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Human factors and ergonomics systems-based tools for 

understanding and addressing global problems of the twenty-first 

century 

 

Abstract 

Sustainability is a systems problem with humans as integral elements of the system. 

However, sustainability problems usually have a broader scope than sociotechnical 

systems and therefore require additional considerations. This requires a fuller integration 

of complex systems understanding into the systems analysis toolset currently available to 

human factors and ergonomics. In this paper we outline these complex systems 

requirements necessary to tackle global problems such as sustainability and then assess 

how three common systems analysis tools (i.e. Accimap, System Theoretic Accident 

Mapping and Processes; and Cognitive Work Analysis) stand up against these revised 

criteria. This assessment is then further explored through applying two of these tools (i.e. 

Accimap and System Theoretic Accident Mapping and Processes) to a transnational food 

integrity system problem. This case study shows that no single systems analysis method 

can be used in isolation to help identify key insights for intervention and that new methods 

may need to be developed or existing methods need to be adapted to understand these 

dynamic, adaptive systems. The implications for the further development of systems 

analysis tools are discussed. 

 

Practitioner summary 

We assess the applicability of existing human factors and ergonomics systems-analysis 

tools for examining global problems and for identifying points to intervene in these 

systems. We comment on what extensions and further work will be required to enable 

human factors and ergonomics to intervene effectively. 

 

1. Introduction 

 

The latest report from the Intergovernmental Panel on Climate Change (2018) warns that we 

have twelve years to implement change on an unprecedented scale to avoid the worse effects 

of anthropogenic climate change on human wellbeing (http://www.ipcc.ch/report/sr15/). We 

have undeniably entered the Anthropocene (Crutzen, 2002; Steffen, Grinevald, Crutzen, & 



McNeill, 2011); the geological age where human activity has had a measurable impact on 

geophysical and climate systems. The widespread burning of fossil fuels for energy has led to 

the increase of atmospheric carbon dioxide to levels that are measurably affecting climate 

change with even larger changes expected in the coming decades (Rosenzweig et al., 2008; 

Sobel et al., 2016; Steffen et al., 2018). The uncontained use of chlorofluorocarbons up until 

the 1990s led to serious damage to the ozone layer, the Earth’s ultraviolet filter, and there is 

now evidence that chlorofluorocarbon levels are increasing once more (Montzka et al., 2018). 

Our lack of concern for our waste, especially plastics, has led to massive oceanic garbage 

accumulations such as the Great Pacific Garbage Patch which covers an area greater than 1.6 

million km2 (Lebreton et al., 2018). Pollution now accounts for more than 9 million 

premature deaths worldwide (Landrigan et al., 2017). Excessive use of fertilizers to support 

intensive agriculture (amongst other anthropogenic nitrogen-fixing mechanisms) has resulted 

in the nitrogen eutrophication of riverine systems, coastal systems, and even oceans and has 

led to harmful algal blooms and biological dead zones (Sinha, Michalak, & Balaji, 2017). 

There is also significant evidence that human activity is responsible for the sixth mass 

extinction event (Ceballos, Ehrlich, & Dirzo, 2017). Climate change itself will lead to rising 

sea levels that will threaten coastal and island communities, droughts that will exacerbate 

food shortages, and lead to mass migration as people move to find habitable land (Rigaud et 

al., 2018) and wars as people fight over resources that will become more scarce (Kelley et al., 

2015). This raises the question of the role of human factors and ergonomics (HFE) in 

ensuring human wellbeing and effectiveness in the face of these self-made threats. 

 

1.1 Global problems as complex systems 

Thatcher and Yeow (2016) have characterised these issues as complex, inter-related problems 

that have negative human and environmental consequences (see Table 1). They grouped these 

issues into three asymmetries: resource asymmetries (e.g. inequality in access to basic 

resources such as food, water, healthcare, etc.); waste accumulation and distribution 

asymmetries (e.g. carbon dioxide, heavy metals, plastics, etc.); and legislative asymmetries 

(e.g. worker protection, cultural protection, free speech, etc.). Table 1 gives illustrative 

examples of these three types of asymmetries as well as the human and environmental 

consequences that these asymmetries enable. It is also important to note that the relationships 

between these components are not simple; they are both inter-related and produce positive 

feedback loops that further exacerbate the asymmetries. For example, in poorer countries 

resources such as jobs, energy, healthcare, education, and sanitation are scarce. Those 



countries struggling with poverty, high unemployment, and poor healthcare and educational 

infrastructure are the most likely to be affected by climate change (Samir & Lutz, 2017). 

However, they are also more likely to burn wood and fossil fuels leading to air pollution and 

deforestation. 

 

[insert Table 1 about here] 

 

In the future, disruptions to the global climate system will lead to significant global warming 

in many parts of the world (Foster, Royer, & Lunt, 2017), droughts in some parts of the world 

and excessive rainfall in other parts of the world, more intense weather events (including 

hurricanes; Hansen et al., 2016; Sobel et al., 2016), and sea level rises threatening islands and 

coastal cities in particular (Chen et al., 2017; Garner et al., 2017). Not only will a warming 

planet lead to new thermal challenges, including disruptions to crop and livestock species that 

can withstand heat, but water resource challenges, increased diseases (Patz et al., 2014), and 

migration (Rigaud et al., 2018). Ominously, a warming global climate system also has 

positive feedback effect; i.e. greater evaporation and the melting of permafrost resulting in 

the release of more methane into the atmosphere. Unfortunately, this is only part of the 

picture as melting ice at the poles creates another positive feedback loop for global warming 

as well as changing the salinity of the oceans (Hansen et al., 2016). 

 

These issues are tragic, frightening, and may even seem overwhelming, but what do they 

have to do with HFE? We argue that because these problems have been caused by humans 

(i.e. are anthropogenic), humans must also be the ones to find solutions through behaviour 

change and technology development. HFE is a systems discipline with the word “human” 

deeply embedded in our name and definition (Wilson, 2014). HFE is therefore significantly 

placed to contribute to finding solutions. Moray (1995) was one of the first people to 

systematically demonstrate the value that HFE could add to addressing the emergent 

problems of the twenty-first century. Moray (1995) summarised these as seven challenges: 

(1) water, (2) food, and (3) energy shortages, (4) pollution and waste, (5) urbanisation, (6) 

violence and terrorism, and (7) health and medicine. Thatcher, Waterson, Todd and Moray 

(2018) reviewed the work that had been performed in the HFE field since Moray’s (1995) 

paper was published and noted that work addressing aspects of these seven challenges has 

steadily increased with new subfields such as human factors and sustainable development 

(Zink & Fischer, 2013), green ergonomics (Thatcher, 2013), ergoecology (Garcia-Acosta et 



al., 2014), and even ergaianomics (Hancock, 2012) being proposed. Thatcher et al. (2018) 

noted that while the more pessimistic aspects of Moray’s (1995) vision of the twenty-first 

century are yet to materialise (e.g. that industrially developed parts of the world would start 

to suffer from the same challenges as the industrially underdeveloped parts of the world), 

new challenges have also emerged. Of particular importance for this paper is the point raised 

by Thatcher et al. (2018) that these issues are complex and inter-related. 

