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Abstract 
Precision irrigation scheduling is critical for improving irrigation efficiency. However, to 

realize a robust precision irrigation scheduling workflow, adaptive decision support 

systems need to be incorporated and enabled as part of the workflow. Furthermore, these 

adaptive systems should be developed to align with the three key requirements of 

precision irrigation; measurement, monitoring and management.  

The overall hypothesis of this research project was that data-driven models which are 

capable of predicting crop water requirements and the plant response to water supply can 

aid precision irrigation scheduling. There were three specific objectives which were 

formulated with the key requirements of precision irrigation in mind. 

The first objective focused on the need to ensure the availability of quality data from soil 

moisture sensors in order to realize robust irrigation scheduling decisions. The 

performance of three dielectric soil moisture sensors was evaluated under varying 

conditions of soil texture, bulk density, temperature and salinity. Results indicated that 

calibration equations developed in the laboratory improved the accuracy of these sensors 

for all conditions. 

The second objective focused on the development of data-driven dynamic models to aid 

the precision irrigation management of greenhouse cultivated lettuce plants. Dynamic 

models were developed for the prediction of the baseline temperatures and transpiration 

dynamics. Results indicated that the crop water stress index (CWSI) computed using the 

predicted baseline temperatures was significantly correlated with the theoretical CWSI 

and successfully distinguished the water status of lettuce plants receiving fractional 

irrigation amounts. The information contained in the residuals calculated from the 

measured and model predicted transpiration was exploited as a means of inferring the 

plant water status. This method successfully identified plants experiencing a shortage of 

water supply, achieving a sensitivity similar to stomatal conductance measurements.  

The third objective focused on the development of dynamic neural network models for the 

prediction of the volumetric soil water content (VWC). The application of the models for 

predictive irrigation scheduling was also explored. The models successfully generated 

accurate one-day-ahead predictions of the VWC with minimal input data pre-processing. 

Using model-based simulations of the potato growing season, it was demonstrated that a 

water-saving ranging between 20 – 46% can be achieved when these models are used in 

a predictive irrigation scheduling system. 

In conclusion, the study demonstrated the applicability of adaptive data-driven dynamic 

models for irrigation monitoring and management. The proposed adaptive models can be 

combined to realize a synergistic sustainable precision irrigation system.  
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Abstract 
Globally, the irrigation of crops is the largest consumptive user of fresh water. Water 

scarcity is increasing worldwide, resulting in tighter regulation of its use for agriculture. 

This necessitates the development of irrigation practices that are more efficient in the use 

of water but do not compromise crop quality and yield. Precision irrigation already 

achieves this goal, in part. The goal of precision irrigation is to accurately supply the crop 

water need in a timely manner and as spatially uniformly as possible. However, to 

maximize the benefits of precision irrigation, additional technologies need to be enabled 

and incorporated into agriculture. This review discusses how incorporating adaptive 

decision support systems into precision irrigation management will enable significant 

advances in increasing the efficiency of current irrigation approaches. From the literature 

review, it is found that precision irrigation can be applied in achieving the environmental 

goals related to sustainability. The demonstrated economic benefits of precision irrigation 

in field-scale crop production is however minimal. It is argued that a proper combination of 

soil, plant and weather sensors providing real-time data to an adaptive decision support 

system provides an innovative platform for improving sustainability in irrigated agriculture. 

The review also shows that adaptive decision support systems integrated with data-driven 

models are able to adequately account for the time-varying nature of the soil-plant-

atmosphere system. The review also shows that model-based decision support systems 

are able to consider operational limitations and agronomic objectives in arriving at optimal 

irrigation decisions. It is concluded that significant improvements in crop yield and water 

savings can be achieved by incorporating data-driven predictive models into precision 

irrigation decision support tools. Further improvements in water savings can also be 

realized by including deficit irrigation as part of the overall irrigation management strategy. 

Nevertheless, future research is needed for identifying crop response to regulated water 

deficits, developing improved soil moisture and plant sensors, and developing self-

learning crop simulation frameworks that can be applied to evaluate adaptive decision 

support strategies related to irrigation. 

 

 

 

 

 

 

 



  

 3 

1 Introduction 
Globally, 70% of water use is applied in irrigation of crops, making irrigation the largest 

consumptive user of fresh water (Knox et al., 2012). Over 80% of freshwater withdrawals 

in developing countries is applied in irrigation (Hedley et al., 2014). Irrigated agriculture 

provides 40% of the world’s food from less than 20% of the cultivated area highlighting the 

importance of irrigation in global food security (Turral et al., 2010). 

Irrigated crop production globally extends over 275 million hectares, with an estimated 

annual increase of 1.3% (Hedley et al., 2014). Global climate change may further increase 

irrigation water demand due to a greater variation in annual precipitation amounts (Döll, 

2002). Postel (1998) suggested that irrigation will provide 46% of the global crop water 

requirement by 2025, which was computed as 28% in 1995, resulting in a decline of rain-

fed agriculture. Food production in the developing world, notably in South, Southeast and 

East Asia, is at present heavily reliant on irrigation. The total irrigated area in Asia is 230 

million ha, which represents over 70% of the global irrigated area. Of the 230 million ha of 

the irrigated land area, 60% is located in China and India (Turral et al., 2010). It is 

estimated that 75% of the grain production in China is dependent on irrigation (Hedley et 

al., 2014). Sarma (2016) noted that India uses as much as four times more water to 

produce one unit of a major food crop as compared to the USA and Europe. This implies 

that an improvement in water use efficiency in the developing world would conserve at 

least half of the water presently applied in irrigation.  

It is estimated that a water volume of 2630 km3 is abstracted yearly from surface and 

groundwater sources for irrigated crop production. The absence of surface water sources 

in a number of communities has further increased the pressure on groundwater 

resources. This has resulted in the over-abstraction of global groundwater sources which 

is calculated to be as much as 163 km3 per annum (Hedley et al., 2014). A global 

shortage in freshwater sources is predicted unless action is taken to improve water 

management, savings and increase water use efficiency. This has necessitated greater 

regulatory demands for environmental protection of freshwater (De Fraiture and Wichelns, 

2010). It is reported that only half of the total freshwater volume abstracted for irrigation 

globally reaches the targeted crops (Hedley et al., 2014). These have brought about the 

need to devise procedures to use the limited water more efficiently while maximizing crop 

yield and quality. 

Conventional irrigation practice involves applying water uniformly over every part of the 

field without taking into account the spatial variability in soil and crop water needs; this 

consequently leads to over-irrigation in some parts of the field while other parts of the field 

are under irrigated (Daccache et al., 2014). The risks associated with over-irrigation 

include surface runoff, deep percolation, and leaching of nitrates and nutrients. Those 

associated with under-irrigation are more subjective and include a reduction in crop yields 
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and quality, as well as inefficient use of fertilizer and other supplemental inputs for crop 

production (Al-Karadsheh, 2002). 

The irrigation process requires a high level of ‘precision’ in order to optimize the water 

input and crop response while minimizing adverse environmental impacts. Precision 

irrigation is an evolving field with active interest by both industry and academic 

researchers. It is conceptualized by some researchers as the use of efficient irrigation 

application systems, whereas others view it as the variable application of irrigation based 

on predefined maps or sensor feedback (Raine et al., 2007). Smith et al. (2010) 

suggested that ‘precision’ involves the accurate determination, quantification of crop water 

needs and the precise application of the optimal water volume at the required time. This 

implies that varying water application spatially is not the sole requirement for the 

achievement of ‘precision’ in the irrigation process. Hence, precision irrigation can be 

defined as the process of accounting for the field-scale spatial variability in crop water 

need and applying the right amount of water to match the spatial crop water need at the 

right time (Al-Karadsheh, 2002). The advantages associated with precision irrigation 

include increased crop yields, improved crop quality, improved water use 

efficiency/savings, reduction of energy costs and reduction of adverse environmental 

impacts (Shah and Das, 2012). Pierce (2010) viewed precision irrigation as a tool for 

improving sustainability in irrigated agriculture in terms of improved irrigation water use 

efficiency and improved environmental quality of irrigated fields. 

The balance of several core aspects is however important for the successful 

implementation of a robust precision irrigation system. Implementing a precision irrigation 

system involves efforts on real-time monitoring of crop and soil conditions, scheduling 

irrigation and control of the irrigation application equipment. Research has been mainly 

focused on the sensing and control aspects of precision irrigation with much 

advancements in the last decade (Shah and Das, 2012). Research is limited, however, in 

the development of appropriate irrigation scheduling tools for the precision irrigation 

process (DeJonge et al., 2007). Irrigation scheduling is the process by which a producer 

determines when to apply irrigation and the amount of irrigation water to apply (Ali and 

Talukder, 2001). Hornbuckle et al. (2009) suggested that the irrigation scheduling 

endeavor should be treated as an all-encompassing decision support system for irrigation 

management. A robust decision support system is important in the successful 

implementation of precision irrigation. The need for a decision support system capable of 

real-time management decisions of when, where and how much to irrigate while also 

considering uncertainty in climatic inputs, the time-varying nature of cropping systems, as 

well as equipment and operational limitations cannot be overemphasized. Rhodig and 

Hillyer (2013) noted that the development of an optimal decision support tool for precision 

irrigation will involve the combination of appropriate modelling and management tools. 
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The decision support tools available for precision irrigation management are presently 

inflexible and difficult to adapt to varying cropping scenarios (Evans and King, 2012). 

