
Xylans, pectin (β 
glucans, starch) 

+ +  +    

Fibrobacter 
succinogenes 

Gram -ve rods Fibre digestion 
β glucans, 
glucose (pectin, 
starch) 

+ +     + 

Ruminococcus 
albus 

Gram -ve 
single or 
paired cocci 

Fibre digestion 
β glucans, 
cellobiose, xylans 

+ +      

Ruminococcus 
flavefaciens 

Catalase -ve 
streptococci 

Fibre digestion β glucans (xylans) + +     + 

Eubacterium 
ruminantium 

Gram +ve 
rods 

Starch and 
soluble sugar 
digestion 

Glucose (xylan, 
pectin) 

+   +  +  

Lactobacillus 
spp. 

Gram +ve 
rods 

Starch and 
soluble sugar 
digestion 

Glucose (xylan, 
pectin) 

     +  

Megasphaera 
elsdenii 

Gram -ve 
large cocci 

Starch and 
soluble sugar 
digestion 

Lactate, glucose 
(glycerol) 

 + + +    
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Prevotella 
amylophilus 

 
Starch and 
soluble sugar 
digestion 

Starch, 
monosaccharides 

+ + +  +  + 

Prevotella 
ruminicola 

Gram -ve rods 
Starch and 
soluble sugar 
digestion 

Glucose and other 
monosaccharides 
(xylans, pectin, 
starch) 

+ +   +  + 

Ruminobacter 
amylophilus 

Gram -ve rods 
Starch and 
soluble sugar 
digestion 

Starch (xylose) + +     + 

Selenomonas 
lactilytica 

 
Starch and 
soluble sugar 
digestion 

Lactate, sugars  + +    + 

Selenomonas 
ruminantium 

Gram -ve rods 
Starch and 
soluble sugar 
digestion 

Glucose, xylose 
and other 
monosaccharides 
(starch, sucrose) 

 + +   +  

Streptococcus 
bovi 

Gram +ve 
cocci 

Starch and 
soluble sugar 
digestion 

Starch, glucose 
(xylans, pectin) 

     +  

Succinomonas 
amylolytica 

Gram -ve rods 
Starch and 
soluble sugar 
digestion 

Starch, maltose, 
fructose 

      + 

a +ve = positive; -ve = negative 
b Alternative substrates for some strains are shown in brackets. 
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Ruminal bacteria have been divided into two groups by Kemp and Lander (1984) 

based on the reactions and end products of biohydrogenation. Members of group A 

hydrogenate LA and ALA to C18:1 trans-11, with some strains also producing C18:2 

trans-11 cis-15 from ALA (Harfoot and Hazlewood, 1997). This group of bacteria are 

incapable of hydrogenating C18:1 FA. Group B bacteria are able to hydrogenate a wide 

variety of C18:1 FA, including cis-9 and trans-11 FA, as well as hydrogenating LA to 

C18:0 (Harfoot and Hazlewood, 1997). Only three isolates of this group are known, two 

species of Fusocillus and an unnamed Gram-negative rod, R8/5 (Harfoot and Hazlewood, 

1997).  

Another microbial group that inhabits the rumen are archaea, they are strictly 

anaerobic methanogens and grow using H2, reducing CO2 to CH4 (Janssen and Kirs, 

2008). Efficient removal of H2 leads to VFA formation and increased fermentation by 

eliminating the inhibitory effect of H2 on microbial fermentation, making archaea very 

important in rumen function despite only being present as a small part of the rumen 

microbial biomass (Janssen and Kris, 2008). Over the past decade research on 

methanogens has become very attractive, because CH4 emissions from ruminants 

contribute to global greenhouse gas emissions and represent a loss of feed energy (Patra 

et al., 2017). In a recent study by Henderson et al., (2015) who investigated the microbial 

community composition of 32 animal species, the rumen archaea population is less 

diverse than the bacterial community, with the 5 dominant methanogen groups 

compromising 89.2 % of the archaeal community. Feeding fats to ruminants has been 

shown to lower CH4 emissions, with PUFA being more potent than UFA (Bayat et al., 

2018; Grainger ad Beauchemin, 2011). The metabolic activities of rumen methanogens is 

lowered in the presence of PUFA, and when supplemented at high concentrations animal 

performance is reduced due to a reduction in feed digestion and fermentation with a 

change in archaeal composition (Patra et al., 2017). 

 

1.6.2 Lipid hydrolysis 

Lipolysis is when free FA are released from esters to allow biohydrogenation to 

occur, which is the reduction to the number of double bonds on the carbon chain of a FA 

(Buccioni et al., 2012). Firstly, when dietary lipids enter the rumen, hydrolases produced 

by rumen bacteria hydrolyses the ester linkages found in triglycerides, phospholipids and 

glycolipids, causing the release of constituent free FA, glycerol and small amounts of 

mono- and diglycerides (Lock and Bauman, 2004; Buccioni et al., 2012). The lipase 

enzyme involved in the hydrolysis is extracellular and is formed by the bacterium 

Anaerovibrio lipolytica (Jenkins, 1993). Butyrivibrio fibrisolvens is another esterase active 

bacterium that has been well studied with over 30 strains identified (Hespell and O’Bryan-

Shah, 1988). It is involved in hydrolysing saponins, tributyrin and galactolipids, with only a 
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few strains able to hydrolyse LCFA (Hespell and O’Bryan-Shah, 1988).  The extent of 

hydrolysis is generally high (>85%) (Fiorenti et al., 2015). Many factors affect the rate and 

extent of hydrolysis, and have been discussed by Harfoot and Hazlewood (1997) and 

Doreau and Chilliard (1997), and state that the extent of hydrolysis is higher in diets rich in 

fats and highest in diets rich in protein. Once liberated as free fatty acids, any FA can be 

isomerized and hydgrogenated by microbial isomerases and reductases (Doreau et al., 

2015). 

 

1.6.3 Microbial lipids and metabolism 

De-novo synthesis of microbial lipids also take place in the rumen however it is 

assumed that the microbial lipids released upon the death and lysis of microbes are 

immediately hydrolysed forming both saturated and unsaturated free FA (Harfoot and 

Hazlewood, 1997). As a results of microbial synthesis and biohydrogenation, the FA 

contained in rumen lipids and post ruminal digesta differ from those present in the diet 

(Buccinoni et al., 2012).  

 

1.6.4 Biohydrogenation 

1.6.4.1 Biohydrogeantion of LA and ALA 

Microbial biohydrogenation is the process of converting UFA to more saturated 

end products by gut microbes, via isomerisation to trans FA intermediates (Li et al., 2012). 

Biohydrogenation is mainly a result of the activity of rumen bacteria, usually those 

attached to feed particles, rather than those in free liquid (Buccioni et al., 2012). The 

bacteria involved in biohydrogenation are mostly celluolytic, with Butyrivibrio fibrisolvens 

being the most important (Buccioni et al., 2012). Butyrivibrio proteoclasticus is another 

important bacterium that was re-classified by Moon et al. (2008), and is the only bacterium 

isolated from the rumen capable of converting PUFA to SFA. The biohydrogenation 

pathways of both LA and ALA have been well studied (Figure 1.9). The first step in the 

biohydrogenation pathway of LA is the isomerisation by cis-12, trans-11 isomerase which 

turns the cis-12 bond into a trans-11 bond forming cis-9, trans-11 CLA, before being 

hydrogenated to form a mixture of C18:1 trans isomers (Jenkins et al., 2014). In mixed 

ruminal bacteria, C18:1 trans is further hydrogenated to SFA C18:0 (Li et al., 2012). 

Differently to LA, ALA is isomerised to cis-9, trans-11, cis-15 C18:3 before being 

hydrogenated to a nonconjugated C18:2 as the main final product (Jenkins et al., 2014). 
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The rate of biohydrogenation is very extensive with 80 % of LA converted to C18:0 within 

72 h (Maia et al., 2010). 

Figure 1.9. Biohydrogenation pathway of linoleic acid (LA) and α-linolenic acid (ALA), with 

the main pathway highlighted in red. Adapted from Lourenco et al. (2010) and Buccioni et 

al., (2012). 

The extent of biohydrogenation may be reduced if the lipid included in the diet is 

protected, as Fiorenti et al., (2015) reported when 10 rumen and duodenal fistulated 

steers were fed diets containing no fat, palm oil, linseed oil, protected fat and whole 

soyabean and the biohydrogenation extent of C18:1 cis-9, LA and total UFA was 

decreased with the protected fat treatment. 

 

1.6.4.2 Biohydrogenation of EPA and DHA 

 The biohydrogenation pathway of EPA and DHA is not as well-known as that of 

LA and ALA. Both the LC n-3 PUFA have a low transfer efficiency from the diet to 

ruminant derived products which suggests they undergo ruminal biohydrogenation 

(Jenkins et al., 2014). Dohme et al., (2003) studied the effects of two different FO types 

and soy oil on lipolysis and EPA and DHA biohydrogenation in a short term batch culture 

experiment. Each oil was incubated at six different levels of 12.5, 25, 50, 75, 100 and 125 

mg for either 24 or 48 h. It was reported that both FO treatments had lower lipolysis rates 

compared to soy oil, and that lipolysis was further reduced when oil levels increased at 24 

h of incubation, it was concluded that lipase activity was reduced due to the increasing 

presence of LC n-3 PUFA EPA and DHA. Dohme et al., (2003) also found that the 

biohydrogenation rates of EPA and DHA was affected by FO type (being lowest in the 

treatment containing more n-3 FA), and that the biohydrogenation differences between 24 
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and 48 h were less pronounced with increasing oil levels compared to 0 and 24 h.  The 

reduction in biohydrogenation was suggested to be caused by PUFA adversely affecting 

the activity of specific rumen bacteria. In a similar study AbuGhazaleh and Jenkins (2004) 

examined the disappearance of pure DHA and EPA in ruminal cultures in vitro when 

incubated at different levels of 5, 10, 15 and 20 mg. It was reported that EPA and DHA are 

both extensively biohydrogenated and produced a large number of UFA with 1 to 5 double 

bonds. The disappearance of DHA was increased over time and was highest in the lower 

level treatment of 5 mg. The results for the disappearance of EPA was similar to that of 

DHA (AbuGhazaleh and Jenkins, 2004).   

Kairenius et al., (2011) attempted to identify the biohydrogenation intermediates of 

LC FA in cows fed 250 g/d of FO. In the study a total of 27 novel 20-, 21- and 22-carbon 

FA containing at least one trans double bond and several unique all cis double bonds LC 

PUFA were detected in the omasal digesta of the cows fed FO. Many of the 

biohydrogeantion intermediates contained trans double bonds, which indicated that the 

biohydrogeantion of LC PUFA involves the isomerisation of cis double bond(s) (Kairenius 

et al., 2011). More recently Aldai et al., (2018) investigated the products formed during the 

initial stages of DHA biohydrogenation using mixed ruminal microorganisms from sheep, 

and reported that, products of DHA biohydrogenation started to appear after 1 h of 

incubation, with many peaks evident in the C22:0 region of GC-FID analysis. Aldai et al., 

(2018) also found that half the DHA was rapidly metabolised within the first 2.5 h, and up 

to 80 % after 6 h. It was also reported that there was no evidence of chain shortening of 

DHA to C18 FAs, which is in accordance with previous reports by AbuGhazaleh and 

Jenkins (2004) and Klein and Jenkins (2011). Aldai et al., (2018) identified two groups of 

transient metabolites, mono-trans methylene interrupted- DHA (group of 5 peaks on GS-

MS) and mono-conjugate- DHA (group of two major and several minor peaks on GC-MS). 

As these metabolites only last for a short time the duration of the in vitro experiment was 

important, longer duration time points could have led to missing them completely, and 

shorter time points could possibly lead to identify further transient metabolites (Aldai et al., 

2018). Figure 1.10 illustrates the proposed pathways of DHA metabolism. In the case of 

the mono-conjugate-DHA metabolites, it is still unknown which cis double bond(s) in DHA 

is/are isomerised for their production. Cis-12, trans-11 isomerase contained by Butyrivibrio 

fibrosolvens is known to cause the transition from a cis-12 to a trans-11 bond in the 

biohydrogenation of LA as mentioned earlier, but this enzyme would be inactive towards 

DHA because of the different positions of the cis double bonds, therefore other 

isomerases must be present within mixed rumen microorganisms (Aldai et al., 2018). 

Kairenius et al., (2011) proposed that the hydrogenation of EPA involves the reduction of 

the cis double bonds at position 5, 8 and 11 explaining the formation and accumulation of 

C20:2n-3 and C20:3n-3. It was also suggested that one of the main transformations of 
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DHA in the rumen involved the removal of the double bond between carbon atom 4 and 5 

followed by the reduction of the double bond at position 7. Further studies are required to 

examine the fate of EPA and DHA as to date only Aldai et al., (2018) has managed to 

identify conjugated intermediates in the biohydrogenation of DHA. 

Kim at al (2008) and Huws et al. (2010) have both used group-specific PCR to 

analyse bacterial communities in cows that were fed FO which altered the digesta FA 

composition, but only weak correlations were found between numbers of B. 

proteoclasticus and duodenal flow of C18:0. Another study by Boeckaert et al., (2008) 

performed a similar analysis on cows fed DHA rich ALG and found changes in a group of 

bacteria which there are no cultivated strains. Results from these studies indicate that 

there are other microbial species involved in biohydrogenation, especially in the 

biohydrogenation of LC PUFA, which have not yet been cultivated. 

 

Figure 1.10. Biohydrogenation pathway of DHA. MTMI mono-trans methylene interrupted, 

MIC- mono-conjugated (Aldai et al., 2018) 

 

1.6.4.3 Role of protozoa 

Protozoa accounts for 50 % of the biomass of the rumen, but despite this their role 

in the rumen microbial ecosystem is unclear (Newbold et al., 2015). Studies have been 

conducted where ruminal protozoa has been removed by chemical and physical 

techniques, and results show that rumen protozoa are not essential for animal survival 

(Williams and Coleman, 1993). In a meta-analysis by Newbold et al., 2015, the main 

effects of protozoa removal in 23 in vivo studies were compared, it was confirmed that 

protozoal removal deceased rumen digestibility of OM and NDF, and was concluded to be 

caused by a loss of protozoal fibrolytic activity. Newbold et al., 2015, also reported greater 
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post-ruminal digestion, therefore the difference in whole tract digestibility between animals 

having no protozoa or those with protozoa in their rumen was less pronounced. Vargas et 

al., 2017, investigated the changes in the rumen microbiota when adding sunflower oil or 

marine oils to a ruminant diet, and reported a decrease in the number of protozoa but not 

total bacteria when marine oils were supplemented compared to the control and sunflower 

oil treatment. Similarily, Boeckaert et al., 2007a supplemented ALG to rumen-fistulated 

dairy cows to look at the effects on the microbial population. Supplementing ALG caused 

incomplete rumen biohydrogenation of PUFA, and quantitative PCR indicated that ALG 

supplementation was associated with a decrease in the number of ciliated protozoa. In 

contrast to this observation, protozoa appear to protect PUFA from biohydrogenation in 

the rumen, increasing the duodenal flow of PUFA and monounsaturated FA (MUFA) when 

steers were fed diets high in chloroplast (Huws et al., 2012). This is an agreement with the 

meta-analysis of Newbold et al., 2015, who observed an increase in SFA and decrease in 

MUFA and PUFA in the duodenal flow when protozoa were removed from the rumen.  

   

1.6.5 Manipulating biohydrogenation 

Rumen biohydrogenation is affected by many dietary factors. When the fibre 

content of the diet is lowered, and the concentrate content is increased there is a 

reduction in the number of cellulolytic bacteria (Loor et al., 2004), and other 

biohydrogenation pathways occur with an increase in trans isomers. The maturity stage of 

forages can also affect biohydrogenation, as well as particle size. Small feed particles 

pass through the rumen quicker, therefore rumen microbes has less time to hydrogenate 

the UFA. Added dietary fat also influences biohydrogenation, and induce the synthesis of 

intermediates such as CLAs and trans isomers. The effects of dietary lipids on 

manipulating biohydrogenation in order to modulate milk FA is discussed in section 1.7.3. 

 

1.6.6 Mammary lipogenesis 

Milk is a high nutritional value food, and contains 12 -14 % solid matter composed 

of proteins (2.5 – 4 %), fat (35 %) and lactose (~ 5 %) (Osorio et al., 2016). To improve 

the efficiency of milk production, milk fat, protein and lactose synthesis needs to be 

increased (Osorio et al., 2016). This can be achieved by combining genetic improvements 

and good management, especially nutrition. Milk fat is composed of more than 95 % 

triacylglycerol, (with three FAs esterified into the glycerol-3-phosphate backbone), and 

approximately 2 % of diacylglycerol (Ma, 2012). Milk fat contains over 400 FAs, making it 

a very complicated natural fat (Glasser et al., 2008). Milk fat synthesis requires the 

coordination of multiple biochemical processes and cellular events in the mammary 

epithelium, including FA activation, transport, desaturation, triacylglyceride synthesis, milk 

fat globule formation and secretion (Figure 1.11; Harvatine et al., 2009). There are two 
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sources of FA for milk fat synthesis, de novo FA synthesis in the mammary epithelial cells, 

which consist of short and medium chained FA (chain length < C16:0) and preformed FA 

uptake from blood circulation, which are derived from the diet, consisting of long chain 

FAs (chain length > C16:0) (Hussein et al., 2013). Due to biohydrogenation discussed in 

section 1.6.4 around 70 % of FA in milk are saturated, with C16:0 being the most 

abundant followed by C14:0 and C18:0 (Glasser et al., 2008).The most abundant MUFA is 

C18:1 cis-9, and the most abundant PUFA are LA and ALA, approximately 2.5 % of milk 

FA are trans FA, the most abundant being C18:1 trans-11 (Ma, 2012).  

 

1.6.6.1 De novo FA synthesis 

In ruminants the substrate for de novo FA synthesis in mammary epithelial cells is 

acetate produced from rumen fermentation, and β-hydroxybutyrate produced by the 

rumen epithelium from absorbed butyrate (Ma, 2012). Firstly acetate is converted into 

acetyl-CoA by acyl-CoA synthetase short-chain family (ASSC), the acetyl-CoA is then 

converted into a malonyl-CoA, catalysed by acetyl-CoA carboxylase, which is the rate 

limiting step of de novo FA synthesis (Hurley and Loor, 2011). Next a condensation step 

occurs when another acetyl-CoA and the malonyl-CoA covalently link together (releasing 

CoA and CO2) producing acetoacetyl- acyl carrier protein (ACP), following a reduction 

step the acetoacetyl-ACP is converted to β-hydroxybutryl-ACP (using one nicotinamide 

adenine dinucleotide phosphate; NADPH2) (Hurley and Loor, 2011). This is followed by a 

dehydration step producing crotonyl-ACP (releasing a water molecule) and a reduction 

step converting the crotonyl-ACP to butryl-ACP (using a second NADPH2) (Hurley and 

Loor, 2011). Butryl-ACP then condenses with another molenyl-CoA starting another cycle. 

Despite Malonyl-CoA being a three carbon primer, one is lost in the condensation step 

and therefore only two carbons are added to the growing FA chain. Transacylase is 

involved in the termination of fatty acid synthesis up to 16 carbons (Ma, 2012). 

 

1.6.6.2 Preformed FA uptake 

 The preformed FA which are taken up from the circulation are released from 

circulating lipoproteins by lipoprotein lipase (LPL) or are nonesterified FA bound to 

albumin that originate from body fat mobilisation (Clegg et al., 2001). Usually less than 10 

% of preformed FA in milk are from fat mobilisation, but it can increase when cows are in 

negative energy balance (Bauman and Griinari, 2003). The exact mechanism as to how 

the FA traverse the capillary epithelium and interstitial space to reach the alveolar cell is 

unknown, but is suggested to be a coordinate activity between the fatty acid translocase 

(CD36) and the fatty acid tranporter (SLC27A) (Osorio et al., 2016). Once the FA have 

entered the mammary epithelial cells they are activated by acetyl-CoA synthetase long-

chain family (ACSL) enzyme and channelled towards triacylglyceride synthesis. 
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1.6.6.3 Triacylglyceride synthesis and milk secretion 

The tricylglyceride synthesis is carried out in the smooth endoplasmic reticulum 

membrane (Osorio et al., 2016). The initial step with high concentration of long-chain FA 

(mostly saturated) is unsaturation generally by Δ9 stearoyl-CoA desaturase. The first step 

in tricylglyceride synthesis is the activation of long-chain FA through the addition of a 

phosphate group by a glycerol-3-phosphate acyltransferase (GPAT) forming a 

lysophosphatidic acid, this then becomes the substrate for 1-acylglycerol-3-phosphate O-

acyltransferase (AGPAT), forming phosphatidic acid (Osorio et al., 2016). A phosphate 

group is then removed by a phosphatidate phosphatase (LPIN). A 3rd long-chain FA is 

then added by a diacglycerol O-acyltransferase (DGATI) forming a tricylglyceride 

molecule. 

Milk fat droplets are formed in the intermediate space of the endoplasmic reticulum 

bilayer membrane by the incorporation of newly synthesised triacglycerides, with an 

important role of adipophilin (PLIN2). The droplets are released into the cytosol as a result 

of the interaction between xanthine dehydrogenase (XDH), PLIN2 and butyrophilin 

(BTNIAI), coated with lipids and proteins from the cytoplasmic half of the endoplasmic 

reticulum (Osorio et al., 2016). In the cytoplasm, some milk lipid droplets merge into larger 

droplets before and during secretion (Ma, 2012). The milk fat droplets become enveloped 

in the plasma membrane and pinch off from the cell, forming fat globules surrounded by 

the apical membrane ready for secretion (Osorio et al., 2016). 

 

 

Figure 1.11. Activities and pathways during the synthesis and secretion of milk fat. Key 

proteins are shown in ovals:lipoprotein lipase (LPL); acyl-CoA synthetase short-chain 

family (ASSC); fatty acid translocase (CD36); fatty acid transporter (SLC27A); glycerol-3-

phosphate acyltransferase (GPAT); 1-acylglycerol-3-phosphate O-acyltransferase 
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(AGPAT); phosphatidate phosphatase (LPIN); diacglycerol O-acyltransferase (DGATI); 

adipophilin (PLIN2); xanthine dehydrogenase (XDH) and butyrophilin (BTNIAI). FA= fatty 

acid; TAG = triacylglycerol. Adapted from Harvatine et al., (2009). 

 

1.7 Effects of lipid supplementation on animal performance and milk fat content and 

quality 

1.7.1 Performance  

 Feeding fats to dairy cows can increase the energy density of the diet, increasing 

energy intake if DMI is not reduced (Wullepit et al., 2012). Increasing the energy content 

of the diet can help limit the length and severity of negative energy balance, especially 

during early lactation (Meignan et al., 2017). Fat supplementation can also modify milk FA 

profile, increasing milk fat content of health promoting LC-PUFA and CLAs (Kliem and 

Shingfied, 2016). Increasing knowledge about the health benefits of n-3 FAs, especially 

EPA and DHA, have raised consumers demand for healthier dairy products (Meignan et 

al., 2017). The most common fat sources used to supplement dairy rations are vegetable 

oils, such as linseed, soyabean and sunflower oil, but more recently research has been 

undertaken on the use of FO and algae oil. As mentioned in section 1.5, vegetable and 

marine oils have a high content of PUFA in the form of ALA, LA, EPA and DHA, which 

undergo biohydrogenation in the rumen. The degree of unsaturation of these oils can 

affect specific rumen microorganisms (Pirondini et al., 2015), affecting animal 

performance. Studies on supplementing fats to dairy cows have resulted in varied results 

on DMI, milk yield and milk fat content and yield, which are summarised in Table 1.6. The 

results indicate differences between types of fat used, the amount added, and the 

composition of the basal diet. 

 Dry matter intake can decrease in cows when supplemented with high levels of 

PUFA, as reported by Franklin et al., (1999) who fed 910 g of ALG and reported a 

decrease of 4 kg/d, Mattos et al., (2004) who fed 200 g of FO and reported a decrease of 

2-4 kg/d and Moate et al., (2013) who reported a linear decrease in DMI as the inclusion 

level of DHA increased in the diet from 0 to 75 g/DHA per cow/d. Studies that have 

reported a decrease in DMI often report a decrease in milk yield. On the other hand some 

studies have reported no effect on DMI and an increase in milk yield when supplementing 

cows with n-3 FA (Mach et al., 2013; Sinedino et al., 2017).  

 One of the largest challenges when supplementing fat is milk fat depression as. 

Milk fat depression is when milk fat content decreases whereas other milk components 

and yield remain the same (Bauman and Griinari, 2003). Milk fat is an important 

component of milk, contributing to the energy density of milk, and is important for many 

dairy products physical properties, manufacturing quality and organoleptic characteristics 

(Harvatine et al., 2009). Farmers are also often paid on milk quality, and increasing milk 
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fat is an opportunity to increase milk price, and therefore milk fat depression can have an 

economic effect on farmers (Lock, 2010). Milk fat content is very variable, and is affected 

by genetics, stage of lactation and nutritional factors (Harvatine et al., 2009). Diet induced 

milk fat depression is of great research interest and has been extensively investigated 

over the past 30 years. Diet induced milk fat depression involves an inter-relationship 

between ruminal fermentation and mammary tissue metabolism (Harvatine et al., 2009), 

and can be split into two groups; the first being caused by diets containing large amounts 

of fermentable carbohydrates or reduced amount of forage, and the second being diets 

supplemented with PUFAs (Ma, 2012). Many theories have been proposed to explain milk 

fat depression, including the glucogenic-insulin theory which is based on different tissue 

responses to insulin (Ma, 2012), and the biohydrogenation theory which is when the 

biohydrogenation pathway is altered under certain dietary conditions resulting in the 

formation of unique FA intermediates that inhibit milk fat synthesis (Bauman and Griinari, 

2003). Trans-10, cis-12- CLA is formed during the metabolism of LA in the rumen under 

certain conditions of altered rumen metabolism, which occurs with feeding PUFA where 

trans-10, cis-12- CLA is produced instead of cis-9, trans-11 CLA (Figure 1.8; Wallace et 

al., 2007; Harvatine et al., 2009). Trans-10, cis-12- CLA is the only FA intermediate known 

to cause milk fat depression (Ventto et al., 2017). Earlier studies have shown that when 

supplemented to dairy cows at a rate of 10 g/d trans-10, cis-12 supplementation had no 

effect on any milk component except milk fat content and yield, that was reduced by 42 

and 44 % respectively (Baumgard et al., 2000). Baumgard et al., (2001) also investigated 

abomasal infusion of trans-10, cis-12 CLA at doses of 0, 3.5, 7 and 14 g/d and both milk 

fat content and yield decreased with increasing concentration of trans-10, cis-12 

supplementation by 25, 33 and 50 % and 24, 37 and 46 % respectively. Peterson et al., 

(2002), used an even lower concentration of trans-10, cis-12 CLA for abomasal infusion of 

dairy cows and reported a reduction in milk fat yield of 7 % when supplemented at a dose 

of 1.25 g/ d, and a reduction of 29 % when supplemented at a higher dose of 5 g/d. Some 

studies have reported that feeding FO (Bharatham et al., 2008) or ALG (Glover et al., 

2012) to dairy cows increases milk content of trans-10, cis-12 CLA and results in milk fat 

depression. In contrast Loor et al., (2005) reported no change in milk fat content of trans-

10, cis-12 CLA when milk fat depression was induced, suggesting other biohydrogenation 

intermediates are involved in milk fat depression. 
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Table 1.6. Summary of studies evaluating the effects of oil supplementation on dairy cow performance 
Study Treatment1 Design Effect on DMI Effect on milk yield Effect on milk fat 
AbuGhazale
h et al., 
(2003) 

1 % FO plus 2 % 
commercial fat high in 
C18:0, 1 % FO plus 2 
% fat high in C18:1 cis-
9 (sunflower seeds), 1 
% FO plus 2 % fat high 
in LA (sunflower 
seeds), 1 % FO plus 2 
% fat high in ALA 
(linseed) 

4 ruminally fistulated 
cows in mid-lactation, 
4x4 latin square design, 
21 d adaption, 7 d 
sampling 

No effect No effect The diets that included 
C18:1 cis-9 and LA reduced 
milk fat % 

Boeckaert 
et al., 
(2008) 

Experiment 1: Control 
(no added oil).  ALG (2 
% of fresh intake). 
Experiment 2: ALG 
(9.35 g of DHA/ kg of 
DM) 

Experiment 1: Four 
cannulated cows, latin 
square design, 10 d 
adaption, 11 d sampling 
Experiment 2: Three 
rumen cannulated cows 
were fed ALG for 20 
days, continuous design 

Experiment 1: ALG 
diet decreased DMI (P 
= 0.004). 
Experiment 2: ALG 
diet decreased DMI 
from d 13 onwards (P 
= 0.003). 

Experiment 1: Milk yield 
decreased in ALG fed 
cows (P = 0.015). 
Experiment 2: Milk yield 
decreased over time 
when supplementing 
ALG (P <0.001)  

Experiment 1: Milk fat % 
was not affected, milk fat 
yield decreased when 
feeding ALG (P = 0.009). 
Experiment 2: Milk fat % 
and yield decreased over 
time (P <0.001). 

Franklin et 
al., (1999) 

Control (no added oil). 
Protected ALG (910 g). 
Unprotected ALG (910 
g). 

30 mid-lactation cow. 1 
week adaption, 6 week 
sampling. 

Decreased with 
addition of both 
protected and 
unprotected ALG in 
the diet (P < 0.05)

No effect Milk fat % and yield 
decreased with the addition 
of both protected and 
unprotected ALG in the diet 
(P < 0.05)

Glover et 
al., (2012) 

Pasture or TMR basal 
ration supplemented 
with 100 g of ALG 
protected with an inert 
fat or an inert fat 
without the ALG 

8 cows in early-mid 
lactation, 4x4 latin 
square design, 21 d 
adaptation 7 d sampling 

No effect of ALG on 
DMI, only basal ration 

No effect Rumen protected ALG 
reduced milk fat % on both 
basal rations (P = 0.007) 
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Mach et al., 
(2013) 

Control (no added oil). 
Linseed (13 % 
extruded linseed) 

Fat supplement was fed 
from 3 weeks pre-partum 
until 6 weeks post-
partum.

No effect 10 % increase in milk 
yield in cows fed linseed 
(P = 0.01) 

Milk fat % was 8 % lower in 
linseed fed cows (P < 0.05). 
But there was no effect on 
milk fat yield

Mattos et 
al., (2004) 

200 g/ d of FO or olive 
oil  

Oils were fed from 
calving till 21 days post-
partum 

Decreased by 18.1 % 
when FO replaced 
OO 

No effect Milk fat % was unaffected, 
but ilk fat yield decreased 
when feeding FO (P = 0.03) 

Moate et al., 
(2013) 

Four treatments 
containing, 0, 25, 50 or 
75 g/ DHA per cow/d 

Day 0-14 adaptation, day 
15-30  sampling period 

Decreased linearly as 
the inclusion level of 
DHA increased in the 
diet (P = 0.02) 

No effect Linear decrease in milk fat 
yield as level of DHA 
increased (P = 0.01) 

Moran et 
al., (2017) 

Control (no added 
algae). ALG 
(supplemented at 6 
g/kg DM). 

12 week continuous 
design 

No effect For the total 12 week 
period, milk yield was 5.4 
% higher in algae fed 
cows (P = 0.095) 

Milk fat % was lower in ALG 
fed cows (P = 0.0001) 

Shingfield et 
al., (2006) 

Control (no 
supplemented oil). FSO 
(45 g mixture of FO 
and SO) 

Continuous design 
lasting 28 days 

Decreased when 
feeding FSO (P < 
0.01) 

Decreased when feeding 
FSO (P = 0.06) 

Milk fat % and yield 
decreased when feeding 
FSO (P  < 0.01) 

Sinedino et 
al., (2017) 

Control (no added 
ALG). ALG (containing 
10 % DHA). 