 

2. Requirements for complex systems thinking tools in HFE 

 

Dekker, Hancock and Wilkin (2013) made it abundantly clear that if HFE is to address these 

global challenges, and we believe we must in order to avert a potential existential crisis, then 

this requires that our discipline embraces complex systems thinking. This means that the 

types of systems that are of interest in this paper require not just systems-thinking as 

envisaged by Wilson (2014), but complex systems-thinking. Salmon et al. (2017) noted that 

there is already an increasing need for complex systems-thinking in HFE and that our current 

methods and tools still require further methodological development. In particular, complex 

systems-thinking requires us to understand and incorporate concepts such as non-linear 

dynamics, emergence, adaptability, and self-organisation into our design and evaluation 

endeavours. Dekker et al. (2013) have emphasised that complex systems-thinking challenges 

the dominant epistemological stance of HFE which assumes that HFE studies closed systems, 

where all system elements can be known and measured. Like Dekker et al. (2013), we believe 

that complex systems-thinking is both necessary and long-overdue. In this section we 

introduce the lessons learnt from studying the functioning and resilience of ecological 

systems that can be applied to the most frequently used systems-analysis tools in HFE. In 

section 3 we provide a more detailed analysis of the frequently used systems-analysis tools to 

identify the strengths and limitations of these tools for addressing global challenges. In 

section 4 we summarise what methodological development that still needs to occur to make 

these tools complexity-ready and then in section 5 we give two examples of how these 

systems analysis tools need to be extended to understand a multinational food security issue. 

 

2.1 Hierarchical nested systems 

Simon (1962), in his classic paper The architecture of complexity, defined complex systems 

as being “composed of interrelated subsystems, each of the latter being, in turn, hierarchic in 

structure until we reach some lowest level of elementary subsystem” (p. 468). Evidence from 



multiple disciplines (Bronfenbrenner, 1979; Carayon et al., 2015; Clegg et al., 2017; 

Costanza & Patten, 1997; Gunderson & Holling, 2002; Moray, 2000; Simon, 1962; Thatcher 

& Yeow, 2016) now characterises multiple interacting systems as forming a nested hierarchy 

with smaller, less complex systems being embedded within larger, more complex systems. 

Within the field of HFE, Moray (2000) represented various sociotechnical systems as being 

hierarchically nested (e.g. a physical layout system was embedded within a system of team 

and group behaviour, which was embedded within an organisational and management 

system, which was encapsulated within legal and regulatory systems, etc.). Rasmussen’s 

(1997) risk management framework is also a form of nested hierarchy, although the emphasis 

is on the hierarchy rather than the ‘nestedness’ of systems. Thatcher and Yeow (2016) 

expanded on the notion of nested hierarchies in their sustainable system-of-systems (SSoS) 

model. Thatcher and Yeow (2016) stress that the important point to note about nestedness is 

that related (sociotechnical) systems are not simply “the context”; but rather encompassing 

systems provide the broader framework for understanding smaller systems. In turn, smaller 

systems provide the functional elements that allow encompassing systems to stabilise. 

 

2.2 Systems may have multiple human goals 

Numerous authors examining sustainable systems that include humans emphasise the need 

for the simultaneous achievement of multiple (human) goals (Altwegg, Roth & Scheller, 

2004; Elkington, 1998). Elkington’s (1998) triple-bottom line of economic, social, and 

environmental goals is one example of multiple goals. Not only is the achievement of 

multiple goals necessary, but the different goals are interlinked and may even conflict. For 

example, the need for a worker to be employed under decent working conditions (i.e. a social 

goal) may conflict with the worker’s need for employment regardless of the working 

conditions in order to bring home money to pay for food (i.e. an economic goal). Goals can 

also conflict between the different hierarchical levels. For example, the workers need for 

decent working conditions (i.e. a social goal) might conflict with the organisations need to 

make a profit (i.e. economic goal). Mauerhofer (2008) therefore calls for balance and 

prioritization of the goals. This takes the form of “burden of proof”, where the sociotechnical 

system that draws from a particular goal also has the responsibility to show that the goals of 

other parts of the system are also balanced. To place this into the context; an organisation that 

needs to make a profit (i.e. an economic goal) must also show that the needs of employees for 

decent working conditions (i.e. the social goal) and the need to not destroy the natural 

environment (i.e. the environmental goal) are also met. Finally, it is important to note that 



these goals do not represent the only goals of a system. The goals referred to in this section 

are high level goals for the system-of-systems, rather the individual system goals. 

 

2.3 Natural lifespans of systems 

Costanza and Patten (1997) noted that no natural system is indefinitely sustainable. In fact, 

the natural lifespan of a system is determined to a significant extent on its relative position 

within the hierarchy of systems. Larger, more complex systems have longer natural lifespans 

than smaller, less complex systems that they encompass. Costanza and Patten (1997) noted 

that systems that last longer than their natural lifespan tend to become “brittle” and lose the 

flexibility to cope with changes to the external environment. Similarly, systems that don’t 

reach their natural lifespan result in instability as interconnections collapse. There is therefore 

a finely balanced equilibrium in the lifespans of systems in the hierarchy. Thatcher and Yeow 

(2016) demonstrated how this applied to HFE systems (for example, a person-task-tool 

system will have a shorter expect lifespan than a person-job system). What is important to 

note is that an acknowledgement of natural lifespan properties introduces a time dimension 

into our understanding of systems and system interactions. 

 

2.4 Adaptive and self-organising systems 

Gunderson and Holling (2002) contend that all natural systems are really complex adaptive 

systems. While the concept of complex adaptive systems has already been introduced into the 

HFE literature (Carayon et al., 2015; Guastello, 2017; Karwowski, 2012; Walker et al., 2017) 

it has only been used to describe one of the properties of a complex system and not to explain 

the dynamics of adaptation. Beyond a certain level of complexity, natural systems exhibit 

self-organising adaptive properties. While the exact details of any self-organisation cannot 

easily be predicted, there are general phases that each complex adaptive system goes through 

during the adaptive process. Building on the lessons learnt from studying ecological systems, 

Gunderson and Holling (2002) argued that complex adaptive systems go through four 

“phases” of adaptation; exploitation, conservation, release, and re-organisation. Thatcher 

(2016) extended the SSoS model to show how HFE systems follow a similar adaptive cycle. 

The conservation phase is typically how we characterise most HFE systems in a state of 

equilibrium, although HFE has historically been most interested in systems in the release 

phase (i.e. systems where existing relationships start to break down).  

 

2.5 Emergence 



Complex systems also exhibit a property known as emergence (Dekker et al., 2013). 

Emergence refers to behaviours, functions, or structures that “emerge” from system 

interactions that cannot be predicted by an analysis of the component parts (Bar-Yam, 2004). 

Part of the reason for emergence is that interactions in complex systems are not specifically 

top-down, horizontal, or bottom-up (Bar-Yam, 2004), neither are the relationships always 

linear (Dekker et al., 2013). Building from section 2.5, emergence is also a complex system 

property that accounts for self-organisation; patterns that emerge and define the behaviour of 

the components/agents within the system and the behaviour of the whole system (Ottino, 

2004).  

