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Graphical Abstract
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Proposed effects of evolutionary trends in host plant defences on insect diversity. Escalation in toxic
defences (ai) frees hosts from herbivory by generalist herbivores (aii). But it can favor speciation of
specialized, sequestering herbivores (aiii). The sequestration can lower attractivity of such herbivores
to predators (aiv) or disrupts their physiological defences making them preferred by specific
parasitoids (av). In contrast, escalation in less toxic defences (bi) probably does not lead to exclusion
of herbivores from the community, but rather shifts relative proportion among species, increasing the
diversity of herbivores associated with the respective host (bii). This may have a positive cascading
effect on parasitoid diversity (biii). A divergence in direct defences (ci) lowers the amount of herbivores
the hosts share and promotes herbivore community variation between the hosts (cii). This cascades to
parasitoids, promoting variation in their communities as well (ciii). A divergence in HIPVs can further
promote the effect (civ).



Highlights

e Large plant genera harbour a substantial share of the global insect diversity.

e This is because of their chemical diversity, promoted by divergence and escalation.
e This primarily affects the diversity of herbivores and cascades to parasitoids.

e Novel measures of chemical diversity may help to understand the mechanism.

e These need to be combined with detailed herbivore and parasitoids data.

Abstract

Divergence and escalation in defences promote chemical diversity in plants, and consequently
the diversity of insect herbivores. This diversification cascades to insect parasitoids through
direct effects on host herbivore susceptibility, changes in herbivore community composition, or
disparity in plant volatiles. Large tropical plant genera represent an ideal model for studying
these trends due to the high diversity of sympatric species and their insects. Novel measures of
chemical structural similarity should be used to analyse evolutionary trends in both direct and
indirect defences. Host chemical data need to be combined with detailed herbivore and
parasitoid data. This will help to identify truly active compounds. Furthermore, resolved
genomic phylogenies for plants and insects should be included to assign directionality in the

processes.
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Introduction

Large tropical plant genera have long fascinated biologists [1,2]. This is because high
abundance and diversity make genera such as Psychotria (ca 1,850 species), Piper (>1,000
species) or Ficus (ca 800 species) a key component of forest communities in both the Paleo-
and Neotropics [2,3,4]. Such large tropical plant genera have been shown to harbour hundreds
of insect herbivore species locally and thousands globally [3,5]. Exceptionally high herbivore
diversity cascades to higher trophic levels as specialized herbivores sustain parasitoid and

predator populations [6].

The diversity of insect communities associated with large tropical plant genera is linked to the
chemical diversity of the hosts [e.g. 7*,8-10*]. The question, ‘what evolutionary processes have
generated chemical diversity in large tropical plant genera?’ is thus central to understanding the
origin of global insect diversity. Similar evolutionary processes act in other plant genera. But
large tropical plant genera (defined as those with >500 species; [11]) represent ideal models as

they often include multiple species growing in sympatry that are exposed to the same pool of



insects. This allows for a comparative framework and direct tests of how trends in host

chemistry cascade to other trophic levels and affect their diversity [12].

To date, the evolution of direct constitutive defences (Table 1) has received most attention
[7*,9,10*,13,14]. Such defences protect plants against herbivores through toxic or deterrent
effects. These compounds can be sequestered by specialized herbivores and used as a protection
against predators, thus affecting higher trophic levels [15]. But there is a growing body of
evidence that evolutionary trajectories of indirect defences and low-molecular-weight volatiles
are also crucial for understanding chemical diversity [8,16**]. Infochemicals (semiochemicals)
such as herbivore induced plant volatiles (HIPVs) contribute significantly to plant chemical
diversity because their deployment is often species specific [17-19]. Furthermore, indirect
induced defences mediate interactions and communication between multiple trophic levels

[18*].

Here we identify key evolutionary mechanisms contributing to the diversification of defences
in large tropical plant genera, presenting current hypotheses and future directions. Furthermore,
we discuss the conceptual and methodological advances necessary for future progress. We
highlight the importance of data on associated insect communities, and where possible their

phylogenetic relationships, for interpreting these trends.

Evolution of chemical diversity in large tropical plant genera and herbivore diversity

Recent results illustrate that the evolution of host-plant defences can follow various trajectories
including escalation, de-escalation, and divergence (Table 2). Both escalation and divergence
of defensive traits may contribute to diversification or variation in host-plant defences, which

subsequently affects communities of insect herbivores [e.g. 7*,10*,14,20*] (Fig. 1).



