
 

 

 

 

A Thesis Submitted for the Degree of Doctor of Philosophy at  

Harper Adams University 

 

Copyright and moral rights for this thesis and, where applicable, any accompanying 
data are retained by the author and/or other copyright owners. A copy can be 

downloaded for personal non-commercial research or study, without prior permission 
or charge. 

This thesis and the accompanying data cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder/s. The 

content of the thesis and accompanying research data (where applicable) must not be 
changed in any way or sold commercially in any format or medium without the formal 

permission of the copyright holder/s. 

When referring to this thesis and any accompanying data, full bibliographic details 
including the author, title, awarding institution and date of the thesis must be given. 

 



 

 
 

 
 
 

Student 
Mohammed Ahmed, BSc. (Hons), MSc. 

 
 
 
 
 

Title 
Free-living nematodes detection using next-generation 

sequencing technology 
 
 
 
 
 

A dissertation submitted in partial fulfilment of the 
requirements for the degree of: 

Doctor of Philosophy 
 
 
 
 
 

Date 
21st November 2018 

 



 

 
 

i 

Abstract 
The role of nematodes as biological indicators and as key players in nutrient cycling is 

well recognized. Others have been shown to cause immense losses in food production. 

Despite their importance, identification of nematodes has been hindered by difficulties in 

species identification using classical morphology. Alternative molecular-based methods 

including AFLP, PCR-RFLP and DNA barcoding used alone or in combination with the 

traditional methods can be time consuming when analysing multiple specimens in a 

sample. Metabarcoding provides the possibility to identify an array of individuals from 

many samples simultaneously. The challenge of this approach has been how to identify 

the most suitable DNA marker(s) as well as the lack of robust analysis pipeline for the 

sequence data.  

An evaluation of the performance of four candidate DNA markers (NF1-18Sr2b, SSUFO4-

SSUR22, D3Af-D3Br and JB3-JB5) on a mock community of nematodes showed NF1-

18Sr2b is most suitable in terms of coverage and availability of reference sequences. 

Assessment of the most common bioinformatic tools (QIIME, MOTHUR and USEARCH) 

showed USEARCH had the best clustering algorithm, was the fastest, had best 

operational taxonomic units (otus) to actual diversity ratio and ranked the best in user-

friendliness. In another mock community experiment, read numbers of taxa showed no 

correlation with their actual abundance in the community largely due to bias in 

amplification and copy numbers of the marker region.  

Analysis of samples collected from a tillage and traffic experiment using morphological 

approach showed strong inhibition of herbivores by deep tillage and zero traffic. 

Bacterivores in general were inhibited by traffic and not affected by tillage. Appraisal of the 

metabarcoding approach using samples from the same experiment showed at broader 

classification levels (trophic groups and functional guild), abundance biases associated 

with the mock community experiment were minimal, the broad implication being 

metabarcoding data may be useful for assessing quality soil based on the structure of its 

nematode community.  
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1 Literature Review 
1.1 Introduction 
The phylum Nematoda is a species-rich taxonomic group that has been reported in 

abundant numbers across a wide range of habitats (Cobb, 1914; Holterman et al., 2006), 

from aquatic marine and freshwater to terrestrial environments (van Megen et al., 2009). 

They represent one of the most dominant metazoans on the surface of the earth in terms 

of abundance and diversity (Groombridge, 1992; Wilson & Khakouli-Duarte, 2009), with 

densities of up to 108 individuals per square meter and species richness of up to 60 

morpho-species (species delineated based on morphology) per 75 cm3 of sediment 

(Lambshead, 2004) reported in marine environments. According to Bongers and Bongers 

(1998), approximately four out of every five metazoans are estimated to be nematodes. 

They have also been shown to exhibit a diverse range of feeding behaviour (Yeates et al., 

1993) and life history strategies (Bongers, 1990). In terms of feeding groups, there are 

bacterivores, fungivores, herbivores, omnivores and predators. Life strategies span from 

the small-bodied highly fecund r-strategists, such as the bacterivorous rhabditids to the 

large-bodied less fecund K-strategists, such as the omnivorous dorylaimids (Johnson, 

Ferris, & Ferris, 1974).  

Previous studies have shown that prevailing physical characteristics such as soil texture, 

climate, biogeography, as well as enrichment and disturbance events can be reflected 

through species composition of the local nematode community (Cobb, 1914; Yeates, 

1984; Tietjen, 1989; Neher, 2001). In other words, depending on the state of the 

environment- for example whether soil is stable or has undergone some recent 

perturbation, the soil nematode community is likely to differ from one point in time to 

another. The contribution of nematodes to nutrient cycling (Bardgett et al., 1999; Bongers 

& Ferris, 1999; Wardle et al., 2006) and maintaining a balance in the functioning of 

ecosystem (Baxter et al., 2013) are also well documented. As permanent community 

members (being unable to escape habitat disturbance), they serve as important biological 

indicators of sediment quality (Bongers & Ferris, 1999; Sochová, Hofman, & Holoubek, 

2006; Wilson & Khakouli-Duarte, 2009; Höss et al., 2011; Baxter et al., 2013).  

Nematode indices used to assess soil quality are based mostly on grouping, into 

nematodes feeding groups, reproductive strategies and general responses to physical 

and organic disturbances (Bongers, 1990; Bongers & Ferris, 1999). Classifications into 

such functional groups are often means of simply lumping together individuals considered 

to have similar influence on ecosystem functioning, and the validity of such grouping 

depends mainly on the underlying research objectives (Bongers & Bongers, 1998). 

Therefore, individuals within a group may not necessarily have close phylogenetic 

relationship. Although the family or genus level identification is often sufficiently 
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informative enough for understanding nematodes’ role in soil functioning and the effect 

they have on the ecosystem, species level identification can potentially unravel more 

information pertaining to such key ecological concepts as biodiversity and functional 

redundancy (Bongers & Bongers, 1998; Yeates, 2003). The drawback, however, is that 

their high abundance, minute size and conserved morphology (Decraemer & Hunt, 2006) 

often obstruct the rapid and accurate identification of their species. Consequently, this has 

severely affected the fraction of environmental samples analysed in nematode community 

studies by limiting the scale and resolution of many important ecological studies 

(Porazinska et al. 2010).  

In terms of the need for accurate identification of nematodes to species level, research 

has largely focused on plant-parasitic taxa, due mainly to the magnitude of direct 

economic losses they inflict on agriculture. They have been responsible for an estimated 

annual loss of £80 billion (McCarter, 2009). Their management in field crops has for a 

long time been dependent on the use of nematicides (Hague & Gowen, 1987) which are 

being gradually phased out following the realisation of the dangers that they pose to the 

environment (Akhtar & Malik, 2000). The EU some years ago made some very important 

modifications to its policy on the use of pesticides to make it more sustainable and to 

reduce the risk that chemical usage on agricultural fields pose to human health and the 

environment. This involved the re-evaluation (Regulation EC No 1107/2009 and 

Directive 2009/128/EC) of various synthetic pesticides leaving only a few nematicides 

available for use by growers (Ntalli & Menkissoglu-Spiroudi, 2011). This led to active 

search for alternative non-chemical options to replace the synthetic products (Kerry, 

2000). Examples of such methods include crop rotation which is a cultural approach of 

ensuring a host plant is followed by a non-host and planting of resistant cultivars. Effective 

implementation of such strategies and cropping systems requires a good understanding of 

the taxonomy and biology of the specific plant-parasitic nematode species or group being 

targeted (Powers, 2004). Host plant resistance genes are often effective against a specific 

race or species of plant-parasitic nematodes (Gururani et al., 2012). Therefore, knowing 

the targeted parasitic species or population can aid the selection of plant genotype to 

introduce into the field (Blok, 2005). 

The existence of character variation and physiological races within species are among the 

problems associated with, but not limited to the taxonomy of plant-parasitic nematodes 

(Allen & Sher, 1967). Such complications, among other factors, became the main 

catalysts for the search for alternative non-morphological approaches to identifying 

nematode species. Within the genus Meloidogyne, a taxon that has received by far more 

attention than any other group of plant-parasitic nematodes (Sasser, Carter, & Hartman, 

1984), techniques such as the differential host test (Sasser et al., 1984), scanning 
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electron microscopy (Eisenback & Hirschmann, 1981; Charchar & Eisenback, 2000; 

Eisenback & Hunt, 2009), biochemical approaches such as isozyme electrophoresis 

(Bergé & Dalmasso, 1975; Esbenshade & Triantaphyllou, 1985, 1990; Carneiro, Almeida, 

& Quénéhervé, 2000; Tastet et al., 2001) as well as molecular techniques (Harris, 

Sandall, & Powers, 1990; Hyman, 1990; Petersen & Vrain, 1996; Powers et al., 2005) 

have been used to complement light microscopic approach for identification. Each of the 

above-mentioned techniques have certain constraints that limit their adoption as quick, 

accurate and simple tool for nematode identification across the phylum. Molecular-based 

methods, however, have maintained their reputation for being fast, reliable and an easy 

diagnostic approach across many taxa within the phylum Nematoda (Zijlstra, 1997; Blok, 

2002, 2005; Powers, 2004).  

It is important to mention that most of the pioneering works on molecular-based nematode 

detection were developed on plant-parasitic nematodes. And as evidence of how  

important molecular data has become in recent times for nematode taxonomy, it is 

becoming increasingly customary that most taxonomic descriptions comprise both 

morphology and morphometric studies as well as molecular analysis of the taxon’s 

relatedness to other species (Handoo et al., 2004; Vovlas et al., 2011; Cantalapiedra-

Navarrete et al., 2013). Over the past two decades, there have been a number of 

published reviews on molecular methods of plant-parasitic nematode identification 

discussing in depth the different markers and DNA target regions used for discriminating 

species, their future prospects and limitations (Blok, 2002, 2005; Powers, 2004). High-

throughput species identification using next generation sequencing (NGS) technology has 

also been applied for large scale nematode community studies to enhance better 

understanding of their diversity (Fonseca et al., 2010; Porazinska et al., 2010b, 2012a; 

Treonis et al., 2018). This technique, known as metabarcoding has also been applied in 

the area of plant nematology as a means of analysing very large samples of important 

plant-parasitic nematode groups for improved understanding of their distribution and 

diversities (Eves-Van Den Akker et al., 2015). The current and subsequent chapters of 

this thesis will discuss some of the past and most current approaches to nematode 

identification and classification with special emphasis on the use of high throughput 

species identification for unlocking the potential of using nematode communities for 

evaluation of management strategies and assessments of ecosystem health.  

 

1.2 Classical taxonomy 
The need for diagnosticians with the skills for routine identification of taxa based on 

morphological differences is a problem well acknowledged across many areas of plant 

pathology, of which nematology is no exception (Blok, 2005). According to Coomans 
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(2002), morphology can still provide useful diagnostic characters, especially if we are able 

to overcome the limited resolution light microscopy provides. And despite all its limitations, 

morphology-based study when carried out diligently can be as good as any biochemical or 

molecular method used in identifying taxa (Mayr & Ashlock, 1991; De Ley, 2006; Agatha & 

Strüder-Kypke, 2007). However, what is lacking according to Abebe et al. (2011) is the 

technical and taxonomic expertise required to correctly utilize phenotypic characters and 

use this to effectively make a decision about the identity of an organism. To worsen the 

current situation, there has been a continuous decline in the number of taxonomists which 

according to Coomans (2002), may also be detrimental even to the quality of published 

taxonomic research, since fewer qualified referees review manuscripts.  

Prior to the introduction of molecular data, studies on phylogenetic relationships within 

nematology have been based on morphological characters. A notable challenge then to 

the use of morphological characters for achieving more natural classification was how to 

recognise homologs. That is not to say that such problems are not encountered with the 

use of molecular data (Abebe et al., 2011). And although it is evidently much easier to 

identify and quantify sequence evolution than morphological evolution (De Ley, 2000), 

DNA data when used alone may be subject to some amount of noise and artefact (Dorris, 

De Ley, & Blaxter, 1999). In view of this, there has been a proposal of a more holistic 

approach to describing biodiversity which involves the integration of as much data about 

the organism as possible. According to Dayrat (2005), it is better that morphological and 

molecular approaches are not seen as competing with each other but rather, used to 

complement one another. For example, (Sites Jr & Marshall, 2004), in their review of 

twelve delimitation methods, cautioned against adherence to the use of one method to 

singly delimit species, since all of the approaches can possibly fail at some point when 

used in isolation. This integrative approach has been successfully applied in some studies 

for examining species diversity (Boisselier-Dubayle & Gofas, 1999; Shaw & Allen, 2000; 

Williams, 2000; Drotz, Saura, & Nilsson, 2001; Marcussen, 2003; De Ley et al., 2005; 

Ferri et al., 2009) 

Integrative taxonomy is without a doubt an excellent approach to species delimitation, 

especially with the existence of several species concepts, and the fact that each of the 

species delineation approaches when used singly only constitutes one of the multiple 

aspects of life’s diversity (Dayrat, 2005). However, a key constraint to the widespread 

adoption of this method is the time and expertise involved. One of the major goals of 

modern taxonomy is to find identification methods which are fast, accurate, reliable, 

affordable and perhaps even capable of characterizing undescribed specimens (Powers, 

2004). In the identification of regulated pest species, for example, speed and accuracy are 

very important (Holterman et al., 2012; Kiewnick et al., 2014). Therefore, although reliable 

and probably more accurate than any of the individual approaches, integrative taxonomy 
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may lack the speed and simplicity which are equally important in certain situations. The 

best option therefore, remains to improve and optimize the process of collecting and 

analysing molecular data to make them singly powerful for species delineation. 

 

1.3 Biochemical methods for nematode identification 
Several biochemical and molecular approaches have been used for identification of 

nematodes. Genomic information at all levels have been utilized for identifying nematodes 

from DNA sequence, the structure of molecules, genetic mutations to the presence versus 

absence of genes (Subbotin & Moens, 2006). At the protein level, isozyme analysis 

(Esbenshade & Triantaphyllou, 1990; Payan & Dickson, 1990), two-dimensional sodium 

dodecyl sulphate polyacrylamide gel electrophoresis (2-D SDS-PAGE) (Ferris et al., 

1994), monoclonal or polyclonal antibodies-based serological techniques (Jones, Ambler, 

& Robinson, 1988; Schots et al., 1990) (Table 1.1) and matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) (Perera et al., 

2009) are the methods that have been utilized for distinguishing nematodes at species or 

sub-specific levels.  

The use of molecular data in the form of DNA has also been widely accepted for 

identification of taxa, largely because of its inherent ability to overcome most limitations 

associated with traditional morphology-based nematode identification. Most molecular 

diagnostic methods are PCR-based and rely on DNA sequence variations. The DNA 

regions often specifically targeted include the nuclear ribosomal DNA, satellite DNAs and 

various protein coding genes within the mitochondrial genome (Blok, 2005). 

Other approaches are based on random amplification of DNA sequences. Examples 

include the randomly amplified polymorphic DNA (RAPD) (Cenis, 1993; Castagnone-

Sereno, Vanlerberghe-Masutti, & Leroy, 1994), amplified fragment length polymorphism 

(AFLP) (Semblat et al., 1998; Marché et al., 2001), restriction fragment length 

polymorphism (RFLP) (Curran, McClure, & Webster, 1986; Carpenter et al., 1992), 

terminal restriction fragment length polymorphism (T-RFLP) (Donn et al., 2012) and 

sequence characterized amplified DNA regions (SCAR) (Zijlstra, 2000; Zijlstra, Donkers-

Venne, & Fargette, 2000; Carrasco-Ballesteros et al., 2007) (Table 1.2). These random 

DNA target-based markers have the advantage of having a higher multiplex ratio, a 

feature which is particularly useful when there is insufficient sequence divergence in the 

targeted DNA regions (Blok, 2005). However, being random means that they may lack 

reproducibility. Moreover, approaches such as AFLP can be complex and expensive. 
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Table 1.1. Commonly used protein-based techniques for distinguishing between species/population 
of nematodes, their advantages, disadvantages and applications 

Approach Principle Advantages Disadvantages  Applications 
Isozyme analysis Patterns of gel-

separated 
isoenzyme 
bands used to 
identify species 

1. Robust and 
easy to carry out. 
2. To date, offers 
an excellent 
means of 
identifying 
tropical root-knot 
nematode 
species. 
3. Extracts from 
a single 
sedentary female 
sufficient for 
reliable 
identification 

1. Dependent on 
a particular life-
stage of the 
nematode (young 
female). 
2. Being protein-
based subjects 
this method to 
influence of 
environmental 
conditions (e.g. 
type of host) 

Widely used to 
separate species 
of cyst and root-
knot nematodes 
(Esbenshade & 
Triantaphyllou, 
1990; Karssen et 
al., 1995) 

Two-dimensional 
polyacrylamide 
gel 
electrophoresis 

Soluble proteins 
separated on 
the basis of their 
charges and 
masses on a gel 

This method 
allows the 
separation of 
proteins with an 
even better 
resolution. 

Subject to 
environmental 
variations. 

Used to compare 
Heterodera 
avenae isolates 
(Ferris et al., 
1994) 

Antibody-based 
serological 
techniques 

Antibodies are 
raised against 
species of 
nematodes and 
used to detect 
them 

1. Can provide 
good specificity 
and sensitivity. 
2. Can reliably 
distinguish 
between the two 
species of potato 
cyst nematodes. 

Occasional cross-
reactivity can 
affect specificity. 
 

Monoclonal 
antibody used to 
test major 
Meloidogyne 
species (Ibrahim, 
Davies, & Perry, 
1996). 
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Table 1.2. Commonly used DNA-based techniques for distinguishing between species/population 
of nematodes, their advantages, disadvantages and applications 

Markers Principle Advantages Disadvantages Applications 
Restriction 
fragment length 
polymorphism 
(RFLP/PCR-
RFLP) 

Sequence 
polymorphism 
between species 
results in distinct 
cleaving sites for 
restriction 
enzymes, thus 
resulting in 
variable number 
of fragments with 
diverse sizes 

1. The technique 
is fairly 
reproducible 
2. Simple and 
inexpensive 

Requires prior 
knowledge of the 
sequence of DNA 
region for design 
of primers or 
probes. 

Using this 
technique, 
Carpenter et al. 
(1992) 
distinguished 
between three 
populations of a 
Meloidogyne 
arenaria race 
called race 2. 
Used by Oliveira 
et al. (2006) to 
separate species 
of Xiphinema 

Random 
amplification of 
polymorphic 
DNA (RAPD) 

 A short primer 
set is used which 
anneal to several 
sites on the DNA. 
If two of the 
annealed short 
primer happen to 
be close and 
opposite to each 
other, they will 
produce an 
amplicon. 
Difference in the 
gel fingerprints of 
amplicons 
separates species 
or populations. 

1. Sequence 
information of 
DNA region not 
a prerequisite. 
2. Simple and 
inexpensive 

Technique may 
lack 
reproducibility. 
 

Used to 
distinguish 
between species 
and populations 
of Meloidogyne 
from different 
origins. 
(Castagnone-
Sereno et al., 
1994). Used to 
separate three 
Bursaphelenchus 
spp. (Braasch, 
Burgermeister, & 
Pastrik, 1995) 

Amplified 
fragment length 
polymorphism 
(AFLP) 

This involves a 
series of PCR 
steps in which 
separate sets of 
primers are used 
to selectively 
amplify some 
subsets of 
products of each 
preceding PCR 
step. All selected 
fragments are run 
on a gel to 
product unique 
fingerprints. 

1. Requires no 
prior knowledge 
of the sequence 
of the DNA 
region. 
2. Highly 
reproducible. 

1. Complex 
technique to carry 
out. 
2. Expensive 

Used to typify the 
genetic variability 
within the 
tobacco cyst 
nematode (TCN) 
complex (Marché 
et al., 2001) 

Sequence 
Characterised 
Amplified Region 
(SCAR) 

A specific 
distinguishing 
marker from the 
fingerprint of a 
specific taxon or 
life stage of a 
species is isolated 
and amplified. 
This becomes a 
SCAR by which 
that taxon or life 
stage is identified.  

1. Provides a 
rapid means of 
screening 
individuals. 
2. Can be highly 
specific 

May be labour-
intensive. 
 

Successfully 
used for 
identifying 
species of root-
knot nematodes 
(Zijlstra et al., 
2000; Fourie, 
Zijlstra, & 
McDonald, 2001) 
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Table 1.2. Commonly used DNA-based techniques for distinguishing between species/population 
of nematodes, their advantages, disadvantages and applications. (Continued) 

Markers Principle Advantages Disadvantages Applications 
PCR and real-
time qPCR 

qPCR utilizes 
PCR to detect 
target species by 
using species-
specific primers. 

1. Highly robust, 
sensitive, 
specific and 
quantifiable 
2. Can be 
multiplexed to 
detect multiple 
targets 

Requires prior 
knowledge of the 
sequence of DNA 
region for design 
of primers or 
probes. 

Successfully 
used for 
identifying 
Xiphinema spp. 
(Hübschen et al., 
2004b,a) 

Terminal 
restriction 
fragment length 
polymorphism 
(T-RFLP) 

This involves the 
use of 
fluorescently 
labelled primers 
to generate 
amplicons usually 
from bulk sample 
DNA. Amplicons 
are fragmented 
and fingerprints 
from only the 
labelled terminal 
fragments are 
visualized. 

1. Because only 
terminal 
fragments are 
used, method is 
highly 
reproducible.  
2. Method has 
very high 
throughput. 
3. Semi-
quantitative. 

In complex 
communities, 
changes at the 
generic or species 
level may be 
masked by the 
method’s limited 
resolution. 

Successfully 
applied in field 
trial of the effect 
of tillage on 
nematode 
communities 
(Griffiths et al., 
2012) 
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1.3.1 DNA barcoding 
Molecular diagnostics of nematodes has over the years seen enormous progress. 

Advancements in technology, particularly in the areas of DNA amplification and 

sequencing, have been the main driving forces towards achieving this. They have made it 

possible to accumulate substantial amounts of genetic data with sufficient information on 

sequence divergence that can aid in reliable and easy identification of nematodes (Blok, 

2005). Data provided by molecular diagnostics have also enhanced our understanding of 

nematode systematics and biology in general, by demonstrating whether or not a targeted 

DNA region will be suitable for species identification (Holterman et al., 2009). According to  

Powers and Fleming (1998), molecular approaches have enabled the validation of most of 

the classically delineated nematode taxa while providing clarification in areas where the 

classical approach has failed. For example, molecular approaches may provide the only 

practical means of discriminating between cryptic species (valid species that are 

morphologically indistinguishable) (Powers, 2004). They are also fast, relatively simple, 

applicable to all nematode life stages, provide highly specific means of identifying taxa, 

(Powers, 2004) and most of all provide substantial number of differential characteristics in 

the form of sequence divergence (Blok, 2005). 

Like all DNA based identification methods, DNA barcoding was designed for situations 

where the morphology-based approach proved problematic. It is defined as the use of 

standardized DNA regions as markers for rapid and accurate species identification 

(Blaxter et al., 2005; Hebert & Gregory, 2005). The key distinguishing feature between 

DNA barcoding and other molecular diagnostic methods is the use of standardized 

markers in the former. Therefore, one of the aims of the barcoding consortium when it was 

established was to build taxonomic reference libraries with sequences of standardized 

markers from different organisms (Taberlet et al., 2012). With this amount of information 

available, a simple search of the sequences of such markers from unidentified organisms 

against these reference sequences can reveal the identities of these unidentified 

organisms. 

DNA barcoding has proven useful in understanding the degree of variation there is within 

certain species and how these variations can obscure identification. For example, the 

concept of cryptic species shows how morphology alone cannot be relied on for 

discriminating phenotypically identical but valid species. Studies have shown that there 

are several examples of cryptic species (e.g. Tobrilus gracilis (Ristau, Steinfartz, & 

Traunspurger, 2013) and Xiphinema krugi (Oliveira et al., 2006)) within the phylum 

Nematoda that were previously considered to be the same species (Chilton, Gasser, & 

Beveridge, 1995; Derycke et al., 2005; Oliveira et al., 2006; Fonseca, Derycke, & Moens, 

2008). Barcoding also provides a means of identifying rare species or specimens with 
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limited availability (Powers, 2004). 

DNA barcoding may also be the only option available for identifying an organism when the 

required life stage or specific sex for morphological identification is lacking or the 

morphology of the specimen being studied is badly distorted. And finally, on the control of 

pest movement within trade where speed and accuracy of species identification is critical, 

barcoding offers a quick and reliable means of detecting quarantine nematode species 

(Powers, 2004). 

Hebert et al. (2003) proposed the use of COI of the mitochondrial DNA as a molecular 

marker for DNA barcoding. As a result, COI has been widely used as standard barcode 

marker for metazoans (Ferri et al., 2009). Different markers have been proposed for other 

groups of cellular organisms. Markmann and Tautz (2005) used the nuclear rDNA to study 

the diversity of meiobenthos (small meiofauna that live in marine and freshwater 

sediments).  

With current advancements in sequencing technology resulting in increasingly wide usage 

of next generation sequencing, a form of barcoding which has recently gained much 

popularity is DNA metabarcoding. Taberlet et al. (2012) defined metabarcoding as the 

automated identification of several species from a single bulk sample containing multiples 

of different taxa. Using this approach, it is possible to carry out high throughput 

identification of several species in a parallel fashion. DNA metabarcoding typically 

involves the analysis bulk DNA derived from environmental samples (Taberlet et al., 

2012). 

Applying the environmental metabarcoding approach, Fonseca et al. (2010) used the 

nuclear rDNA to study marine metazoan biodiversity. In plants, on the other hand, the 

preferred barcode markers are ones found within the chloroplast genome, and 

identification often entails the use of combination of two or more regions of this genome 

(Lahaye et al., 2008; Hollingsworth et al., 2009) or with the ITS region of the nuclear 

ribosomal RNA gene (Li et al., 2011; Tripathi et al., 2013). The nuclear small subunit 

ribosomal DNA has also been successfully used as marker for studies involving 

nematodes (Floyd et al., 2002; Porazinska et al. 2010a). 

The rDNA (18S and 28S) are preferred over the mitochondrial COI gene for nematological 

studies due to the availability of more conserved regions for universal primer design 

(Floyd et al., 2002; Carvalho et al., 2010). Moreover, the abundance of sequences of 

these two genes from described taxa in public databases make matching sequences for 

identification an easier job than when using COI. In terms of resolution, however, COI is 

capable of discriminating between species more than either of the rDNA genes (Derycke 

et al., 2010). A combination of the 18S and 28S genes has been shown to be able to 
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significantly improve the resolution, thereby achieving better detection levels (Porazinska 

et al., 2009).  

A typical metabarcoding approach proceeds as follows (i) extracting bulk DNA from the 

organisms or directly from a sediment or soil (ii) amplifying a selected DNA marker region 

using a set of universal primers (iii) sequencing the amplicons all in parallel via a next 

generation sequencing platform (iv) clustering of sequences into operational taxonomic 

units (otus) using a certain similarity cut-off percentage and (v) matching each otu against 

sequences of identified organisms in a reference database (Valentini, Pompanon, & 

Taberlet, 2009). Metabarcoding like standard barcoding is based on the assumption that 

with appropriate barcode marker(s), each operational taxonomic unit can be assigned to a 

described species through its DNA sequence (Orgiazzi et al., 2015) or identified as 

unknown if not yet described to assist with the discovery of unknown biodiversity. 

Almost all DNA metabarcoding applications in nematology have mainly been based on the 

analysis of bulk samples of entire organisms already isolated from the containing 

substrates such as soil, water, plant material etc. (Creer et al., 2010; Porazinska et al., 

2010c; Bik et al., 2012b). Beyond multispecies identification from bulk samples of entire 

extracted organisms, metabarcoding also may comprise the use of total and typically 

degraded DNA extracted directly from environmental samples without prior isolation of 

organisms (Taberlet et al., 2012). This approach, if successfully applied in nematology, 

could help overcome the inconsistencies and poor recovery rates associated with various 

nematode extraction methods (see, den Nijs and van den Berg 2013). Sapkota and 

Nicolaisen (2015) also tested and developed new amplification approach to enable high 

throughput analysing of soil samples by directly extracting the DNA without a nematode 

extraction step. The authors reported very good coverage of the nematode diversity within 

the tested soils. However, detailed assessment of the efficiency of DNA recovery from the 

soil is generally lacking. Also, such a method will usually only allow for analysis of soil 

samples much smaller in volume than recommended for optimum representation of the 

nematodes community structure (Wiesel et al., 2015). Moreover, since most meiofaunal 

organisms are often found in substrates with volumes profoundly larger than the total 

biomass of the organisms themselves, it becomes eminent that they are separated first 

before DNA can successfully be extracted (Creer et al., 2010). Nonetheless, with sufficient 

testing and validation, this approach can be immensely beneficial in the long run.   

 

1.3.1.1  Limitations of high throughput DNA barcoding 
There are a number of challenges associated with DNA metabarcoding analysis of 

environmental DNA. The most notable of these is the identification of a suitable marker to 

provide the required taxonomic coverage and species resolution. This problem is not 
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unique to only metabarcoding but associated with standard barcoding as well. As 

mentioned in earlier paragraphs, the 18S rDNA has been the most commonly used 

marker in nematode barcoding due to the availability of extensive database resources and 

the possibility of using conserved regions for designing versatile primers. The latter are 

continuously being improved to allow coverage of newly discovered taxa (Sapkota & 

Nicolaisen, 2015). In contrast, it has been shown to have limited taxonomic resolution 

among certain taxa within the phylum Nematoda (Creer et al., 2010). Nonetheless SSU 

rDNA region is still the marker of choice for DNA metabarcoding of environmental 

samples where wider coverage remains essential and species level identification not 

strictly important.  

Another issue with DNA metabarcoding is its reliance on PCR (Taberlet et al., 2012). 

Significant amount of errors has been shown to accrue during amplification (Haas et al., 

2011; Porazinska et al., 2012b). These errors often lead to misinterpretation of diversity 

within samples, mainly due to the formation of chimeras (Huber, Faulkner, & Hugenholtz, 

2004; Edgar et al., 2011). While most of these errors have been attributed to technical 

factors such as PCR and sequencing errors, inappropriate protocols such as incorrect 

annealing temperatures and cycle numbers as well as human errors can contribute to the 

formation sequence artefacts.  

According to Porazinska et al. (2012b), up to 14% of raw sequence data can be made up 

of chimeras and in clustered otu datasets, they can constitute up to 40% of dataset. 

Considering how rampant they may be in sequence dataset, there is always the risk of 

such hybrid sequences being classified as new taxa or unknown to science. Stringent 

approaches to removing them from sequence data may sometimes be necessary during 

data analysis. Several bioinformatic tools designed to identify and discard such hybrid 

sequences from the reads generated from high throughput sequencing platforms are 

available (Beccuti et al., 2013). For biodiversity studies, the most commonly used ones 

are Bellerophon (Huber et al., 2004), ChimeraSlayer (Haas et al., 2011), Perseus (Quince 

et al., 2011) and uchime (Edgar et al., 2011). Persues and uchime both operate on the 

assumption that chimeric sequences should be less frequent than the parental sequences 

(Bik et al., 2012a). In other words, the assumption is that chimeras are less abundant than 

their parents because they have undergone fewer cycles of amplification compared to 

their parents. Another method of chimera picking which is incorporated within the QIIME 

analysis pipeline, is the blast fragment method which is based on the BLAST taxonomic-

assignment (Altschul et al., 1990).  

One other constraint to DNA barcode-based identification is the need for a huge 

repository of sequences of characterized species. This data generation process is 

arguably the most important step, as the success of any future identification will depend 
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on the accuracy of sequence information in the database. Without any sequence from 

described taxa to match the obtained sequences with, they may convey limited biological 

or taxonomic meaning to the investigator. This need for existing sequence information for 

specific applications has been the main hindrance to many efforts to widen the choices of 

potential barcode markers, since that would mean channelling a substantial amount of 

effort into building databases with sequence information from as many characterized 

species as possible. It also explains why almost all metabarcoding studies involving 

nematodes tend to use only the 18S rDNA as barcode (Besansky, Severson, & Ferdig, 

2003; Porazinska et al., 2009; Creer et al., 2010; Bik et al., 2012b). 

 

1.4 Next generation sequencing technology 
In spite of the immense improvements made to the capillary electrophoresis sequencing 

method, cost of sequencing, time and labour needed were still too high for the growing 

demands for DNA sequence information (Metzker, 2005). The introduction of the various 

next generation sequencing (NGS) platforms offered alternative approaches that were 

cheaper and faster than the traditional capillary sequencing method. (Zhou et al., 2013). 

The run time for these sequencers can range from just minutes to weeks (Glenn, 2011). 

There are currently a number of platforms available, all based on some common basic 

principles, such as their streamlined library preparation steps, and the simultaneity of 

sequencing and detection processes. They each employ complex interactions of 

enzymology, chemistry, high-resolution optics, hardware, and software engineering 

(Mardis, 2008).  

The following are some of the next generation sequencing platforms that surfaced into the 

market some years ago: The Roche 454 genome sequencer, the Illumina Solexa 

technology, the SMRT sequencing technology by Pacific Biosciences, the Ion Torrent and 

the ABI SOLiD platform. Other platforms included the Polonator and the HeliScope single 

molecule sequencer technology. Both the Polonator and the HeliScope are single 

molecule (shotgun) sequencing platforms; hence, no amplification step is needed. These 

have the advantage of eliminating biodiversity inflation or artefacts often associated with 

PCR-based sequencing methods. The absence of PCR in their sequencing pipelines also 

means abundant information of taxa in samples, which are often obscured by 

amplification, can be revealed (Zhou et al., 2013). There have been several review articles 

that have covered in detail how each of these platforms operate including the chemistry 

and the instrumentations involved (Metzker, 2005; Mardis, 2008, 2013). And more 

recently, to mark the ten years of NGS and 40 years of DNA sequencing, respectively, 

Goodwin et al. (2016) and Shendure et al. (2017) reviewed the different approaches used 

in NGS and how these technologies are impacting on genetic research. The current 
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review will, therefore, only touch on a few basics and key features of these platforms. 

 

1.4.1.1 NGS Platforms 
The Roche 454 pyrosequencer was the first next generation sequencing platform to 

become commercially available. It was introduced into the market in 2004 (Mardis, 2008). 

The platform is based on the pyrosequencing approach which was first described by 

(Hyman, 1988) (Figure 1.1). The main advantage to using this platform is the relatively 

long read lengths of the sequences, which means assembling of contigs is easier even in 

the absence of reference genomes. It does, however, have shallow sequencing coverage 

due to the few reads it generates per run (1 million sequences). It also has higher error 

rates, especially when it encounters homopolymer repeats within the sequence (Ekblom & 

Galindo, 2011). These characteristics are some of the reasons why the technology has 

since been superseded by other approaches described below. Roche shut down 

production for the platform in 2013 and finally withdrew support for the platform in 2016.  

The Solexa/Illumina technology soon followed 454 technology in becoming the second 

NGS platform to be available commercially (Figure 1.2). Solexa sequencing has a far 

more superior sequencing output and depth of coverage than the 454 pyrosequencer. It 

records fewer incidences of errors in homopolymer regions compared to its 454 

predecessor. One of its platforms, the Miseq series currently can produce read lengths of 

up to 2x300 bp (www.illumina.com/systems/miseq.html) which is an improvement over the 

35 bp read lengths of the early Solexa platforms. That said, Illumina has its own unique 

base calling errors. For instance, it has been observed that accumulation of errors tends 

to be higher towards the 3’ end than at the 5’ end (Schröder et al., 2010). There has also 

been an observed association between increased single-base errors and GGC sequence 

motifs (Nakamura et al., 2011). 
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Figure 1.1. The 454 Pyrosequencing method. (A-F) Library preparation: (B) 454 pyrosequencing 
adapters are ligated to 5’ and 3’ of DNA fragments, (C) Each adapter-ligated DNA fragment is 
paired with an agarose bead in an aqueous micelle. (D) On the surface of each bead is a lawn of 
oligonucleotides designed to be complementary to the DNA fragment adapters to ensure that each 
fragment attaches to a bead. (E) Copies of each fragment are made through emulsion PCR. (F) 
Each bead with several copies of DNA fragment on its surface is transferred onto a picotitre plate 
where sequencing reaction takes place. The sequencing reaction (G) proceeds with the 
introduction of one of the four bases, at a time, until one is incorporated. Base incorporation is 
detected through the chain of reactions that follow, which ultimately leads to the production of light. 
Modified from (Mardis 2008) 
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Figure 1.2. Illumina sequencing method. (A) Adapters are ligated to the ends of DNA fragments to 
be sequenced during library preparation. (B) Complementarity between adapters and 
oligonucleotides on the surface of flow cells ensures each denatured fragment is immobilised on 
the surface of the flow cell before bridge amplification which makes sufficient copies so that the 
fluorescence can be detected during sequencing. (C) The template copies are linearised and the 
reverse strands cleaved off leaving just the forward strand. The 3’ ends of the forward strands are 
blocked and a sequencing primer hybridized to the template (D) Sequencing proceeds with the 
extension of the sequencing primers. A base is sequenced during each cycle in a way that the 
number of completed cycles equal the length of DNA sequenced. All four bases are terminally 
blocked and are introduced simultaneously during each cycle. The base that is incorporated 
produces a base-specific fluorescence detectable by a camera. Until the block is removed after the 
detection, no additional base can be incorporated. Hence, following detection, the incorporated 
base has to be deblocked and defloured before the next cycle. (Modified from (Mardis 2013)) 

 

The SOLiD platform from Applied Biosystems employs a similar library preparation as the 

previously mentioned NGS platforms. However, unlike the other platforms, it uses ligation 

to determine sequences. Because each base pair is essentially sequenced twice, the 

error rates encountered tend to be less in this platform (Mardis, 2008; Ekblom & Galindo, 

2011).  