Continuous design 
lasting 120 days 

No effect Feeding ALG increased 
milk yield by 0.9 kg/ d (P 
< 0.01) 

Feeding ALG decreased 
milk fat % and yield (P < 
0.02). 

Stamey et 
al., (2012) 

Control (no added oil). 
29 g/d of DHA. 14.5 g/d 
DHA 

4 x 4 latin square design, 
14 d washout, 7 d of 
sampling

No effect No effect No effect 

Vahmani et 
al., (2013) 

Pasture system or 
confined system, 
supplemented with no 
oil (control) rumen 
protected ALG or 
rumen protected FO 

48 cows, fed treatment 
diets from 30 d pre-
partum till 90 days post-
partum 

No effect of lipid 
supplement 

No effect of lipid 
supplement 

ALG supplement reduced 
fat % but not yield 

Ventto et 
al., (2017) 

L (low concentrate diet 
FC ratio of 65:35, no 

Four Finish Ayrshire 
cows fitted with rumen 

Intake was higher in 
high concentrate 

No effect of treatment  Milk fat was lowest in HSO 
treatment, but higher in 
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added lipid). LSO (low-
concentrate diet  FC 
ratio of 65:35 
containing 50 g SO/ kg 
DM). H (high 
concentrate diet FC 
ratio of 35:65, no 
added lipid. HSO (high 
concentrate diet FC 
ratio of 35:65, 
containing 50 g SO /kg 
DM. 

cannulae were used in a 
4 x 4 latin square design, 
with 14-d adaption 
followed by 12-d of 
sampling 

diets, with no effect of 
lipid supplement 

LSO compared to H (P < 
0.01) 

Welter et 
al., (2016) 

Control (no added oil), 
3 % inclusion of canola 
oil, 6 % inclusion of 
canola oil on a DM 
basis 
 

18 mid-lactation cows, 
3x3 latin square design, 
14 d adaption, 7 d 
sampling 

- Decreased linearly with 
increasing inclusion of 
canola oil (P = 0.0001) 

Milk fat % and yield 
decreased linearly with 
increasing inclusion of 
canola oil (P = 0.009 and 
0.0002 respectively) 

1FO = fish oil; SO = sunflower oil; TMR = total mixed ration; FC = forage: concentrate ratio; DM = dry matter 
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1.7.2 Diet digestibility 

  In recent years FA metabolism and digestibility has received a lot of interest in 

order to provide information for optimal FA supplementation (Boerman et al., 2015). There 

has also been considerable research conducted on ways to reduce CH4 production in 

dairy cows by feeding PUFA (Martin et al., 2008; Chilliard et al., 2009). Dietary fat often 

decreases neutral detergent fibre (NDF) digestibility in sheep and steers (Weld and 

Armentano., 2017), but evidence of fat supplementation on NDF digestibility in dairy cows 

is lacking. It has been reported that UFA have a more negative effect on rumen 

fermentation than calcium salts or hydrogenated fats (NRC, 2001). This could be 

explained by the effects UFA have on the rumen microbial population, for example Maia et 

al., (2007) investigated in-vitro the toxicity of PUFA on rumen microbes, and reported that 

all cellulolytic bacteria and some butyrate-producing bacteria did not grow in the presence 

of PUFA at concentrations of 50 µg/ml, with toxicity of PUFA ranked as EPA > DHA > ALA 

> LA. Despite this, in a meta-analysis by Weld and Armentano (2017) that examined the 

effects of adding fat to diets of lactating dairy cows on  NDF digestibility, rumen NDF 

digestibility was not affected by fat supplementation, and it was suggested that the 

microbes responsible for fibre digestion were unaffected. Pirondini et al., (2015) reported 

an increase in whole-tract NDF digestibility when FO was supplemented to dairy cows, 

although the reason for this effect was unclear. In contrast, Stokes et al., (2015) reported 

a linear decrease in DM, organic matter (OM) and NDF digestibility when different levels 

of ALG (0, 10, 20, 30 % DM basis) was fed to sheep, and Martin et al., (2008) also 

reported a decrease in DM, OM, and NDF digestibility in dairy cows fed crude linseed, 

extruded linseed or linseed oil on a 5 % DM basis. To date, no studies have examined the 

effect of ALG supplementation on DM, OM or NDF digestibility in dairy cows. 

 

1.7.3 Milk FA profile 

  As discussed in section 1.4.3, there has been considerable interest in modifying 

the FA profile of ruminant products for the benefit of the consumer. Milk fat contains a high 

proportion of SFA and lower proportions of UFA compared with the dietary fat (Kliem and 

Shingfied, 2016). This is a consequence of rumen biohydrogenation (discussed in section 

1.6.4) or the incorporation of PUFA into cholesterol esters and phospholipids component 

of lipoproteins (discussed in section 1.3.3). Studies involving abomasum or duodenum 

infusion of oils have reported an enrichment of specific FA in milk by avoiding rumen 

metabolism. Kazama et al., (2010) infused dairy cows with linseed oil in the rumen and 

abomasum, and when administered through the abomasum compared to the rumen the 

milk fat content of ALA increased from 2.33 to 14.4 g/100 g FA. In another study by Loor 

et al., (2005), milk fat content of EPA and DHA was increased by duodenal infusion of FO 

compared to the control diet or when infused ruminally (EPA= 1.47 v 0.08 and 0.36; DHA 
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= 0.47 v 0.04 and 0.17). Diet is the main factor influencing milk fat composition, and a 

review from Kalac and Samkova (2010) comparing studies that have investigated the 

effects of season, different forage species and forage to concentrate ratio on milk FA 

profiles concluded that during the summer months, the proportion of ALA, C18:1 trans-11 

and CLA in bovine milk was higher than in the winter months, this is due to the oxidation 

of forage PUFA during wilting and drying. Organic milk from cows fed grass-clover silages 

instead of maize and concentrates had higher CLA and total n-3 content (Kalac and 

Samkova, 2010). Milk fat composition can also be altered directly by feeding cows with 

oilseeds, plant oils and marine lipids (Kliem and Shingfield, 2016). Previous studies have 

shown that feeding linseed oil to dairy cows can increase the milk fat content of ALA 

(Suksombat et al., 2016; Mustafa et al., 2003), and that feeding soyabean or sunflower oil 

can increase milk fat content of LA (AlZahal et al., 2008; Halmemies-Beauchet et al., 

2011). Despite the increase in total n-3 in milk fat by increasing milk fat content of ALA, 

increases in EPA or DHA is reported to be very low when feeding linseed oil (Suksombat 

et al., 2016), as it does not contain either FA.  

The literature shows that in order to increase the content of EPA and DHA in dairy 

products marine oils must be fed to dairy cows, and Table 1.7 provides a summary of 

studies that have modified milk FA profiles by feeding marine oils to dairy cows.  

Comparing studies can be difficult as some do not include a control diet, and many have 

different sources and durations of supplementation. Studies that have supplemented for a 

longer period of time have often milk sampled on more than one occasion, but despite this 

only report one mean value (Franklin et al., 1999; Sinedino et al., 2017). Despite the 

differences between studies, it is still quite clear that marine oils have the potential to 

substantially modify milk FA profile. The milk fat content of C18:0 is generally higher in 

milk from cows fed a control diet, and lowest in those fed marine oils (Table 1.7). Milk fat 

content of C18:1 trans is also greater in cows fed marine oils compared to control diet 

(Table 1.7). In general, the total content of SFA is also decreased whereas the total 

amount of PUFA is increased with oil supplementation (Table 1.7), demonstrating that the 

biohydrogenation of UFA to their saturated form has been reduced by marine oil 

supplementation. Figure 1.12 illustrates the difference in milk fat content of both EPA and 

DHA when cows in 8 studies that supplemented no oil, less than 200 g of oil or 200 g or 

more of marine oil per day. As the dietary inclusion level of the marine oil increased so 

does the milk fat content of both EPA and DHA.  

Rumen biohydrogenation leads to poor transfer efficiency of LC-PUFA from the 

diet to milk (Woods and Fearon, 2009). Wright et al., (1999) reported a linear decrease in 

the transfer efficiency of DHA with increasing inclusion levels of FO to dairy cows, with 

transfer efficiencies decreasing from 34.4 % to 10.9 % as the inclusion level of FO 

increased from 4.5 to 29.1 % of DMI.  More recently Moran et al., (2017) reported an 
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increase in transfer efficiency of DHA when 148 g of ALG was fed to dairy cows as the 

days of supplementation increased. The transfer efficiency increased from 10.4 % at day 

7 of supplementation to 21.6 % at day 84 of supplementation. Moran et al., (2018) 

conducted another study feeding 100 g of ALG per cow/d, and reported a lower transfer 

efficiency of 2.96 % at day 7 of supplementation that only increased to 7.08 % by day 84 

of supplementation. Therefore both the amount of oil supplemented and the duration of 

supplementation can affect transfer efficiency of DHA from the diet into milk. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

Table 1.7. Summary of studies examining the effect of marine oil supplementation to dairy cows on milk FA profile 

    Milk fatty acid composition (g/ 100 g FA) 
Study Sourcea Intakeb Durationc C18:0 C18:1 trans LA CLA ALA EPA DHA ƩSFA ƩPUFA 
AbuGhazaleh et 
al., (2009) 

FO 150 g/d 21 d 9.20 11.80 1.53 3.41 0.35 0.04 0.03 - - 

 FO + ALG 
100 g/d FO 
50 g/d ALG 

21 d 8.75 12.83 1.50 3.69 0.31 0.03 0.04 - - 

 FO + ALG 
50 g/d FO 
100 g/d ALG 

21 d 7.32 13.87 1.62 4.47 0.35 0.04 0.06 - - 

 ALG 150 g/d 21 d 6.85 13.53 1.77 4.21 0.29 0.04 0.05 - - 

Boeckaert et al., 
(2008) 

Control 0 21 d 10.2 2.04 1.89 0.51 0.50 - 0.09 65.5 3.06 

 ALG 2 % of fresh 21 d 3.59 11.62 1.37 1.18 0.42 - 1.10 53.9 4.70 
Franklin et al., 
(1999) 

Control 0 6 week 12.20 - 2.83 0.37 0.54 - 0.00 65.7 4.03 

 Protected ALG 910 g/d 6 week 4.96 - 2.54 2.31 0.49 - 0.76 61.6 6.47 

 Unprotected ALG 910 g/d 6 week 4.26 - 2.73 2.62 0.47 - 0.46 62.7 6.53 
Glover et al., 
(2012) 

Control (Pasture) 0 28 d - - 2.35 3.52 0.68 0.06 0.06 60.2 5.20 

 Pasture + ALG 200 g/d 28 d - - 2.56 4.18 0.83 0.08 0.26 61.3 6.54 

 Control (TMR) 0 28 d - - 2.26 3.12 0.38 0.06 0.10 66.9 4.58 

 TMR + ALG 200 g/d 28 d - - 2.43 3.59 0.35 0.05 0.22 61.9 5.45 

Moate et al., (2013) Control 0 30 d 6.65 - 1.39 0.57 0.77 0.08 0.04 75.4 5.62 

 ALG 125 g/d 30 d 4.67 - 1.73 1.37 0.80 0.07 0.36 70.8 8.14 

 ALG 250 g/d 30 d 2.01 - 1.75 1.99 0.69 0.11 0.60 70.6 9.82 

 ALG 375 g/d 30 d 1.39 - 1.57 2.04 0.58 0.17 0.91 71.9 10.4 

Moran et al., (2017) Control 0 84 d 10.92 1.99 2.35 0.30 0.34 0.03 0.00 71.9 3.41 
 ALG 148 g/d 84 d 9.74 7.03 2.42 0.86 0.86 0.05 0.37 67.8 4.32 
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Moran et al., (2018) Control 0 84 d 8.28 1.74 1.76 0.41 0.24 0.02 0.00 74.2 2.75 
 ALG 100 g/d 84 d 8.57 2.92 1.83 0.60 0.25 0.03 0.10 72.6 3.04
Rego et al., (2005) Control 0 28 d 11.97 5.92 2.51 2.25 0.99 0.07 0.06 54.8 - 

 FO 160 g/d 28 d 10.35 8.53 1.99 3.23 1.06 0.18 0.17 51.1 - 

 FO 320 g/d 28 d 7.68 11.96 0.65 3.64 1.03 0.33 0.43 46.7 - 
Sinedino et al., 
(2017) 

Control 0 78 d 11.04  2.45 0.40 0.27 0.02 
0.00

2
65.9 3.18 

 ALG 100 g/d 78 d 11.60  2.72 0.58 0.32 0.03 0.24 62.1 3.63 
aALG = microalgae; FO = fish oil; TMR = total mixed ration 
bIntake of supplemented fat 
cDuration the oil was supplemented for in days or weeks 
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Figure 1.12 Increase in milk FA content of EPA and DHA in dairy cows fed 0, less than 

200 g, or 200 g or more of supplemented marine oil (AbuGhazaleh et al., 2009; Franklin et 

al., 1999; Glover et al., 2012; Moate et al., 2013; Moran et al., 2017; Moran et al., 2018; 

Rego et al., 2005; Sinedino et al., 2017) 

 

1.7.4 Effect of long term supplementation of PUFA on milk FA profiles 

To date there has been limited research on the effect of long term feeding of n-3 

PUFA to dairy cows. Many studies that have been conducted have been latin square 

designs, which despite including adaptation periods may still include some carry over 

effects of feeding PUFA as reported by Smith et al., (1993). Many studies that have fed n-

3 PUFA for longer periods than 6 weeks often focused mainly on the effect of n-3 FA 

supplementation on fertility parameters (discussed in Section 1.9). Further limitations exist 

when looking at the effect of long-term feeding of PUFA on individual milk FA, as most 

studies have not reported the change in milk FA profile over time. A study by Bichi et al., 

(2013) reported the change in numerous FA profiles over a 54 d period when 

supplementing ewes with 8 g of ALG added to 25 g of sunflower oil or a control diet 

containing 25 g of sunflower oil. An increase in C18:1 trans-11 and cis-9, trans-11 CLA 

was initially reported at day 6, followed by a decline over the remainder of the study. In 

contrast C18:1 trans-10 increased from day 6 of the study. Similarly, trans-10, cis-12 CLA 

increased over the period of the study. This change in FA biohydrogenation intermediates 

indicate a shift in biohydrogenation, with the rumen microbes adapting to ALG 

supplementation (Bichi et al., 2013). The milk fat content of DHA was reported to reach at 

maximum at week 3 of supplementation, and then remained constant (Bichi et al., 2013). 

Similarly, Moran et al., (2017) reported an increase in milk DHA content of cows fed ALG 

that reached a maximum at 3 weeks of supplementation before remaining constant. In 

contrast, in a more recent study, Moran et al., (2018) fed a lower level of ALG (100 v 148 
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g/cow/d), and reported an increase in milk DHA content that reached a maximum at day 

54 of supplementation, which then decreased towards the end of the study (day 84). In 

contrast to all of the above, Shingfield et al., (2006) reported that milk DHA content of 

dairy cows reached a maximum at day 5 of FO and sunflower oil supplementation before 

levels decreased rapidly towards day 13 of the study. Existing research is therefore not 

consistent, with many studies using cows in late lactation, and no studies have 

supplemented cows in early lactation. Further investigation is therefore required in order 

to determine if rumen microbes adapt to PUFA with time with a decrease in milk DHA 

content. 

 

1.7.5 Quality of PUFA enriched dairy products 

Lipid oxidation is the process by which molecular oxygen reacts with UFA to form 

lipid peroxides (Walsh and Kerry, 2012). It’s one of the main factors affecting shelf life, as 

it can lead to significant changes in sensory properties including odour, texture, flavour 

and colour (Jacobsen, 2010). Fish and seafood products which contain higher levels of 

PUFA are more susceptible to lipid oxidation (Walsh and Kerry, 2012). The effect of 

feeding supplements high in PUFA to dairy cows have on the sensory characteristics of 

dairy products can vary depending on the degree of unsaturation of the FA (Chen et al., 

2004). Early studies have reported that dairy products high in PUFA have an oily texture, 

and give an oxidative, metallic, stale flavour (Wong et al., 1973; Kieseker and Eustace, 

1975). More recently Gonzalez et al., (2003) fed diets high in C18:1 cis-9 or high in LA to 

dairy cows, and reported that both treatments led to higher contents of UFA in butter and 

ice cream compared to the control diet. A reduction in the firmness of both butter and ice 

cream was observed with an increase in the UFA content of the dairy products but no 

difference was detected in the flavour evaluation (Gonzalez et al., 2003). In agreement to 

the findings of Gonzalez et al., (2003), Mallia et al., (2008) also identified no difference in 

the aromas characteristics of butter high in PUFA assessed by trained panellist. Further 

research is required on the oxidative stability of highly unsaturated dairy products. 

 

1.8 The oestrus cycle of the dairy cow 

1.8.1 Endocrine regulation 

Cattle are polyoestrus animals, having more than one period of oestrus per year 

(Hafez and Hafez., 2000). The length of the bovine oestrous cycle can range from 18-24 

days, averaging 21 (Forde et al., 2011). The cycle consists of two discrete phases: the 

luteal phase (lasting 14-18 days) and the follicular phase (lasting 4-6 days). The oestrus 

cycle involves the integration of multiple regulatory signals to stimulate follicle growth and 

maturation, ovulation of the preovulatory follicle, and synthesis of gonadal steroid and 
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peptide hormones (Cargile and Tracy, 2014). Figure 1.13 illustrates the oestrus cycle and 

follicular waves in the bovine. 

Day 0 of the oestrus cycle is when the female displays oestrus by standing to be 

mounted or is restless and vocal, which can last from 2-24 hours. An elevation in 

circulating concentrations of oestriadol-17β (E2) from the ovaries that is associated with 

enhanced follicular steroidogenesis during follicle development induces oestrus (Hansel 

and Convey., 1983). Increased concentrations of E2 reaches a threshold 12-18 hours 

before the onset of oestrus, and along with a decrease in circulating concentration of 

progesterone (P4) released from the ovaries, triggers a pre ovulatory surge in 

gonadotrophin-releasing hormone (GnRH) from the hypothalamus (Rahe et al., 1980). A 

surge in GnRH induces a coincidental surge in follicle-stimulating hormone (FSH) and 

luteinising hormone (LH) from the anterior pituitary (Rahe et al., 1980). Approximately 30 

hours after the onset of oestrus, ovulation is induced followed by an immediate decline in 

circulating concentrations of E2 (Hafez and Hafez, 2000). The dominant follicle will only 

ovulate when serum P4 concentrations are basal and LH pulses occur every 40-70 min for 

2-3 days (Hafez and Hafez, 2000).  

 

Figure 1.13. The oestrus cycle and follicular waves in the bovine. P4 – progesterone, E2 - 

oestriadol-17β, FSH – follicle stimulating hormone, LH - luteinising hormone (Forde et al., 

2011). 

 

Ovulation is followed by the luteal phase of the oestrus cycle (Forde et al., 2011). 

The first 3-4 days of the luteal phase is also known as met-oestrus, and is characterised 

by the formation of the CL from the collapsed ovulated follicle (Forde et al., 2011). The 
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follicular cells undergo functional transformation into luteal cells, which synthesise and 

release P4 in readiness for the establishment of pregnancy and /or resumption of the 

oestrus cycle (Alila and Hansel, 1984). Following met-oestrus, the later stages of the 

luteal phase is known as di-oestrus (Hafez and Hafez, 2000). During di-oestrus P4 levels 

reach their peak approximately 8 days after ovulation and remain elevated (Cargile and 

Tracy, 2014).  During this phase concentrations of FSH and E2 fluctuate in association 

with waves of follicular growth, however these dominant follicles that grow during the 

luteal phase of the oestrus cycle do not ovulate (Cargile and Tracy, 2014). Due to P4 

during the luteal phase of the oestrus cycle, negative feedback result in concentrations of 

circulating LH pulses that are too infrequent and inadequate for the ovulation of the 

dominant follicle (Rahe et al., 1980). At approximately day 17 of the oestrus cycle in the 

cow, luteolytic pulses of 13-14-dihydro-15keto prostaglandin F2α (PGF2α) are released by 

the endometrium causing luteal regression and a decrease in the concentrations of 

circulating P4 (Hansel and Convey., 1983). With reduced P4 concentration, the restraint on 

the release of GnRH and LH ceases, and the frequency of GnRH and LH release 

increases, bringing an end to the luteal phase and starts the follicular phase, known as 

pro-oestrus (Forde et al., 2011).  With increased gonadotropin concentrations, follicle 

growth and maturation is promoted as well as elevations in E2 concentrations and 

ultimately oestrus behaviour (Cargile and Tracy, 2014). The cyclic changes in 

gonadotropin and ovarian hormone release, and the resulting follicular activity are usually 

recurrent, except when pregnancy is established or the cow is suffering from a 

pathological condition (Forde et al., 2011). The majority of postpartum dairy cows will 

resume normal ovarian activity and ovulation within 15-45 days postpartum (Forde et al., 

2011).    

 

1.8.2 Function of the corpus luteum 

The growth and demise of the CL during the oestrus cycle represents one of the 

most rapid dynamic processes in the body (Alila and Hansel, 1984). At ovulation, antral 

contents are evacuated and the wall of the ovulatory follicle collapses (Forde et al., 2011). 

The theca and granulosa cells of the pre-ovulatory follicle undergo vascularisation and 

luteinisation to form luteal cells, which is stimulated by LH (Alila and Hansel, 1984). These 

cells expand beyond the volume of the former follicular antrum, forming a functional CL 

(Alila and Hansel, 1984). Plasma P4 levels are highly correlated with CL weight, volume, 

histomorphology, and ultrasound morphology, and is crucial for determining the duration 

of the oestrus cycle (Siqueira et al., 2009 ; Skarzynski et al., 2003). The function of the CL 

is to produce sufficient concentrations of P4 throughout the luteal phase of the oestrus 

cycle to maintain pregnancy and during pregnancy to decrease gonadotrophin secretion 

and prevent behavioural oestrus occurring (Forde et al., 2011). Additionally the sustained 
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increase in P4 concentration during the luteal phase of the oestrus cycle is involved in 

altering the expression pattern of genes in the uterus (Forde et al., 2011). These altered 

genes are important in order to initiate uterine receptivity, whether the cow is pregnant or 

not (Forde et al., 2011). If maternal recognition of pregnancy has not occurred by day 16 

of the oestrus cycle, luteolysis of the CL occurs (Forde et al., 2011). Oxytocin receptors in 

the uterus binds oxytocin in the blood which proliferates the pulsatile secretion of PGF2α 

(the major luteolytic hormone in ruminants) from the uterus, and induces the regression of 

the CL (Siqueira et al., 2009). Since the early 1970’s when PGF2α was recognised as the 

natural luteolytic hormone in cattle, it has been commonly used as a treatment for the 

induction and synchronization of oestrus in cattle (Odde, 1990). Studies have shown that 

the maturity of the CL at the time of PGF2α treatment influences the luteolytic response, as 

PGF2α does not induce luteolysis effectively during the first 5-6 days following oestrus 

(Momont and Seguin., 1984). This lack of responsiveness is still unclear, but it has been 

suggested that the mature CL may possess a positive feedback loop involving luteal 

oxytocin and tumor necrosis factor α (TNFα) that causes the release of endometrial 

PGF2α, sustaining luteolysis (Skarzynski et al., 2003). If this prediction is true multiple 

injections of PGF2α will be required to complete luteolysis in an immature CL (Skarzynski 

et al., 2003).  

 

1.8.3 Maternal recognition of pregnancy 

Maternal recognition of pregnancy involves the process of generating signals that 

prevent luteal regression, allowing the CL to be preserved and continue to secrete P4 

(Cargile and Tracy, 2014). In cattle, secretion of interferon tau (IFNT) by the bovine 

conceptus along with P4 stimulates luteotropic (a signal that stimulates luteal secretion of 

progesterone) and antiluteolytic (signals that block luteolysis by inhibiting endogenous 

luteolytic signals) signals, and it’s secretion has been found to be highest at days 15-17, 

but has been observed up to day 28 of pregnancy (Arosh et al., 2004). This maternal 

recognition of pregnancy signal occurs in advance to the implantation of the conceptus, 

which begins during the third week of pregnancy (Cargile and Tracy, 2014). Elevated 

concentrations of IFNϮ from the conceptus will selectively increase the ratio of PGE2 to 

PGF2α (Asselin et al., 1997). This leads to an antiluteolytic effect on IFNϮ and a luteotropic 

effect on PGE2 which eventually leads to prolonged CL lifespan and proper establishment 

of pregnancy (Arosh et al., 2004). In contrast an elevated ratio of PGF2α to PGE2 will 

stimulate uterine contractility and transport of PGF2α towards the CL, initiating luteal 

regression, which can lead to pregnancy failure and a return to a new oestrus cycle 

(Lemley et al., 2015). Therefore prevention of CL regression and continual secretion of 

adequate P4 is vital for successful maintenance of pregnancy to term. Progesterone is 

also vital in influencing the early uterine environment, increasing glandular uterine 
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secretions of nutrients and growth factors which are essential for early conceptus 

development (Lemley et al., 2015). 

 

1.9 Nutrition and fertility  

1.9.1 Factors affecting reproduction 

Over the past five decades fertility in the dairy cow has declined as milk production 

per cow has increased (Walsh, 2011), although in recent years a slight improvement has 

been seen due to improved genetic selection (Berry et al., 2014). Reduced fertility 

includes delayed resumption of oestrous cycle post-partum, greater incidence of abnormal 

oestrous cycles and poorer conception rates to first and subsequent inseminations (Pryce 

et al., 2004). The lengthening of calving intervals in dairy cows has already been observed 

in the USA, UK and Portugal (Otto et al., 2014). Fertility is a multi-factorial trait and its 

deterioration has been caused by a combination of genetic, environmental and managerial 

factors and their interactions, making it difficult to determine the exact reason for its 

decline (Walsh et al., 2011).  All commercial dairies desire the establishment and 

maintenance of a subsequent pregnancy as soon as possible following parturition, which 

would lead to another parturition and lactation cycle (Cargile and Tracy, 2014).  

Successful reproductive efficiency in the dairy cow requires a low level of disease 

during the transition period, high submission rates to artificial insemination (AI), and high 

pregnancy rates per service. Other than infectious disease, the largest contributor to poor 

reproductive efficiency is the nutritional status of the cow (Lanyasunya et al., 2005). The 

nutritional status of the dairy cow involves the interaction between macronutrients and 

micronutrients and herd level management (Cargile and Tracy, 2014). In high-yielding 

dairy cows nutrition can have a significant effect on resumption of the ovarian cycle post-

partum and on subsequent conception rates (Fouladi-Nashta et al., 2009). Dairy cows 

often experience negative energy balance at the beginning of lactation because the 

energy requirement for both metabolic processes and milk synthesis outweigh the amount 

being replenished through the diet (Otto et al., 2014). Poor nutrition during the transition 

period (3 weeks before parturition and 3 weeks post parturition) can result in reduced 

levels of plasma glucose, insulin, and low LH pulse frequency with increased β-hydroxy 

butyrate (BHB), non-esterified fatty acids (NEFA) and triacylglycerol plasma levels 

(Roche, 2006). In these conditions cows must mobilize lipids and protein reserves, 

increasing the incidents of metabolic diseases such as hypocalcaemia, acidosis, ketosis, 

and fatty liver which can then result in secondary metabolic diseases such as displaced 

abomasum (Roche, 2006). These metabolic disorders can reduce the reproductive 

efficiency of the cow.  
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1.9.2 Embryonic losses 
Most embryonic losses in cattle occur before day 16 of pregnancy (Diskin and 

Morris, 2008.) At this stage of development some embryos may not have reached an 

appropriate size to inhibit the synthesis of PGF2α during the critical stages of maternal 

recognition of pregnancy (Childs et al., 2008). Inhibition of the synthesis of PGF2α could 

therefore increase the rates of embryo survival and pregnancy. Omega-3 PUFA such as 

EPA may inhibit uterine secretions of PGF2α by competing with AA by means of COX, and 

DHA may compete with AA for PLA2 enzymes (Mattos et al., 2000).  This statement has 

been supported in studies carried out in vitro, which have demonstrated that EPA and 

DHA FAs can reduce the biosynthesis of the PG of the series 2 in cells and tissues 

(Mattos et al., 2003). In vivo studies have also reported a decrease in endometrial PG 

secretion along with a reduction in the secretion of AA and an increase in the 

concentrations of EPA in the endometrial phospholipid (Herrera-Camacho et al., 2011). In 

a recent study by Sinedino et al., (2017), ALG supplementation improved conception rates 

to 1st and 2nd AI. In this study a reduction in the concentration of AA and gamma-linoleic 

acid in the plasma phospholipids was reported along with an increase in plasma DHA, 

limiting the amount of precursors available for the production of series 2 PG in the uterus 

(Sinedino et al., 2017).   

 

1.9.3 Effect of dietary fats on reproduction in dairy cows 

The diet of dairy cows are often supplemented with fat primarily to increase the 

energy density of the feed improving the energy status of the cow and enhancing animal 

performance by improving production, growth and reproduction (Santos et al., 2008).  

Several studies have reported an improved reproductive performance in lactating dairy 

cows fed supplemental fats (Mattos et al., 2000).  

It has been suggested that the improvement in fertility by fat supplementation is 

not primarily a result of improved energy balance of the cow but is due to the effects of the 

dietary FA, especially the n-3 and n-6 FA families on reproductive responses in the 

pituitary, ovaries and uterus (Santos et al., 2008). Dietary fat favours reproductive function 

by supplying energy and by actions on the reproductive process (Sinedino et al., 2017). 

Supplementation of dairy cows with fat was shown by Park et al., (1983) to increase 

intestinal synthesis of lipoprotein-cholesterol. This was supported by Bao et al., (1995) 

that diet changes in fat metabolism in cattle may modulate ovarian physiological 

processes by changing the availability of lipoproteins to the ovaries. These lipoproteins 

provide substrates for the steroid hormones (Bao et al., 1995). Cholesterol is reported to 

be the precursor for the synthesis of steroid hormones, the most important of these being 

P4 and E2 (Ball and Peters, 2004). Cholesterol is synthesised from acetate inside the cell, 

or is alternatively taken up from the blood (Ball and Peters, 2004). Another benefit to fat 
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supplementation is increased availability of FA precursors which increases steroid and 

eicosanoid secretion (described in section 1.3.3), which can alter ovarian and uterine 

function and affect pregnancy rates (Mattos et al., 2000). Reproduction in cattle therefore 

may be influenced more by the type of fat fed than how much is fed (Santos et al., 2008), 

and this concept is both important and challenging because as described earlier in section 

1.6.4, ruminants extensively hydrogenate PUFA, limiting their supply for absorption in the 

small intestine. This makes fat supplementation of PUFA in the ruminant’s diet and an 

improvement in the extent of delivery of these PUFA for absorption very important.  

 

1.9.4 Dietary FA and their effect on reproduction 

Previous studies of feeding different FA to cattle have shown a number of effects 

on reproductive function (Table 1.8), although responses have not been consistent. Most 

studies on the effect of supplemental fats on reproduction have compared n-3 rich and n-6 

rich diets, with the n-3 diets usually consisting of ALA in the form of linseed oil, with a few 

evaluating the use of FO, which is rich in both EPA and DHA. Studies evaluating the 

effects of supplemental ALG, which is a rich source of DHA on reproductive performance 

in ruminants is limited, therefore further work is required in this field. 