In recent years, there has been a number of in-depth reviews on precision irrigation (e.g. 

(O’Shaughnessy and Rush, 2014; Shah and Das, 2012; Smith et al., 2010)), and the 

intention here is not to repeat the areas they addressed. Rather, the aim is to provide an 

in-depth technical analysis of the considerations necessary for the development of a 

practical and robust decision support system for precision irrigation in order to improve 

sustainable irrigated agriculture. To that end, this review will focus on the following critical 

aspects of precision irrigation: (1) monitoring considerations; (2) present limitations and 

state of the art in decision support; and (3) opportunities for improving sustainability. Brief 

sections on the concept of spatial variability and the control of water application in 

precision irrigation will, however, be included. 

 

2 Spatial Variability: The long-term challenge of irrigated agriculture 
The underlying argument for precision irrigation is the presence of within-field spatial 

variability that influences crop water demand. The spatial variability in crop water demand 

may have a direct influence on the crop yield, quality and the environmental quality of 

irrigated fields (Smith et al., 2009). The soil water presents the sole source of water 

available for direct plant uptake and therefore its spatial variability will have a direct 

influence on crop water demand. Soil and landscape characteristics like soil texture, 

topography, abiotic and management factors (e.g., compaction, tillage) and hydraulic 

properties vary spatially across a field (Smith et al., 2010). These have a direct influence 

on the water-holding capacity of the soil. Hedley and Yule (2009)  reported that the spatial 

variation in the soil water retention characteristics was strongly correlated with the spatial 

variation in soil texture across a field, noting that areas with heavier soils within a field had 

a larger water-holding capacity in comparison to those with light textured soils. The advent 

of rapid non-invasive technologies for mapping soil properties, specifically electrical 

conductivity mapping, can reveal within-field variability that can guide in variable rate 

irrigation management. These have been successfully applied by Hedley and Yule (2009) 

and Daccache et al. (2014). A comprehensive overview of electrical conductivity mapping 

is presented in (Misra and Padhi, 2014; Kuhn et al., 2009) 

The variability in yield across a field has also been found to be strongly correlated with the 

spatial variability in water available for crop use. The spatial variability in crop yield is a 

function of the interplay between water stress, nutrients, in addition to soil’s physical and 

chemical properties (Thorp et al., 2008). The yield map can be correlated with the soil 

electrical conductivity (EC) map. These similarities can be explained through the spatial 

variability of soil properties that exists across a field. The water-holding capacity of the soil 

is a major factor affecting yield, and the yield map will likely show a strong correlation to 

soil EC (Lund et al., 2000). Irmak et al. (2001) noted that the spatial variability in soil water 
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retention characteristics played a dominant role in explaining the spatial yield variability 

observed in soybean. Martínez-Casasnovas et al. (2006) suggested yield mapping as an 

important tool in variable rate irrigation management. 

A robust precision irrigation system will be able to meet the spatially varying crop water 

demand across a field at the right time. This requires accurate knowledge of the within-

field variability. This is addressed by applying the concept of irrigation management 

zones/units in precision irrigation. The irrigation management zones are a group of 

homogeneous units with similar soil water retention characteristics ( Hedley and Yule, 

2009). It is however important that these management zones are large enough to be 

managed individually while remaining relatively homogeneous in order to reflect the 

spatial soil variation across the units. The delineation of irrigation management zones 

based on real-time sensor data has also been demonstrated. This is achieved by applying 

infrared thermometry/thermography to assess the spatial variation in crop canopy 

temperature across a field (Jones and Leinonen, 2003). The crop canopy temperature of a 

healthy transpiring crop will often be less than that of the ambient air. When crop 

transpiration is reduced as a result of water deficits, the crop canopy temperature is 

expected to increase. The characterization of crop water status as a function of the 

canopy and ambient temperature is the basis for using infrared 

thermometry/thermography as a mapping tool for precision irrigation (Jackson et al., 

1981). Shaughnessy et al. (2014) and Evett et al. (2013) have successfully applied this 

procedure in generating dynamic maps to guide variable rate water application for field 

crops grown under a center pivot system. It should, however, be noted that infrared 

temperature measurements are usually taken over a short period, mostly at midday when 

the crop is expected to experience the highest evaporative demand. Hence, this method is 

well suited for crop production systems in which the soil moisture dynamics has relatively 

long time constants. 

 

3 Spatial scales of irrigation management 
Center-pivot, lateral move, and low energy precision application (LEPA) moving machines 

can be modified to apply spatially variable irrigation (Raine and Mccarthy, 2009). These 

systems are particularly suited to variable rate water application because of their current 

level of automation and large coverage area with a single lateral pipe. Fixed irrigation 

systems also have the potential to be deployed for variable rate water application as they 

can be very accurate and can be automated based on sensor feedback (Hedley et al., 

2014). Implementing a spatially varied irrigation system requires an understanding of the 

characteristics of the irrigation application system deployed including the spatial scales 

covered by the water application equipment. The spatial scale associated with the 
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variability in crop water requirements and its impact on yield should also be identified 

(Raine and Mccarthy, 2009). 

O’Shaughnessy and Rush (2014) suggested that the size and numbers of irrigation 

management zones that can be controlled in a precision irrigation strategy will determine 

the overall flexibility of the system. For moving application systems, the width of the 

management zone is dependent on the number of drops or nozzles within an individually 

controlled set (i.e., sprinklers controlled by a single solenoid valve) and the length will be 

dependent on the pattern of variability in the direction of the traveling sprinkler. The wind 

speed and the overlap from the wetted sprinkler patterns between management zones will 

also affect the accuracy of the water volume applied. Raine and Mccarthy (2009) noted 

that the spray diameter and overlap achieved by moving application systems make it 

impossible to target water applications on a single crop basis using these systems. Hedley 

et al. (2014) suggested that the economic benefits of spatially varied irrigation should be 

an important consideration even when the system is considered achievable from a 

technical standpoint. The spatial scales associated with moving and fixed irrigation 

systems are presented in Table 1. Smith et al. (2010) concluded that the spatial resolution 

of a precision irrigation system will be influenced by the spatial scales associated with the 

application system, the spatial resolution of the infield sensors and the spatial scales 

associated with the variability in crop water requirements. 

 

Table 1. Spatial scales of fixed and moving irrigation systems. 

System Spatial Unit 
Order of Magnitude of Spatial 

Scale (m2) 

Sprinkler - solid set 
Wetted area of single 

sprinkler 
100 

Center-pivot, lateral 

move 

Wetted area of single 

sprinkler 
100 

LEPA-bubbler Furrow dyke 1 

Traveling irrigator Wetted area of sprinkler 5000 

Drip Wetted area of an emitter 1 to 10 

Micro-spray 
Wetted area of single 

spray 
20 

LEPA: low energy precision application. Source: (Raine and Mccarthy, 2009). 
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4 Control of water application in precision irrigation 
The water application system used in the precision irrigation process must be able to 

control the water application volume applied per unit time to each defined irrigation 

management unit within a field (Pierce, 2010). The development of variable rate water 

application systems has been mostly focused on continuous move systems (Smith et al., 

2010). 

The control of water application on continuous move systems (center-pivot, linear move, 

boom and reel) is based on databases of spatially referenced data defining irrigation 

management units (Hedley and Yule, 2009). The volume of water applied to each 

management unit can be achieved by varying the application rate of sprinklers or 

controlling the ground speed of continuous move systems (Pierce, 2010). 

The application rate of sprinklers is mostly varied through the pulse modulation of the 

sprinkler nozzles. This involves the application of normally opened solenoid valves to 

control flow through an individual or group of sprinkler heads. The solenoid turns the flow 

of water either on or off at a sprinkler location in order to achieve the desired application 

depth within a specified cycle time. The cycle time is the total number of switching (either 

to on or off phase) required by the solenoid valves during a pulse cycle (Evans et al., 

2012). Evans et al. (2012) applied the pulse modulated sprinkler control on a linear move 

sprinkler system. Daccache et al. (2014) also applied a pulsed modulated sprinkler control 

on a boom and reel irrigation system. Field evaluation of both systems indicated a 

satisfactory performance over a range of water application rates. They, however, noted a 

problem with sprinkler overlap at the edge of the irrigation management units. 