The HeliScope was the first NGS platform to introduce the single-molecule sequencing 

approach. Although this platform has the advantage of being less prone to errors 

especially those related to amplification artefacts, it produced read lengths that are short 

compared to any of the previous technologies. For this reason and the high cost of the 

instrument, the HeliScope is no longer being sold (Glenn, 2011).  
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The Ion Torrent platform operates in a similar fashion as the 454 technology in that they 

both involve similar library preparation steps and sequential introduction of each of the 

four bases. However, instead of registering base incorporation by fluorescent emission, H+ 

are released and a signal in proportion to the number of incorporated bases is detected 

(Rothberg et al., 2011). The PGM (Personal Genome Machine) of Ion Torrent was 

evaluated together with other platforms such as Illumina and Pacific Biosystem by (Quail 

et al., 2012). The results indicated that the PGM gave an excellent coverage for those 

sequences with high GC content to moderate AT richness. However, sequencing of AT-

rich genomes resulted in substantial amount of bias with coverage for only about 70% of 

the genome. On its ability to detect variants, it slightly outperformed the MiSeq, but in 

doing so recorded significant number of false positives as well. 

The SMRT sequencing technology by Pacific Biosciences is based on the natural process 

of DNA replication by DNA polymerase for real time sequencing of individual DNA 

molecules (Eid et al., 2009). Each dNTP has a specific fluorescence label attached to its 

terminal phosphate, which upon incorporation of a nucleotide is detected immediately 

before it is cleaved off (www.pacificbiosciences.com/products/smrt-technology/). Features 

such as high speed, long read lengths, high fidelity and low cost per experiment have 

made this technology a desirable investment (Glenn 2011; https://genohub.com/ngs-

instrument-guide/). However, in comparison with the Ion Torrent and MiSeq sequencers, 

higher depth of coverage is required for calling of variants (Quail et al., 2012). 

Another promising technology associated with single molecule sequencing is the 

nanopore sequencing. In addition to being used for high-throughput sequencing, 

nanopores technology has been used for sensing and detecting a wide range of small and 

large molecules (Haque et al., 2013). Like the SMRT sequencing platform, nanopore 

technology has the capacity to sequence very long DNA or RNA molecules. Additionally, 

the technology requires no expensive fluorophore labelling (Schneider & Dekker, 2012). 

Oxford Nanopore technologies is currently the only manufacturer of commercially 

available platforms that implement nanopore sequencing. One of its platforms, the pocket-

sized MinION is currently the most popular one. With accuracy currently around 92%, this 

piece of technology has already been applied in such areas of research as on-site 

analysis of disease pathogens, aneuploidy detection, and due to its portability, serves as 

a good teaching tool (Jain et al., 2016).  

 

1.4.2 Applications of metabarcoding 
Most NGS-based nematode community studies have been based on the pyrosequencing 

method of the Roche 454 platform. The relatively longer read lengths generated with this 

platform at that time made it even more suitable for metabarcoding analysis. Porazinska 
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et al. (2009) reported one of the early studies to evaluate the suitability of NGS for 

nematode metagenetic analysis when they compared two potential barcode regions from 

the 18S and the 28S genomic regions. Using a combination of the two genomic regions, 

up to 97% of the species in the tested community were detected in this study. Using either 

of these markers alone could only recover approximately 90% of the diversity in the 

sample. The study demonstrated the tremendous potential of this approach in studying 

nematode communities. Unfortunately, the authors were not able to find any correlation 

between the number of reads generated for each of the sampled taxa and their 

abundances. In fact, some of the low abundant taxa produced the highest number of 

reads. Later, (Creer et al., 2010) reported a case study of meiofaunal diversity in marine 

littoral benthos and tropical rainforest habitats. Out of eleven classified taxonomic groups 

recovered from each of the case studies, nematodes emerged as the most dominant 

taxonomic group in both environments through the proportion of the total number of 

operational taxonomic units (otus) that matched sequences of nematodes. 

Using metabarcoding, Lallias et al. (2015) examined the variation in diversities of protists 

and microbial metazoans including nematodes across two distinct estuaries in UK. They 

utilized the same 18S rDNA region as the one used by Fonseca et al. (2010) in a similar 

study on marine microbial eukaryotes. One of the key aspects of their finding was the 

association between the patterns of marine meiofauna diversity and specific factors such 

as hydrodynamics, salinity range and granulometry depending on their life-history 

characteristics. In phytonematology, metabarcoding approach targeting a region within the 

mitochondrial genome was also used in a study to characterise populations of potato cyst 

nematodes from several Scottish soils (Eves-Van Den Akker et al., 2015). In addition to 

describing the distribution of Globodera pallida mitotypes across Scotland, that study also 

outlined how to carry out an accurate, high throughput and quantitative means of 

characterizing up to a thousand fields at the same time.    

Next Generation Sequencing methods have also been applied in sequencing of complete 

mitochondrial genomes (Jex et al., 2008a; Jex, Littlewood, & Gasser, 2010). The process 

involved an initial amplification step referred to as Long PCR, which is important to 

provide enough copies of the mitochondrial genome for sequencing. This step basically 

amplifies the entire mitochondrial genome as two overlapping fragments of approximately 

5 and 10 kb sizes (Hu et al., 2007) which then were subsequently bulked and sequenced 

using the Roche 454 platform. Prior to the use of NGS for whole mitochondrial genome 

sequencing, the sequencing step was carried out by “primer walking” on capillary 

sequencers (Jex et al., 2008b). Complete mitochondrial genome sequencing has the 

potential of enhancing our understanding of nematode relationships through the use of 

complete mitochondrial genome for inferring phylogeny between related taxa. At the 

moment, this area remains to be properly exploited. Although most widely adopted 
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phylogenetic relationships derived from molecular data are based on the small subunit 

ribosomal RNA gene (Blaxter et al., 1998; Holterman et al., 2006; van Megen et al., 2009), 

information relating to phylogeny from the mitochondrial genome may increase greatly our 

understanding of relationships between nematodes. 

 

1.5 Concluding remarks 
DNA barcoding is a tool with great potential in the field of taxonomy. It can serve as a 

rapid identifying feature of organisms written simply as sequence of four distinct bases, 

thus providing an unambiguous reference for rapid identification (Bucklin, Steinke, & 

Blanco-Bercial, 2011). The application of this tool will allow non-experts to carry out some 

of the routine tasks of identifying species, thus equipping scientists with tools for 

identifying known organisms and recognition of new species. It can facilitate the 

recognition and discrimination of cryptic species. Moreover, unlike classical taxonomy, 

DNA barcoding makes it possible to determine the identity of a species from any life stage 

available. And this becomes particularly useful when analysing samples intercepted in 

trade, where diagnosticians are often confronted with the problem of having very limited 

material to work with. 

Although the ultimate goal in DNA barcoding is the development of molecular tool(s) 

capable of profiling as wide diversity of the phylum as possible, for now, at least in 

nematology, both the classical and molecular fields are needed for a better understanding 

of the biology and diversity of nematodes. With the speed and higher output that 

molecular approaches offer, they make nematode community analysis less laborious and 

thus, facilitate the use of nematodes as bioindicators.  

Despite the many published studies on nematode metabarcoding, only one study thus far 

has been published that outlines a robust workflow for carrying this out (Treonis et al., 

2018). In addition, as mentioned earlier, nematode communities are routinely used to 

assess the quality of soil. However, no real community study to date has been published 

on the performance of metabarcoding as a substitute for the standard morphology-based 

approach. The main objectives of the current research, therefore, was to determine the 

best analysis workflow–from selection of DNA marker to sequence analysis–for 

metabarcoding of soil nematodes and to identify the most appropriate means of applying 

this in assessing the effect of management practices on the soil community. Specific 

objectives are detailed under each experimental chapter. 
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2 General materials and methods 
2.1 Mock community experiment 
To determine the most suitable barcode marker(s) to use for metabarcoding soil 

nematodes, a mock community of different genera/species of nematodes was assembled 

and used to test these markers. The idea was to sample across a wide diversity of soil 

nematodes so that the two classes, Chromadorea and Enoplea (sensu De Ley and 

Blaxter 2002) would be well represented. Twenty-three genera were targeted. While a 

greater number of genera could have been included, it would have been challenging to 

replicate three times. Most of the genera were included based on how obtainable they 

were across different types of soil. Some, particularly the plant-parasitic species, were 

included because their cultures were already available at Fera Science Ltd. 

 

2.1.1 Soil sampling for mock community experiment 
Most of the assembled taxa were obtained from samples collected near and around the 

lake inside Fera Science Ltd. at Sand Hutton (York, UK). Some samples were also taken 

in an area of mixed woodland just outside of the Fera campus (Figure 2.1). Five bagged 

samples weighing about 1.5 kg were obtained. Four samples were collected around the 

lake and three from the area of woodland that were combined into one. At the end of the 

sampling, the samples were taken to the laboratory for storage at 6 °C.  

 

 
Figure 2.1. Locations within and close to Fera Science Ltd. where samples were collected. Red 
spots indicate locations where samples were taken. At each location, several soil cores were taken 
to make up to ~1 kg. (Image from Google Maps on 12/03/18) 

Lake 
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2.1.2 Nematode extraction from soil 
Nematodes were extracted using two different methods. For most of the samples, the 

method used was the Whitehead method (Whitehead & Hemming, 1965). This method is 

based on the motility and the tendency of nematodes to move towards moisture. The set 

up used in this study included a rectangular plastic tray, plastic-coated wire letter trays, 

wire mesh and a standard facial tissue (Figure 2.2). The other method used for extraction 

was the Seinhorst Two-Flask method (Seinhorst, 1955) (Figure 2.3) and it was used only 

to extract Trichodorids. While the Whitehead method extracts nematodes based on their 

active movement from the soil into the suspension, the two-flask approach extracts both 

active and inactive (including dead) ones.  

At the lab, each of the bagged samples was homogenised by first emptying the soil into a 

tray and then gently mixing them. Lumps of soils formed by the soil auger during sampling 

were also loosened in the process. A subsample of 300 g was used for extraction in both 

methods. The sample collected from the woodland was the only one extracted using the 

Seinhorst Two-Flask method in order to maximise the chances of extracting taxa with low 

motility such as the Trichodoridae. The other four were extracted using the Whitehead 

Tray method.  

 

 

Figure 2.2. Setup for the Whitehead nematode extraction method. The technique depends on the 
nematodes’ active migration towards a higher moisture gradient. 

 

 
 
 

Plastic tray 

Tap water 

Soil sample 

Wire letter tray 

Tissue paper 



 

 
 

22 

 
Figure 2.3. Seinhorst two-flask method showing the sedimentation process. (Courtesy, Nasamu 
Musa, Harper Adams University) 

 

 
 
 
 

   
 

Figure 2.4. (Left) Counting dish with rectangular grid on the base. (Right) Temporary slide showing 
nail varnish sealant and the melted wax ring 
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2.1.3 Identification of specimens 
The nematode suspensions obtained for each sample after extraction were concentrated 

to 10 ml. This was done by first allowing the suspension to settle for at least two hours 

and then pipetting out the supernatant until the volume was down to 10 ml. For each 

sample the suspension was emptied into a gridded round counting dish (Figure 2.4). The 

suspension was then examined for the presence of any of the taxa in the list for the mock 

communities using Leica M50 stereomicroscope (Leica microsystems Wetzlar, Germany) 

at 40 X magnification. At this magnification, any specimen that resembled any of the 

targeted taxa was picked and placed in a drop of water surrounded by a wax ring on a 

glass slide (Figure 2.4). About 3-5 individuals were placed on a slide at a time. The 

specimens were then covered with a glass slip and then sealed by placing the glass slide 

on a heat block to melt the wax ring. The seals were reinforced by lining the edges of the 

of glass cover slips with nail varnish.  

The slides were then examined under high power microscope (Zeiss Axio Imager 2, 

ZEISS, Germany) and identified to the genus or species level using various taxonomic 

keys and monographs (Andrássy, 2005, 2007; Holovachov et al., 2009; Ahmad & 

Jairajpuri, 2010; Holovachov & Boström, 2010). After the identities were confirmed, the 

slides were unmounted to rescue specimens. Those that matched the target taxa were 

included in the mock community samples. This procedure was repeated until the required 

numbers each of the sampled taxa were obtained for each of the mock community 

samples. The identifications were confirmed by taking a specimen each of the different 

taxa included in the mock community and sequencing it using the Sanger method. There 

is a more detailed description of how this was achieved in 3.2.3. 
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3 Evaluating short genomic regions for use in 
nematode metabarcoding 
3.1 Introduction 
Fundamental to any DNA sequence-based identification method is the choice of barcode 

marker(s) (Wilkinson et al., 2017). The chosen marker has to meet most of the criteria 

outlined by Floyd et al. (2002), according to whom the targeted region must be a mosaic 

of conserved and variable motifs. Conservation of the region, particularly the flanks is 

necessary for designing universal primers. Within the region, conservation may also be 

necessary to ensure similarity between individuals of the same species. Likewise, a 

certain degree of variability within the sequence is required for distinguishing between 

species. A prerequisite for assigning taxonomy to a sequence is the availability of 

sequence reference libraries of that marker from a large number of taxa. Depending on 

the organism being studied, this marker may occur within the nuclear (nDNA), 

mitochondrial (mtDNA) or plastid DNA (cpDNA short for chloroplast DNA).  

Within the mitochondrial DNA, the cytochrome c oxidase I (COI) protein coding gene has 

been the most widely used region, especially for metabarcoding of animals. Most studies 

involving insects and birds have utilized a region of this gene (Hebert et al., 2003, 2004, 

2016; Ramage et al., 2017). The region has been shown to be unique among at least 

95% of species of a diverse group of organisms including birds, insects, fishes and plants 

(Hajibabaei et al., 2007), thus capable of delineating most species of these groups. The 

use of this region has also been facilitated largely by the enormity of the number of its 

sequences within the Barcode of Life Datasystems database (BOLD) (Ratnasingham & 

Hebert, 2007) with the collection numbering over 4.2 million validated sequences as at 

early 2016 (Coissac et al., 2016).  

Despite its success as a barcode marker for most animals, attempts to utilise the COI as a 

phylum-wide marker for nematodes has not been equally successful for a number of 

reasons (Creer et al., 2010). First is the extremely high mutation rate of the mtDNA 

(Blouin et al., 1995; Anderson, Blouin, & Beech, 1998) making the design of universal 

primers difficult. The hybridization sites for the most widely used primer set LCO1490 – 

HCO2198 (Folmer et al., 1994) are poorly conserved across the nematode phylum (Blouin 

et al., 1998) which is likely to result in poor recovery of taxa in bulk community analysis. 

The primers amplify approximately 710 bp of the COI gene which typically gives 651 bp of 

readable sequences (Folmer et al., 1994). 

Secondly, for metabarcoding on a platform like the Illumina MiSeq, the sheer size of this 

region precludes it from being utilizable, as this platform, which is currently the most 

widely used (Shendure et al., 2017), can only sequence up to 300 bp in the forward and 

300 bp in the reverse direction while allowing for a certain degree of overlap. This overlap 
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is to allow for merging of the reads during data analysis, which means that a target 

actually needs to be shorter than 600 bp. An alternative approach could be to use a 

shorter COI-based region such as the one amplified by the primer pairs JB3-JB4.5 

(Bowles, Blair, & McManus, 1992). The size of the amplified fragment is approximately 

366 bp, making it an excellent candidate for an NGS marker. In general, besides being 

used for discriminating species of certain genera of nematodes (Janssen et al., 2016), 

most mtDNA-based markers have been largely overlooked in terms of metabarcoding due 

to their limited taxonomic coverage of the nematode phylum. A similar idea was argued by 

Deagle et al. (2014) who demonstrated how narrow the taxonomic coverage of some of 

the markers situated within the mitochondrial genome are. Finally, a significant proportion 

of the many COI nematode sequences in the BOL database belong to parasites of 

vertebrates, insects and plants, making this region not particularly appealing for nematode 

community analysis. This is why the most widely used markers for metabarcoding to date 

are ones associated with the nuclear ribosomal RNA gene repeats (rDNA).  

In eukaryotes, rDNA units are known to occur in copies of up to several hundred tandem 

repeats per genome (Hillis & Dixon, 1991). Each unit consists of two internal transcribed 

spacers (ITS-1 and ITS-2) separating the 18S, 5.8S and 28S rDNA and an external 

transcribed spacer (ETS) is located upstream of the 18S gene. The gene is involved in the 

production of the RNA component of the ribosome, which is responsible for protein 

synthesis in all living cells. Because of this, the rDNA is well conserved across all life. In 

Caenorhabditis elegans, the array contains approximately 55 copies of the complete unit 

(Ellis, Sulston, & Coulson, 1986). And within the nematode phylum, copy numbers range 

from 50 to 100 (Floyd et al., 2002). According to Creer et al. (2010), 18S and 28S subunits 

of this gene offer an excellent choice of barcode regions due to their multiple copies and 

the concerted evolution events they have been reported to undergo (Markmann & Tautz, 

2005). In other words, the selection pressure on these genes helps maintain nearly 

identical copies within each species. As mentioned earlier, a significant proportion of 

published studies on nematode barcoding have used markers within this region  

(Porazinska et al., 2009, 2010b; Creer et al., 2010; Fonseca et al., 2010; Holovachov et 

al., 2017). 

Despite its wide taxonomic coverage, the 18S rDNA-base markers like most markers 

mentioned here have certain limitations. Aside from the fact that some 18S rDNA markers 

lack the resolution to distinguish certain species of nematodes, the primers used to 

amplify them are often not specific. Using the primer pair described by Porazinska et al. 

(2009) on DNA extracted directly from the soil, Peham et al. (2017) showed that only 2.5% 

of sequenced reads were from nematodes. To make it useable for environmental DNA 

Sapkota and Nicolaisen (2015) had earlier proposed the use of a semi-nested 

amplification approach which they showed could increase the percentage of nematode 
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reads from just 3% to 64%. It is worth mentioning that the lack of specificity of these 

primers may not be such a pressing issue as long as nematodes are isolated from the soil 

prior to DNA extraction. Given the current capacities of the direct soil extraction kits 

available at the moment, which can handle only a very small fraction of recommended soil 

volume of 250 ml for nematode extraction (Peham et al., 2017), it is safe to say that the 

traditional extraction methods will continue to be widely used until such a time when the 

capacities of these direct DNA extraction kits are improved. That said, the evaluation of 

markers, for now, will mostly rest on their taxonomic coverage. Peham et al. (2017) in 

their paper also made a case for the ITS region to be considered as a barcode candidate 

given the large collection of sequence reference libraries of this available in public 

databases. However, as stated by Floyd et al. (2002), attributes of the ITS region such as 

it being difficult to align, variable even within species and showing extreme length 

variation between diverse nematode taxa make it a difficult marker to use.  

There are two regions within 18S rDNA that are commonly used in metabarcoding studies 

involving nematodes; (I) a region amplified using the primer sets NF1-18Sr2b as used by 

Porazinska et al. (2009)  which will from hereon be called NF1-18Sr2b marker, and (II) a 

region amplified with primers, SSU04F-SSUR22 (Blaxter et al., 1998) and has been used 

in a number of previous studies on metabarcoding of marine nematodes (Porazinska et 

al., 2009, 2010b; Creer et al., 2010; Fonseca et al., 2010, 2014; Bik et al., 2012b; 

Holovachov et al., 2017). This second marker, which will hereon be referred to as 

SSUF04-SSUR22, is located very close to the 5’ end of the 18S rDNA. Although few 

reasons have been provided for this, it appears throughout literature that the NF1-18Sr2b 

has been the preferred choice for soil nematodes and the SSUF04-SSUR22 for aquatic 

nematodes. Another rDNA-based marker located within the D3 expansion segment of the 

28S rDNA is one that has also been previously tested on mock communities of 

nematodes (Porazinska et al. 2009). This region is amplified using the primer set D3Af-

D3Br (Nunn, 1992). Porazinska et al. (2009) showed that it was able to detect ~90% of 

the sampled species, and when combined with NF1-18Sr2b, enhanced the recovery of the 

sampled taxa to 95%. The COI-region amplified using the JB3-JB5GED (Derycke et al., 

2010) primer pairs is also included in this comparison. Even though the COI region has 

been known to lack truly universal PCR primers (Deagle et al., 2014), its inclusion in this 

comparison was aimed to give a demonstration of its performance on a bulk soil 

nematode community. In summary, the objective of this study was to compare the overall 

suitability of these markers for metabarcoding of soil nematodes and to clarify whether, 

given their limitations it will be better to look for new candidate markers for metabarcoding 

of nematodes. Specifically, they were compared on basis of the quality of obtained 

sequences, availability of reference libraries for assigning taxonomy, ease of assigning 

taxonomy, resolution and recovery of taxa.  
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3.2 Materials and methods 
3.2.1 Sample extraction and microscopy 
The taxa represented in the mock community were extracted from commercial samples 

strored at 6 °C, intercepted soil and plant samples as well as soil samples taken from 

within the grounds of Fera Science Ltd in Sand Hutton. Details of sample extraction and 

nematode identification are described in sections 2.1.2 and 2.1.3. Some of the specimens 

had already been previously identified and cultured on their plant hosts.  

 

3.2.2 Mock community   
Three replicates of artificial assemblages of nematodes were used as mock communities. 

For each replicate 23 different genera of known abundances were placed in Eppendorf 

tubes containing 20µl of molecular grade water. The mock communities were assembled 

to consist of taxa spanning as much diversity across the phylum as possible. In total, 19 

different families belonging to six orders within Nematoda were represented (Table 3.1). 

The communities were dominated by members of the order Rhabditida due their 

numerical dominance in the natural soil environment.  

 

3.2.3 Molecular identification of specimens using Sanger 
sequencing 
Sequences of single specimens for twenty-one of the taxa represented in the mock 

community were analysed separately using the Sanger sequencing method for 

confirmation of their identities based on three distinct genomic regions. The only taxa left 

out were Meloidogyne hapla and Laimaphelenchus sp. because the former had been kept 

in culture for a long time at Fera and the latter previously studied and identified also at 

Fera. A specimen of each of the taxa included in the community was sequenced using the 

Sanger sequencing method. Each was picked into a separate Eppendorf tube and 

sequences of the three different regions were analysed. These regions were a nearly 

complete 18S rDNA region, the D2-D3 segment of the 28S rDNA region and the COI 

region.  

 

3.2.4 DNA extraction  
Extraction of DNA from the mock community replicates and the single specimens were 

performed using the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Manchester, UK). 

Each samples (single-specimen samples and the three mock community replicates) were 

placed in 1.5 ml microcentrifuge tubes containing 20 µl of molecular biology grade water 

(MGW).  A 160 µl volume of Qiagen ATL buffer was added to each sample, followed by 
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20 µl proteinase K before being incubated overnight at 56ºC. The lysed samples were 

further processed to obtain pure DNA according to the manufacturer’s instructions for 

genomic DNA extraction. 

 

3.2.5 Amplification of single specimen samples 
For the 18S rDNA, an approximately 1800 bp long region was amplified as two 

overlapping fragments using two primer sets 988-1912R and 1813-2646R for the first and 

second fragments respectively (Holterman et al., 2006).  

The polymerase chain reaction (PCR) of both fragments of the 18S rDNA region was 

carried out in 25 µl reaction mixture containing 12.5 µl of BIO-X-ACT short mix 2x (Bioline 

reagents Limited, London), 0.6 µl of each primer namely 988F (5’-

CTCAAAGATTAAGCCATGC-3’) and 1912R (5’-TTTACGGTCAGAACTAGGG-3’) for the 

first fragment; 1813F (5’-CTGCGTGAGAGGTGAAAT-3’) and 2646R (5’-GCTACCT 

GTTACGACTTTT-3’) for the second fragment, and 6.3 µl molecular grade water (MGW). 

The PCR conditions were 15 min at 95 °C; 5 cycles of (94 °C for 30 sec, 45 °C for 30 s 

and at 72 °C for 30 sec); 35 cycles of (94 °C for 30 sec, 54 °C for 30 s and 72 °C for 30 s); 

final extension for 5 min at 72 °C.  

The approximately 650 bp long 28S rDNA region was amplified using the primers D2Af 

and D3Br (Nunn, 1992). The 25 µl reaction mix was made up of 5 µl template DNA, 12.5 

µl of BIO-X-ACT short mix 2x, 0.6 µl of each of primers D2Af (5’-

ACAAGTACCGTGAGGGAAAGTTG-3’) and D3Br (5’-TCGGAAGGAACCAGCTACTA-3’) 

and 6.3 µl molecular grade water (MGW) using the following PCR conditions:  4 min at 94 

°C; 35 cycles of (94 °C for 60 s, 54 °C for 90 s and 72 °C for 2 min); final extension for 10 

min at 72 °C.  

The 400 bp region of the COI gene was amplified using the JB3-JB5 primers (Bowles et 

al., 1992; Derycke et al., 2005). Amplification was carried out in 25 µl reaction mixture 

containing the same components as with the other markers. The cycle 

programmeconsisted of an initial denaturation at 95 °C for 15 min, followed by 40 cycles 

of denaturation at 95 °C for 1 min, primer annealing at 41 °C for 30 s and extension at 72 

°C for 2 min; then a final extension at 72 °C for 10 min.   

The PCR amplicons were purified using the QIAquick PCR Purification Kit (Qiagen) before 

being sent to Eurofins genomics (https://eurofinsgenomics.eu) for sequencing using the 

same primers used for the PCR.  
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3.2.6 Amplification and library preparation of mock community 
samples 
For each target barcode marker, four separate polymerase chain reactions (PCR) were 

set up, representing the three replicates and a blank sample spiked with molecular grade 

water (MGW). The 5’ ends of each of the primers were ligated with MiSeq adapter 

sequences (Table 3.2). The reaction conditions were different for each marker as detailed 

in Table 3.3. For all the samples, PCR was performed in 25 µl reaction mix containing 1X 

Phusion HF buffer (New England Biolabs, Ipswich, MA, USA), 0.2 mM dNTPs, 0.5 µM 

each of adapter-ligated forward and reverse primers, 1 U of Phusion DNA polymerase 

(New England Biolabs) and 5 µl of template DNA was used.  

Following the initial PCR reaction, the amplicons were all purified using the Ampure XP 

Beads (Beckman Coulter, Inc. USA). The purified products were quantified using a Qubit® 

Fluorometer (Thermo Fisher Scientific, Wilmington, DE, USA). This was then followed by 

the index PCR step where unique dual indices and the Illumina sequencing adapters were 

attached to each amplicon using Nextera XT index primers (Illumina, San Diego, CA, 

USA) for amplification (Illumina’s 16S Metagenomic Sequencing Library Preparation 

protocol). The PCR was performed in 50 µl reaction volume containing 5 µl each of 

Nextera XT Index primers 1 and 2, 5 µl of template DNA, 1X HF buffer, 0.2 mM dNTPs, 1 

µl MgCl2, 0.5 U Phusion polymerase and 22 µl MGW. The PCR programme was set at 

98ºC for 3 min, 8 cycles of 98ºC for 30 s, 55ºC for 30 s, 72ºC for 30 s and a final 

extension step at 72ºC for 5 mins. A list of samples and the combination of indexes used 

are provided in the appendix (Appendix 10.3).  

The indexed products were then purified using Ampure XP Beads, quantified and pooled 

according to their molarity. After that, the pooled sample was run on an Agilent 2200 

TapeStation system (Agilent Technologies, Santa Clara, CA, USA) to verify the size of the 

pooled amplicons. The pool was quantified and diluted to 4 nM concentration. Using the 

Illumina protocol, the sample was denatured by mixing with 0.2N NaOH. Ten percent 

denatured PhiX control library was added to the denatured sample to introduce diversity. 

The mixture was incubated for 2 min at 96 ºC and immediately put on ice, before being 

loaded in a MiSeq machine (Illumina) for sequencing. The sample was sequenced at Fera 

(York, UK) in a paired-end approach using 2 x 300 cycles V3 run kit.  
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3.2.7 Analysis of sanger sequence data from single-specimen 
samples 
Sequences were received as both ABI and SEQ files. Both sequence file formats were 

visualized using BioEdit Sequence Alignment Editor (Hall, 1999). The ABI files provided 

the chromatographs for the base calls. Based on this, each sequence was visually edited 

to high quality by removing areas of ambiguous base calling inside BioEdit. Some of the 

edited forward and reverse reads could not be merged because for some of the data there 

was no overlap between the two pairs after editing. NCBI reference database accessed 

on 1st February 2018 was used for the blast search (NCBI Resource Coordinators, 2016). 

The blast hits from the three sequenced regions were used to complement one another.  

 

3.2.8 Analysis of NGS data from mock community samples 
Sequence analyses were performed using the USEARCH environment (Edgar, 2010) 

version 8.1.1861. For each of the barcode markers, the paired reads were merged using 

the fastq_mergepairs command, allowing 15 base mismatches in the aligned region. The 

merged reads were quality filtered and all reads with more than one base expected errors 

were removed (Edgar & Flyvbjerg, 2015). Reads shorter than 250 bp were also discarded 

using the USEARCH command fastq_filter. The filtered reads were dereplicated via 

fastq_uniques and then clustered into operational taxonomic units (otus) at 97% similarity 

cut-off using UPARSE (Edgar, 2013) applying the command cluster_otus which removes 

chimeric reads in the process. Otu IDs are assigned based on the number of otu clusters 

generated for each marker. It is therefore possible, in this chapter as well as subsequent 

ones, for the same ID to be associated with different taxa as long as the otus/taxa are 

from different markers. 

 

3.2.8.1  Taxonomy assignment 
Operational taxonomic units (Otus) were assigned taxonomy based on the utax method 

within USEARCH. Sequences used as reference database and how they were compiled 

are described in 3.2.8.2. As an alternative to the utax approach, otus of each marker were 

assigned taxonomy using the BLAST method (Zhang et al., 2000) against NCBI 

nucleotide database. The blast search was performed using the blast command line tools 

with all parameters left at default settings. A phylogeny-based assignment method was 

also performed. For this approach, the reference sequences were first truncated to 

remove leading and trailing regions outside the primer annealing site of the markers using 

the USEARCH command search_pcr in order to facilitate alignment. The reference 

sequences were then combined with the otus and aligned using MUSCLE (Edgar, 2004), 

leaving all parameters at default settings. The aligned sequences were trimmed to the 
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length of markers inside MEGA 7 (Kumar, Stecher, & Tamura, 2016). The alignments 

were used to construct maximum likelihood trees using RAxML version 8.2.10 on CIPRES 

science gateway web portal (Miller, Pfeiffer, & Schwartz, 2010) with GTR as the 

substitution model at gamma rates distribution. Bootstrap was set to 1000 replicates. 

Trees were visualized, labelled and coloured within the interactive tree of life (iTOL) web-

based tool (Letunic & Bork, 2016).  

 

3.2.8.2  Reference databases for taxonomy 
Reference library for assigning taxonomies to the otus generated from the two 18S rDNA 

markers was obtained from the Protists Ribosomal Reference database, PR2 v 4.72 

(Guillou et al., 2012). The database consists of 18S ribosomal RNA and DNA sequences, 

with curated taxonomy of protists and other metazoans including nematodes. The version 

used contained 4910 nematode sequences and was last curated on 7th October 2017. 

Some of the sequences span the locations of both 18S rDNA markers used.  

For the 28S rDNA, reference sequences were obtained from the SILVA ribosomal RNA 

gene database (Quast et al., 2013) downloaded on 25th January 2018. Thirteen of the 

sampled taxa could not be found in this database, and so for those with available 

sequences in NCBI, they were downloaded and added to make a more complete 

reference database (Table 3.4). A custom python script was used to convert the 

taxonomies to utax-compatible format as instructed in (Edgar, 2015).  

A search through the BOLD database for nematode COI sequences revealed that only 

nine of the taxa included in the mock community have sequences available for 

comparison. Therefore, as was done with the 28S rDNA, reference sequences of 

nematode COI from the Barcode of life project within NCBI were obtained (on 25th 

January 2018) using a command within the statistical assignment package (SAP 1.9.8) 

(Munch et al., 2008b,a) and formatted for utax taxonomy assignments. After formatting the 

sequences, a few of the sequence entries were filtered out. The ones remaining 

accounted for only fourteen of the sampled taxa. For the blast taxonomy assignments 

sequences from NCBI database were used as references.  
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Table 3.1. Nematode taxa included in the mock community, their families and abundances. 
Classifications here are based on (De Ley and Blaxter 2002). 

Family Species NCBI 
Accessions 

Abundance 

Alaimidae Alaimus sp. MG994936 2 

Trichodoridae Trichodorus primitivus MG994943 1 

Tripylidae Tripyla glomerans MG994928 2 

Longidoridae Longidorus caespiticola MG994935 1 

Longidoridae Xiphinema diversicaudatum MG994934 1 

Aporcelaimidae Aporcelaimellus sp. MG994940 1 

Mononchidae Prionchulus punctatus MG994945 2 

Anatonchidae Anatonchus tridentatus MG994941 1 

Plectidae Anaplectus sp. MG994930 1 

Plectidae Plectus sp. MG993558 2 

Neodiplogasteridae Pristionchus sp. MG994929 3 

Anguinidae Ditylenchus dipsaci MG994937 3 

Rhabditidae Rhabditis sp. MG994944 3 

Steinernematidae Steinernema carpocapsae MG994932 12 

Cephalobidae Acrobeles sp. MG994931 1 

Cephalobidae Acrobeloides sp. Failed 2 

Tylenchidae Tylenchus sp. Too short 3 

Aphelenchoididae Laimaphelenchus penardi Not sequenced 8 

Aphelenchoididae Aphelenchoides sp. MG994938 2 

Hemicycliophoridae Hemicycliophora sp. MG994927 3 

Criconematidae Criconema sp. MG994946 1 

Heteroderidae Globodera rostochiensis MG994942 10 

Meloidogynidae Meloidogyne hapla Not sequenced 7 
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Table 3.2. Primers used for amplification of the target barcode markers. Underlined sections of the sequences represent the Illumina overhang adapters.  

Primer Sequence (from 5’ end)  Source 
Nex_NF1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG GGTGGTGCATGGCCGTTCTTAGTT Porazinska et al. 2009 

Nex_18Sr2b GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTACAAAGGGCAGGGACGTAAT  

Nex_SSUF04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG GCTTGTCTCAAAGATTAAGCC Blaxter et al. 1998 

Nex_SSUR22 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCCTGCTGCCTTCCTTGGA  

Nex_D3FA TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG GACCCGTCTTGAAACACGGA Nunn 1992 

Nex_D3BR GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGGAAGGAACCAGCTACTA 

Nex_JB3 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTTTTTGGGCATCCTGAGGTTTAT Bowles et al. 1992 

Nex_JB5GED GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG AGCACCTAAACTTAAAACATARTGRAARTG Derycke et al. 2010 
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Table 3.3. PCR conditions for the primers used. Denaturation temperatures are based on 
manufacturers’ recommendations for Phusion polymerase. Annealing temperatures vary between 
primers and were selected based on estimates from NEB Tm Calculator for each primer pair. 

Primers Step Temperature Time 

Nex_NF1-Nex_18Sr2b Denaturation 98ºC 2 min 

 30 cycles 

 

 

98ºC 

66ºC 

72ºC 

20 s 

45 s 

45 s 

 Final extension 72ºC 5 min 

 Hold 12ºC ∞ 

Nex_SSUF04-Nex_SSUR22 Denaturation 98ºC 2 mins 

 30 cycles 

 

 

98ºC 

58ºC 

72ºC 

20 s 

45 s 

45 s 

 Final extension 72ºC 5 min 

 Hold 12ºC ∞ 

Nex_D3Af-Nex_D3Br Denaturation 98ºC 2 mins 

 30 cycles 

 

98ºC 

55ºC 

72ºC 

20 s 

45 s 

45 s 

 Final extension 72ºC 5 min 

 Hold 4ºC ∞ 

Nex_JB3-Nex_JB5GED Denaturation 98ºC 2 min 

 5 cycles 98ºC 

55ºC 

72ºC 

20 s 

45 s 

60 s 

 35 cycles 98ºC 

50ºC 

72ºC 

20 s 

45 s 

60 s 

 Final extension 72ºC 10 min 

 Hold 12ºC ∞ 
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Table 3.4. List of taxa and the accessions of the 28S rDNA records imported from NCBI into the 
reference library. 