Petit et al, (2002) reported that feeding formaldehyde treated linseed (rich in ALA) 

increased the CL diameter and tended to decrease the concentration of PGFM in plasma 

in response to an oxytocin challenge. As discussed earlier, the size of CL corresponds to 

the amount of P4 it secretes, and therefore a larger CL would secrete a greater amount of 

P4 leading to improved IFNϮ signalling and consequently a stronger recognition of 

pregnancy (Binelli and Thatcher, 1999). This could explain the improvement in conception 

rate found when cows were fed an increased level of ALA in another study by Petit et al in 

(2001). Similar to Petit et al., (2002), Childs et al., (2008) reported an increase in the size 

of the CL at day 7 of the oestrus cycle as the inclusion level of FO increased in the diet of 

the cows. Both FO and linseed oil are rich in n-3 FA, but the type of n-3 is different as FO 

are rich in LC n-3 PUFA compared to the shorter chain ALA found in linseed. This 

difference in type of n-3 may explain why Elis et al., (2016) reported an increase in the 

number of follicles and their size when FO was fed to dairy cows compared to soybeans 

but Fouladi-Nashta et al., (2009) reported no differences in follicle numbers or sizes when 

comparing Megalac,  soybean and linseed diets.  

Milk and plasma P4 levels have also been reported to increase with dietary n-3 

supplementation; Childs et al., (2008) reported that P4 levels were higher as the inclusion 

level of FO increased in the diet, and Petit et al., (2001) reported an increase in P4 when 

linseed was fed in comparison to Megalac. Both these results coincided with an increase 

in CL diameter. Another measurable fertility parameter is plasma concentrations of PGFM, 

the metabolite for PGF2α (Wischral et al., 2001). The pulsatile secretion of PGF2α during 



56 
 

the oestrus cycle mediates the regression of the CL, and feeding LC n-3 PUFA has been 

reported to reduce uterine PGF2α secretion, and consequently a reduction in PGFM 

(Gulliver, 2012). A reduction in PGF2α production would prevent the luteolysis of the CL 

and may prevent early embryo loss by helping with maintaining pregnancy (Otto et al., 

2014). Mattos et al., (2004), Petit and Twagiramungu, (2006) and Robinson et al., (2002), 

all reported a decrease in plasma concentration of PGFM when feeding FO or linseed oil 

compared to olive oil, Megalac, soyabean or a control diet to dairy cows.  However some 

findings are inconsistent, with Moussavi et al., (2007) reporting no difference in PGFM 

levels following feeding fish meal compared to a control diet. The inconsistency in results 

could be due to the duration of treatments which differ between studies from feeding the 

dietary treatments prepartum to not feeding them until 3 weeks postpartum. The treatment 

diets also differed in the amount of oil fed, which range from 65 to 700 g/cow per day. The 

quality of the forage in the basal diet may also have an effect, Bellows et al., (2001) was 

unable to improve pregnancy rate when a ration containing 6.5% fat was supplemented 

compared to a control diet, despite reporting an improvement in pregnancy rate in the first 

study when fat supplement were fed at a lower rate of 5.1% to beef heifers (Bellows et al., 

2001). It was concluded that the better quality forage could have provided additional 

nutrients and in the study of Bellows et al., (2001) the fat effects of the supplement were 

masked.   Many studies also don’t include a control diet, making it harder to conclude 

whether the reduction in PGFM is due to the LC n-3 PUFA diet, or because the n-6 rich 

diet caused an increase in PGFM secretion. 
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Table 1.8 Summary of studies examining the effects of diets containing either n-3 or n-6 PUFA on reproduction responses in cattle 

Study 
Total no. of 
cows 

Treatment dietsa 
Duration of 
treatment

Main findingsb 

Childs et al., (2008) 
40 cross 
bred heifers 

1) Control 
2) 65 g FO 
3) 140 g FO 
4) 275 g FO 

45 days 

Plasma P4 was higher in the high FO inclusion 
level compared to the low inclusion level. The 
CL on day 7 of oestrus increased in size as the 
inclusion level of FO increased from the control 
to the medium diet. PGFM concentration was 
highest in the higher FO inclusion treatment. 

Elis et al., (2016) 
25 Holstein 
dairy cows 

1) FO 
2) Soyabeans 

Over two 
consecutive years 
in a switchback 
design 

Oestrous duration was shorter in FO fed cows. 
There was a trend towards increased number of 
follicles and reduced early embryo mortality with 
the FO diet 

Fouladi-Nashta et 
al., (2009) 

12  Holstein 
dairy cows 

1) Megalac 
2) Soyabean (n-6) 
3) LIN (n-3) 

3x3 latin square 
design of 3 periods 
of 25 d duration, 
with 2 d adaption, 
allocated from 40-
46 d postpartum

Number of follicles and their size did not differ 
between dietary treatments. 

Moussavi et al., 
(2007) 

25  Holstein 
dairy cows 

1) Control 
2) 1.25% Menhaden FM 
3) 2.5% Menhaden FM 
4) 5% Menhaden FM 
5) 2.3% Ca salts of fish oil 
FA 

From day 5-50 
postpartum 

Size of the dominant follicle increased as the 
inclusion level of fish meal increased. PGFM 
response not significantly different. 

Mattos et al., 
(2004) 

17 Holstein 
cows, 9 
heifers 

1) 200g FO 
2) 200g Olive oil 

From 21 d pre 
partum till 21 d 
postpartum   

Cows fed FO had reduced blood plasma 
concentration of PGFM compared to olive oil 
during the first 3d postpartum 

Moallem et al., 
(2013) 

42  Holstein 
dairy cows 

1) Encapsulated SFA, 240 
and 560 g/d per cow 
prepartum and postpartum 
respectively 

From day 256 of 
pregnancy until 
100 d postpartum 

Number of follicles was greater in LIN and FO 
treatments but size of dominant follicle did not 
differ. Folliculogenesis in the ovaries was 
increased in both LIN and FO treatments. 
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2) LIN, 300 and 700 g/d per 
cow prepartum and 
postpartum respectively 
3) FO at 300 and 700 g/d 
per cow prepartum and 
postpartum respectively

Petit and 
Twagiramungu, 
(2006) 

138  
Holstein 
dairy cows 

1) Whole LIN (n-3) 
2) Megalac 
3) Micronised Soyabeans 
(n-6) 

From calving until 
pregnant/ 120 d 
postpartum 

Conception rate was similar between 
treatments. Embryo mortality was higher when 
megalac and micronized soyabeans was fed. 
Mean value of plasma PGFM was lower in LIN 
fed cows, which also had a lower PGFM peak. 

Petit et al., (2001) 
35  Holstein 
dairy cows 

1) Megalac 
2) Extracted LIN 

Week 9-19 
postpartum 

Length of oestrus cycle was shorter when fed 
megalac, conception rate to 1st AI was higher 
when fed LIN (87.5%). Mean P4 value and peak 
was higher when fed LIN, with a peak of 35.2  
µg L-1 

Robinson et al., 
(2002) 

22 Fresian 
– Holstein 
cows 

1) Control 
2) LIN (n-3) 
3) Soyabean meal (n-6) 

For three oestrus 
cycles 

Number of follicles on d5 was greater in cows 
fed soyabean meal but by d15 the number of 
follicles was greater in cows fed soyabean meal 
or LIN in comparison to the control. PGFM 
concentrations was higher in the soyabean 
meal fed cows compared to the control and LIN 
treatments.

Sinedino et al., 
(2017) 

1800 
Holstein 
dairy cows 

1) Control 
2) DHA enriched ALG 

From 3 weeks 
postpartum  for 
120 d 

Pregnancy rate to 1st and 2nd AI was 
significantly higher in ALG fed cows, ALG 
increased the proportion of primiparous cows 
that resumed oestrous cyclicity.

aDietary treatments; FM= fish meal, LIN = linseed oil, FO = fish oil, ALG = algae, Ca = Calcium, FA = fatty acids 
bMain findings; PGFM response = prostaglandin F2α metabolite (13-14-dihydro-15keto prostaglandin F2α) response to an oxytocin 
injection, P4 = progesterone 
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1.10 Summary of literature review 

  For the long-term benefit of human health, there is considerable interest in altering 

the FA profile of dairy products, particularly in increasing the content of health promoting 

LC-PUFAs, such as EPA and DHA. Milk FA are easily altered by dietary manipulation, 

with animals reared on pasture having been shown to have an improved milk FA 

composition, rich in ALA. From previous studies, marine oil supplementation has shown 

great potential to increase milk DHA content, although information on level of inclusion 

and adaptation over time is lacking. Over the past few decades fertility in the dairy cow 

has declined as milk production has increased. Previous studies have revealed that 

supplementation of LC n-3 PUFA has the potential to improve fertility. Additional studies to 

define the effect of feeding ALG on animal performance, diet digestibility, changes in milk 

FA profiles, and fertility are therefore required. 

 

Hypothesis 

That dietary manipulation of dairy cows with ALG rich in DHA will improve the milk FA 

profile, with an increase in health promoting DHA that will be maintained over time, and an 

improvement in indicators of dairy cow fertility.  

 

Objective and aims 

The objectives of these studies were to determine the effect of different inclusion levels of 

ALG on the biohydrogenation of FA in vitro and on milk FA profile in vivo. A secondary 

aim was to investigate the effect of altered milk FA profile on cheese yield and sensory 

characteristics. A third objective was to determine the long term effect of supplementation 

of ALG on milk FA profile, and the effect on indicators of fertility, including plasma PGFM 

concentrations, milk P4 levels and conception rate. 

 

The studies conducted will aim to: 

 Understand the biohydrogenation pathways of LC-PUFA 
 Investigate further the correlation between CH4 output and LC-PUFA toxicity 

towards rumen microbes by measuring biohydrogenation 

 Give further information on the mechanism behind milk fat depression by looking 
at the correlation (if any) between milk fat depression and certain milk FAs 

 Determine the effect milk high in PUFA will have on the sensory characteristics of 
cheese 

 Investigate the effect PUFA has on fertility, concentrating on the effect n-3 FA has 
on plasma PGFM concentration 

 Determine if ALG supplementation can improve conception rates 
 Investigate the effect ALG supplementation has on milk P4 levels on certain days 

post AI 
 Understand the effect of long-term feeding of PUFA on individual milk FA to help 

determine if a shift in biohydrogenation pathways occurs  
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CHAPTER 2: Materials and Methods 

2.1 Proximate analysis of samples 

2.1.1 Dry matter determination 

Dry matter content of the basal diets, total mixed ration (TMR) and faecal samples 

was determined according to the Association of Official Analytical Chemists (AOAC, 2012; 

934.01). A subsample of the basal diet or bulked TMR were accurately weighed and oven 

dried at 105 °C for 48 hrs, until constant weight. Bulked faecal samples were oven dried at 

70 °C (Philip Harris Ltd, England) for 48 hr, until constant weigh was reached. Samples 

were cooled in a desiccator and re weighed. Dry matter was calculated as: 

DM (g/kg) = 
ௐ௘௜௚௛௧	௢௙	ௗ௥௬	௦௔௠௣௟௘	ሺ௚ሻ

ூ௡௜௧௜௔௟	௦௔௠௣௟௘	௪௘௜௚௛௧	ሺ௚ሻ
 x 1000             Equation 1 

 

2.1.2 Ash and organic matter determination 

Ash content of dried feed and faecal samples was determined according to the 

AOAC (2012; 924.05). Approximately 4 g of previously oven dried samples was accurately 

weighed into labelled pre weighed porcelain crucibles and heated overnight at 550 °C in a 

muffle furnace (Carbolite AAF 1100, Hope Valley, England). Samples were then cooled in 

a desiccator and re weighed. Ash content was calculated as: 

 

Ash (g/kg DM) = 
ௐ௘௜௚௛௧	௢௙	௔௦௛	ሺ௚ሻ

ூ௡௜௧௜௔௟	௦௔௠௣௟௘	௪௘௜௚௛௧	ሺ௚ሻ
 x 1000                               Equation 2 

Organic matter (OM) was calculated as:     

OM (g/kg DM) = 1000 – ash weight (g)             Equation 3 

 

2.1.3 Crude protein determination 

Crude protein (CP) content of dried feed was determined according to AOAC 

(2012; 988.05). Approximately 0.15 g of dried sample was accurately weighed into 

aluminium foil trays to determine N concentration using a C/N analyser (type FP-528, 

LECO Instruments, St. Joseph, MI, USA), operating the Dumas method (AOAC, 2000). 

 

CP (g/kg DM) = total nitrogen (g/kg DM) x 6.25            Equation 4 

 

2.1.4 Neutral detergent fibre determination 

Neutral detergent fibre content of dried feed and faecal samples was determined 

according to Van Soest et al., (1991) using fibretec apparatus (1020, FOSS, Warrington, 

UK). Approximately 0.5 g of sample was accurately weighed into a pre- weighed glass 
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crucible (porosity 1, Soham Scientific, Ely, UK) and placed into the apparatus. Neutral 

detergent reagent was made up by firstly dissolving 93 g of disodium ethylene diamine 

tetra-acetae dehydrate and 34 g of sodium borate in 3 L of deionised water. To this 

solution 150 g of sodium lauryl sulphate and 50 ml of tri-ethylene glycol was added. In 

another beaker 22.8 g of anhydrous disodium hydrogen phosphate was dissolved in 

approximately 500 ml of deionised water. Both solutions were then mixed and made up to 

5 L using deionised water. The pH was adjusted to between pH 6.9 and 7.1 using either 

0.1 M NaOH or 0.1 M HCl. Exactly 25 ml of the neutral detergent reagent and 0.5 ml of 

octan-1-ol (FOSS, Warrington, UK) was added to each sample. Samples were boiled for 

30 min, then an additional 25 ml of cold neutral detergent reagent and 2 ml of α-amylase 

from Bacillus subtilis (MP biomedicals, LLC, UK) was added. Samples were boiled for a 

further 30 min, drained and washed 3 times with 30 ml of hot water under vacuum. A 

further 25 ml of hot water and 2 ml of α-amylase was added to each sample and after 15 

min the samples were drained and washed under vacuum. The crucibles were removed 

from the apparatus and put in the oven set at 105 °C overnight. After drying, the samples 

were cooled in a desiccator, weighed and then placed in a muffle furnace at 550 °C 

overnight. Crucibles were cooled in a desiccator and re weighed. 

 

NDF (g/kg DM) = 
௥௘௦௜ௗ௨௘	௪௘௜௚௛௧	ሺ௚ሻି௔௦௛	௪௘௜௚௛௧	ሺ௚ሻ

௦௔௠௣௟௘	௪௘௜௚௛௧	ሺ௚ሻ
 x1000           Equation 5 

 

2.2 TMR and rumen fluid analysis 

2.2.1 Determination of the FA content of TMR and rumen fluid samples 

The FA content of dried TMR and freeze dried samples was determined according 

to Jenkins, (2010). The dried TMR samples were milled (Delongh KG 79, UK) to pass 

through a 2 mm screen, and the freeze dried rumen fluid were milled using a mortar and 

pestle, and 500mg accurately weighed into 50 ml glass Pyrex tubes and 2 ml of sodium 

methoxide (0.5 M in methanol) and 1 ml of FA internal standard (nonadecanoic acid) 

C19:0 (2 mg/50 ml methanol) added. The tubes were then vortexed for 5 seconds and 

incubated at 50 °C in a water bath (Grant Instrument Ltd, Cambridge) for 10 min, then 

cooled for 5 min, and 3 ml of 0.5 M HCl in methanol (GC derivatization; Sigma) added 

before incubation at 80 °C in a water bath for 10 min. After cooling for 7 min, 3 ml of 

hexane (>99.0 % GC; Sigma) was added followed by 10 ml of 6 % potassium carbonate 

(K2CO3), and the sample vortexed for 5 min. Anhydrous sodium sulphate (1 g) was then 

added along with 0.5 g of activated charcoal before centrifuging at 500 xg for 5 min, at 4 

°C, (Refrigerated Centrifuges SIGMA 3-16PK). The solvent layer was extracted using a 

glass pipette into gas chromatography (GC) vials, and filtered using a 13 mm syringe filter 
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with a 0.22 um cellulose acetate membrane (Restek, Bellefonte, USA). The vials were 

stored at -20 °C prior to subsequent GC analysis. 

Fatty acids were identified using a GC (model HP6890, Germany) fitted with an 

automatic sampler, flame ionization detector and 100 m column (CPSil88, Agilent 

Technologies, UK) as described by Lock et al., (2006). The oven temperature started at 

70°C, was held for 2 min, followed by an increase of 8 °C/min until it reached 110 °C, held 

for 4 min, then increased 5°C/min to reach 170°C, held for 10min, and finally increased at 

4 °C/min to 225 °C and held for 15 min. Each sample had a run time of 61.75 min and a 

post run time of 1 min at 70 °C. Peaks were identified by comparison of retention time with 

individual FAME standards (Sigma-Aldrich, UK) and corrected for recovery factors 

(Kaylegian et al., 2009). 

 

2.2.2 Calculating FA content of TMR and rumen fluid samples 

The individual FA content per vessel containing rumen fluid or TMR samples was 

calculated following the removal of the internal standard (IS), with C21:0 used as the 

internal standard for rumen fluid and C19:0 for TMR samples. 

 

Corrected individual FA area (g/100g) =              Equation 6 

  

൬
Individual	FA	area	ሺg/100gሻ	
100	 െ 	IS	area	ሺg/100gሻ	

൰ 	x100 

                                     

 

The corrected mg of total FA/g DM was then calculated as 

Total FA/g DM =                Equation 7 

 

൭൬
IS	ሺmgሻ

Area	IS	/	total	FA	area
൰ െ IS	ሺmgሻ	added൱ 	x	

1
weight	of	residue	extracted	ሺmgሻ

 

 

 

The mg of individual FA/g DM was calculated as: 

Individual FA content (mg/g DM) =               Equation 8 

 

൬
Total	FA	content	ሺmgሻሻ

	100
൰ 	x	corrected	individual	FA	area	ሺg/100gሻ 
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2.3 Determination of whole tract digestibility by acid insoluble ash 

Acid insoluble ash (AIA) was used as a marker to estimate feed digestibility (Van 

Keulen and Young, 1977) and was determined by weighing duplicate samples of 4 g of 

previously dried and ground faecal samples into ceramic crucibles and ashed in a muffle 

furnace (Carbolite AAF 1100, Hope Valley, England) for 4 h at 550°C, cooled and re-

weighed. The ash residue was transferred into kjeldahl digestion tubes (Foss Tecator 

Digestor Unit, Hilleroed, Denmark) and 100 ml of  2M Hydrochloric acid added. Samples 

were boiled at 15 0°C for 10 min on the digester unit. After cooling the hydrolysate was 

filtered (Whatman No 41 filter paper, Fisher Scientific, UK) and washed with hot distilled 

water. The filer paper with ash residue was transferred back into the crucible and ashed 

for 12 h at 470 °C, cooled and re-weighed. 

 

AIA = 
ௐ௘௜௚௛௧	௢௙	௖௥௨௖௜௕௟௘	ሺ௚ሻା௔௦௛ି௪௘௜௚௛௧	௢௙	௖௥௨௖௜௕௟௘	ሺ௚ሻ

ௐ௘௜௚௛௧	௢௙	ௗ௥௬	௦௔௠௣௟௘	ሺ௚ሻ
 x100                      Equation 9 

 

2.4 Milk sample analysis 

2.4.1 Milk compositional analysis 

For Experiment 2 milk compositional analysis (protein, fat and lactose content) 

was determined using a Milkoscan Minor 78110 auto analyser (Foss Electric, Denmark) 

that had been calibrated using standard samples (Eurofins ®, Wolverhampton, UK). Milk 

samples were collected from am and pm milkings and preserved using broad spectrum 

microtabs II (Advanced Instruments, inc, Massachusetts, USA) and stored at 4 °C. 

Samples were shaken and warmed to 40 °C for 15 min in a water bath (Clifton ®, Nickel 

Electro Ltd.UK) prior to analysis. 

 

2.4.2 Fat extraction for FA determination (method 1) 

Fat extraction in Experiment 2 followed the procedure of Hara and Radin (1987). 

Milk samples from individual cows were corrected for am and pm yield to produce 35 ml 

and placed into a 50 ml conical plastic tube. The bulked milk samples were centrifuged 

(Beckman, Avanti 30 Centrifuge, Harbor Boulevard, California) at 17,800 xg for 30 min at 

8 °C.  After centrifugation, approximately 300 mg of fat cake was transferred to 16 x150 

extraction tubes (pre-rinsed with hexane) and 18 ml of hexane:isopropanol (3 parts 

hexane: 2 parts isopropanol, containing 50 mg butylated hydroxytoluene to prevent milk 

FA oxidation; HIP) was added per 1 g of fat cake and vortexed for 30 sec (5.4 ml for 300 

mg of fat cake). Sodium sulfate (1 g/15 ml H2O) was then added (12 ml per 1 g of fat cake/ 

3.6 ml per 300 mg fat cake), and vortexed for 30 sec, let-to stand and vortexed again for a 

further 30 sec. The top layer was then transferred into 16 x 150 extraction tubes 

containing 1 g of sodium sulfate and pre-rinsed with hexane and were let to stand for 30 
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min. The top layer containing hexane and milk fat were then transferred to clean 

extraction tubes pre-rinsed with hexane and placed in a pre-heated water bath (40 °C), 

and the hexane evaporated under N2. The lipid layer was then transferred into Eppendorf 

tubes and stored at -20 °C, prior to methylation. 

 

2.4.3 Fat extraction for FA determination (method 2) 

For experiment 3, fat extraction followed the method described by Feng et al., 

(2004). Milk was collected and corrected for am and pm milkings, and 20 ml was placed 

into a 50 ml conical plastic tube and the bulked milk samples were centrifuged (Beckman, 

Avanti 30 Centrifuge, Harbor Boulevard, California) at 17,800 xg for 30 min at 8 °C. An 

aliquot (1 g) of the fat-cake layer was then transferred to a 1.5-mL microtube and left at 

room temperature (∼20 °C) for approximately 40 min until the fat cake melted. The 

microtube was then centrifuged at 19,300 xg for 20 min at room temperature using a 

microcentrifuge (MSE Micro Centaur; Sanyo Gallenkamp, Loughborough, UK). After 

centrifugation, the fat had separated into 3 layers: the top layer of lipid; the middle layer of 

protein, fat, and other water-insoluble solids; and the bottom layer of water. The top layer 

of lipid was then transferred into Eppendorf tubes and stored at -20 °C, prior to 

methylation. 

 

2.4.4 Methylation of milk fat and FA determination 

Methylation of the lipids was conducted according to the procedure described by 

Christie (1982) with modifications according to Chouinard et al., (1999). Approximately 50 

mg of previously extracted lipid was weighed into extraction tubes pre-rinsed with hexane, 

and 2 ml of hexane and 40 µl of methyl acetate added and the tubes vortexed for 30 sec. 

Methylation reagent was prepared by mixing 1.75 ml methanol with 0.4 ml NaOMe, and 

40µl added to each tube and vortexed for 2 min. Termination reagent was prepared up by 

weighing 1 g oxalic acid and placing in an oven (105 °C) for 30 min and then 30 ml of 

diethyl ether was added. After the samples had stood for 8 min after being vortexed for 2 

min, 60 µl of the termination reagent was added to each sample tube and vortexed for 30 

sec. A scoop ( ̴200 mg) of calcium chloride was then added and stand for 1 h. The tubes 

were then centrifuged at 2600 xg for 5 min at 5 °C, before the top layer was transfer into 

GC vials for subsequent analysis on the GC. 

Fatty acids were identified using a GC (model HP6890, Germany) fitted with an 

automatic sampler, flame ionization detector and 100 m column (CPSil88, Agilent 

Technologies, UK) as described by Lock et al., (2006). The oven temperature started at 

70 °C, was held for 2 min, followed by an increase of 8 °C/min until it reached 110 °C, 

held for 4 min, then increased 5 °C/min to reach 170 °C, held for 10 min, and finally 
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increased at 4 °C/min to 225 °C and held for 15 min. Each sample had a run time of 61.75 

min and a post run time of 1 min at 70 °C. Peaks were identified by comparison of 

retention time with individual FAME standards (Sigma-Aldrich, UK) and corrected for 

recovery factors (Kaylegian et al., 2009). 

 

2.4.5 Milk progesterone 

  Milk P4 levels were determined by enzyme immunoassay procedure 

(Ridgeway-M kit). The standards, plates and milk samples were brought to room 

temperature and the milk were shaken (Lab shaker, Kuhner, Switzerland) for 30 mins. The 

foil was stripped from the wells, which were then emptied into a sink and tapped dry onto 

a paper towel, before pipetting 10 µl of standard or sample to each well (leaving wells A1 

and B1 empty). All standards were pipetted in duplicate and 200 µl of progesterone-

enzyme label 1 was pipetted to each well (leaving A1 and B1 empty) and the plates left to 

incubate for 1 hr at room temperature. The incubated plates were then emptied and 

washed 3 times with cold water after tapping dry each time. The substrate solution was 

made up by dissolving the substrate with 25 ml of substrate buffer 2 and shaken for 10 

mins, 200 µl of the dissolved substrate solution was then pipetted to each well and left for 

30 mins for colour development to occur.  The colour development of the samples was 

then compared with the standards. The plate optical density was read at 570 nm 

(FLUOstar OPTIMA, BMG Labtech, UK) after zeroing the machine using blank wells and 

the concentrations of the standards were computed from a standard curve.  A strong pink 

colour indicated low P4 and a weak pink colour indicated high P4 levels. The progesterone 

concentrations of the milk samples were calculated by subtracting the blank wells from the 

absorbance reading of the rest of the plate. The standard curve was then plotted and a 4-

parameter logistic fit was performed. The concentration of each sample was computed by 

reading the corresponding values on the x-axis of the standard curve. 

 

2.5 Blood plasma analysis 

Blood samples were collected into sodium heparinized vacutainers tubes (BD, 

MidMeds Limited, Herefordshire, UK) for albumin, BHB, total protein and urea 

determination, and into vacutainers containing potassium oxalate for glucose and NEFA 

determination. Samples were kept on ice immediately after being collected and were then 

centrifuged at 1000 xg for 15 min, and the plasma separated and stored at -20 °C prior to 

subsequent analysis. Plasma samples were analysed for albumin, BHB, total protein, 

urea, glucose and NEFA, using kit catalogue no’s AB362; RB1008; TP245; UR221; 

GU611 and FA115, respectively (Randox Laboratories, County Antrium, UK) and a Cobas 

Mira Plus autoanalyser (ABX Diagnostics, Bedfordshire, UK).  
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2.6 13,14-dihydro-15-keto-PGF2α determination 

Plasma PGFM was determined as Seals et al., (2002), blood samples were 

collected into sodium heparinised vacutainers (BD, MidMeds Limited, Herefordshire, UK) 

and centrifuged at 1000 xg for 15 min, and the plasma separated and stored at -20 °C 

prior to subsequent analysis. Plasma samples were analysed using a 13,14-dihydro-15-

keto-PGF2α ELISA kit (item 516671, Cayman Chemicals, Ann Arbor, USA). The first step 

was to pipette 100 µl of ELISA buffer to the non-specific binding (NSB) well and 50 µl to 

B0 wells. In total there was 8 standards, and 50 µl of each was pipetted in duplicate. To 

each well was added, 50 µl in duplicate, of each milk sample and 50 µl of 13,14-dihydro-

15-keto-PGF2α AChE tracer added except for the TA and Blank wells. Then 50 µl of 13,14-

dihydro-15-keto-PGF2α AChE antiserum was added to each well except the TA, NSB and 

blank wells. The plate was then covered with plastic film and incubated for 18 hrs at 4 °C. 

For the development of the plate, the wells were first emptied and washed five times with 

wash buffer. Ellman’s reagent was then reconstituted with ultrapure water and 200 µl 

immediately pipetted to each well, and 5 µl of tracer added to the TA well. The plate was 

then covered in plastic film, and the samples shaken (Environmental shaker-incubator ES-

20, Grant bio, UK) in the dark to develop for 90 min. The plate was read at a wavelength 

of 420 nm. The absorbance was checked periodically until the B0 wells reached a 

minimum of 0.3 AU (blank subtracted). To determine the PGFM concentrations the 

absorbance reading of the blank wells was first subtracted from the absorbance readings 

of the rest of the plate. The non-specific binding (NSB) wells and maximum binding (B0) 

wells were averaged, and the NSB average subtracted from the B0 average to give the 

corrected B0.  

  

%B/ B0 (% Bound/ Maximum bound) = ቀ
ௌ௧௔௡ௗ௔௥ௗ	௢௥	ௌ௔௠௣௟௘ିேௌ஻

஼௢௥௥௘௖௧௘ௗ	୆୭
ቁ ൈ 100               Equation 10 

 

The %B/B0 for standards S1-S8 were plotted versus their PGFM concentrations using 

linear (y) and log(x) axes and a 4-parameter logistic fit was performed. The concentration 

of each sample was identified by the %B/B0 values on the standard curve. 

 

 

2.7 Cheese analysis 

2.7.1 Cheese compositional analysis 

Cheese moisture content was determined using a moisture analyser (HB43-S, 

Mettler Toledo, Laboratory and Weighing Technologies, Leicester, UK; method ID 

15550.05). The cheese samples were grated and 3 g was placed on the foil tray of the 

moisture analyser, the temperature of the analyser would be held at 130 °C and would run 
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between 9-10 min. Cheese yield was calculated according to Wedholm et al., (2009) and 

was expressed as gram cheese per 100 g of milk. Cheese fat content was determined 

using the Mojonnier method (AOAC, 989.05) using a Sotex system (HT 1043 extraction 

apparatus, FOSS, Warrington, UK). Approximately 1 g of fresh grated cheese samples 

was accurately weighed into cellulose extraction thimble (Whatman, Maidstone, UK), and 

cotton wool placed on top of the thimble. Samples were boiled at 40-50 °C in 25 ml 

petroleum ether (Analar, VWR, Lutterworth, UK) for half an hour. The thimbles were then 

rinsed for 30 min, and the petroleum ether evaporated. The ether extract (EE) was 

measured as: 

EE g/kg  DM = 
ி௔௧	௪௘௜௚௛௧	ሺ௚ሻ

௦௔௠௣௟௘	௪௘௜௚௛௧	ሺ௚ሻ
  x 100                           Equation 11 

 

2.7.2 Cheese FA determination 

For cheese FA analysis, fat extraction followed the method of Coakley et al., 

(2007). A portion of each cheese sample was grated and 15 g of the grated cheese was 

mixed with 25 g ammonium thiocynate solution (30 % wt/vol) that was freshly prepared in 

50 ml tubes. The tubes were then incubated for 1 hr in a 60 °C water bath, and shaken 

gently every 10 min. The samples were then centrifuged at 538 xg for 20 min, and the top 

cream layer transferred into culture tubes and frozen overnight. Methylation of the 

extracted cheese fat followed that of the milk samples (section 2.4.4) 

 

 

 

 

 

 

 

 

 

 

 

 



68 
 

CHAPTER 3: Experiment 1 - Effects of rate of inclusion of ALG and FO on 

the biohydrogenation of EPA and DHA in vitro  

 

3.1 Introduction 

In vitro techniques have been used extensively in feed evaluation and in 

studies of ruminal fermentation since the late 1970’s (Pashaei et al., 2010). In vitro 

studies provide a cheap and quick method to determine rumen fermentation 

characteristics and to measure CH4 output of various feeds, compared to the more 

expensive and time consuming in vivo studies as reviewed by Storm et al., (2012). 

Influence of PUFA on in vitro fermentation characteristics have been investigated by 

Sinclair et al., (2005) who investigated the effect of different oil types on vessel pH, gas 

production and biohydrogenation rates of PUFA, it was reported that vessel pH decreased 

over time, but was higher in the Control compared to the treatment vessels. 