The variation in irrigation volume applied by a continuous move system can also be 

achieved by varying its travel speed. The sprinklers on the manifold of the irrigation 

system are usually operated at a specified flow rate and pressure. An increase in travel 

speed of the system reduces the application depth and a decrease in the travel speed 

increases the application depth (Hezarjaribi, 2008). This type of system cannot be applied 

in situations where variable application depths are needed along the length of the 

irrigation system (Evans et al., 2012). Al-Karadsheh (2002) evaluated the performance of 

speed control in achieving variable water application rate on a linear move system. The 

wetted diameter of the sprinklers was reported to be between 15.2–21.3 m. He reported 

that the system needed to travel a minimum distance of 16 m before the desired change 

in application volume could be reached. This suggests that this system is not suitable for 

use in applications where the management units are small in scale. 

The adaptation of fixed irrigation systems for variable rate water application has been 

achieved (e.g., (Coates and Delwiche, 2008)). Variable water rate application in these 

systems is usually achieved either by individual nozzle or emitter control, or zone 

management (Pierce, 2010). A comprehensive review of such systems is presented in 

Pierce (2010). Miranda et al. (2005) described a distributed control system implemented 
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to achieve variable rate water application in a fixed irrigation system operating in 

predefined management zones. Their results indicated that the system was able to apply 

the irrigation volume required in each zone. Goumopoulos et al. (2014) also implemented 

a variable rate water application setup for a fixed irrigation system capable of zone-

specific irrigation of strawberries. Individual nozzle control in a micro-sprinkler system has 

been demonstrated by Coates et al. (2013). They reported individual control of 54 nodes 

in a vineyard with the system. The nozzle connected to each node was capable of 

achieving a unique water application volume. They concluded that the water requirements 

of each defined zone in the vineyard can be individually met by the irrigation system. The 

authors reported a payback period of between 3.5–4.5 years for the system. 

 

5 Monitoring 
The routine or continuous monitoring of moisture fluxes in the soil-plant-atmosphere 

system is a fundamental aspect of managing crop production in irrigated agriculture. 

Monitoring can essentially be viewed as the application of various sensing technologies in 

determining and characterizing the spatiotemporal moisture dynamics and plant water 

use. These sensing methods can be classified under three broad headings: soil-based, 

weather-based and plant-based sensing (Steele et al., 1994). Soil-based sensing typically 

involves the use of sensors to determine the soil moisture content or potential. This 

information is then used to infer the amount of water available for plant use and its 

temporal dynamics. The weather-based sensing involves the use of the crop 

evapotranspiration to determine the temporal crop water use. The evapotranspiration is 

determined using climatic variables such as radiation, rainfall and wind speed (Allen et al., 

1998; Leib et al., 2002). The plant-based sensing involves the determination of plant water 

status which is usually related to plant physiology. Measurements of canopy temperature, 

stomatal resistance, sap flow, leaf turgor pressure, stem diameter and leaf thickness are 

used to infer plant water status (Pardossi and Incrocci, 2011). 

Recent advances in remote sensing has enhanced the possibility of monitoring the spatial 

nature of both soil and crop water status. Remote sensing encompasses non-contact 

technologies that are capable of sensing radiation reflected or emitted from agricultural 

fields. They are deployed using satellites, aerial platforms, and tractors (Mulla, 2013). 

These technologies have a high spatial resolution and are well suited for regional soil and 

crop water evaluation (Verstraeten et al., 2008). This review focuses on sensing 

technologies that can be applied in monitoring field-scale soil and crop water dynamics. A 

comprehensive review of remote sensing technologies applicable in precision agriculture 

is presented in (Mulla, 2013; Jones and Schofield, 2008). 
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5.1 Soil-based sensing 

The knowledge of soil moisture fluxes comprising of the depletion and refill of soil water 

can be used to monitor crop water use hence making it a useful tool in irrigation 

scheduling and management decisions (Bellingham, 2009). Several methods have been 

developed for measuring soil moisture content; they are indirect methods which rely on 

the strong relationship between a particular property of the soil and the soil moisture 

content. Moreover, they are able to provide continuous monitoring and are non-destructive 

(Vereecken et al., 2014). In precision irrigation, the commonly applied method for 

monitoring the temporal dynamics of field-scale soil moisture is the dielectric-based 

method (Hedley and Yule, 2009). This is because of the ease of their deployment in large-

scale soil moisture sensor networks (Romano et al., 2013). Thus, the proper deployment 

and management of this technology can optimize the sustainability of irrigated agriculture. 

Consequently, this section will outline a brief description of this method including a 

consideration of the factors affecting sensor performance. A detailed description of other 

state-of-the-art soil moisture sensing technologies is presented in (Romano, 2014; Zhu et 

al., 2012). 

 

5.1.1 Dielectric soil moisture sensors 

Dielectric soil moisture sensors operate by exploiting the dielectric properties of soil and 

its constituents (Phillips et al., 2014). The relative dielectric permittivity of a substance is 

used to describe the effect of an electromagnetic field on its molecular structure. It is a 

dimensionless constant greater than one, made up of a real and imaginary part (Topp, 

2003). The apparent relative dielectric permittivity of soil, ε′soil is a function of its 

constituents majorly being water, air, and solid particles. The relative dielectric permittivity 

of the other constituents except water has a negligible effect as they have small values in 

the range of 1–7. The one of water, ε′water having a value of approximately 80 has the 

most remarkable effect. It is, therefore, possible to correlate the volumetric moisture 

content (VMC) to ε′soil using empirical equations at a frequency range of between 50 MHz 

and 17 GHz. At this high-frequency range, ε′soil is highly stable and it is usually referred to 

as the apparent dielectric permittivity of soil (Iaea, 2008). 

A range of electromagnetic sensors exploits this property to provide a non-destructive in 

situ measurement of soil moisture contents. They include Time Domain Reflectometry 

(TDR) Sensors, Time Domain Transmission (TDT) Sensors and Capacitance Sensors. 

The Capacitance Sensors are commonly referred to as Frequency Domain Reflectometry 

Sensors (FDR). A detailed mathematical description of the operating principles of 

dielectric soil moisture sensors has been included in the supplementary materials. 

 

 

 



  

 11 

5.1.2 Factors affecting the performance of dielectric soil moisture sensors 

The accuracy of data from soil moisture sensors is important in the precision irrigation 

process. Over-estimation of soil moisture status may lead to a delay in irrigation 

scheduling decisions and consequently affect crop yield and quality. Underestimation of 

soil moisture status, on the other hand, may lead to the application of irrigation too often 

or when not required by the crops. This will result in water/energy wastage and adverse 

environmental effects.  

Dielectric soil moisture sensors measure the soil moisture content for the soil volume 

corresponding to their sphere of influence. The various factors affecting the performance 

of dielectric soil moisture sensors include bulk electrical conductivity (salinity), soil texture, 

bulk density, and temperature. A variation in any of these factors around the sphere of 

influence of the dielectric sensor will have an effect on its performance. These properties 

vary with location and depth in a soil profile and it is important to take them into account 

when calibrating dielectric soil moisture sensors (Geesing et al., 2004). These sensors 

often rely on site-specific calibration, but they often come with ‘universal’ calibrations 

which can be used where absolute accuracy is not required. The accuracy of calibration 

equations supplied by manufacturers of these sensors are usually between a range of ±4 - 

2% VMC when applied in non-saline soils (Adeyemi et al., 2016). Site-specific calibration 

equations which are developed by comparing the sensor output to gravimetrically derived 

soil moisture content can be applied when a higher level of accuracy is required 

(Rowlandson et al., 2013). In addition, for capacitance type probes, it is essential that the 

probe access tubes are fitted correctly without air gaps to ensure robust soil water 

measurements. A summary of research on factors affecting the performance of dielectric 

sensors is presented in Table 2. A detailed technical description of factors affecting the 

performance of dielectric sensors can be found in (Nemali et al., 2007; Saito et al., 2009). 
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Table 2. Factors affecting the performance of various Dielectric soil moisture sensors 

Authors EM Sensor Type Factors Affecting 

Measurement 

Investigated 

Comments 

Benor et al. (2013) TDR Bulk Electrical 

Conductivity (EC) 

Errors in VMC 

estimation 

encountered with high 

EC 

Böhme et al. (2013) FDR Soil Organic Content, 

Soil Texture and Bulk 

Density 

Variation in soil 

organic content 

introduced errors in 

VMC estimation 

Kristoph-Dietrich et al. 

(2012) 

FDR Soil Organic Content, 

Soil Texture and Bulk 

Density 

Variation in soil 

organic content 

introduced errors in 

VMC estimation in 

wetlands 

Nemali et al. (2007) FDR  Pore Electrical 

Conductivity and 

Temperature 

High EC and 

temperature 

introduced errors in 

VMC estimation in 

soilless substrates 

Kelleners et al. (2005) TDR and FDR Frequency 

Dependence of 

Dielectric Permittivity 

Errors in VMC 

estimation with FDR 

due to low operating 

frequency. No errors 

encountered with 

TDR 

Keshavarzi et al. 