Taxa Accessions 
Alaimus DQ077791.1, JN1233432.1 

Trichodorus MF979186.1, MF979185.1, MF979182.1, KJ002504.1, 

JQ716462.1, JN123426.1, KX522761.1, JN123408.1, AM180729.1 

Tripyla MF325357.1, MF325355.1, MF125677.1, KU921604.1, 

KU921601.1  

Prionchulus MF325333.1, MF325332.1, MF325330.1, MF325320.1  

Anatonchus  AY593065.1  

Anaplectus MF325171.1, MF325169.1, MF325170.1  

Plectus MF325286.1, MF325285.1, MF325281.1, MF325278.1, 

MF325273.1, MF325265.1 

Ditylenchus  KF534514.1, KF534513.1, FJ707364.1, FJ707361.1, HQ219224.1  

Tylenchus KM058573.1, KM047508.1 

Laimaphelenchus KX580741.1, KX580740.1, KF881746.1 

Aphelenchoides KX357652.1, DQ328683.1, KT003987.1, MF325174.1, KY684030.1 

Hemicycliophora KC329574.1, KF430522.1, KF430521.1, KF430520.1, KF430519.1 

Criconema AY780954.1, AY780953.1, KU722385.1, FN433874.1 
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3.3 Results 
3.3.1 Sanger sequences 
Blast search of the sequences of all of the three genomic regions that were sequenced 

using the Sanger method confirmed the morphological identifications of almost all the 

specimens. The only taxa that could not be confirmed were the specimens identified by 

morphology to be Criconema and Acrobeloides sp. Sequences were not obtained from all 

the markers for these taxa, which was not surprising because none of the markers 

produced PCR bands for these taxa on the gel. Due to insufficient sequences of the COI 

region in NCBI to search the sequences against, only Plectus could be confirmed by this 

region. The D2-D3 region produced amplicons for all except the two missing taxa and was 

able to confirm the identities of all the taxa. The two fragments of the 18S rDNA together 

also identified fifteen of the twenty-one specimens. All sequences have been deposited in 

NCBI (Table 3.5). 

 

Table 3.5. Confirmed identities of individuals included in the mock community by the three DNA 
regions sequenced using the Sanger method. R denotes positive identification. 

Samples Morphology 18S region 28S region COI region 

Specimen_1 Hemicycliophora sp.  R  
Specimen_2 Ditylenchus dipsaci R R  
Specimen_3 Aporcelaimellus sp. R R  
Specimen_4 Anatonchus tridentatus R R  
Specimen_5 Globodera rostochiensis R R  
Specimen_6 Trichodorus primitivus R R  
Specimen_7 Rhabditis sp. R R  
Specimen_8 Prionchulus punctatus R R  
Specimen_9 Criconema sp.    
Specimen_10 Tripyla sp. R R  
Specimen_11 Pristionchus sp. R R  
Specimen_12 Anaplectus sp.  R  
Specimen_13 Acrobeles sp.  R  
Specimen_14 Acrobeloides sp.    
Specimen_15 Steinernema carpocapsae R R  
Specimen_16 Plectus sp. R R R 
Specimen_17 Xiphinema diversicaudatum R R  
Specimen_18 Longidorus caespiticola R R  
Specimen_19 Alaimus sp. R R  
Specimen_20 Tylenchus sp.  R  
Specimen_21 Aphelenchoides sp. R R  

 

3.3.2 Sequence reads from mock community  
The sequence reads were demultiplexed by the MiSeq Reporter software using default 

settings (allowing one mismatch in the indexes). The Illumina nextera indexes are 

designed such that each pair differed from the other by at least three bases, therefore 



 

 

 

37 

allowing a single mismatch should not result in assignment of reads to the wrong samples 

(Illumina Document # 15042322 v01, 2015). A summary of the number of reads generated 

for each marker from each of the three replicates is presented in Table 3.6. The read 

numbers between the replicates of the NF1-18Sr2b samples were similar. The highest 

variability between the replicates was found for the markers SSUF04-SSUR22 and JB3-

JB5GED. 

 

Table 3.6. Number of sequence reads generated for each of the markers across the three mock 
community replicates with standard error of means of the replicate samples.  

 

Samples 

Number of reads  

NF1-18Sr2b SSUF04-SSUR22 D3Af-D3Br JB3-JB5GED 

Replicate 1 (MC1) 2,483,453 3,162,379 3,897,994 1,236,201 

Replicate 2 (MC2) 2,349,364 2,790,363 4,228,233 2,160,885 

Replicate 3 (MC3) 2,435,278 1,953,138 4,309,817 1,204,900 

Standard error of mean 39,216 357,585 125,899 377,501 

 

3.3.3 Quality information  
The average length for both forward and reverse reads before merging was 300 bp for all 

samples. Base quality distributions were similar across all four markers. The forward 

reads were generally of higher quality than the reverse reads especially toward the 3’ end. 

Quality for both directions dropped significantly towards the 3’ end and even more so for 

the reverse reads. After assembling the paired reads, the base qualities of the merged 

reads for all the markers were mostly higher than Q30 up to the 400th base position.  

 

3.3.3.1  NF1-18Sr2b 
Out of the ~7.3 million paired reads generated using this primer set for the three replicates 

combined, 47% (~3.5 million) were successfully merged. The average length of the 

overlap was 236 bp and the length of the merged reads was 362 bp. After the filtering 

step, 75,234 merged reads were eliminated for having expected error of more than one 

base. Of the reads that passed the quality check, 591,418 were identified as unique 

sequences and out of this, 456,425 were singletons. At 97% similarity cut-off, the unique 

reads were assigned to 138 otus. Chimeric sequences (5,677 reads) and the singletons 

were all discarded at this stage.  

 

3.3.3.2  SSUF04-SSUR22  
For this region, 38% of the 7.9 million paired reads generated from the three mock 

community replicates were successfully merged. Exactly 120,865 of the merged reads 
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were discarded after quality filtering for having an expected error of more than one base. 

The remaining reads were grouped into 721,450 unique sequences, of which 581,220 

were singletons and of those that were not singletons, 6,813 were chimeras. The 

singletons and chimeras were all discarded and the rest clustered into 161 otus.  

 

3.3.3.3  D3Af-D3Br 
There were 5.3 million successfully merged reads, representing 42% of the total paired 

reads produced for this marker. The average length of the overlap was 261 bp and length 

of the merged reads on average was 336 bp. For this marker, only 9,763 of the merged 

reads were filtered out for having more than one base expected error. The quality checked 

reads grouped in 566,284 unique sequences. There were 466,283 singletons and 3,295 

chimeras, all of which were removed before clustering which resulted in 144 otus.  

 

3.3.3.4  JB3-JB5GED 
Of the 4.6 million paired reads, 57% (2.6 million reads) were merged successfully. The 

mean overlap length was 124 bp and the merged reads were on average 336 bp long. 

64.3% passed the filtering step, resulting in the removal of 227,013 reads. Exactly 

355,543 sequences were identified as unique, and 275,258 of these were singletons. 

Chimeras (1,830 sequences) and the singletons were discarded. Clustering of the non-

singletons produced 69 otus at 97% similarity cut-off.  

 

3.3.4 Taxonomy assignment via utax  
With the utax method only those genera assigned with support values of 0.5 (arbitrarily 

chosen) or higher were considered valid in this study (Table 3.7). For the NF1-18Sr2b 

marker, twenty-three otus produced such valid assignments and they accounted for 

fourteen of the sampled genera. The results also revealed a phenomenon encountered in 

some of the curated public database. This is to do with incomplete taxonomies or 

ambiguous description lines of some of the entries, as pointed out by (Holovachov et al., 

2017). Several of the otus could not be assigned names because their best hits were 

either ‘uncultured eukaryote’, ‘environmental nematode’, ‘Chromadorea_X’ or 

‘Enoplea_X’.  

Only eight otus of the SSUF04-SSUR22 marker were identified as nematodes which 

accounted for only five of the sampled taxa. The majority of otus were not given 

assignments, at least not with sufficient support for them to be considered valid.   
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For the D3Af-D3Br, only twenty-two of the total 144 otus were successfully assigned 

nematode identities which corresponded with eight of the sampled taxa.  

The JB3-JB5GED marker was the only marker for which no successful assignments were 

achieved at the genus level. Only three otus were identified as nematodes and could only 

be confidently identified to the order rank. Two of the otus matched Rhabditida and the 

other one Tylenchida (according to classification by Siddiqi (2000)).  

With exception of a few, most of the recovered taxa occurred in all three replicates for all 

the markers (Appendix 10.1). For NF1-18Sr2b, only two of the fourteen recovered taxa 

failed to occur in each of the replicates; only one for SSUF04-SSUR22, two for D3Af-D3Br 

and for JB3-JB5GED, only one.   

 

Table 3.7. List of taxa recovered based on utax taxonomy assignment. For NF1-18Sr2b and 
SSUF04-SSUR22, sequences from PR2 database were used as reference database and for D3Af-
D3Br, combined nematode sequences from NCBI and SILVA were used. For JB3-JB5GED, 
sequences from NCBI database and Barcode of Life project were used.  

NF1-18Sr2b  SSUF04-
SSUR22  

D3Af-D3Br JB3-
JB5GED 

Alaimus sp.   Globodera  Aphelenchoides gorganensis   Rhabditida 
Anaplectus sp.   Longidorus  Ditylenchus dipsaci   Tylenchida 
Aphelenchoides ritzemabosi  Prionchulus  Globodera ellingtonae    

Globodera Rhabditis  Hemicycliophora wyei    

Hemicycliophora conida   Steinernema  Longidorus macrosoma    
Laimaphelenchus penardi    Meloidogyne hapla    

Longidorus   Rhabditis sp.    
Meloidogyne hapla    Trichodorus primitivus    

Pristionchus     
Rhabditis     

Steinernema     
Tripyla sp.      

Tylenchus arcuatus      
Xiphinema     
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3.3.5 Taxonomy assignment via blast search against NCBI 
database 
The otus that were generated for each of the markers were used to perform a blast search 

against reference sequences from NCBI on 16
th
 July 2017. Only alignments with expect 

(E) values less than 0.01 were considered. The top hits were examined for matches that 

had complete taxonomies. Also, only matches with an identity ≥ 95% were considered. 

Based on these criteria, otus of NF1-18Sr2b marker matched named sequences in NCBI. 

All sampled taxa were recovered in the blast output for this marker using this blast 

approach (Table 3.8). For most of the otus the E values of the alignments were 0.00. All 

non-nematode matches were ignored. For the SSUF04_SSUR22 marker, there were nine 

of the sampled taxa that were not recovered, due to no match or identities below 95%. 

These taxa were Acrobeles, Acrobeloides, Plectus, Laimaphelenchus, Aphelenchoides, 

Hemicycliophora, Criconema, Aporcelaimellus and Tylenchus. This marker also produced 

a couple of non-nematodes hits. Operational taxonomic units of the D3Af-D3Br marker 

had matches for all of the sampled taxa except Anaplectus, Tylenchus and Criconema. As 

with all the markers, there were some non-nematode hits. The JB3-JB5GED otus had a 

slight improvement with this method over the utax assignment. Unlike the utax taxonomy 

assignment which gave no assignments below the order level for this marker, the blast 

method was able to recover five of the sampled taxa. However, three of recovered taxa 

turned out to be products of sample cross-talk, a phenomenon whereby reads from one 

sample end up in a different sample within a multiplexed sample (Edgar, 2016). In 

general, there was a marked improvement in the assignment with the blast search against 

the NCBI nucleotide database in comparison with utax against either PR2, SILVA, or the 

COI databases. Almost all taxa recovered by the markers were detected across all three 

replicates (Appendix 10.2). In the NF1-18Sr2b samples, only four out of the twenty-three 

taxa failed to appear in all three replicates; Criconema and Anaplectus occurred in two 

replicates while Alaimus occurred only in one. For SSUF04-SSUR22 and JB3-JB5GED all 

recovered taxa were found in each of the replicates. Of the twenty recovered taxa in the 

D3Af-D3Br samples, there were only two taxa that failed to occur in all replicates, one of 

these taxa Hemicycliophora wyei was found only in one while Acrobeles complexus 

occurred in two. 
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Table 3.8. List of taxa recovered from blast search of all otus against the NCBI reference database. 
Only names appearing in top five hits and had similarities ≥ 95%, e value < 0.001 were considered. 

NF1-18Sr2b  SSUF04-SSUR22  D3Af-D3Br JB3-JB5GED 
Alaimus sp.   Alaimus sp.   Alaimus sp. Anatonchus 

tridentatus 
Anaplectus sp.   Anaplectus sp.   Aphelenchoides 

ritzemabosi   
Meloidogyne hapla 

Anatonchus 
tridentatus 

Anatonchus 
tridentatus 

Anatonchus 
tridentatus 

Longidorus 
caespiticola 

Aphelenchoides 
ritzemabosi  

Ditylenchus dipsaci Ditylenchus dipsaci   Steinernema 
carpocapsae 

Aporcelaimellus 
obtusicaudatus 

Globodera 
rostochiensis  

Aporcelaimellus 
obtusicaudatus   

Trichodorus 
primitivus 

Acrobeles sp.   Longidorus 
caespiticola  

Acrobeles complexus Tripyla sp. 

Acrobeloides sp.   Meloidogyne hapla   Acrobeloides sp.    
Criconema sp.   Prionchulus 

punctatus 
Globodera 
rostochiensis/pallida   

 

Ditylenchus dipsaci Pristionchus lheritieri  Hemicycliophora wyei    
Globodera 
rostochiensis  

Rhabditis cf. terricola   Longidorus 
macrosoma   

 

Hemicycliophora 
conida   

Steinernema 
carpocapsae   

Laimaphelenchus 
deconincki 

 

Laimaphelenchus 
penardi   

Trichodorus 
primitivus 

Meloidogyne hapla    

Longidorus 
caespiticola  

Tripyla glomerans   Plectus sp.    

Meloidogyne hapla   Xiphinema 
diversicaudatum  

Prionchulus sp.  

Plectus andrassyi  Rhabditis sp.    
Prionchulus 
punctatus 

 Pristionchus lucani    

Pristionchus lheritieri   Steinernema 
carpocapsae   

 

Rhabditis cf. terricola    Trichodorus 
primitivus   

 

Steinernema 
carpocapsae   

 Xiphinema 
diversicaudatum   

 

Trichodorus 
primitivus 

 Tripyla sp.   

Tripyla glomerans      
Tylenchus arcuatus      
Xiphinema     
    

 

3.3.6 Taxonomy assignment using phylogeny 
The trees produced by the four markers all had some clades bearing very low supports, to 

such an extent that most of them would be rendered meaningless were they to be 

condensed based on branch supports cut-off of even 50%. Because of this, the original 

topologies were kept as they were. The NF1-18Sr2b-based tree placed most of the otus 

together with named sequences from NCBI within monophyletic clades (Figure 3.1). The 

results of the tree-based assignments were very similar to the blast approach, with at least 

22 out of the 23 taxa identified. Criconema was the only taxon that did not form a clade 
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with any of the otus in the tree. The otu that matched Criconema from the blast search 

clustered with Ogma and Bakernema, both of which are close phylogenetic relatives of 

Criconema. It was discovered that the failure to have assignment for the Criconema otus 

was because it had no sequence in the reference sequences. Although one of its 

reference sequences was present in the PR
2
 reference database, it got removed during 

the PCR trimming step (using the command search_pcr in USEARCH) that was 

performed before alignment. From the SSUF04-SSUR22 tree, only four of the sampled 

taxa could be correctly identified (Figure 3.2). For the D3Af-D3Br marker, otus of sixteen 

of the sampled taxa were identified with the phylogeny method (Figure 3.3). With the JB3-

JB5GED-based tree, four clades could be identified that were monophyletic but only three 

could be used to identify the otus to the genus level. The otus clustered with these three 

genera: Steinernema, Longidorus and Meloidogyne (Figure 3.4).  

 

3.3.7 Taxonomic coverage 
The calculation of taxonomic coverage of the markers was based on how many of the 

sampled taxa were recovered by at least one of the three replicates. This was based on a 

consensus of the results of the taxonomy assignment via utax, blast and the phylogenetic 

tree method. The NF1-18Sr2b had the highest coverage, producing 100% recovery of the 

sampled taxa (Table 3.9). All 23 taxa were detected in all three replicates, apart from 

Acrobeles and Criconema which both failed to appear in one of the replicates. In the case 

of the SSUF04-SSUR22 marker, eight taxa were missing from all three assignment 

methods. The ones that were recovered occurred in all three replicates. The 28S rDNA-

based D3Af-D3Br marker recovered all taxa except Criconema in the consensus 

taxonomy. Amongst the recovered taxa, Hemicycliophora occurred in one of the 

replicates, Acrobeles in two, while the rest were found in all three replicates. For the COI-

based JB3-JB5GED marker, even the consensus taxonomy drawn from all three 

assignment methods could only recover two taxa, Meloidogyne and Steinernema. 

Although the tree-based method included Longidorus in the assignment, it was discovered 

that Otu17 and the NCBI reference sequence KJ741245 Longidorus sp which were 

clustered together had only 81% similarity which was insufficient for assignment. In 

general, the consensus taxonomies for all the markers were almost exactly as what the 

blast search produced because all successful assignments made by utax against the 

references were also made by blast search against the nucleotide database, which also 

detected even more taxa that were missing in the utax results. 
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Figure 3.1. Maximum likelihood tree of the 18S rDNA-based NF1-18Sr2b otus and 18S rDNA 
reference sequences from NCBI 
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Figure 3.2. Maximum likelihood tree of the 18S rDNA-based SSUF04-SSUR22 otus and 18S rDNA 
reference sequences from NCBI 
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Figure 3.3. Maximum likelihood tree of the 28S rDNA-based D3Af-D3Br marker otus and 28S rDNA 
reference sequences from NCBI  
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Figure 3.4. Maximum likelihood tree of the COI-based JB3-JB5GED marker otus and COI reference 
sequences from NCBI 
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Table 3.9. Taxa recovered by the barcode markers in at least one of the replicates 

Taxa NF1-
18Sr2b  

SSUF04-
SSUR22  

D3Af-D3Br JB3-
JB5GED 

Alaimus sp. R R R R R R R R R  
Trichodorus primitivus R R R R R R R R R  
Tripyla glomerans R R R R R R R R R  
Longidorus caespiticola R R R R R R R R R  
Xiphinema 
diversicaudatum 

R R R R R R R R R  

Aporcelaimellus sp. R R R  R R R  
Prionchulus punctatus R R R R R R R R R  
Anatonchus tridentatus R R R R R R R R R  
Anaplectus sp. R R R R R R R R R  
Plectus sp. R R R  R R R  
Pristionchus sp. R R R R R R R R R  
Ditylenchus dipsaci R R R R R R R R R  
Rhabditis sp. R R R R R R R R R  
Steinernema carpocapsae R R R R R R R R R R R R 
Acrobeles sp. R R   R R   
Acrobeloides sp. R R R R R R R R R  
Tylenchus sp. R R R  R R R  
Laimaphelenchus penardi R R R  R R R  
Aphelenchoides sp. R R R  R R R  
Hemicycliophora sp. R R R  R  
Criconema sp. R R     
Globodera rostochiensis R R R R R R R R R  
Meloidogyne hapla R R R R R R R R R R R R 

 

3.3.8 Read frequencies and abundance 
The relative number of sequence reads associated with some of the sampled taxa mostly 

deviated from their relative abundance in the mock community. This was true for all four 

markers (Figure 3.5). The relative read frequencies between the replicates, however, 

revealed a certain degree of correlation, indicating some level of reproducibility. For the 

NF1-18Sr2b marker, the relative read frequencies associated with Xiphinema, 

Trichodorus and Aporcelaimellus were similar to their relative abundances in the mock 

community. The most extreme deviation between relative read frequencies and relative 

abundance was observed in Prionchulus. In the case of the SSUF04-SSUR33 marker, 

Prionchulus and Anatonchus were the taxa for which relative read frequencies that 

deviated the most from the relative abundance. With this marker, the relative read 

frequencies of Acrobeloides, Alaimus and Tripyla were quite similar to their relative 

abundances. Relative frequencies of the D3Af-D3Br reads generated for Tripyla, 

Rhabditis and Prionchulus also deviated significantly from their respective relative 

abundances. The relative read frequencies of Xiphinema and Acrobeloides were similar to 

their respective relative abundances. And finally, of the two taxa that were successfully 

assigned from the JB3-JB5GED marker, Steinernema was the one with the closest match 
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between relative read frequencies and relative abundance. The reads of Meloidogyne, the 

other identified taxon deviated significantly from the relative abundance.  

 

 

 

 
Figure 3.5. Comparison of the relative read frequencies and relative abundances of sampled taxa 
for each of the four markers. Relative read frequency values are averages of the three replicates. 

 

3.3.9 Cross-talk 
This phenomenon occurs when a sequence read is assigned to the wrong sample during 

demultiplexing (Edgar, 2016). It was observed through close examination of the blast 

results and the otu table with taxonomy that there were a number of wrongly placed otus 

(Table 3.10). The NF1-18Sr2b, SSUF04-SSUR22 and JB3-JB5 samples were all 

sequenced in a single run. Between the two 18S rDNA markers, the detection of these 

spurious otus was made possible by the differences in where they aligned with the full-

length 18S reference sequences in NCBI. The SSUF04-SSUR22 marker is situated within 

the first 500bp of most of the full-length 18S sequences while the NF1-18Sr2b marker is 

located much further downstream, around the 1200
th
 to 1600

th
 base positions. By 

observing how the otus aligned to the reference sequences, these products of cross-talk 

could be detected. For cross-talk between JB3-JB5GED and SSUF04-SSUR22, the 

detection was easier because a simple search of the keyword, 18S in the output file of the 

blast search against the NCBI database with the JB3-JB5GED otus revealed all the otus 

that were not COI-based and vice versa. There was zero incidence of NF1-18Sr2b otus in 
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the JB3-JB5GED marker. The 28S-based marker, D3Af-D3Br was not involved in the 

cross-talk because it was set on a separate run of its own.  

 

Table 3.10. Locations and sources of otus identified as products of cross-talk, their read 
frequencies in the replicates and their taxonomic identities. Number after ‘Otu' are otu IDs after 
clustering. Each marker has its own set of otus. It is possible for the same out ID to be associated 
with different taxa as long as the taxa are from a different marker. 

Location Source otu  MC1 MC2 MC3 ID 

NF1-18Sr2b SSUF04-

SSUR22 

 

 

 

JB3-JB5GED 

Otu52 

Otu79 

Otu115 

Otu138 

Otu69 

Otu109 

10 

5 

0 

1 

9 

4 

10 

5 

1 

0 

9 

4 

18 

4 

2 

3 

6 

0 

Prionchulus punctatus 
Anatonchus tridentatus 
Trichodorus primitivus 
Longidorus caespiticola 
Bursaphelenchus sp. 

Bursaphelenchus sp. 

SSUF04-

SSUR22 

NF1-18Sr2b 

 

 

 

 

 

 

 

 

JB3-JB5GED 

Otu67 

Otu73 

Otu76 

Otu77 

Otu78 

Otu90 

Otu95 

Otu143 

Otu155 

Otu100 

7 

4 

4 

3 

3 

1 

2 

2 

1 

0 

18 

10 

10 

15 

7 

8 

5 

6 

4 

0 

10 

1 

0 

2 

3 

2 

0 

1 

0 

7 

Prionchulus punctatus 
Steinernema carpocapsae 
Tripyla sp. 

Pristionchus lheritieri 
Ditylenchus dipsaci 
Longidorus caespiticola 
Globodera pallida 
Rhabditis cf. terricola 
Uncultured nematodes 

Crossogaster sp. 

JB3-JB5GED SSUF04-

SSUR22 

Otu45 

Otu47 

Otu48 

Otu63 

Otu66 

Otu69 

4 

5 

7 

1 

2 

3 

6 

3 

0 

1 

3 

2 

4 

0 

0 

1 

0 

0 

Anatonchus tridentatus 
Trichodorus primitivus 
Mylonchulus  
Steinernema carpocapsae 
Tripyla sp. 

Longidorus caespiticola 
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3.4 Discussion 
Taxonomic coverage is very crucial to any metabarcoding study. The ability of a marker to 

recover as many taxa as possible could easily be one of the main benchmarks for 

determining its suitability for metabarcoding. With the main objective here being to 

evaluate four widely used markers for how suitable they are for metabarcoding of 

nematodes, this discussion will be focussed only on how the markers performed based on 

a consensus of all the assignment approaches and not on the differences in performance 

of the taxonomy assignment methods themselves. This subject is well covered in 

(Holovachov et al., 2017) for some aquatic nematodes. The results of the current study 

have shown that despite some recommendations to adopt COI-based markers (Prosser et 

al., 2013; Peham et al., 2017), there is still significant amount of effort needed to get this 

region ready as a barcode marker for nematodes. Besides being a region with currently 

poor taxonomic coverage, the lack of a comprehensive reference database strongly 

hampers its adoption for nematode metabarcoding in a manner similar to other animal 

groups such birds, fishes and insects. Although the length of the JB3-JB5GED gives it the 

appropriate size for application on a wide array of NGS platforms, it has the same 

limitation as other COI-based markers–their primer annealing sites are not sufficiently 

conserved across the diversity of groups such nematodes (Deagle et al., 2014). 

Nonetheless, the fact that only two taxa could be assigned taxonomy may not necessarily 

mean that these were the only taxa that were successfully recovered. It is suspected that 

the absence of sequences in the reference database that covered the location of this 

marker may have led to the failure of otus from some the sampled taxa to be correctly 

assigned taxonomy. 

Another marker whose poor coverage could be attributed to insufficient matching 

reference sequences was the 18S rDNA-based SSUF04-SSUR22. Being part of a region 

that is supposedly well conserved and with a large collection of reference sequences, 

particularly for nematodes, the failure to detect eight members of the mock community 

was not the expected outcome. However, the issue with this marker is its location within 

the full-length 18S rDNA operon. As mentioned earlier, this marker is situated within the 

first 500 bp of the 18S rDNA region and so unless the entire length of the 18S rDNA or 

this specific region are covered by a reference sequence, the reference is likely to not 

contain the homologous region for this maker. Although this marker has been used in a 

number of metagenetic studies involving meiofauna (Fonseca et al., 2010; Bik et al., 

2012b), its coverage within a diverse mock community has never been evaluated. Creer 

et al. (2010) examined the homology of their amplification primers to ~170 aligned 

sequences of nematodes and showed that 100% of base pair positions are conserved in 

the nematode sequences which supports this argument in suggesting that primer 

mismatch may not be the issue with this marker. Nonetheless, it is still popular for studies 
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involving marine nematodes. For soil nematodes, however, there is still a number of taxa 

whose full SSU sequences need to be made available to make this marker broadly 

suitable.  

The D2-D3 expansion segment of 28S rDNA region may be the region besides the 18S 

rDNA region that has just the right amount of conservation and variability for a perfect 

barcode marker. The region spanning these two high variability segments (D2-D3) have 

also been the focus of phylogenetic studies for various groups of soil nematodes (Kaplan 

et al., 2000; Litvaitis et al., 2000; Subbotin et al., 2005, 2006, 2007, 2008, 2011; Giblin-

Davis et al., 2006; Douda et al., 2013; Gutiérrez-Gutiérrez et al., 2013). It is also a 

common practice for phylogenetic analysis of certain groups of nematodes to be inferred 

based on both the commonly used 18S rDNA and the 28S rDNA region (Gutiérrez-

Gutiérrez et al., 2013; Ahmed et al., 2013). And because the number of published studies 

on particular genomic regions may determine the number of reference sequences 

available publicly, it is quite convenient to build a reference database for a marker located 

within either the D2 or D3 segments. The entire length of the 28S rDNA marker used for 

the mock community study is situated within the latter segment and so there was no issue 

of it falling out of range with most published sequences in NCBI. This therefore explains 

the high percentage assignments obtained for D3Af-D3Br compared to the SSUF04-

SSUR22 marker despite there being more 18S rDNA than 28S rDNA nematode 

sequences. A search using the keywords, ‘Nematoda’ and ‘18S’ of the NCBI database on 

6
th
 February 2018 yielded 24,370 entries as compared to 19,674 for the keywords, 

‘Nematoda’ and ‘28S’.  

Unlike the SSUF04-SSUR22, the location of the NF1-18Sr2b marker within the 18S rDNA 

region puts it within the flanks of most sequences used for reconstructing 18S rDNA-

based phylum-wide phylogeny of nematodes (Holterman et al., 2006; van Megen et al., 

2009). The utility of this marker benefits greatly from the ample reference sequences of 

18S rDNA and availability of highly conserved primer annealing site. Although Porazinska 

et al. (2009) reported a very high coverage of this marker, there were still three taxa they 

could not account for in the sequence reads. According to them this could have been 

caused by a number of factors: unmet species-specific PCR requirements, nematode-

nematode template competition or nematode-non-nematode templates competition. The 

disparity in coverage with the current study could also be due to the fact that they sampled 

more taxa than was done in this study and unlike the current study, they included some 

genera with more than one species representatives. 

There are several important community indices used in ecological studies that depend on 

abundance of taxa in the community. These include the maturity index (Bongers, 1990), 

enrichment, structure and basal indices (Ferris, Bongers, & De Goede, 2001). Abundance 
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has been used widely to compare processes such as community food web dynamics, 

stability and response to mineral and mechanical perturbations. In other words, almost all 

indices of community structure rely on abundance information of soil inhabiting taxa. 

Therefore, for metabarcoding to be accepted as an alternative to the more laborious, 

expensive and time-consuming classical morphology-based method of community 

analysis for the purposes as soil health assessment or food web analysis, it is pertinent 

that it is able to provide reliable abundance information based on the read frequencies of 

the recovered taxa. However, no mock community study to date has reported a strong 

correlation between actual abundance and read frequencies, implying that using read 

frequency data in the computation of any abundance-based index to assess various 

characteristics of a community may not reflect its actual state. The same is true of this 

study, read number showed no correlation with actual abundance. In microbial ecology, 

however, read frequency information continues to be used even though the read 

frequency issue has been shown to transcend beyond studies involving metazoans such 

as nematodes to microbes, particularly in mixed species samples (Amend, Seifert, & 

Bruns, 2010; Edgar, 2017a). This lack of association between relative abundance and 

read frequency, therefore remains one of the key limitations of metabarcoding. The 

quantitative reproducibility of the replicates, however, was shown in this study. Thus, on 

both the lack of correlation between read frequencies and relative abundance and 

reproducibility across replicates, this study agrees with (Porazinska et al., 2010c), 

especially for the NF1-18Sr2b samples.  

Cross-talk between samples as seen in this experiment has the potential of causing 

misrepresentation of the diversity in a sample. This phenomenon has been reported in a 

number of previous studies (Kircher, Sawyer, & Meyer, 2011; Carew et al., 2013; Nelson 

et al., 2014; Esling, Lejzerowicz, & Pawlowski, 2015). An instance of how this could 

happen was seen in the recovery of an otu of Anatonchus tridentatus in the NF1-18Sr2b 

samples when in fact it was from the SSUF04-SSUR22 samples. It was easily detected 

because the two markers covered different genomic regions. If all the samples were 

amplified by the same primer sets, then it would have been hard detecting it. Edgar (2016) 

investigated cross-talk from a total of twelve Illumina runs and developed an algorithm, 

uncross capable of detecting as high as 80% of these spurious reads in samples. Schnell 

et al. (2015) also described a laboratory set-up to help minimize their occurrence. The 

authors implicated factors such as errors during primer synthesis, PCR errors, and 

sequencing errors as being some of the causes of cross-talk and suggested using tags 

with as many base differences from one another as possible.  

As observed from the different taxonomy assignment methods, it is best to always 

combine two or more different approaches in order to get the best assignments. Methods 

usually employed in analysis pipelines such QIIME (Caporaso et al., 2010), MOTHUR 
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(Schloss et al., 2009) or USEARCH (Edgar, 2010) depend on the use of curated reference 

databases such SILVA , UNITE, RDP or PR
2
 which all depend on publicly available 

sequences. For that reason, at any point in time these databases may not be as up-to-

date in terms of collection as the NCBI GenBank. Therefore, alternative methods such as 

blast search against all NCBI database may provide assignments that perhaps these 

pipeline-based methods might fail to provide. And despite the fact that a number of entries 

in GenBank may have dubious accuracies in terms of taxonomy, no blast assignment in 

this study contradicted any of utax’s that had sufficient support (≥ 0.5).   

In summary, for metabarcoding of soil nematodes, there are many reasons for one to 

favour the NF1-18Sr2b marker as the most suitable both in terms of coverage and ease of 

access to reference sequences. The issue of non-specificity of this marker, although a 

problem, can mostly be avoided by extracting nematodes from soil before DNA extraction 

to make sure most non-targets are excluded. According to Creer et al. (2010), the fact that 

only a very minute proportion of soil volumes are made up of nematode biomass means 

that nematodes should always be extracted from the sediments first (Creer et al., 2010). 

Moreover, as stated by Peham et al. (2017), direct extraction kits can handle only a 

fraction of the recommend volumes of soil needed for analysis of nematode communities 

at the moment. In an ideal situation where a complete reference database of 28S rDNA is 

available, the D3Af-D3Br may equally be suitable alone or in combination with any of the 

18S-based markers. In fact, claims have been made that suggests that the D2-D3 

segment may provide a better barcoding marker than the 18S rDNA (Creer et al., 2010). 

For the COI region, unless the approach involves a cocktail of primers covering the 

diversity of the entire phylum as suggested by (Prosser et al., 2013), the COI markers will 

continue to be of very little use in nematode metabarcoding. The ‘primer cocktail’ 

approach has not been tested on soil nematodes, and even if it worked, there is still the 

issue of very limited nematode reference sequences in public databases. Finally, when 

making recommendations for appraisal and adoption of new barcode marker(s) other than 

the ones known and used so far, an important consideration that always has to be made 

is the availability of a comprehensive reference database. It will take tremendous amount 

of work to develop new reference databases as vast as what exists now for the 18S or 

28S rDNA region. 
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4 A comparison of tools for analysing nematode next 
generation sequencing data 
4.1 Introduction 
The use of next generation sequencing for nematode identification has the potential to 

make community analysis less tedious, fast and inexpensive. This technology makes it 

possible to generate enormous amounts of sequence data cheaply and within a very short 

time (Porazinska et al., 2009). With such large amounts of sequence data comes the need 

for bioinformatics tools that are sophisticated enough to process them. A number of 

programmes and online resources offer tools and services for analysing high-throughput 

sequence data (Bik et al., 2012a). Some of these tools perform exclusive tasks such as 

quality filtering, and trimming, otu picking and chimera detection, while others provide 

complete data processing pipelines. Quantitative Insights Into Microbial Ecology (QIIME) 

(Caporaso et al., 2010), MOTHUR (Schloss et al., 2009), metagenomics rapid annotation 

using subsystems technology (MG-RAST) (Meyer et al., 2008), Ribosomal database 

project (RDP) (Cole et al., 2014) and USEARCH (Edgar, 2010) are among examples of 

those that offer complete data processing. All of these tools are fully open-source except 

USEARCH, which only offers a 32-bit version without charge.  

The qiime.org homepage describes QIIME as a bioinformatics pipeline for performing 

microbiome analysis from raw DNA sequencing data generated from next generation 

sequencing platforms such as 454 pyrosequencers and Illumina platforms. It is developed 

with the capability to analyse sequences generated by these platforms through to 

publication-ready standard (Caporaso et al., 2010). QIIME can easily be installed and run 

locally on the user’s computer. MOTHUR, like QIIME is also targeted towards private 

users, and hence easily installable on a personal computer (Schloss et al., 2009). RDP is 

mainly an online resource for sequence data analysis. It also offers tools that can be 

installed and run locally on user’s computer. It was initially developed for processing 

bacterial and archaeal 16S rDNA pyrosequencing data but has since been expanded to 

include fungal ITS and 28S rDNA. It was also optimised for analysing Illumina data, 

presumably, to keep up with the then growing popularity of the Illumina sequencing 

method. Like the aforementioned two, USEARCH (Edgar, 2010) integrates many different 

algorithms into a single package with substantial amount of documentation and support. 