Biohydrogenation of PUFA was extensive, but was lowest in the treatment containing 

ALG, although biohydrogenation did increase with time (Sinclair et al., 2005). In another in 

vitro study, Hassim et al., (2010), showed that increasing inclusion levels of oil palm 

fronds decreased the production of short chain FA, and linearly increased the production 

of acetate and decreased the proportion of propionate. Previous studies have shown that 

in vitro gas production and CH4 output can also be altered by the addition of oils to a basal 

diet. Fievez et al., (2003) investigated the effect of two different FOs and soyabean oil on 

CH4 production at 24 and 48 h of in vitro batch culture incubation and reported that CH4 

output was reduced by all three oil types, and was accompanied by increased propionate 

and reduced acetate production. Whereas Meale et al., (2012) compared the effects of 

different grasses, legumes and shrubs on gas and CH4 production in vitro, and reported 

that both Gliricidia sepium and Brachiaria ruziziens produced less CH4 despite having the 

highest cumulative gas production. 

Fish oils and ALG have the potential to enhance the LC n-3 PUFA content of 

ruminant products when they are supplemented in the diet (Chow et al., 2004). Marine oils 

containing LC n-3 PUFA are considered toxic to the rumen microbial population, and can 

inhibit the growth and activity of some biohydrogenating bacteria modifying the rumen 

microbial population as reported by Vargas et al., (2017) who observed a decrease in in 

the numbers of S.bovis and Butyrivibrio species with the addition of sunflower oil, FO and 

ALG oil to a control diet. With a change in the bacterial population lipid metabolism in the 

rumen is affected, leading to changes in the concentrations of certain FA that leave the 

rumen to be absorbed in the intestines (Vargas et al., 2017). A reduction in the 

concentration of C18:0 and an increase in content of biohydrogenation intermediates such 

as C18:1 trans-11 (which can be converted to cis-9, trans-11 CLA in the mammary gland 



69 
 

by the Δ-9 desaturase enzyme) have been reported in previous in vitro studies when 

different oils have been added to rumen fluid (Sinclair et al., 2005). The strategy of 

including LC n-3 PUFA in the diet of dairy cows to reduce the extent of rumen 

biohydrogenation may lead to an increase supply of PUFA leaving the rumen to be 

absorbed from the small intestines, and consequently increasing the content of these 

PUFA in ruminant products.  

An added benefit to feeding ALG to cattle is a reduction in the amount of CH4 gas 

produced during rumen fermentation (Beauchemin, et al., 2009). Enteric CH4 emissions 

from livestock account for approximately 38.9% of total anthropogenic CH4 emissions and 

5.7% of global anthropogenic emissions, contributing towards the problem of global 

warming (Johnson and Johnson, 1995; Beauchemin, et al., 2009). Today there is growing 

interest in developing practical strategies that will lead to a reduction in these emissions. 

Many in vitro studies have been conducted to determine the effect of different oil 

supplementation on FA biohydrogenation and CH4 output, but relatively few have used 

ALG as a source and compared the effect of different inclusion levels of ALG on FA 

biohydrogenation and CH4 output in vitro, therefore further work is required in this field.  

 

Hypothesis 

The LC n-3 PUFA in ALG and FO will resist biohydrogenation in vitro, increasing the 

potential for their uptake into milk, and will reduce the production of CH4 gas, through their 

inhibitory effect on methanogens. 

 

Objective and aims 

The objective of the current study was to investigate, in vitro, the metabolism of LC n-3 

PUFA and CH4 production in the rumen by supplementing a basal diet with ALG and FO at 

varying levels of inclusion.  

 

3.2 Material and methods 

The study was conducted in accordance with the requirement of the Animals 

(Scientific Procedures) Act 1986 (amended 2013) and received approval by the Harper 

Adams University Ethical Committee.  

 

3.2.1 Experimental design 

The study was based on an in vitro batch culture technique as described by 

Sinclair et al., (2005). The experimental design was a 3x4 factorial design plus control, 

with two oil sources; FO and ALG, which were supplemented to a basal diet of ground 

grass nuts at different inclusion rates of 20, 40, 60 and 80 mg of oil/g fresh weight.  
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3.2.2 Animals and sampling 

Four wether sheep fitted with permanent rumen cannula were housed together 

with ad-libitum access to fresh water and grass hay. The sheep were fed ram master 

coarse mix (Wynnstay Group PLC, Powys, UK; Table 3.1) at a rate of 1 kg/sheep/ per d in 

one meal at 09 00 h. Sampling of rumen fluid was conducted after an adaption period of 

14 days to the diet. 

 

Table 3.1. Ingredient composition (g/kg) of the concentrate 
diet fed to sheep. 
Ingredient Amount (g/kg) 
Wynnstay balancer PE 40 
Cooked flaked barley 16 
Flaked maize micronized 14 
Flaked peas/ beans micronized 10 
Molasses 6 
Crushed oats 5 
Flaked soya micronized 5 
Lin-pro 4 
1Contained (50% rape meal, 25% sunflower meal, 20% 
palm kernel, 5% molasses) 

 

3.2.3 Diets and oil sources 

The basal forage added to each in-vitro vessel was dried grass nuts that were 

ground through a 1.5 mm screen. This was supplemented with either FO or ALG at 5 

rates of inclusion; 0, 20, 40, 60 and 80 mg of oil/g fresh weight (Table 3.2). The ALG was 

supplied by Alltech Inc (Kentucky, USA), and contained 580g oil/100g, The product was a 

pure heterotrophic ALG strain grown in a closed system of stainless steel vessels. The 

fish oil was supplied by UFAC (Newmarket, UK). 

 
 
Table 3.2 Quantity of supplement and substrate added to 250ml duran bottles for the in vitro 
determination of the biohydrogenation of n-3 fatty acids.

Treatment 
Rate of inclusion (mg 

oil/g fresh weight) 
Supplement 
added (mg) 

Ground grass 
nuts (mg) 

Total added per 
vessel (mg)    

FO  0 0 3000 3000
 20 60 3000 3060 
 40 120 3000 3120
 60 180 3000 3180 
 80 240 3000 3240
  

ALG 0 0 3000 3000 
 20 103 2957 3060 
 40 207 2913 3120 
 60 310 2870 3180 
  80 414 2826 3240 
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3.2.4 Experimental routine 

Four 250 ml duran bottles modified to include a butyl rubber bung pushed through 

the schott (GL 45) cap and  stainless steel washer, with an extra flat neoprene ring (R.H 

Nuttall LTD ,Great Brook Street, Birmingham, UK) placed below the washer were used for 

each treatment giving a total of 40 bottles. The control bottles included the basal diet of 

ground grass nuts, whilst blanks did not contain any additional oil or grass nuts. One 

bottle from each treatment was terminated by freezing at 6, 12, 24 and 48 h of incubation. 

The experiment was replicated to provide four values per time point treatment.  

The rumen fluid (approximately 1 litre per animal) was collected from each animal 

at 11 00 h using a manual vacuum pump into a pre-warmed (39 °C) collection flask. The 

rumen fluid was then strained through four layers of muslin into a pre-warmed conical 

flask under a constant stream of CO₂, and kept in a water bath at 39 °C prior to being 

added to the fermentation vessels. Mixing of the rumen fluid (1.6 L) and buffer solution 

(6.4 L) (Tables 3.3 and 3.4) was conducted according to the procedure of Theodorou et 

al., (1994).  

The fermentation vessels were pre-warmed at 39 °C in an incubator. To each 

vessel 200 ml of the buffer/ rumen mixture (80:20, v/v; pH 6.7) was added. The buffer was 

prepared 24 h before the experiment and autoclaved at 121 °C for 15 min to remove 

dissolved gases and then saturated with carbon dioxide by bubbling CO2 gas through the 

mixture for 30 mins. All chemicals used in constituting the buffer solution were purchased 

from Sigma Aldrich®, UK.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3. Solution composition of the buffer (to make 1 L) 
Ingredient Amount (ml) 
Micromineral 0.1 
Buffer solution 200 
Macrominerals 200 
Reducing solution 40
Indicator  1 
Deionised water 559 
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Table 3.4. Chemical composition of the individual solutions that made the 
buffer solution 
  Amount
Micromineral solution (g/100ml)  

Calcium chloride (CaCl2·H2O) 13.2 
Manganese chloride (MnCl2·4H2O) 10 
Cobalt chloride (FeCl3·6H2O) 1 
Iron chloride (FeCl3·6H2O) 8 
Buffer solution (g/1000ml)  

Ammonium hydrogen carbonate (NH4CO3) 4 
Sodium hydrogen carbonate (NaOHCO3) 35 
Macromineral solution (g/1000ml)  

Di-sodium hydrogen orthophosphate (Na2HPO4·12H2O) 9.45 
Potassium di-hydrogen ortho-phosphate (KH2PO4) 6.2 
Magnesium sulphate 7-hydrate (MgSO4·7H2O) 0.6 
Reducing solution (g/100ml)  

Cystine HCl 0.625 
Anaerobic indicator
1 resazurin tablet dissolved in 50ml deionised water   

 

The accumulated head space gas pressure was measured manually at 0, 3, 6, 9, 

12, 18, 24, 30, 39, 48 and 72 h after the addition of the substrates using a pressure 

transducer connected to a digital readout voltmeter (Tracker 220, Bailey and Mackey Ltd, 

UK). The gas was collected at each time point into labelled 50 ml syringes for subsequent 

CH4 analysis.  

At time points 6, 12, 24, and 48 h of incubation, fermentation was terminated by 

freezing the fluid for 1 h by placing in a freezer at -20 °C. The vessel contents were then 

mixed, their pH recorded and then transferred into plastic containers and stored at -20°C. 

The samples were then freeze dried prior to analysis for 7 days with the temperature of 

the condenser chamber maintained at -60 °C (Girovac GCD6/13, Norfolk, UK). 

The freeze dried samples were prepared for FA determination and identification as 

described in section 2.2.1, and the FA content of each vessel was calculated as described 

in section 2.2.2. Ruminal biohydrogenation was calculated from the changes in the 

quantity of the individual FA in the residue of each vessel, compared with the amount 

added. 

 

Biohydrogenation g/kg                        Equation 12 

1000 െ 1000	 ൬
Individual	unsaturated	FA	in	residue	ሺmg	/	vesselሻ
Individual	unsaturated	FA	added	ሺmg/vesselሻ

൰ 

 

3.2.7 In vitro gas production 

Gas production (Gp; ml) was predicted by converting the pressure transducer 

readings (Pt; psi) using Boyle’s Gas Law. 
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Equation 13         

Gp	 ൌ 	
Vh
Pa

	x	Pt	

 

Where Vh represents headspace volume (ml) calculated by filling 20 x 250 ml duran 

bottles to the brim with water, and subtracting 200 (i.e volume of the media) from the 

volume measured, which provided a mean value of 107.33 ml; Pa signifies average 

standard atmospheric pressure (14.7 psi; Metrological Office, Bracknell, UK). Cumulative 

gas production was expressed per g DM after correcting for the blanks.   

 

3.2.8 Methane analysis 

Prior to analysis the GC (model 7890A, Aglient technologies, Buckinghamshire, 

UK) was calibrated using standard gas which contained 99% pure CH4 gas (Puris®, Sigma 

Aldrich, UK). A calibration slope was created by manually injecting the GC with 10 ml of 

the standard CH4 gas diluted with air to provide 25%, 50%, 75% and 100% CH4 

concentration. Peak area units were recorded for each methane. A straight line regression 

equation was derived from the standard gas samples against concentration and was used 

to determine the concentration of CH4 gas in the test samples. Gas samples from the 

treatment were analysed manually by injecting 10 ml of each sample into the GC to clear 

through and fill a fixed loop which was then injected onto the packed column. The GC was 

equipped with an 80/100 mesh Porapak N column 1.8 m long (Sulpeco, Bellafonte, USA) 

and flame ionisation detector. The temperatures of the column, injector and detector were 

170°C, 200°C and 300°C respectively, and the carrier gas (N2) flow, H2 flow and air flow 

were 34 ml/min, 30 ml/min and 400 ml/min. Each sample ran for 4 min with a post run of 2 

min. 

 

3.2.9 Statistical analysis 

All data were checked for a normal distribution and were analysed as repeated 

measures analysis of variance using a 3 x 4 factorial design plus a control using Genstat 

17 (VSN Int. Ltd., Oxford, UK) with the main effects of control, treatment, inclusion level, 

time and interactions. Within the FAs and pH analysis there was 4 inclusion levels per 

treatment and 4 time points. Within the gas production and CH4 output analysis there was 

4 inclusion levels per treatment and 10 time points.   
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3.3 Results 

3.3.1 Fatty acid composition of the supplements 

The FA composition of the supplements is provided in Table 3.5.The content of 

DHA was highest in the ALG, which was four times higher than the FO. In contrast EPA 

was considerably higher in FO. The basal diet (grass nuts) was highest in ALA, which was 

undetectable in the ALG. All three supplements had a low level of C18:0. The 

concentration of LA was similar between the grass nuts and FO but was undetectable in 

the ALG. 

 

 

 

 

 

Table 3.5. The FA composition (mg/g) of the supplements 
Fatty acids Supplements 
  Grass nuts ALG FO 
C14:0 137 55.1 34.6 
C16:0 232 568 106 
C16:1 - 1.18 40.1 
C18:0 - 12.8 23.4 
C18:1 trans-9 - 0.56 0.95 
C18:1 cis-9 34.0 0.48 292 
LA 132 - 106 
ALA 318 - 37.1 
C20:3n-6 - 8.47 0.30 
C22:1n-9 - 0.77 35.3 
EPA - 3.13 46.1 
C22:5n-5 - 57.2 6.75 
DHA - 246 61.1 

 

3.3.2 Gas production and vessel pH 

Vessel pH decreased across all treatments with time (P <0.001; Figure 3.1), with 

the highest value measured at 6 h of incubation (mean value of pH 6.29), and lowest at 48 

h (mean value of pH 5.91). Vessel fluid pH was similar between the FO and ALG 

treatments and with level of inclusion. After 48 h of in vitro incubation however, pH was 

highest in the higher inclusion level of ALG which was very similar to the Control pH, and 

was lowest in the FO treatment. 
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Figure 3.1. Fluid pH in vessels containing FO and ALG at different rates of inclusions 

during 6h, 12h, 24h and 48h of in vitro incubation. Treatment: P=0.192; Inclusion: P = 

0.855; Time: P <0.001; Time x Treatment: P = 0.379; Time x Inclusion: P = 0.974; Time x 

Treatment x Inclusion: P = 0.781; s.e.d 0.11. 

 

Gas production increased with time (P < 0.001; Figure 3.2) and reached asymptote 

at 72h of incubation for all treatments. There was an effect of treatment (P = 0.003) on gas 

production, with the addition of ALG resulting in the lowest amount of gas. An interaction 

was also seen between time, treatment and inclusion level (P < 0.001), with the FO 

inclusion level of 80 mg of oil/g having the greatest amount of gas production at all time-

points and the 80 mg of oil/g ALG having the lowest gas production.  
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Figure 3.2. Cumulative gas production (ml/g) of FO and ALG treatments at different rates 

of inclusion (0, 20, 40, 60 and 80 mg of oil/g fresh weight) during 3, 6, 9, 12, 18, 24, 30, 

39, 48 and 72 h of in vitro incubation at 39 °C; s.e.d: 27.97. 

 

3.3.3 Methane Production 

Methane output increased with time (P < 0.001; Fig.3.3) with average mean values 

increasing from 4.79 to 189 (ml/vessel) from 3 to 72 h of incubation, reaching asymptote 

at 72 h.  The FO and ALG treatments reduced CH4 output compared to the control from 

24 h of in vitro incubation (P = 0.03). There was an effect of oil inclusion rate (P = 0.007), 

with the higher inclusion of 80 mg/g of both FO and ALG reducing CH4 production to a 

greater extent than any of the other treatments from 18 h of in vitro incubation, by 72 h 

methane output was reduced by 19.2 and 13.8 % respectively compared to the Control. 

There was an interaction between oil inclusion level and time (P = 0.018), and by 24 h the 

Control treatment had a greater amount of CH4 production and by 30 h the lower inclusion 

levels of oil also produced more CH4 than the higher inclusions levels for both the FO and 

ALG treatments. 
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Figure 3.3. Cumulative CH4 production (ml) of FO and ALG treatments at different rates of 

inclusions (0, 20, 40, 60 and 80 mg of oil/g fresh weight) during 3, 6, 9, 12, 18, 24, 30, 39, 

48 and 72 h of in vitro incubation at 39 °C; s.e.d: 1.68. 

 

3.3.4 Vessel FA content 

The vessel content of C18:0 increased rapidly in the first 6 h of in vitro incubation 

and continued to increase with time (P<0.05; Tables 3.6 and 3.7). There was an effect of 

treatment (P <0.001), with FO containing a greater amount of C18:0 at all time-points 

compared to the ALG treatments at the same inclusion levels.  The C18:1 trans FA 

content increased with time (P <0.001),  with the greatest amount of 18:1 trans (10 + 11) 

and 18:1 trans -12 observed at 48 h of incubation at the higher inclusion of 80 mg of FO/g 

(mean value of 36.0 and 8.08 mg/vessel respectively). Vessel content of C18:1 cis-9 was 

greatest at 0 h, and declined with time (P < 0.05), with the largest decrease seen in the 

first 6 h. There was an interaction between time and treatment (P < 0.05) on C18:1n-9 

concentration, the inclusion level of 20 mg of ALG/g had the lowest content of C18:1n-9, 

whilst vessels containing 80 mg of FO/g had the highest (mean value of 8.5 and 111 

mg/vessel respectively).  

The vessel content of LA decreased with time (P < 0.001), with the higher inclusion 

level of FO having the highest content at all times, and the ALG the lowest. There was an 

effect (P <0.001) of time on vessel content of ALA which decreased rapidly over time in all 

treatments, being lower in the ALG treatments with a 98% reduction at the 20 mg of 

ALG/g compared with a 89 % reduction with 80 mg of FO/g (P < 0.001). Neither of the 
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CLAs were detected at 0h, and there was no effect (P >0.05) of treatment, inclusion or 

time on trans-10, cis-12 CLA, but there was an effect of treatment and time on cis-9, 

trans-11 CLA (P < 0.05, P < 0.05); the vessel content of cis-9, trans-11 CLA decreased 

consistently with time after 6 h of incubation across all treatments, with 80 mg of ALG/g 

having the greatest amount at 48 h. A higher amount of EPA was detected at all time 

points in the FO treatments compared with the ALG (P < 0.05). In contrast, the vessel 

content of DHA was higher at all time points for the ALG treatment and there was an 

effect of inclusion level (P < 0.001), with the highest mean value after 48 h of in vitro 

incubation at an inclusion level of 80 mg of ALG/g (mean value of 16.1 mg/vessel).  
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Table 3.6. Vessel content (mg) of selected FA of FO and ALG treatments at different rates of inclusions during 6, 12, 24 and 48 h of in vitro incubation at 39°C. 

Fatty acid  Treatment (oil and inclusion level mg/g)  s.e.d 

 
 ALG ALG ALG ALG FO FO FO FO  

 Time 20 40 60 80 20 40 60 80  
C18:0 0 1.32 2.65 3.97 5.30 1.40 2.81 4.21 5.62  
 6 42.8 48.4 54.5 51.1 72.2 55.1 52.2 54.9  
 12 48.5 47.9 49.5 43.0 51.8 54.6 49.2 56.7 10.20 
 24 71.3 54.0 54.2 58.6 67.4 67.9 56.4 66.6  
 48 56.4 52.4 58.2 47.8 65.6 92.7 72.0 69.3  
C18:1 trans-9 0 0.06 0.12 0.17 0.23 0.06 0.11 0.17 0.23  
 6 5.51 8.89 12.3 11.4 11.6 10.4 9.55 11.1  
 12 8.01 7.79 9.43 8.37 9.74 10.8 10.2 16.9 3.68 
 24 8.59 10.8 10.0 12.2 11.9 18.1 18.9 22.9  
 48 7.81 9.29 11.5 11.2 12.3 22.5 29.7 34.5  
C18:1 trans-10,11 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
 6 17.1 19.1 18.2 13.3 19.3 21.5 16.9 23.9  
 12 23.8 22.3 21.9 17.1 26.3 31.1 22.2 37.1 5.75 
 24 23.2 25.8 22.2 23.9 27.9 34.8 34.0 46.8  
 48 20.3 19.6 26.7 17.7 27.7 37.6 32.8 36.0  
C18:1 trans-12 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
 6 1.90 2.22 2.23 1.85 3.25 3.26 3.08 4.04  
 12 2.46 2.49 3.18 1.96 3.42 3.94 3.45 5.41 0.89 
 24 2.90 3.30 2.72 3.14 3.74 5.94 6.04 6.23  
 48 2.99 2.71 3.63 2.85 3.56 6.86 7.96 8.08  
C18:1 cis-9 0 100 100 100 100 119 137 154 172  
 6 8.50 10.7 12.1 11.1 77.7 66.0 81.4 111  
 12 11.4 10.2 10.7 8.70 39.3 57.6 62.8 101 12.5 

 24 10.7 11.4 10.6 11.7 30.5 56.7 66.7 64.9  
 48 8.80 9.2 10.4 8.50 17.5 47.2 65.0 72.3  
Number of replicates per treatment per time point = 4 
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Table 3.6. Vessel content (mg) of selected FA of FO and ALG treatments at different rates of inclusions during 6, 12, 24 and 48 h of in vitro incubation at 39°C 
(contd). 
Fatty acid  Treatment (oil and inclusion level mg/g) s.e.d  

 ALG ALG ALG ALG FO FO FO FO   
Time 20 40 60 80 20 40 60 80  

LA 0 391 385 379 374 403 409 416 422   
6 6.56 6.75 7.61 10.1 15.8 18.4 20.4 26.3   
12 5.39 4.99 4.86 4.66 8.79 11.2 11.0 14.9 2.68  
24 3.77 3.94 4.98 5.12 4.22 6.18 6.10 6.72   
48 2.45 2.40 2.61 2.35 2.13 6.34 6.01 7.58  

ALA 0 939 925 911 897 955 957 959 961  
6 5.82 6.31 7.00 10.4 11.8 9.34 9.70 12.1  
12 4.64 5.18 4.77 5.18 6.20 6.12 6.75 7.72 1.79 
24 3.68 4.02 5.22 5.38 3.57 6.44 7.08 9.98  
48 2.23 2.44 2.81 1.98 3.94 5.02 7.60 11.0  

C18:2 cis-9, trans-11 CLA 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
6 1.71 0.49 0.70 0.64 2.19 2.67 2.39 0.92  
12 0.31 0.28 0.21 0.14 2.68 1.98 2.14 0.65 1.00 
24 0.33 0.28 0.40 0.30 1.78 1.83 0.65 0.67  
48 0.14 0.27 0.35 0.38 0.37 0.43 1.62 0.79  

C18:2 trans-10, cis-12 CLA 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
6 0.60 0.73 0.56 0.62 0.81 0.41 0.39 0.37  
12 0.41 0.51 0.60 0.31 0.46 0.28 1.78 0.36 0.57 
24 0.33 0.38 0.35 0.34 0.27 0.42 1.76 0.58  
48 0.29 0.31 0.17 0.61 0.29 0.49 0.50 0.27  

EPA 0 3.22 6.48 9.71 13.0 31.1 62.1 93.2 124  
6 0.80 1.06 1.05 1.18 1.76 0.91 1.29 1.86  
12 0.94 0.67 1.31 0.51 0.69 0.98 1.46 1.73 0.49  
24 0.54 0.83 1.03 0.79 0.72 1.13 1.19 2.59   
48 1.01 0.81 0.72 0.81 0.50 0.75 0.71 1.92  

DHA 0 25.4 51.0 76.4 101 3.66 7.32 11.0 14.7   
6 2.84 6.46 11.12 25.9 1.69 0.97 1.16 1.43   
12 2.54 10.6 9.12 19.3 0.43 0.90 1.33 1.84 2.43  
24 2.80 6.94 11.2 14.9 0.89 1.12 1.48 2.44  
48 2.47 5.69 7.98 16.1 0.67 0.68 0.95 2.44  

 Number of replicates per treatment per time point = 4 
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Table 3.7. P values of main effects and interactions of FO and ALG treatments at different rates of inclusions during 6, 12, 24 and 48 h of in vitro 
incubation at 39 °C 
Fatty acid  

 Significance Interaction

 Treatment Inclusion Time Treatment.Inclusion Time.Treatment Time.Inclusion Time.Treatment.Inclusion
C18:0 <.001 0.613 0.001 0.322 0.121 0.604 0.378
C18:1 trans-9 <.001 <.001 <.001 0.023 <.001 <.001 0.313 
C18:1 trans-10,11 <.001 0.381 <.001 0.032 0.071 0.588 0.894
C18:1 trans- 12 <.001 0.003 <.001 0.003 0.013 0.364 0.265 
C18:1 cis-9 <.001 <.001 0.006 <.001 0.009 0.574 0.451
LA <.001 0.051 <.001 0.231 <.001 0.548 0.960 
ALA <.001 <.001 <.001 0.160 0.167 0.696 0.250 
C18:2 cis- 9, trans- 11 CLA 0.012 0.663 0.013 0.801 0.193 0.512 0.507 
C18:2 trans-10, cis-12 CLA 0.448 0.524 0.430 0.431 0.358 0.399 0.625 
EPA 0.007 0.023 0.056 0.047 0.721 0.298 0.642 
DHA <.001 <.001 0.265 <.001 0.265 0.503 0.367 
Number of replicates per treatment per time point = 4 
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3.3. 5 Biohydrogenation 

The extent of biohydrogenation of EPA was higher in FO treatments (mean value 

over 900 g/kg at all time points) compared with ALG, (P < 0.001; Figure 3.4). The lowest 

inclusion level of ALG resulted in a lower extent of biohydrogenation than all other 

treatments at all time points (P < 0.001). The biohydrogenation of EPA also increased with 

time in all treatments (P = 0.032). Similar to EPA, DHA was extensively biohydrogenated 

over time (P = 0.03; Figure 3.5). At 48 h the extent of biohydrogenation was lowest at the 

highest inclusion level 80 mg of FO/g. There was no effect of treatment, but level of 

inclusion had an effect (P = 0.014), with the higher inclusion level of 80 mg of ALG/g 

reducing the extent of biohydrogenation at all time points compared to the lower inclusion 

levels for ALG treatments.  

 

 

 

 

 

 

 

 

Figure 3.4. Biohydrogenation of EPA in vessels containing FO and ALG at different rates 

of inclusion during 6, 12, 24 and 48 h of in vitro incubation. Treatment: P < 0.001; 

Inclusion: P < 0.001; Time: P = 0.03; Treatment x Inclusion: P < 0.001; Time x Treatment: 

P = 0.302; Time x Inclusion: P =0.266; Time x Treatment x Inclusion: P = 0.826; s.e.d 

29.10. 
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Figure 3.5. Biohydrogenation of DHA in vessels containing FO and ALG at different rates 

of inclusion during 6, 12, 24 and 48 h of in vitro incubation. Treatment: P = 0.801; 

Inclusion: P = 0.014; Time: P = 0.03; Treatment x Inclusion: P < 0.001; Time x Treatment: 

P = 0.478; Time x Inclusion: P = 0.447; Time x Treatment x inclusion: P = 0.174; s.e.d 

23.65 

 

3.4 Discussion 

3.4.1 Gas production and vessel pH 

Vessel pH reduced with time in all treatments (mean value of 6.29 at 6 h and 5.91 

at 48 h), a finding in accordance with Troegeler-Meynadlet et al., (2006), who reported a 

decrease in vessel pH over a 24 h in vitro incubation. Both the FO and ALG treatments 

had a similar vessel pH throughout the in vitro incubation period, although after 48 h, the 

ALG and Control had a slightly higher pH compared to the FO treatment. Similar pH 

values were obtained by Sinclair et al., (2005) when treatments rich in ALA and LC n-3 

PUFA were incubated in vitro for 48 h. Lower pH values have been associated with a 

reduction in the biohydrogenation of LA and ALA, and an accumulation in the production 

of C18:1 trans-11 (Fuentes et al., 2009; Ribeiro et al., 2007). In the current study the 

highest inclusion level of FO had the greater vessel content of both LA and ALA after 48 h 

of incubation associated with a lower vessel pH. Low ruminal pH (<6.0) can cause a shift 

in the rumen bacterial population as it has negative effects on fibrolytic bacteria and can 

cause a decrease in the population of amylolytic bacteria (Chen et al., 2011). In 

accordance to Chen et al., (2011), Troegeler-Meynadlet et al., (2006) reported how the 

rate and efficiency of isomerisation in the first step of LA biohydrogenation decreased as 

the vessel pH reduced to below 6.0 over time. 

An agreement was observed between a reduction in vessel pH and rate of gas 

production that was reduced over time, this inhibitory effect could be attributed to a 

reduction in rumen bacteria growth and activity as the vessel pH fell below 6 (Kessel and 
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Russell, 1996). The effect of low ruminal pH on bacterial growth has been well 

documented (Brock, 1969; Russell and Drombowski, 1980). Cumulative gas production 

profiles increased over time in all treatments, with high inclusions of ALG reducing gas 

production and FO increasing gas production compared to the Control. These finding 

conflict with Sinclair et al., (2005), who reported a reduction in gas production with a FO 

supplement. In another study by Yadeghari et al., (2015), gas production was increased at 

higher inclusion levels of essential oil after 24 h of incubation, which may be due to the 

adaption of rumen microbes to high inclusion levels of the oil. This is difficult to conclude 

in the current study as a reduction in total gas production was observed at the higher 

inclusion levels of ALG, these findings corresponds to that observed by Machado et al., 

(2014) who reported the effects of marine and freshwater ALG on the reduction of total 

gas production in vitro. Low gas production has been associated with poor ruminal 

fermentation, as the main end products of microbial fermentation are volatile FAs, CO2, 

CH4 and ammonia (Harfoot and Hazlewood, 1997). The limitations of the in vitro study is 

the use of fermentation bottles with added buffer. Despite keeping the bottles in an 

incubator and shaking them, there was no movement of fluid in and out as a real rumen, 

and different studies may use different buffering techniques. A real rumen may also see a 

fluctuation in pH, correlating with feeding times. 

 

3.4.2 Methane production 

In the current study, CH4 production was measured at ten different time points; 3, 

6, 9, 12, 18, 24, 30, 39, 48 and 72 h. There was an increase in CH4 production over time, 

which plateaued at 72 h in all treatments. Both the FO and ALG treatments reduced CH4 

production compared to the Control. Similar findings were reported by Machado et al., 

(2014) when different ALG species were reported to reduce CH4 production in vitro. This 

finding is also in agreement with a study by Fievez et al., (2003) who reported an inhibition 

of CH4 production both in vitro and in vivo when FO was added to the diet. A reduction in 

CH4 production was also accompanied by an increased propionate and decreased acetate 

production (Fievez et al., 2003), which in accordance with Wachira et al., (2000) who 

reported an increase in the concentration of propionate when FO was supplemented to 

rumen cannulated sheep. Propionate production involves the process of H2 utilisation, 

whilst acetate production involves H2 production, therefore propionate production and 

methanogenesis are competing as alternative pathways (Moss et al., 2000). It has also 

been reported that methanogens lose the ability to use H2 at low pH levels (Van Kessel 

and Russel, 1969), this would explain the reduction in CH4 production over time as pH 

levels dropped to below 6.0. In the current study the different inclusion levels also affected 

CH4 production, with higher inclusion levels of both the FO and ALG inhibiting CH4 

production more than the lower inclusion levels. These results are comparable to other 
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studies who have reported a greater reduction in CH4 production when LC-PUFA are 

supplemented at higher levels (Patra and Yu, 2012; Fievez et al., 2007a). 