(2015) 

TDR Soil Organic Content Increase in organic 

content resulted in an 

underestimation of 

VMC 

Varble and Chávez 

(2011) 

TDR, TDT, and FDR Bulk Electrical 

Conductivity and 

Temperature 

Increase in Bulk EC 

caused errors in VMC 

estimation in the three 

sensors. The TDR  

and FDR  

sensor 

measurements were 

influenced by  

soil temperature 

fluctuations 
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5.2 Proximal sensing and mapping of soil moisture 

The recent advances in rapid mapping and positioning technologies enable the spatial 

characterization of soil moisture retention properties to inform precision irrigation 

decisions. The electromagnetic induction (EM) technique is used in combination with 

accurate positioning systems to quantify soil moisture variability at resolutions less than 

10 m. It also provides a highly accurate digital elevation map (DEM) (Hedley et al., 2014). 

The EM sensor maps the soil’s apparent EC which is influenced by soil texture and 

moisture in non-saline soils (Vereecken et al., 2014). Those same factors correlate highly 

to the soil’s water-holding capacity. Based on the EC maps, a targeted soil sampling can 

be conducted at different parts of the field. Topographic features that are likely to 

influence field-scale soil moisture dynamics are derived using the DEM (Hedley et al., 

2013).  

The EC maps enable the grouping of discrete units known as management units with 

similar available water-holding capacity (AWC) characteristics which can then be used in 

selecting soil moisture monitoring sites. This has been demonstrated by (Evans et al., 

2012; Pan et al., 2013). The data from soil moisture sensors located in the management 

units can also be used in generating dynamic application maps based on a relationship 

between the soil moisture depletion and the mapped EC values. These application maps 

serve as an input into the precision irrigation control system.  Hedley and Yule (2009) 

applied soil moisture sensors and an EC map in generating dynamic water status maps 

for a 35.2 ha irrigated maize field. Daccache et al. Daccache et al. (2014) applied a similar 

method in producing dynamic soil moisture maps for various fields. 

The electric resistivity tomography technique can also be applied in deriving the EC map 

of a field. Hedley et al. (2014) reported that the method has a good vertical resolution but 

it cannot be deployed on a moving platform for rapid non-invasive mapping. It has been 

applied by Kelly et al. (2011) in positioning soil moisture sensors to support irrigation 

decisions. 

The ground-penetrating radar (GPR) can also be applied in monitoring the field-scale soil 

moisture status (Romano, 2014). It can be mounted on a vehicle or moving irrigation 

system for mapping soil moisture in a field. The GPR is however affected by high clay 

content, is not amenable to automation and requires further development to improve its 

viability in precision irrigation applications (Bogena et al., 2007). 

The deployment of soil moisture sensors in management units defined by these mapping 

techniques enables the dynamic updates of soil moisture maps which can aid variable 

rate water application.  
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5.3 Weather-based sensing 

Weather-based sensing involves the use of climatic variables in determining 

evapotranspiration (ET) which is indicative of the crops’ daily water use. Evaporation 

accounts for the direct evaporation of water to the air from the soil surface or canopy 

interception of either precipitation or applied irrigation. Transpiration accounts for the 

uptake of water by a plant and the subsequent loss of water as vapor through stomata in 

its leaves, required for metabolic cooling of the leaf to maintain photosynthesis without the 

leaf overheating (Allen et al., 1998). Evapotranspiration (ET) is generally viewed as a 

combination of the evaporation of water from the soil, evaporation from the canopy 

surface and plant transpiration (Pereira et al., 2014).  

The evaporation and transpiration process occur simultaneously and are often difficult to 

distinguish. The predominance of each of these processes, however, varies at different 

crop growth stages. At the initial crop growth stage, water is lost mainly in form of 

evaporation from the soil surface. As the development of the crop progresses, 

transpiration becomes the major medium of water loss to the atmosphere (Verstraeten et 

al., 2008). 

The ET process is largely dependent on solar radiation, vapor pressure deficit of the 

atmosphere at any given time and wind speed. It is also influenced by soil water content, 

the rate at which water can be taken up from the soil by the plant roots and crop 

characteristics (type, variety and growth stage) (Pereira et al., 2014). A further discussion 

on the evapotranspiration process is presented in (Allen et al., 1998; Pereira et al., 2014).  

The temporal dynamics of evapotranspiration on hourly or daily timescales is appropriate 

for quantifying crop water use in the precision irrigation process. As such, a brief overview 

on monitoring techniques which can provide ET data at an hourly or daily resolution on a 

local scale is presented. 

The United Nations Food and Agriculture Organization  Penman–Monteith (FAO-PM) 

equation presents a procedure for computing hourly or daily ET values using standard 

climatological measurements of solar radiation, air temperature, humidity and wind speed 

made at a height of 2 m above a fully transpiring grass surface (Allen et al., 1998). These 

data can be obtained from automatic weather stations installed on a specific field or from 

a metrological network. The equation provides a basis from which reference ET (ET from 

the well-watered grass surface) for different time periods can be calculated and to which 

ET from other crops can be computed using crop coefficients, Kc (Howell and Evett, 

2004). The crop coefficients are specific to each crop and crop canopy cover, which is 

dependent on the crop growth stage. The Kc curve defined for a crop over its growth stage 

is generalized for regions with similar climates. The Kc is however dependent on the 

canopy dynamics including cover fraction, leaf area index and greenness which may vary 

across regions with similar climates (Farg et al., 2012). This introduces errors in ET 

estimates derived using the standard FAO-PM crop coefficient approach. The FAO-PM 
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method presents a relatively easy procedure for determining the temporal dynamics of 

crop water use. The crop coefficient used in determining the actual ET of a particular crop, 

however, needs to be estimated at each growth stage. It is noted in  Allen et al. (1998) 

that reference ET can be overestimated by as much as 20% during conditions of low 

evaporative demand.  

Remote sensing provides a means of overcoming the shortcomings of the FAO-PM crop 

coefficient approach of estimating crop ET by providing real-time feedback on daily crop 

water use as influenced by actual crop canopy dynamics, local climatic conditions and 

field spatial variability (Hunsaker et al., 2003). The remotely sensed Normalised 

Difference Vegetation Index (NDVI) computed from crop canopy reflectance 

measurements in the red and near-infrared (NIR) wavelengths has been found to be a 

useful tool in computing accurate crop coefficients for a broad range of crops (Hunsaker et 

al., 2005). Singh et al. (2013) has demonstrated the use of the calculated reference ET 

and the remotely sensed NDVI in estimating the water use of cotton. A similar procedure 

has also been demonstrated by Farg et al. (2012) for estimating the daily water use of 

wheat.  

The surface renewal analysis method presents an opportunity for assessing the real-time 

temporal dynamics of crop water use. The Surface Renewal (SR) method is used to 

determine the sensible heat which can then be applied to the energy balance equation to 

determine the latent heat (i.e., ET) (Mengistu and Savage, 2010). It is based on analysing 

the temperature time series generated from monitoring the change in heat content of air 

parcels that interact with the crop canopy. When an air parcel comes in contact with the 

crop canopy, the air temperature remains constant for a brief time period known as the 

quiescent period. The temperature of the air parcel, however, increases after this time 

period as energy is transferred to it from the crop canopy. The increase in temperature 

continues until the air parcel is replaced by cooler air from the atmosphere. At this time, 

the temperature of the air shows a sharp drop (Shapland et al., 2012). A high-frequency 

trace of this temperature renewal event exhibits a ramp-like function. Applying structure 

function theory to the ramp function enables the determination of the sensible heat flux. 

The instrumentation requirement for an SR system is minimal, consisting of small 

diameter fine wire thermocouples or a two-dimensional sonic anemometer and a high-

frequency data acquisition system (2 Hz to 10 Hz) (Mengistu and Savage, 2010). 

Standard climatological measurements are also required to obtain the other parameters in 

the energy balance equation. 

The SR technique requires that measurements are taken at a minimum height above the 

crop canopy. It is assumed that the canopy is homogeneous and able to absorb all the 

momentum transferred to it by the ambient airflow (Castellví and Snyder, 2009). This 

assumption introduces errors in ET estimates over fields with variable canopy structures. 

Castellví and Snyder (2010) concluded that the technique can be applied for estimating 
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ET from short and dense canopy crops as they are mostly decoupled from the 

environment. The technique also requires calibration using an eddy covariance system or 

a lysimeter. This may limit its practicality for farm-scale deployment. The SR methodology 

proposed by Castellvi (2004), however, does not require calibration. Rosa and Tanny 

(2015), Shapland et al. (2012), Rosa et al. (2013) have reported highly accurate hourly ET 

estimates from various crops using a surface renewal analysis system. 