 

2.6 Revolt and remember 

Not only are the phases through which a complex adaptive system passes predictable, but 

some of the interactions between the different levels in the hierarchy also produce predictable 

influences. Following from section 2.3 and section 2.4 on natural lifespans and complex 

adaptive systems, the rate at which a system will transition through the four phases will be 

dependent on its relative position in the nested hierarchy. Smaller, less complex systems will 

complete the adaptive cycle at a faster rate than larger, more complex systems. Furthermore, 

when a smaller, less complex system reaches the release stage these creative destruction 

changes provide an opportunity to influence changes in the larger, more complex systems. 

However, changes to smaller, less complex systems in the re-organisation phase will be 

restricted by the characteristics of larger and more complex systems systems, especially if 

those systems are in the conservation stage. Gunderson and Holling (2002) refer to these two 

processes as “remember” and “revolt” processes respectively. The revolt process, stimulates 

active change in the larger, slower, more complex systems and the remember process reduces 

the chance of smaller, faster, less complex systems from changing too rapidly and completely 

upsetting the existing equilibrium of the system-of-systems. In short, the ecological models 

show us that we can learn something about the nature of the “communication” between 

different system levels in the nested hierarchy. 

 

2.7 Summary: criteria for assessing the suitability of systems analysis tools for 

addressing global challenges 

In section 2 we have outlined a set of requirements for complex systems thinking tools in 

HFE. These requirements might be said to be generic to the vast majority of types of systems 

and domains we might come across in HFE (e.g. simple, closed-loop systems such as some 



types of human-machine interaction through to the complex open-loop systems commonly 

associated with transportation and healthcare; such as Proctor and Van Zandt, 2018; Baber et 

al., 2019). In addition to generic requirements, such as the need for tools to provide coverage 

of aspects of dynamic, adaptive, self-organising systems thinking, emergence, and the 

hierarchical nestedness of systems, we might also want to consider the extent to which these 

tools address the specific requirements of global, environmental systems which involve 

human and non-human agents/actors (e.g. plants, animals, and other ecosystem elements). 

Similarly, the ‘revolt and remember’ characteristics of global systems require that attention is 

paid to linkages between system elements and the types of network relationships which may 

exist in these types of systems. Finally, there is a need to consider the degree to which 

complex systems thinking tools have been applied to global challenges. Many of these 

systems thinking tools have focused, for example, on accidents and have provided 

retrospective analyses of the role played by human and organisational error in contributing to 

system breakdown (e.g. Underwood & Waterson, 2014; Li et al., 2019). Accordingly, there is 

also a need to focus on the proactive and emergent aspects of global systems and how the 

human and non-human factors contribute to system functioning and evolution unfold over 

time. Table 2 summarises the generic HFE requirements (sections 2.1 to 2.6) alongside others 

which may be relevant to global challenges. 

 

[insert Table 2 about here] 

 

3. Popular systems-thinking analysis tools in HFE 

 

There are already multiple possible tools available to the HFE discipline for understanding 

complex systems (Salmon et al., 2017). It is not possible to give a systematic review of all of 

the available tools. Instead, we have chosen to focus on three of these tools that are currently 

widely used in the HFE literature (Salmon et al., 2017; Waterson et al., 2017). In considering 

the dominant systems-thinking analysis tools in the HFE discipline we first give a short 

history and explanation of the main characteristics of each tool. We then look at the areas 

where each tool has been applied, focusing specifically on applications that might bear some 

resemblance to the sorts of global problems raised in this paper. We also consider whether 

each tool can be used to make predictions about possible future problems. Finally, we 

consider how each tool deals with adaptability and therefore the need for iterative design. 

 



3.1 Accimap 

Accimap (Svedung & Rasmussen, 2002) is an accident analysis tool that is based on 

Rasmussen’s (1997) risk management framework. Essentially an Accimap provides a 

graphical representation of the causal relationships between actors in an accident scenario. 

The investigator typically starts by graphically representing the actors on an Actor Map 

according to their hierarchical levels. Rasmussen (1997) originally proposed six levels (i.e. 

government, regulatory bodies, the organisation, management, physical processes and staff, 

and equipment and surroundings) although the number of levels and the names of the levels 

might vary depending on the requirements of the accident scenario. The actors are mapped 

onto the hierarchy and then links are made between the actors to show their structural 

relationships. The next step is to map the errors and show the links between the errors and the 

various actors (i.e. Info Maps). The errors are usually first mapped at the level of physical 

processes and the staff directly involved in the accident. After this, the analyst tries to 

establish the causal relationships between the actors and processes that contributed to the 

accident (i.e. Conflict Maps). The analyst must be as exhaustive as possible with regards to 

all the errors even if they are not apparently linked to the accident. Generic Accimaps can 

also be created to look at groups of accidents in order to identify common underlying 

relationships. 

 

Accimaps have been applied in a wide variety of contexts. Waterson et al. (2017) identified 

ten different accident domains in which Accimaps had been applied from 2000-2015: 

manufacturing; nuclear; aviation and aerospace, emergency response services; civil 

engineering; oil and gas; public health; transport systems (especially rail and road systems); 

outdoor recreation; and policing and security. Of all these domains, the work on public health 

probably comes closest to the types of global problems that Moray (1995) was referring to. 

Woo and Vicente (2003) used the Accimap tool to understand the errors involved in two 

water-borne disease outbreaks. Cassano-Piche, Vicente, and Jamieson (2009) used the 

Accimap tool to understand the underlying causes of the bovine spongiform encephalopathy 

(BSE) outbreak in the UK in 1986. Nayak and Waterson (2016) used the Accimap tool to 

understand the systemic factors in two outbreaks of E. Coli in the UK, one in 1996 and 

another in 2005. Tabibzadeh and Meshkati (2015) used the Accimap tool to analyse the 

Deepwater Horizon oil spill and Tabibzadeh et al. (2017) used the Accimap tool to analyse 

the Aliso Canyon gas leak in 2015. While these studies investigated very specific incidents 

they were useful in uncovering the important contributory roles played by regulators and 



governments that have far broader applications. In addition, Tabibzadeh et al. (2017) 

emphasised the role of Accimap analyses in reducing the risks to public health and the more 

generally to the environment. The best example of a study that uses Accimap to examine the 

types of global issues envisaged in this paper is Nyman and Johansson’s (2015) work 

examining the flooding of a railway tunnel in Sweden as a result of climate-change. Nyman 

and Johansson (2015) praise the Accimap tool for being able to handle decision-making that 

is distant in time and location which are important considerations for addressing global 

problems. 

 

Accimap has primarily been used to analyse the systemic causative factors of past accident 

and incident events. Nayak and Waterson (2016) warn against the “postdictive” (as opposed 

to predictive) properties of Accimap analyses which may lead to a hindsight bias. To date the 

Accimap tool has only been used to examine the static consequences of single events (or in 

the case of a generic Accimap, an aggregation of single events) rather than the dynamic 

nature of systems. Nayak and Waterson (2016) also warn that despite the claim that 

Accimaps look at dynamic systems, they actually encourage the analyst to consider a linear 

view of systemic processes rather than a non-linear, adaptive approach. Further, Waterson et 

al.’s (2017) and Filho et al.’s (2019) in-depth analysis of Accimaps and the STAMP 

methodology suggests that there are reliability and validity issues with many of the published 

Accimap analyses. On a more positive note, Nayak and Waterson (2016) argue that 

Accimaps encourage HFE to look at broader social and political processes that impact on 

accident outcomes.  