 

3.4.3 Fatty acid biohydrogenation in vitro 

Polyunsaturated FA are known to be biohydrogenated in the rumen especially 

when supplemented at higher inclusion levels to ruminant diets (Beam et al., 2000). The 

ruminal metabolism of FA in oil sources high in PUFA has been investigated both in vitro 

and in vivo (Fievez et al., 2007b, Sinclair et al., 2005). In the current study the approach 

was to examine the change in various FAs over a 48 h in vitro incubation period, with two 

different oil sources rich in long chain n-3 PUFA and at four inclusion rates. The shift in 

the FA profile indicates that the batch culture technique used was reliable and the 

biohydrogenation of the FA was comparable to that reported by others (e.g. Sinclair et al., 

2005). Over time there was an increase in the accumulation of C18:0 in both the FO and 

ALG treatments, which may have been a result of the biohydrogenation of ALA which was 

present in the grass nuts at the highest concentration, and is firstly hydrogenated to form 

C18:2 cis-9, trans-11 CLA, and then C18:1 trans-11 before the saturated C18:0 FA is 

formed (Boeckaert et al., 2007a). At all time points the higher concentrations of ALG had a 

lower content of C18:0 which is in accordance with Lourenco et al., (2007) who reported 

less C18:0  in treatments high in PUFA compared to the Control. In agreement with 

reports in the literature from in vitro studies, the supplementation of both DHA enriched 

ALG and FO was shown to inhibit the complete biohydrogenation of LA and ALA, leading 

to an accumulation of C18:1 trans 10+ 11 and C18:2 cis-9, trans-11 CLA (Boeckaert et al., 

2007b; Chow et al., 2004). This is also in agreement with an in vivo study by Wachira et 

al., (2000) that reported lower amounts of the biohydrogenation end product C18:0, and 

an increase in C18:1 isomers and C18:2 cis-9, trans-11 CLA at the duodenum in sheep 

when FO was added to the diet. The effect of ALG on the FA profile in the current study 

was also similar to an in vivo study by Boeckaert at el., (2007a) who observed an 

accumulation of C18:1 trans-11 in the rumen fluid of dairy cows when their diet was 

supplemented with ALG. In the current study the vessel content of LA and ALA was 

comparable, similar to the findings reported by Sinclair et al., (2005). An accumulation of 

C18:2 trans-10, cis-12 CLA an intermediary in the biohydrogenation of LA, was also 

observed in the ALG treatments, with a greater amount found in the higher inclusion 

levels. In a study by Kim et al., (2008) the addition of FO to Hereford x Friesian steers 

reduced the duodenal flow of C18:0, and it was suggested that FO might inhibit the 

enzyme that catalyses the final biohydrogenation step in the rumen, or prevents the 

proliferation of bacteria able to convert ALA and LA to C18:0. 

The biohydrogenation of LC n-3 PUFA are not very well understood, and the 

metabolism of DHA in the rumen is less well characterised compared to ALA (Vlaeminick 
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et al., 2014). Previous studies have shown that the biohydrogenation of DHA is inhibited 

when inclusion levels are high (Klein and Jenkins, 2011).  This was also observed in the 

current study where the ALG treatments had higher amounts of DHA at 0 h compared to 

FO, and by 48 h of in vitro incubation the amount of DHA remaining was higher in the ALG 

treatments, especially at the higher inclusion levels. The DHA present in the lowest 

inclusion level of FO was extensively biohydrogenated over time, which is in accordance 

with an in vitro batch culture study by Vlaeminck et al., (2014). A correlation between DHA 

and C18:1 isomers, especially C18:1 trans-11 has been reported (Vlaeminick et al., 2008), 

with an accumulation of C18:1 trans-11 observed in vitro when freeze dried grass was 

supplemented with DHA. AbuGhazaleh and Jenkins (2004) reported that both DHA and 

EPA were lost during in vitro culture studies due to their transformation into other FA such 

as C22:6 and C20:5 isomers, and that the disappearance of EPA was greater than that of 

DHA, a finding similar to the current study. When using an in vitro batch culture Klein and 

Jenkins (2011) labelled DHA with 13C in order to determine if DHA had a direct 

contribution to the accumulation of C18:1 trans-11, and reported that DHA was not directly 

involved in the increase of this FA. This suggests that DHA might alter the 

microorganisms present or the reaction pathway (Klein and Jenkins, 2011), and that 

further work is required for a better understanding of the metabolism of LC n-3 PUFA in 

the rumen. 

 

3.5 Conclusion 

Vessel pH decreased with time at all inclusion levels of ALG and FO as gas 

production increased. Methane output was reduced with the inclusion of ALG and FO 

compared to the Control, this may be attributed to a shift in the rumen bacteria population 

or due to a decrease in fermentable energy. By 72 h of incubation pH levels were low 

(<6.0) in all dietary treatment and methane production had plateaued. A higher inclusion 

level of ALG had a greater influence on inhibiting CH4 production than FO, therefore ALG 

could be more toxic towards the rumen bacteria than FO. The metabolism of LA and ALA 

led to an accumulation of C18:1 trans-11, with a lower increase in vessel content of C18:0 

with FO at the highest inclusion level. Vessel content of DHA after 48 h of incubation was 

higher in the ALG treatments, primarily due to its higher dietary inclusion level.  
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CHAPTER 4: Experiment 2 - Improving the DHA content of milk and cheese 

by supplementing dairy cows with ALG and the effect on cow performance 

 

4.1 Introduction 

Over the past century there has been a considerably body of research on the benefits 

of LC n-3 FA on human health (Calder, 2014; Kliem and Shingfield, 2016). Two important 

LC n-3 PUFA are EPA and DHA which, when provided in small quantities, can 

significantly decrease the likelihood of developing coronary heart disease via their role in 

modulating prostaglandin metabolism and decreasing blood triglycerides (Marventano et 

al., 2015). At high doses these LC n-3 PUFA can lower blood cholesterol and have 

antithrombotic and anti-inflammatory properties (Marventano et al., 2015; Swanson et al., 

2012). These LC n-3 PUFA are also important for growth, development, immunity and 

insulin activity (Calder, 2014). In addition to the direct health benefits of PUFA, 

intermediates in the biohydrogenation of unsaturated FA in the rumen such as CLA have 

been shown to have health benefits including anti-carcinogenic properties in both animal 

models and human cancer cells (Lee et al., 2005; Gebauer et al., 2011).  

Ruminant products such as milk and cheese have been criticized for their low content 

of LC n-3 PUFA and high content of SFA (Kliem and Shingfield, 2016). Despite this, one 

of the most effective means of increasing the content of LC n-3 PUFA in the human diet is 

via dairy products, particularly cheese (Givens and Gibbs, 2006). In the majority of studies 

that have attempted to improve the health attributes of milk and cheese, the main dietary 

source of LC n-3 PUFA has been FO (Chilliard et al., 2001; Palmquist and Grinnari, 

2006). However, the primary producer of LC n-3 PUFA at the base of the food chain is 

ALG (Givens and Gibbs, 2006), and feeding ALG has been proposed as a more effective 

means of manipulating the FA composition of ruminant products, partly due to its high 

concentration of LC n-3 PUFA, but also due to the lower extent of biohydrogenation in the 

rumen compared to FO (Sinclair et al., 2005).  Adding ALG to the diet of ruminants has 

resulted in an increase the content of LC n-3 PUFA and CLA in milk (Franklin et al., 1999; 

Stamey et al., 2012) and beef (Rodriguez-Hernandez et al., 2017), although little work has 

been conducted on the effect of rate of inclusion on milk or cheese FA composition or 

more importantly, the organoleptic properties of cheese.  

Despite the potential advantages of including sources of LC n-3 PUFA such as 

ALG in the diet of dairy cows, their inclusion has often been associated with negative 

effects on performance and milk composition, particularly when included at high levels. 

For example, a substantial decline in milk fat content has been reported in some studies, 

which has often been linked to the production of trans isomers such as trans-10, cis-12 

CLA in the rumen (Franklin et al., 1999; Boeckaert et al., 2008; Bichi et al., 2013). 

Additionally ALG may affect whole tract digestibility, as UFA have been suggested to be 
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toxic to rumen bacteria reducing fibre digestibility (Maia et al., 2007). Little work has been 

conducted on the effect of ALG supplementation on diet digestibility, and no previous work 

has been done on the effect of feeding ALG to dairy cows on cheese properties and taste.  

 

Hypothesis 

Feeding DHA enriched ALG at an increasing rate of inclusion will increase the 

concentration of LC n-3 PUFA in milk and cheese but will not affect cow performance. 

 

Objectives and aims 

The objectives of this study were to determine the effect of rate of inclusion of DHA 

enriched ALG on milk and cheese FA profile, cheese taste, and cow performance. 

 

4.2 Material and methods 

The study was conducted in accordance with the requirement of the Animals 

(Scientific Procedures) Act 1986 (amended 2013) and received approval by the Harper 

Adams University Ethical Committee.  

 

4.2.1 Animals and treatments 

Twenty early lactation (77 ± 17.0 d in milk) Holstein-Friesian dairy cows yielding 44 

±1.9 kg/d of milk, with a live weight of 654 ± 42.4 kg, and body condition score (Ferguson 

et al., 1994) of 3.0 ± 0.2 at the beginning of the study were used. The study design was a 

4 x 4 Latin square, with each period consisting of a 21 d adaption period followed by 7 d of 

sampling. All cows were fed the same basal diet (Table 4.1) which was supplemented with 

one of four inclusion levels of ALG (Schizochytrium imancinum sp., Alltech, Kentucky, 

USA) during each period. The ALG contained 135 g/kg crude protein, 580 g/kg oil and 

0.28 g/100 g FA as EPA and 25.7 g/100 g FA as DHA. Treatment diets were; control (C) 

no ALG inclusion, 50 g ALG/cow per day (L-ALG), 100 g ALG/ cow per day (M-ALG) and 

150 g ALG/cow per day (H-ALG). A 50:50 (DM basis) wheat/dried sugar beet feed mix 

replaced the ALG in the C, L-ALG and M-ALG diets, fed at 150, 100 and 50 g/cow per day 

respectively. The diets were formulated to produce approximately 37 kg/d (Thomas, 2004) 

and were fed as a TMR once daily at 1.05 of ad-libitum intake, with feed refusals collected 

3 times per week. The forages and straight feeds were mixed along with the ALG (or 

wheat/sugar beet feed) using a forage mixer wagon (HiSpec, County Carlow, Ireland), 

calibrated to ±1 kg, and fed through roughage intake feeders (Insentec B.V., Marknesse, 

The Netherlands) fitted with an automatic animal identification and forage weighing 

system calibrated to ±0.1 kg. Cows had continual access to fresh water. 

Cows were housed together in the same portion of a building containing cubicles 

fitted with foam mats, which were bedded twice weekly with sawdust, limed weekly and 
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scraped every 2 h by automatic scrapers. Cows were milked twice daily at approximately 

0615 and 1600 h.   

 

Table 4.1. Diet composition (kg/kg DM) of the basal diet and chemical composition (g/kg 

DM) of total mixed rations that contained no ALG (Control (C)), 50 g/ALG per cow/d (Low 

algae (L-ALG)); 100 g/ALG per cow/d (Medium algae (M-ALG)), or 150 g/ALG per cow/d 

(High algae(H-ALG)) 

Item  Treatment 

Ingredient kg/kg DM C L-ALG M-ALG H-ALG 

   Maize silage 0.436     

   Grass silage 0.118     

   Rape seed meal 0.077     

   Wheat distillers grains 0.077     

   Hipro soybean meal 0.045     

   Palm kernel meal 0.022     

   Molasses 0.006     

   Molassed sugar beet feed 0.051     

   Wheat 0.051     

   Soy hulls 0.094     

   Megalac1 0.015     

   Urea 0.003     

   Minerals and vitamins2 0.005     

Chemical composition (g/kg)      
   DM   372 374 369 371 
   Ash  64 73 66 70 
   OM   936 927 934 930 
   CP  166 170 165 164 
   NDF   452 455 452 460 
Fatty acid (g/kg DM)      
C16:0  6.06 5.10 6.82 5.65 
C18:0  0.49 0.38 0.46 0.40 
C18:1 cis-9  4.51 3.55 4.26 3.30 
LA  5.74 4.53 4.94 4.03 
ALA  0.76 0.73 0.80 0.66 
EPA  nd nd nd nd 
DHA  nd 0.33 0.68 1.00 
1Protected fat. Volac International Ltd, UK  
2Mineral/vitamin premix. Major minerals (g/kg): Ca 220; P 30; Mg 80; Na 80; trace minerals 
(mg/kg) Cu 760; Se 30.3, I 200; Co 70; Mn 5000; Zn 6350; vitamins (mg/kg) retinol 300; 
cholecalciferol 7.5; all rac α-tochopherol acetate 2000; B12 2.50; biotin 135. 
3Not detected 
 

4.2.2 Sampling and measurements 

 Feed intake was recorded daily during the sampling week of each period, and sub-

samples of each TMR and the two forages collected daily and stored at -20 °C for 

subsequent analysis. Further forage samples were collected weekly, oven dried at 105°C 
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and the ratio of maize:grass silage adjusted to the desired level on a DM basis. Milk yield 

was recorded daily and samples collected on four occasions during the sampling week of 

each period, a preservative added (Microtabs II, Advanced Instruments, Inc., 

Massachusetts, USA) and stored at 4 °C prior to subsequent analysis. Additional samples 

were collected on successive milkings for FA analysis (Hara and Radin, 1978). Cows 

were weighed and body condition score recorded at 11 00 h prior to the start of the study, 

and on the final day of each period. Blood samples were collected from the jugular vein 

from 3 cows per treatment per period over two days at 09 00, 07 00 and 13 00 h into 

vacutainers containing sodium heparin for the subsequent determination of albumin, β 

hydroxybutyrate (3-OHB), total protein and urea, or vacutainers containing potassium 

oxalate for the determination of glucose and NEFA. Samples were centrifuged at 1000 xg 

for 15 min (Refrigerated Centrifuges SIGMA 3-16PK), and the plasma separated and 

stored at -20 °C prior to subsequent analysis. Faecal samples were collected twice daily 

at 0 800 and 14 30 h for 5 d during the sampling week from 12 cows (3 per treatment), 

and stored at -20 °C prior to subsequent analysis. 

 

4.2.3 Cheese production 

Milk was collected for cheese making during each sampling week from 4 cows per 

treatment at consecutive pm and am milkings into 50 L buckets. The pm milk was bulked, 

rapidly cooled to 4°C and stored overnight in a mini bulk milk tank (Frigomilk milk cooler 

G1, Via Trivulzia, Italy), and stirred continuously. Milk from the morning mixing was mixed 

with the pm milk for 30 min before 50 L was transferred into a cheese vat (Jongia, UK). 

Cheese was made following a cheddar recipe as described by Robinson and Wilbey 

(1998). The milk was pasteurized by heat-treating to 63 °C for 30 min, with temperature 

and titratable acidity % (TA) measured every 15 min by titration with 0.1 N NaOH. When 

the milk had cooled to 29.5 °C, 3 g of a starter culture of mixed lactic bacteria (single shot 

culture OV26, Orchard Valley Dairy Supplies, Worcestershire, UK) was added. Ripening 

continued until the TA reached 0.20-0.22 % (up to 1 h), and vegetarian marzyme rennet 

(Orchard Valley dairy supplies, Worcestershire, UK) added as a clotting agent at a rate of 

25 ml diluted in 175 ml of water per 100 L of milk, and the temperature held at 29.5 °C. 

The curd was then allowed to set over 50 min before being cut into 3 to 5 mm cubes. The 

temperature was then raised to 40 °C over 40 min with stirring, the whey drained off, and 

the curd cut and blocked every 20 min until dry. The curd was then milled by chopping into 

finger size pieces, and cooled to 25.5 °C. Salt was then added (100 g per 5 kg of curd) 

and mixed into the curd before being transferred into 3 cheese moulds, and pressed 

overnight at 75 kN/ m2. The cheese was turned the following day in the molds and re-

pressed at 200 kN/ m2 for 24 h. The cheese wheels were then vacuum packed in 
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individual embossed vacuum bags and stored at 4 °C for 120 d to mature until subsequent 

analysis. 

 

4.2.4 Chemical analysis 

Milk compositional analysis was conducted using a Milkoscan Minor 78110 (Foss 

Electric, Denmark), calibrated using standards according to AOAC (2012). Milk FA 

analysis followed the method described by Hara and Radin, (1978) for lipid extraction and 

Chouinard et al., (1999) for methylation as described in section 2.4.2. Cheese FA analysis 

followed the method described by Coakley et al., (2007) for lipid extraction and followed 

the same method as the milk for methylation as described in section 2.7.2. The TMR 

samples for each diet were bulked within each period and a sub-sample analysed 

according to AOAC (2012) for DM (934.01), CP (988.05) and ash (924.05), whilst NDF 

was analysed according to Van Soest et al., (1991) as described in sections 2.1.1 to 2.1.4. 

Fatty acid analysis of the TMR samples was determined using a modified protocol of 

Sukhija and Palmquist (1988) as described by Jenkins (2010), described in section 2.2. 

Fatty acids were identified using a GC as described in section 2.4.4. 

Plasma samples were analysed for albumin, 3-OHB, total protein, urea, glucose 

and NEFA as described in section 2.5. Faecal samples were bulked within days and 

sampling times for each cow for each period, dried at 65 °C until consistent weight and 

ground prior to subsequent analysis of AIA (Van Keulen and Young, 1977), ash and NDF 

as described in section 2.3.  

 

4.2.5 Sensory analysis 

For the sensory assessment a descriptive sensory analysis was used (Drake, 

2007). A group of 8 individuals was trained to identify and quantify specific sensory 

attributes of the cheese. The panellists were screened and trained for a total of 40 h to 

establish descriptive terms for cheese texture and flavour (Table 4.2), and were monitored 

to track the discriminatory ability of the panel. A 15-point product-specific scale was used 

for each attribute (Drake, 2007), and references were used to aid panellists in training and 

attribute identification and scale usage. Panellists received an additional 4 h of ‘refresher’ 

training prior to the initiation of the assessment to ensure that they were familiar with the 

attributes.  

 Each cheese was prepared for sensory analysis as described by Brown et al., 

(2003). Briefly, the matured cheese samples were trimmed of all external surfaces and cut 

into 2 cm3 cubes. Each panellist was provided with four cubes per sample per replication. 

The samples were presented in lidded plastic sample pots and maintained at 12 °C and 

evaluated under white light in a room dedicated to sensory analysis and free from external 
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aromas and noise. Each panellist evaluated each cheese in duplicate on odour, 

appearance, flavour, aftertaste, and texture attributes. 

 

Table 4.2. Definitions and scaling magnitudes used for the sensory evaluation of the 

experimental cheese 

Attribute Description 0 15 

Odour    

    Fruity Smell associated with fruits Nil Extreme 
    Sweet smell Overall sweet smell Nil Extreme
    Acidic/ sharp note Smell associated with acid Nil Extreme 
    Farmyard Smell associated with a farm Nil Extreme
    Creamy Smell associated with dairy 

richness
Nil Extreme 

Appearance    
    Edge cut How clean/smooth is the knife 

cut 
Firm Crumbly 

    Air holes Number of round holes on the 
surface 

Nil Extreme 

    Colour Colour in white to yellow shade White Dark yellow
    Glossiness Shiny appearance Dull Shiny 
Flavour    
    Sweetness Taste associated with sugar Nil Extreme 
    Tangy Tastes bright, clean and acidic Nil Extreme 
    Acidic Taste associated with acids Nil Extreme 
    Creaminess Amount of dairy richness Nil Extreme 
    Pleasant nutty flavour Distinctive taste Nil Extreme 
    Savoury Presence of Glutamates Nil Extreme 
    Bitterness Particular pungent taste Nil Extreme
    Metallic Taste associated with metal Nil Extreme 
    Salty Taste associated with salt Nil Extreme
Aftertaste    
    Acidity Taste associated with acids Nil Extreme
    Bitter Particular pungent taste Nil Extreme 
    Dry mouth Dry mouth Moist Dry
    Dry throat Dry throat  Moist Dry 
    Metallic Taste associated with metal Nil Extreme
    Creamy Amount of dairy richness Nil Extreme 
Texture  
    Firmness Fore required to bite through 

sample 
Soft Firm 

    Dryness Perceived degree of water in 
sample during chewing 

Moist Dry 

    Crumbliness Ease sample breaks into small 
crumbs 

Cohesive Very crumbly 

    Grittiness Amount of small crystals in the 
sample 

Nil Extreme 

    Stickiness Sticks to the roof of the mouth Nil Extreme
    Emulsify The presence of fat lumps Lumpy Dissolved 
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4.2.6 Statistical analysis 

Energy corrected milk (ECM) was calculated according to Moate et al., (2013) as:  

                         

(0.327 x milk kg/d) + (12.95 x fat kg/d) + (7.65 x protein kg/d)         Equation 14 

 

Data was analyzed by ANOVA as a Latin square design using Genstat 17th edition (VSN. 

Ltd, Oxford, UK) using the following model: 

Yijk = µ + Ti + Pj + Ak + ɛijk 

Where Yijk is the observation, µ is the overall mean, Ti is treatment, Pj is period, Ak is 

animal and ɛijk is the residual error. Treatment effects were split into orthogonal polynomial 

contrasts (linear, quadratic and cubic). Blood metabolites were analyzed as repeated 

measures analysis of variance. Results are presented as treatment means with standard 

error of the difference of means (SED).  

 

4.3 Results 

4.3.1 Feed analysis 

All diets had a similar DM content, with a mean of 372 g/kg (Table 4.1). Ash and 

OM content was similar in all diets (mean of 68 and 932 g/kg DM respectively). The L-

ALG diet had a CP content that was 6 g/kg DM higher than the H-ALG diet, which had the 

lowest value, with C and MA being intermediate. The NDF content was similar between 

treatments with a mean value of 455 g/kg DM. The content of C16:0, C18:0, C18:1n-9, LA 

and ALA were similar in all four diets, with mean values of 5.90, 0.43, 3.91, 4.77 and 0.74 

g/kg DM respectively. No DHA was detected in C, with the content increasing as the 

dietary inclusion level of ALG increased.  

 

4.3.2 Animal performance 

 There was no effect (P > 0.05) of dietary treatment on DM intake, with a mean 

value of 23.4 kg/d (Table 4.3), and there was no effect (P > 0.05) of treatment on milk 

yield, which averaged 38.5 kg per day, but there was a trend (P = 0.064) for a linear 

decrease in ECM as the inclusion rate of ALG increased. In contrast there was a linear 

decrease (P < 0.001) in milk fat content and yield with increasing dietary inclusion rate of 

ALG, with cows fed H-ALG producing 3.7 g/kg and 0.15 kg/d less than those receiving C. 

Milk protein content and yield, and lactose yield were not affected by dietary treatment (P 

> 0.05), with mean values of 32.4 g/kg, 1.24 kg/d and 1.78 kg/d respectively. In contrast 

milk lactose concentration decreased linearly (P = 0.007) with increasing dietary inclusion 

of ALG, from 46.5 g/kg in cows receiving C to 45.8 g/kg in HA. There was no effect (P > 

0.05) of dietary treatment on mean live weight, live weight change or body condition 

score, with mean values of 667 kg, 0.34 kg/d, and 2.94 units respectively. 



94 
 

Table 4.3.  Milk performance, live weight and body condition of dairy cows fed no ALG 
(Control (C)), 50 g/ALG per cow/d (Low algae (L-ALG)); 100 g/ALG per cow/d (Medium 
algae (M-ALG)), or 150 g/ALG per cow/d (High algae (H-ALG)) 

 Treatment  P-value 

 C L-ALG M-ALG H-ALG s.e.m Lin Quad Cub 

DM intake (kg/d) 23.7 23.3 23.1 23.3 0.323 0.162 0.281 0.926 

Milk yield (kg/d) 38.1 38.8 38.6 38.4 0.305 0.770 0.360 0.629 

ECM1 (kg/d) 41.3 41.3 40.5 39.4 1.041 0.064 0.440 0.904 

Milk fat (g/kg) 39.6 38.4 37.1 35.9 1.105 <.001 0.970 0.968 

Fat yield (kg/d) 1.50 1.47 1.41 1.35 0.055 0.007 0.647 0.849 

Milk protein (g/kg) 32.2 32.2 32.8 32.2 0.399 0.623 0.235 0.141 

Protein yield (kg/d) 1.22 1.24 1.26 1.22 0.029 0.972 0.181 0.670 

Milk lactose (g/kg) 46.5 46.6 45.9 45.8 0.305 0.007 0.442 0.160 

Lactose yield (kg/d) 1.77 1.81 1.77 1.78 0.036 0.816 0.552 0.279 

Live weight (kg) 668 663 667 669 4.140 0.595 0.241 0.351 

Live weight change (kg/d) 0.56 0.06 0.37 0.37 0.222 0.731 0.118 0.122 

Body condition 2.91 2.94 2.92 2.99 0.050 0.165 0.560 0.430 
1Energy corrected milk  
 

 

4.3.3 Plasma metabolite concentrations 

 There was no effect (P > 0.05) of dietary treatment or time on the mean plasma 

concentration of urea (Figure 4.1a). In contrast, plasma 3-OHB increased with time (P < 

0.001) but there was no effect (P > 0.05) of dietary treatment (Figure 4.1b). Similarly 

plasma glucose was not affected by dietary treatment (P > 0.005) but there was an effect 

(P = 0.002) of time, with concentrations decreasing post feeding (Figure 4.1c). There was 

no effect (P > 0.05) of dietary treatment on plasma NEFA, which decreased with time (P < 

0.001; Figure 4.1d). 
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Figure 4.1. Plasma urea (a) β hydroxybutyrate (3-OHB) (b) glucose (c) and non esterified 
fatty acids (NEFA) (d) of dairy cows fed no algae (Control; C ♦); 50 g/ALG per cow/d (Low 
algae; L-ALG ■); 100 g/ALG per cow/d (Medium algae; M-ALG ▲); and 150 g/ALG per 
cow/d (High algae; H-ALG ●). Error bars indicate s.e.d.  

 

4.3.4 Whole-tract apparent digestibility 

The mean DM intake of cows selected for the determination of digestibility was 

22.8 kg/d, and there was no effect of treatment (P > 0.05; Table 4.4). There was a 
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tendency for faecal DM output to increase linearly (P = 0.054) with inclusion rate of ALG, 

and as a consequence DM digestibility decreased linearly with the addition of ALG in the 

diet (P = 0.015). Organic matter digestibility followed a similar pattern to DM, with no effect 

of treatment on OM intake (P = 0.603), a trend for a linear increase in faecal output (P = 

0.057), and a linear decrease (P = 0.015), in digestibility with increasing dietary inclusion 

of ALG. There was no effect of diet on NDF intake (P > 0.05), but NDF output increased 

linearly with the addition of ALG in the diet, being highest in cows when fed H-ALG, 

whereas the digestibility of NDF decreased linearly (P = 0.03) with rate of inclusion of ALG 

from 0.45 kg/kg when fed C to 0.36 kg/kg when fed HA.  

 

Table 4.4. Digestibility of DM, OM and fibre of dairy cows fed no algae (Control (C)), 50 
g/ALG per cow/d (Low algae (L-ALG)); 100 g/ALG per cow/d (Medium algae (M-ALG)), or 
150 g/ALG per cow/d (High algae (H-ALG)) 

 Treatment P value 

 C L-ALG M-ALG H-ALG s.e.d Lin Quad Cubic

Dry matter (kg/d)  

      Intake 22.7 22.8 23.0 22.6 0.697 0.98 0.72 0.75 

      Faecal output 5.67 6.66 6.45 6.72 0.461 0.05 0.28 0.26 

      Digestibility (kg/kg) 0.750 0.710 0.720 0.700 0.018 0.02 0.44 0.18 

Organic matter (kg/d)  

      Intake 21.3 21.3 21.4 20.9 0.46 0.60 0.64 0.70 

      Fecal output 5.05 5.93 5.76 5.98 0.295 0.06 0.28 0.28 

      Digestibility (kg/kg) 0.764 0.726 0.733 0.714 0.0120 0.02 0.45 0.21 

NDF (kg/d)         

      Intake 10.0 10.3 10.3 10.3 0.23 0.50 0.48 0.83 

      Fecal output 5.52 6.27 6.28 6.55 0.314 0.04 0.45 0.48 

      Digestibility (kg/kg) 0.449 0.401 0.395 0.358 0.0264 0.03 0.82 0.55 
 

 

4.3.5 Milk FA profile 

 There was no effect (P > 0.05) of dietary treatment on milk fat content of C4:0, 

C14:0 to C17:1, C20:0 or EPA (Table 4.5). In contrast there was a linear decrease (P < 

0.05) in the milk fat content of C6:0, C8:0, C10:0, C18:0, C18:1cis-9, and C22:0, as the 

inclusion level of ALG increased in the diet. The milk fat concentration of C18:1 trans-8 to 

C18:1 trans-12, LA, ALA, C18:2 cis-9 trans-11 CLA, C18:2 trans-10, cis-12 CLA, C20:3n-6 

and C20:3n-3 increased linearly (P < 0.05) as the inclusion level of ALG increased in the 

diet. Milk fat DHA content also increased linearly (P < 0.001) from 0.08 g/100 g in cows 

fed C diet to 0.37 g/100 g FA when fed H-ALG. 