Lysimeters are extensively applied in monitoring the real-time temporal dynamics of the 

crop ET. They are tanks buried in the ground and filled with either disturbed or 

undisturbed soil in which crops can be grown under natural conditions to measure the 

amount of water lost by ET. It enables the accurate determination of the components of 

the soil water balance and it is considered a method of determining ET directly. The 

lysimeter is the standard against which other ET measurement methods are validated 

(Ramírez-Builes and Harmsen, 2011).  There are two types of lysimeters; the non-

weighing commonly referred to as the drainage lysimeter and the weighing lysimeter. 

The drainage lysimeter operation is based on the principle of mass conservation in the soil 

water balance (Tomlinson, 1996).  It calculates the ET amount for a given time period as 

the result of the subtraction of the drainage water from the sum of all the water input into 

the lysimeter and soil water change (Zhang et al., 2011). The drainage water is usually 

collected at the bottom of the lysimeter. Since drainage is a slow process, this type of 

system can only be applied in studies involving long time periods, limiting its use to 

research.  

The Weighing Lysimeter is capable of measuring ET with higher temporal resolutions. It 

can determine ET with the accuracy of a few tenths of a millimeter and for time periods as 

short as a minute (Sun et al., 2008). In the weighing lysimeter, water loss from crop and 

soil surface is calculated directly from the change of mass of the entire system. The 

recorded mass change can be converted to ET in the units of water depth. The mass of 

the system is usually measured using mechanical scales or electronic load cells (Yang et 

al., 2000). Weighing lysimeters present an opportunity to monitor the water use of crops in 

real-time and over short time periods. This is especially attractive for protected crop 

cultivation systems where the crop water dynamics experience short time constants in 

order of minutes (Van Iersel et al., 2013). This technology can also be applied as part of a 

decision support system aimed at maintaining precise crop water deficits owing to its high 

accuracy. The use of weighing lysimeters for real-time irrigation scheduling in 

greenhouses has been demonstrated in Beeson (2011) and Prehn et al. (2010). 

The real-time plant transpiration dynamics can be monitored using sap-flow sensors. Sap-

flow sensors include a heater and temperature probes which are inserted into stems or 

branches. The sensors use heat as a tracer for sap-flow by taking advantage of the 
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negative correlation between the sensor probe temperature and sap-flow heat absorption 

(Verstraeten et al., 2008).  

Different sap-flow measurement principles exist. For instance, the stem heat balance 

sensor consists of a flexible heating element which applies heat to the plant stem, a series 

connection of thermocouple embedded in a cork band that measures the radial 

temperature gradient, and a thermocouple pair that measures the temperature gradients 

upstream and downstream of the sap flow in the stem (Smith and Allen, 1996). The stem 

heat balance can be applied to plant stems as small as 4mm in diameter (Verstraeten et 

al., 2008). The heat pulse method is applicable to woody stems with diameters larger than 

30mm. The velocity of a heat pulse applied by a heater into the sap flow is used to 

determine the mass flow rate of the sap (Verstraeten et al., 2008). The method makes use 

of a pair of heat pulse probes installed above the heater (downstream probes) and 

another pair of heat pulse probes (upstream probes) installed below the heater. The heat 

pulse probes measure the velocity of the heat pulse as it is transported by the sap flow 

(Smith and Allen, 1996). In the thermal dissipation method, method a sensor consisting of 

an upper probe containing a heater element and a thermocouple is inserted into the plant 

stem and a lower probe containing a thermocouple referenced to the upper probe. When 

heat is applied to the stem by the heating element, the temperature difference, ∆T 

between the two probes is dependent on the sap flow rate. A faster sap flow rate results in 

greater heat loss decreasing the value of ∆T (Chabot et al., 2005). 

Sap-flow measurements are point based techniques, requiring extrapolation of transpiration 

rates from plant points to the entire field. This is an easy procedure when considering similar 

crops at similar growth stages with a high level of homogeneity as transpiration rates are 

likely not to vary among such plants. The sap flow method is a cheaper alternative to 

lysimeter experiments for real-time monitoring and gives insight into the physiological 

factors controlling transpiration (Wilson et al., 2001). Sap-flow sensors require specialized 

technical labour for their operation. It should also be noted that this method measures only 

the transpiration and cannot be deployed on plants at early growth stages due to the small 

diameter of their stems.  

 

5.4 Plant-based sensing 

The importance of plant-based monitoring becomes emphasized when studying the effect 

of water deficit on plants and its relation to plant water status. The temporal dynamics of 

crop water use can be monitored using a number of plant-based methods. They include 

methods that require direct contact with the plant and those that require only proximal 

contact with the plants (Jones, 2014). The contact sensors are useful in monitoring the 

temporal dynamics of the plant water status while the proximal sensors are capable of 
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assessing the spatial nature of crop water status across a field and hence well suited for 

the precision irrigation process (Smith et al., 2010). A good understanding of the various 

aspects of plant water status and plant drought physiology is important in the successful 

application of these systems. A comprehensive review of plant-based sensing methods 

applicable to irrigation management is presented in Jones (2004). Plant-based sensing 

systems measure either the plant water content, plant water potential or the plant 

physiological response to moisture deficits. A summary of various plant-based sensing 

systems is presented in Table 3. It should be noted that many of these require skilled 

labour and considerable management time for their operation. 
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Table 3. Summary of plant-based monitoring methods. 

Plant-Based 

Measurement 
Advantage Disadvantage 

Plant water potential methods 

Leaf turgor 

pressure 

sensors (Ruger 

et al., 2010; 

Zimmermann 

et al., 2013) 

Capable of real-time 

measurements and can 

characterize leaf water dynamics 

Point-based and requires scaling 

to  

canopy level 

Plant water content methods 

Leaf thickness 

sensors (Seelig 

et al., 2012) 

Relatively cheap and can be 

automated 

Leaf thickness not sensitive to 

changes in plant water status. 

Sensors also largely inaccurate. 

Low spatial resolution 

Stem diameter 

variation 

(Conejero et 

al., 2011; 

Livellara et al., 

2011) 

Sensitive to water deficits and 

can be automated 

Limited by diurnal hysteresis. Low 

spatial resolution 

Plant response to water deficits 

Xylem 

cavitation 

(Shifeng et al., 

2008) 

Sensitive to the onset of water 

stress and moderately cheap 

instrumentation 

Only useful during drying and 

inadequate characterization of 

cavitation-water status 

relationship. Low spatial 

resolution 

Sap flow  

(Chabot et al., 

2005; Uddin et 

al., 2014) 

Highly accurate method capable 

of quantifying plant transpiration 

Point-based technique requiring 

replication to improve spatial 

resolution. Irrigation thresholds 

difficult to define. Also requires 

considerable time and expertise in 

its operation 

Thermal 

sensing 

(proximal) 

(Çolak et al., 

2015; Meron et 

al., 2010) 

Simple procedure with high 

spatial and temporal resolution 

Largely empirical and difficult to 

implement in humid climates 
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5.4.1 Thermal sensing 

Plant canopy temperature is a widely accepted variable indicative of plant water status. 

The stomata control evaporative cooling of the leaves based on soil water status and 

prevailing environmental conditions. It closes due to increased water deficits and a 

reduction in plant transpiration causing an increase in plant canopy temperature 

(Blonquist et al., 2009). The measurement of the crop canopy temperature by infrared 

thermometry which is then normalized using an index such as the crop water stress index 

(CWSI) can be used in determining the plant water status and its response to water 

deficits (Jones, 2004).  

The CWSI is a well-established method of accounting for the variation in canopy 

temperature as a function of prevailing microclimatological conditions and water deficits 

(Leinonen and Jones, 2004). It relates the difference in the crop canopy temperature 

measured using infrared thermometry to the air temperature as a function of atmospheric 

vapor deficit (Erdem et al., 2010). This temperature difference is then related to an upper 

and lower temperature baseline to determine a water stress index. The upper baseline 

represents a non-transpiring crop and the lower baseline represents a fully transpiring 

crop under the same prevailing environmental condition (Shaughnessy et al., 2014). The 

CWSI is a dimensionless value of between 0 and 1, with a value of 0 indicating a well-

watered crop and a value of 1 indicating a severely water-stressed crop (Erdem et al., 

2010). 

Biotic factors can also induce stress in a plant thus affecting transpiration rate, crop water 

use and canopy temperature. These biotic factors also affect leaf color and morphology 

which in turn affects the optical properties of the crop canopy (Sankaran et al., 2010). In 

order to successfully apply infrared thermometry as a tool for assessing plant water 

status, it is important to differentiate between abiotic (such as water stress) and biotic 

stresses (such as plant diseases and pest infestation). Multiband optical sensors could be 

applied in detecting various crop diseases and crop infestation within a field by computing 

vegetation indices based on canopy reflectance measurements (O’Shaughnessy and 

Rush, 2014). This has been applied by Garcia-Ruiz et al. (2013) for detecting citrus 

greening and by Yang et al. (2009) for detecting infestation of green bugs and aphids in 

wheat. It may be useful to outfit precision irrigation systems with these sensors.  