 

3.2 Systems-Theoretic Accident Model and Processes (STAMP) 

The Systems-Theoretic Accident Model and Processes (STAMP) tool is another accident 

analysis tool built on Rasmussen’s (1997) risk management framework (Leveson, 2004). 

Leveson (2004) essentially sees accidents as a system control problem and design 

interventions should concentrate on providing system constraints to ensure safe operation. 

Similarly to an Accimap, analysis includes mapping agents onto a hierarchical control 

structure (essentially Rasmussen’s (1997) risk management framework, although with a 

concentration on the higher levels in the hierarchy). What differs from an Accimap though is 

that rather than only linking the actors/agents through structural relationships they are also 

annotated according to the constraints that they place on the system. Leveson (2004) provided 

a generic control structure model to guide the analyst. Similarly to Accimaps the relationships 



between hierarchical levels are characterised as downward control (control constraints) and 

upward information sharing (information constraints). The next step is to classify each 

element in the control structure according to Leveson’s (2004) classification of flawed 

control (e.g. inadequate enforcement of safety controls, communication flaw, or incomplete 

process model). 

 

The STAMP tool has also been used in a wide variety of contexts, although almost always to 

analyse accidents or safety incidents. Application areas have included air traffic control 

(Fleming et al., 2013), railway accidents (Ouyang et al., 2010), and military accidents (Rong 

& Tian, 2015). The STAMP tool has been particularly useful in specifying the role of higher-

level agents such as governments and regulators in safety incidents. The study that most 

closely aligns to the types of global problems envisaged by this paper is Rosewater and 

Williams’ (2015) investigation of a lithium-ion energy storage system. The system 

investigated by Rosewater and Williams (2015) was relatively small, although it is fairly easy 

to see how this type of analysis might be scaled-up to larger energy grid systems. In general 

though STAMP has been characterised as difficult to use and the graphical outputs have been 

difficult to interpret (Underwood, Waterson, & Braithwaite, 2016). In addition, Salmon, 

Cornelissen, and Trotter (2012) have noted that STAMP cannot ostensibly take 

uncontrollable aspects of the external environment (e.g. weather) into account. 

 

STAMP has been used for predictive purposes both as a preventative tool (Lu et al., 2015) 

and as a predictive tool (Fleming & Leveson, 2016; Ishimatsu et al., 2014; Leveson, 2015; 

Rong & Tian, 2015). STAMP also specifically conceptualises systems as needing to be kept 

in dynamic equilibrium and not as static entities (Leveson, 2004). Despite the positive 

properties of STAMP, significant amounts of detailed (often expert) data are required to 

produce a meaningful understanding of the constraints. STAMP is also limited to accident or 

safety scenarios, rather than to a general understanding of normal operations. 

 

3.3 Cognitive Work Analysis (CWA) 

Cognitive Work Analysis (CWA) is a collection of analysis tools for complex sociotechnical 

systems to determine how work is actually done (descriptive) and how it could be done 

(formative). CWA is a set of five analysis phases that can be used relatively independently of 

one another (Vicente, 1999). The five phases of the CWA framework are: (1) work domain 

analysis (WDA); (2) control task analysis (ConTA); (3) strategies analysis (StrA); (4) social 



and organisation cooperation analysis (SOCA); and (5) worker competencies analysis. Each 

phase might be used for different purposes. In a WDA, Rasmussen’s (1985) abstraction 

hierarchy levels are used to develop a description of the work domain under consideration 

that is independent of a specific context (Stanton et al., 2013). The hierarchical levels are not 

based on the complexity of external physical features (as with the risk management 

framework) but rather on the functional complexity of the task based on a means-ends 

continuum (Rasmussen, 1985). Additionally, the interactions between different functional 

levels are not based on control and communication but on means-ends links. The WDA 

essentially defines the constraints of the system imposed by the cognitive limitations of the 

human operator. The WDA is the most frequently used phase of CWA. 

 

While the WDA is intended to be context-independent the ConTA phase specifically focuses 

on the primary or recurring tasks to represent the activities that must be performed to meet 

the requirements of the WDA. The ConTA is usually visually represented as contextual 

activity templates (Naikar, Moylan, & Pearce, 2006) that have work situations on one axis 

and work functions on the other axis. The contextual analysis templates can also be examined 

through a decision-making lens by using a decision ladder (Vicente, 1999). The StrA 

typically uses information flow maps to look at all the ways that each activity can be 

performed (drawing the activities from the ConTA). SOCA is used to identify the 

relationships between the human and non-human agents in a system and to determine how 

tasks might be appropriately distributed. According to Stanton et al. (2018), the first step in 

SOCA is to define all the agents and their roles. The second step is then to map the roles 

across the different tasks to determine redundancies and gaps for agents and their roles. This 

can be performed on a contextual analysis template to achieve a graphical representation 

called a SOCA-CAT or on the decision ladder to achieve a graphical representation called a 

SOCA-DL. The fifth phase of CWA is a worker competencies analysis. This uses 

Rasmussen’s skills, rules, and knowledge typology to identify the relevant cognitive abilities 

required for task performance. Worker competencies analyses are rarely used in CWA. 

 

CWA is not meant to be prescriptive with regards to design options. Instead, CWA intends to 

leverage the flexibility and adaptability of the humans in the system within the constraints of 

the entire system. CWA was initially developed to analyse work in nuclear power plants but 

has now been used in many other areas of application including interface design (Jenkins et 

al., 2010), military systems (Naikar et al., 2006), air traffic management (Lundberg et al., 



2018), rail and pedestrian systems (Read et al., 2016), healthcare (Jiancaro, Jamieson, & 

Mihailidis, 2014), urban planning (Stevens, Salmon, & Taylor, 2018), and power grid 

management (Hilliard, Tran, & Jamieson, 2018). Most of the CWAs have involved fairly 

contained sociotechnical systems of operation, but there are a few studies that demonstrate 

the potential to look at larger, more complex systems. Stevens et al. (2018) conducted a 

WDA as part of a needs analysis for an active urban transport infrastructure. The output of 

the WDA was a set of design parameters that extended beyond the original design purpose 

(i.e. the design of pedestrian pathways). However, Stevens et al. (2018) still needed to 

complete additional phases of the CWA to define the tasks and roles of the different agents in 

the system. Hilliard et al.’s (2018) study also consisted of a WDA, including abstraction 

hierarchies, examining energy grid operations. The WDA covered a fairly broad geographical 

area and also included aspects such as dispersed transmission lines and transmission stations, 

as well as the role of the weather in their system. Hilliard et al. (2018) argued that the 

analysis could be extended to larger more complex energy grid systems and to test out new 

forms of energy grid systems such as “smart” grids. Chauvin et al. (2015) actually applied 

CWA to look at designing “smart” grids. While the CWA produced many new design 

recommendations, Chauvin et al. (2015) focused on design recommendations for an 

ecological ‘smart’ meter interface rather than on geographically broader application areas.  