MG-RAST is only available as web application where users can upload sequences for 

automated analyses. Although all these pipelines to some extent appear to be biased 

towards microbiome analyses, based on their focus on mostly 16S rDNA and ITS, they 

are still supportive of metazoan analyses provided the user can obtain reference 

databases to train the algorithms available for microbiome analyses. 
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A number of previous studies have compared and reviewed some of these pipelines 

(D’Argenio et al., 2014; Nilakanta et al., 2014; Plummer et al., 2015).  In their comparison 

of QIIME and MG-RAST on 16S rDNA dataset from human gut, D’Argenio et al. (2014) 

found that QIIME performed much better than MG-RAST at assigning taxonomy, 

particularly at the family rank and lower. Diversity analyses also yielded more accurate 

results with QIIME. Analyses run time between the two was also significantly different, 

with QIIME taking approximately two hours to complete the analyses whiles MG-RAST 

took about 10 days. The comparison of the run time was a somewhat flawed one since, 

and as admitted by the authors, this difference could in part have had to do with the fact 

that the two pipelines were not run under the same computing power. Plummer et al. 

(2015), using 16S rDNA from gut microbiome, also expanded this comparison to include 

the MOTHUR pipeline. Between QIIME and MOTHUR, both of which were run on the 

same machine, the former took one hour while the latter took ten hours to complete the 

analyses. The authors concluded that QIIME and MOTHUR were more powerful than MG-

RAST in terms of the analysis options available to the user. They also concluded that 

QIIME was more user friendly than MOTHUR, the latter taking more tweaking to obtain 

sensible results (Plummer et al., 2015).  

Although these studies (D’Argenio et al., 2014; Plummer et al., 2015) provided very 

helpful comparisons of two of the most widely used analysis pipelines, both were based 

on microbial 16S rDNA data not metazoan 18S rDNA data. Also, the recent popularity of 

USEARCH, which currently has over 35,000 users, may warrant its inclusion in such 

comparisons to assess its performance against the two most recommended pipelines, 

QIIME and MOTHUR. Additionally, by using nematode 18S rDNA data, this becomes 

probably the first of such comparisons made using metabarcoding data from metazoans. 

The objective here was to present a comparison of QIIME, MOTHUR and USEARCH in 

terms of their overall user-friendliness, accuracy and speed under the same computing 

power using the same mock community data as in Chapter 3.  

Specifically, they were compared based on: 

1. Efficacy of their read filtering methods 

2. Accuracy of the read clustering algorithms they use by default 

3. Reliability of their taxonomy assignments  

4. Ease of use including the number of lines of commands to run in order to reach 

similar outcome 

5. And time required to complete analysis, which is defined here as the stage where 

a biom table is generated and each otu has been assigned taxonomy. 

Since the previous comparisons attested to the superiority of MOTHUR and QIIME over 

MG-RAST, it was not considered necessary to include MG-RAST in this comparison. And 
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also, the focus here was on pipelines that can be installed and run locally on a PC, not on 

a server. Although OCTUPUS (Sung et al. unpublished) is another such analysis pipeline 

that has previously been used in studying meiofaunal diversities (Creer et al., 2010; 

Fonseca et al., 2010), it has not been updated since May 2010 and is hence not 

considered in the comparison. Moreover, despite many attempts to run the analysis using 

RDP command line tools, the extremely limited documentation available on its command 

line tools made it impossible to obtain a meaningful output. Additionally, since the RDP 

command line pipeline requires aligned reads it would have taken an extremely long time 

to carry out the analyses with the large number of sequence reads used for this 

comparison. Furthermore, this chapter will not be reporting on the numerous diversity 

analyses such as alpha and beta diversity possible with these pipelines. Instead the focus 

will be on the suitability of these pipelines for metazoan metabarcoding which mainly 

involves determining the identities of the sequences recovered from each sample. 
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4.2 Materials and methods 
4.2.1 Mock community 
The sequences were produced from three replicates of artificially assembled nematode 

community consisting of 23 different species spanning the two classes of nematodes. In 

all, 19 different families belonging to six orders within Nematoda were represented. As 

described in section 3.2.2, the communities were dominated by members of the Order 

Rhabditida due their numerical dominance in soil environments. Table 3.1 summarises the 

taxonomic composition of the mock community and the abundance of each genus/species 

that was included. The data used were the same ones obtained from the analysis 

involving the NF1 and 18Sr2b primer pairs from Chapter 3.  

 

4.2.2 Data analysis 
The raw fastq sequences files were analysed using the three different pipelines, QIIME 

(v.1.9.1), MOTHUR (v.1.39.1) and USEARCH (v.9.2 and v.8.1). For most of the analysis 

parameters were set to default wherever possible. For clustering, a universal value of 97% 

similarity cut-off was used for all three pipelines. For taxonomy assignment, 

pr2_gb203_version_4.5 18S rDNA sequences (Guillou et al., 2012) were used as 

reference. In USEARCH, the fasta reference file first had to be formatted into a udb file 

before being used for taxonomy assignment (Edgar, 2015). 

 

4.2.2.1 QIIME  
The analyses within the QIIME pipeline started with assembling the paired reads to 

generate merged reads using the fast-join method (Aronesty, 2011) (Table 4.1) with the 

command, join_paired_ends.py. The merged reads were then filtered applying a quality 

threshold of 29 using split_libaries.py command. This ensured that reads with quality 

scores of less than 30 were discarded. All the quality-checked merged reads were then 

concatenated into a single fasta file. These sequences were checked for chimeras using 

uchime (Edgar et al., 2011) and the chimeric sequences were filtered out. Sequences 

were then clustered using the pick_otus.py command at 97% similarity cut-off using the 

uclust method (Edgar, 2010). From each of the otu clusters, the most abundant read was 

picked to represent all of the reads using the command pick_rep_set.py. The OTU 

representative sequences were assigned taxonomy based on the uclust approach using 

the command assign_taxonomy.py and the pr2_gb_203_version_4.5 as reference 

database (Guillou et al., 2012). The taxonomy and otu text files were then used to 

generate an otu table wherein each otu was shown as a record with the number of reads it 

has under each sample and its associated taxonomy. This was performed using the 
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command make_otu_table.py. Singletons were removed from the biom table using the 

command filter_otus_from_otu_table.py. 

 

4.2.2.2  MOTHUR 
The steps used here follow the protocol described in the MOTHUR tutorial for MiSeq SOP 

(https://www.mothur.org/wiki/MiSeq_SOP) which was accessed on 25
th
 August 2017. The 

raw fastq reads were first merged using the make.contigs command with default 

parameter settings. This step uses similar algorithm as the one used in PANDAseq 

(Masella et al., 2012) (Table 4.1). The merged reads were then screened to remove 

sequences longer than 400 bp or ones with one or more ambiguous bases via the 

command screen.seqs. Reads that passed this step were then dereplicated using the 

command unique.seqs. The next step was to align the unique sequences against SILVA 

v.119 aligned 16/18S rDNA reference sequences (Quast et al., 2013) with the command, 

align.seqs. The SILVA database was used because it performed much better compared to 

a custom database of sequences of nematodes downloaded from NCBI and aligned using 

MAFFT (Multiple Alignment using Fast Fourier Transform) (Katoh et al., 2002). This 

alignment step in the MOTHUR analysis was used to determine the length of the region 

where the reads overlap the reference sequences including gaps. The sections of the 

sequence reads outside the overlaps were screened out. Gaps in the alignment were then 

removed using the filter.seqs command, thus reducing the number of positions to exactly 

the number of bases in the sequences. Using the command unique.seqs, the gap-free 

sequences were again dereplicated to ensure that redundant sequences that may have 

resulted after trimming are unified with their identical matches [the trimming may have 

caused sequences that were originally unique to become identical, if the trimmed region 

was where the reads differed]. The unique sequences were grouped into clusters of 

sequences not more than three nucleotides different from one another using the 

command, pre.cluster. Chimeric sequences were identified using the uchime algorithm 

(Edgar et al., 2011) as implemented in the command chimera.uchime. The chimeric 

sequences were subsequently removed using the command remove.seqs. Using the 

pr2_gb203_version_4.5 18S rDNA sequences as reference database, the chimera-filtered 

reads were assigned taxonomy using the default method employed in MOTHUR (Wang et 

al., 2007). This method computes the probability that a query sequence is within a 

reference sequence based on the k-mers that constitute it. While k can be set to a value 

of the user’s choosing, the default is 10. The command used for this step is classify.seqs. 

Thereafter, the command dist.seqs was used to generate a distance matrix which was 

implemented in the clustering command, cluster which grouped reads into otus of 97% 

similarity cut-off. The clustering algorithm used was OptiClust, the default method 
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MOTHUR (Westcott & Schloss, 2017). With the command make.shared, the number of 

sequences within each otu was determined. And with this information singletons could be 

removed from the ‘shared’ file using the command, remove.rare. The taxonomies of the 

otus were determined using the command classify.otu. Following this, a biom file was 

created using the command make.biom. Finally, to generate a fasta file of the otu 

representative sequences, the command get.oturep was used. 

 

4.2.2.3  USEARCH 
Within this pipeline, the paired reads were first merged based on the sequence of the 

overlapping region. The command, fastq_mergepairs which performs the assembling also 

concatenates all merged sequences of the different samples into one fastq file (Edgar & 

Flyvbjerg, 2015). Mismatches of up to 10 bp were allowed within the overlapping regions 

of the paired reads to be aligned. The average read length after joining paired reads was 

360 bp. The merged reads were then filtered using the command, fastq_filter which 

removes any read with more than one base pair expected error (EE) (Edgar & Flyvbjerg, 

2015). The filtered reads were then dereplicated using the command fastq_uniques. Using 

a similarity cut-off of 97% sequence similarity, the unique sequences were clustered using 

the command cluster_otus which implements the uparse algorithm (Edgar, 2013). This 

clustering command also finds and removes chimeras. A standalone command for 

removing chimeras exists that can be used but this extra chimera removal step is strongly 

cautioned against (Edgar, 2017b). Taxonomy assignment was based on the utax 

algorithm using the PR
2
 reference database for 18S rDNA for eukaryote version 4.5 

(Guillou et al., 2012). Finally, the command usearch_global was used to generate an otu 

table, similar to the one produced by QIIME. With exception of this last command which 

was executed using USEARCH v.8.1, all the previous commands used USEARCH v. 9.2. 

 

Table 4.1. Summary of the different methods/algorithms used in the three pipelines, QIIME, 
MOTHUR and USEARCH. 

       Step QIIME MOTHUR USEARCH 
1. Merging fast-join  PANDAseq  USEARCH 

fastq_mergepairs  

2. Quality filtering Minimum quality 

score  

Minimum quality 

score 

Maximum expected error  

3. Chimera 

removal 

uchime  uchime uparse 

4. Clustering uclust  OptiClust uparse 

5. Taxonomy uclust wang utax 
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4.2.3 Taxonomic coverage 
Taxonomic coverage of the three pipelines was based on the proportion of the sampled 

taxa they each were able to recover from the data. To avoid losing any diversity, 

singletons were kept. For a taxon to be classified as detected, it had to be found in at least 

one of the three replicates. Although taxonomic coverage was based on the assignment 

methods employed by each of these pipelines, independent blast searches were 

performed on the representative sequences before singletons were removed in order to 

confirm the identities of those sequences whose taxonomies were inconclusive.  
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4.3 Results 
4.3.1 Paired-read merging 
The first step in all the analysis pipelines was merging the paired reads into sequences 

that overlap. For all three pipelines a mismatch of 15 bp within the overlapping region and 

a minimum overlap of 150 bp were allowed. With these two parameters, the percentage of 

the total reads that were successfully merged was comparable between all three 

pipelines: 57.4% for QIIME, 56.3% for USEARCH and 57.1% for MOTHUR. Similarly, 

average lengths of merged reads were similar across all the three pipelines, 364 bp for 

both QIIME and MOTHUR and 361 bp for USEARCH.  

 

4.3.2 Quality filtering 
This step was carried out to remove all poor-quality sequences. Within QIIME, this 

resulted in the removal of 1,592,033 sequences from the merged reads. For USEARCH, a 

total of 155,624 reads were discarded while within MOTHUR 1,422,211 sequences were 

removed. With both QIIME and USEARCH, the sequence filtering step involved just one 

command, split_libraries.py and fastq_filter, respectively. With MOTHUR, this was done in 

two steps using the commands, trim.seqs and screen.seqs. It is worth noting that the 

filtering method used with USEARCH discards reads based on a maximum expected error 

threshold, whereas with QIIME and MOTHUR, reads were discarded if they had average 

quality scores of less than 30. 

 

4.3.3 Chimeric reads 
There were some similarities between the chimera filtering approach of QIIME and 

MOTHUR. Two steps were involved, one that identifies chimeras and one that filters them 

out. Chimera removal in USEARCH is integrated in the otu clustering step. In QIIME 

chimeric sequences were picked from sequence reads; in MOTHUR, from preclustered 

sequences; and in USEARCH, from the unique sequences. Numerically, 746,671 

individual reads were identified as chimeric and removed with QIIME; 74,048 from a total 

of 105,256 preclustered reads with MOTHUR and 6557 unique reads with USEARCH.  

 

4.3.3.1 Clustering 
The number of otus generated during clustering were 5,442 with QIIME, 2,244 with 

MOTHUR and 161 with USEARCH at 97% cut-off. Without excluding singletons, QIIME 

generated 11,513 otus, whereas MOTHUR and USEARCH generated 4,588 and 400 otus 

respectively. Compared to the expected diversity, the number of otus produced with the 

QIIME pipeline was orders of magnitude higher even without singletons. For all three 
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pipelines proportions of the otus that emerged as singletons were similar (Figure 4.1A). 

The number of otus produced by USEARCH, however, was relatively closer to the 

expected diversity.  

 

A            B 

 
Figure 4.1. (A) Proportion of singleton and non-singleton otus for each of the three pipelines. (B) 
Number of otus generated by each of QIIME, MOTHUR and USEARCH compared to the actual 
species diversity in the mock community. Bars representing QIIME and MOTHUR are out of scale 
and so have been shortened to fit in the graph.  

 

4.3.4 Taxonomy assignment 
The results of the taxonomy assignments highlighted more a limitation of the reference 

database used than the limitations of taxonomy assignment algorithms associated with 

these pipelines. A number of the entries in the reference sequence files had taxonomies 

that were not annotated to the order level making their use for assigning sequences to 

genus or species level impossible. As discussed in Chapter 3, this is not peculiar to just 

the PR
2
 database releases but was observed with some of entries of the SILVA releases 

that were examined as well. Because of this, the taxonomy assignment of all three 

pipelines had to be cross-checked to ensure they were assigned to the correct genus or 

species if possible. Blast search with the NCBI database provided more accurate 

assignments, although this was often slow. 

 

4.3.5 Taxonomic coverage 
All three pipelines recovered all of the sample taxa in the analyses. Some of the otus in 

both QIIME and MOTHUR matched nematode taxa that were not in the mock community. 

Upon closer examination of their first few blast search matches, these otus appeared to 

be chimeras because of the taxonomic distances between their top few blast hits.  
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4.3.6 Ease of use 
All three pipelines offer significant documentation with comprehensive guidance on steps 

to perform typical microbiome data. The QIIME script page, http://qiime.org/scripts/ has 

detailed guides and examples on how to run each script. There are also tutorials on how 

to follow a standard operating procedure for data analyses. Similarly, both MOTHUR and 

USEARCH offer detailed guides on how to install and run their various commands. 

MOTHUR and USEARCH were the easier to install on a computer running linux, requiring 

only the user ensure that the executable programmes were in the path of the system. With 

both of these, the standalone executable file could be enough to run every command, 

although options are available in MOTHUR to use other programmes such as uchime for 

chimera detection. And most importantly, in addition to being available for Linux and 

macOS, they are both capable of running natively on Windows operation system. QIIME, 

however, can only be run on Windows through a third-party application. Also, third-party 

tools such as fast-join need to be installed alongside QIIME before some commands can 

be used. In terms of possibility of streamlining the analyses, USEARCH was the easiest to 

streamline, because all analyses involved five commands. MOTHUR presented the 

highest difficulty in terms of ease of streamlining the entire analyses due to the number of 

commands that needed to be executed and large memory space needed for some of the 

computations.  

 

4.3.7 Duration of analyses 
Analysis run time varied significantly between the three pipelines (Figure 4.2). It took 

QIIME in total 37 minutes to complete the analysis of the ~10GB of data used, all through 

to the biom table stage. It took MOTHUR ~7 hours while USEARCH took 13 minutes. The 

timing was based on how long it took for all the commands used to finish running on a 

Lenovo ThinkPad T430 having 8 GB memory, two-core processor with base frequency of 

2.5GHz and maximum turbo frequency of 3.1 GHz. In both QIIME and USEARCH, the 

commands were listed in bash executables files and run as a workflow; and in MOTHUR, 

they were written in a batch file (https://www.mothur.org/wiki/Batch_mode) and run with a 

single command. With MOTHUR, the workflow failed several times. In fact, due to the 

number of commands that had to be run and the memory and storage requirements, there 

were a couple of instances where the analysis would terminate before completion. Hence, 

the total analysis run time was not based on the time taken to complete the workflow, but 

rather, the sum of durations for each command to run to completion. In fact, MOTHUR 

does well to report these durations after each completed command.  
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Figure 4.2. Time taken for each pipeline to complete the analysis in minutes. Analysis run on a PC 
with the specifications: 8 GB memory, two-core processor with base frequency of 2.5GHz and 
maximum turbo frequency of 3.1 GHz 
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4.4 Discussion 
In the comparison of QIIME, MOTHUR and USEARCH pipelines on nematode NGS data, 

USEARCH was the best pipeline, particularly in terms of which clustering algorithm gave 

the most realistic diversity in the samples. In terms of ease of use and speed, it again 

outdid the other pipelines. And none of the steps where USEARCH emerged superior 

were at the expense of any other step in the analysis. The initial processing step for each 

pipeline was similar, except in the number of reads discarded during the filtering step; 

there were significantly fewer reads discarded by the USEARCH pipeline compared to 

QIIME and MOTHUR. One reason for this could be the filtering method the USEARCH 

pipeline employs which is different from the average Q-score-based approach used with 

the other two pipelines (Edgar & Flyvbjerg, 2015). USEARCH filtering is based on the 

expected error value of a read and this was set to not exceed one in this experiment 

(Edgar & Flyvbjerg, 2015). By this method it is possible for reads with an average Q score 

of less than 30 to be kept even though these would fail to pass the Q30 threshold set for 

QIIME and MOTHUR. This difference in approach to filtering sequences could be the 

reason for such an enormous difference in the number of discarded reads.  

With regards to chimera removal, the observations made were similar to previous reports 

(Edgar, 2013), where, for both QIIME and MOTHUR, reads discarded as chimeric were 

significantly higher than the number detected and discarded by USEARCH. Many of these 

could have been due to false positive detections which has been reported to be a 

potential problem with the uchime algorithm (Edgar et al., 2011) that was used for both 

QIIME and MOTHUR analysis. Other chimera detection options available within QIIME 

are the blast fragment method (Altschul et al., 1990), chimera slayer (Haas et al., 2011), 

and within MOTHUR, vsearch (Rognes et al., 2016) and chimera slayer (Haas et al., 

2011) can also be used. The choice of the uchime method for both QIIME and MOTHUR 

was to facilitate their comparison with uparse within USEARCH.  

Despite the similarity cut-off percentage being set to the same level across all three 

pipelines, the number of otus generated between them varied significantly. If the number 

of otus is to be considered as an estimation of biological diversity, QIIME and MOTHUR 

would be predicting diversity 500 and 200 times more than what it actually is, respectively. 

Similar observations were made by Bachy et al. (2013) on protists when they compared 

the diversities assessed through morphological, sanger sequencing and pyrosequencing 

methods. Using Escherichia coli, Kunin et al. (2010) also highlighted this issue in 

prokaryotes and suggested high stringency in filtering out erroneous reads as a means of 

minimising this diversity inflation. They found that the pyrosequencing data overestimated 

diversity, in some cases by several orders of magnitude compared to the morphological 

method. By discarding singletons, the otu numbers dropped down by approximately half. 
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The number of otus generated with the uparse algorithm of USEARCH corroborates the 

findings of (Edgar, 2013), which demonstrated that otus numbers from QIIME or 

MOTHUR often exceed actual diversity by hundreds to thousands. It is important to 

mention, however, that the closeness of otu number to actual diversity in a sample is not 

always the best measure of the efficacy of a clustering method (Edgar, 2013). This is 

because unless this ‘good’ diversity estimation is combined with very good taxonomic 

coverage, especially for metabarcoding-focussed studies such as this one, fewer otus is 

not necessarily the best outcome. USEARCH was able to provide otu numbers closest to 

the actual diversity compared to the other pipelines while at the same time achieving 

taxonomic coverage comparable to these other pipelines.  

In metabarcoding, the main goal is to identify individuals in a sample based on the 

sequence of a specific region of their DNA (Taberlet et al., 2012), thus making taxonomy 

assignment one of the most important steps in the analysis process. This step involves 

matching query sequences, usually otu representatives, against a reference database of 

sequences with curated taxonomies. Therefore, unless the query sequence matches a 

sequence in the reference database, the sequence cannot be assigned taxonomy. At the 

moment, only the SILVA (Quast et al., 2013) and PR
2
 (Guillou et al., 2012) databases 

offer 18S rDNA sequences with curated taxonomies formatted to work within most 

analysis pipelines. As discussed earlier, a few of the database entries have incomplete 

taxonomies, with most classified only to ranks above order level. In a case where the 

query sequence matches a sequence with an incomplete taxonomy, the result is an 

assignment that, while correct, makes further pipeline-independent examination of the 

sequence [such as blast search] compulsory. Many instances of this were observed in 

each of the pipelines, prompting the use of blast search as a means of cross-checking the 

assignments. Alternatively, a local reference database can be generated with the user’s 

own sequences and their full taxonomies, in which case assignment is constrained by the 

taxonomic coverage of this database. Otherwise, NCBI blast search also provides a good 

check for these incompletely assigned otus. The result from blast search showed that 

where the taxonomy in the reference database was complete, all the three pipelines 

assigned the otus to the correct taxa. For a long-term solution to this issue, it may be a 

good idea for seasoned nematode taxonomist to come together and build a well curated 

database. 

QIIME and MOTHUR are currently the most popular tools for high throughput sequence 

analysis. So far, all comparisons involving these two pipelines have not provided 

conclusive verdict as to which is better (Nilakanta et al., 2014; Plummer et al., 2015). They 

both have comprehensive sets of functionalities for carrying out various (otu)-based 

methods of describing and comparing communities and documentation on these 

functionalities. However, the biggest difference according to Nilakanta et al. (2014) 
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between these two pipelines was the analysis run time, with QIIME taking 1 hr and 

MOTHUR taking 10 hrs. A similar observation was made in this study with QIIME taking 

10 times less time than MOTHUR to finish. USEARCH took an even shorter time to 

complete, about three times less than QIIME. And like QIIME and MOTHUR, USEARCH 

offers similar suites of functionalities and a plethora of documentations to go with these 

functionalities. MOTHUR combines features from pre-existing software reconstituted and 

written in C and C++ programming language for speed and robustness (Schloss et al., 

2009). There is no denying that it provides a faster implementation of each of these 

programmes on their own but compared to the other pipelines evaluated in this study, it is 

the slowest.  

The MOTHUR pipeline involves a step where reads are aligned using a template 

alignment supplied by the user. This is so that sequences can be trimmed to a common 

region in the alignment to improve both the speed and robustness of otu assignment 

(Schloss, 2013). The composition and the quality of alignments of the sequences in this 

template database has a huge impact on the clustering step further down the analysis. 

Initially a template file generated from 38 nematode sequences downloaded from NCBI 

and aligned using MAFFT  (Katoh et al., 2002) was used. Using this alignment caused 

over 80% of the reads to be assigned to one species, Steinernema carpocapsae leaving 

more than 50% of the sampled taxa missing. It was when this step was repeated using a 

subset of 1000 aligned 16S/18S rDNA sequences from the SILVA database as template 

that a much better otu assignment was obtained and all sampled taxa were recovered. A 

subset was used because using the complete reference database generated an alignment 

file of over 240GB causing the programmeto terminate with an error due to lack of space. 

And even without the storage space limitations, the process would have taken a very long 

time to complete.   

In conclusion, if all three pipelines were to be scored, based on diversity approximation by 

number of otus, speed and ease of use, the ranking would be USEARCH, QIIME and then 

MOTHUR. Automation was extremely easy with USEARCH due to fact that the whole 

analysis involved significantly fewer command lines than the other pipelines. Taxonomy 

assignment was not any different between the pipelines based on the dataset used here. 

Although clustering accuracy remains a difficult process to assess (Edgar, 2013), it was 

obvious uparse was the fastest clustering algorithm compared to uclust and OptiClust 

used in QIIME and MOTHUR, respectively. To summarise, USEARCH may be the best of 

the three for nematode metabarcoding analysis, at least, based on the results of this 

study. 
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5 In-depth analysis of the relationship between 
sequence reads and nematode abundance  
5.1 Introduction 
Speed, cost-effectiveness, accuracy and the ability to simultaneously identify a wide 

diversity of taxa are all features of metabarcoding that appeal to taxonomists interested in 

biodiversity monitoring. Metabarcoding has, over the years, helped unravel great insights 

into microbial and metazoan communities in both aquatic and terrestrial environments 

(Sogin et al., 2006; Buée et al., 2009; Fonseca et al., 2010; Porazinska et al., 2010b, 

2012a; Bik et al., 2012b; Lindeque et al., 2013). Its application in nematology may date as 

far back as almost a decade ago through the work of Porazinska et al. (2009), which 

showcased the tremendous potential of this method as a means of identifying nematode 

taxa within soil communities. The study used an artificially assembled nematode 

community to test the suitability of the approach for nematode identification. The authors 

used two pairs of primers that anneal to sites within the highly conserved 18S and 28S 

rDNA to amplify two regions that were highly successful in recovering and resolving a 

significant number of the sampled taxa.  

It is a common, but rarely tested assumption that read abundance correlates with taxon 

abundance in amplicon sequencing (Amend et al., 2010; Edgar, 2017a). While the ability 

of metabarcoding to detect and accurately identify species in bulk samples has been 

proven across most taxonomic groups (Zhan & MacIsaac, 2015), most mock community 

metabarcoding studies have reported poor correlation between relative abundance of taxa 

and their read frequencies. In fact Porazinska et al. (2009) acknowledged this limitation in 

their study. Studies that have attempted to relate abundance/proportion of taxa with their 

sequence read numbers/proportions found no correlation or advised that caution be 

exercised when attempting such assumption (Amend et al., 2010; Yu et al., 2012; Deagle 

et al., 2013). This is a key concern because of the role abundance data play in community 

assessment of organisms, especially nematodes and their use as biological indicators of 

soil status.  

Theoretically, any factor that influences or introduces bias in the number of DNA 

templates for each individual organism in a sample prior to PCR or causes bias in the 

number of copies of each amplicon generated for each individual after PCR can be a 

culprit to the poor correlation between read numbers and actual abundance. These 

include innate factors such as variability in cell numbers and differences in the number of 

copies of the marker gene between species. Nematodes were previously  considered to 

be eutelic  (Martini, 1909; van Cleave, 1932; Malakhov, 1994), meaning individuals of the 

same life stage have identical number of cells across all species. The subsequent disproof 

of this idea by Cunha et al. (1999), who showed that most species have variable cell 
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numbers in their tissues particularly their epidermis, meant nematodes can be subject to 

those bias associated with cell number difference depending their life stage. 

Other factors responsible for failure of read numbers to correlate with actual abundance of 

taxa include DNA extraction and PCR biases (Amend et al., 2010). In nematodes, there is 

evidence that DNA of some taxa may be more easily extractable than that of other taxa, 

mainly due to differences in their cuticle thickness (Waeyenberge et al., 2017). For 

example, members of the super-family Criconematoidea are characterised by thick 

strongly annulated cuticles and were shown to yield a very low amount of DNA compared 

to other taxa. Universal primers employed in metabarcoding for amplifying targeted DNA 

regions often have positions of base mismatch against certain taxa within the group they 

are designed for. Such primer mismatches have been shown to lead to significant 

amplification bias in multi-template PCR, where the templates with perfect matches are 

preferentially amplified (Sipos et al., 2007). The extent of this becomes even escalated at 

higher annealing temperatures. And as is mostly the case in NGS analysis, the additional 

amplification steps such as the bridge amplification on Illumina platforms further magnify 

this bias (Pinto & Raskin, 2012). This, in some cases, has been avoided by the use of 

primers with ambiguous bases at known mismatch positions. 

One of the first ever attempts at resolving the read abundance bias focussed mainly on 

correcting  the gene copy  number disparity (Kembel et al., 2012). According to the 

authors, a much better correlation between read abundance and species abundance of 

bacterial species could be achieved by predicting and incorporating information about the 

16S rRNA gene copy numbers. Edgar (2017) created a solution through UNBIAS; an 

algorithm that corrects for biases attributable to gene copy number variations and primer 

mismatches inside the USEARCH ((Edgar, 2010) pipeline. He acknowledged that this 

algorithm performs with very limited success and requires a number of conditions to be 

met. For example, it works best when the number of mismatches within the primer 

annealing site is known. It also relies on prior knowledge of the number of copies of 

targeted region present in the genome, an undertaking possible only if the entire genome 

of the species involved has been sequenced.  

Previous studies have suggested that in monospecific samples, read numbers, to some 

extent, correlate with actual abundance (Amend et al., 2010). In multi-specific samples, as 

ones in Chapter 3 and in Porazinska et al. (2009) inherent differences between species 

[such as number of gene copies and number of cells] skew the relationships between read 

numbers and actual abundances of the community. The findings from Chapter 3 showed 

that the distribution of reads remained consistent across replicates, which means that 

even in multi-specific samples, each of the sampled taxa produced the same reproducible 

read abundance. Based on this information, it can be hypothesised that the disparity 
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between relative read numbers of taxa and their relative abundance in a sample increases 

with increasing complexity; and that identical communities, regardless of how complex 

they might be, are quantitatively similar in terms of read distribution. Therefore, this study 

is aimed at improving our understanding of how species complexities within samples and 

varying taxa combinations influence read numbers.  

It was also set up: 

1.  To understand how differences in biomass translate into the read numbers 

between two noticeably different life stages of the same species 

2. To determine how read orientation and quality filtering influence read proportions 

of nematode taxa in the samples at the analysis steps  

 

To achieve these, triplicates of fifteen mock samples were set up each with specific set of 

taxa and number of individuals. The samples, their species composition, the number of 

each species included and the specific question(s) they were set up to answer are 

summarised in Table 5.1. 
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5.2 Materials and methods 
5.2.1 Mock Communities 
Fifteen mock community samples with various compositions and abundances of 

nematode species were set up, each in triplicates. Because of time and resource 

constraints, it was not possible to use more replicates than the three that were used. 

Table 5.1 summarises the taxonomic composition of the samples and what questions they 

were set up to address.  

 

5.2.2 DNA extraction and amplification 
For each sample, the specimens were transferred into 20 µl of distilled water and frozen 

at -20ºC until they were ready for DNA extraction. Using the Qiagen extraction kit and the 

procedure described in section 3.2.4, total DNA was eluted into 200 µl of AE buffer. The 

targeted barcode region, located within the 18S rDNA region was amplified using the 

nematode universal primer pairs, NF1 and 18Sr2b both with Nextera adapters attached to 

their 5’ ends. The same PCR programme used in Chapter 3 was employed here.   

 

5.2.3 Library preparation 
Following a quality control step involving the use of gel electrophoresis for 5 µl of the PCR 

products from each sample and a clean-up step, index PCR was carried out as described 

in Chapter 3. The products were cleaned up again before being multiplexed according to 

the concentrations of each sample. A third clean-up was performed on the multiplexed 

sample before checking the size of the amplicons using the Agilent TapeStation (Agilent 

Technologies, Germany). The sample was mixed with 10% PhiX, denatured before being 

sequenced on the Illumina MiSeq using the paired-end approach at Fera Science Ltd.  
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Table 5.1. Taxa constituting each of the samples used, number of individuals (N) included, their 
sources and the purpose of the sample 

Sample Species N Purpose Source 

MC1 Pratylenchus penetrans 3 
1. Reproducibility of  HAU 

 Mylonchulus sp. 1 
    read distribution ES 

 Oscheuis tipulae 7 
2. Quality filtering effect on  CGC 

 Oscheuis myriophila 2 
    read distribution CGC 

 Trichodorus primitivus 4 
 Fera 

 Trichodorus cylindricus 1 
 Fera 

 Acrobeloides butschlii 4 
 CGC 

 Panagrolaimus rigidus 1 
 CGC 

 Panagrellus redivivus 3 
 CGC 

 Rhabditis brassicae 2 
 CGC 

 Rhabditis sp. 9 
 HAU 

 Meloidogyne naasi 6 
 HAU 

Pp2 Pratylenchus penetrans 3 
Amplification bias and  HAU 

PpPc3 Pratylenchus penetrans  3 which taxa are favoured  HAU 

 Pratylenchus crenatus 3  HAU 

PpPcR4 Pratylenchus penetrans  3 
 HAU 

 Pratylenchus crenatus  3 
 HAU 

 Rhabditis sp. 1 
 ES 

PpPcRPr5 Pratylenchus penetrans  3 
 HAU 

 Pratylenchus crenatus 3 
 HAU 

 Rhabditis brassicae  1 
 CGC 

 Panagrellus redivivus 1 
 CGC 

Ab6 Acrobeloides butschlii 1 
Read abundance in  CGC 

Ab7 Acrobeloides butschlii 2 
mono-specific  CGC 

Ab8 Acrobeloides butschlii 4 
samples CGC 

Ab9 Acrobeloides butschlii 8 
 CGC 

Ab10 Acrobeloides butschlii 12 
 CGC 

Ab11 Acrobeloides butschlii 16 
 CGC 

L12 Longidorus (female) 1 
Life stage (biomass) vs  ES 

L13 Longidorus (juvenile) 1 
read abundance ES 

X14 Xiphinema (female) 1 
 ES 

X15 Xiphinema (juvenile) 1 
 ES 

 
Sources of the sampled taxa included ones obtained from cultures kept in Harper Adams 

University (HAU), those obtained from Fera as well as strains ordered from the 

Caenorhabditis Genetic Center (CGC), University of Minnesota. Some were also identified 

from environmental samples (ES) collected from locations within Harper Adams 

University.  
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5.2.4 Bioinformatics 
All bioinformatic analyses were carried out using the USEARCH pipeline (Edgar, 2010). 

The raw reads were first merged using the fast_mergepairs command allowing up to 15 

mismatches within the overlap between the read pairs. The minimum length of overlap 

was kept at the default setting of 16 bp. The merged reads were then filtered and reads 

with expected error (as described in Edgar and Flyvbjerg 2015) of more than one were 

discarded and the remaining sequences stored in a fasta file. The filtered reads were 

dereplicated into unique sequences. The unique reads were then clustered into 

operational taxonomic units (otus) at 97% similarity cut-off using the uparse algorithm. 

Singleton otus were discarded. Taxonomies were assigned to the otus using the PR
2
 

database (Guillou et al., 2012) of 18S rDNA sequences as reference. The taxonomy-

assigned otus were combined with the merged sequences to create otu tables. Relative 

read abundance of each taxon was calculated as a proportion of the total reads in a 

sample.  

To determine how less stringent filtering approach affects quantification bias, analysis was 

performed on each of the unpaired reads. This procedure allowed reads that would 

normally be discarded for not merging to be retained. For this analysis, data from each 

read direction were analysed separately. The reads were first truncated to 200 bp at the 3’ 

end before being filtered to remove low quality reads. The reason for truncating the 3’ end 

was to remove the usually low-quality part of the sequence, thus keeping the expected 

error of the reads low. The maximum expected error (EE) parameter within USEARCH 

was set to four different values, 1, 2, 4 and 8. The subsequent commands were executed 

using the same parameter settings as with the merged reads. Subsequently, otu tables 

were viewed and edited using MS Excel. Figures were also generated within MS Excel.  
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5.3 Results  
5.3.1 MC1 with merged reads 
About half of the paired reads successfully merged constituting about 187,243 reads. Only 

22% of the merged reads were longer than 250 bp. A significant proportion of the other 

78% were even shorter than 50 bp. This was to do with the fact that minimum overlap was 

kept at default setting of 16. The filtering step, which in addition to removing reads with EE 

> 1 also removed reads shorter than 250 bp, ensured the elimination of these very short 

reads. They could also have been removed, had the minimum overlap been set to 50 bp 

or more during the merging step. The remaining quality-checked reads formed 4,222 

unique sequences. At 97% similarity cut-off, the reads were clustered into 45 otus 

including singletons (31=non-singletons; 14=singletons). After assigning taxonomy to the 

non-singleton otus, 13 were assigned to nine different species of nematodes while the rest 

showed up as fungi. Eight of the nine named nematode species were among the twelve 

nematode species sampled in the mock community. The remaining four of the sampled 

taxa were unaccounted for by the sequences. These missing taxa were Acrobeloides, 

Meloidogyne naasi, Rhabditis brassicae and Rhabditis sp. Apart from Mylonchulus sp. 

which was recovered from only one of three replicates and Panagrellus redivivus which 

was recovered in two of the three replicates, all the other recovered taxa were present in 

all triplicates.  