 There was a linear decrease (P = 0.02) in the proportion of milk FA of chain length 

less than C16, and increase in FA more than C16 as the dietary inclusion rate of ALG 

increased, but there was no effect of treatment on the proportion of C16:0 plus C16:1 (P > 
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0.05). Increasing the inclusion level of ALG had a linear effect (P < 0.001) on milk fat 

content of SFA, being highest in cows when offered C, and lowest when offered H-ALG. In 

contrast both MUFA and PUFA content in milk fat increased linearly (P < 0.001) as the 

dietary inclusion level of ALG increased. There was a linear increase (P < 0.001) in total 

n-3 and n-6 FA in milk fat as ALG inclusion increased, and a linear decrease (P < 0.001) 

in the ratio of n-6 to n-3 was observed, being highest in cows offered C and lowest in 

those offered H-ALG. The ∆9 desaturase index calculated using C16:1/C16:0 or C18:2 cis-

9, trans-11 CLA/ C18:1 trans-11 was similar between treatments (P> 0.05). However, 

there was a linear increase (P < 0.001) in the ∆9 desaturase index when calculated using 

C18:1 cis-9/ C18:0, being lowest in cows when offered C and highest when offered H-

ALG. 
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Table 4.5. Milk fatty acid composition (g/100 g of FA) of dairy cows fed no ALG (Control 
(C)), 50 g/ALG per cow/d (Low algae (L-ALG)); 100 g/ALG per cow/d (Medium algae (M-
ALG)), or 150 g/ALG per cow/d (High algae (H-ALG)) 

 Treatment  P value 
Fatty acids (g/ 100 g) C L-ALG M-ALG H-ALG s.e.d Lin Quad Cubic 
C4:0 1.43 1.44 1.39 1.39 0.036 0.20 0.82 0.25 
C6:0 1.24 1.27 1.19 1.17 0.033 0.01 0.31 0.12 
C8:0 0.900 0.900 0.840 0.820 0.026 <.001 0.42 0.21 
C10:0 2.23 2.24 2.09 2.04 0.067 <.001 0.55 0.23 
C12:0 3.11 3.03 2.96 2.90 0.089 0.02 0.81 0.97 
C14:0 11.2 11.1 11.0 10.9 0.177 0.14 0.62 0.70 
C14:1 cis-9 0.950 0.930 1.02 0.991 0.042 0.16 0.79 0.08 
C15:0 1.03 0.982 0.971 0.983 0.033 0.18 0.23 0.94 
C16:0 37.5 36.9 37.5 36.9 0.395 0.38 0.87 0.07 
C16:1 cis-9 1.59 1.51 1.44 1.62 0.111 1.00 0.10 0.49 
C17:0 0.398 0.394 0.387 0.404 0.007 0.65 0.05 0.23 
C17:1 cis-9 0.223 0.238 0.234 0.240 0.011 0.21 0.56 0.46 
C18:0 9.70 9.60 8.58 8.73 0.239 <.001 0.47 0.01 
C18:1 trans-8 0.325 0.389 0.387 0.491 0.049 0.003 0.57 0.27 
C18:1 trans-9 0.294 0.365 0.556 0.538 0.044 <.001 0.17 0.02 
C18:1 trans-10 0.614 0.779 0.825 0.869 0.090 0.01 0.35 0.69 
C18:1 trans-11 1.15 1.28 1.63 1.84 0.173 <.001 0.85 0.18 
C18:1 trans-12 0.459 0.537 0.900 0.819 0.106 <.001 0.29 0.03 
C18:1 cis-9 21.3 21.2 20.6 20.7 0.278 0.01 0.58 0.09 
LA 2.61 2.66 2.75 2.78 0.046 <.001 0.90 0.50 
C20:0 0.067 0.069 0.065 0.068 0.002 0.92 0.98 0.05 
ALA 0.452 0.461 0.489 0.496 0.009 <.001 0.72 0.07 
C18:2 cis-9, trans-11 CLA 0.606 0.756 0.856 0.900 0.031 <.001 0.02 0.96 
C18:2 trans-10, cis-12 
CLA 

0.033 0.031 0.044 0.048 0.005 <.001 0.35 0.17 

C22:0 0.042 0.037 0.033 0.032 0.002 0.01 0.52 0.31 
C20:3n-6 0.050 0.055 0.055 0.057 0.002 0.01 0.52 0.31 
C20:3n-3 0.132 0.137 0.136 0.160 0.005 <.001 0.01 0.07 
EPA 0.073 0.071 0.063 0.068 0.006 0.24 0.40 0.38 
DHA 0.077 0.148 0.249 0.371 0.017 <.001 0.05 0.86 
Indices   

<C16:0 22.0 21.9 21.5 21.2 0.381 0.02 0.64 0.56 
16:0 + C16:1 39.1 38.4 38.9 38.6 0.429 0.42 0.56 0.14 
>C16:0 40.5 41.2 41.1 41.5 0.494 0.03 0.84 0.37 
ƩSFA1 68.7 68.0 67.0 66.7 0.435 <.001 0.85 0.62 
ƩMUFA2 26.5 27.1 27.9 27.9 0.402 <.001 0.30 0.52 
ƩPUFA3 4.48 4.79 5.21 5.43 0.084 <.001 0.54 0.22 
Ʃn-34 0.730 0.822 0.937 1.10 0.025 <.001 0.06 0.79 
Ʃn-65 3.12 3.18 3.34 3.39 0.051 <.001 0.92 0.20 
n-6:n-3 0.810 0.794 0.780 0.756 0.004 <.001 0.14 0.30 
Estimates of mammary ∆9-desaturase activity      

C14:1:(C14:0 + C14:1) 0.079 0.077 0.085 
0.0
83 

0.003 0.02 0.90 0.03 

C16:1:(C16:0 + C16:1) 0.041 0.039 0.037 
0.0
42 

0.003 0.89 0.08 0.37 

C18:1c9: (C18:0 +                
C18:1c9) 

0.686 0.689 0.705 
0.7
06 

0.004 <.001 0.78 0.12 

C18:2 c9 t11 CLA: 
(C18:1t11 + C18:2 c9 t11 
CLA) 

0.375 0.378 0.354 
0.3
55 

0.022 0.24 0.94 0.47 
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4.3.6 Cheese composition, FA profile and taste 
There was no effect (P > 0.05) of treatment on cheese yield, which averaged 0.26 

kg/kg (Table 4.6). In contrast, cheese moisture content increased linearly (P < 0.001) with 

dietary inclusion rate of ALG, whereas the fat content decreased linearly (P < 0.05). There 

was a linear decrease (P < 0.05) in cheese C6:0, C18:0, C18:1 cis-9 and C22:0 as the 

inclusion level of ALG increased in the diet, but there was no effect (P > 0.05) on any of 

the other FA below C18:0, or on LA, C20:0, C18:2 trans-10 cis-12 CLA and C20:3n-3. 

Cheese FA content of C18:1 trans-10, 11 and 12, ALA, C18:2 cis-9 trans-11 CLA and 

C20:3n-6 increased linearly (P < 0.05) as the supplementation of ALG increased. Cheese 

content of DHA increased quadratically with dietary inclusion of ALG (P < 0.001), being 

highest in cheese made from cows fed H-ALG. There was a linear increase (P < 0.05) in 

cheese content of EPA from 0.05 g/100g in cheese from cows when fed C to 0.06 g/100g 

in those receiving H-ALG. There was no effect (P > 0.05) of treatment on the sum of 

cheese FA of chain length less than C16:0 or chain length more than C16:0, MUFA or 

total n-6. However increasing the dietary supplementation of ALG had an effect (P< 0.05) 

on the total SFA in cheese, which decreased linearly from 67.9 in C to 66.2 g/100 g FA in 

H-ALG, and on total PUFA, which increased from 3.92 in C to 4.61 g/100 g in H-ALG. A 

cubic decrease (P < 0.001) in the ratio of n-6:n-3 was observed in cheese as the inclusion 

level of ALG increased in the diet, being lowest in cheese from cows fed L-ALG and 

highest in those fed C.  

 Supplementation with ALG affected 20 out of the 32 sensory attributes (P < 0.05; 

Table 4.7). There was a linear increase (P < 0.05) in the appearance of air holes, initial 

sweetness, nutty flavour, and acidic, and dry throat aftertaste, and a linear decrease (P < 

0.05) in the creamy flavour of the cheese as the inclusion level of ALG increased in the 

diet. There was also a quadratic effect (P < 0.05) on the fruity odour, which was highest in 

cheese from cows when fed H-ALG and lowest in those receiving L-ALG, edge cut 

appearance (P < 0.001) which was highest in H-ALG and lowest in cheese made from 

cows fed M-ALG, and firmness and crumbliness texture (P < 0.05) being highest in 

cheese from cows when fed M-ALG, with H-ALG fed cows producing crumblier and less 

firm cheese. There were cubic effects of treatment (P <0.05) on farm yardy odour, 

stickiness, acid flavour, bitterness and dry mouth aftertaste. 
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Table 4.6. Cheese composition, yield and fatty acid composition (g/100 g of FA) of dairy 
cows fed no ALG (Control (C)), 50 g/ALG per cow/d (Low algae (L-ALG)); 100 g/ALG per 
cow/d (Medium algae (M-ALG)), or 150 g/ALG per cow/d (High algae (H-ALG)) 

 Treatment  P value 

Cheese composition C L-ALG M-ALG H-ALG s.e.d Lin Quad Cubic 

Weight (kg) 5.24 5.13 5.23 5.10 0.366 0.791 0.946 0.719 
Yield (kg cheese/kg milk) 0.262 0.257 0.262 0.255 0.018 0.791 0.946 0.719 
Moisture (g/kg) 41.4 41.5 42.9 42.9 0.46 <.001 0.746 0.08 
Fat (g/ kg) 24.6 23.7 20.8 21.3 1.32 0.005 0.505 0.198 
Fatty acids (g/100 g)         
C4:0 0.486 0.473 0.464 0.47 0.014 0.18 0.31 0.8 
C6:0 1.72 1.68 1.63 1.59 0.063 0.05 0.95 0.99 
C8:0 0.823 0.804 0.780 0.754 0.036 0.06 0.9 0.98 
C10:0 2.27 2.26 2.18 2.12 0.113 0.16 0.76 0.81 
C12:0 3.32 3.32 3.27 3.20 0.135 0.35 0.71 0.95 
C14:0 11.7 11.8 11.9 11.8 0.186 0.58 0.49 0.86 
C14:1 cis-9 1.11 1.15 1.21 1.09 0.092 0.98 0.24 0.5 
C15:0 1.06 1.10 1.12 1.06 0.036 0.85 0.05 0.56 
C16:0 37.4 37.1 36.8 36.8 0.582 0.22 0.76 0.96 
C16:1 cis-9 1.84 1.79 1.95 1.86 0.088 0.49 0.72 0.1 
C17:0 0.372 0.381 0.381 0.380 0.009 0.42 0.4 0.78 
C17:1 cis-9 0.256 0.236 0.244 0.236 0.009 0.07 0.32 0.13 
C18:0 8.61 8.67 7.9 7.98 0.151 <.001 0.94 0.002 
C18:1 trans-9 0.363 0.523 0.636 0.631 0.036 <.001 0.004 0.53 
C18:1 trans-10 0.269 0.306 0.408 0.458 0.058 0.002 0.88 0.54 
C18:1 trans-11 0.680 1.06 1.51 1.75 0.316 0.001 0.77 0.79 
C18:1 trans-12 0.914 1.19 1.33 1.48 0.089 <.001 0.35 0.59 
C18:1 cis-9 22.7 21.9 21.8 21.8 0.455 0.05 0.21 0.77 
LA 2.62 2.63 2.67 2.70 0.082 0.28 0.88 0.83 
C20:0 0.067 0.070 0.068 0.070 0.001 0.08 0.95 0.01 
ALA 0.440 0.434 0.459 0.471 0.016 0.03 0.44 0.39 
C18:2 cis-9, trans-11 CLA 0.600 0.704 0.834 0.865 0.032 <.001 0.12 0.22 
C18:2 trans-10, cis-12 CLA 0.016 0.025 0.026 0.024 0.005 0.17 0.18 0.82 
C22:0 0.035 0.034 0.029 0.027 0.004 0.03 0.91 0.61 
C20:3n-6 0.042 0.056 0.056 0.058 0.006 0.02 0.17 0.46 
C20:3n-3 0.089 0.100 0.091 0.095 0.010 0.79 0.62 0.33 
EPA 0.050 0.050 0.049 0.056 0.002 0.03 0.06 0.36 
DHA 0.062 0.128 0.230 0.352 0.010 <.001 <.001 0.59 
Indices         
     <C16:0 22.5 22.6 22.5 22.1 0.481 0.41 0.43 0.87 
     16:0 + C16:1 39.3 38.9 38.8 38.6 0.605 0.28 0.81 0.85 
     >C16:0 40.1 40.3 40.6 41.2 0.761 0.15 0.78 0.95 

     ƩSFA1 67.9 67.7 66.6 66.2 0.812 0.02 0.91 0.5 

     ƩMUFA2 28.2 28.2 29 29.2 0.746 0.11 0.89 0.52 

     ƩPUFA3 3.92 4.12 4.42 4.61 0.133 <.001 0.96 0.65 

     Ʃn-34 0.641 0.712 0.830 0.969 0.028 <.001 0.09 0.75 
     Ʃn-65 2.66 2.68 2.73 2.75 0.082 0.21 0.97 0.87 
     n-6:n-3 0.806 0.740 0.790 0.767 0.003 <.001 <.001 <.001 
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Table 4.7. Sensory attribute ratings of cheese made from dairy cows fed no algae (Control 
(C)), 50 g/ALG per cow/d (Low algae (L-ALG)); 100 g/ALG per cow/d (Medium algae (M-
ALG)), or 150 g/ALG per cow/d (High algae (H-ALG)) 

 Treatment  P value 

Item C L-ALG M-ALG H-ALG s.e.d Lin Quad Cubic 

Odour  
    Fruity 4.71 3.43 4.52 4.76 0.468 0.27 0.02 0.03 
    Sweet 3.94 3.31 3.71 3.83 0.370 0.83 0.15 0.25 
    Acidic note 4.12 4.95 3.73 5.60 0.400 0.001 0.04 <.001
    Farmyardy 1.09 1.36 0.839 1.48 0.217 0.18 0.17 0.01 
    Creamy 3.16 3.50 3.35 2.81 0.347 0.15 0.06 0.91 
Appearance  
    Edge cut 7.08 6.38 6.15 7.81 0.458 0.04 <.001 0.33 
    Air holes 1.78 1.69 2.05 2.39 0.271 0.004 0.25 0.57 
    Colour 1.59 1.86 1.76 1.69 0.080 0.59 0.002 0.11 
    Glossiness 5.19 5.76 6.10 5.64 0.367 0.20 0.04 0.63 
Texture on eating  
    Firmness 5.05 5.67 5.92 3.98 0.319 <.001 <.001 0.07 
    Dryness 6.35 6.31 5.81 6.41 0.393 0.98 0.21 0.21 
    Crumbliness 5.20 5.43 5.58 4.14 0.315 <.001 <.001 0.14 
    Grittiness 1.05 0.983 0.847 1.62 0.273 0.02 0.02 0.26 
    Stickiness 9.34 10.3 9.47 9.56 0.357 0.84 0.11 0.02
    Emulsifying 11.2 11.1 10.7 11.2 0.403 0.83 0.22 0.25 
Flavour  
    Initial sweetness 1.16 1.47 1.56 1.83 0.298 0.02 0.93 0.67
    Fruity 1.25 1.45 1.63 1.64 0.266 0.09 0.60 0.86 
    Tangy 5.62 5.78 5.89 5.96 0.410 0.35 0.87 1.00 
    Acidic note 6.49 6.83 5.66 7.11 0.497 0.40 0.08 0.01 
    Creaminess 2.52 2.45 2.44 1.87 0.287 0.01 0.19 0.49 
    Saltiness 2.15 2.47 2.23 2.31 0.193 0.66 0.38 0.14 
    Pleasant nutty flavour 0.910 1.37 1.06 2.04 0.347 0.001 0.23 0.06 
    Savoury 0.679 0.779 0.809 0.824 0.097 0.11 0.52 0.86 
    Bitterness 4.10 4.74 3.70 5.25 0.539 0.06 0.18 0.01 
    Metallic 0.696 0.978 0.649 0.935 0.194 0.41 0.93 0.05 
Aftertaste  
    Salty 1.97 2.21 2.05 2.22 0.21 0.34 0.84 0.28 
    Acidic 5.09 5.57 5.09 6.25 0.464 0.01 0.25 0.07 
    Bitter 5.24 5.61 5.51 6.91 0.548 <.001 0.16 0.25
    Dry mouth 5.55 6.12 5.49 6.63 0.346 0.02 0.28 0.03 
    Dry throat 3.37 3.7 3.56 4.46 0.374 0.002 0.25 0.19 
    Metallic 1.25 1.65 1.17 1.60 0.292 0.41 0.88 0.05
    Creamy 1.58 1.55 1.75 1.33 0.255 0.33 0.24 0.29 

 

4.4 Discussion 

4.4.1 Feed analysis, animal performance and diet digestibility  
 The ALG supplement used in this study was high in DHA, and as the inclusion 

level of ALG increased the supply of DHA increased to provide approximately 0, 8, 16 and 

24 g/cow per d. These dietary inclusion levels were selected as higher amounts have 

been associated with a decrease in animal performance and milk fat content (Franklin et 

al., 1999; Boeckaert et al., 2008). For example, supplementation with marine lipids at high 
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rates has often been reported to decrease DMI in both dairy cows (Franklin et al., 1999; 

Moate et al., 2013) and sheep (Toral et al., 2010). In the current study there was no effect 

of treatment on DMI, which averaged 23.3 kg/d, a finding in accordance with both Stamey 

et al., (2012) and Vahmani et al., (2013) who reported no effect of feeding 200 g/d of ALG 

or FO to Holstein cows. Similarly, Bichi et al., (2013) also reported no effect of feeding 

ALG on DMI in lactating ewes when supplemented at 8 g/kg DM. In the current study the 

highest inclusion of ALG provided a similar DHA supply to that used in study of Moate et 

al. (2013), who also observed no effect on DMI. However, at a higher inclusion level of 50 

g DHA/cow per d resulted in a 6 % decrease in DMI, with an 11 % decrease at an 

inclusion level of 75 g/cow per day (Moate et al., 2013), and it would therefore appear that 

supplying DHA from ALG at up to 25 g/d can be achieved without a negative impact on 

intake.  

It has been reported that supplementation with ALG at the rate of 43 g/kg DMI 

decreased milk yield by 45 % when administered directly through a rumen fistula, 

(Boeckaert et al., 2008), mainly as a consequence of reduced DMI. In contrast there was 

no effect of ALG supplementation on milk yield in the current study, a finding similar to 

several others (AbuGhazaleh et al., 2009; Stamey et al., 2012; Vahmani et al., 2013). In 

contrast, Hostens et al., (2011) and Sinedino et al., (2017) reported an increase in milk 

yield when 224 g of ALG containing 44 g DHA and 100 g ALG containing 10 g DHA was 

fed daily to dairy cows for 46, and 120 d postpartum respectively. This difference may be 

explained by the longer term feeding of ALG in both studies, whereas in the current study 

the level of ALG inclusion was changed every 4 weeks.  

Milk fat depression induced by ALG supplementation has been reported in both 

dairy cows (Sinedino et al., 2017; Moate et al., 2013; Vahmani et al., 2013) and sheep 

(Bichi et al., 2013). The exact mechanism behind milk fat depression following 

supplementation with marine oils such as ALG or FO is however, unclear (Bichi et al., 

2013). Bauman and Griinari (2003) described how unique FA intermediates that are 

produced through the biohydrogenation of PUFA can cause an inhibitory effect on milk fat 

synthesis, with one intermediate identified as a potent inhibitor of milk fat synthesis being 

trans-10 cis-12 CLA (Hussein et al., 2013; Peterson et al., 2003; Sinclair et al., 2007). 

However, other intermediates such as C18:1 trans-10 are also involved, and are often 

elevated in milk fat when milk fat depression is observed (Chilliard et al., 2001). 

Supplementation of oil mixtures rich in PUFA or intermediaries of biohydrogenation in the 

rumen can strongly inhibit de novo synthesis and uptake of circulating FA by the 

mammary gland (Hussein et al., 2013), and may therefore explain the results reported in 

the current study. For example, it has been reported in cell culture and rodent models that 

sterol regulatory element binding protein (SREBP) signaling is inhibited by PUFA 

(Harvatine et al., 2006), and Vahmani et al, (2013) reported a 15 % reduction in the 
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expression of SREBP in the mammary tissue of cows fed FO or ALG compared to a 

control diet. Other authors have also observed that CLA causes a down-regulation in 

SREBP mRNA abundance and enzymatic activity in mammary tissue of  dairy cows and 

sheep, which affects genes involved in the uptake, de novo synthesis, desaturation and 

esterification of FAs (Peterson et al., 2003; Hussein et al., 2013). In the current study 

there was a linear increase in both trans-10 cis-12 CLA, and C18:1 trans-10 as daily milk 

fat content and yield decreased with the addition of ALG in the diet, supporting the 

findings that trans-10 cis-12 CLA is involved in milk fat depression and that C18:1 trans-10 

may also be a contribute in dairy cows fed sources of marine oil.  

 Milk protein content and yield, as well as lactose yield were unaffected by ALG 

supplementation in the current study, a finding consistent with previous observations in 

cows fed ALG or FO (AbuGhazaleh et al., 2003; Stamey et al., 2012; Vahmani et al., 

2013), and in sheep fed ALG (Bichi et al., 2013). Milk lactose content decreased linearly 

with the addition of ALG, a finding that contrasts with previous observations that reported 

that milk lactose content was unaffected by ALG supplementation (AbuGhazaleh et al., 

2009; Vhamani et al., 2013), although the reason for this difference is unclear. There was 

no effect of dietary treatment on BCS or live weight, a finding in agreement with Glover et 

al. (2012), but there was a linear decrease in ECM as the level of ALG increased in the 

diet, which in combination with the similar DM intake between treatments, indicates that 

less energy may have been digested. 

Few studies have evaluated the effect of ALG on whole tract digestibility, and 

making comparisons between studies is problematic as different sources of ALG have a 

diverse nutrient profile (Stokes et al., 2015). In the current study there was no difference in 

DM, OM or NDF intake between treatments, indicating that palatability and feed 

preference were of minor concern, a finding in accordance with Stokes et al., (2015) when 

feeding ALG meal to sheep. However, similar to that of Stokes et al., (2015), there was a 

linear decrease in DM, OM and NDF digestibility with increasing rate of dietary inclusion of 

ALG. Diets high in PUFA have been shown to suppress the protozoal community in the 

rumen of cows and can also alter the Butyrivibrio related bacterial community, leading to 

the loss of some strains which are actively involved in biohydrogenation (Lourenco et al., 

2010). In contrast Moate et al., (2013) reported an increase in the number of protozoa with 

the addition of ALG high in DHA in the diet of dairy cows, and concluded that when DHA 

is fed at a level that does not affect DMI, it does not alter rumen volatile fatty acid 

proportions, or enteric CH4 emissions, a finding supported by Klop et al., (2016). In 

contrast Maia et al., (2007) reported that the activity of cellulolytic bacteria may be 

reduced by long chain PUFA, as these bacteria are inhibited by an accumulation of H2
 in 

the rumen, which can occur when methanogenesis is impeded (Lourenco et al. 2010).  
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4.4.2 Blood metabolites 
 Mattos et al., (2004) reported a decrease in plasma glucose concentration when 

FO was fed to cattle which was associated with a decrease in DMI, but in the current 

study DM intake and plasma glucose concentration were unaffected by dietary treatment.  

Similar to the present study, Ballou et al. (2009) reported no effect of lipid 

supplementation on plasma NEFA levels in dairy cows fed FO, although 3-OHB 

concentrations decreased with FO supplementation, which could be related to an 

improved energy status of the cows. Overall, the lack of an effect of dietary treatment on 

blood glucose, NEFA or 3-OHB in the current study reflects the lack of a difference in 

intake, weight change and milk yield. 

 

 4.4.3 Milk and cheese FA profile 
 The primary objective of the current study was to increase milk fat and 

cheese concentrations of DHA. The similarity between the milk and cheese FA profile 

across treatments indicates that cheese manufacturing and packaging had little effect on 

the FA profile, a finding in agreement with Chilliard and Ferlay, (2004). The DHA content 

increased linearly with the addition of ALG in the diet, a finding in accordance with Stamey 

et al., (2012), Vahmani et al., (2013) and Boeckaert et al., (2008). The DHA content of the 

cheese from cows fed H-ALG in the current study was however, lower than when Martini 

et al. (2009) fortified reduced-fat cheese with FO. The opportunities for fortification of dairy 

products with FO is limited however, as oxidative deterioration causes off-flavors, and 

Kolanowski and Weissbrodt (2007) reported that cheese stability was limited to only 4 

weeks, restricting its commercial use.  

With a significant increase in DHA and ALA in milk from cows supplemented with 

ALG, the n-6:n-3 ratio in both milk and cheese decreased from approximately 0.81 in milk 

from cows fed the Control to 0.76 at the highest dietary addition of ALG. The 

recommended daily ratio of n-6:n-3 FA in the human diet is 2.3:1 (Kris-Etherton et al., 

2000), but this ratio is often higher in most Western style diets due to a high consumption 

of n-6 FA, and therefore a reduction is attractive for human health (Allred et al., 2006). 

Additionally, in the current study the content of SFA in both milk and cheese decreased 

with increasing dietary inclusion of ALG, whilst the content of MUFA and PUFA increased. 

This altered FA profile is in agreement with previously reported responses to ALG (Glover 

et al., 2012; Boeckaert et al., 2008). Even in small quantities n-3 PUFA can significantly 

decrease the likelihood of developing coronary heart disease, and in high doses can lower 

cholesterol and have antithrombotic and anti-inflammatory properties (Marventano et al., 

2015; Calder, 2014) indicating the importance of n-3 PUFA on human health. The 

European Food Safety Authority (2012) suggested that people should consume at least 

250 mg LC n-3 FA /d, although a higher intake is required for the prevention of 
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cardiovascular diseases (Marventano et al., 2015). In the European Union (EU) 

consumption of cheese averages 50 g/d, whereas in the United States it is reported to be 

43 g/d (Canadian Dairy Information Centre, 2016). In the current study 50 g of  cheese 

made from cows fed H-ALG would supply a daily intake of 43.5 mg of DHA + EPA, a 2.5 

fold increase compared to the 13.8 mg of DHA + EPA in cheese made from cows fed C, 

and would contribute approximately 17 % of the daily recommendation of DHA and EPA. 

Algae supplementation in the current study also increased the concentration of LA 

and ALA in both milk and cheese, which may either be due to decreased 

biohydrogenation in the rumen or greater uptake by the mammary gland (AbuGhazaleh et 

al., 2003). Oils high in PUFA have antimicrobial activity against a wide range of 

microorganisms and can decrease FA biohydrogenation in the rumen by inhibiting the 

growth of bacteria such as Butyrivibrio fibrisolvens (Benchaar et al., 2007). Consequently, 

C18:1 trans-11 concentrations in the rumen increase and are subsequently available for 

uptake into milk and cheese (Chilliard et al., 2001). A decrease in milk and cheese C18:1 

cis-9 was also observed in the current study, and may be due to its extensive 

biohydrogenation in the rumen to yield trans-8, trans-9, trans-10 and trans-11 isomers as 

reported by van de Vassenberg and Joblin (2003). Since C18:1 cis-9 can be synthesized 

in the mammary gland from C18:0 by ∆9 desaturase (Palmquist and Griinari, 2006), a 

decrease in the amount of C18:0 entering the mammary gland, or in the activity of this 

enzyme, would also lead to less C18:1 cis-9 being present in milk. 

In order to measure the activity of ∆9 desaturase, previous studies have estimated 

ratios of FA dependent on the activity of this enzyme (Soyeurt et al., 2008). In the current 

study the ratio of C16:0 to C16:1 was similar between treatments. In contrast the ratio of 

C14:1 to C14:0 increased linearly with the addition of ALG in the diet. Moate et al. (2013), 

also observed an increase in C14:1 to C14:0 and C16:1 to C16:0 ratios when feeding 25 

g/cow per day of DHA, a dose similar to H-ALG diet in the current study. At higher 

inclusion levels of 50 and 75 g DHA/cow per d no additional effect was reported (Moate et 

al., 2013). In the current study an increase in the ratio of C18:1 cis-9 to C18:0 was 

observed, which is in accordance with Allred et al., (2006) who fed FO to dairy cows. In 

contrast there was a decrease in the ratio of cis-9 trans-11 CLA to C18:1 trans-11, whilst 

an increase was reported by Allred et al., (2006). It is difficult however to determine 

whether the increase in CLA in milk FA was due to ∆9 desaturase activity or an increase in 

flow from the rumen. 

 

4.4.4 Cheese composition and sensory evaluation 

 The secondary objective of the current study was to determine the effect of ALG 

inclusion in the diet on cheese composition and taste, as ultimately this will influence 

consumer preference and cheese consumption. There was no effect of dietary treatment 



106 
 

on cheese yield despite the decrease in milk fat content that occurred with increasing 

inclusion levels of ALG, a finding similar to Sinclair et al. (2007) who reported no 

difference in cheese yield when a CLA supplement was fed to sheep, despite a significant 

reduction in milk fat content. 

Sensory evaluation of dairy products made from milk from cows fed ALG has not 

previously been reported and, overall, there was a number of differences in cheese 

flavour. It is however, well established that the high content of LC n-3 PUFA in FO makes 

it particularly susceptible to oxidation, which can significantly decrease the sensory quality 

of milk and cheese due to the development of fishy off-flavours (Kolanowski and 

Weissbrodt, 2007; Damodaran and Park in, 2017), but there was no such flavours in the 

current study. There was however, a slight linear increase in acidic and bitter aftertaste, 

although the highest score of 6.9 for H-ALG was still well within the 15 point scale, 

suggesting that LC n-3 PUFA oxidation may not have been a major factor. A softer 

structure of cheese has been reported in some studies when cheese was made from milk 

from cows fed diets rich in PUFA (Chen et al., 2004). Similarly, cheese made from cows 

fed H-ALG in the current study was less firm and more crumbly, and may therefore be 

used to produce dairy products with a softer structure. There was also a linear decrease in 

the creamy flavour of the cheese as the level of PUFA increased in the cheese, a finding 

consistent with Chen et al. (2004) who stated that PUFA can inhibit lipases that are 

important for the generation of a cultured dairy product flavour by releasing free FA. 

Others have reported an increase in a pleasant nutty flavour which was related to content 

of LA (Stuchlik and Zak, 2002), a finding consistent with that reported here where there 

was a linear increase in a nutty flavour with ALG inclusion, which was associated with an 

increase in the cheese fat content of LA.  

 

4.5 Conclusion 

Feeding DHA-enriched ALG to dairy cows linearly increased the milk and cheese 

concentration of DHA, cis-9 trans-11 CLA and trans-10 cis-12 CLA and decreased 

concentrations of SFA, with potential human health benefits. The modified FA composition 

was associated with a decrease in milk fat content and yield when fed at the highest level, 

but there was no effect on DMI or milk yield, although NDF digestibility decreased. 

Despite the decrease in milk fat content there was no detrimental effect on cheese yield. 

There was an increase in crumbliness and decrease in firmness of cheddar cheese as 

well as an increase in nutty flavour at the highest ALG inclusion level. It is therefore 

recommended that ALG may be fed at 100 g/cow per day, as this will improve milk and 

cheese FA quality without negatively impacting animal performance, whilst having a 

beneficial impact on the milk and cheese FA profile. 
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CHAPTER 5: Experiment 3 - Effect of supplementation of DHA enriched ALG in the 

diet of dairy cows on milk FA profile over time and indicators of fertility 

 

5.1 Introduction 

Including n-3 PUFA in the diet of the dairy cow can increase the energy density of 

the diet, and subsequently energy intake if DMI is not reduced (Wullepit et al., 2012), 

helping the dairy cow to cope with metabolic challenges during lactation. Feeding n-3 

PUFA can alter milk FA composition, resulting in milk fat depression, which may reduce 

the energy output post-partum (Wullepit et al., 2012). Previous studies have examined the 

effect of ALG supplementation on milk FA of dairy cows (Chapter 4; Boeckaert et al., 

2008; Glover et al., 2012; and Vahmani et al., 2013) and have successfully increased the 

milk content of beneficial PUFA when ALG is supplemented in the diet. Despite an 

increase in milk PUFA the transfer efficiency of DHA to milk from marine oil sources 

added to the diet is low (Chilliard et al., 2001), as the majority of the PUFA are 

biohydrogenated in the rumen and not incorporated into milk intact (Vahmani et al., 2013). 

Polyunsaturated FA have been shown to be toxic towards rumen microorganisms, altering 

the biohydrogenation of FA and the rumen ecosystem (Benchaar et al., 2007).  Ruminal 

adaption to high levels of lipid in the diet can occur, altering the formation of specific 

biohydrogenation intermediates, reflecting a time-dependant effect on lipid 

supplementation (Shingfield et al., 2006). Boeckaert et al., (2008) reported a rapid 

increase in milk C18:1 trans-11 following continual ALG supplementation in the diet of 

dairy cows, but after 6 days the concentrations of C18:1 trans-11 decreased and 

stabilized. A more gradual increase of DHA was reported when ALG was fed continuously 

to dairy cows and after 20 days no decline was seen (Boeckaert et al., 2008). Shingfield et 

al., (2006) examined milk fatty acid composition responses to FO and sunflower oil over a 

period of 28 days and also reported a rapid increase in milk C18:1 trans-11 FA, which 

decreased and stabilised at day 16, cis-9 trans-11 CLA followed a similar pattern. No 

studies have previously examined the effect of ALG supplement over a prolonged period 

of time, therefore further work is required in order to understand if rumen adaptation will 

occur during ALG supplementation. 

Fertility in dairy cows has declined over the past five decades which has been 

associated with an intensification of production and higher milk yields (Rodney et al., 

2015). Reduced fertility includes delayed resumption of oestrous post-partum, greater 

incidence of abnormal oestrous cycles and poorer conception rates to first and 

subsequent inseminations (Pryce et al., 2004). High reproductive efficiency in dairy cows 

requires a reduction in disease during the transition period, high submission rate to AI and 
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high pregnancy rates per service (Roche et al., 2000). The reproductive performance of 

cows is influenced by nutritional and metabolic status (Elis et al., 2016). In high-yielding 

dairy cows nutrition can have a significant impact on the resumption of ovarian cycle’s 

post-partum and on subsequent conception rates (Fouladi-Nashta et al., 2009). Elis et al., 

(2016) investigated the effect of FO supplementation post calving on the production and 

reproduction in post-partum dairy cows. Feeding of LC n-3 PUFA in FO increased the 

number of large follicles and decreased non-fertilization and early embryo mortality rate, 

suggesting an effect on oocyte quality (Elis et al., 2016). Oseikrina et al., (2016) 

investigated in-vitro the effect of DHA supplemented at a rate of 1 μM on cattle oocyte 

development and reported an increase in the rate of embryo development and an 

increase in blastocyst cell number. 