 

Allison and Stanton’s (2018) study on design recommendations for fuel-efficient driving 

using CWA has important implications for addressing one of the global problems; climate 

change. Allison and Stanton (2018) identified a range of different interface design, 

behaviours, legislation, and infrastructure design aspects that are important to support eco-

driving. Carden et al. (2017) also demonstrated how WDA could be used to evaluate the 

structural integrity of legislation. While the context was not specifically related to one of the 

global issues identified in this paper (their context was adventure sports legislation), their 

study does provide a broadened scope for CWA. Finally, Walker, Beevers, and Strathie 

(2018) used CWA to look at how civil infrastructure would stand up to extreme weather 

events. Using whole towns as example systems, Walker et al. (2018) used WDA to model the 

vulnerabilities from a 1 in 200 year flood event. Walker et al.’s (2018) work has clear and 

important links with supporting adaptation measures to the looming global problems 

identified in this paper. 

 



There are numerous examples of CWA phases being used as prospective tools to identify 

possible future designs (Chauvin et al., 2015; Naikar et al., 2006; Lundberg et al., 2018; Read 

et al., 2015; Stevens et al., 2018; Walker et al., 2018). WDA in particular, because it is 

context-independent, facilitates the development of graphical representations that can help 

the analyst understand the design implications for future broader systems, functions, and 

system interactions. As for attempts to incorporate dynamic processes into the models, 

Hilliard et al. (2018) made some initial attempts. They did, however, emphasise that further 

extensions to WDA would be required to represent the dynamic nature of many work 

situations. Naikar and Elix (2016) argue that CWA struggles to deal with the adaptations 

necessary in dynamic systems because CWA supports adaptation of the behaviours of actors 

but not necessarily the structure of work relationships. Instead, Naikar and Elix (2016) 

proposed an extension to CWA, called a Work Organization Possibilities (WOP) diagram, in 

order to support actors to integrate their behaviour adaptations with the organisational 

structural possibilities. However, a WOP diagram presupposes that the different possibilities 

for work organisation are already known and this constrains the types of adaptations which 

are possible. In the types of problems envisaged in this paper, the range of organisational 

possibilities and all the constraints on the various possibilities are not necessarily known. 

Further adaptations to WOP diagrams may therefore be necessary. 

 

4. Suitability for analysing global problems 

 

From the discussion in section 3 the complex systems requirements are mapped against the 

qualities of the systems analysis tools in Table 3. Table 3 compares the ability of each of the 

HFE systems’ analysis tools to incorporate the complex systems-thinking qualities and 

therefore to be good candidate analysis tools for understanding global systems problems. It is 

evident that all tools demonstrate at least some potential (especially goals 1-5 in Table 2) to 

be used for understanding and intervening to address global challenges. Accimap is probably 

the easiest tool to use, but has limitations when it comes to investigating adaptive systems 

and testing predictive solutions. In addition, Nayak and Waterson (2016) have expressed 

concerns with the reliability and validity of Accimaps. To be fair though, the reliability and 

validity of STAMP and CWA have not been systematically assessed. 

 

[insert Table 3 about here] 

 



With the exception of CWA, Accimap and STAMP did not deal adequately with the fact that 

complex systems are not static, but dynamic. Ottino (2004) noted that engineered systems 

assume a static end-design, but that complex systems require adaptation and self-organisation 

as essential qualities. Dekker et al. (2013) went further to suggest that the dominant scientific 

paradigm of HFE was unsuited to deal with complex systems because the emphasis has been 

on studying closed systems. CWA has the potential to deal with dynamic action through 

WOP diagrams, but current complex system’s tools in HFE clearly require further extension 

in this regard. None of the tools reviewed incorporated emergence. It may very well be the 

case that it is a principled decision not to include emergence in systems analysis tools, 

especially as it is virtually impossible to design for eventualities that cannot be foreseen. 

However, emergence is a key attribute of complex systems and we would argue that systems 

that do not account for emergence will become brittle and thereby unsustainable. 

 

None of the tools describe the relationships between different hierarchical system levels 

specifically in terms of Gunderson and Holling’s (2002) “revolt” and “remember” processes. 

STAMP come closest by describing the “downward” relationships as primarily being controls 

(through laws, regulations, rules, and instructions). The abstraction decomposition space in 

CWA also provides a form of nested hierarchical systems (although for a single system) but 

once again the relationships between the “levels” are considered only in a top-down “control” 

manner. None of the tools characterise “upward” relationships as revolt processes. This may 

be because the tools emerged from a human control perspective which attempts to resolve 

control issues rather than embrace system perturbations.  

 

With these limitations and potentials in mind, next we give an example of how we might use 

two of the systems analysis tools to highlight different aspects of complex systems thinking 

tools. We chose two specific methods (Accimap and STAMP) rather than others (e.g. CWA 

or FRAM – Hollnagel, 2012) largely because of space and brevity considerations within the 

paper. We also note that Accimap and STAMP also represent some of the most popular and 

common ways of using systems analysis tools to analyse complex, sociotechnical systems 

and are often used for comparative purposes (e.g. Salmon et al., 2012; Underwood & 

Waterson, 2014). 

 

5. Applying systems-based HFE tools to global problems: a food integrity example 

 



5.1 Background (Elliott, 2014) 

The 2013 horsemeat scandal was a major food fraud incident that was felt across multiple 

transnational boundaries. Foods advertised as containing beef were found to contain 

improperly declared horsemeat – 100% horsemeat in some cases (BBC News, 2013). A few 

products also contained other undeclared meats such as pork. These foods were distributed all 

across the Irish and British food supply chains, and had links to 13 other European countries. 

Although not a health issue, this incident highlighted the lack of traceability in the food 

supply chain, and raised concerns about the possibility of undetected harmful (e.g. 

performance enhancing drugs used in racehorses) or religiously-sensitive (e.g. pig products) 

ingredients in imported foods. This led to public outrage and panic in the United Kingdom 

(UK) as a vast majority of the British and Irish consumers do not eat horsemeat. The impact 

of this incident prompted an international rethink of the robustness of the global food system 

– one such rethinking strategy led to the Elliott Review (2014). 

 

Food fraud costs the United Kingdom (UK) food industry nearly £12 billion annually. 

Routine assessment of product integrity is often limited to visual and olfactory senses and use 

of artefacts, such as verbal reminders, or verbal and written guidance, leading to weakened 

governance and audits of non-compliant behaviours across the supply chain. Financial 

constraints and meeting evolving consumer demand means food fraud-orientated “problem 

ownership” lies with multiple actors. The influence of psychological, societal, and 

organisational factors on the motivation to commit food fraud is poorly understood. Each 

year around 27% of UK consumers experience at least one issue related to food fraud such as 

swapped ingredients in food and/or misleading labelling (Woods, 2017). Food and drink is a 

£200 billion industry in the UK and due to the complexity of its operational structure (Nayak 

& Waterson, 2016; Woods, 2017), it is vulnerable to a wide range of fraudulent activities. 

Indeed, only 38% of UK consumers have confidence in the British food supply chain, 12% 

have confidence in the European food chain, and 7% have confidence in the global food 

chain (Elliott, 2014; Woods, 2017). 

 

The current approach of coercing food businesses to comply with national food safety 

standards (e.g. through regulations) fails to motivate problem ownership and thus fails to 

address food fraud problems. Recommendations made by the Elliott Review (2014) highlight 

the importance of going beyond regulatory measures to develop effective barriers, both 

nationally and internationally, and deter fraudulent behaviours without burdening food 



businesses with additional regulations and policies (Elliott, 2014). However, a systems 

approach is needed to establish the structure and functioning of the food system as 

recommended in the Elliott Report (2014), to help identify, develop, and improve novel 

methods to deter fraudulent activities. 