The main advantage of thermal sensing for precision irrigation application is related to the 

non-contact and real-time capability of the system. Infrared thermometry and 

thermography provide the opportunity to map the spatial variation in crop water status 

which can guide in variable rate irrigation management. The use of thermal sensing for 

guiding zone-specific water application has been demonstrated as noted in Section 2. 

A major problem faced in applying the thermal sensing approach is the establishment of 

the baseline temperatures. In climates in which the air humidity is often high, variations in 

wind speed and net radiation introduce significant errors in the estimation of the lower limit 
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baseline temperature (Jones et al., 1997). A number of studies have been conducted to 

develop procedures for enhancing the possibility of applying measurements of crop 

canopy temperature in inferring plant water status in humid regions. Jones (1999) 

provides an excellent summary of these research efforts. They include the use of well-

watered plots to substitute for empirical non-water stressed baselines, although these 

well-watered plots are rarely available in practice. The use of artificial reference surfaces 

for measuring baseline temperatures has been proposed but it is reported that these 

artificial reference surfaces differ significantly in thermal and radiative properties in 

comparison to real leaves. A modelling approach to simulating the canopy resistance of 

well-watered plants has also been investigated but this is limited by the difficulties 

encountered in correctly modelling stomata behavior and hence canopy resistance. The 

possibility of including a wide range of metrological data including net radiation and vapor 

pressure deficit in deriving CWSI models for humid climates has also been investigated. 

The mathematical complexity typical of the models, however, limit their practical 

application. 

Another problem commonly encountered in applying infrared measurements of canopy 

temperature in inferring plant water status is the inclusion of soil temperature and other 

background temperature including the sky and stems in the measured canopy 

temperature. This usually leads to errors in estimation of the canopy temperature as the 

soil and background temperature are usually many degrees different from the canopy 

temperature Meron et al. (2010) and  Jones (1999) proposed the use of narrow 

acceptance angle infrared sensors that can be positioned to view only single leaves as a 

solution to this problem. It has however been found that the temperature estimates of 

single leaves determined by this method is mostly not representative of the temperature of 

the plant canopy. A dense deployment of infrared sensors may seem an alternative but 

this may be prohibitive in terms of cost for practical applications. 

The advancements in the field of thermal imagery and the recent availability of low-cost 

thermal cameras have presented the possibility of overcoming the problems associated 

with the inclusion of soil and background temperatures in the measured canopy 

temperature. Thermal imagery allows for the average temperature of a defined area to be 

obtained and also the separation of background temperature from the area of interest. 

The temperature of a large number of individual leaves making up a canopy can be 

included in an image while the soil and background temperature can be discarded by 

applying automated image processing techniques (Leinonen and Jones, 2004). Gonzalez-

Dugo et al. (2013) have demonstrated the use of thermal imagery in mapping the crop 

water status in a commercial orchard in Spain. They also demonstrated the rapid mapping 

of field-scale crop water status by deploying thermal imaging equipment on an unmanned 

aerial vehicle (UAV). 
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Plant-based sensing methods including thermal sensing only provide information on the 

need for irrigation and provide no information on the volume of irrigation application 

needed. They are used in combination with soil-based and weather-based sensing for this 

reason (Smith et al., 2009). 

 

6 Decision support 
A decision support system for irrigation management and scheduling provides a 

framework for incorporating various tools and techniques for arriving at irrigation 

decisions. The widespread commercial adoption of precision irrigation will be predicated 

on the development of robust and optimal decision support systems (Smith et al., 2009). 

A number of decision support systems schedule irrigation at predefined intervals and 

apply predefined irrigation volumes. They do not incorporate any form of sensor feedback 

on plant water status, soil water status and climatic variables (Lozoya et al., 2014). This 

‘open-loop’ strategy is largely designed based on heuristics and historical data. Mareels et 

al. (2005) suggested that this is an inefficient approach often leading to overwatering and 

waste of fertilizer and other supplemental crop inputs. 

Closed-loop irrigation strategies aim to irrigate: when the soil moisture content reaches a 

certain threshold (Dabach et al., 2013; Liu et al., 2012; Vellidis et al., 2008); when plant 

sensors indicate a certain stress threshold (Erdem et al., 2010; Osroosh et al., 2015; 

Shaughnessy et al., 2012) or with feedback from crop simulation models with the aim of 

attaining a certain yield, crop physiological response or economic objective (McCarthy et 

al., 2014). These closed-loop irrigation strategies have been shown to improve water use 

efficiency in the production of horticultural crops under protected environments. 

Environmental conditions in such production systems can be controlled based on plant 

feedback which eliminates the stochastic plant response often encountered in field-scale 

crop production (Bennis et al., 2008).  Belayneh et al. (2013) implemented a wireless 

sensor network of soil moisture sensors for closed-loop irrigation control in a pot-in-pot 

nursery. A significant reduction in water use was achieved by the system. The authors 

also reported a 2.7-year payback period for the system. Chappell et al. (2013) reported 

water savings of 83% for a closed-loop irrigation control system implemented in a 

protected crop production system. They noted that there was less occurrence of plant 

diseases in the nursery due to the elimination of over-watering. Saavoss et al. (2016) 

reported a 65% increase in profit due to the implementation of a wireless sensor network-

based closed-loop control system in a nursery. The authors noted that the increase in 

profit was due to an improvement in crop quality and yield resulting from the precise 

control of irrigation applications.  

In field-scale crop production, the crop needs vary over time and space due to both biotic 

and abiotic factors (Al-Karadsheh, 2002). McCarthy et al. (2013) noted that in these crop 
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production systems, closed-loop strategies are unable to account for unknown crop 

dynamics, the stochastic nature of climatic variables and crop response, and the time-

varying nature of the soil-plant-atmosphere system. This last point is especially due to 

crop growth, crop management and infestation of pests and diseases. The closed-loop 

systems are also unable to consider equipment and other operational limitations. 

McCarthy et al. (2010) concluded that an optimal decision support system must be 

‘adaptive’ with the ability to accommodate the temporal and spatial variability within the 

field. The decision support system must also have the capability of modifying irrigation 

decisions in response to crop physiology, uncertainties in climatic inputs, soil, irrigation 

systems and water supply limitations, economic considerations and the quality of sensor 

feedback.  

 

6.1 Adaptive decision support 

The characteristics of a cropping system vary over time. Within a cropped system, the 

properties that will typically vary within and between seasons include crop growth, soil 

properties (due to the addition of nutrients and other management processes) and 

climate. This will have a direct influence on the irrigation timing and volume required for 

optimal crop growth (Smith et al., 2010). 

An adaptive decision support system is able to continuously re-adjust the irrigation 

scheduling algorithm in order to retain the desired performance of the irrigation system 

(McCarthy et al., 2010). The adaptive decision support system is able to utilize historical 

or real-time sensor data to arrive at irrigation timing and volume that adequately accounts 

for the temporal and spatial variability in the field (McCarthy et al., 2010). In control theory, 

an adaptive control system is generally accepted as a control system able to adjust its 

controller parameters based on sensor feedback from a process, such that the controlled 

process behaves in a desirable way (Smith et al., 2010). McCarthy et al. (2014) noted that 

an adaptive decision support system for irrigation may either be sensor-based if they use 

direct sensor measurements for the irrigation strategy or model-based if they use a 

calibrated process model to aid irrigation decisions. 

The development of adaptive decision support systems presents an opportunity to 

improve sustainability in precision irrigation through improved water use and crop 

productivity. They will also enhance synergistic applications of data available from soil, 

plant and weather sensors to arrive at optimal irrigation scheduling decisions (McCarthy et 

al., 2014).  

In this section, a discussion on the state-of-the-art in adaptive decision support systems is 

presented. The opportunities these systems present in improving sustainability in irrigated 

agriculture are also discussed. A comprehensive overview on the application of advanced 

process control to irrigation, details on methods of operation and a consideration of 
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fundamental control concepts as they apply to irrigation scheduling can be found in 

(McCarthy et al., 2013).  

6.1.1 Mechanistic models 

A number of irrigation decision support systems are based on complex physical models 

which closely resemble the actual physical system (Dabach et al., 2011; Rezaei et al., 

2017). They are able to incorporate the physiological and morphological representation of 

the plant into the decision support tool. Barnard and Bauerle (2015) described an irrigation 

scheduling system based on the spatially explicit biophysical model, MAESTRA (Multi-

Array Evaporation Stand Tree Radiation A), which couples the within-canopy 

photosynthesis and stomatal conductance. Data on leaf temperature, canopy 

aerodynamics, and environmental variables are used as inputs into the model to predict 

the plant transpiration. They reported that the model-based tool applied between 18%–

56% more water than a sensor-based method for scheduling irrigation in four species. 