Escalation should promote diversification of plant secondary metabolites over the course of the
insect-plant arms-race, increasing the species level (o) diversity of secondary metabolites [21].
In theory, if escalating defences are extremely efficient in providing protection against entire
communities of herbivores, selection on other chemical traits could be relaxed, leading to a
decline in their diversity. However, empirical evidence suggests that even highly toxic or novel
defences seldom provide comprehensive protection against all species and guilds of insects
[22]. Individual defensive traits thus often show independent evolution as found in Ficus or
Inga [7*,20*]. Escalation in one trait does not necessarily need to lead to de-escalation in
another one. However, negative dependence between the diversity of individual metabolite

classes can be still expected in the case of negative dependence in metabolic pathways [23].

Escalation of highly toxic defences can help plants to avoid herbivory by generalists, leaving
the community dominated by specialists [7*]. This is likely to decrease the overall diversity of
the insect community but can promote the adaptive radiation of specialists [21]. Indeed, there
are some examples of species rich and specialized herbivore genera associated with toxic plants
[e.g. 24]. In contrast, we hypothesise that less toxic defences (e.g. anti-feedants) may lower the
community mean for insect performance and facilitate shifts in insect relative abundance, rather
than serve to exclude herbivores from the community (Fig. 1). Increased a-diversity of such
secondary metabolites may therefore promote insect diversity as found in Ficus, possibly by

preventing over-dominance of abundant herbivore species [7*].

But herbivores can adapt to predictable defences, using them as feeding cues [25]. This renders
such defences largely inefficient against specialized insects [13,26]. Hosts sharing the
respective defensive trait can become susceptible and likely to share their fauna of specialized
herbivores. This can either lead to de-escalation in defences or push host communities towards

divergence as originally suggested for less diverse genera such as Asclepias or Bursera [13,27].



The promotion of B-diversity in defences among divergent hosts within large tropical plant
genera is likely to increase variation in their insect communities [8,28] (Fig. 1). Shared
specialized herbivores can be important selection agents in large tropical plant genera such as
Psychotria. Congeneric Psychotria species show similar habitat preferences and grow in
sympatry [4]. Individual species often share up to 50% of their herbivores [29]. Under such
conditions, divergence in defences can be expected to be a prominent evolutionary trend, and
as a consequence it can reduce the overlap of specialized herbivores among sympatric hosts.
Indeed, interspecific differences in chemistry of Psychotria species can be of a greater
magnitude than intergeneric differences between Psychotria and other plant genera [10*].
Similar divergence has been found in many large tropical plant genera such as Eugenia, Ficus,
Piper or locally diverse Inga, promoting chemical B-diversity between congeners and probably

helping them to avoid herbivory [7*,8,10*,30].

The divergence in large tropical plant genera is not limited to direct constitutive defences. The
divergence in Piper HIPVs has been shown to reduce herbivore inflicted damage to close
relatives, likely by either confounding cues for herbivores or through the recruitment of
specialized parasitoids (see Evolution of host-plant defences and its effects on parasitoids
below) [8]. Similarly, there is high variation between individual species of Inga not only in their
secondary metabolites but also in ant mediated defences [30]. This can potentially further
promote the divergence in defensive strategies among closely related Inga species. Similar
trends can be expected also in Macaranga that includes many sympatric species which employ
various levels of chemical and ant based defences [31]. Both Inga and Macaranga include
“only” around 300 species but form locally diverse assemblages, forming an important source

for insects similar to large tropical genera.

Evolution of host-plant defences and its effects on parasitoids



The effects of plant chemical diversity cascade to parasitoids. For example, Piper chemical
diversity shapes both caterpillar and parasitic wasp community composition [32*]. This is due
to i) the effects of host chemical profile on the susceptibility of herbivores to parasitoids, ii)
effects mediated by the changes in herbivore community structure and iii) direct effects of

divergence in volatile cues, such as HIPVs (Fig. 1).

First, the chemical composition of an herbivore’s diet can directly cascade to parasitoids [33**].
Such cascading effects may be especially strong in the case of the highly specialized
communities associated with hosts possessing escalated toxic defences (Fig. 1). Highly
specialized herbivores can often sequester host plant metabolites [e.g. 34,35]. Sequestration can
protect herbivores from vertebrate predators or disrupt their anti-parasitoid physiological
defences, such as melanisation. This can make sequestering herbivores more attractive to insect
parasitoids [15,36]. Recent evidence suggests that the resulting effects of host-plant chemical
profiles cascading to the third trophic level may show relatively wide geographic variation. For
example, higher chemical diversity of Piper hosts can facilitate both increased and decreased
herbivore resistance to parasitoids [33**]. The studies in Piper should be matched by a similar
effort in other large tropical plant genera. This may help to further reveal how the interplay of
host chemical diversity and herbivore susceptibility to parasitoids is modulated by the life-
history of particular species and geographic variation in biotic and abiotic conditions

[32*,33%+],

Second, hosts with divergent defences, escalated toxic defences, or escalated anti-feedant
defences harbour distinct herbivore communities as outlined above [7*]. As many insect
parasitoids show relatively high levels of specialization [37], the effects of evolutionary trends
in direct constitutive defences can cascade to the third trophic level and promote variation in

parasitoid communities as well (Fig. 1).