 

5.2 Accimap and STAMP analyses 

5.2.2 Accimap analysis 

The Accimap resulting from the analysis of the Elliot (2014) Review is presented in Figure 1. 

The events leading up to the Elliott (2014) Review such as the large-scale public outrage and 

loss of market share arising from the lack of traceability due to the complexity of the food 

supply chain, acted as reference points for the analysis at the consumer level as well as the 

workplace, organisational, and government levels of the food system. Although the scandal 

was labelled as a horsemeat scandal, the systems analysis carried out reinforced the 

conclusion from the Elliott (2014) Review that an accumulation of similar enabling factors 

led to many other food fraud incidents in the UK and Europe. The ‘enabling factors’ are 

factors that make it possible (or easier) for individuals or teams to change their behaviours or 

their environment (Porter, 2016). The enabling factors included in Figure 1 highlight the 

failures across various systemic levels throughout the European and British food systems. 

The enabling factors also helped analyse interactions between these factors across and within 

systemic levels, and identified emergent behaviours throughout the whole system. 

 

The focus of the Accimap analysis was on two components: (1) underestimation of the risks 

and impact of food fraud and (2) lack of problem ownership by food businesses and the 

government. The Accimap also establishes that food businesses alone were not to blame for 

food fraud incidents – an absence of an adequate number of deterrents (e.g. disagreements 

between local councils and the Food Standards Agency and undermining risks associated 

with food fraud) also acted as enabling factors for food businesses to commit fraudulent 

activities. Two enabling factors were identified at the national government level – this level 

involved ministerial positions and was responsible for formulating regulations with the 

European Union. The non-ministerial government department consisted of stakeholders who 

were responsible for adapting EU regulations into UK specific laws – six enabling factors 

were identified at this level. The next level (local councils) consisted of stakeholders 

responsible for carrying out inspections and enforcement actions within local counties across 



the UK – three enabling factors were identified at this level. The subsequent two levels (i.e. 

management and shop-floor employees) consisted of stakeholders from food businesses – 

eleven and two enabling factors were identified respectively in these levels. The consumer 

level highlights five consumer-related enabling factors that lead to food fraud incidents. 

 

Lack of problem ownership is a key theme of the factors identified at the national 

government level – factors such ineffective cooperation with the European commission and 

an uncertain political climate highlight ministers’ prioritisation of personal and political 

interests over public interest. A plausible cause for this is an underestimation of the risks of 

food fraud by stakeholders who do not understand the functioning of the food system. The 

key theme deduced from the identified enabling factors in the non-ministerial government 

department level is prioritising food safety over food fraud, and treating the two as mutually 

independent events. Unpreparedness towards food fraud and conflicting priorities at the 

ministerial level (e.g. prioritisation of exports) contributed to treating food safety and food 

fraud as events independent of each other. This had an impact on the local councils. The 

involvement of multiple stakeholders with different priorities higher up the hierarchical level 

in the UK food system led to disagreements and confusion within local councils. The heavy 

workload within local councils also led to a lack of a detailed understanding of the food 

supply chain due to a lack of time. All these factors contributed to prioritising food safety-

related enforcement over identifying food fraud. The complexity of the food system and the 

involvement of multiple stakeholders with conflicting priorities played a key role in enabling 

fraudulent activities within food businesses. 

 

Prioritisation of profit generation and a short-term sales focus played a key role in food 

businesses committing food fraud-related activities. Although none of the food businesses 

that committed food fraud intended to harm their consumers, food fraud evolves into food 

crime when rogue groups knowingly carry out organised activities to deceive those 

purchasing their food products (Elliott, 2014). Factors such as mislabelling, threatening 

management and shop floor employees, providing incentives for committing illegal acts, and 

establishing a culture of fear within the business highlight the extent of organised illegal 

activities carried out by food businesses. Advertising extensively, with the intention to 

overwhelm customers with information, was also identified as an enabling factor that 

facilitated food fraud through the intentional deception of consumers – for example, 

unnecessary visual information such as bold text advertising of what the product looks like 



(e.g., ‘the fresh look’ of a product) and olfactory information such as bold text advertising of 

what the product smells like (e.g., ‘smells like childhood’). Enabling factors identified at the 

“management” and “shop floor employees” levels in Figure 1 highlight the emergence of 

fraudulent behaviours and activities within organisations due to the presence of enabling 

factors higher up the hierarchical chain. Emergent behaviour in this context is defined as 

fraudulent behaviour(s) practiced by food businesses and its stakeholders, evolving from the 

relationships (interactions) between the enabling factors located throughout the food system. 

This implies that emergent behaviour cannot be predicted by analysing individual 

components of the food system, and can only be managed, predicted, or controlled by 

understanding all the components and their relationships. 

 

A critical finding of the Accimap analysis is the unintended role that consumers also play in 

encouraging fraudulent activities within food businesses. Consumers often tend to demand 

high quality, variety, and low-cost or affordable food – food businesses’ desire to meet these 

contradicting demands in order to maximise sales, coupled with the presence of other 

enabling factors (mentioned above) promotes illegal activities leading to food fraud and other 

food crimes. The analysis also highlights consumers’ hesitance to report food fraud incidents. 

Thus, food fraud is both under-reported and goes undetected. 

 

[Figure 1 about here] 

 

5.2.3 STAMP method analysis 

Figure 2 displays a STAMP analysis (adapted from Nayak & Waterson, 2019) of the UK 

food system – it identifies the controls and constraints in the higher levels of control within 

the UK food system to help prevent food fraud and ensure food safety. A STAMP analysis 

helps in understanding how and why unsafe decisions were made (Leveson, 2004) within a 

complex system. Although the model in Nayak and Waterson (2019) was analysed from a 

food safety perspective, the aim of the STAMP analysis was to develop an understanding of 

the UK food system. An adapted version of the model has been utilised in this paper due to 

the relevance of the food system under analysis. As seen in Figure 2, there are two 

hierarchical control structures: (1) food system development (i.e. processes and stakeholders 

involved in the food manufacturing/growing phase); and (2) the food system operation (i.e. 

processes and stakeholders involved in the sales, distribution, and inspection of food and food 

premises). The STAMP analysis identifies and addresses potential and existing flaws in the 



control and feedback structures of food systems, and provides regulators, policy-makers and 

reformers with the ability to design a well-structured food system with adequate controls and 

constraints in place to prevent food fraud and food crime. 

 

The STAMP analysis emphasises the control constraints provided by the higher levels in the 

hierarchy to the lower levels in the system (e.g. developing legislation and codes of practice, 

providing guidance and advice, conducting inspections and audits, administering penalties, 

developing company policies, and providing training and supervision) and the higher levels 

receiving feedback from the lower levels in the system (e.g. complaints and suggestions, 

incidents and near-misses, public and employee opinions, and production data). However, 

without detailed data on the thinking and reasoning behind behavioural decision-making it is 

difficult to determine where constraints and feedback has failed using Leveson’s (2004) 

classification of flawed control. 