They, however, noted that the model-based approach produced greater tree growth. 

Asher et al. (2013) described a mechanistic model capable of inferring crop water 

requirements. The model employs leaf temperature data as input for determining the crop 

aerodynamic characteristics which is then used in the Penman–Monteith equation for 

calculating the actual crop ET. A major drawback of these mechanistic models is that they 

include static parameters which, once identified, are assumed to remain constant over the 

cropping season. This is rarely so in practice as the cropping system varies over time due 

to both biotic and abiotic factors. Mechanistic models usually require large input 

requirements which widely limits their applicability to research (Young and Garnier, 2006). 

 

6.1.2 Simulations 

Crop simulation models based on first principle physical models of crop phenology, soil 

physics, and hydrology can be applied in simulating the crop response to irrigation and 

cropping system management (Hsiao et al., 2009; Raes et al., 2009; Steduto et al., 2009). 

These simulation models provide the opportunity to evaluate the benefit of several 

precision irrigation strategies as they eliminate the need for time-consuming field 

experiments (Jones et al., 2003). They can be interfaced with real-time sensor feedback 

from soil or plant sensors and weather data to determine daily irrigation requirements of 

crops. They can also be used in predicting the yield impact of an irrigation strategy. This is 

achieved by employing weather data in computing a daily soil moisture balance and 

assessing the impact of soil moisture deficits on crop growth (Jones et al., 2003). 

DeJonge et al. (2007) investigated the effect of variable rate irrigation management on 

corn production in Iowa using the CERES-maize model. Corn yield was compared for a 

period of 28 years under simulated scenarios of no irrigation, scheduled uniform irrigation 

and precision irrigation. They reported no significant difference in corn yield and water use 

between the uniform irrigation and precision irrigation scenarios. Thorp et al. (2008) 
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described a methodology for applying the Decision Support System for Agrotechnology 

Transfer (DSSAT) crop growth model in analyzing variable-rate management practices 

including irrigation on crop growth and yield. The platform enabled the evaluation of 

precision irrigation strategies on crop performance in predefined management zones. The 

system is however incapable of real-time decision support and can only be applied using 

historical data.  

McCarthy et al. (2010) proposed a simulation framework, VARIwise, capable of real-time 

decision support in precision irrigation. The simulation framework is capable of 

incorporating real-time data input from field sensors in arriving at irrigation decisions. The 

combination of different sensor inputs into the simulation framework enables adaptive 

decision support with the system being able to re-adjust irrigation decisions based on 

plant feedback and also explore optimal control strategies. 

Simulation models for use in irrigation decision support require extensive calibration and 

validation to establish model accuracy. The limitation in data available for this endeavor 

often limits the use of the platforms to specific crops (McCarthy et al., 2014). 

 

6.1.3 Artificial intelligence 

Artificial intelligence presents the potential of solving problems in precision irrigation which 

are complex, non-linear and ill-defined (Hardaha et al., 2012). Artificial intelligence 

algorithms are able to emulate the human decision-making process when applied to a 

particular problem domain. They have been deployed for implementing adaptive decision 

support in irrigation in form of artificial neural networks, fuzzy logic and expert systems 

with mixed success to date (Prasad and Babu, 2007; Tsang and Jim, 2016). 

Artificial neural networks 

Artificial neural networks (ANN) are non-linear mapping structures employed in modelling 

when the underlying data relationship is not well defined. ANN are able to identify and 

learn correlations between input data and corresponding target output values. They are 

able to predict the outcome of new independent data sets making them a useful tool in 

predictive modelling (Kasslin et al., 1992). ANN are well suited for the irrigation decision 

support problem that can often be complex and stochastic in nature. These networks are 

also adaptive in nature and are able to continuously learn in order to provide optimal 

solutions to target problems in dynamic systems. 

Karasekreter et al. (2013) implemented an ANN for scheduling irrigation in a strawberry 

orchard using soil moisture and its physical properties as model inputs. The system was 

able to achieve water savings of 20.5% and an energy saving of 23.9%. ANN’s, however, 

require large datasets for training and are unable to give physical insights into the 

dynamics of a system. This makes their use limited when it is desirable to give a physical 

interpretation to a process. 
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6.1.4 Fuzzy logic 

Fuzzy logic is an artificial intelligence algorithm that can be used to model a process and 

relate it to human experience in arriving at decisions. A fuzzy logic system is made up of a 

set used to classify input data into membership classes, a decision rule that is applied to 

each set which culminates in a human-like decision output from the system (Mousa and 

Abdullah, 2014). A detailed description of the process is given in Prakashgoud and Desai 

(2013).  

Mousa and Abdullah (2014) successfully applied a fuzzy logic model in scheduling 

irrigation in drip and sprinkler irrigation systems using ET, soil moisture data and crop 

growth stage as model inputs. Prakashgoud and Desai (2013) employed a fuzzy logic 

system using soil moisture data, leaf wetness, and climatological data as model inputs in 

order to implement irrigation scheduling decisions. The system was capable of 

maintaining soil moisture thresholds in the specified range. Giusti and Marsili-Libelli 

(2015) described an adaptive irrigation decision support system implemented with fuzzy 

logic. The system incorporates a predictive model of the soil moisture and an inference 

system for maintaining the soil moisture within an acceptable threshold. The system was 

reported to adapt irrigation decisions to rainfall uncertainty and produced water savings of 

13.55% over a simulation period of 168 days.  

The accuracy of fuzzy logic systems is largely tied to an in-depth knowledge of the 

physical system. They also lack an inner mechanistic structure with the domain of 

applicability limited to the range of training data used in setting them up. Delgoda et al. 

(2016) suggested that the points mentioned makes decision making with a fuzzy system 

an ad hoc process limiting its application in adaptive decision support. 

 

6.1.5 Expert systems 

An expert system is a tool able to emulate the reasoning process a human expert would 

employ in a decision-making process in his/her field of expertise. It captures the human 

decision-making expertise and heuristics representing it in a series of rules and facts 

(Plant et al., 1992). An expert system typically consists of a knowledge base component 

and an inference engine that acts as a reasoning tool (Singh and Sharma, 2014). Expert 

systems are especially suited to dynamic problems that are of a complex nature. They are 

also well suited to dealing with incomplete and uncertain data (Rani and Rajesh, 2013). 

This makes them well suited for irrigation decision support which often requires the input 

of experts to arrive at optimal decisions. 

Expert systems applied in irrigation decision support can be classified as either ‘expert 

systems proper’ or hybrid expert systems. A detailed review on the application of expert 

systems in irrigation decision support is presented in (Mohan and Arumugam, 1997; Rani 

and Rajesh, 2013). The ‘expert systems proper’ class of irrigation decision support tools 

schedule irrigation based on soil moisture and climatic data. They are unable to consider 
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the time-varying nature of the cropping system (crop growth, disease, and pest 

infestation) to arrive at optimal irrigation decisions. They are also unable to account for the 

stochastic nature of climatic variables and are not well suited for real-time applications 

(Mohan and Arumugam, 1997). 

Hybrid expert systems which are also referred to as model-based expert systems combine 

algorithmic techniques and a knowledge-based component in solving problems relevant to 

its application domain. Its advantage in irrigation is that optimal irrigation decision can be 

made by combining expert knowledge with data feedback from infield sensors, data-driven 

models and crop simulation models (Rani et al., 2011). Thomson and Ross (1996) 

described a model-based expert system designed for decision support in irrigation 

management. The system employs feedback from soil moisture sensors to adjust the 

input of a crop simulation model, PNUTGRO (Peanut crop growth simulation model) and 

also incorporates the capability of sensor feedback validation. The system was reported to 

maintain soil moisture at the defined thresholds. Goumopoulos et al. (2014) developed an 

expert system-based adaptive decision support platform for zone-specific irrigation of 

strawberry plants. The system includes a wireless sensor network of soil, climate and 

plant sensors providing feedback for the decision support system. It also includes a 

machine learning process capable of inferring new rules and extending the knowledge 

base from logged data sets. The system was reported to reduce irrigation water 

consumption by around 20%. A hybrid expert system based on real-time soil moisture 

data with the capability of incorporating plant models is described in Kohanbash et al. 

(2013). 

The performance of an expert system is largely dependent on the effectiveness of the 

knowledge acquisition process. An error in this process will drastically affect the system 

reliability and its performance. 

 

6.1.6 Learning control 

Learning control decision support strategies control a process using sensor feedback, 

without defining a model for the response of the process (McCarthy et al., 2013). One 

method of sensor-based control is iterative learning control.  