Third, divergence in indirect induced defences, such as HIPVs, between closely related hosts
could allow for recruitment of specific parasitoids. This may further promote variation in
parasitoid communities between hosts. The evidence for such patterns is still scarce, although
they potentially still play a crucial role [32*]. But we can draw on well-studied pollinator-plant
interactions. For example, divergence in volatiles seems to be an important source of variation
in pollinating wasp communities in Ficus [38]. Host plant volatiles also play a central role in
determining pollinator-parasitoid interactions in this system [39]. The scope of current eco-
evolutionary studies should be extended to other forms of plant defence in order to examine the
effects of their evolution on insect diversity in a tri-trophic context [40]. Methods relying on
passive volatile sampling can help considerably here [e.g. 41,42]. They represent an excellent
alternative to active sampling methods when exploring volatile profiles in remote tropical
regions. These methods mitigate the difficulties associated with transport and electrical supply
and allow researchers to run a larger numbers of replicates, as they drastically reduce material

costs [41].

Measuring plant chemical diversity has its own pitfalls

Central to interpreting the interplay between evolutionary trends in plant chemical diversity and
insect communities are untargeted metabolomic methods [9,43*]. These approaches couple
separation and detection methods such as liquid chromatography (LC) with mass spectrometry
(MS), or use nuclear magnetic resonance (NMR) spectroscopy without the prior separation of
the compounds. The LC-MS approach, for instance, enables structural comparisons among
large sets of unknown compounds, computing their structural similarity matrices that are

superior to simple diversity measures such as Shannon diversity [43*].

However, it should be noted that all analytical methods have limits in terms of the breadth of

compound detection. Metabolomic analyses typically do not optimise extraction on a compound
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group basis, and this may affect both the composition and concentration of detected compounds.
For instance, the choice of the extraction solvent alone may cause up to a 10-fold difference in
the content of individual metabolites detected [44]. In terms of detection, NMR is more efficient
than MS in detecting all types of major metabolites present in the plant extract, while MS is
more sensitive and thus more suitable for detecting compounds present in low concentrations.
The LC separation of the hundreds of compounds in plant extracts also favours LC-MS over
NMR. However, the typical MS metabolomics methods cannot detect (and/or extract) large
metabolites such as polymeric tannins. These need a separate analysis protocol that uses UPLC-
QqQ-MS/MS for targeted multiple reaction monitoring analysis of four types of tannin groups
together with untargeted full scan analysis that allows the detection of many individual tannins
[45,46]. To conclude, it is important to always recognise that any single method is not perfect
and cannot detect and quantify all defence compounds. In these cases, the quantification of
biologically relevant bioactivities may yield another level of information that metabolomics

tools miss [e.g. 7*,47].

Linking plant chemical diversity to insect data

Integrating detailed insect community data can help to interpret complex metabolomics data
sets. First, obtaining data on herbivores naturally associated with the focal plant lineage allows
us to select candidate herbivores for informed manipulative experiments and feeding trials.
Indeed, such tests are needed to reveal how metabolite structures may be linked to their
activities [48]. Second, having detailed insect data allows identifying metabolites linked to
insect community structure. This is key for interpreting evolutionary trends in plant defences
since the production of secondary metabolites can be subject to different degrees of selection

depending on their function [16**]. Statistical learning regularization techniques, such as

10



LASSO [49], which can handle complex data can be of great help in identifying the metabolites

most strongly involved in the insect-plant interactions [16**].

While we begin to understand the distribution of traits between congeneric hosts and better
estimate herbivore pressure [8-10*], herbivore and parasitoid communities remain largely
unexplored. So far, many studies have focused on a limited number of insect taxa and guilds,
especially caterpillars, and in a bi-trophic context only [e.g. 7*,20*]. This is largely due to the
expertise and time needed for the identification of insects in the tropics where delimiting species
boundaries is a difficult task. However, a recent renaissance of taxonomy facilitated by DNA
barcoding allows us to link refined species to community ecology [50]. Beyond barcoding,
molecular data are needed for the robust and informative evolutionary reconstructions central

to phylogenetic comparative methods.