 

[Figure 2 about here] 

 

An additional strength of the STAMP analysis is that it provides a detailed account of the 

various stakeholder groups and subsystems involved in the UK food system, their interactions 

and place within the wider international context. The STAMP analysis also facilitates cross-

level or ‘mesoergonomic’ interactions to be made explicit. Karsh et al. (2014) defined 

mesoergonomics as “an open systems approach to ergonomic theory and research whereby 

the relationship between variables in at least two different levels or echelons is studied, where 

the dependent variables are human factors and ergonomic constructs” (p. 46). In terms of 

Figure 2, for example, the STAMP analysis highlights links between stakeholders in upper 

(‘blunt end’) levels of the food system (e.g. Government agencies such as the UK Standards 

Agency) and lower (‘sharp end’) levels (e.g. in this case front-line employees and local 

farmers). 

 

5.2.4 Discussion – issues from the two systems analysis techniques 

Complex food systems can be defined as systems that comprise of a number of strongly 

interacting entities, processes, or agents, the understanding of which requires the 

development, or the use of new scientific tools, nonlinear models, out of equilibrium 

descriptions, and computer simulations (Rocha, 1999). Although some food systems might 

appear to be simple (pseudo-simple), it is important to remember that “complexity is not 



located at a specific, identifiable site in a system (Cilliers, 1998, p. 2) – thus, in reality, all 

food systems are complex systems as they contain a large number of inter-related elements 

(Cilliers, 1998; Nayak & Waterson, 2016) which interact in a complex manner to lead to 

increased possibilities of outcomes than can be actualised (Luhmann, 1985). Pennington 

(2003) argues for the need to adopt a systems approach (and systems thinking) to ensure food 

safety. He uses the concept of a systems based approach to compare food poisoning 

outbreaks to the Chernobyl, Piper Alpha, and railway accidents in Ireland and Britain (Nayak 

& Waterson, 2016).  

 

Thus, since the food system is tightly interwoven globally and the pace of change is 

increasing continuously, it is important to be system-wise, and compare the two systems 

analysis techniques used in this section with the characteristics of complex systems. 

Following from Table 2 and Table 3 it is clear Accimap and STAMP do not normally capture 

complex systems thinking requirements such as the dynamic, adaptive, and self-organising 

aspects of these types of systems. While the analyses can easily identify hierarchies, the 

nestedness of the hierarchies is more obscure and the mapping of the different hierarchical 

levels also does not incorporate thinking about the openness to system change and any 

resistance to system change in smaller systems. The analyses outputs tend to capture the 

complex system “as if” it were a cross-section in time, even though temporal components are 

deeply embedded in the outputs. In addition, Table 4 highlights aspects of complex systems 

that each systems analysis technique covers, but does so in slightly different ways. 

 

[insert Table 4 about here] 

 

It is also evident that the UK food system in its present state is not particularly adaptive. This 

might explain the high number of food fraud incidents without a sustainable solution. Instead, 

there as a "blame-the-culprit" approach that does not help reduce food fraud incidents. The 

regulatory framework attempts to manage the risk through the development of more complex 

policies (this may be an example of a top-down “remember” process preventing the system 

from changing too much). In fact, one would be more likely to see adaptive “revolt” 

properties if the analysis included how perpetrators responded to policy development. 

However, the analysis necessarily followed the available data (i.e. the Elliott (2014) Review) 

which did not include these types of reactive/interactive components. Additionally, the 

analysis emphasizes unidirectional relationships rather than multidirectional relationships. 



For example, climate change would surely play a role not only in agricultural production, but 

also with factors such as delays/cancellations in transportation leading to food becoming 

unsafe for consumption. This would, in turn, have an impact on stakeholders’ attitudes and 

behaviour (e.g. looking for alternative/cheaper resources and substitute ingredients, or adding 

preservatives to food). Neither the Accimap nor the STAMP analysis highlights these 

multidirectional or emergent properties. 

 

Also not included in Table 4 is the fact that neither Accimap nor STAMP enabled predictive 

assumptions, captured dynamic, adaptive, or self-organising components of the system, or 

considered the pacing of system transitions. This points to new tools or representations being 

required to fully map these types of complex systems. 

 

6. Conclusions and ways forward 

Following Waterson et al. (2017; 2015), we would argue that what is needed is a re-mixing of 

systems analysis tools, taking parts from multiple tools both within and outside the HFE 

domain for a more complete understanding of complex adaptive systems. The Accimap and 

STAMP analysis in section 5 shows us how different tools enable us to uncover different 

aspects of the system functioning, but it also shows us that further tools are still required. 

None of the tools were able to address all of the aspects required of complex system’s 

thinking within a global context on their own. We would concur with Salmon et al. (2017) 

that there are no current HFE complex system tools that incorporate all the necessary system 

properties and in particular, the ability to dynamically track changes, although attempts are 

being made with CWA (Naikar & Elix, 2016). Recently Dallat, Salmon, and Goode (2018) 

developed a new tool called NET-HARMS for predicting risks rather than simply analysing 

risks. NET-HARMS is based on Hierarchical Task Analysis and many of the visual outputs 

have a similar properties to CWA and Accimap. This might assist with identifying emergence 

which is absent from the existing toolset. There are also complex systems models from 

outside the HFE literature that look at adaptive change in sociotechnical systems. For 

example, Clegg et al. (2017) developed a tool called PreMiSTS used to predict malfunctions 

in sociotechnical systems. PreMiSTS promises to be particularly useful in handling iterative 

design required by complex adaptive systems. 

 

Actors or agents in the system are most often characterised as human or technological 

artefacts (Stanton et al., 2013). This is inevitable since the systems analysis tools have been 



developed to examine sociotechnical systems. However, as shown in section 3 it is also 

possible to define other ecological artefacts such as the weather (Hilliard et al., 2018; Walker 

et al., 2018). For addressing global problems this will need to be taken further to define other 

types of non-human ecological artefacts such as plants and animals, ecological patches, 

ecosystems, biomes, and the biosphere (depending on the boundary of the analysis) that each 

influence and are influenced by the sociotechnical system/s. 

 

A further point of extension is to carefully consider the relationships between the nested 

hierarchical levels. Existing HFE systems analysis tools tend to describe the relationships as 

either controlling or as simple one-way or two-way communication. However, complex 

systems thinking from a global sustainability perspective provides a far more nuanced 

understanding of the hierarchical relationships, involving clearly defined roles for the 

different relative placements of elements within the nested hierarchy (of systems). From a 

global sustainability perspective, these relationships are characterised as revolt and remember 

processes which attempt to influence specific outcomes. Further work is required to firstly 

identify whether such relationships exist in eco-sociotechnical systems and secondly, if they 

do exist, to understand how they might be influenced through design. Thatcher and Yeow (in 

press) have begun the exercise of mapping the revolt and remember processes onto design 

intervention possibilities. For example, they have suggested that bottom-up interventions 

would be easier to implement (because they involve simpler, less complex systems) but one 

may need many interventions or multiple iterations before changes are seen in the larger, 

more complex systems. Similarly, top-down interventions would be more difficult and slower 

to implement but could have cascading effects to many smaller, less complex systems. 