Xiphinema sp. was the one taxon in the nine species that were named which was not 

present in the mock community. This was due to cross-talk between the multiplexed 

samples as the sequencing run included samples that had Xiphinema sp. in them. This 

phenomenon is described in section 3.3.9.  

The distribution of sampled species in terms of relative read abundance across the three 

replicates was mostly similar (Figure 5.1). They were all strongly correlated (1 vs 2, P < 

0.01, rho = 0.87; 1 vs 3 P < 0.01, rho = 0.89; 2 vs 3 P < 0.01, rho = 0.87). However, none 

of the replicates correlated with the relative distribution of the taxa in the mock community. 

In all three replicates, over 95% of the reads belonged to only two ‘dominant’ species, 

Trichodorus primitivus and Pratylenchus penetrans both of which, combined, constituted 

only 16% of the sampled taxa in the mock community in terms of abundance. Trichodorus 

primitivus was the more dominant of the two, reaching up to more 80% of reads in one of 

the replicates and around 70% in the other two. Trichodorus cylindricus, its close relative, 

did not receive such a proportionate amount of bias in its favour. The visual comparison of 

relative abundance of the replicates as shown in Figure 5.1 reveals no correlation with the 

actual species abundance. Correlation between the mean relative read abundance of taxa 

across the three replicates and their relative abundances in the mock community was not 

significant. 
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5.3.2 MC1 with only the forward reads 
The first step in the analysis using just the forward reads was read truncation, where all 

reads were capped to 200 bp before filtering the reads by the allowable expected errors. 

The reads were truncated because of the higher likelihood of poor base quality towards 

the 3’ end of the sequences. Without this, none of the reads passed the expected error 

(EE) threshold of one. The merging algorithm used in the fastq_mergepairs command is 

designed to take into account the quality of the reads being merged, specifically the 

overlapping region. Because merging was not performed in this single read analysis, 

reads that would have been discarded during this step were only discarded during the 

filtering step. At default setting, the filtering resulted in the removal of between 30-85% of 

the reads. As the error setting became increasingly less stringent the percent of reads 

discarded became lower (Table 5.2). Retaining more reads by relaxing the quality 

threshold did not result in the recovery of more taxa for the forward reads.  However, three 

of the taxa that were not recovered from the assembled reads were recovered in this 

analysis. This means that analysing only the forward reads resulted in better coverage, 

while lowering quality threshold had no effect on neither the coverage nor the taxa 

distribution (Figure 5.2). A few reads from Xiphinema sp., Longidorus sp. and 

Pratylenchus crenatus, all of which were not sampled in the mock community, were 

recovered. Another observation was that most of the representative sequences obtained 

with only the forward reads gave a much higher ‘expect value’ [this represents the 

statistical significance of the alignment between the query sequence and the reference 

sequence (lower is better)] for blast matching than their counterparts from the merged 

data, suggesting that the merging produced better quality otus  

 

 

 



 

 

 

76 

 
Figure 5.1. Distribution of the reads in the three replicates compared with the taxa distribution in the 
mock community. The first three bars represent the relative read abundances of the three replicates 
and the fourth bar represents abundance of taxa in the mock community. 

 

Table 5.2. Percentage of FORWARD reads discarded at various maximum expected error (EE) 
settings. Max error represents the maximum expected error a read has to have to be retained after 
filtering. Reads with expected errors higher than max error were discarded. 

Replicates Max EE = 1 Max EE = 2 Max EE = 4 Max EE = 8 

1 35.0% 25.8% 14.4% 3.0% 

2 29.1% 20.0% 11.2% 2.4% 

3 85.1% 82.9% 79.1% 55.0% 
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Figure 5.2. Read distribution of taxa under different quality filtering settings when only FORWARD 
READS were used. The bar plots show that all four maximum expected error values (1, 2, 4 and 8) 
resulted in the same read distributions across the three replicates. 

 

5.3.3 MC1 with only the reverse reads 
By following the same steps as with the forward reads, more reads were retained as the 

expected error (EE) value increased (Table 5.3). At the default EE threshold of one, up to 

97.1% reads were discarded. Increasing the EE threshold to eight retained 22.8% more 

reads for replicate three (Figure 5.3). Unlike the forward reads, increasing EE threshold 

values above one resulted in the recovery of Rhabditis brassicae, which was missing 

when the EE parameter was set to one. The distribution of the reads among the species 

remained almost the same as was with the forward reads and the merged reads. As with 

the forward reads, quality of otus was lower compared to the merged reads. 
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Table 5.3. Percentage of REVERSE reads discarded at various maximum expected error (EE) 
settings. Max error represents the maximum expected error a read has to have to be retained after 
filtering. Reads with expected errors higher than max error were discarded. 

Replicates Max EE = 1 Max EE = 2 Max EE = 4 Max EE = 8 

1 75.6% 51.9% 26.7% 5.2% 

2 77.2% 53.7% 27.7% 6.0% 

3 97.1%  92.2% 85.8% 74.3% 

 

  

  

 

Figure 5.3. Read distribution of taxa under different quality filtering settings when only REVERSE 
READS were used. The bar plots show that all four maximum expected error values (1, 2, 4 and 8) 
resulted in the same read distributions across the three replicates. A, B, C, and D represent the 
results when the maximum expected error values were set to 1, 2, 4 and 8 respectively. Absence of 
Rhabditis brassicae in pane A not apparent due to low representation in other panes). 
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5.3.4 Reproducibility 
The three replicates were mostly similar in terms of the relative number of reads 

recovered for each of the sampled taxa. This was evident in all three analysis approaches 

used; those involving the merged forward and reverse reads as well as forward and 

reverse reads only. Trichodorus primitivus and Pratylenchus penetrans remained the taxa 

with the highest read abundances in all of them. In a monospecific set up involving three 

replicates with each containing three individuals of P. penetrans (sample Pp2), the read 

numbers generated were significantly disproportionate between the replicates. However, 

the proportion of the reads of P. penetrans relative to all the reads (including the non-

nematode reads) recovered in each of the samples were very similar between the 

replicates.  

 

5.3.5 Preferential amplification of certain taxa  
Using simple sets of mock communities with diversities ranging from two to four (PpPc3, 

PpPcR4 and PpPcRPr5) (Table 5.1), the nature of the bias in read abundance was 

examined. In PpPc3 which had three individuals each of P. penetrans and P. crenatus, 

reads belonging to the former constituted about two-thirds of the reads in two of the 

replicates and over 90% in one of the replicates (Figure 5.4A). This could suggest a 

possible preferential amplification of P. penetrans over P. crenatus. In PpPcR4, a slightly 

more complex sample with three of P. penetrans, three of P. crenatus and one of R. 

brassicae, R. brassicae formed a significant proportion of the reads, leaving less than 

20% of reads to the other two species (Figure 5.4B). Increasing the complexity of the 

sample through the addition of a single specimen of Panagrellus redivivus, resulted in 

Panagrellus dominating the read counts in two out of the three replicates. In the third 

replicate, only a very few reads belonging to Panagrellus were recovered (Figure 5.4C).  
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Figure 5.4. Relative read abundances of taxa depicting the bias in read distributions. (A) the 
distribution of the reads between Pratylenchus penetrans and P. crenatus in a sample containing 
three individuals of each species. (B) the read distribution for three species, P. penetrans, P. crenatus 
and Rhabditis brassicae in a sample with three individuals of each of P. penetrans and P. crenatus 
and one individual of R. brassicae. (C) the distribution of reads for P. penetrans, P. crenatus, R. 

brassicae and Panagrellus redivivus in a sample containing three of P. penetrans, three of P. 

crenatus, one R. brassicae and one Pangrellus redivivus.  

 

 

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3

R
e

la
ti
v
e

 r
e

a
d

 a
b

u
n

d
a

n
c
e

Replicates

A

Pratylenchus penetrans Pratylenchus crenatus

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3

R
e

la
ti
v
e

 r
e

a
d

 a
b

u
n

d
a

n
c
e

Replicates

B

P. penetrans P. crenatus R. brassicae

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3

R
e

la
ti
v
e

 r
e

a
d

 a
b

u
n

d
a

n
c
e

Replicates

C

P. penetrans P. crenatus R. brassicae Panagrellus



 

 

 

81 

5.3.6 Number of individuals and life stage (biomass) vs read 
abundance in monospecific samples 
The read abundances of Acrobeloides buetschlii associated positively with the actual 

number of individuals (Figure 5.5) but their correlation was not significant (P=0.186). The 

effect of biomass difference tested using two different life stages of Xiphinema sp. and 

Longidorus sp. showed that there was no significant difference between the read numbers 

obtained from female adults and those from the juveniles (Figure 5.6A and B) based on 

Welch’s t-test.  

 

 
Figure 5.5. Relative read abundance plotted against relative abundance. Equation and R2 values 
are based on exponential regressions of the relative number of reads on the relative number of 
individuals of Acrobeloides butschlii added. 

 

  

Figure 5.6. Number of reads associated with juvenile and adult specimens of Longidorus sp. and 
Xiphinema sp. Error bars represent standard error of means (n = 3). 
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5.4 Discussion 
Four of the sampled taxa, Acrobeloides, Meloidogyne naasi, Rhabditis brassicae and 

Rhabditis sp., were not accounted for in the sequence data. The massive loss of data 

observed after merging the paired reads may have contributed to this. Even when the 

filtering step was ‘relaxed’ to include slightly lower quality reads, none of aforementioned 

taxa could be recovered. This was because the loss of the merged reads after filtering 

was mostly to do with their lengths being shorter than the set threshold of 250 bp and not 

their low average base qualities. This was confirmed when an attempt to relax the quality 

threshold from expected error of one to two, four or eight resulted in the retention of a very 

insignificant number of reads (data not shown).  

Although taxonomic coverage was not identical between the three replicates, due to the 

absence of Mylonchulus sp. in two of the replicates and Panagrellus redivivus in one of 

the replicates, Trichodorus primitivus and Pratylenchus penetrans remained dominant 

across all three and read distribution was generally similar. This corroborates other 

studies that found consistency in the manner in which reads are distributed between 

replicates (Porazinska et al., 2009; Deagle et al., 2013) and it further confirms the 

constancy of amplification bias during PCR. The failure to recover the two missing taxa 

could not have been due to the primers used because both were amplified by the same 

set of primers used in other samples. Panagrellus redivivus, for example, was 

successfully recovered in sample PpPcRPr5 in this chapter, where the PCR bias even 

appeared to have favoured it over the other taxa. For Mylonchulus, the same sets of 

primers were able to amplify it in one of the replicates used in Chapter 3 where a single 

specimen of it was inadvertently added instead of Prionchulus. Absence of P. redivivus 

and Mylonchulus sp. did not affect the distribution most likely because they both had very 

low read abundance in the replicates that they were recovered from and so the effect of 

their absence or presence were not significant. Moreover, such minor differences in read 

distribution of taxa between replicates are common among artificial community studies, 

and their incidence can be attributed to unpredictable or unknown factors rather than any 

of the known sources of PCR bias (Edgar, 2017a). 

It is an established fact that base qualities of amplicons sequenced using Illumina platform 

tend to drop towards the 3’ end for both the forward and the reverse strands (Schröder et 

al., 2010). And because the reads are assembled based on an overlapping stretch of 

bases of this 3’ end, errors in this region can result in a huge mismatch between the 

paired reads. In a typical analysis, the unmerged reads are discarded and so are not 

included in the downstream analysis. In some cases, these unmerged reads can 

constitute a significant proportion of the data. By using either the forward reads or the 

reverse reads alone, it was shown here that some taxa could be recovered that otherwise 
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were missing where paired reads were merged first. In this study, the effect of using the 

unpaired reads on distribution of read abundance was not as evident as its effect on 

coverage. And between the forward and the reverse read data, the difference was only 

manifested at the most stringent quality threshold (EE ≤ 1), where the results showed that 

the reverse read data recovered one taxon (Rhabditis brassicae) less than the forward 

read data. It is often common for forward reads from Illumina sequencing to have a higher 

quality than their corresponding reverse reads, and some of the possible causes of this 

can be overclustering which affects the image analysis. Reagent depletion during the 

second round of sequencing when the reverse reads are generated could also be a factor.  

In contrast with the merged reads, increasing the value of the expected error parameter at 

the filtering step of both the forward and reverse reads resulted in retention of more 

sequences. The three additional taxa detected from the unpaired reads showed how, by 

retaining more reads, a better representation of a community can be achieved. In fact, the 

only missing species across all analysis methods (merged or single reads) was Rhabditis 

sp. which had a congeneric relative, R. brassicae also present in the mock community. 

Based on this, at least three possible explanations can be given as to why Rhabditis sp. 

was not recovered in the unpaired reads despite using less stringent filtering methods. 

The first one is that the unidentified Rhabditis species is actually the same species as R. 

brassicae or a very close relative, which means reads from both taxa could be lumped 

together as a single otu at 97% similarity cut-off. Secondly, it may have been that the 

barcode marker failed to provide the needed resolution to discriminate between the two 

species. It is common knowledge that the 18S rDNA region can be relatively conserved 

within certain groups of nematodes (Floyd et al., 2002). Finally, there is also the possibility 

that reads from this taxon were not present in the read data. In other words, for some 

reason the primers failed to amplify the reads for Rhabditis species. Incomplete recovery 

of sampled taxa, especially, in bulk samples is not a rare occurrence even with the 

relatively conserved 18S rDNA region (Porazinska et al., 2009; Adl, Habura, & Eglit, 

2014). Recoverability of a taxon by a primer pair can be examined, beforehand, using 

longer aligned sequences to see how well the annealing sites match the primers. Even 

then, this may not guarantee successful recovery in NGS data as shown in Porazinska et 

al. (2009). 

In theory, factors that contribute to preferential amplification of the abundance-read 

number ratio distortion such as primer homology, gene copy number and cuticle thickness 

are constant within species (Amend et al., 2010). However, this study demonstrates that 

depending on the species composition of a sample, the way these factors affect bias in 

amplification can be different. For instance, while P. penetrans was dominant over R. 

brassicae and Panagrellus redivivus in terms of read proportion in the mock community 

(MC1), it did not show the same dominance over these two taxa in PpPcRPr5. In fact, in 
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the sample PpPcR which contained all four except P. redivivus, reads belonging to R. 

brassicae dominated with over 80% of reads in two of the replicates and about 97% in 

one. The difference, of course, between the mock community and these other two is that 

the mock community is more diverse suggesting that amplification bias does not always 

occur in favour of one taxon over the other but instead can switch depending the other 

taxa present in the sample. It also confirms the already established fact that factors such 

as taxon’s gene copy number and the presence or absence of mismatches at the primer 

annealing sites as reported by other authors (Sipos et al., 2007; Kembel et al., 2012; 

Edgar, 2017a) are only a few among some of factors driving bias in read number 

distribution (including ones that are not known).  

Differences in the biomass of individuals in mixed taxa samples is among the key 

determinants of the amount of amplicon copies generated at the end of a PCR reaction for 

each taxon. Despite the clear biomass difference, number of reads from adult female 

Longidorus was not significantly different from those from its juveniles. Since these were 

monospecific samples, without the influence of other nematode taxa, the most probable 

explanation would be that the difference in gene copy numbers and cell numbers between 

these two life stages had no significant impact on the number of reads generated during 

PCR. Both results are in contrast with Elbrecht and Leese (2015) who found a strong 

positive correlation between biomass and read numbers.  

In microbial studies, size of individuals in the community is not as crucial as in larger 

nematodes where size difference can be quite significant between species as well as life 

stages. This study, in addition to confirming the presence of read number bias and the 

similarity of its pattern across identical communities, also demonstrates how such pattern 

can drastically change even under a slightly different community. This study further 

demonstrates how limited our understanding of the factors influencing read abundance of 

taxa in samples puts to question studies that use taxonomic abundance to infer 

community structure. Carrying on from the previous chapter, it is clear from this study that 

specimen size or life stage probably has no effect on the read numbers; retention of low-

quality reads may increase detection but has no influence on read distribution. There is 

still a lot to understand with regard to factors that determine how reads are distributed 

between taxa within a community. 
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6 Nematode communities under different tillage and 
traffic conditions 
6.1 Introduction  
Nematodes constitute a highly diverse and species-rich group of organisms and their 

numeric dominance make them a vital component of the soil ecosystem. They possess 

most of the requisite attributes of soil health indicators, such as being relevant for 

maintaining balanced communities, being sensitive to the kind of stress being 

investigated, being widely applicable to different pressures and environments, being 

measurable, interpretable and cost-effective to sample (Cairns Jr, McCormick, & 

Niederlehner, 1993; Ritz et al., 2009). Additionally, there is more information on nematode 

taxonomy and trophic functions that make them better biological indicators of soil 

conditions than other fauna in the soil such as mites, termites, springtails and earthworms 

(Neher, 2001). The use of their community structure to reveal changes in the soil 

environment resulting from certain field management practices is an area that has 

received quite some attention in the past (Yeates et al., 1993; Ferris, Venette, & Lau, 

1996; Porazinska et al., 1998, 1999).  

Intensive use of farm machinery has been identified as one of the main causes of 

compaction of soil. Over the years, increasingly heavier machinery has been used to work 

land for the cultivation of crops. Such increased impact on the soil can lead to compaction 

of the subsoil, causing irreparable damage (Arvidsson, 2001; Horn & Fleige, 2003). Soil 

compaction caused by uncontrolled traffic with heavy machinery and continuous cropping 

is a well-recognised challenge facing modern agriculture (Håkansson, Voorhees, & Riley, 

1988; Gysi, 2001). It can impact on yield through changes it causes to soil pore size (Horn 

& Fleige, 2003), damage to the soil structure, restricted root system development and 

penetration, impaired water uptake, poor growth and reduced yields (Voorhees, Evans, & 

Warnes, 1985; Czyż, 2004). Grain yield loss of between 2.0 – 30.5% have been reported 

in spring barley on fields compacted with tractor passes ranging from one to four prior to 

sowing (Czyż, 2004). Changes to the soil pore system caused by compaction can also 

reduce water holding capacity, aeration and rate of water infiltration, which does not only 

reduce the amount of available water for plant growth but increases the risk of flooding 

and erosion and has a detrimental effect on nutrient cycling (Gerrard, 2000). Limited 

availability of oxygen resulting from impaired aeration in the soil can be detrimental to soil 

biological processes such as organic matter decomposition and soil mineralization as 

most organisms depend on oxygen to function.  

Controlled traffic farming (CTF) is a quickly advancing system intended to avert or 

minimise compaction caused by random traffic farming (RTF). This system is based on a 

fixed layout of machinery passes across a field (Kroulík et al., 2011) designed to limit the 
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total area trafficked. By minimising the level of compaction resulting from machinery 

passes, it has been shown that energy savings of 25-40% could be achieved during tillage 

(Tullberg, 2000). Another system used to minimise compaction while allowing normal 

operation of machineries is the low ground pressure system (LGP). This is based on the 

idea that lower tyre inflation pressures with LGP-specific tyres can reduce the pressure 

exerted on the ground by spreading load over a wider area than a normal tyre does 

(Tijink, Döll, & Vermeulen, 1995).  

Conventional tillage, otherwise known as deep-tillage has been practiced under several 

agricultural systems (Wardle, 1995) to enhance soil aeration, increase water retention and 

drainage, improve water infiltration, to improve incorporation of plant debris in the soil and 

to regulate pests, weeds and pathogens (Phillips et al., 1980; Gebhardt et al., 1985; 

Unger, 1990; Khan, 1996). Tillage can also have such adverse effects as exposing soil to 

erosion and loss of top soil, reduced soil moisture retention and organic matter contents 

as well as possible loss of soil biodiversity (Kladivko, 2001; Pretty, Morison, & Hine, 2003; 

Holland, 2004). Tillage has a very significant effect on the structure and abundance of soil 

organisms through the influence it has on soil physical and chemical properties (Kladivko, 

2001). Additionally, tillage choice can also affect the community of fauna including 

nematodes through changes it might cause to organisms at lower trophic levels (Wardle, 

1995). Agricultural systems that involve little perturbation of the soil are often regarded as 

resembling a natural system, which is characterised by the existence of a wider diversity 

of soil organisms (Altieri, 1991).  

According to Wardle (1995) many authors have investigated the impact of tillage regimes 

on nematode communities; with a number of them reporting contrasting results. Parmelee 

and Alston (1986) studied the changes in the community structure of nematode trophic 

groups in conventional (CT) and no-tillage (NT) agroecosystems on a monthly basis for a 

year under two crop types; rye and clover. They found a significantly higher monthly mean 

total nematode abundance in conventional tillage (CT) than in no tillage (NT) plots grown 

with rye and clover. The seasonal data, however, showed no differences between CT and 

NT plots for most part of the year except for late winter and early spring. Bacterivores and 

fungivores were significantly higher in CT than in NT plots while the population of 

omnivore-predator nematodes showed no apparent differences between the two tillage 

methods. The abundance of herbivorous nematodes also was not significantly different. 

This is in contrast with an earlier study by Thomas (1978) who reported a significantly 

higher population of most of the sampled taxa in no-till plots than in the spring and 

autumn-tilled plots. Lenz and Eisenbeis (2000) found that nematode density significantly 

reduced following the first application of tillage treatment, although secondary tillage had 

little effect on the density. Bacterivores became dominant in tilled plots while herbivores 

dominated the non-tilled plots. Sanchez-Moreno et al. (2006) looked at the response of 
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nematode taxa to tillage and intermittent fallow treatments. Their conclusion was that high 

enrichment indices (EI) values were associated with a combination of conventional tillage 

and continuous cropping. No-tillage and fallow systems did not necessarily support more 

structured food webs, but instead, supported the slow enrichment of a fungal-based 

community.  

A number of studies have investigated the environmental impacts of traffic and its effects 

on yield (Czyż, 2004; Tullberg, Yule, & McGarry, 2007; Gasso et al., 2014). However, 

while the effect of tillage on nematodes in the soil has been the subject of numerous 

studies, traffic effect on soil faunal community has received much less attention. The aim 

of the current study was to determine the effect of soil tillage and traffic-induced 

compaction on nematode communities in the soil and how other environmental variables 

influence these communities in an established field-scale tillage/traffic experiment. For this 

reason, in addition to the sampling of nematodes, data on physical and chemical 

properties of soil were collected to examine how they relate with the abundance of certain 

nematode taxa. 
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6.2 Materials and methods 
6.2.1 Experimental site 
The experimental field site (Large Marsh field: 52°46.7899’N, 002°25.5236’W) located at 

Harper Adams University is an integrative project that has been running for the past five 

years (2012-2017). In the first year of the experiment, the area was surveyed, and areas 

of uniformity marked out using data on soil type, texture, crop growth and yield of winter 

wheat (Triticum aestivum cv. Duxford). The soil at the site is mostly very slightly stony 

sandy loam (Smith et al., 2013). In the year that followed, a 3x3 factorial plot experiment 

was set up in 4 randomised blocks that consisted of three tillage types and three traffic 

types in plots 4 m wide and 80 m long.  After each harvest (August of each year), the 

tillage and traffic treatments were reapplied. The site was under its fourth treatment 

application when samples for this study were taken in March 2016. The crops grown since 

the establishment of the experiment were winter wheat (2012), winter barley (years 2013 

and 2014) and then spring oats (2015).  

The traffic treatments consisted of random traffic farming (RTF), low ground pressure 

(LGP) and controlled traffic farming (CTF). The RTF treatment was designed to mimic how 

machinery operates on the farm without restriction on the tractor passes on the soil. The 

LGP system is essentially an RTF system where LGP-specific tyres, with reduced 

pressure, are used to minimise the impact on the ground. The CTF system involves the 

least number of vehicular passes where vehicles are limited to a strict circuit within the 

field using GPS. The tillage treatments included deep-tillage (250 mm deep), shallow-

tillage (100 mm deep) and zero-tillage. There were four strips on each plot. The two outer 

strips were designated as the tractor wheel ways for operations such as drilling and tilling 

for the tilled plots. For this study, CTF samples were taken from the middle strips in the 

CTF plots that had zero passes while the LGP and RTF samples were taken from the 

wheel way plots with either two or three passes depending on the tillage treatment. 

 

6.2.2 Sampling, extraction and identification of nematodes 
Soil sampling was carried out over a period of three weeks between 29

th
 February and 

22
nd

 March 2016. Fifteen cores were taken from each plot using an auger of 30 cm length 

and 2.5 cm width. The individual cores were then combined into one composite sample 

per plot. Sampling was done at three different depths: 0-5 cm, 5-15 cm and 15-30 cm. 

Nematodes were extracted from a sub-sample of 200 g soil using the Whitehead tray 

method (Whitehead & Hemming, 1965). Suspensions of nematodes produced after 

extraction were concentrated to 10 ml and transferred into 15 ml Falcon tubes. For 

identification, each sample suspension was first homogenised by gently inverting the 

tubes at least ten times before 1 ml subsample was pipetted into a gridded rectangular 
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counting dish. An additional 2 ml of tap water was added to the counting dish to ensure 

the suspension spread across the base of the dish. The nematodes in the suspension 

were then examined under a stereoscope (Meiji EMT, Meiji Techno Co. Ltd) at 40x 

magnification where they were all counted. Following this, all nematodes were picked and 

mounted onto glass slides (15 individuals at a time) and identified to family or genus under 

high magnification (400x) using a compound microscope (Meiji MX5300L, Meiji Techno 

Co. Ltd). 

 

6.2.3 Community indices 
Using the genera or families they belonged to, nematodes were classified into the five 

feeding types according to Yeates et al. (1993) and given the coloniser-persister (cp) 

scores according to Bongers (1990). With the cp scores of the taxa, maturity index (MI) 

(Bongers, 1990) -with and without the inclusion of dauer juveniles in the computation- was 

calculated for each sample. The MI is simply the weighted mean cp-score of an average 

nematode in the assemblage and it ranges from one to five. Lower MI scores are typically 

indicative of high abundance of enrichment opportunistic or general opportunistic taxa, 

associated with eutrophication events or stress conditions (Bongers, 1990). Higher values, 

on the other hand, indicate the abundance of large-bodied, sensitive persisters typically 

associated with structured and stable environments. Another dependent of MI, MI.2-5, 

was computed by excluding the enrichment opportunist cp-1 taxa from the calculations. 

Channel index (CI) (Ferris et al., 2001) was also calculated; this index indicates which 

energy channel, either fast bacterial or slow fungal, is the most predominant in the 

community based on the populations of fungivores and bacterivores. Other descriptors of 

food web such as Enrichment (EI), Basal (BI) and Structure (SI) indices that describe the 

proportion of enrichment opportunistic microbivores, general opportunistic microbivores 

and stress-sensitive predators and omnivores respectively, were also calculated (Ferris et 

al., 2001). 

 

6.2.4 Soil analysis 
During sampling, penetrometer resistance readings were taken at 15 different spots each 

close to where soil cores were taken using an Eijkelkamp penetrologger (Eijkelkamp Soil 

& Water, Giesbeek, The Netherlands). The instrument recorded the resistance as a unit of 

pressure in MPa at each centimetre down to the depth of 40 cm. A fraction of the 

composite samples, about 500 g, for each plot was prepared and sent to Natural 

Resource Management Laboratories Ltd (Berkshire, UK) for analysis 

(http://www.nrm.uk.com). For each sample, dry soil matter percentage, organic matter 
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content (loss on ignition method), total nitrogen, pH, phosphorus, potassium, magnesium, 

ammonium and nitrate were measured. 

 

6.2.5 Data analysis 
Direct effect of treatments on the soil food web was illustrated as the index V of the 

different trophic groups, based on their responses to tillage and traffic (Wardle, 1995).  

! = 2$%
$& + 	$% − 1 

Where: Mb and Mt are abundances under no treatment and treated conditions, 

respectively. 

Zero tillage was used as the baseline (no treatment) condition for tillage treatments while 

CTF was used as the baseline for the traffic treatments. For tillage, zero tillage was 

compared with shallow tillage (Zero vs Shallow) and then compared with deep tillage 

(Zero vs Deep). For traffic, CTF was compared with LGP (CTF vs LGP) and then with 

RTF (CTF vs RTF).  The index V value ranges from -1 to +1 for each trophic group, which 

correspond to total inhibition and total stimulation by treatment, respectively. Zero value 

indicates no change in abundance by the treatment.  

Canonical Correspondence Analysis (CCA) was used to illustrate how nematode taxa 

related with environmental variables and compaction. The analyses of the effects of tillage 

and traffic treatments on abundance of nematode taxa and nematode trophic groups were 

performed separately for each depth that was sampled. This was done using generalized 

linear models with negative binomial distribution as recommended for count data (O’Hara 

& Kotze, 2010). Post-hoc tests on the univariate analysis were performed using Tukey’s 

test. The R functions cld and lsmeans from multcomp (Hothorn et al., 2008) and lsmeans 

(Lenth, 2016) packages , respectively were used for post-hoc tests on the interaction 

effects. Treatment effects on community indices were analysed using the robust two-way 

Analysis of Variance (ANOVA) function for trimmed means, t2way from the WRS2 (Mair & 

Wilcox, 2018) R package. All statistical analyses were carried out using RStudio (RStudio 

Team, 2016) development environment for R. 
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6.3 Results 
6.3.1 Nematode taxa recovered 
Across all the samples, a total of 83 different taxa including dauer juveniles were 

recovered and categorised into genera, families, trophic groups, cp-scores and functional 

guilds (Appendix 10.4). There were 35 families in total. Most of these taxa only occurred in 

a minority of the samples analysed. In fact, close to 80% of the taxa occurred in less than 

half the samples. None of the taxa occurred in all samples. Helicotylenchus (herbivore) 

was the genus most frequently recovered; present in 100 of the 108 samples. 

Representatives of Wilsonema, Clarkus, Penjatinema, Panagrolobus, Propanagrolaimus, 

Miconchus, Heteroderidae, Xyalidae and Linhomoeidae were only recovered once in the 

samples. The most frequently recovered bacterivorous nematodes in order of increasing 

frequencies were Eucephalobus, Cephalobus and Acrobeloides. 

 

6.3.2 Response of nematodes to tillage and traffic treatments 
At the top (0-5cm) depth, there was a significant tillage and traffic interaction effect on 

numbers of Aphelenchus (P<0.001), Tylenchorhynchus (P<0.001), Meloidogyne 

(P=0.014) and Trichodorus (P<0.001) (Table 6.1). For Aphelenchus, both LGP and RTF 

caused an increase in abundance compared to CTF under deep tillage (CTF = 1.03, LGP 

= 2.17, RTF=2.18) and shallow tillage (CTF = 1.76E-15, LGP = 4.23, RTF = 2.15). Under 

zero tillage, however, their numbers decreased with both LGP and RTF (CTF = 3.45, LGP 

= 1.78E-15, RTF = 1.68E-15).The number of Tylenchorhynchus was found to increase 

with LPG traffic under zero tillage but decreased under shallow and deep tillage (Figure 

6.1). Random traffic produced the highest number of Meloidogyne compared to the other 

tillage methods under deep (CTF = 33.10, LGP = 24.99, RTF = 48.95) and zero tillage 

(CTF = 36.43, LGP = 85.72, RTF = 1241.67), while under shallow tillage LGP produced 

the highest abundance (CTF = 18.54, LGP = 64.02, RTF = 20.76). There was also a 

significant increase in the abundance of Trichodorus in response to traffic under deep 

tillage and a decrease under shallow tillage but no significant change under zero tillage 

(Figure 6.2). Tukey’s multiple comparison test showed no significant difference in the 

interaction means for Aphelenchus and Meloidogyne. 

At the (5-15cm) depth, there was a significant tillage and traffic interaction effect on the 

abundance of Acrobeloides (P=0.043), Aphelenchus (P=0.002), Alaimus (P<0.001), 

Dorylaimidae (P=0.006), Meloidogyne (P<0.001) and Trichodorus (P<0.001). The 

abundance of Acrobeloides increased with RTF under deep tillage (CTF = 14.52, LGP = 

15.31, RTF = 25.08) but decreased under shallow tillage (CTF = 13.15, LGP = 14.40, RTF 

= 8.80). Under zero tillage both LGP and RTF caused a reduction in their abundance 

(CTF = 33.74, LGP = 8.59, RTF = 13.87). Alaimus increased in response to RTF and 
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decreased with LGP under deep tillage (CTF = 33.10, LGP = 24.99, RTF = 48.95). Under 

shallow tillage, their numbers increased with LGP and did not change with RTF (CTF = 

18.54, LGP = 64.02, RTF = 20.76). Under zero tillage, both LGP and RTF resulted in an 

increase in their abundance (CTF = 36.43, LGP = 85.72, RTF = 1241.67). Under deep 

tillage, RTF caused a decrease in the number of Dorylaimidae (CTF = 3.69, LGP = 2.57, 

RTF = 2.22E-16) while under shallow tillage both LGP and RTF reduced their abundance 

(CTF = 18.9, LGP = 1.28, RTF = 4.33). Under zero tillage, however, RTF caused an 

increase in their numbers and LGP caused a decrease in their numbers (CTF = 2.56, LGP 

= 2.22, RTF = 7.09). With deep tillage, both LGP and RTF reduced the number of 

Meloidogyne (CTF = 29.54, LGP = 9.54, RTF = 14.91) whereas under shallow (CTF = 

1.22, LGP = 17.78, RTF = 19.11) and zero (CTF = 4.30, LGP = 398.31, RTF = 391.11) 

tillage there was an increase in their numbers with both LGP and RTF. Trichodorus under 

deep (CTF = 11.8, LGP =1.07, RTF = 2.14) and zero (CTF = 19.7, LGP = 2.96, RTF = 

1.94E-15) tillage reduced in abundance in response to both LGP and RTF treatments. 

Under shallow tillage, RTF increase their abundance while LGP reduced it (CTF = 5.24, 

LGP = 2.25, RTF = 53.7). In the case of Aphelenchus, traffic effect was only significant 

under deep tillage with their abundance within LPG being significantly higher than within 

RTF. However, under shallow and zero tillage, traffic effect was not significant (Figure 

6.3). For all but Aphelenchus, Tukey’s multiple comparison test showed no significant 

difference between interaction means. 

The number of Tylenchus found to be significantly different between tillage treatments 

(P<0.001) but there was no interaction between tillage and traffic. Specifically, deep tillage 

caused a significant decrease in the abundance of Tylenchus. 

At the lower depth (15-30cm), Tylenchus (P=0.008) and Pratylenchus (P<0.001) were the 

only taxa affected by the interaction between tillage and traffic. For Tylenchus, the effect 

of traffic was significant under shallow tillage but not under deep or zero tillage (Figure 

6.4). Similarly, response of Pratylenchus to traffic was significant under zero tillage alone 

(Figure 6.5). 

Total nematode abundance within the top depth was significantly affected by tillage and 

traffic interaction (P=0.002) (Table 6.2). There was an increase in total abundance in 

response to traffic under zero tillage but not under deep or shallow tillage where traffic had 

no effect. Within the middle depth, tillage had a significant effect on total abundance 

(P=0.020) with both shallow and deep tillage causing a decrease in abundance. Within the 

lower depth, traffic and tillage interaction effect was significant on total abundance. As in 

the top depth, traffic caused an increase in total abundance only under zero tillage within 

the lower depth. 
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Within the top depth, PPI (P=0.001) was the only index affected by the interaction 

between tillage and traffic treatments (Table 6.2). While traffic did not affect PPI under 

deep and shallow tillage, RTF caused a significant increase in PPI under zero tillage. 

Within the middle depth, tillage and traffic interaction had no effect on any of the indices. 

Traffic affected MI2-5, EI and SI significantly. There was a statistically significant decrease 

in MI2-5 between CTF and RTF. Enrichment index also decreased significantly in 

response to both LGP and RTF. Within the lower depth, interaction effect of tillage and 

traffic was not significant across all indices. Neither of the main factors had effect on the 

indices.  