Polyunsaturated FA have major roles in the endocrine system, metabolism and 

disease control in various tissues, influencing the reproductive status of dairy cows in 

various ways. The 1 and 2 series, of prostaglandins are derived from n-6 FA and are 

involved in uterine involution and subsequent sequential ovulation post-partum (Otto et al., 

2014). The 3- series prostaglandins are derived from n-3 FA and are involved in improving 

the environment for embryo implantation and survival by decreasing the secretion of PG 

metabolites, resulting in increased lifespan of the CL (Dong Hyeon et al., 2016). PGF2α is 

secreted during the oestrous cycle, and the pulsatile secretion mediates the regression of 

the CL (Binelli and Thatcher, 1999). Feeding LC n-3 PUFA has been reported to reduce 

uterine PGF2α production and improve embryo quality and pregnancy maintenance (Otto 

et al., 2014). Only a few studies have looked at the effect of ALG supplementation on 

fertility parameters in cows (Sinedino et al., 2017; Moran et al., 2017), with results being 

inconsistent, and no work has been done on the effect ALG supplementation may have on 

PGF2α production.  

 

Hypothesis  

The hypothesis of this study was that feeding ALG would increase the concentration of 

health promoting LC n-3 PUFA in milk which would be maintained over time, and improve 

fertility by reducing the uterine secretions of PGF2α. 

 

Objectives and aims 

The objective of the study was to determine the effect of supplementation with ALG on 

milk DHA concentration over time and to determine the effect on indicators of fertility. 
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5.2 Material and methods 

The study was conducted in accordance with the requirement of the Animals 

(Scientific Procedures) Act 1986 (amended 2013) and received approval by the Harper 

Adams University Animal Welfare and Ethical Review Body. 

  

5.2.1 Animals, diets and experimental design 

The study was conducted at Harper Adams University, Edgmond, Shropshire over 

a period of 6 months from September to February 2016-2017. Sixty Holstein-Friesian 

dairy cows were randomly allocated to one of two dietary treatments 25 ± 0.53 days post 

calving based on parity, calving date, 305 day milk yield and milk yield 1 week prior to the 

start of the study. The experiment was a continuous design, with the diets fed from 3 

weeks post calving for 14 weeks. The two diets (30 cows per treatment), were either 

unsupplemented (Control) or supplemented with 105 g of DHA enriched ALG per cow/ 

day (Schizochytrium imancinum sp., Alltech, Kentucky, USA). Cows on the Control 

treatment received an additional 105 g/cow per day of a rolled wheat/ sugar beet feed 

mixture. Both treatment contained the same basal diet (Table 5.1). Prior to the start of the 

study the cows were fed the same basal ration. Diets were formulated according to 

Thomas (2004) to be isonitrogenous and isoenergetic. 

Cows were fed the TMR daily at 09 00 h to provide daily refusals of approximately 

5% and had continual access to fresh water. The forages and straight feeds were mixed 

for 5 min before the addition of the ALG supplement, with a further 5 min of mixing using a 

commercial forage mixer (HiSpec mixer, County Carlow, Ireland), calibrated to ±1 kg, and 

fed through roughage intake feeders (Insentec B.V., Marknesse, The Netherlands) fitted 

with an automatic animal identification and forage weighing system calibrated to ±0.1 kg. 

Refusals were collected three times per week on Monday, Wednesday and Friday. 

Cows were housed together in the same portion of a building containing cubicles 

fitted with foam mats. The area was scraped every 2 h with automatic scrapers, cubicles 

were bedded twice weekly with sawdust and limed weekly. All cows had free access to 

salt blocks, and were milked twice daily at approximately 0615 and 1600 h.  
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Table 5.1. Diet composition (kg/kg DM) of the pre study and basal diet 
Ingredient Pre-study Basal 
Maize silage 0.350 0.413 
Grass silage - 0.130 
Lucerne  0.152 - 
Chopped wheat straw 0.019 - 
Rapeseed meal 0.059 0.065 
Wheat distillers dark grains 0.071 0.078 
Soya bean meal 0.030 0.065 
Palm kernel meal 0.020 0.022 
Molasses 0.006 0.007 
Sodawheat1 0.114 0.109 
Spey syrup2 0.040 - 
Soya hulls 0.060 0.078 
Sweetstarch3 0.039 - 
Megalac4 0.007 0.013 
Butterfat Extra 0.007 - 
Minerals and Vitamins5 0.007 0.006 
Acid Buf6 0.004 - 
Salt 0.003 - 
SC Gold 25g7 0.001 - 
ME8 (MJ/ kg DM) 11.8 12.3 
MPN9 (g/ kg DM) 116 113 
MPE10  (g/ kg DM) 102 102 
MPB11 (g/ kg DM) 47 44 
1Alkaline buffer. 2Distillery syrup. 3Blend of products from the bakery, 
confectionary, pastry and breakfast cereal industries on a friable vegetable 
protein carrier - KW alternative feeds, Ternhill, UK. 4Protected fat: Calcium salt 
of palm fatty acids- Volac, Royston, UK. 5Mineral/vitamin premix. Major minerals 
(g/kg): Ca, 220; P, 30; Mg, 80; Na, 80; Cu (total), 7600 and Se (total) 302.9. 
Additives (per kg) vit A 1000000 IU; vit D3, 300000 IU; vit E, 3000 IU and vit 
B12, 2500 mcg. 6Natural seaweed based minerals: Maerl (calcareous marine 
algae) – KW alternative feeds, Ternhill, UK. 7Live yeast: Saccharomyces 
cerevisiae (I -1077) – Biotal, Worcestershire, UK. 8Metabolisable energy 
9Metabolisable protein when rumen nitrogen is limiting. 10Metabolisable protein 
when rumen energy is limiting. 11Metabolisable protein from by-pass protein 

 

5.2.2 Animal Performance 

Feed intake was recorded daily and the TMRs were sampled weekly throughout 

the experiment, and stored at -20 °C for subsequent analysis. Further forage samples 

were taken weekly, oven dried at 105 °C for 24 h and the ratio of maize: grass silage 

adjusted to the desired level on a DM basis. The TMR samples were bulked within each 

month and a sub-sample analysed according to AOAC (2012) for DM (934.01), CP 

(988.05) and ash (924.05), whilst NDF was analysed according to Van Soest et al., (1991) 

as described in sections 2.1.1 to 2.1.4. Fatty acid analysis of the TMR samples was 

determined using a modified protocol of Sukhija and Palmquist (1988) as described in 

section 2.2. Fatty acids were identified using a GC as described in section 2.4.4. 
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Milk yield was recorded daily and cows weighed and body condition scored 

(Ferguson et al., 1994) at 11 00 h 1 week prior to the start of study (week 0) and every 

other week. Milk samples were collected 3 times per week from 1 week prior to the start of 

the study until the end of the study and preserved using broad spectrum microtabs® II 

(Advanced Instruments, inc, Massachusetts, USA) and stored at 4 °C before the 

determination of progesterone levels, as described in section 2.4.5. Further samples were 

collected 5 days post artificial insemination (AI) and on days 14-20 post AI. Milk 

concentration of progesterone were measured by enzyme immunoassay (Ridgeway-M 

Kit) and inter and intra assay coefficient of variation were 13.97 and 7.54 % respectively. 

Additional milk samples were taken weekly at consecutive am and pm milkings for 

subsequent analysis of total fat, protein, lactose and somatic cell count (SCC); all samples 

were analysed at the National Milk Laboratories (Four Ashes, UK). During weeks 0, 1, 2, 

4, 8 and 14 of the study milk samples were collected at 2 consecutive am and pm milkings 

from 16 pairs of cows per treatment for FA determination. Milk FA analysis followed the 

method described by Feng et al., (2004) for lipid extraction as described in section 2.4.3, 

with the methylation of the lipids conducted according to the procedure of Christie (1982) 

with modifications according to Chouinard et al., (1999) as described in section 2.4.4. Milk 

samples from individual cows were corrected for am and pm yields prior to fat extraction. 

 

5. 2.3 Blood metabolites and PGFM  

Blood samples were collected from the jugular vein from 12 pairs of cows per 

treatment at 1100 h during weeks 0, 2, 4, 8 and 14. The blood samples were collected into 

sodium heparinised vacutainers for BHB determination and into vacutainers containing 

potassium oxalate for glucose and NEFA determination. Samples were centrifuged 

(SIGMA 3-16PK) at 1000 xg for 15 min, and the plasma separated and stored at -20 °C 

prior to subsequent analysis. Plasma samples were analysed for, 3-OHB, glucose and 

NEFA, kit catalogue no; RB1008; GU611 and FA115, respectively (Randox Laboratories, 

County Antrium, UK) using a Cobas Mira Plus autoanalyser (ABX Diagnostics, 

Bedfordshire, UK) as described in section 2.5.  

At 33 ± 0.89 days postpartum, 24 cows were synchronized in pairs using Ceva 

Prid®Delta (PRIDs) which contained 1.55g  of progesterone per device. The PRIDs were 

removed after 10 d, and on day 17 of the synchronised estrous cycle, a catheter was 

inserted into the jugular vein following sedation with Sedaxylan (20 mg/ml xylazine 

solution at 0.5ml/100kg) injected into the tail vein. Blood samples were collected via the 

jugular catheter into sodium heparinised vacutainers at 15 min intervals for 1 hr prior to 

the infusion of oxytocin (100 IU), and at 15 mins intervals for a further 3 h, and then at 30 

min intervals for 4 h post oxytocin to monitor uterine secretion of 13,14-dihydro-15-keto 

PGF2α (PGFM). The blood was centrifuged at 1000 xg for 15 min and the plasma frozen at 
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-20°C prior to subsequent analysis. Plasma concentration of PGFM, a product of PGF2α 

metabolism was assayed using an ELISA kit (Cayman Chemical, Ann Arbour, MI, USA) 

as described in section 2.6. Inter and intra assay coefficients of variation were 13.03 and 

9.88 % respectively.  

 

5.2.4 Fertility parameters 

 All cows were observed for signs of oestrus throughout the day and were 

inseminated (randomly by one of two farm staff) with frozen-thawed semen within 12 h of 

detected oestrus. Oestrus detection was performed daily until pregnant. Semen came 

from a single ejaculate of three bulls ensuring that equal numbers of cows from each 

treatment group were bred to each bull. Ultrasound scanning was performed 4 weeks post 

AI to confirm pregnancy. Conception rate was defined as the proportion of cows that were 

detected in oestrus and inseminated that were pregnant at week 4 post AI.  

 

5.2.5 Calculations and statistical analysis 

The progesterone concentrations was calculated by subtracting the blank wells 

from the absorbance reading of the rest of the plate. The standard curve was then plotted 

and a 4-parameter logistic fit was performed. The concentration of each sample was 

computed by reading the corresponding values on the x-axis of the standard curve. 

To determine the PGFM concentrations the absorbance reading of the blank wells was 

first subtracted from the absorbance readings of the rest of the plate. The non-specific 

binding (NSB) wells and maximum binding (B0) wells were averaged, the NSB average 

was subtracted from the B0 average to give the corrected B0.  

  

%B/ B0 (% Bound/ Maximum bound) =     Equation 10 

൬
݈݁݌݉ܽܵ	ݎ݋	݀ݎܽ݀݊ܽݐܵ െ ܤܵܰ

Bo	݀݁ݐܿ݁ݎݎ݋ܥ
൰ ൈ 100 

 

The %B/B0 for standards S1-S8 were plotted versus their PGFM concentrations using 

linear (y) and log(x) axes and a 4-parameter logistic fit was performed. The concentration 

of each sample was identified by the %B/B0 values on the standard curve and reading the 

corresponding values on the x-axis. 

All data were checked for a normal distribution and were analysed using Genstat 

17th edition (VSN. Ltd, Oxford, UK). Variables having more than one observation were 

analysed using repeated measures ANOVA using data recorded in week 0 as a covariate 

where appropriate. Results for treatment, time period, their interactions and SED are 

presented. P values < 0.05 were regarded as being statistically significant, and <0.10 

were considered to indicate a tendency towards statistical significance. 
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5.3 Results 

5.3.1 Feed analysis 

Both treatment diets had a similar DM content, with an average of 378 g/kg (Table 

5.2). Ash, OM, crude protein and NDF content were also very similar between the dietary 

treatments, which averaged 72, 928, 162 and 419 g/kg DM respectively. The pre-study 

diet had a slightly higher DM content of 442 g/kg, but very similar ash, OM, and crude 

protein content to the dietary treatments. The NDF content of the pre-study diet was 

slightly lower at 375 g/kg DM compared to the treatment diets. The FA content of C14:0 –

ALA was similar between both dietary treatments, the DHA content was not detectable in 

the Control or Pre-study diet, but the ALG treatment had a DHA content of 0.71 g/kg DM. 

The pre-study diet had higher content of C14:0 and C16:0 compared to the treatment 

diets. 

 

Table 5.2. Chemical composition (g/kg DM) of TMR of the pre-study diet, the control diet 
that contained no ALG (Control) or with 105 g of ALG per cow/d (Algae) 

 

 5.3.2 Animal performance 

There was no effect (P > 0.05) of dietary treatment on intake, with mean value of 

22.1 kg/d (Table 5.3). Intake was affected by time (P < 0.001; Figure 5.1), increasing from 

21.1 kg/d in week 1 to 23.4 kg/d at week 3 (week 6 of lactation), before decreasing to 20.9 

kg/d at week 14. Similarly there was no effect (P > 0.05) of treatment on daily milk yield, 

which averaged 40.6 kg/d. There was an effect of time (P < 0.001; Figure 5.2) on daily 

milk yield which peaked at week 3 of the study (week 6 of lactation) before declining to 

37.2 kg/d at week 14. Milk fat content and yield were not affected by dietary treatment (P 

> 0.05), averaging 37.2 g/kg and 1.49 kg/d respectively. Both milk fat content and milk fat 

yield decreased with time (P = 0.048 and 0.013 respectively; Figure 5.3). Milk protein 

content and protein yield were unaffected (P > 0.05) by dietary treatment. Time had an 

Pre-study Control Algae 
DM (g/kg) 442 375 380 
Ash 69.7 72.4 71.5 
Organic matter 930 928 928 
Crude protein 166 163 161 
NDF 375 419 419 
Fatty acid (g/kg DM)    
     C14:0 0.78 0.48 0.47 
     C16:0 8.60 5.48 5.62 
     C18:0 0.67 0.51 0.41 
     C18:1 cis-9 4.75 4.27 3.66 
     LA 5.35 5.68 4.38 
     ALA 0.76 0.96 0.64 
     EPA Nd Nd nd 
     DHA Nd Nd 0.71 
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effect (P < 0.001) on both protein content and yield which increased over the study period. 

There was no effect (P > 0.05) of dietary treatment on live weight, but there was an effect 

of time (P < 0.001) with live weight increasing by 27 kg/ d over the 14 weeks. Body 

condition score was unaffected (P > 0.05) by treatment or time. 

 

Table 5.3. Milk performance, live weight and body condition of dairy cows fed no ALG 
(Control) or 105 g of ALG per cow/d (Algae) 
 

Treatment P value1 
 

Algae Control s.e.d D T D x T 

DM intake (kg/d) 22.0 22.1 0.861 0.905 <.001 0.791 

Milk yield (kg/d) 39.9 39.6 1.023 0.980 <.001 0.729 

Milk fat (g/kg) 36.9 37.5 2.090 0.702 0.048 0.912 

Fat yield (kg/d) 1.46 1.52 0.200 0.401 0.013 0.738 

Milk protein (g/kg) 31.5 31.3 0.682 0.67 <.001 0.681 

Protein yield (g/kg) 1.25 1.27 0.044 0.584 <.001 0.799 

Live weight (kg) 653 652 13.13 0.97 <.001 0.289 

Body condition 2.82 2.67 0.084 0.115 0.837 0.123 

1Probability of significant effects attributable to the diet (D), time (T), and their interactions 

(D x T) 

 

 

Figure 5. 1. Weekly DM intakes (kg/d) of dairy cows fed no ALG (Control ●) or 100 g of 
ALG per cow/d (Algae ▲). Error bars indicate SED. 
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Figure 5. 2. Weekly milk yield (kg/d) of dairy cows fed no ALG (Control ●) or 100 g of ALG 
per cow/d (Algae ▲). Error bars indicate SED. 

 

 

Figure 5. 3. Weekly milk fat yield (kg/d) of dairy cows fed no ALG (Control ●) or 100 g of 
ALG/cow per day (Algae ▲). Error bars indicate SED. 

 

5.3.3 Plasma metabolite concentrations 

There was no effect (P > 0.05) of dietary treatment on the mean concentration of 

plasma 3-OHB, glucose or NEFA (Figures 5.4a-c). Plasma BHB and NEFA were not 

affected by time (P = 0.348 and 0.061 respectively) but plasma NEFA decreased from 

week 2 to week 14 of the study in both treatments. In contrast there was an effect (P < 

0.001) of time on plasma glucose, which increased with time in both treatments. There 
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was also an interaction between diet and time on plasma glucose which decreased in 

cows receiving ALG at week 2 compared to the Control, whereas at weeks 4 and 8 

plasma glucose concentrations were lower in cows receiving the Control diet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Weekly plasma β hydroxybutyrate (3-OHB) (a) glucose (b) and non esterified 
fatty acids (NEFA) (c) over time of dairy cows fed no algae (Control ●) or 100 g of 
ALG/cow per day (Algae ▲). Error bars indicate SED. 
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   Diet x Time = 0.901 
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5.3.4 Milk FA 

There was no effect (P > 0.05) of dietary treatment on mean milk fat content of 

C4:0 to C17:1, C18:1 trans-12, C18:1 cis-9, LA, C20:0, ALA, C18:2 trans-10 cis-12 CLA, 

C20:3n-3 and EPA (Table 5.4). In contrast there was a decrease (P < 0.05) in milk fat 

content of C18:0 and C22:0 in ALG fed cows compared to Control. In contrast there was 

an increase (P < 0.05) in C18:1 trans-8 to trans-11, C18:2 cis-9 trans-11 CLA, C20:3n-6 

and DHA in cows fed ALG compared to the Control. There was no effect (P > 0.05) of 

dietary treatment on the proportion of FA of chain length less than C16:0, C16:0 plus 

C16:1 or on FA with a chain length greater than C16:0. There was also no effect of dietary 

treatment on the total milk fat content of SFA, MUFA or n-6. In contrast there was an 

increase (P < 0.05) in milk fat content of PUFA and n-3 when cows were fed ALG, and a 

decrease in the ratio of n-6: n-3.  

There was an effect (P < 0.05) of time on most FAs except for C8:0, C16:0, C18:1 

trans-9, C18:1 trans-11, ALA. C22:0 and EPA. The FA content of C18:0 was higher in 

Control fed cows compared to the ALG fed cows at week 1 and week 2, but was not 

different (P > 0.05) after week 2 (Figure 5.5a). The FA content of C18:1 trans 8, 9, 10 and 

11 were higher in ALG fed cows from week 2 onwards, with the content of C18:1 trans-8 

and trans-10 also increasing over time, peaking at week 8, whereas the milk fat content of 

C18:1 trans-9 and trans-11 remained constant after an initial increase at week 1 (Figure 

5.5b-e).  In contrast the FA content of C18:1 trans-12 was only higher in ALG fed cows 

compared to the Control fed cows at week 1, 4 and 8, and decreased over time (Figure 

5.5f). The FA content of ALA was higher (P < 0.05) in cows fed the Control diet at week 1, 

but there was no difference (P > 0.05) from week 2 onwards (Figure 5.5g). Milk fat content 

of cis-9 trans-11 CLA was higher (P < 0.05) in ALG fed cows compared to those on the 

Control diet from week 0 onwards and increased over time (Figure 5.5h). In contrast milk 

fat content of trans-10 cis-12 CLA was similar for cows on both diets and decreased over 

time (Figure 5.5i). The milk fat content of DHA was  higher (P < 0.05) in ALG fed cows 

from week 2 onwards and increased by 0.34 g/100g FA over the study, peaking at 0.38 

g/100g FA at week 14 (Figure 5.5j). Milk fat content of SFA was higher (P < 0.05) in 

Control fed cows compared to those receiving ALG from week 1 onwards (Figure 5.5k). 

Fatty acid content of PUFA increased over time and was higher (P < 0.05) in ALG fed 

cows compared to those on the Control diet from week 2 onwards (Figure 5.5l). Milk fat 

content of n-3 FA was also higher (P < 0.05) in ALG fed cows from week 2 onwards, and 

increased with time, being 0.26 g/100g FA higher in ALG fed cows compared to those 

receiving the Control diet at week 14 (Figure 5.5m). 

  There was an effect of time (P < 0.05; Table 5.4) on the proportion of FAs with a 

chain length of less than C16:0, which increased over time in both treatments, and in 
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those with a chain length greater than C16:0 which decreased with time in both 

treatments. The milk fat content of MUFA also decreased over time in both treatment 

diets, whereas the milk fat content of n-6 increased in milk from all cows over time. There 

was an interaction between diet and time on milk fat content of C18:1 trans-10, ALA, 

C22:0 and DHA.  
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Table 5.4 Mean milk fatty acid composition (g/100g of FA) of dairy cows fed no ALG 
(Control) or 100 g of ALG/cow per day (Algae). 
 

Mean P value1 
Fatty acid (g/100 g) Algae Control s.e.d D T DxT 
C4:0 2.37 2.37 0.148 0.969 <.001 0.727 
C6:0 1.67 1.70 0.134 0.877 0.002 0.737 
C8:0 1.15 1.18 0.081 0.624 0.052 0.355 
C10:0 2.48 2.58 0.192 0.449 0.009 0.299 
C12:0 3.08 3.33 0.217 0.174 <.001 0.54 
C14:0 9.90 10.4 0.438 0.164 <.001 0.217 
C14:1 0.825 0.910 0.086 0.132 <.001 0.43 
C15:0 0.978 1.04 0.072 0.146 0.002 0.345 
C16:0 30.6 31.0 0.828 0.507 0.124 0.25 
C16:1 0.515 0.510 0.053 0.816 0.013 0.361 
C17:0 0.515 0.511 0.031 0.845 <.001 0.228 
C17:1 0.260 0.258 0.036 0.924 <.001 0.488 
C18:0 7.90 8.38 0.420 0.058 0.131 0.215 
C18:1 trans-8 0.439 0.264 0.059 0.002 <.001 0.13 
C18:1 trans-9 0.338 0.237 0.035 <.001 0.506 0.176 
C18:1 trans-10 0.936 0.547 0.226 0.034 0.026 0.033 
C18:1 trans-11 1.22 0.836 0.163 0.002 0.109 0.356 
C18:1 trans-12 0.558 0.475 0.094 0.088 0.009 0.152 
C18:1 cis-9 20.4 21.1 1.24 0.456 <.001 0.069 
LA 2.99 2.93 0.148 0.620 0.009 0.205 
C20:0 0.129 0.131 0.022 0.876 0.023 0.68 
ALA 0.471 0.477 0.034 0.789 0.109 0.012 
C18:2 cis-9 trans-11 
CLA 

0.752 0.566 0.069 0.038 0.003 0.052 

C18:2 trans-10 cis-12 
CLA 

0.043 0.047 0.011 0.958 <.001 0.947 

C22:0 0.078 0.117 0.020 0.002 0.26 <.001 
C20:3n-6 0.065 0.052 0.013 0.034 0.008 0.062 
C20:3n-3 0.172 0.177 0.029 0.648 0.129 0.216 
EPA 0.087 0.079 0.019 0.376 <.001 0.242 
DHA 0.220 0.039 0.030 <.001 <.001 <.001 
Indices       
     <C16:0 20.9 21.7 0.916 0.299 <.001 0.321 
     C16:0 + C16:1 32.1 32.2 0.759 0.423 0.012 0.272 
     >C16:0 36.3 36.3 1.48 0.976 0.01 0.257 
     ƩSFA 60.7 62.9 1.48 0.059 0.15 0.423 
     ƩMUFA 26.7 26.1 1.35 0.57 <.001 0.272 
     ƩPUFA 4.80 4.37 0.223 0.012 <.001 0.002 
     Ʃn-3 1.08 0.828 0.070 0.002 0.121 0.023 
     Ʃn-6 3.03 2.96 0.144 0.505 <.001 0.092 
     n-6:n-3 0.758 0.787 0.015 0.005 0.398 0.052 

1Probability of significant effects attributable to the diet (D), time (T), and their interaction 

(D x T) 
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Figure 5.5 Weekly milk fat content of (a) C18:0 (b) C18:1 trans-8 (c) C18:1 trans-9 (d) 
C18:1 trans-10 (e) C18:1 trans-11 (f) C18:1 trans-12 (g) ALA (h) C18:2 cis-9 trans-11 CLA 
(i) C18:2 trans-10 cis-12 CLA (j) DHA (k) SFA (l) PUFA and (m) n-3 FA over a 14 week 
period in dairy cows fed no ALG (Control ●) or 100 g of ALG/cow per day (Algae ▲). Error 
bars indicate SED (n=32). *P < 0.05, **P < 0.001. 

 

5.3.5 Fertility parameters  

The fertility results presented are based on data from 38 cows (algae, n=19; 

control, n=19) from the original number of cows assigned to the trial. The data from cows 

that were used for PGFM analysis were excluded from the analyses due to possible 

confounding effects on oestrus synchronisation. There was no effect (P > 0.05; Table 5.5) 

of treatment on the interval between calving and first AI with a mean value of 67.6 days, or 

on conception rate to first AI with a mean value of 44.8 %. Conception rate to second AI 

was numerically higher in ALG fed cows compared to those fed the Control diet, although 

the difference was not significant (P = 0.256). Overall conception rates were also higher in 

ALG fed cows compared to the Control, but again the improvement in conception rate was 

not significant (P = 0.485). There was no effect (P > 0.05) of treatment on milk P4 levels in 

pregnant cows at day 5 post AI, but by day 20 post AI, milk P4 levels in pregnant cows 

was higher (P < 0.05) in ALG fed cows compared to the Control. 
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Table 5.5. First, second, and accumulated pregnancy (% and number of cows) per 
artificial insemination (AI), and milk progesterone levels (ng/mL) in pregnant cows at day 5 
and 20 post AI of cows fed no ALG (Control) or 100 g of ALG/cow per day (Algae) 

Item Treatment s.e.d P value 

 Algae Control  

DIM at 1st AI (d) 66.3 68.8 - 0.599 

Conception rate to 1st AI (%) 42.1 (8/19) 47.4 (9/19) - 0.744 

Conception rate to 2nd AI (%) 54.5 (6/11) 30.0 (3/10) - 0.256 

Overall conception rate (%) 73.7 (14/17) 63.2 (12/19) - 0.485 

Milk P4
1 at 5 d post AI (ng/ml) 7.19 6.29 1.54 0.563 

Milk P4
1 at 20 d post AI (ng/ml) 35.1 21.0 5.77 0.024 

1P4 = Progesterone 

 

5.3.6 Plasma PGFM concentrations 
A total of 16 cows (algae, n=9; control, n=7) were used to determine plasma 

PGFM concentrations measured during an oxytocin challenge. Mean values, area under 

the curve, and peak concentrations (Table 5.6) were similar between treatments (P > 

0.05). The response in PGFM concentration increased after the oxytocin challenge to 

reach a peak at 15-30 min (Figure 5.6) before slowly returning to basal level at 150 min 

post oxytocin for both treatments. 

 

Table 5.6. Plasma PGFM concentrations measured at d 17 of the oestrous cycle of non-
pregnant dairy cows fed no ALG (Control) or 105 g of ALG/cow per day (Algae) 

Item Treatment s.e.d P value1 

 Algae Control  D T DxT 

Mean value (pg/ml) 39.1 50.3 12.04 0.307 0.003 0.351 

Peak value (pg/ml) 67.5 73.9 17.61 0.731 - - 

Area under the curve  (pg) 2236 4046 987 0.126 - - 

1Probability of significant effects attributable to the diet (D), time (T), and their interactions 

(D x T) 

 



126 
 

 

Figure 5.6. Plasma 13,14-dihydro-15-keto PGF2α metabolite (PGFM) concentration, after 
an oxytocin challenge (time = 0) on day 17 of a synchronised oestrous cycle of cows fed 
no ALG (Control ●) or 100 g of ALG/cow per day (Algae ▲). Repeated measure analysis. 

 

5.4.0 Discussion 

5.4.1 Feed analysis 
 The current study examined the effect of feeding DHA enriched ALG for 14 weeks 

on animal performance, milk quality, fertility parameters and plasma concentrations of 

PGFM. Both TMR’s had similar DM, ash, OM, CP and NDF values, which were also 

similar to other studies (Glover et al., 2012; Boeckaert et al., 2008). The ALG supplement 

supplied 15.6 g DHA/cow per day. This dietary inclusion level of 100 g/cow per day of 

ALG was selected based on the results from Chapter 4, where negative effects of reduced 

digestibility and reduced milk fat yield were seen at higher inclusion levels. 

 

5.4.2 Animal performance 

 In the current study there was no effect of dietary treatment on DMI, which 

averaged 22.1 kg/d over the 14 week period. This intake was similar to the result in 

Chapter 4, and is also in accordance with Sinedino et al., (2017) who reported no effect 

on DMI when cows were fed 100 g of ALG/ d containing 10 % DHA for 18 weeks. Higher 

inclusion levels of 50 g and 75 g of DHA have been associated with a decrease in DMI in 

dairy cows (Moate et al., 2013) and consequently could affect other parameters of animal 

performance.  

 Moran et al., (2017) fed DHA enriched ALG at a rate of 6 g/kg DMI for 12 weeks 

and reported a slightly higher milk yield compared to the control. Similarly Sinedino et al., 

(2017) reported an increase in milk yield of 0.9 kg/d in ALG fed cows compared to the 

0

10

20

30

40

50

60

70

80

-60 -45 -30 -15 0 15 30 45 60 75 90 105 120 135 150 165 180 210 240

P
G

F
M

 (
pg

/ m
l)

Time (min)



127 
 

control. In the current study there was no effect of dietary treatment on milk yield, which is 

in accordance with several other studies that supplemented ALG to dairy cows 

(AbuGhazaleh et al., 2009; Stamey et al., 2012; Vahmani et al., 2013). Despite the 

increase in milk yield reported by Sinedino et al., (2017) there was no increase in ECM 

due to the reduction in milk fat (g/kg). In the current study there was no effect of treatment 

on milk fat (g/kg) or milk fat yield (kg/d) therefore ECM was similar between treatments. 

Milk fat depression was reported in Chapter 4 at the highest inclusion level of ALG. Milk 

fat depression has been reported to be caused by elevated levels of trans-10 cis-12 CLA, 

which inhibits milk fat synthesis (Hussein et al., 2013, Sinclair et al., 2007). In the current 

study milk fat concentrations of trans-10 cis-12 CLA were similar between dietary 

treatments, and therefore may support the findings that trans-10 cis-12 CLA is involved in 

milk fat depression. It has been suggested that other FA intermediates that are produced 

through the biohydrogenation of PUFA also have inhibitory effects on milk fat synthesis 

(Ventto et al., 2017). Concentrations of C18:1 trans-10 are known to increase in milk from 

cows fed diets that result in milk fat depression, but in the current study milk concentration 

of C18:1 trans-10 was higher in ALG fed cows compared to the Control. The current 

finding is in accordance with Lock et al., (2007) who reported that abomasal infusion of 

C18:1 trans-10 had no effect on milk fat synthesis. Milk fat concentration and yield in the 

current study declined over time from week 0 to week 10 before levelling out towards 

week 14. Milk fat concentrations vary with stage of lactation (Linn, 1988), and a decline in 

milk fat is expected in the first two months of lactation which is followed by a slow increase 

over the course of lactation (Linn, 1988). The total energy output as milk and DMI was 

similar between treatments in the current study and therefore there was no effect of 

dietary treatment on BCS or live weight change. Live weight did increase over time, which 

was mainly due to the primiparous cows, which were still growing.   