 

System adaptation and self-organisation is a characteristic of all complex systems, yet 

existing HFE system analysis tools fail to take these characteristics into account. System 

analysis tools that enable design for system resilience are now required. However, resilience 

as it is currently defined within sociotechnical systems thinking has a different interpretation 

to resilience in ecological systems. Resilience in sociotechnical systems refers to the ability 

of the system to cope with perturbations and return to the same state. In ecological terms this 

is referred to as stability (Gunderson & Holling, 2002). Ecological system resilience refers to 

the persistence of relationships between system elements, although not necessarily with the 

same combinations or patterns (Gunderson & Holling, 2002). For global problems a more 

ecological interpretation of resilience is required. 



 

The types of complex systems that we have envisaged in this paper are extensive by 

traditional HFE standards and yet there are obvious ways in which HFE researchers and 

practitioners can help others understand these systems to identify points of intervention. 

However, the sizes of systems that include global challenges pose a potential limitless 

boundary problem (i.e. where does one draw the boundaries of the system analysis?). 

Thatcher and Yeow (2018) consider this limitless boundary problem and recommend 

Stakeholder Salience Theory and Network Theory as potential candidate theories to help 

resolve the limitless boundary problem while still identifying the relevant systems of 

influence. 

 

A final point, and an important one in terms of what might be a gap in our understanding of 

how complex global systems function, is that most current systems thinking tools in HFE 

provide a very static account of how systems function. Typically, large global catastrophes 

are the result of degradation of the system over significant periods of time (and arguably, 

there is also an indication of degradation over time in the complex systems currently studied 

in HFE). In the words of Dekker (2011) systems often “drift into failure” and the processes 

involved in system malfunction may take years, and in some cases decades, to manifest. 

Often the process of large-scale failure involves an ‘incubation’ period (Turner, 1978) where 

failure takes time to build and gain momentum. Likewise, global systems may ‘wax and 

wane’ in terms of the degree to which they learn about failure mechanisms and as a result, put 

in place compensatory measures. Current systems thinking tools need to address this 

temporal dimension and factor this into a more predictive, and in some case, proactive 

approach towards systems failure, relapse, and recovery (Grant et al., 2018). 
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Table 1. Complexity of inter-related systems showing human and environmental 

consequences of asymmetries. 

 

Problems Human consequences Environmental 

consequences 

Resources asymmetries: 

Water, food, land, sanitation, energy, 

housing, education, jobs, healthcare, 

cultural expression 

Poverty, hunger, disease, 

cultural subjugation and 

intolerance, exploitative 

labour practices 

Land degradation, 

drought, deforestation, 

water pollution, 

monocultures, genetically-

modified organisms 

Asymmetries in accumulation and 

distribution of waste: 

CO2, CO, O3 depletion, volatile organic 

compounds, heavy metals, plastics; e-

waste, nuclear waste 

Food security, health, disease 

spread, water security, 

sanitation security 

Global climate change, 

desertification, nitrogen 

eutrophication, oceanic 

and land dead zones, 

ocean garbage patches, 

species extinction 

Legislative asymmetries: 

Worker protections, technology transfer, 

labour-broking, operational relocation, 

work casualization, automisation, free 

speech protection 

Child labour, modern slave 

labour, unequal compensation 

for work, job losses, culturally 

and anthropometrically 

inappropriate technology, 

cultural subjugation, social 

conflict and war 

Land degradation, 

freshwater depletion, 

unequal global 

distribution of waste, 

deforestation, poaching 

 

  



Table 2. Criteria for assessing the suitability of systems analysis tools for addressing global 

challenges 

 

Requirement 

1 Human goals beyond accident prevention 

2 Applied to global challenges 

3 Non-human agents/actors included 

4 Hierarchical nestedness of systems 

5 Enables predictive assumptions 

6 Copes with dynamic, adaptive, self-organising systems thinking 

7 Embraces emergent properties 

8 Links between system elements (i.e. revolt and remember) 

9 Pacing of system transitions considered (e.g. more complex systems are slower to change) 

  



Table 3. Comparison of the main HFE systems’ analysis tools to address global challenges. 

 

 Accimap STAMP CWA 

Goal/s Mostly accident 

analysis 

Mostly accident 

analysis 

Identify system constraints; 

Team interaction; First-of-kind 

system evaluation 

1. Human goals beyond accident 

prevention 

Partially Partially Yes 

2. Applied to global challenges Limited Limited Yes 

3. Non-human agents/actors 

included 

Yes Yes Yes 

4. Hierarchical nestedness of 

systems 

Yes Yes Yes 

5. Enables predictive assumptions Not easily Yes Yes 

6. Copes with dynamic, adaptive, 

self-organising systems thinking 

No No Yes, but still requires extensions 

such as WOP. 

7. Embraces emergent properties No No No 

8. Links between system elements 

(i.e. revolt and remember) 

Control and 

communication 

Control (two-

way 

communication) 

Means-ends 

9. Pacing of system transitions No No No 

 

  



Table 4. Differences in the findings identified by Accimap and STAMP analyses 

Characteristic Accimap STAMP 
Purpose and human goals Not specified Production and distribution of 

food with integrity and safety for 
consumption. 

Hierarchical nestedness of 
systems levels 

Presence of systemic levels, each 
having a defined role to play in 
the efficient functioning of the 
food system. 

Presence of systemic levels in the 
food system, and stakeholders 
within each of these levels where 
each stakeholder has a role to play 
in the production and operational 
stages. 
Presence of defined controls and 
constraints to aid in the efficient 
functioning of the food system.

Links between system elements Does not identify specific types of 
communications and flow, 
however, it does provide the 
reader an outlook on whether 
there is positive or negative 
information flowing between and 
within systemic levels. The aim of 
this analysis was to highlight 
negative information flow leading 
to fraudulent behaviour in the 
food industry (e.g., prioritisation 
of enforcement → prioritisation of 
audits → incentives for illegal acts 
→ noncompliance → food fraud). 
The Accimap analysis also 
highlighted the impact of each 
subsystem on the other, and the 
resultant behaviours.

Identifies the types of 
communications, controls, and 
constraints of these 
communications, individual 
stakeholders involved in 
communicating information, and 
the responsibilities entrusted upon 
them to pass on communication 
and receive feedback. 

Emergence Identifies top-down as well as 
bottom-up interactions between 
various stakeholders of the food 
system. 
The Accimap also identified 
emergent patterns in behaviours as 
the Elliot Report reviewed a large 
number of food fraud and food 
crime incidents in the UK. 
Consumer demands also played a 
role in leading to fraudulent 
behaviours by various 
stakeholders of food businesses.

Feedback loops within the 
STAMP analysis helped establish 
the impact of feedback on 
stakeholders higher up the 
hierarchical chain in the food 
system. 
The STAMP analysis also helped 
identify top-down as well as 
bottom-up interactions between 
stakeholders. 

Possible interventions Although the Accimap analysis 
identified the negative adaptability 
of the food system, it failed to 
identify all the failed control 
mechanisms that led to the food 
fraud and food crime incidents. 

The STAMP analysis identified 
the controls and constraints that 
are supposed to be in place in an 
ideal scenario. This method helps 
the reader establish missing 
controls and constraints, and thus, 
helps policy makers and other key 
stakeholders redesign the food 
system to prevent further food 
fraud incidents. 

 



Figure 1. Accimap diagram of food fraud incidents in the UK. 

 

 

 



Figure 2. STAMP model of the control and feedback structure of the UK food system 
adapted from Nayak & Waterson (2019). 
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