The effects of tillage and traffic treatments on nematode trophic groups illustrated by index 

V showed some varying responses along the three depths (Figure 6.6). The analyses of 

the impact of tillage and traffic were made with reference to zero tillage and CTF 

treatments in order to demonstrate how the various trophic groups are affected by soil 

perturbation and compaction, respectively. Tillage treatments caused mild to extreme 

inhibition of all the trophic groups except bacterivores and omnivores which were mildly 

stimulated by shallow-tillage within the top 5 cm (Figure 6.6A). The two traffic treatments, 

LGP and RTF, had contrasting effects on both herbivores and fungivores. In herbivores, 

LGP caused mild inhibition while RTF resulted in moderate stimulation. Similarly, LGP 

caused mild inhibition of fungivores. However, instead of moderate stimulation as was the 

case in herbivores, RTF caused mild stimulation fungivores (Figure 6.6A). Both LGP and 

RTF caused mild or moderate inhibition of bacterivores and predators. Omnivores were 

the only group that responded to the two traffic systems positively, with mild stimulation. 
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Table 6.1. Summary of analysis of variance (ANOVA) for nematode density – c2 values from glm.nb function and P values shown in parentheses. Data are from 
108 samples representing 36 plots sampled at three different depths. Treatments consist of three levels of tillage (zero, shallow and deep) and three levels of traffic 
(random traffic, low ground pressure and controlled traffic).   

Source (degrees of 
freedom) 

Density (individuals/100 g soil) 

 Acrobeloides Aphelenchoides Aphelenchus Tylenchus Rhabditis Alaimus Tylenchorhynchus Dorylaimidae Meloidogyne Pratylenchus Trichodorus 
Top Depth            
Tillage (2) 0.41 (0.813) 0.72 (0.695) 7.00 (0.031) 2.26 (0.166) 3.02 (0.221) 5.69 (0.058) 22.94 (<0.001) 2.28 (0.308) 0.61 (0.738) 0.02 (0.992) 13.86 (<0.001) 
Traffic (2) 1.54 (0.462) 2.83 (0.161) 0.54 (1.000) 0.05 (0.070) 3.97 (0.282) 12.70 (<0.000) 26.78 (<0.001) 0.61 (0.177) 0.51 (0.774) 6.72 (0.035) 13.86 (<0.001) 
Block (3) 3.47 (0.324) 6.02 (0.111) 14.83 (0.002) 17.27 (<0.001) 6.98 (0.072) 2.34 (0.505) 176.99 (<0.001) 29.20 (<0.001) 9.22 (0.027) 3.35 (0.340) 49.24 (<0.001) 
Tillage X Traffic (4) 2.77 (0.596) 7.25 (0.124) 20.08 (<0.001) 4.46 (0.348) 1.82 (0.768) 7.33 (0.119) 55.61 (<0.001) 6.19 (0.185) 12.54 (0.014) 4.63 (0.326) 37.34 (<0.001) 
            
Middle Depth            
Tillage (2) 5.67 (0.059) 1.69 (0.429) 0.68 (0.713) 21.85 (<0.001) 0.915 (0.633) 4.47 (0.107) 2.15 (0.341) 3.88 (0.143) 11.22 (0.004) 4.39 (0.112) 1.99 (0.370) 
Traffic (2) 1.84 (0.399) 0.45 (0.797) 17.53 (<0.001) 3.04 (0.218) 0.056 (0.972) 57.10 (<0.001) 0.01 (0.998) 6.89 (0.032) 1.07 (0.586) 0.50 (0.780) 6.29 (0.043) 
Block (3) 6.34 (0.096) 7.99 (0.046) 9.87 (0.020) 38.14 (<0.001) 0.58 (0.901) 3.00 (0.391) 23.76 (<0.001) 5.23 (0.156) 2.81 (0.422) 1.09 (0.779) 35.51 (<0.001) 
Tillage X Traffic (4) 9.84 (0.043) 2.40 (0.662) 16.06 (0.002) 9.21 (0.056) 2.20 (0.699) 30.35 (<0.001) 4.73 (0.317) 16.41 (0.006) 25.08 (<0.001) 1.19 (0.880) 21.64 (<0.001) 
            
Lower Depth            
Tillage (2) 0.89 (0.641) 5.65 (0.059) 2.27 (0.322) 2.54 (0.280) 0.000 (1.000) 1.10 (0.577) 1.27 (0.531) 10.99 (0.004) 0.07 (0.964) 11.50 (0.003) 0.65 (0.721) 
Traffic (2) 0.43 (0.807) 4.31 (0.116) 1.56 (0.458) 2.84 (0.242) 0.000 (1.000) 7.51 (0.023) 1.06 (0.589)  8.11 (0.017) 0.38 (0.828) 8.23 (0.016) 0.35 (0.839) 
Block (3) 14.59 (0.002) 7.57 (0.056) 6.60 (0.086) 20.29 (<0.001) 13.862 (0.003) 6.96 (0.073) 8.74 (0.033) 13.86 (0.003) 1.53 (0.676) 11.62 (0.008) 18.39 (<0.001) 
Tillage X Traffic (4) 4.52 (0.340) 6.94 (0.139) 3.90 (0.419) 13.91 (0.008) 0.000 (1.000) 6.78 (0.147) 1.73 (0.785) 0.000 (1.000) 4.38 (0.358) 18.68 (<0.001) 7.76 (0.101) 
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Table 6.2. Summary of analysis of variance (ANOVA) for community indices – F values from Wilcox two-way robust ANOVA with trimmed means for community 
indices or c2 values (P values) from glm.nb for total abundance (N) with P values shown in parentheses. Data are from 108 samples representing 36 plots sampled 
at three different depths. Treatments consist of three levels of tillage (zero, shallow and deep) and three levels of traffic (random traffic, low ground pressure and 
controlled traffic).  

Source (degrees of freedom) Community index 
 MI MI.2-5 PPI CI EI SI BI N 

Top Depth         
Tillage (2) 3.30 (0.247) 3.75 (0.211) 15.70 (0.006) 4.68 (0.156) 2.73 (0.299) 3.17 (0.254) 3.30 (0.238) 0.21 (0.903) 
Traffic (2) 0.27 (0.882) 3.80 (0.211) 1.75 (0.461) 3.48 (0.243) 2.91 (0.276) 5.08 (0.131) 3.92 (0.185) 1.38 (0.500) 
Block (3) 0.47 (0.712) 0.04 (0.988) 0.99 (0.427) 1.82 (0.195) 1.62 (0.234) 0.10 (0.959) 1.15 (0.367) 32.01 (<0.001) 
Tillage X Traffic (4) 3.12 (0.634) 6.99 (0.263) 45.18 (<0.001) 5.40 (0.395) 0.17 (0.997) 7.57 (0.230) 0.41 (0.985) 16.24 (0.002) 
         
Middle Depth         
Tillage (2) 2.86 (0.286) 2.47 (0.335) 2.77 (0.294) 0.62 (0.760) 3.01 (0.287) 2.91 (0.275) 1.92 (0.445) 7.85 (0.020) 
Traffic (2) 5.96 (0.085) 24.58 (<0.001) 0.34 (0.850) 2.87 (0.313) 8.35 (0.041) 23.32 (0.001) 5.49 (0.110) 5.81 (0.055) 
Block (3) 0.08 (0.971) 1.07 (0.396) 4.09 (0.030) 1.93 (0.179) 0.16 (0.922) 1.25 (0.333) 0.21 (0.885) 10.75 (0.013) 
Tillage X Traffic (4) 10.44 (0.109) 1.76 (0.821) 2.15 (0.763) 5.21 (0.421) 7.93 (0.210) 2.12 (0.765) 6.32 (0.309) 9.28 (0.054) 
         
Lower Depth         
Tillage (2) 0.84 (0.678) 0.61 (0.760) 1.06 (0.614) 0.08 (0.966) 1.92 (0.441) 0.244 (0.894) 2.74 (0.320) 0.901 (0.636) 
Traffic (2) 1.86 (0.431) 5.42 (0.126) 0.35 (0.851) 3.27 (0.277) 0.46 (0.813) 6.99 (0.073) 1.94 (0.446) 8.645 (.013) 
Block (3) 1.33 (0.307) 1.67 (0.221) 7.57 (0.003) 3.50 (0.056) 1.16 (0.366) 2.36 (0.120) 0.78 (0.527) 14.77 (0.002) 
Tillage X Traffic (4) 0.48 (0.980) 5.87 (0.351) 1.45 (0.867) 4.88 (0.449) 5.38 (0.395) 1.90 (0.808) 7.60 (0.246) 9.90 (0.042) 
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Figure 6.1. Mean abundance of Tylenchorhynchus across the different tillage and traffic combinations within 
the top depth (0-5 cm). Error bars are based on the confidence intervals of the respective means. 

 

 
Figure 6.2. Mean abundance of Trichodorus across the different tillage and traffic combinations within the top 
depth (0-5 cm). Error bars are based on the confidence intervals of the respective means. 
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Figure 6.3. Mean abundance of Aphelenchus across the different tillage and traffic combinations within the 
middle depth (5-15 cm). Error bars are based on the confidence intervals of the respective means. 

 

 

Figure 6.4. Mean abundance of Tylenchus across the different tillage and traffic combinations within the lower 
depth (15-30 cm). Error bars are based on the confidence intervals of the respective means. 
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Figure 6.5. Mean abundance of Pratylenchus across the different tillage and traffic combinations within the 
lower depth (15-30 cm). Error bars are based on the confidence intervals of the respective means. 

 
The two tillage methods caused mild to moderate inhibition of herbivores, fungivores and 

bacterivores in the 5-15 cm depth (Figure 6.6B). In predators, the two tillage treatments 

had opposite effects, with shallow-tillage causing mild inhibition and deep-tillage causing 

mild stimulation. Both tillage methods had the same mild stimulation effect on omnivores 

at this depth. Herbivores were mildly stimulated by both LGP and RTF treatments. In 

predators and omnivores, LGP resulted in moderate inhibition. In fungivores and 

bacterivores, there was a mild inhibition by LGP. RTF caused mild stimulation of 

bacterivores and omnivores while causing mild inhibition of fungivores and predators.   

Within the 15-30 cm depth, shallow and deep tillage systems caused inhibition of 

herbivores and bacterivores (Figure 6.6C). Fungivores, predators and omnivores, on the 

other hand, were stimulated by tillage. Deep-tillage did not elicit any response from 

omnivores, which only responded positively to shallow-tillage. The two traffic systems at 

this depth elicited opposite responses from fungivores and bacterivores. In herbivores and 

omnivores, both traffic systems resulted in mild to moderate stimulation. Predators were 

the only group inhibited by both LGP and RTF within this depth. 
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6.3.3 Effects of environmental variables on nematode fauna 
Most of the measured environmental conditions differed significantly across the treatment 

plots (Table 6.4). The CCA plot revealed various associations between some of selected 

nematode taxa and a few of the measured environmental variables (Figure 6.7). The 

bacterivores, Eucephalobus (r = -0.53, P < 0.001), Acrobeloides (r = -0.59, P < 0.001), 

Plectus (r = -0.39, P < 0.001), Rhabditis (r = -0.44, P < 0.001) Alaimus (r = -0.20, P < 

0.05) were negatively associated with compaction. Prionchulus (r = -0.25, P < 0.01) and 

Dorylaimidae (r = -0.36, P < 0.001) were also negatively associated with compaction. 

Tylenchus (r = 0.40, P < 0.001), Trichodorus (r = 0.39, P < 0.001), Tylenchorhynchus (r = 

0.26, P < 0.05) and Aphelenchus (r = 0.42, P < 0.001) were positively associated with 

compaction. Meloidogyne was positively associated with organic matter content (OM) (r = 

0.26, P < 0.01) and tillage intensity (r = 0.35, P < 0.001). Magnesium content positively 

correlated with Tylenchus (r = 0.22, P < 0.05) and Aporcelaimidae (r = 0.20, P < 0.05), but 

negatively correlated with Trichodorus (r = -0.22, P < 0.05).   

The community indices also showed varying association with some environmental 

variables (Figure 6.8). Maturity index correlated negatively with NO3 (r = -0.22, P < 0.05), 

and NH4 (r = -0.23, P < 0.05). Structure index (r = 0.45, P < 0.001) and enrichment index 

(r = 0.44, P < 0.001) were positively correlated with compaction while basal index (r = -

0.54, P < 0.001) showed a negative association with compaction. 
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Figure 6.6. Graphical representation of V index values of various nematode trophic groups in their 
response to shallow and deep-tillage systems, and LGP and RTF traffic regimes. A) Top 5 cm depth 
B) middle 5-15 depth and C) Lower 15-30 cm. Computation of the V index for tillage and traffic effects 
on the nematode trophic groups was carried out with reference to values obtained from zero-tillage 
and the CTF system, respectively. Positive values denote stimulation and negative values, inhibition. 
V < -0.67: extreme inhibition; -0.33 > V > -0.67: moderate inhibition; 0 > V > -0.33: mild inhibition; 0 
< V < 0.33: mild stimulation; 0. 33 < V < 0.67: moderate stimulation; V > 0.67: extreme stimulation. 

A A 
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Figure 6.7. CCA bi-plots of nematode taxa and environmental variables. Eigenvalues for CCA1 and 
CCA2 were 0.252 and 0.141 respectively. Percentages of the variance of CCA1 and CCA2 explained 
were 51.3 and 28.6%, respectively. DSF = dry soil fraction. 

 
Figure 6.8. CCA bi-plots of nematode indices and environmental variables. Eigenvalues for CCA1 
and CCA2 were 0.066 and 0.017 respectively. Percentages of the variance of CCA1 and CCA2 
explained were 71.7 and 19.0%, respectively. MI = maturity index; MI.2.5 = maturity index 2-5; PP 
= plant parasitic index; CI = channel index; EI = enrichment index; SI = structure index; BI = basal 
index. 
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Table 6.3. Summary of analysis of variance (ANOVA) for trophic groupsa. c2 values from glm.nb function and P values shown in parentheses. Data are from 108 

samples representing 36 plots sampled at three different depths. Treatments consist of three levels of tillage (zero, shallow and deep) and three levels of traffic (random 

traffic, low ground pressure and controlled traffic).  

Source (degrees of freedom) Density (individuals/100 g soil) 
 Herbivores Fungivores Bacterivores Predators Omnivores 
Top Depth      
Tillage (2) 0.632 (0.729) 0.528 (0.768) 0.039 (0.981) 1.432 (0.489) 0.518 (0.772) 
Traffic (2) 1.916 (0.384) 1.471 (0.479) 2.326 (0.313) 4.964 (0.084) 1.674 (0.433) 
Block (3) 34.677 (<0.001) 7.434 (0.059) 13.524 (0.004) 6.010 (0.111) 27.014 (0.234) 
Tillage X Traffic (4) 29.158 (<0.001) 4.170 (0.383) 0.696 0.696) 4.159 (0.385) 7.964 (0.093) 
      
Middle Depth      
Tillage (2) 0.704 (0.703) 1.866 (0.393) 6.286 (0.043) 1.304 (0.521) 1.295 (0.523) 
Traffic (2) 6.52 (0.038) 0.141 (0.932) 1.623 (0.444) 6.854 (0.032) 0.872 (0.647) 
Block (3) 8.496 (0.037) 8.36 (0.039) 19.469 (<0.001) 13.594 (0.004) 3.511 (0.319) 
Tillage X Traffic (4) 27.125 (<0.001) 1.626 (0.804) 7.562 (0.109) 3.479 (0.481) 1.895 (0.755) 
      
Lower Depth      
Tillage (2) 6.596 (0.037) 4.182 (0.124) 1.962 (0.375) 3.118 (0.210) 1.399 (0.497) 
Traffic (2) 8.614 (0.013) 0.347 (0.841) 0.277 (0.871) 11.662 (0.003) 1.308 (0.520) 
Block (3) 46.109 (<0.001) 11.736 (0.008) 2.197 (0.533) 24.512 (<0.001) 0.524 (0.914) 
Tillage X Traffic (4) 43.289 (<0.001) 1.507 (0.825) 10.117 (0.038) 13.783 (0.008) 3.337 (0.503) 
      

a The list of taxa constituting each trophic group are in Appendix 10.4 

Table 6.4. Environmental variables and how they differ across plots. Soils tested were sampled across 0-30 cm depth. Mean data ± standard error of mean.  

Environmental 
variables 

CTF-Deep CTF-
Shallow 

CTF-Zero LGP-Deep LGP-
Shallow 

LGP-Zero RTF-Deep RTF-Shallow RTF-Zero P values 
(bivariate) 

NO3-1 9.03±0.78 9.67±0.65 10.17±0.56 6.61±0.42 9.57±1.29 13.57±1.64 8.55±0.77 8.87±0.46 9.90±1.07 <0.001 
NH4+ 0.77±0.26 0.38±0.07 0.42±0.08 0.22±0.04 0.94±0.46 13.94±6.59 0.48±0.13 0.76±0.08 0.44±0.16 <0.001 
Compaction† 1.07±0.14 1.20±0.13 1.34±0.17 1.44±0.15 1.43±0.13 1.58±0.13 1.44±0.14 1.52±0.17 1.55±0.10 0.197 
Organic matter 3.15±0.04 3.35±0.06 3.47±0.05 3.20±0.02 3.37±0.02 3.45±0.07 3.37±0.02 3.42±0.04 3.45±0.07 <0.001 
Total N 36.75±3.89 37.70±2.18 39.70±2.12 25.60±1.73 39.40±6.55 103.15±30.38 33.85±3.11 36.15±1.99 38.75±4.59 <0.001 
K+ 166.00±10.05 161.75±3.59 189.25±9.10 168.75±2.00 159.50±3.75 189.00±11.62 150.50±9.19 164.50±12.01 166.25±3.04 <0.001 
P 35.20±2.26 36.30±0.81 39.70±1.78 38.15±1.45 33.30±1.29 36.80±2.01 37.15±1.48 37.45±1.37 37.70±1.44 <0.001 
Dry matter 81.35±0.32 80.75±0.09 81.62±0.22 81.60±0.24 81.62±0.15 81.82±0.25 81.17±0.14 81.22±0.27 81.27±0.29 0.042 
pH 6.22±0.06 6.12±0.05 6.12±0.07 6.45±0.06 6.02±0.11 6.05±0.08 6.42±0.05 6.25±0.10 6.10±0.08 <0.001 
Mg2+ 113.50±3.34 123.50±2.34 121.50±3.14 129.75±2.82 91.75±14.12 123.00±4.06 121.50±2.11 118.75±2.61 123.50±3.14 <0.001 
† Significant in univariate analysis across tillage, traffic and depth. The only environmental variable measure across the three depths. 
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Within the top depth, herbivores were the only trophic group affected by the interaction 

between tillage and traffic (P<0.001). The number of herbivores significantly increased in 

response to traffic, specifically RTF, under zero tillage but not under shallow or deep 

tillage (Figure 6.9). Within the middle depth, the interaction between tillage and traffic had 

a significant effect on herbivore abundance (P<0.001). As in the top depth, the number of 

herbivores appeared to increase with traffic under zero tillage but not under deep or 

shallow tillage (Figure 6.9). Tillage and traffic had a significant main effect on bacterivores 

(P=0.043) and predators (P=0.032), respectively. Bacterivores decreased in response to 

shallow tillage while predators decreased in response to both LGP and RTF. However, 

Tukey’s post-hoc analysis showed no significant difference for tillage in the case of 

bacterivores and traffic in the case of predators. Within the lower depth, herbivores 

(P<0.001), bacterivores (P=0.038) and predators (P=0.008) were significantly affected by 

tillage and traffic interactions. For predators under deep tillage, RTF caused a decrease in 

the number of individuals while LGP caused an increase in their number (CTF = 8.86, 

LGP = 11.79, RTF = 0.99). Under shallow tillage, both RTF and LGP resulted in a 

decrease in their number (CTF = 14.58, LGP = 8.81, RTF = 6.05). Under zero tillage, their 

number increased with RTF and decreased with LGP (CTF = 5, LGP = 4.94, RTF = 

10.41). While the number of herbivores increased with RTF under zero tillage, they 

decreased with RTF under shallow tillage. They also decreased with LGP under deep 

tillage (Figure 6.9). Bacterivore populations responded differently to tillage across the 

three traffic systems. Their number increased significantly with shallow tillage under LGP 

but were not affected by tillage under CTF or RTF (Figure 6.10). For predators, Tukey’s 

post-hoc analysis showed no significant difference in the interaction means. 
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Figure 6.9. Mean abundance of herbivores across the different tillage and traffic combinations for the top (0-5 
cm), middle (5-15 cm) and lower (15-30 cm) depths. Error bars are based on the confidence intervals of the 
respective means. 
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Figure 6.10. Mean abundance of bacterivores across the different tillage and traffic combinations within the 
lower depth (15-30 cm). Error bars are based on the confidence intervals of the respective mean 
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6.4 Discussion 
The 83 taxa recovered across the 108 samples analysed was high in comparison with the 

number reported by Okada and Harada (2007) from a soybean field, who incidentally 

analysed the same number of samples as in this study and recovered 51 taxa. Also, with 

regards to incidence of specific taxa across samples, only about 20% of the recovered 

taxa occurred across 50% or more of the samples analysed. This low incidence of the 

taxa across samples was not surprising since according to Ettema (1998) species 

similarity across samples is usually very low. In fact, the 20% observed here was high 

compared to the 6% observed by Price and Siddiqi (1994) and 3% observed by Orr and 

Dickerson (1966) who analysed 150 and 240 individual cores, respectively. This 

discrepancy was probably due to the fact that while samples in this study consisted of 15 

cores combined to form one sample, in the above-mentioned studies, samples consisted 

of single cores. Johnson et al. (1972) combined 50 cores into single samples and 

discovered that up to 50% of the taxa occurred in more than 50% of the samples, 

suggesting, therefore that the more the cores constituting the samples, the more similar 

the samples are likely to be in terms of diversity and the more representative the sample 

can be of the soil condition.  

In this study, there was a significant interaction between tillage and traffic with respect to 

total abundance within the top and lower depths suggesting that the impact of traffic on 

total abundance within these depths depended the type of tillage practiced. And while 

traffic, particularly RTF, enhanced total abundance of nematodes under zero tillage 

system, this effect was not observed when the soil was tilled. The effect of tillage as a 

main factor on total abundance of nematodes was mostly evident within the middle depth. 

incidentally, it was within this depth that the highest total abundance was recorded. Both 

shallow and deep-tillage significantly reduced total number of nematodes. This finding 

contradicts a few previous studies that found no apparent response of total nematode 

numbers to tillage treatments (Wardle, 1995; Lenz & Eisenbeis, 2000; Sanchez-Moreno et 

al., 2006; Okada & Harada, 2007). It is also in contrast with the Liphadzi et al. (2005) and 

Parmelee and Alston (1986), who found an overall increase in nematode abundance 

under tilled conditions. This, however, they attributed to the predominance of bacterivores 

and fungivores, both of which tend to thrive when the soil is disturbed. The reason for the 

high abundance of nematodes in the zero-tillage treatment in this study was the 

occurrence of Meloidogyne in remarkably high numbers, especially in the zero-tillage and 

RTF combinations. The different traffic systems affected the total abundance of 

nematodes within the lower depth. This finding conflicts with Bouwman and Arts (2000) 

who found no difference in the total abundance of nematodes between low traffic load (4.5 

t) and high traffic load (14.5 t) plots after four years of repeated application of compaction 



 

 
 
 

107 

treatments on a non-grazed grassland. However, at the end of the fourth year, they did 

find a shift in the composition of the feeding groups towards one that is dominated by 

herbivores but with a reduced number of bacterivores, predators and omnivores. Although 

they used specific weight of the soil–which was not the done in the current study, the level 

of compaction the different loads caused correlated with the weights in the same way 

compaction increased with the intensity of traffic system used.  

It has been established that different taxa exhibit varied responses to soil perturbation 

(Sanchez-Moreno et al., 2006). In samples taken from the top 5cm of the soil, both tillage 

systems caused inhibition of all the trophic groups except bacterivores and omnivores. In 

these two groups, shallow-tillage caused a mild stimulation while deep-tillage resulted in a 

mild inhibition. The population of herbivores in this study was dominated by Meloidogyne, 

particularly in the zero-tillage samples. The significant inhibition of the herbivores by the 

deep and shallow-tillage systems observed across all three depths were largely due to the 

response of Meloidogyne, a phenomenon also observed by Okada and Harada (2007). 

They attributed it to the destruction of possible weed hosts of these obligate 

endoparasites by the tillage treatment. Pratylenchus was also inhibited by tillage in this 

study, a finding that disagrees with that reported by Minton (1986), Parmelee and Alston 

(1986) and Okada and Harada (2007), who observed no significant difference in the 

number of Pratylenchus between no-tillage and conventional tillage. It is, however, 

supported by (Thomas, 1978) who observed greater number of Pratylenchus in no-till 

plots than in cultivated ones.  It must be noted that the population dynamics of these 

endoparasites is also affected by the availability and type of host plant, which could be the 

reason for these inconsistencies.  

Although most previous studies have reported a significant stimulation in the abundances 

of bacterivores and fungivores by conventional tillage (Parmelee & Alston, 1986; Lenz & 

Eisenbeis, 2000; Sanchez-Moreno et al., 2006), a completely opposite response was 

observed in this study as shown by the index V. Fungivores responded to the deep and 

shallow-tillage regimes with a decline in numbers within the 0-5 cm and 5-15 cm depths, 

while bacterivores exhibited only a mild stimulation by shallow-tillage and a similar extent 

of inhibition by deep-tillage in the 0-5 cm but were inhibited by both shallow and deep-

tillage within 5-15 and 15-30 cm depths. It has often been assumed that the increase in 

bacterivores and fungivores associated with tillage had to do with the incorporation of 

organic matter into the soil and the subsequent availability of this to microbes that multiply 

on it (Sanchez-Moreno et al., 2006). It is this increase in microbes that most consider as 

being responsible for the increase in these microbial grazers such as bacterivorous and 

fungivorous nematodes. This decline in microbivores, especially the fungivores could have 

resulted indirectly from the fungicides applied to control fungi (Records show fungicide 
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application each year for three years prior to the sample collection and two years following 

that). It is unlikely that this was the result of a direct effect because that would have 

affected other trophic groups as well.  

A number of complex processes regulate the dynamics of food webs in the soil, rather 

than just one constant. There could be two theories to explain the decline in microbial 

grazers observed in this study. Firstly, for the fungivores, the tillage may have caused 

nematodes and the surface organic matter to be buried deeper in the soil beyond the top 

5 cm, and as a consequence were slow to recover due to their relatively long generation 

times. This would partly explain why the extent of inhibition was much less in 5-15 cm 

depth, and why there was a stimulation in their abundance within the 15-30 cm depth. 

Secondly, bacterivores may have, despite being buried deeper, been able to recover 

quickly to show a mild stimulation in case of shallow-tillage and mild inhibition in the case 

of deep-tillage due to their shorter generation time (Bongers, 1990). Nonetheless, this mild 

change to the bacterivore abundance was not significant (Table 6.3). Within the middle 

and lower depths, their abundance was already low and were less likely to recover as they 

did in the top depth. To a very small extent, predation could be a reason for their decline 

within the lower depths due to the observed increase in the number of predators and 

omnivores. However, there is a question of how the soil properties could have 

manipulated the occurrence of microbial grazers across the three depths, and this could 

have been better explained had the soil properties been analysed for each of the depths 

rather than for the bulk samples.  

In addition to the usual assertion that predators and omnivores are sensitive and tend to 

always decline in disturbed soils (Wardle, 1995), their decline within the top depths of the 

tilled plots could also be attributed to the reduction in the number of other trophic groups 

on which they prey. This trend differed within the 5-15 and 15-30 cm depths, where 

stimulation, rather than inhibition was the general response to tillage. Omnivores may 

have utilized some organic products, as well as some microbial grazers, buried as a result 

of tillage. Predators under deep-tillage may also have benefitted from the availability of 

deeply buried grazers to build their population in the middle and lower depths. That said, 

this change in abundance was found not to be significant (Table 6.3). 

Traffic and its consequential increase in compaction resulted in varying responses from 

the various feeding groups across the three depths. Bacterivores and omnivores showed 

inhibition response to LGP treatment but were stimulated under RTF treatment. It is 

possible that at the depth of 5-15 cm, only RTF could introduce sufficient compaction to 

consolidate the soil after deep-tillage. The mild stimulation effect observed in the 

bacterivores and omnivores could have been as a result of the soil consolidation bringing 

them in close proximity to their microbial food sources and prey.  
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A few of the community indices responded to the tillage and traffic treatments. They also 

differed across the three depths of sampling. These indices are based on the structure 

and composition of the nematode community. They can therefore, be used to make 

inferences on the condition of the soil (Neher & Darby, 2006). Maturity index (MI) 

measures the degree of disturbance or ecological succession in the soil. Being an index 

that is dependent on abundance of herbivores, PPI was influenced by tillage and traffic 

interaction in a manner similar to how herbivore abundance was. And as with herbivore 

abundance, PPI increased in response to RTF only under zero tillage. The reason why 

traffic influence was only observed under zero tillage could be because application of 

perturbation, as was done with shallow and deep tillage, interrupted with the traffic 

treatments to even them out. Traffic caused a reduction in MI2-5, albeit only by a very 

small magnitude. Tillage, on the other hand, did not influence the MI2-5 value significantly. 

The lack of significant response in terms of community indices is perhaps to do with the 

pre-existing conditions of agricultural soils. The rare sensitive taxa whose detection dictate 

the values of indices such as MI and SI are usually absence is most cultivated fields. Their 

absence, therefore, even in the untilled plots means that tillage does very little to impact 

these indices that depend on them. A similar finding was reported by (Sanchez-Moreno et 

al., 2006). 

General opportunistic bacterivores which in this study were dominated by Acrobeloides, 

Eucephalobus and Plectus exhibited negative association with compaction on the CCA 

plot. They are known to usually thrive well under disturbed conditions and unlike the 

enrichment opportunists, do not depend on eutrophication of the soil (Bongers, 1990). 

This, perhaps, explains their lack of association with minerals in soil. The herbivorous 

taxa, Tylenchorhynchus, Pratylenchus and Trichodorus associated positively with 

compaction, hence negatively associated with tillage and any form of soil disturbance. 

This agrees with many of the previous studies that reported a decrease in herbivores’ 

population by tillage (Thomas, 1978).  

The soil factors, NO3
-, NH4

+, N, P, K+ and OM were all associated positively with EI, an 

index which measures the proportion of the total nematode abundance composed of 

enrichment opportunistic taxa (Ferris et al., 2001). Channel index (CI), however, was 

negatively associated with all these soil minerals. Higher CI value is indicative of the fact 

that the predominant decomposition pathway is the slow fungal-driven channel. Such 

conditions are usually associated with relatively lower mineral availability in the soil, hence 

the observed negative association between this index and soil minerals. The two 

disturbance-indicator indices, MI and SI, responded differently to compaction. Since both 

indices are higher when the community is dominated by sensitive higher cp taxa, the 

expectation was that they would position similarly with respect to compaction. As well as 
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being higher under the LGP and RTF treatments, compaction was also associated more 

with zero tillage than the other tillage treatments. And therefore, while compaction could 

be detrimental to these sensitive taxa, they may still be thriving because of zero tillage 

which inflicts no disturbance on the soil. Being a measure of abundance of the 

disturbance-tolerant general opportunists of the cp 2 taxa, BI was expectedly associated 

with low compaction and tillage. 

In summary, the results of this study demonstrate the importance of nematodes as 

indicators of soil condition through the different changes in communities observed as a 

result of traffic and tillage treatments as well as the fact that nematode taxa with different 

feeding strategies respond differently to perturbation and/or compaction depending on the 

depth of the profile examined. For growers, the results presented here can serve as a 

guide to what management practice inflicts the least damage on the soil and its 

biodiversity, as well as how some practices can inadvertently keep in check the 

populations of some parasitic nematode species.   
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7 Using high-throughput sequence data to predict 
trophic-group composition and community indices of 
nematodes 
7.1 Introduction 
The role of nematodes as indicators of soil quality is a well-researched sub-discipline of 

nematology (Bongers, 1990; Bongers & Bongers, 1998; Porazinska et al., 1998; Bongers 

& Ferris, 1999; Porazinska et al., 1999; Ferris & Bongers, 2006; Okada & Harada, 2007). 

As discussed earlier, nematode community composition and structure provide an 

excellent tool for determining whether the soil has been disturbed or not (Bongers, 1990). 

And as demonstrated in chapter 6, this typically entails identifying the different taxa and 

recording their abundance in soil samples. This information is then used to generate 

community indices such as the maturity index (MI), plant-parasitic index (PPI) (Bongers, 

1990), enrichment index (EI), basal index (BI), structure index (SI) and channel index (CI) 

(Ferris et al., 2001) of a sample, which if determined correctly allows inferences about the 

condition of the soil the sample was taken from. The taxonomic aspect of this process has 

traditionally been carried out using morphological characteristics of nematodes. Except for 

channel index, which only requires trophic group classifications, all the above-mentioned 

indices require identifying the individual nematodes to the genus level or at least to the 

family level (Bongers, 1990; Ferris et al., 2001). Although identifying most nematode taxa 

to the family level may not present significant difficulty to a non-expert, the sheer number 

of specimens in each extract and the number of extracts requiring examination may 

preclude carrying out such study beyond local scales.  

The usual workaround to this constraint caused by nematode densities and sample size is 

to identify only a given number of randomly selected specimens, usually at least 100 

(Yeates & Bongers, 1999), from each sample while placing a certain limit to the number of 

samples taken for each study (Neher & Campbell, 1996). Although this approach of 

identifying a stipulated number of nematodes also serves as a means of normalising the 

data, it is a step that should better be done at the statistical analysis stage rather than 

during the identification because leaving the investigator to decide what specimens to 

identify can introduce potential bias, which can then lead to false representation of the 

community. Especially in samples that are taxonomically rich, the sampling size of 100 

may not capture the diversity sufficiently. The outcome of this is a study deficient both in 

terms of scale and ability to capture the full diversity within the community. This can also 

result in the exclusion of some rare but important taxa in the analysis especially in 

agricultural fields, where samples can be dominated by one or two plant-parasitic taxa, 

thus resulting in a very low representation of free-living taxa needed for the computation of 

indices such as MI, EI, BI, SI and CI. By reducing the resolution of the classification to 
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trophic groupings, it is also possible to facilitate the identification process without picking 

only a fixed number of individuals per sample. Despite some favourable arguments put 

forward to support this approach as providing ecologically and functionally relevant 

information (Ritz & Trudgill, 1999), adopting it completely precludes the use of most of 

these indices since they all require at least family level identification. 

The use of metabarcoding has the potential to allow for identifying unlimited number of 

individuals from several samples all in just a single sequencing run. Moreover, because of 

the high sensitivity of some next generation sequencing (NGS) technology, even those 

taxa that are represented in low numbers can be detected. Identification to the genus level 

is routinely obtainable with this technology, assuming all the necessary bioinformatics 

tools and expertise are available (Porazinska et al., 2009). Therefore, not only can this 

method increase the speed with which multiple samples are analysed but could also 

reduce the requirement for expert knowledge on how to identify nematode genera or 

species while still ensuring highly accurate identification. 

Despite the promise that metabarcoding holds with regard to nematode community 

analysis, there is still one important aspect of it that makes its full implementation thus far 

highly challenging. All the aforementioned indices used as indicators of soil quality require 

abundance information for their computation. To fully substitute the traditional method, a 

new tool needs to detect the taxa present in a sample, and also correctly predict the 

abundances of these taxa. No study has so far been able to accurately predict relative 

abundance of taxa in mixed samples of any group of organisms based on their read 

frequencies from a metabarcoding data (Porazinska et al., 2009; Amend et al., 2010; 

Edgar, 2017a). Chapters 3 and 4 of this thesis also attest to this lack of correlation 

between sequence read frequency and relative abundance of the sampled taxa. Due to 

this, some have suggested that all PCR-dependent assessment of biodiversity should be 

based solely on presence/absence, and not abundance (Elbrecht & Leese, 2015).  

Criticism of the ability of metabarcoding approaches to quantify taxa within mock or real 

communities have largely been based on specific taxa, species or genera, and how their 

read frequencies deviate from their relative abundance (Porazinska et al., 2009; Yu et al., 

2012) (also Chapters 3 and 5). Although all the indices used to assess nematode 

communities depend on abundance data (Bongers, 1990; Yeates, 1994; Bongers et al., 

1995; Ferris et al., 2001), the required abundance information does not necessarily have 

to be of the individual taxa. In the case of MI for instance, it is the frequencies of the 

colonizer-persister groups that are needed for its computation. Similarly, the EI, BI, SI and 

CI each utilises abundance information at the functional guild level. In simple terms, a 

functional guild is a group of taxa with the same feeding habit and life history 

characteristics (Neher, Bongers, & Ferris, 2004). In view of this, there is a possibility that 
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read numbers obtained from metabarcoding would correlate better at these functional and 

trophic group levels with their respective actual abundances from morphological 

identification more than they would at the genera or species level. Additionally, 

transformation of the read counts into binary (presence/absence) records have been 

recommended and successfully used as a means circumventing the lack of correlation 

between read frequencies and relative abundance (Yu et al., 2012; Ji et al., 2013).   