 Milk protein content (g/kg) and protein yield (kg/d) were not significantly affected 

by dietary treatment in the current study, a finding that is consistent with Chapter 4, where 

different levels of inclusions of ALG (50, 100 and 150 g/ALG per cow/d) had no effect on 

milk protein concentration or yield. This finding is also consistent with others who fed ALG 

to dairy cows (Moran et al., 2017 and Stamey et al., 2012). In the current study there was 

an effect of time on milk protein content, which declined initially before increasing. Stage 

of lactation has a considerable influence on milk protein concentration (Linn, 1988). Total 

milk protein is very high in colostrum milk and declines rapidly during the first few days of 

transition from colostrum to normal milk (Linn, 1988). Milk protein concentration then 

generally declines to a minimum at around 5-10 weeks into lactation, which correlates with 

maximum milk yield, before increasing gradually as lactation progresses (Linn, 1988). In 

the current study maximum milk yield occurred at week 3 of the study (week 6 of lactation) 

the same week as protein concentration reached its minimum. 
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 The plasma metabolites measured in the current study were not significantly 

affected by dietary treatments which is in accordance with results from Chapter 4. Plasma 

3-OHB remained constant throughout the study, whereas plasma concentration of glucose 

increased from week 0 to week 14, and plasma concentration of NEFA decreased. 

Plasma NEFA concentrations are closely related to cow energy status, and in early 

lactation (beginning of the current study) higher NEFA concentrations reflect the 

mobilisation of lipid reserves to compensate for the imbalance between energy consumed, 

and energy secreted in milk (Cozzi et al., 2011). As cows progress through lactation, 

NEFA levels generally drop because energy balance becomes positive and the tissue 

reserves are replenished (Cozzi et al., 2011). Low glucose level is another indicator of 

negative energy balance, and cows in the current study could have experienced some 

degree of negative energy balance at week 0 when glucose levels were at their lowest, 

which is expected in early lactation (Adewuyi et al., 2005). 

 

5.4.3 Milk FA profile 
 In Chapter 4, added dietary ALG significantly altered the concentration of 

individual milk FA, especially DHA content, which increased as the inclusion level of ALG 

increased in the diet. The aim of the current study was to investigate the long term effect 

and potential adaptation of the rumen microbial ecosystem when cows are supplemented 

with ALG for a longer period of time, by measuring milk FA over a 14 week period. In the 

current study cows that were fed ALG had significantly higher concentration of milk DHA 

compared to the Control from week 2 onwards, with levels peaking at week 14, with an 

increase of 0.35 g/100 g FA compared to the Control. This finding is in accordance with 

Moran et al., (2017), who reported an increase in milk DHA in ALG fed cows, with 

concentrations increased rapidly for the first 30 days of supplementation, with no 

decrease observed over the experimental period of 12 weeks.  Similarly Vlcek et al., 

(2017) reported an increase in milk DHA when dairy cows were supplemented with ALG 

containing 10 % DHA, although the feeding period was shorter at 6 weeks, and the 

increase in milk DHA had started to plateau by day 42. Similarly Franklin et al. (1999) fed 

both unprotected and protected ALG for 6 weeks to mid lactating dairy cows, and reported 

an initial increase in milk DHA content before gradually decreasing at day 28 and then 

remained constant through to 42 days for both treatments in comparison to the Control. 

Other studies that have fed ALG to dairy cows for a longer period of time include Sinedino 

et al., (2017) and Vahmani et al., (2013) who reported an increase in milk DHA 

concentration, but only measured milk FA at one time point and therefore couldn’t report 

the change in DHA over time. In the current study there was also a significant increase in 

milk fat content of total PUFA in ALG fed cows compared to the Control, with an initial 

increase at week 1 before persisting at a constant level for the remaining 13 weeks. Milk 
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concentration of total n-3 followed a similar pattern to that of DHA, increasing in ALG fed 

cows from week 2 onwards, and then remaining at a constant level for the duration of the 

study. Sinedino et al., (2017) also reported an increase in PUFA and total n-3 when ALG 

was fed to cows for 19 weeks, but again no change over time was reported.  

 Inclusion of LC-PUFA in the diet of ruminants typically lowers short and medium 

chained FA concentration in milk, due to their inhibitory effects on mammary de novo FA 

synthesis (Shingfield et al., 2006). In the current study the concentration of FA with a 

chain length < 16, and > 16 were unchanged, suggesting that ALG supplementation did 

not affect de novo FA synthesis. A reduction in the concentration of C18:0 was observed 

in the previous study (Chapter 4) when cows were fed ALG, but in the current study the 

reduction was only significant at weeks 1 and 2 of supplementation. The reduction in milk 

concentration of C18:0 in ALG fed cows can be attributed to the inhibitory effect of ALG on 

the biohydrogenation of C18-UFA to C18:0 in the rumen. The recovery in C18:0 

concentration at week 4 occurred at the same time when milk yield and milk fat content 

started to decline, which is consistent with the findings of Shingfield et al., (2006). It was 

suggested by Shingfield et al., (2006) that the changes in milk C18:0 content reflect an 

adaptation to an acute reduction in mammary C18:0 supply, that initiated a decrease in 

mammary lipid synthesis of C18:1 cis-9 (which is synthesised from C18:0 via Δ9-

desaturation) which plays an important role in the maintenance of fluidity of milk fat and 

their secretion (Bichi et al., 2013). This is hard to conclude from the current study as milk 

concentrations of C18:1 cis-9 were similar between dietary treatments and both milk yield 

and milk fat content of cows fed the Control diet also decreased at week 4, suggesting 

that stage of lactation had a greater effect on the temporal changes in milk yield and milk 

fat rather than changes in individual FA concentrations. 

Many studies have investigated the temporal changes in milk fat content of cis-9 

trans-11 CLA, trans-10 cis-12 CLA and C18:1 trans-10, in order to help understand the 

cause of milk fat depression when oils containing PUFA are supplemented to dairy cows 

and sheep (Bichi et al., 2013; AbuGhazaleh, 2008; Shingfield et al., 2006). In the current 

study milk fat content of cis-9 trans-11 CLA increased during the first week of 

supplementation with ALG and then remained constant throughout the study, a finding in 

agreement with AbuGhazaleh (2008) who reported an increase in milk fat content of cis-9 

trans-11 in dairy cows supplemented with a combination of FO and sunflower oil, that 

peaked at day 3 of supplementation and then remained constant. In contrast both Bichi et 

al., (2013) and Shingfield et al., (2006) reported an initial increase in cis-9 trans-11 CLA 

within 6 days of supplementing dairy ewes with ALG and within 5 days of supplementing 

dairy cows with a mixture of FO and sunflower oil respectively, before the concentration of 

the FA declined in both studies. The milk fat content of C18:1 trans-11 in the current study 

followed a similar temporal pattern to that of cis-9 trans-11 CLA, increasing during the first 
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week of supplementation in ALG fed cows before remaining constant. Similarly Bichi et 

al., (2013) also reported an increase in milk content of C18:1 trans-11 in ALG fed sheep, 

peaking at day 6 of supplementation and persisting at a relatively constant level during the 

experimental period.  In contrast Shingfield et al., (2006) reported an initial increase in 

C18:1 trans-11 at day 5 of supplementation before declining and remaining constant from 

day 16 onwards, a pattern very similar to the milk fat content of cis-9 trans-11 CLA in the 

same study. The close linear relationship between C18:1 trans-11 and cis-9 trans-11 CLA 

in the current study was observed due to milk cis-9, trans-11 CLA being synthesised 

mainly endogenously from C18:1 trans-11 by steaoryl-Co A  desaturase in the mammary 

gland (Roy et al., 2006). In the current study milk fat content of C18:1 trans-8 and trans-10 

increased over the 14 week period in ALG fed cows, a finding similar to Bichi et al., (2013) 

who reported a continuous increase in milk content of C18:1 trans-10 in dairy ewes fed 

ALG. Shingfield et al., (2006) also reported an increase in C18:1 trans-6+7+8 and trans-

10 over a 28 day period. The increase in C18:1 trans-10 could be explained by a shift in 

rumen biohydrogenation, but with no temporal decrease in C18:1 trans-11 concentrations, 

it is difficult to conclude this in the current study. There is also evidence that milk FA 

composition responses to lipid supplement are dependent on the composition of the basal 

diet (Roy et al., 2006), with a greater shift towards C18:1 trans-10 in low forage diets 

(Shingfield et al., 2006). 

 The finding that most of the FA temporal changes in the current study persisted 

throughout the 14 week period supports that the rumen microbial ecosystem did not adapt 

to the consumption of ALG, a finding similar to Bichi et al., (2013). It is therefore possible 

to enrich milk with increased levels of DHA by feeding dairy cows ALG, with little need to 

be concerned for rumen adaptation. 

   

5.4.4 Fertility parameters  
  The secondary aim of the current study was to investigate the effect of 

feeding DHA enriched ALG on indicators of fertility, especially blood concentration of 

PGF2α.  Diets high in n-3 may reduce PGF2α synthesis and consequently prevent the 

regression of the CL, allowing continued secretion of P4 that may help improve embryo 

survival (Gulliver et al., 2012). Previous studies on feeding FA to cattle have shown a 

number of effects on reproductive function, although responses have not always been 

consistent. To date only two other studies have reported the effects of feeding DHA 

enriched ALG on reproduction in dairy cows. Sinedino et al., (2017) increased overall 

conception rates, and reported an upregulation of the interferon-stimulated gene RTP4 in 

ALG fed cows, whereas Vleck et al., (2017) reported that including ALG in the diet of dairy 

cows did not influence ovarian activity, although neither study determined the 

concentration of plasma PGFM.  In the current study ALG supplementation had no 
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significant effect on mean, peak or area under the curve of plasma PGF2α, although in all 

three cases the plasma PGFM concentrations were numerically lower in ALG fed cows 

compared to the Control. These results are consistent with that of Moussavi et al., (2007) 

who fed different inclusion levels of fish meal as a source of n-3 to dairy cows from 5 – 50 

days in milk, and reported no effect of n-3 supplementation on plasma PGFM 

concentration. Despite having no significant decrease in plasma PGFM concentration 

Moussavi et al., (2007) did report a decrease in the ratio of n-6:n-3 FA in the uterine 

endometrial. In contrast Mattos et al., (2004), fed FO to dairy cows from 21 days pre-

partum until 21 days post-partum, and found a significant decrease in plasma PGFM 

concentrations at days 0, 0.5, 2 and 2.5 post-partum in cows fed FO. More recently 

Dirandeh et al., (2013) investigated the effect of feeding linseed as a source of n-3 on 

plasma concentration of PGFM compared to a control diet and a diet high in n-6 from 

calving to 70 days post calving and reported that the linseed diet reduced plasma PGFM 

concentration following an oxytocin challenge on day 15 of a synchronized oestrous cycle, 

whereas the n-6 diet increase plasma PGFM concentrations compared to the control. One 

difference between the current study and that of Mattos et al., (2004) and Dirandeh et al., 

(2013) is the feeding period. In the current study the ALG wasn’t fed until 21 days post-

partum, whilst Mattos et al., (2004) fed from 21 days before calving and Dirandeh et al., 

(2013) fed from calving. In the current study, by day 15 of the synchronized oestrus cycle, 

the cows selected for PGFM analysis had received the ALG supplement for 39 ± 0.89 

days. Results from other studies suggest that this period of feeding was sufficient to allow 

incorporation of dietary EPA and DHA into membrane phospholipids of the uterine 

caruncles (Howie et al., 1992). In the current study the ALG supplement was not fed pre-

partum or in the first 3 weeks post-partum as PGF2α plays an important role in enhancing 

uterine defence mechanisms, reducing uterine infections, and assist normal uterine 

involution post-partum (Richardson et al., 2013; Santos et al., 2008) and therefore it would 

not have been advantageous to decrease its concentration at this time in the cows cycle. 

Another reason behind the difference in PGFM concentrations between the current study 

and others may be the type of n-3 FA used, as ALG is rich in DHA whilst the FO used by 

Mattos et al., (2004) was richer in EPA, and the linseed used by Dirandeh et al., (2013) 

was rich in ALA. Both EPA and DHA act differently, with EPA in membrane phospholipids 

displacing AA, leading to increased synthesis of prostanoids of the 3 series (Mattos et al., 

2004). In contrast DHA reduces the expression of the PGHS enzymes (Mattos et al., 

2003), making these enzymes less available, and reducing prostanoid synthesis. The lack 

of a significant decrease in PGFM in the current study may also be due to an insufficient 

numbers of cows.  

 It is well established that early embryo loss in the dairy cows is associated with the 

failure of the CL to produce sufficient P4 (Yann et al., 2018). During the early stages of 



132 
 

pregnancy, elevated P4 concentration stimulates luteotropic and antiluteolytic signals 

(Arosh et al., 2004), which are fundamental in maternal recognition of pregnancy which 

occurs prior to the implantation of the conceptus (Cargile and Tracy, 2014). Yann et al., 

(2018), reported that low P4 concentration at day 5 post AI has been associated with poor 

embryo development. Other studies (McNeill et al., 2006; Green et al., 2005) have 

reported a similar relationship between milk P4 at days 4-5 post AI and embryo survival, 

and milk P4 at day 5 post AI can be used to monitor reproductive function.  In the current 

study milk P4 levels were numerically higher in pregnant cows that were fed ALG 

compared to the Control at day 5 post AI, and by day 20 post AI milk P4 concentration was 

higher in ALG fed cows, a finding similar to Petit and Twagiramungu, (2006), who reported 

higher plasma P4 concentration at days 17-21 of gestation from cows fed linseed 

compared to megalac or soyabean meal. A higher P4 at day 5 post AI were associated 

with a numerically lower PGFM concentration in ALG fed cows in the current study, since 

elevated P4 concentration along with IFN† leads to an increase in the ratio of PGE2 to 

PGF2α (Asselin et al., 1997). Feeding n-3 FA has been reported to induce granulosa cell 

proliferation and increase follicular size, generating a larger CL and P4 secretion (Petit and 

Twagiramungu, 2006), and in the current study could be the reason behind higher P4 

concentration at day 20 post AI in the ALG fed cows. Garcia-Ispierto and Lopez-Gatius, 

(2017) treated cows with P4 at either days 3-5 post AI or at days 15-17 post AI, and 

reported that cows treated earlier were 1.71 times more likely to conceive compared to the 

control group who were untreated. Diskin and Morris, (2008) also reported that animals 

that have an earlier increase in P4 concentration between day 4-7 after insemination have 

a greater chance of maintaining pregnancy than animals with a slower rise.  This suggests 

that adequate P4 levels at day 5 post AI brings about better fertility. In the current study 

overall conception rate was 73.7 % in ALG fed cows compared to 63.2 % in Control fed 

cows, suggesting that higher P4 levels at day 5 post AI, and numerically lower PGFM 

could improve fertility in the dairy cow although it was not statistically significant which 

could be down to an insufficient number of cows used. The conception rates to first 

service in the current study was 42.1 and 47.4 % for ALG and Control respectively, which 

is higher than the average UK herd, where pregnancy rates to first service is usually 40 – 

42 % (AHDB, 2013). The unexpected high pregnancy rates to 1st service, especially in 

Control cows affected the overall pregnancy %, and it is hard to conclude whether this 

was due to better oestrus detection or if oestrus behaviour was affected by diet as neither 

of these factors were recorded. 

 

5.5.0 Conclusion 
The rapid increase in milk DHA content as well as C18:1 trans isomers that 

persisted until the end of the monitored period (14 weeks) suggests that the rumen 
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microbial ecosystem did not adapt to dietary supplementation of very LC-PUFA when 

dairy cows were supplemented with 100 g/d of ALG. The increase in milk DHA content as 

well as cis-9, trans-11 CLA improved the milk quality for human consumption without 

affecting milk performance. Furthermore, supplementing dairy cows with ALG has the 

potential to decrease plasma PGFM concentrations and increase milk P4 levels at day 5 

post AI, and did increase milk P4 levels at day 20 post AI, which correlated with an 

improvement in overall conception. This suggests that ALG supplementation may have 

led to the formation of a larger CL that was able to secrete more P4, reducing uterine 

secretion of PGF2α leading to improved maternal recognition of pregnancy. Further 

research is required to confirm this as CL size was not reported in the current study, and 

greater number of cows per treatment are required to detect the possibility of significant 

differences. 
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CHAPTER 6:  General discussion 

6.1 Introduction 
Public awareness of the healthiness of food, and the impact of agriculture on the 

environment has increased over recent years, giving rise to the need for public and policy 

engagement to enable a secure and sustainable food supply (Lang and Heasman, 2015). 

With the global population increasing, there is an urgent need for alternative feeds which 

cause less adverse effects on the environment. Microalgae has a very attractive nutrient 

profile, compared to conventional feeds (Lum et al., 2013). Public health policies 

implemented in most countries recommend a decrease in SFA consumption to lower the 

risk of developing CVD, with guidelines advising SFA intake of 10 -11 % of total energy 

intake (Kliem and Shingfield, 2016). But intakes of SFA exceeds these recommended 

levels in most countries (Kliem and Shingfield, 2016). In the EU dietary guidelines also 

acknowledge the importance of PUFA in preventing CVD, and it has been recommended 

that the general public consume 250 mg/d of EPA + DHA, with increased levels for 

pregnant women (Food and Agriculture Organization of the United Nations, 2010). Dairy 

products have been an important food component in the diet of humans for thousands of 

years (Rozenberg et al., 2016), but despite being rich in calcium, protein, potassium, 

phosphorus and iodine, dairy products have been criticised for their high levels of SFA 

(Rozenberg et al., 2016). Milk fat from cows contain higher concentrations of SFA and 

lower concentrations of PUFA compared to their diet, due to extensive lipolysis and 

biohydrogenation of PUFA to their saturated form in the rumen (Kliem and Shingfield, 

2016). The FA composition of milk can be altered by dietary manipulation, and dietary 

supplementation of dairy cows with vegetable or marine oils have shown to increase the 

milk content of n-3 FAs and decrease the content of SFA (Moran et al., 2017; Shingfield et 

al., 2006; Sinedino et al., 2017). However, fat supplementation at high inclusion levels 

may have a negative impact on cow performance, decreasing DMI and causing milk fat 

depression (Franklin et al., 1999; Moate et al., 2013). Algae offers an alternative source of 

n-3 supplementation to ruminants, although its effects on rumen metabolism and uptake 

into milk and cheese have not been fully determined. 

The hypothesis tested in this thesis was that the LC n-3 PUFA in ALG would 

partially resist biohydrogenation in vitro, increasing their uptake into milk, and would 

reduce plasma PGFM levels as an indicator of fertility. Dietary manipulation of dairy cows 

with ALG improved the FA profile of milk and cheese, with a greater effect at higher 

inclusion levels. There was no evidence of ruminal adaptation to the LC n-3 PUFA in ALG 

over time, and indicators of fertility were improved. 
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6.2 Effect of ALG on biohydrogenation in-vitro 
The objective of the first study was to determine the effect of different inclusion 

levels of both ALG and FO on the biohydrogenation of EPA and DHA in-vitro, and to 

establish the effect of supplementation on CH4 output. Both ALG and FO reduced CH4 

output at 30 h of incubation in-vitro compared to the control at all inclusion levels (20, 40, 

60 and 80 mg DM). CH4 production increased over time for all treatments, and at 72 hr of 

incubation CH4 output was lowest at the highest inclusion level of ALG. These results 

demonstrate that ALG supplementation affects rumen fermentation, and may alter the 

activity of celluolytic bacteria due to an inhibitory effect on methanogenesis. This would 

explain the lower rate of biohydrogenation of both EPA and DHA when vessels were 

supplemented with ALG compared to FO and the control, and the lower extent of DHA 

biohydrogenation as the inclusion level of ALG increased. Biohydrogenation of both EPA 

and DHA was however extensive at all-time points (6, 12, 24 and 48 h). These time points 

were selected since previous studies have reported a lower biohydrogenation rate of EPA 

and DHA after 6 h of in-vitro incubation of rumen fluid with FO (Chow et al., 2004; 

Wa˛sowska et al., 2006). Since the completion of the in-vitro study, more recent research 

has been conducted on the biohydrogenation of DHA, and a study by Aldai et al., (2018) 

reported that biohydrogenation intermediates of DHA were formed as early as 1 hr after 

incubation, and by 2.5 h of incubation half of the DHA was biohydrogenated, with 80 % of 

the DHA having disappeared by 6 h. It therefore would have been interesting to include 

earlier time points in the current study to identify possible biohydrogenation intermediates 

of DHA. 

 

6.3 Effect of dietary supplementation of ALG on cow performance and 
product FA profile 
  The 1st cow study was a 4 x 4 latin square, with four different inclusion levels of 

ALG of 0, 50, 100 and 150 g/ALG per cow/d. The objective of the study was to determine 

which inclusion level of ALG was most suitable to supplement dairy cows in order to 

increase the DHA content of both milk and cheese without affecting cow performance or 

cheese taste. The dietary treatments supplied 0, 8, 16 and 24 g of DHA per cow/d. The 

study demonstrated that DMI and milk yield were unaffected by ALG supplementation, but 

that milk fat content and yield decreased linearly as the inclusion level of ALG increased in 

the diet, which was associated with an increase in milk trans-10 cis-12 CLA, a potent 

inhibitor of milk fat synthesis (Hussein et al., 2013; Peterson et al., 2003; Sinclair et al., 

2007). Some research has been conducted to determine other biohydrogenation 

intermediates that cause milk fat depression, with C18:1 trans-10 having been reported to 

reduce milk fat content (Chilliard et al., 2001), a finding that is supported by the 1st dairy 

cow study as there was a linear increase in milk fat content of C18:1 trans-10 as the 
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feeding level of ALG increased. Added dietary ALG altered individual milk FA, similar to 

other studies that have fed marine oils to dairy cows (Franklin et al., 1999; Sinedino et al., 

2017). As the dietary inclusion level of ALG increased a linear decrease in SFA was 

observed, along with a linear increase in MUFA and PUFA, suggesting that 

supplementation with LC-PUFA reduced the biohydrogenation rate of PUFA to their 

saturated form, as observed in the in-vitro study. The main outcome of this study was to 

increase milk and cheese DHA concentration, with an increase of 0.29 mg/100 g FA in 

both milk and cheese achieved when feeding 150 g/ALG per cow/d, improving the quality 

of these dairy products for human consumption.  

Dairy products with high concentrations of PUFA are sensitive to oxidation, which 

has been associated with the development of undesirable flavours (e.g rancidity), spoiling 

their sensory properties (Fauteux et al., 2016). Sensory evaluation of the cheddar cheese 

during the 1st cow study was conducted when the cheese had reached maturity (>6 

months old), and a trained sensory panel was used to test the cheese over 32 different 

sensory attributes, ranging from odour, appearance, flavour and aftertaste using a 15-

point scale. Increasing dietary inclusion of ALG resulted in a linear increase in an acidic 

note odour, air holes and a pleasant nutty flavour, and resulted in an acidic and bitter 

aftertaste, whilst decreasing the firmness and creaminess of the cheese. Despite having a 

few significant sensory characteristics between the cheese samples, the scores within the 

15-point scale were very similar. No research has previously been conducted on cheese 

sensory quality made from cows milk that were fed ALG, therefore the results from the 1st 

dairy cow study provide valuable information for future work on increasing DHA content in 

dairy products without adverse effect on sensory quality. Cheese weight and yield were 

recorded, and despite a reduction in milk fat content with increasing feeding level of ALG, 

there was no difference between the yield and weight of cheese made from milk with a 

lower fat content, although further work is required in order to confirm that milk fat 

reduction is not important for the production of cheese. These results demonstrate that it 

is possible to include ALG in the diet of dairy cows to increase the healthiness of dairy 

products, without having an impact on cheese yield, and only having a minor influence on 

cheese taste. Feeding ALG appeared to affect rumen microbial metabolism leading to a 

decrease in DM, OM and NDF digestibility as the dietary inclusion level of ALG increased, 

and therefore high amounts of LC-PUFA in the diet of dairy cows is not advised. No 

previous work has been conducted on the effects of ALG supplementation on diet 

digestibility, the results from this study provides evidence that high inclusion levels should 

be avoided. Due to the effect on digestibility at the highest inclusion level of ALG, 100 g/ 

ALG per cow/ d was used for the 2nd dairy study.  

The 2nd dairy cow study investigated the impact of supplementation of ALG to dairy 

cows from 3 weeks post calving for 14 weeks on milk FA profile to observe any shift in 
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biohydrogenation or rumen adaptation over time. Again the results of the study 

demonstrated that ALG supplementation had no effect on DMI or milk yield. In contrast to 

the 1st study there was no effect of feeding ALG on milk fat content or yield. In line with 

this observation there was no difference in milk fat content trans-10 cis-12 CLA. Results 

from both dairy cow studies support the role of trans-10 cis-12 CLA in milk fat depression, 

with a relative high correlation (r2) of 0.72 (Figure 6.1). Similarly Baumgard et al., (2001) 

reported a similar relationship between milk fat yield and milk trans-10 cis-12 CLA when 

increasing concentration of trans-10 cis-12 CLA was included in the diet of cows, with 

increasing milk concentration of trans-10 cis-12 correlating with a reduction in milk fat 

synthesis. Milk FA profiles were significantly altered by feeding ALG, similar to results 

from the 1st dairy cow study, with C18:1 trans-10 being increased in milk from cows fed 

the ALG. Figure 6.2 illustrates the low correlation (r2) of 0.14 between C18:1 trans-10 

concentration and milk fat content (g/kg) which does not support the finding that this FA is 

primarily involved in milk fat depression, a finding in accordance with Lock et al., (2007). 

Milk FAs were measured at weeks 0, 1, 2, 4, 8 and 14 of the study as it was hypothesised 

that a rapid change in milk FA profile would occur during the first few weeks of 

supplementation, and that rumen adaptation would occur, decreasing milk DHA content 

and some biohydrogenation intermediates by week 5, as reported by others (Bichi et al., 

2013; Shingfield et al., 2006). Cows fed the ALG had a higher milk fat content of C18:1 

trans 8, 9, 10, 11 and 12, with C18:1 trans 8, 9, 10 and 11 remaining higher in the ALG 

fed cows compared to the control animals throughout the study. Previous studies have 

reported biohydrogenation shifts when supplementing ruminants with oils (Shingfield et 

al., 2006), where C18:1 trans-11 concentrations decrease as the content of C18:1 trans-

10 increases. The results obtained in the 2nd dairy cow study demonstrate that a shift in 

biohydrogenation did not occur. Some studies have attempted to investigate rumen 

adaptation when supplementing marine oils to dairy cows (Franklin et al., 1999; Vlcek et 

al., 2017), but these studies were comparably short, lasting only 6 weeks. Other studies 

that have supplemented marine oils for a longer period of time did not report milk FA 

profile over time (Sinedino et al., 2017). The results of the 2nd dairy cow study 

demonstrated that rumen adaptation did not occur when supplementing LC-PUFA to dairy 

cows, that the milk fat content of DHA, cis-9 trans-11 CLA and total n-3 increased rapidly 

in the first few weeks of ALG supplementation and remained high over the 14 week 

period, whereas the milk fat content of SFA remained higher in the control fed cows. 

There is relatively little research on the change in individual milk FA profiles over time, and 

this thesis provides new information on the effects of feeding of LC-PUFA on individual 

milk FA profiles for a 14 week period.  
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Figure 6.1. Effect of supplementing dairy cows with various levels of ALG on the 
correlation of milk fat content (g/kg) to milk fat content of trans-10, cis-12 CLA (g/100 g 
FA). ●▲ no ALG, experiment 1 and 2; ● 50 g/ALG per cow/d; ●▲100 g/ALG per cow/d, 
experiment 1 and 2; ●150 g/ALG per cow/d. 

 

Figure 6.2. Effect of supplementing dairy cows with various levels of ALG on the 
correlation of milk fat content (g/kg) to milk fat content of C18:1 trans-10 (g/100 g FA). ●▲ 
no ALG, experiment 1 and 2; ● 50 g/ALG per cow/d; ●▲100 g/ALG per cow/d, experiment 
1 and 2; ●150 g/ALG per cow/d. 

 

6.4 Effect of dietary supplementation of ALG on indicators of fertility 
 The effect of ALG supplementation on indicators of fertility was also determined in 

the 2nd dairy cow study. Previous studies have reported an improvement in conception 

rate when feeding linseed (Petit et al., 2001) or ALG (Siedino et al., 2017), and a 

reduction in early embryo mortality when feeding FO (Elis et al., 2016) to dairy cows. The 

secondary objective of the 2nd dairy cow study was to measure plasma concentrations of 

PGFM, a metabolite of PGF2α, as an indicator of fertility as low concentrations of PGF2α 
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are important for maternal recognition of pregnancy (Binelli and Thatcher, 1999). The 

PGF2α secretion is inhibited by P4, indicating the importance of a large CL for adequate 

secretion of P4 (Asselin et al., 1997). Plasma PGFM was measured following a 

synchronised programme, and on d 17 of the oestrus cycle blood was collected from a 

jugular catheter every 15 min for 4 h following an oxytocin challenge. A reduction in 

plasma PGFM mean, peak and area under the curve was reported, although the reduction 

did not reach statistical significance, possibly due to the comparably low number of 

animals or the sensitivity of PGFM to day of sampling, as reported by others (Childs et al., 

2008; Robinson et al., 2002). Milk P4 were also measured at d 5 and d 20 post AI and it 

was demonstrated that feeding ALG from 3 weeks post calving increased milk P4 in 

pregnant cows, suggesting that a larger CL was produced. In order to confirm that the CL 

was larger in ALG fed cows, ultrasound scanning would have been required, as previous 

studies have reported a larger CL when feeding FO (Childs et al., 2008), and a larger 

dominant follicle when feeding fish meal (Moussavi et al., 2007) to dairy cows. Overall 

conception rates were demonstrated to be higher in ALG fed cows (73.7 v 63.2 %), but 

the difference were not significant, and the conception rates were higher for both 

treatments compared to the UK average (40-42 %) (AHDB, 2013). Higher conception 

rates could also be a result of better oestrus detection, due to a stronger and longer 

duration of oestrus behaviours demonstrated by the cows. Zachut et al., (2011) reported 

an increase in the duration of oestrus behaviour in cows fed linseed compared to a control 

diet, and cows supplemented with n-3 rich linseed also exhibited stronger intensity of 

oestrus behaviour. No studies have investigated the effect of ALG supplementation on 

oestrus behaviour in dairy cows, and this is an area that requires further investigation. 

 

6.5 Conclusions 
Results obtained in this thesis over the three experiments support the hypothesis 

that LC n-3 PUFA in ALG can partially resists biohydrogenation in the rumen, and can 

increase milk and cheese DHA content, improving the healthiness of dairy products for 

human consumption, whilst also improving indicators of fertility in the dairy cow. 

Supplementation of 100 g/ALG per cow/d is the most appropriate inclusion level, due to 

negative effects on cow performance and diet digestibility at higher inclusion levels. 

Supplementing 100 g of ALG/d will also increase milk DHA content, and there is no 

evidence of rumen adaptation over time. Algae may also be supplemented to dairy cows 

to improve fertility, by decreasing plasma PGFM concentration and increasing milk P4 

levels, helping with early maternal recognition and reducing early embryo losses, although 

further research is required. 
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