A traditional shortcoming has been the relative shortage of statistical methods available for
analysing quantitative multivariate community data in a phylogenetic context. But excellent
progress is being made in this direction [51,52]. Following these authors, we urge for a tighter
inclusion of matched plant and insect community phylogenies that can help understand the
evolution of host use and phylogenetic constraints, and to some extent discriminate between
higher level macro-evolutionary processes, assigning directionality. For example, densely
sampled and well resolved genomic phylogenies of entire insect and plant clades are needed to
estimate ancestral plant traits and levels of insect host shifting as well as to provide the context
under which plants evolved. Dated phylogenies are particularly relevant here, helping to
examine the role of insects themselves in generating chemical diversity and the potential for
sequential radiation of insects across plants and cyclical evolutionary dynamics. Large genera
with contrasting ages of divergence, such as Ficus (ca 75 MYA) or Inga (ca 2-10 MYA), are
ideal models for such comparative studies on the diversification of insects across plants

[7*,20%].
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Conclusions

Overall, we are now in a unique situation when novel methods allow us to explore the evolution
of various types of defences and their effects on tri-trophic interactions in large tropical plant
genera as never before. These plant genera can indeed serve as model systems for studying the
genesis of plant and insect diversity - their herbivores can represent up to 30% of local fauna in
the case of some herbivore lineages [47]. Studies from individual plants systems have so far
excelled in individual aspects: for example in metabolomics, in insect community ecology or
in providing the evolutionary context [e.g. 7%*8-10*%,20*30]. Increasingly available
metabolomics and genomics methods call for a synthesis and synchronization across all these

systems and various geographic regions.
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Figure captions

Figure 1. Proposed effects of evolutionary trends in host plant defences on insect diversity.
Escalation in toxic defences (ai) frees hosts from herbivory by generalist herbivores (aii). But
it can eventually favor speciation of specialized, sequestering herbivores (aiii). The
sequestration can lower attractivity of such herbivores to predators (aiv) or disrupts their
physiological defences making them preferred by specific parasitoids (av). In contrast,
escalation in less toxic defences (bi) probably does not lead to exclusion of herbivores from the
community, but rather shifts relative proportion among species. This can increase the diversity
of herbivores associated with the respective host (bii) and have a positive cascading effect on
parasitoid diversity (biii). A divergence in direct defences (ci) lowers the amount of herbivores
the hosts share and promotes herbivore community variation between the hosts (cii). This
cascades to parasitoids, promoting variation in their communities as well (ciii). A divergence

in HIPVs can further promote the effect (civ).
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Tables

Table 1. Used terms and definitions.

Term

Definition

Escalation of defences

Macroevolutionary trend towards higher
concentration, activity, or diversity of host
defences

De-escalation of defences

Macroevolutionary trend towards lower
concentration, activity, or diversity of host
defences

Divergence in defences

Marcoevolutionary trend towards disparity in
defences between closely related hosts

Constitutive defences

Defences that are always present in the plant

Induced defences

Defences that change in their expression or
concentration in response to herbivore or
pathogen attack

Direct defences

Chemical or physical defences targeted directly
at the herbivore, thereby affecting its
preference of performance. They can be
constitutive and/or inducible.

Indirect defences

Chemical defences attracting predators or
parasitoids impacting the herbivores. These
include e.g. herbivore induced plant volatiles
or extrafloral nectaries. They can be
constitutive and/or inducible.

Targeted metabolomics

Metabolomics analysis targeted at
identification and quantitation of a defined set
of metabolites.

Untargeted metabolomics

Metabolomics analysis focused on
quantification of overall metabolome profile
and comparing it across samples.

Table 2. Evolutionary trends in defences recovered in plant genera. Large tropical plant genera

with at least 500 species are reported first. Other plant genera in which divergence, escalation,
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or de-escalation was found are reported below the horizontal line. In the case of Protium, the
asterisk indicates that while overall chemical profiles showed divergence, compounds with
effect on herbivores showed trends towards directional selection. Question marks indicate cases
where the presence of a reported trend is likely. Further confirmation requires additional

analyses and/or wider sampling effort.

Number of Divergence Escalation De-escalation
species in defences of defences of defences References
Eugenia ~1,000 ? [10%]
Ficus ~800 yes yes [7%]
Piper >1,000 yes [8,9]
Psychotria ~1,850 yes [10%]
Solanum >1500 ? [53]
Asclepias >140 yes yes [13,23]
Bursera ~100 yes yes [14,27]
Inga ~300 yes [20%,30]
Ocotea >300 ? [10%]
Protium ~150 yes* [16%%]
Salix ~400 ? [22,26]
Streptanthus ~35 yes [54]
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