This study is based on the experiment described in Chapter 6 on how tillage and traffic 

treatments influence the structure of nematode communities in the soil. In the current 

chapter, the objective was to examine to what extent indices obtained using relative read 

frequencies of taxa correlate with those obtained for the same samples using standard 

methods of analysis which involved morphology-based identification. Additionally, the 

assessment of the impact of different tillage and traffic regimes on nematode community 

according to the metabarcoding data was compared with that according the standard 

morphological method. Finally, metabarcoding data obtained from samples taken from the 

same experiment a year later were analysed to determine if there have been any changes 

in the nematode community after a one-year period (between year four and five of the 

experiment). 
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7.2 Materials and methods 
7.2.1 Sample preparation 
Soil samples were collected in February and March 2016 from the controlled traffic 

farming experiment at Harper Adams University (52°46.7899’N, 002°25.5236’W). The 

experiment was set up in four randomised complete blocks of nine treatments. Each 

treatment is a combination of one of three tillage and one of three traffic systems. The 

tillage treatments were zero, shallow or deep tillage and the traffic treatments were 

controlled, random and low ground pressure traffic. Details of the treatment types have 

been described in Chapter 6. Samples were taken at three different depths (0-5 cm, 5-15 

cm and 15-30 cm) for each of the 36 plots, making a total of 108 samples. Nematodes 

were extracted from sub-samples of 200 g and the extracts concentrated to 10 ml as 

described in chapter 6.  

To determine if there were changes in the nematode community a year later following the 

sampling carried out from February to March 2016, new samples were taken in February 

2017, following the harvesting of spring oats, from the top 0-5 cm from the same plots as 

in 2016. Samples in 2017 were analysed using only metabarcoding. Sampling was limited 

to a single depth because of time constraint. The 0-5 cm depth was chosen, since prior 

morphology-based analysis (Chapter 6) recorded the highest diversity within this profile. 

 

7.2.2 DNA extraction 
For the DNA extraction 1 ml subsample was taken from each of the 10 ml sample extracts 

and stored at -20 °C. From the 1ml subsamples, 100 µl subsamples were used for DNA 

extraction using the Qiagen DNeasy Blood and Tissue Kit. To each sample, 800 µl of 

Qiagen ATL buffer and 100 µl proteinase K were added before incubation overnight at 56 

°C and shaking at 109 rpm. The genomic DNA extraction followed the manufacturers 

guide. To maintain the same ratio of proteinase K and other reagents as described in the 

manufacturer’s protocol, five times the recommended volumes of AL buffer and ethanol 

were added.  

 

7.2.3 PCR and library preparation 
Polymerase chain reaction was performed on each sample using the primer pairs NF1 5’- 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGTGGTGCATGGCCGTTCTTAGTT

-3’) and 18Sr2b (5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTA 

CAAAGGGCAGGGACGTAAT-3’) (Porazinska et al., 2009). The underlined sections of 

the primer sequences here represent the Illumina adapter sequence. Each reaction tube 
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contained a total of 25 µl reaction mix consisting of 1X Phusion HF buffer (New England 

Biolabs, Ipswich, MA, USA), 0.2 mM dNTPs (New England Biolabs), 0.5 µM each of 

adapter-ligated forward and reverse primers, 1U of Phusion DNA polymerase (New 

England Biolabs) and 5 µl of template DNA. The PCR programme was set at 98ºC for 2 

min, 30 cycles of 98ºC for 20 secs, 66ºC for 45 secs, 72ºC for 45 secs before a final 

extension step at 72ºC for 5 mins.  

Amplicons were purified using Ampure XP Beads (Bechman Coulter, Inc. USA) and 

quantified using a Thermo Scientific™ Fluoroskan Ascent™ Microplate Fluorometer 

(Thermo Fisher Scientific, Wilmington, DE, USA). This was then followed by the index 

PCR step where unique dual indexes and the sequencing adapters were attached to each 

amplicon using Nextera XT index primers (Illumina inc. San Diego, CA, USA) for 

amplification (Illumina’s 16S Metagenomic Sequencing Library Preparation protocol). The 

PCR conditions at this stage were: 98ºC for 3 min, 8 cycles of 98ºC for 30 secs, 55ºC for 

30 secs, 72ºC for 30 secs and a final extension step at 72ºC for 5 mins. The products 

were purified again, quantified using the Microplate Fluorometer and pooled according to 

their molarity. Length of the amplicons in the pooled sample was verified on the Agilent 

2200 TapeStation (Agilent Technologies, Santa Clara, CA, USA). The pool was quantified 

and diluted to 4 nM concentration. Using the Illumina protocol, the pool was denatured by 

mixing with 0.2N NaOH. 10% denatured PhiX control library was added to the denatured 

pool to introduce diversity. The mixture was incubated for 2 min at 96ºC and immediately 

put on ice, before being loaded on a MiSeq machine (Illumina) for sequencing. The 

sample was sequenced at Fera (York, UK) in a paired-end approach using a V3 run kit 

and 2 x 300 cycles. 

 

7.2.4 Bioinformatic analysis 
The sequence reads were demultiplexed by the MiSeq Reporter software on the MiSeq 

sequencer into the individual samples based on the paired nextera indexes used, applying 

default settings. All subsequent analyses were carried out using the USEARCH pipeline 

(Edgar, 2010). Initial attempts at merging the paired reads using the command 

fastq_mergepairs in USEARCH resulted in a significant amount of the forward and 

reverse reads failing to merge. Therefore, the merging step was skipped, and the forward 

reads alone were used for the analysis due to their superior quality over the reverse 

reads. A similar approach was implemented in Unterseher et al. (2016).  For each of the 

samples, reads were first trimmed to 200 bp from the 3’ end, while at the same time 

removing primer sequences with the command fastx_truncate. The truncated reads were 

then used to pass the command, fastq_filter which filtered out any read with expected 
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error of more than one (Edgar & Flyvbjerg, 2015) and at the same time converted the files 

from fastq to fasta formats. The filtered reads of all samples were then combined into one 

file. The command, fastx_uniques was used to dereplicate the reads. The subsequent 

steps, ie clustering, taxonomy assignment, and creating otu table followed the method 

described in section 3.2.8.  

The otu table was converted into a format in which the taxa names are arranged in 

columns and the samples names in rows. Firstly, all nematodes-only otus with their 

records in each sample were selected and copied onto a separate worksheet in Microsoft 

Excel. For otus whose assignments did not include genus names, blast search (Zhang et 

al., 2000) was performed against the NCBI reference database on 5th February 2018 to 

confirm their identities at the genus level or species if possible. After this, reads of otus 

with the same species names were lumped so that each species name is unique.  

The steps involved in obtaining the species table for the standard morphological approach 

are detailed in Chapter 6. In short, from 1 ml subsample of each sample extract, all 

individuals were identified to the genus level, although for some individuals, only family-

level identification was possible. The number of each taxon (genus or family) in each 

sample was recorded in a species table similar to one described for the metabarcoding 

approach. 

 

7.2.5 Statistical analysis 
For calculating community indices, both the metabarcoding species table and the 

morphology species table were analysed in three different formats. First analysis involved 

computing all indices and trophic classifications using the unrarefied data (raw data). The 

second analysis involved the computation of these indices and trophic classifications on 

rarefied data from both the metabarcoding and morphological identification. The standard 

and metabarcoding datasets were rarefied to 50 individuals and 100 reads per sample, 

respectively. The third analysis used presence-absence data. The three different analyses 

were performed to determine if the format of the data had any impact on the comparison. 

In each of these analysis classes, difference in means of metabarcoding- and 

morphology-based indices were tested using the Welch’s t-test (Welch, 1951) in RStudio 

development environment for R (RStudio Team, 2016).  

All computations of nematode indices, trophic group classifications and food web 

diagnostics were performed using NINJA (Sieriebriennikov, Ferris, & de Goede, 2014), an 

online tool for nematode faunal analyses. The indices obtained for all samples were 

added to the species table together along with some measured environmental variables. 

Using NINJA, c-p triangle (De Goede, Bongers, & Ettema, 1993a), which graphically 
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presents nematode community structure based on coloniser-persister (c-p) classifications 

of the community were also obtained. 

Difference in nematode community compositions across different treatments and soil 

depths were demonstrated using non-metric multidimensional scaling (NMDS) ordination 

of Jaccard dissimilarity metrics. Most of the analysis involving NMDS were performed 

following the workflow described in (Ji et al., 2013). For this procedure alone, presence-

absence data from the metabarcoding was compared with the unrarefied data from the 

standard morphological data in order to ensure this analysis conforms with the procedure 

described by Ji et al. (2013). An NMDS plot comparing the presence-absence 

metabarcoding data with the rarefied standard data instead of the unrarefied one did not 

change the plot. The decision to use the unrarefied standard data was, therefore, to avoid 

loss of data that may result from the rarefaction. The function vegdist of the vegan 

package (Oksanen et al., 2015) was used to calculate distances, and metaMDS for 

performing NMDS. For the metabarcoding data alone, the parameter ‘binary’ in vegdist 

was set to true because the data was in a binary (presence/absence) format. Correlations 

between the metabarcoding and morphological data were performed using Mantel and 

Procrutes correlation tests in vegan as implemented in the functions mantel and protest, 

respectively.  

Effects of treatments on community compositions were analysed using mvabund (Wang et 

al., 2012) package. Differences in the effects of treatment levels were calculated using 

summary.manyglm, and p.adjust function based on the ‘fdr’ method (Benjamini & 

Hochberg, 1995) was used to correct for multiple testing. The ‘fdr’ method controls the 

expected proportion of false discoveries amongst the rejected hypotheses. 

 

7.2.6 Comparisons between 2016 and 2017 samples 
Sequence files for the 0-5 cm depth of the samples from 2016 and those collected in 2017 

were combined and analysed using USEARCH. Analyses inside USEARCH were carried 

following the same steps, using the same procedure as described in the section, 7.2.4. 

Species tables for the two sampling years were separated before performing statistical 

analysis. A possible outcome when data are separated in this manner is the occurrence of 

species with zero records for all samples in one part of the data because they only 

occurred in the other. Therefore, an additional code was added to remove species with 

zero records in all samples in an individual year. Distances were calculated using vegdist 

for this comparison. Treatment effects on community compositions were also calculated 

using summary.manyglm function with p.adjust to correct for multiple testing as was done 

in the previous section.  
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7.3 Results 
7.3.1 Recovered taxa 
Standard morphological analysis recovered 83 unique taxa identified to the genus level, 

including a few taxa that were identified only to the family level for individuals whose 

genus identification could not be achieved. The metabarcoding data set yielded 194 otus 

at 97% sequence similarity that were assigned 55 unique species names constituting 41 

different genera. Although the 97% similarity cut-off produced otus in excess of the 

number of species recovered by taxonomy assignment, using lower cut-offs failed to 

recover some of the taxa. And since taxonomic identities to at least family level was 

needed for nematode community indices and trophic classifications, taxonomic diversity 

instead of otus richness had to be used.  

 

7.3.2 Trophic groupings 
Apart from the dominance of herbivorous nematodes in the metabarcoding data set, 

changes in the relative abundance of the three dominant trophic groups (herbivores, 

bacterivores and fungivores) followed similar patterns in both standard and metabarcoding 

data sets (Figure 7.1). Both data sets also revealed the numerical dominance of the 

bacterivorous and herbivorous nematodes under all treatments. Across the traffic 

treatments, both data sets showed minimal to non-existent difference in the distribution of 

the trophic types. Although predacious and omnivorous nematodes had low 

representations in both data sets, this was more extreme in the metabarcoding data 

where they were rarely recovered from the samples.  

 

7.3.3 Nematode community indices 
Two terminologies used in this section and the subsequent ones need clarification. The 

term data format is used to refer to unrarefied, rarefied or presence-absence data while 

data type refers to the standard morphological or metabarcoding data. For both the 

standard and metabarcoding data types, indices were calculated from three different data 

formats: the unrarefied data, data rarefied to 100 and 50, respectively and binary data. 

Attention was focussed only on MI and MI-derived indices alone, namely, MI, MI2-5 PPI 

and Sigma MI. Structure, channel and basal indices between the two data types were 

significantly different (data not shown). Of the three data formats, the binary data revealed 

the most deviations between indices from the standard and metabarcoding data. By using 

rarefied or unrarefied data, most of the indices were not different between the two data 

types (Table 7.1). Plant-parasitic index was the only index that showed no significant 

difference between the two data types across all data formats. Maturity index 2-5 varied 
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significantly between the two data types for all treatments in at least one data format. 

There was generally more evidence to support the fact that indices computed from the 

three data types did not differ than there was to support otherwise. 

 

  

  
 
Figure 7.1. Nematode trophic groups’ distribution across traffic and tillage treatments from standard 
and metabarcoding data sets. STD represents standard data set and MTB represents 
metabarcoding data sets. 
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Table 7.1. Comparison between MI-family indices calculated from standard (MOR) and 
metabarcoding (MTB) data types from raw (UNR), rarefied (RAR) and the binary data (PrAb) 
formats under different traffic and tillage treatments. Numbers are means calculated for each 
treatment group. Insignificant P values are highlighted in grey. 

 Index Unrarefied Rarefied Pres-Abs Welch’s t-test P value 
Traffic      
CTF  MTB MOR MTB MOR MTB MOR UNR RAR PrAb 
 MI 1.75 1.99 1.79 2.03 1.77 2.43 0.100 0.163 <0.001 
 MI2-5 2.05 2.62 2.00 2.62 2.06 2.73 0.003 <0.001 <0.001 
 PPI 2.82 2.63 2.75 2.65 2.81 2.81 0.132 0.472 1.000 
 SigMI 2.41 2.22 2.49 2.24 2.31 2.57 0.255 0.297 0.001 
LGP           
 MI 1.86 1.86 1.76 1.86 1.89 2.22 0.978 0.735 0.060 
 MI2-5 2.12 2.36 2.13 2.63 2.12 2.56 0.018 0.222 0.018 
 PPI 2.68 2.66 2.66 2.66 2.71 2.75 0.898 0.984 0.610 
 SigMI 2.32 2.19 2.33 2.19 2.36 2.46 0.172 0.159 0.153 
RTF           
 MI 1.71 1.76 1.74 1.74 1.70 2.31 0.399 1.000 0.001 
 MI2-5 2.00 2.49 2.00 2.46 2.00 2.66 0.005 0.002 0.005 
 PPI 2.75 2.68 2.86 2.66 2.72 2.68 0.424 0.222 0.269 
 SigMI 2.39 2.11 2.43 2.10 2.31 2.45 0.201 0.154 0.045 
           
Tillage           
Deep           
 MI 1.83 1.92 1.90 1.95 1.80 2.32 0.617 0.827 0.003 
 MI2-5 2.07 2.51 2.13 2.50 2.04 2.65 0.008 0.093 0.001 
 PPI 2.73 2.66 2.72 2.65 2.72 2.76 0.700 0.701 0.631 
 SigMI 2.42 2.14 2.50 2.15 2.32 2.48 0.184 0.159 0.049 
Shallow           
 MI 1.77 1.89 1.80 1.89 1.80 2.37 0.148 0.303 0.004 
 MI2-5 2.07 2.48 2.00 2.48 2.08 2.66 0.021 0.022 0.002 
 PPI 2.78 2.62 2.82 2.62 2.72 2.73 0.133 0.317 0.825 
 SigMI 2.31 2.12 2.32 2.12 2.34 2.51 0.107 0.242 0.048 
Zero           
 MI 1.72 1.80 1.59 1.79 1.75 2.28 0.253 0.268 0.038 
 MI2-5 2.04 2.47 2.00 2.46 2.06 2.64 0.038 0.041 0.021 
 PPI 2.74 2.70 2.73 2.71 2.80 2.74 0.578 0.841 0.480 
 SigMI 2.39 2.25 2.43 2.27 2.32 2.48 0.290 0.230 0.039 

 

Hypothesis testing to determine the impact of tillage and traffic treatments on the indices 

using Kruskal-Wallis test revealed some similarities between the two data types. Traffic 

was the only treatment that had significant effect and it affected only the MI25. This effect 

was presented as significant only in the standard data set (P = 0.015). The other indices 

showed no response to any of the treatments.  

 

7.3.4 Depiction of disturbance conditions 
Using the c-p triangle to visualise a snapshot of level of stress in the soil, the two data 

types gave different depictions of the nematode communities (Figure 7.2). While both data 

types mostly indicated communities with low stability, this condition was highly 

exaggerated in the metabarcoding data where only very few communities were situated 
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away from the zero-stability border. This was even more so in the rarefied data which not 

only showed no stability but also depicted most of the communities as being highly 

stressed. The use of the binary (presence-absence) data for the c-p triangle gave the best 

representation of the community through metabarcoding when compared with the rarefied 

or unrarefied standard data but not with the binary-formatted standard data.  

 

7.3.5 Beta diversity 
Differences between nematode communities as a result of tillage and traffic treatment as 

well as depths of sampling across field compaction gradients were depicted similarly by 

the non-metric multidimensional scaling (NMDS) ordinations in both the standard and 

metabarcoding data types. There was no clear separation of the treatment levels in the 

NMDS ordinations for both data types (Figure 7.3 A and B). The ordinations involving the 

different depths, on the other hand, reveal clear separations again in both the standard 

and metabarcoding data types (Figure 7.4 A and B). The Procrustes tests of correlation 

between ordinations of the standard and metabarcoding data sets was highly significant (r 

= 0.42, P = 0.001). Between their dissimilarity matrices, the Mantel test also showed a 

highly significant correlation (r = 0.18, P = 0.001).  

Tests of significance of the treatments using summary.manyglm test showed that in both 

data types, treatments had no effect on the nematode community. But as was evident 

from the NMDS ordinations, difference in the community structure across the sampling 

depths were highly significant in both the standard data (0-5 cm vs 5-15 cm: Wald values 

= 23.99; P < 0.001, 0-5 cm vs 15-30 cm: Wald values = 29.30; P < 0.001) and 

metabarcoding data (0-5 cm vs 5-15 cm: Wald values = 11.57; P < 0.001, 0-5 cm vs 15-30 

cm: Wald values = 10.07; P < 0.001).  
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Figure 7.2. Graphical representation of nematode communities using c-p triangles. Each marker 
represents one of the 108 samples. Samples within the same treatment categories have identical 
marker shapes. A and B depict the status of the communities based on unrarefied data of the 
standard and metabarcoding approaches, respectively. C and D depict the status of the communities 
based on rarefied data of the standard and metabarcoding approaches, respectively. E and F depict 
the status of the communities based on presence-absence data of the standard and metabarcoding 
approaches, respectively 
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Figure 7.3. Non-metric multidimensional scaling (NMDS) ordinations based on morphology (A) and 
metabarcoding (B) data for samples collected in 2016. Points are experimental plots, and coloured 
ellipses are 95% confidence intervals of species centroids for each treatment (ellipses generated 
using the function, ‘ordiellipses’ inside vegan). Plots along the same line segments have the same 
level of compaction. Colour assignments to ellipses in the tillage-traffic treatments ordination is based 
on the different traffic systems.  
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Figure 7.4. Non-metric multidimensional scaling (NMDS) ordinations based on standard 
morphological (A) and metabarcoding (B) data for samples collected in 2016. Points are 
experimental plots, and coloured ellipses are 95% confidence intervals of species centroids for 
each depth (ellipses generated using the function, ‘ordiellipses’ inside vegan). Plots along the 
same line segments have the same level of compaction. Colour assignments to ellipses in the 
sampling depths ordination is based on the different depths of sampling (A and B) 

 
 

7.3.6 Seasonal difference 
Between the sampling times, most indices did not change significantly under the different 

tillage and traffic treatment conditions (Table 7.2). Plant-parasitic index (PPI) changed 

significantly and it did so under most treatments. In all cases where PPI changed, it 

increased from years 2016 to 2017. Apart from the PPI, MI and SigMI were the only other 

indices that changed significantly from 2016 to 2017. While MI decreased under deep 

tillage in the one-year period, SigMI did so under zero tillage.  

Hypothesis testing of treatment effects on the indices using Kruskal-Wallis test showed 

that neither tillage nor traffic had any effect on the indices in the 2016 samples. However, 

there was a significant difference in the median MI of the tillage treatments in the 2017 (P 

= 0.023). The Dunn test (Dunn 1964) for multiple comparison showed that the difference 

in median was between deep and shallow tillage alone, with the latter having the higher 

value. Sigma MI and PPI were only marginally affected in 2017 by traffic (P = 0.073) and 

tillage (P = 0.077), respectively.  
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Table 7.2. Comparison between MI-family indices of the two metabarcoding data obtained from 
sampling years, 2016 and 2017 under different traffic and tillage treatments. The data for the two 
sampling years were both rarefied to 100 reads per sample. Numbers are means calculated for 
each treatment group.   

 Index Sampling Year Welch’s t-test P value 
  2016 2017  
Traffic     
CTF     
 MI 1.94 1.67 0.150 
 MI2-5 2.00 2.10 0.339 
 PPI* 2.62 4.25 <0.001 
 SigMI 2.44 1.80 0.055 
LGP     
 MI 1.69 1.77 0.630 
 MI2-5 2.00 2.14 0.168 
 PPI 2.85 3.55 0.074 
 SigMI 2.32 2.24 0.769 
RTF     
 MI 1.92 1.72 0.442 
 MI2-5 2.00 2.22 0.217 
 PPI* 2.25 3.38 0.012 
 SigMI 2.12 1.96 0.613 
     
Tillage     
Deep     
 MI* 1.83 1.43 0.013 
 MI2-5 2.00 2.12 0.151 
 PPI* 2.33 4.06 <0.001 
 SigMI 2.17 1.92 0.449 
Shallow     
 MI 1.80 1.98 0.451 
 MI2-5 2.00 2.17 0.336 
 PPI* 2.67 3.89 0.007 
 SigMI 2.30 2.14 0.676 
Zero     
 MI 1.92 1.76 0.421 
 MI2-5 2.00 2.17 0.166 
 PPI 2.73 3.23 0.138 
 SigMI* 2.42 1.95 0.025 

* statistically significant (P = 0.05) 
 
7.3.7 Beta diversity across seasons 
Non-metric multidimensional scaling ordinations on Jaccard binary distance matrices for 

the two sampling periods, although similar, showed no difference in community 

composition across the different treatment levels (not shown). Hypothesis testing using 

the summary.manyglm in the R package mvabund showed that treatments had no 

significant effect on the community composition of the top 0-5 cm profile in both 2016 and 

2017 (not shown). The c-p triangle showed a slight increase in stability of some 

communities in the period between the two years (Figure 7.5). Surprisingly, some of these 

plots were ones that actually received disturbance treatments such as traffic and tillage. 
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Figure 7.5. Graphical representation of the change in nematode communities in an interval of one 
year using c-p triangles. Each marker represents one of 36 samples collected within the top 0-5 cm 
depth in the years, 2016 and 2017. Samples within the same treatment categories have identical 
marker shapes. A and B depict the status of the communities based on presence-absence data for 
the 2016 and 2017 samples, respectively. C and D depict the statuses of the communities based 
on unrarefied data for the 2016 and 2017 approaches, respectively. 
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Table 7.3. Abundance of herbivorous and bacterivorous nematodes recovered from the three depths according to the unrarefied data. Values within the 
rows labelled herbivores and bacterivores are mean and standard errors of percentages of the total reads associated with herbivores and bacterivores, 
respectively. Values within rows of taxa are actual read numbers associated with each of those taxa. Test of statistical significance was performed using 
robust ANOVA as implemented in the R function, t1waybt within the WRS2 package (Wilcox, 2012). 

 Metabarcoding  Standard  
 0-5 cm 5-15 cm 15-30 cm P values 0-5 cm 5-15 cm 15-30 cm P values 
Herbivores (%) 36.69 ± 7.11 62.98 ± 6.40 79.69 ± 4.77 <0.01 35.19 + 3.10 35.37 ± 3.15 61.39 ± 2.91 < 0.001 
Pratylenchus 0 ± 0 1261.50 ± 1258.30 429.39 ± 403. 25 NA 2.17 ± 0.30 3.14 ± 0.48 2.58 ± 0.36 0.447 
Tylenchus 0 ± 0 453.31 ± 452.76 0.50 ± 0.33 NA 1.22 ± 0.24 3.72 ± 0.55 8.17 ± 1.24 < 0.001 
Paratylenchus 36.19 ± 35.88 48.638 ± 24.578 2568.94 ± 1207.82 NA 7.47 ± 1.52 5.77 ± 0.99 13.47 ± 1.46 < 0.001 
Bacterivores (%) 52.67 ± 7.15 27.28 ± 5.83 13.42 ± 4.12 <0.01 50.62 ± 2.64 54.47 ± 3.21 29.86 ± 3.09 < 0.001 
Rhabditis 5.94 ± 3.22 725.06 ± 389.89 1017.08 ± 696.66 0.427 5.64 ± 0.86 1.14 ± 0.64 0.03 ± 0.03 NA 
Eucephalobus 3658.81 ± 1815.22 1151.56 ± 1016.83 1.05 ± 0.40 0.643 11.06 ± 1.14 0.53 ± 0.13 3.36 ± 0.48 < 0.001 

 
Table 7.4. Abundance of herbivorous and bacterivorous nematodes recovered from the three depths according to the rarefied data. Values within the 
rows labelled herbivores and bacterivores are means and standard errors of percentages of the total reads associated with herbivores and bacterivores, 
respectively. Values within rows of taxa are actual read numbers associated with each of those taxa. Test of statistical significance was performed using 
robust ANOVA as implemented in the R function, t1waybt within the WRS2 package (Wilcox, 2012). 

 Metabarcoding  Standard  
 0-5 cm 5-15 cm 15-30 cm P values 0-5 cm 5-15 cm 15-30 cm P values 
Herbivores (%) 36.91 ± 9.38 60.50 ± 9.58 81.04 ± 6.37 0.018 35.27 + 3.49 35.27 ± 3.20 60.19 ± 3.06 <0.001 
Pratylenchus 0 ± 0 5.00 ± 5.00 9.04 ± 5.86 NA 1.00 ± 0.14 1.11 ± 0.23 1.74 ± 0.34 0.109 
Tylenchus 0 ± 0 0.17 ± 0.17 2.40 ± 2.40 NA 0.70 ± 0.24 1.17 ± 0.26 6.13 ± 0.74 <0.01 
Paratylenchus 0.35 ± 0.31 9.70 ± 6.57 23.39 ± 7.91 NA 2.78 ± 0.55 2.11 ± 0.43 8.87 ± 0.97 <0.001 
Bacterivores (%) 31.65 ± 8.17 23.14 ± 8.06 37.17 ± 8.61 0.315 50.61 ± 3.06 55.22 ± 3.37 29.61 ± 3.39 <0.001 
Rhabditis 0.30 ± 0.23 8.60 ± 5.17 7.30 ± 4.61 NA 3.00 ± 0.62 0.38 ± 0.16 0 ± 0 NA 
Eucephalobus 15.91 ± 6.10 7.45 ± 4.90 0.04 ± 0.04 NA 5.42 ± 0.64 1.27 ± 0.41 0.26 ± 0.10 NA 
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7.4 Discussion 
The results of this study demonstrate the possibility of determining the condition of a soil 

through metabarcoding of nematode communities in the soil. This was true for rarefied, 

unrarefied and to some extent the binary community data. It also showed that 

metabarcoding data can be expected to provide a reliable representation of the difference 

in community composition between treatments, time periods or possibly locations. 

Correlation between the morphological data and the binary-transformed metabarcoding 

data was highly significant with the correlation coefficient r, based on Mantel and 

Procrustes tests showing low and medium effect sizes, respectively.  

The standard morphological data set produced a much higher diversity in terms of the 

number of unique taxa recovered than the metabarcoding data set did. The opposite 

would have been the case had diversity for the latter been based on the number of unique 

otus as is often done with metabarcoding data (Ji et al., 2013). It was necessary to utilize 

the taxonomic identities of the otus in this study in order to correctly assess how the two 

data sets describe disturbance conditions in the nematode communities. The relatively 

low taxonomic coverage of the metabarcoding data set concurred with some previous 

studies that showed that metabarcoding is not always able to detect all resident taxa in 

samples (Cowart et al., 2015; Zimmermann et al., 2015). In Zimmermann et al. (2015), it 

was only at the genus level where fewer taxa were recovered by the metabarcoding 

method (28 versus 30). At the species level, over twice the number recovered by the 

standard approach were recovered by the metabarcoding method (265 versus 102). In 

Cowart et al. (2015), the metabarcoding approach based on both the COI and 18 rDNA 

could only recover 36% of the morphologically-determined diversity. This may be for a 

number of reasons ranging from primer mismatch to dominant taxa leading to the masking 

of rare taxa from the data.  

The importance of nematode trophic groups to soil processes such as decomposition and 

primary production pathways has been well documented (Beare et al., 1992; Wardle et al., 

1995). This study showed that metabarcoding data sets could depict how anthropogenic 

disturbances such as tillage affects their relative abundance in the soil based on the 

relative abundance of the various trophic groups. The similarity was strong, particularly for 

the dominant groups, the herbivores and bacterivores. Lejzerowicz et al. (2015), in their 

comparison of morphological and metabarcoding-based assessment of metazoans in 

benthic environments, also observed such high congruence in the abundance of the 

dominant taxa. 

Sufficient molecular data exists that supports the phylogenetic origins of most of the 

current nematode classifications (Blaxter et al., 1998; Holterman et al., 2006; van Megen 

et al., 2009). The same studies have demonstrated that features such as herbivory may 
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have arisen multiple times independently in the course of evolution. Similar evidence 

exists for at least fungivory and predation. One of the things these independent evolutions 

of feeding behaviour may point to is the discrepancies between trophic classification and 

taxonomic classification, at least based on the 18S rDNA region. This may therefore 

explain why metabarcoding data based on the same region was able to correctly quantify 

trophic groups even though the contrary has largely been reported when it comes to 

quantifying actual taxa in communities. (Porazinska et al., 2009; Amend et al., 2010; 

Edgar, 2017a).  

Much like the trophic classification, the colonizer-persister groupings and functional guilds 

used to determine nematode indices do not depend on the phylogenetic positions of their 

constituent taxa, but rather the life history characteristics. And the same as it was for the 

trophic compositions, almost all indices obtained using metabarcoding data showed no 

deviation from those obtained from the standard data set. The implications of this are that 

most information needed to understand the soil status can reliably and fairly accurately be 

obtained from metabarcoding even if the same data fails to quantify the actual taxa.  

The c-p triangle presents graphically three aspects of the condition of the soil, how 

enriched, stressed or stable it is based on the proportion of the community constituted by 

c-p1, c-p 2 or c-p 3-5 nematodes, respectively (De Goede et al., 1993a). Although the 

main goal of c-p triangles is to demonstrate patterns in community change over time, they 

can also give a snapshot of the state of soil at any point in time. The two data sets in this 

study provided different depiction of the nematode communities. The format of the data 

used [rarefied, unrarefied or presence-absence] did not matter much. The metabarcoding 

data showed communities highly dominated by c-p 1 and c-p 2 nematodes, thus either 

highly enriched or stressed. Overrepresentation of a few dominant taxa in sequence reads 

can occur in metabarcoding data (Sogin et al., 2006); and this may explain the 

exacerbated stress condition in the metabarcoding data.  

The only significant factor according to the NMDS ordination of dissimilarity matrices was 

sampling depth and both the standard and metabarcoding data sets demonstrated this. In 

a previous study that looked at the difference between nematode communities within 

different depths, Sanchez-Moreno et al. (2006) also found that some taxa were 

significantly higher in some parts of the profile than they were in others. They observed a 

significantly higher number of bacterivores and fungivores, particularly those belonging to 

the c-p 1 and c-p 2 groups in the top soil layers (0-15 cm) of the profile. The lower depths 

had significantly higher number of herbivores such as Pratylenchus and Tylenchidae. 

Similar observations were made regarding the vertical distribution of herbivores versus 

bacterivores in both standard and metabarcoding data sets (Table 7.3 and Table 7.4). 

Bacterivores were most abundant in 0-5 or 5-15 cm in both data sets regardless of 
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whether the data were rarefied or unrarefied. Herbivore percentage over total nematode 

abundance, on the other hand, was highest in the lower 15-30 cm for both data sets. In 

both the metabarcoding and standard datasets, reads associated Rhabditis did not differ 

across the three depths.  

Community succession is a very important aspect of environmental monitoring (De Goede 

et al., 1993b; Ettema & Bongers, 1993; Wardle et al., 1995; Ferris & Matute, 2003; Háněl, 

2010). Even though this study compared only two separate time points, analysed using 

only metabarcoding, there were some significant changes in some of the community 

indices. Increased perturbation in the form of deep tillage caused a decrease in maturity 

index in the second sampling year. Plant-parasitic index is the MI equivalent designated 

exclusively for the plant-parasitic nematodes (Bongers, 1990). Previous studies have 

shown that its relationship with MI can be either direct (Neher & Campbell, 1994) or 

inverse (Bongers, van der Meulen, & Korthals, 1997). This therefore explains why the PPI 

in this study increased between two sampling dates while MI decreased. Another reason 

could be the availability of a suitable host in the interval between the two sampling since 

this could have resulted in the multiplication of herbivores such as Meloidogyne or 

Pratylenchus. If that was the case, it would certainly have increased the PPI since both of 

these taxa contribute highly to PPI value (both score three on plant parasite scaling 

according to Bongers 1990).  

The c-p triangle’s representation of pattern of change within the nematode communities 

showed some mild increases in both stability and enrichment for both rarefied and binary 

data formats. It has to be said that, based on the earlier comparison between c-p triangles 

from the standard and metabarcoding data sets, metabarcoding based c-p triangles may 

be presenting completely exaggerated conditions of stress. More testing may be required 

to increase its reliability. 

In summary, this study demonstrates that metabarcoding data is capable of depicting 

significant aspects of a community’s condition and do match in many respects the 

conditions presented by data obtained from the standard morphology-based approach. 

However, there are a few acknowledgeable limitations to this study that if addressed in 

future work, may improve the utility of metabarcoding for nematode community analysis. 

Firstly, the DNA extraction methodology could be improved. DNA extractions were carried 

out using 100 µl of suspensions making it a tenth of what was used for morphological 

analysis and a hundredth of the whole extracts from 200 g. This could have resulted in 

loss of taxa that were already rare in the soil sample. Moreover, the volume of suspension 

containing nematodes also contained other eukaryotes which were also amplified by the 

universal primers used as was reported in other studies (Sapkota and Nicolaisen, 2015). 

In fact, a significant percentage of the otus generated for the 2016 samples were from 
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these non-target taxa (82.43%). To maximize the percentage of nematode reads it may be 

important to perform DNA extraction on either the whole suspension of nematode extracts 

or at least concentrate the suspension better through centrifugation (Ritz et al., 2009). 

This may not necessarily exclude other taxa but would certainly increase the total 

nematode recovery. To exclude some of the non-target taxa, the nested PCR approach 

reported by (Sapkota & Nicolaisen, 2015) could be used to first exclude non-nematode 

targets before the actual amplification. 

The second limitation is to do with the extent to which nematode extracellular DNA could 

have made it into nematode extracts and eventually, into the recovered reads. 

Extracellular nematode DNA has been shown to occur in bulk nematode extracts (Peham 

et al., 2017), and the implications of this could be the detection of taxa that are no longer 

an active part of the community. Theoretically, this can be resolved by using RNA instead 

of DNA for detection, an area that may require some testing and developing in the future. 

For now, extracting nematodes from the soil first before DNA extraction can help reduce 

the amount of extracellular DNA. Finally, as has been shown in a number of tests 

conducted in this study, both rarefied and unrarefied metabarcoding data gave similar 

outcomes in terms of nematode MI-based indices and trophic composition. The exception 

may be for agricultural soils where some taxa, particularly the sensitive ones, are rarely 

recovered in the samples. In such cases, one might opt for unrarefied data to avoid losing 

these taxa for computing indices and trophic composition.  While this study points to the 

right direction in terms of the potential of using metabarcoding for monitoring soil health 

through nematode community indices, further studies may be needed to that focus on 

soils from natural undisturbed environments in order to better establish the reliability of 

this approach.  
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8 General discussion 
The concept of DNA barcoding is not new to nematology. In fact, the first important 

application of DNA barcoding was based on nematodes in which the authors, Floyd et al. 

(2002) described the molecular operational taxonomic units scheme for nematodes in soil 

samples collected from a Scottish upland Agrostis-Fustuca grassland. Their work even 

predated Hebert and colleagues’ milestone study, “Biological identifications through DNA 

barcodes” which is widely credited with developing the DNA barcoding concept (Hebert et 

al., 2003). The main idea was to find and use appropriate genetic markers to identify 

‘unknown’ individuals by simply comparing the sequence of their marker with those of 

‘known’ organisms. In its early years, before the advent of next generation sequencing, 

the Sanger method was the only means of obtaining sequences from the specimens to be 

identified. Sanger sequencing required the analysis of each specimen separately, from the 

DNA extraction step through to the sequence analysis step. As difficult as the barcoding 

approach appeared for community analysis, it could potentially replace the most difficult 

step in nematode community analysis, which is morphological identification. The concept 

was even more useful and certainly more convenient for tasks that only involved 

identifying individuals.  

The introduction of next generation sequencers (NGS) capable of generating sequence 

reads in their millions at only a fraction of the cost opened up many exciting possibilities 

for nematode community analysis. Due to their massively parallel high-throughput nature, 

NGS platforms could potentially be used to analyse nematode communities at scales that 

hitherto were impossible. That is to say by applying the concept of DNA barcoding with 

this technology, multiple number of individuals in multiple samples could be sequenced 

within a single run. Consequently, it is rather fitting that the concept came to be described 

as metabarcoding. Amongst the first and most significant applications of this approach to 

nematode identification was the work published by Porazinska et al. in 2009. Using an 

artificially assembled community of nematodes and two ~400 bp long regions within the 

18S and 28S rDNA, they demonstrated that up to 97% of the sampled species could be 

recovered with the two markers combined.  Individually, however, the barcode markers 

could only recover ~90% of the sampled taxa. The reason for the failure of 18S rDNA-

based markers to account for ~10% of the taxa was not clear, even though this was 

expected for the 28S rDNA-based marker. Another limitation that became evident from 

this study was the incongruence between abundance of taxa in the mock community and 

the number of reads they are represented by in the data. Specifically, it was observed that 

distribution of reads among taxa was biased, and the authors identified the choice of 

barcode marker as one of the contributing factors to this bias.  
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Porazinska et al. (2009) provided a good foundation for future exploration into how 

metabarcoding could be used in identifying soil free-living nematodes. It was clear, 

however, that the method needed more appraisal before it could reliably be implemented, 

particularly, in terms of exploring other widely used molecular markers, establishing a 

better understanding of read number and species abundance relationships as well as 

identifying modifications that may be required to make this approach applicable to the 

natural environment that is the soil. To address these questions, this study was structured 

into two main sections: (i) the methodology development phase where the main goal was 

to determine the most suitable methods and analysis tools for identifying nematodes in 

communities, (ii) the application phase where the field applicability of the approach was 

evaluated by comparing it against the standard morphology-based method.  

The first experiment, Chapter 3 of this thesis, was set up to investigate further the 

coverage of these markers in a community that was assembled to cover a wide diversity 

of nematodes. The study was set up to also assess the possibility of using just a single 

marker instead of two or more and still be able achieve very good coverage. Two 

additional makers known and widely used for identifying nematodes were also included in 

the experiment -one was based in the 18S rDNA region and the other in the COI region. 

According to Porazinska et al. (2009) the nature of the read distribution bias can depend 

on the chosen barcode marker. Therefore, in addition to identifying which of the four 

markers was most suited for nematode metabarcoding, they were evaluated to determine 

which one was least prone to read distribution bias. Based on information available in 

literature (Floyd et al., 2002; Creer et al., 2010) the markers were ranked prior to the 

experiment in the order, 18S rDNA-based markers > 28S rDNA-based marker > COI-

based marker in the terms of coverage. The results of this chapter showed that at least 

two of the markers gave excellent recovery of the sampled taxa. The two 18S rDNA-

based markers were expected to provide the best coverage since they have been used 

previously in a number of metabarcoding studies and are well known for their conserved 

primer annealing sites. Although the 28S rDNA-based marker was expected to provide a 

fairly wide coverage, it was not predicted to perform better than the 18S rDNA-based 

SSUF04-SSUR22 marker (refer to Chapter 3). The reason for the low recovery of the 

SSUFO4-SSUR22 marker was attributed to the reference database bias as discussed in 

Chapter 3. With a complete reference database, this marker might have recovered all the 

sampled as observed with NF1-18Sr2b. This chapter identified the importance of having a 

reliable and a complete database of nematode sequences. Additionally, the chapter also 

highlighted the usefulness of performing taxonomy assignment with more than one 

method. The read distributions between replicates showed a significant correlation, which 

conforms with previous studies that showed the reproducibility of metabarcoding data 

(Porazinska et al., 2010c; Edgar, 2017a). The correlation between replicates was in fact 
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observed for all the markers that were evaluated. Another quantification aspect of this 

chapter that agreed with previous studies was the lack of correlation between relative 

abundances of taxa and sequence reads associated with these taxa. This is a widely 

acknowledged and reported issue with metabarcoding (Porazinska et al., 2009; Elbrecht & 

Leese, 2015; Edgar, 2017a; Holovachov et al., 2017; Krehenwinkel et al., 2017), 

particularly in mixed species samples. It was therefore not surprising that no such 

correlation was found in this experiment. Most of the reasons given for why this issue 

exists (discussed in Chapter 5) range from technical to innate factors that are either 

impossible or difficult to correct or change. For example, the difference in the number of 

copies of templates for each taxon in the sample prior to PCR is considered to be factor 

affecting read number distributions. In nematodes and other organisms, whose barcodes 

are located in repetitive regions of the genome, the amount of template is dependent on 

the number of copies of these regions within the genome. Such bias-causing factors are 

beyond the control of the investigator. This particular bias has, in fact, been shown by 

Krehenwinkel et al. (2017) to persist even if such recommendations as using methods 

devoid of PCR (Zhou et al., 2013; Dowle et al., 2016) are followed. By comparison, 

standard barcoding based on the Sanger sequencing method does not have this limitation 

with abundance and read numbers. This is because each individual is analysed 

separately, and the Sanger method produces a single sequence per individual. Thus, the 

number of sequences associated a taxon represents its abundance in the sample. 

Being unquantifiable is certainly among the key limitations of metabarcoding that a 

number of studies have tried to either find solutions to or provide alternatives to. There 

have been attempts even at the bioinformatics step to manipulate analysis parameters or 

develop algorithms to lower this bias in the read abundance of taxa (Amend et al., 2010; 

Edgar, 2017a). Some reports indicate that this bias can be minimised by relaxing some of 

the sequence filtering parameters such as the quality and sequence length thresholds, 

(Amend et al., 2010; Deagle et al., 2013). The main objectives of Chapters 4 and 5 were 

to investigate how this might work with nematode data and how the choice of 

bioinformatics pipeline might affect read distribution. Another objective of Chapter 4, was 

to compare different bioinformatics pipelines, to determine which was best in terms of 

accuracy, speed and convenience. Overall, the USEARCH pipeline did have the best 

clustering algorithm, compared to those employed in the other pipelines. For someone 

new to high-throughput data analysis, there is no doubt that they would find the 

USEARCH pipeline the easiest.  

Chapter 5 sought to examine how read number bias manifests under different community 

complexities using different mock communities. Some of the mock samples were set up 

based on the knowledge from previous studies that have shown that the linear correlation 

between abundance and read numbers in monospecific samples is usually higher 
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compared to multispecies ones (Amend et al., 2010). The idea was to determine how 

step-wise increase in the complexity of the community would reflect in the abundance-

read number correlations. The results showed that it is quite common for a few taxa to 

consistently dominate the read numbers in multispecies samples. It also confirmed that 

the dominant taxa in terms of read abundance are often not the most abundant in terms of 

actual abundance in the samples. Furthermore, it indicated that a slight modification to a 

community through the introduction of a new species can have a significant effect on the 

overall result, with certain taxa switching from being dominant to becoming infrequent. 

Increasing the abundance of Acrobeloides buetschlii confirmed previous studies that also 

showed some correlation between read abundance and number of individuals for 

monospecific samples. This finding provides a picture of how abundance translates to 

read distributions under the non-typical situation where there are no other taxa to 

introduce bias. That said, it is obvious that this finding may not be of significant practical 

use for nematode samples from soil extracts where mono-specific communities do not 

exist. At this point in the study, it was apparent that metabarcoding-based assessment of 

nematode communities were not suitable for quantification regardless of the barcode 

marker used, analysis pipeline employed or how relaxed the sequence quality filtering 

parameters are set. 

Artificial assemblage of nematodes, however complex or diverse, cannot replicate an 

actual soil nematode community. The experiment in Chapter 6 was set up to apply 

metabarcoding on actual nematode communities that were subjected to different soil 

management regimes. These tillage practices are known to have an impact on the 

structural and biological soil. The impact of various tillage treatments on nematode 

communities have been the subject of several previous community analysis studies (Lenz 

& Eisenbeis, 2000; Czyż, 2004; Liphadzi et al., 2005; Sanchez-Moreno et al., 2006; 

Okada & Harada, 2007; Griffiths et al., 2012). Reduced or controlled traffic is a practice 

intended to minimise the compaction caused by vehicular passes on the field. Reducing 

compaction has been shown to be beneficial in terms of crop yield and the soil 

phyisicochemical properties. Certain soil fauna including nematodes are known to benefit 

from a reduced level of compaction associated with controlled traffic (Bouwman & Arts, 

2000).  

The experiment reported in Chapter 6 involved the analysis of the nematode communities 

under three different forms of tillage and traffic using the standard morphological method. 

Compared to a number of previous studies, the observed inhibitive effect of tillage on total 

abundance contradicted the expected outcome since most of them have shown significant 

increases in nematode abundances as a result of soil disturbance. There is often a bloom 

in the abundance of bacterivores after disturbance events particularly, the enrichment 

opportunists of the family Rhabditidae (Sanchez-Moreno et al., 2006). It was this increase 
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in bacterivores after tillage that has been implicated as largely contributing to this increase 

in overall total abundance, especially in bacterivore dominated communities. All samples 

in this study were dominated by both bacterivorous and herbivorous taxa. In most cases, it 

was the latter group that had the highest presence. And since herbivores are known to 

decline in numbers following tillage (Sanchez-Moreno et al., 2006), it made sense that this 

was reflected on the communities as a whole. Random traffic farming also appeared to be 

more favourable to total nematode abundance. Given that RTF plots were the most 

compacted, it can be assumed that higher compaction favoured nematode abundance 

particularly herbivores. A previous report by Bouwman and Arts (2000) observed that out 

of all the nematode trophic groups, herbivores were the only ones that responded 

positively to heavier compaction load. Interestingly, for most of the community indices, it 

was traffic, rather than tillage, that had significant effect. The maturity index (MI) including 

all its derivatives and the structure index all recorded their highest values under controlled 

traffic farming. The drop in MI values under the LGP and RTF traffic systems was 

expected, especially considering the fact that compaction does introduce a form of 

disturbance to the soil and its nematode assemblage.  

Chapter 7 showed that despite the incongruence between relative abundance and read 

frequencies at the taxa level, the metabarcoding data correlated in a number of aspects 

with the standard data, specifically in terms of community indices and trophic 

classifications. The beta diversity computed from the data collated using the standard 

approach significantly correlated with those obtained using metabarcoding. This chapter 

also showed there was very little difference, if any, in the outcome of the analysis whether 

raw or rarefied abundance data from standard morphology was used. For the 

metabarcoding data, the binary (presence-absence) data format gave the best statistical 

correlation with the standard method. Ji et al. (2013) also reported statistically correlated 

alpha and beta diversities from standard and metabarcoding methods. Although it was 

apparent that the two methods were not exactly identical in their outcomes, the observed 

correlation between them laid out a method with a fair degree of reliability to follow for 

performing metabarcoding-based nematode community analysis. 
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8.1 Recommendations 

An important issue of metabarcoding that remains unresolved is the abundance-read 

number divergence, the reason why this technique cannot currently be reliably 

quantifiable. It is fair therefore that a significant amount of future research subjects looks 

into improving the correlation between abundance and read numbers of species in a 

community. The current study shows that the 18S-based marker NF1-18Sr2b for most 

applications is sufficiently universal to recover and discriminate between most nematodes 

species. To the advantage of this marker, there is a huge number of sequences available 

in most public databases that can be used for taxonomy assignment.  

A lot of the issues of read abundances bias are attributed to PCR, even though evidences 

and general consensus suggest it is not the only causal factor. This has been shown in 

insects to improve the abundance-read number correlation slightly. An area of potential 

future research will be to investigate to what extent metabarcoding without PCR can 

reduce this bias for nematode community analysis. With more whole genome sequences 

being published, this creates the possibility of mapping the number of copies of repeat 

regions present within each species. Knowledge of copy numbers of repeat marker 

regions together with PCR-independent analysis methods can help address two of the 

most important known causes of bias. 

This study has also given a good insight into how far a better curated nematode sequence 

database can go to facilitate the taxonomy assignment step of the analyses.  A well 

curated and annotated database of nematode sequences will be helpful in eliminating the 

necessity to cross-check the taxonomies assigned to otus using algorithms such as uclust 

or utax. As stated in Chapter 3, the main rDNA reference databases, PR2 and SILVA, 

have a number of entries where the taxonomies are incomplete and thus make it a 

necessity for the assignments to be checked using other assignment methods. This 

process can be time consuming especially if there is a large number of otus to be 

checked. Creating such database may require collaborative work by a number of 

nematode taxonomists and molecular biologists.  

Although not immediately urgent, improving the size of soil samples that can used for 

direct extraction of DNA from the soil can be of immense use. This may finally make it 

possible to recover a wide array of taxa in the soil as well as very rare ones that could 

potentially be missing due to the low recovery rate of the tradition nematode extraction 

methods. For the Whitehead method, recovery rate has been shown to be as low as 50%. 

This high percentage loss could potentially be reduced if DNA can be directly obtained 

without nematode extraction from the soil.  
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8.2 Conclusions 

Detection, sensitivity, speed and the throughput of metabarcoding approach to identifying 

organisms in bulk communities have never been questioned. It is rather the question of 

whether metabarcoding data is quantifiable or not that has often come under dispute. This 

study arrived at the same conclusion as many others preceding it by demonstrating that 

with the right choice of markers, metabarcoding is capable capturing diversities similar to 

what is possible with the standard method. Moreover, metabarcoding here has been 

shown to be quantifiable, specifically at such classification levels as trophic groups and 

functional guilds. There were, however, a few indications that such predictions using 

metabarcoding required some scrutiny because they were not always identical with the 

standard method. With a few improvements in the methodology, particularly at the DNA 

extraction step, the accuracy of this method can be enhanced to better predict community 

composition and structure at least at the trophic and functional guild levels.  
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10 Appendices 
Appendix 10.1. Utax taxonomy assignments for all four barcode markers. R used to indicate how 
many of the replicates the otus were found in. Each marker has its own sets of otus, so the same 
otu identities can be shared by different taxa as long as they belong to different markers. 

Taxa Otus Incidence  
NF1-18Sr2b    
Alaimus sp.  Otu83 R 
Anaplectus sp.  Otu94,12 R R 
Aphelenchoides ritzemabosi Otu18 R R R 
Globodera Otu7,131 R R R 
Hemicycliophora conida  Otu24 R R R 
Laimaphelenchus penardi  Otu30,63 R R R 
Longidorus  Otu9 R R R 
Meloidogyne hapla  Otu13,116 R R R 
Pristionchus  Otu1,38,40,85,72,111 R R R 
Rhabditis  Otu6 R R R 
Steinernema  Otu3,64,73,133 R R R 
Tripyla sp.  Otu5 R R R 
Tylenchus arcuatus  Otu21 R R R 
Xiphinema  Otu91 R R R 
SSUF04-SSUR22    

Globodera  Otu95 R R 
Longidorus  Otu90 R R R 
Prionchulus  Otu77 R R R 
Rhabditis  Otu143 R R R 
Steinernema  Otu73 R R R 
D3Af-D3Br   

Aphelenchoides gorganensis  Otu26 R R R 
Ditylenchus dipsaci  Otu6,144 R R R 
Globodera ellingtonae  Otu4,59,101,104,133 R R R 
Hemicycliophora wyei  Otu21,82 R 
Longidorus macrosoma  Otu7 R R R 
Meloidogyne hapla  Otu8 R R R 
Rhabditis sp.  Otu1,78,126,128 R R R 
Trichodorus primitivus  Otu9,39,144 R R R 
JB3-JB5GED   

Rhabditida Otu4,10 R R 
Tylenchida Otu7 R R R 
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Appendix 10.2. Blast taxonomy assignments for all four barcode markers. R used to indicate how 
many of the replicates the otus were found in. Each marker has its own sets of otus, so the same 
otu identities can be shared by different taxa as long as they belong to different markers. 

Taxa Otus Incidence  
NF1-18Sr2b    

Alaimus sp.  Otu20,50,83 R 
Anaplectus sp.  Otu12,94, R R 
Anatonchus tridentatus Otu8,79 R R R 
Aphelenchoides ritzemabosi Otu18 R R R 
Aporcelaimellus obtusicaudatus Otu14 R R R 
Acrobeles sp.  Otu29 R R 
Acrobeloides sp.  Otu17,48 R R R 
Criconema sp.  Otu45 R R 
Ditylenchus dipsaci Otu4,70,100,110,113,122,126,136 R R R 
Globodera rostochiensis Otu7,131 R R R 
Hemicycliophora conida  Otu24 R R R 
Laimaphelenchus penardi  Otu30,63 R R R 
Longidorus caespiticola Otu9,62,138 R R R 
Meloidogyne hapla  Otu13 R R R 
Plectus andrassyi Otu15,98,117 R R R 
Prionchulus punctatus Otu2,52,64,76,106 R R R 
Pristionchus lheritieri Otu1,38,40,72,85 R R R 
Rhabditis cf. terricola  Otu6,46,55 R R R 
Steinernema carpocapsae  Otu3,54,73,97,133 R R R 
Trichodorus primitivus Otu10,26,28,115 R R R 
Tripyla glomerans  Otu5,32,39,112,125 R R R 
Tylenchus arcuatus  Otu21 R R R 
Xiphinema  Otu53 R R R 
SSUF04-SSUR22    

Alaimus sp.  Otu14, R R R 
Anaplectus sp.  Otu21,24,25,26… R R R 
Anatonchus tridentatus Otu2,39,122 R R R 
Ditylenchus dipsaci Otu60,78 R R R 
Globodera rostochiensis Otu86,95 R R R 
Longidorus caespiticola Otu3,90 R R R 
Meloidogyne hapla  Otu70 R R R 
Prionchulus punctatus Otu1,67,89,117,119,130,161 R R R 
Pristionchus lheritieri Otu77,120,149 R R R 
Rhabditis cf. terricola  Otu143 R R R 
Steinernema carpocapsae  Otu3,54,73,97,133 R R R 
Trichodorus primitivus Otu5,105,159 R R R 
Tripyla glomerans  Otu6,76,125 R R R 
Xiphinema diversicaudatum  Otu11 R R R 
D3Af-D3Br   

Alaimus sp.  Otu19,22,32,47,53 R R R 
Aphelenchoides ritzemabosi  Otu26 R R R 
Anatonchus tridentatus Otu5 R R R 
Ditylenchus dipsaci  Otu6,84,144 R R R 
Aporcelaimellus obtusicaudatus  Otu14,17,45 R R R 
Acrobeles complexus Otu29 R R 
Acrobeloides sp.  Otu18 R R R 
Globodera rostochiensis/pallida  Otu4,59,101,104,111,119,124,130,133 R R R 
Hemicycliophora wyei  Otu21,82 R 
Longidorus macrosoma  Otu7,79 R R R 
Laimaphelenchus deconincki Otu39 R R R 
Meloidogyne hapla  Otu8,72,142 R R R 
Plectus sp.  Otu15,20,116 R R R 
Prionchulus sp. Otu23,99 R R R 
Rhabditis sp.  Otu1,78,100,121,126,128,136 R R R 
Pristionchus lucani  Otu13,113 R R R 
Steinernema carpocapsae  Otu61 R R R 
Trichodorus primitivus  Otu9,39,144 R R R 
Xiphinema diversicaudatum  Otu11,79 R R R 
Tripyla sp.  Otu108,109 R R R 

Tylenchus sp. Otu53,83  
JB3-JB5GED   
Anatonchus tridentatus Otu45 R R R 
Meloidogyne hapla Otu7 R R R 
Longidorus caespiticola Otu69 R R R 
Steinernema carpocapsae Otu3,9,55,59,63 R R R 
Trichodorus primitivus Otu47 R R R 
Tripyla sp. Otu66 R R R 
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Appendix 10.3. Index combinations used for the mock community samples 

Sample ID I7 Index ID Index 1 I5 Index ID index2 

NF1-18Sr2b 1 N714 GCTCATGA S513 TCGACTAG 

NF1-18Sr2b 2 N714 GCTCATGA S515 TTCTAGCT 

NF1-18Sr2b 3 N714 GCTCATGA S516 CCTAGAGT 

SSUF04-R22 1 N714 GCTCATGA S518 CTATTAAG 

SSUF04-R22 2 N714 GCTCATGA S520 AAGGCTAT 

SSUF04-R22 3 N714 GCTCATGA S521 GAGCCTTA 

JB3-JB5GED 1 N715 ATCTCAGG S518 CTATTAAG 

JB3-JB5GED 2 N715 ATCTCAGG S520 AAGGCTAT 

JB3-JB5GED 3 N715 ATCTCAGG S521 GAGCCTTA 

D3Af-D3Br 1 N701 TAAGGCGA S513 TCGACTAG 

D3Af-D3Br 2 N702 CGTACTAG S513 TCGACTAG 

D3Af-D3Br 3 N703 AGGCAGAA S513 TCGACTAG 
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Appendix 10.4. Feeding types, families, cp scores, functional guild and mean densities of 
nematode taxa recovered across the 108 samples analysed. Mean densities represent the number 
of individuals that, on average, were recovered per sample. Ba = bacterivores, Fu = fungivores, 
Omnivores, Pf = herbivores, and Ca = Predators. 

Feeding type Taxon Family cp score Functional guild Mean density 

Bacterivores Acrobeles Cephalobidae 2 Ba2 0.14 

 Acrobeloides Cephalobidae 2 Ba2 29.35 

 Alaimidae Alaimidae 4 Ba4 1.53 

 Alaimus Alaimidae 4 Ba4 5.69 

 Amphidelus Alaimidae 4 Ba4 2.82 

 Anaplectus Plectidae 2 Ba2 4.31 

 Cephalobidae Cephalobidae 2 Ba2 0.56 

 Cephalobus Cephalobidae 2 Ba2 13.24 

 Cervidellus Cephalobidae 2 Ba2 2.41 

 Chiloplacus Rhabditidae 1 Ba1 1.11 

 Cruznema Rhabditidae 1 Ba1 0.60 

 Dauer  1 Ba1 144.26 

 Diplogasteridae Diplogasteridae 1 Ba1 2.96 

 Eucephalobus Cephalobidae 2 Ba2 24.91 

 Linhomoeidae Linhomoeidae 2 Ba2 0.05 

 Mesorhabditis Rhabditidae 1 Ba1 2.96 

 Monhysteridae Monhysteridae 2 Ba2 0.65 

 Nothacrobeles Cephalobidae 2 Ba2 0.46 

 Panagrolaimidae Panagrolaimidae 1 Ba1 0.60 

 Panagrolaimus Panagrolaimidae 1 Ba1 3.15 

 Panagrolobus Cephalobidae 2 Ba2 0.05 

 Paramphidelus Alaimidae 4 Ba4 2.18 

 Pellioditis Rhabditidae 1 Ba1 0.56 

 Penjatinema Cephalobidae 2 Ba2 0.05 

 Plectidae Plectidae 2 Ba2 1.90 

 Plectus Plectidae 2 Ba2 5.23 

 Propanagrolaimus Panagrolaimidae 1 Ba1 0.19 

 Pseudacrobeles Cephalobidae 2 Ba2 12.08 

 Rhabditidae Rhabditidae 1 Ba1 4.63 

 Rhabditis Rhabditidae 1 Ba1 11.34 

 Stegelletina Cephalobidae 2 Ba2 0.79 

 Wilsonema Plectidae 2 Ba2 0.05 

 Xyalidae Xyalidae 2 Ba2 0.24 

 Zeldia Cephalobidae 2 Ba2 0.23 

Fungivores Aphelenchoides Aphelenchoididae 2 Fu2 21.02 

 Aphelenchoididae Aphelenchoididae 2 Fu2 0.83 

 Aphelenchus Aphelenchidae 2 Fu2 5.14 

 Diphtherophora Diphtherophoridae 3 Fu3 0.23 

 Tylalaimophorus Diphtherophoridae 3 Fu3 0.79 

Omnivores Dorylaimidae Dorylaimidae 4 Om4 3.89 
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 Nordiidae Nordiidae 4 Om4 1.25 

 Qudsianematidae Qudsianematidae 4 Om4 3.10 

Herbivores Amplimerlinius Telotylenchidae 3 Pf3 4.68 

 Anguinidae Anguinidae 2 Pf2 1.02 

 Criconematidae Criconematidae 3 Pf3 0.14 

 Ditylenchus Anguinidae 2 Pf2 9.68 

 Nagelus Telotylenchidae 3 Pf3 0.42 

 Helicotylenchus Hoplolaimidae 3 Pf3 21.25 

 Hemicycliophora Hemicycliophoridae 3 Pf3 0.09 

 Heteroderidae Heteroderidae 3 Pf3 0.14 

 Hoplolaimidae Hoplolaimidae 3 Pf3 0.14 

 Longidorus Longidoridae 4 Pf4 4.67 

 Meloidogyne Meloidogynidae 3 Pf3 87.08 

 Merlinius Telotylenchidae 3 Pf3 1.44 

 Paratylenchus Tylenchulidae 2 Pf2 44.54 

 Pratylenchus Pratylenchidae 3 Pf3 13.15 

 Rotylenchus Hoplolaimidae 3 Pf3 0.14 

 Telotylenchidae Telotylenchidae 3 Pf3 0.23 

 Telotylenchus Telotylenchidae 3 Pf3 0.56 

 Trichodorus Trichodoridae 4 Pf4 6.94 

 Tylenchorhynchus Telotylenchidae 3 Pf3 16.62 

 Xiphinema Longidoridae 5 Pf5 0.32 

Predators Anatonchidae Anatonchidae 4 Ca4 0.46 

 Aporcelaimidae Aporcelaimidae 5 Ca5 1.48 

 Clarkus Mononchidae 4 Ca4 0.05 

 Iotonchus Iotonchidae 4 Ca4 0.60 

 Miconchus Anatonchidae 4 Ca4 0.05 

 Mononchidae Mononchidae 4 Ca4 0.46 

 Mononchus Mononchidae 4 Ca4 0.19 

 Mylonchulus Mylonchulidae 4 Ca4 2.13 

 Nygolaimidae Nygolaimidae 5 Ca5 0.14 

 Prionchulinae Prionchulidae 4 Ca4 0.14 

 Prionchulus Prionchulidae 4 Ca4 0.28 

 Tripyla Tripylidae 3 Ca3 2.04 

Root hair feeders Aglenchus Tylenchidae 2 Pf2 0.83 

 Basiria Tylenchidae 2 Pf2 6.11 

 Boleodorus Tylenchidae 2 Pf2 2.08 

 Coslenchus Tylenchidae 2 Pf2 0.37 

 Filenchus Tylenchidae 2 Pf2 5.51 

 Lelenchus Tylenchidae 2 Pf2 0.32 

 Psilenchus Tylenchidae 2 Pf2 2.87 

 Tylenchidae Tylenchidae 2 Pf2 4.40 

 Tylenchus Tylenchidae 2 Pf2 21.85 
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Appendix 10.5. Samples and their respective indices 

Sample ID I7 Index ID index I5 Index ID index2 

1-RTF-D5 N701-A TAAGGCGA S502-A CTCTCTAT 

1-LGP-D5 N701-A TAAGGCGA S503-A TATCCTCT 

1-CTF-Z5 N701-A TAAGGCGA S505-A GTAAGGAG 

1-CTF-D5 N701-A TAAGGCGA S506-A ACTGCATA 

1-LGP-S5 N701-A TAAGGCGA S507-A AAGGAGTA 

1-RTF-Z5 N701-A TAAGGCGA S508-A CTAAGCCT 

1-LGP-Z5 N701-A TAAGGCGA S510-A CGTCTAAT 

1-CTF-S5 N701-A TAAGGCGA S511-A TCTCTCCG 

1-RTF-S5 N702-A CGTACTAG S502-A CTCTCTAT 

2-LGP-D5 N702-A CGTACTAG S503-A TATCCTCT 

2-CTF-S5 N702-A CGTACTAG S505-A GTAAGGAG 

2-LGP-S5 N702-A CGTACTAG S506-A ACTGCATA 

2-RTF-S5 N702-A CGTACTAG S507-A AAGGAGTA 

2-CTF-Z5 N702-A CGTACTAG S508-A CTAAGCCT 

2-RTF-Z5 N702-A CGTACTAG S510-A CGTCTAAT 

2-LGP-Z5 N702-A CGTACTAG S511-A TCTCTCCG 

2-CTF-D5 N703-A AGGCAGAA S502-A CTCTCTAT 

2-RTF-D5 N703-A AGGCAGAA S503-A TATCCTCT 

3-CTF-S5 N703-A AGGCAGAA S505-A GTAAGGAG 

3-RTF-Z5 N703-A AGGCAGAA S506-A ACTGCATA 

3-LGP-D5 N703-A AGGCAGAA S507-A AAGGAGTA 

3-CTF-D5 N703-A AGGCAGAA S508-A CTAAGCCT 

3-RTF-S5 N703-A AGGCAGAA S510-A CGTCTAAT 

3-CTF-Z5 N703-A AGGCAGAA S511-A TCTCTCCG 

3-RTF-D5 N704-A TCCTGAGC S502-A CTCTCTAT 

3-LGP-Z5 N704-A TCCTGAGC S503-A TATCCTCT 

3-LGP-S5 N704-A TCCTGAGC S505-A GTAAGGAG 

4-CTF-S5 N704-A TCCTGAGC S506-A ACTGCATA 

4-RTF-Z5 N704-A TCCTGAGC S507-A AAGGAGTA 

4-LGP-Z5 N704-A TCCTGAGC S508-A CTAAGCCT 

4-RTF-D5 N704-A TCCTGAGC S510-A CGTCTAAT 

4-LGP-D5 N704-A TCCTGAGC S511-A TCTCTCCG 

4-RTF-S5 N705-A GGACTCCT S502-A CTCTCTAT 

4-CTF-Z5 N705-A GGACTCCT S503-A TATCCTCT 

4-LGP-S5 N705-A GGACTCCT S505-A GTAAGGAG 

4-CTF-D5 N705-A GGACTCCT S506-A ACTGCATA 
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1-RTF-D15 N716-D ACTCGCTA S513-D TCGACTAG 

1-LGP-D15 N716-D ACTCGCTA S515-D TTCTAGCT 

1-CTF-Z15 N716-D ACTCGCTA S516-D CCTAGAGT 

1-CTF-D15 N716-D ACTCGCTA S517-D GCGTAAGA 

1-LGP-S15 N716-D ACTCGCTA S518-D CTATTAAG 

1-RTF-Z15 N716-D ACTCGCTA S520-D AAGGCTAT 

1-LGP-Z15 N716-D ACTCGCTA S521-D GAGCCTTA 

1-CTF-S15 N716-D ACTCGCTA S522-D TTATGCGA 

1-RTF-S15 N718-D GGAGCTAC S513-D TCGACTAG 

2-LGP-D15 N718-D GGAGCTAC S515-D TTCTAGCT 

2-CTF-S15 N718-D GGAGCTAC S516-D CCTAGAGT 

2-LGP-S15 N718-D GGAGCTAC S517-D GCGTAAGA 

2-RTF-S15 N718-D GGAGCTAC S518-D CTATTAAG 

2-CTF-Z15 N718-D GGAGCTAC S520-D AAGGCTAT 

2-RTF-Z15 N718-D GGAGCTAC S521-D GAGCCTTA 

2-LGP-Z15 N718-D GGAGCTAC S522-D TTATGCGA 

2-CTF-D15 N719-D GCGTAGTA S513-D TCGACTAG 

2-RTF-D15 N719-D GCGTAGTA S515-D TTCTAGCT 

3-CTF-S15 N719-D GCGTAGTA S516-D CCTAGAGT 

3-RTF-Z15 N719-D GCGTAGTA S517-D GCGTAAGA 

3-LGP-D15 N719-D GCGTAGTA S518-D CTATTAAG 

3-CTF-D15 N719-D GCGTAGTA S520-D AAGGCTAT 

3-RTF-S15 N719-D GCGTAGTA S521-D GAGCCTTA 

3-CTF-Z15 N719-D GCGTAGTA S522-D TTATGCGA 

3-RTF-D15 N720-D CGGAGCCT S513-D TCGACTAG 

3-LGP-Z15 N720-D CGGAGCCT S515-D TTCTAGCT 

3-LGP-S15 N720-D CGGAGCCT S516-D CCTAGAGT 

4-CTF-S15 N720-D CGGAGCCT S517-D GCGTAAGA 

4-RTF-Z15 N720-D CGGAGCCT S518-D CTATTAAG 

4-LGP-Z15 N720-D CGGAGCCT S520-D AAGGCTAT 

4-RTF-D15 N720-D CGGAGCCT S521-D GAGCCTTA 

4-LGP-D15 N720-D CGGAGCCT S522-D TTATGCGA 

4-RTF-S15 N721-D TACGCTGC S513-D TCGACTAG 

4-CTF-Z15 N721-D TACGCTGC S515-D TTCTAGCT 

4-LGP-S15 N721-D TACGCTGC S516-D CCTAGAGT 

4-CTF-D15 N721-D TACGCTGC S517-D GCGTAAGA 

1-RTF-D30 N721-D TACGCTGC S518-D CTATTAAG 

1-LGP-D30 N721-D TACGCTGC S520-D AAGGCTAT 
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1-CTF-Z30 N721-D TACGCTGC S521-D GAGCCTTA 

1-CTF-D30 N721-D TACGCTGC S522-D TTATGCGA 

1-LGP-S30 N722-D ATGCGCAG S513-D TCGACTAG 

1-RTF-Z30 N722-D ATGCGCAG S515-D TTCTAGCT 

1-LGP-Z30 N722-D ATGCGCAG S516-D CCTAGAGT 

1-CTF-S30 N722-D ATGCGCAG S517-D GCGTAAGA 

1-RTF-S30 N722-D ATGCGCAG S518-D CTATTAAG 

2-LGP-D30 N722-D ATGCGCAG S520-D AAGGCTAT 

2-CTF-S30 N722-D ATGCGCAG S521-D GAGCCTTA 

2-LGP-S30 N722-D ATGCGCAG S522-D TTATGCGA 

2-RTF-S30 N723-D TAGCGCTC S513-D TCGACTAG 

2-CTF-Z30 N723-D TAGCGCTC S515-D TTCTAGCT 

2-RTF-Z30 N723-D TAGCGCTC S516-D CCTAGAGT 

2-LGP-Z30 N723-D TAGCGCTC S517-D GCGTAAGA 

2-CTF-D30 N723-D TAGCGCTC S518-D CTATTAAG 

2-RTF-D30 N723-D TAGCGCTC S520-D AAGGCTAT 

3-CTF-S30 N723-D TAGCGCTC S521-D GAGCCTTA 

3-RTF-Z30 N723-D TAGCGCTC S522-D TTATGCGA 

3-LGP-D30 N724-D ACTGAGCG S513-D TCGACTAG 

3-CTF-D30 N724-D ACTGAGCG S515-D TTCTAGCT 

3-RTF-S30 N724-D ACTGAGCG S516-D CCTAGAGT 

3-CTF-Z30 N724-D ACTGAGCG S517-D GCGTAAGA 

3-RTF-D30 N724-D ACTGAGCG S518-D CTATTAAG 

3-LGP-Z30 N724-D ACTGAGCG S520-D AAGGCTAT 

3-LGP-S30 N724-D ACTGAGCG S521-D GAGCCTTA 

4-CTF-S30 N724-D ACTGAGCG S522-D TTATGCGA 

4-RTF-Z30 N726-D CCTAAGAC S513-D TCGACTAG 

4-LGP-Z30 N726-D CCTAAGAC S515-D TTCTAGCT 

4-RTF-D30 N726-D CCTAAGAC S516-D CCTAGAGT 

4-LGP-D30 N726-D CCTAAGAC S517-D GCGTAAGA 

4-RTF-S30 N726-D CCTAAGAC S518-D CTATTAAG 

4-CTF-Z30 N726-D CCTAAGAC S520-D AAGGCTAT 

4-LGP-S30 N726-D CCTAAGAC S521-D GAGCCTTA 

4-CTF-D30 N726-D CCTAAGAC S522-D TTATGCGA 
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