Iterative learning control can be applied in systems with ill-defined models that operate 

repetitively and assume the same initial condition after each iteration. It is well suited to 

the irrigation problem as irrigation scheduling and application is a repetitive problem over 

the crop season. The time-varying nature of the soil–plant–atmosphere system can also 

be viewed as an ill-defined problem. The strategy is also able to improve system 

performance by eliminating the effects of a repeating disturbance with undefined 

dynamics. Applied to irrigation, this may be a measured crop response that reoccurs as a 

consequence of irrigation. The temporal changes in crop water use and weather 

conditions are not considered (McCarthy et al., 2013). 
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McCarthy et al. (2010) noted that a drawback of the iterative learning approach may be 

the inefficient description of the process response resulting from the slow system 

dynamics of the cropping system in response to irrigation events. This results from the 

evaluation of the effect of only one irrigation volume on plant response at any water 

application event. They suggested that this drawback may be eliminated by applying the 

process of Iterative Hill Climbing Control. This learning control strategy employs an 

adaptive varied identification process. A range of irrigation volumes is applied at each 

irrigation event to a number of test cells on the field. The response in the test cell that best 

matches the desired system performance is identified as the optimal irrigation process. 

They reported that the Iterative Hill Climbing Control procedure was capable of 

maximizing cotton yield when used with a combination of plant and soil sensors to provide 

feedback for the identification process. Their conclusions were however based on results 

from a simulation study and a field-based validation of the procedure was not reported.  

The results of the learning control procedure are based solely on sensor measurements 

and may be largely affected by sensor drift as a model of the crop response is not 

developed from the identification process. This method can be considered more of a 

“brute force” approach than a scientifically based approach to scheduling irrigation. 

 

6.1.7 Data-driven models 

Data-driven modelling employs statistical and machine learning models that are able to 

learn from data in order to make predictions pertaining to the response of a process. 

These models are able to explore the spatial and temporal information contained in data 

in order to define a function that describes the input/output relationship of a process 

(Zhang et al., 2018). They do not rely on a physical model of the process. In many cases, 

these statistical and machine learning models have been shown to achieve a robust 

predictive performance  (Payero and Irmak, 2006; Young and Garnier, 2006). 

These methods have been successfully applied in the advanced process industry as part 

of adaptive decision systems (Das et al., 2012; Sharma et al., 2010). Data-driven models 

have also been used in irrigation decision support. Navarro-Hellín et al. (2016) presented 

a regression model for predicting the weekly irrigation needs of a plantation using climatic 

and soil data as inputs. In Delgoda et al. (2014), the authors applied a multivariate linear 

dynamic model for predicting the soil moisture deficit. Their model employed climatic and 

soil moisture data as inputs. The authors reported that the model was able to generate 

robust predictions of the soil moisture deficit without the need to explicitly specify the soil’s 

hydraulic properties. Goldstein et al. (2018) applied a gradient boosted regression model 

for predicting the weekly irrigation volumes for an olive oil orchard. The model was able to 

provide insights into the variables that strongly influenced the orchard’s irrigation 

dynamics.  



  

 29 

The success achieved by data-driven methodologies in the process control industry, and 

also recently in irrigation decision support suggests that these methods can be further 

exploited for use in adaptive decision support systems applicable to precision irrigation. 

They are able to overcome the limitations encountered by mechanistic models. The 

models can be updated online using feedback from real-time sensor data enabling them 

to adapt to the time-varying nature of the cropping system. They also have minimal input 

requirements as they are able to learn the variables which have a strong influence on the 

response of a process.  

 

6.1.8 Model predictive control 

Model predictive control (MPC) is an industrial control approach employed in decision 

support for large-scale multivariable problems with multiple constraints. It has been 

successfully implemented in the food industry, petrochemical industry and power 

generation among others (Saleem et al., 2013). Model predictive control employs a plant 

model and optimization algorithm to calculate plant inputs in order to achieve a future 

value of a performance criterion. The system performance is predicted over a finite 

horizon subject to constraints on both the inputs and outputs of the plant (Lozoya et al., 

2014). An in-depth review on the theory of model predictive control and its application in 

various industries is presented in (Froisy, 2006; Qin and Badgwell, 2003) 

In the case of irrigation, applying a soil moisture balance model, the plant input will be the 

irrigation amount, the plant output will be the soil moisture deficit, and both crop ET and 

precipitation values will be considered as disturbances as they cannot be controlled. A 

prediction of future input values and disturbances is required in an MPC system in order to 

determine the optimal system output (Delgoda et al., 2014). This highlights the need for 

the incorporation of weather forecast data into the MPC framework for irrigation decision 

support. 

Model predictive control appears to be well suited to the domain of irrigation decision 

support. The irrigation problem has input constraints in terms of optimal irrigation volume 

and output constraints in terms of soil moisture thresholds and the desired plant response 

to water deficits (Saleem et al., 2013). Ooi et al. (2008), Lozoya et al. (2014) and Saleem 

et al. (2013) described a model predictive control framework for irrigation scheduling 

based on a soil moisture balance model. They employed a data-driven modelling 

procedure to generate a grey box model of the soil–plant–atmosphere system with a 

network of soil moisture sensors providing real-time feedback to the control algorithm. 

They all reported the ability of the MPC platform to sufficiently predict crop irrigation needs 

and also observations of significant water savings. The authors of the discussed systems, 

however, fail to account for the stochastic nature of rainfall and crop water use in the 

system dynamics. Delgoda et al. (2014) noted that an adequate consideration of the 
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uncertainty in rainfall and ET inputs into the water balance model employed in the MPC 

framework will improve the capability of the MPC system. 

Delgoda et al. (2016) addressed the drawbacks noted in the above MPC frameworks by 

employing disturbance affine feedback control, an uncertainty modelling technique widely 

applied in MPC to account for the stochastic nature of rainfall and crop water use. A low 

order model of soil moisture dynamics is included in the system to enable the online 

calculation of model parameters, hence accounting for the time-varying nature of the soil-

plant-atmosphere system. The authors reported an optimal performance of the system in 

humid regions where considerable uncertainties in climatic variables exist. 

 

6.2 Commercial sensor applications in adaptive decision support 

Manufacturers of sensors and a number of system integrators are showing considerable 

interest in developing innovative tools that will further optimize irrigation water use. 

A sensor integration project is described by AgSmarts, Memphis, USA. Moving irrigation 

systems are equipped with sensors which provide data on crop growth stage and soil 

profile. Aquaspy soil moisture sensors (Aquaspy, San Diego,CA, USA) positioned in 

various parts of the field also provide data on soil moisture status which is applied in 

irrigation timing and calculation of irrigation volumes. These irrigation decisions are 

automatically adjusted based on the varying water requirements at each crop growth 

stage (“Take the Guesswork Out of Irrigation | AquaSpy Home – AquaSpy” ).  

Omica, Italy has deployed a wireless sensor network of Libelium environmental and soil 

moisture sensors (Libelium, Zaragoza, Spain) on a maize farm in Italy to support irrigation 

decisions. The sensors are interfaced to a geo-referenced decision support system which 

enables zone-specific irrigation management. The system is able to predict crop yield 

based on irrigation timing and application volumes combined with historical yield data. 

This can then be applied in optimizing the decision support system towards achieving a 

desired crop yield goal. 

Most decision support systems presently produced for commercial use provide on/off 

irrigation control based on specified thresholds and plant/crop sensor feedback. The 

incorporation of predictive models into these systems will enhance the possibility of 

improving irrigation water use and crop yield (“Precision Farming to control irrigation and 

improve fertilization strategies on corn crops | Libelium). 

 

7 Opportunities for improving sustainability 
Sustainability is premised on the principle of meeting the needs of the present generation 

without compromising the ability of future generations to meet their own needs. 

Sustainable agriculture is focused on developing farming practices that are safe and do 

not have an adverse impact on the environment (Alberola et al., 2008). 
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Pretty (1995) suggested that sustainable agriculture integrates the main goals of 

environmental health and economic profitability. The efficient and effective use of water is 

considered the main driver for improving sustainability in irrigated agriculture. This will 

involve the use of less water for irrigating crops and also preserving the quality of water 

sources. Conventional irrigation practices apply water uniformly over a field resulting in a 

high volume of water use. Over-irrigation may also result from this practice which causes 

leaching of nitrates and nutrients into groundwater sources. An important consideration 

would also be the use of less energy for operating water pumps and irrigation application 

equipment. Soil erosion continues to be a serious threat to sustainability in irrigated 

agriculture. This can be eliminated by applying precise irrigation volumes to reduce  

surface runoff. 

Precision irrigation presents a promising platform for improving sustainability in irrigated 

agriculture. This is especially hinged on the possibility of eliminating the adverse 

environmental impacts related to conventional irrigation practices with the adoption of 

precision irrigation. The economic profitability of the adoption of precision irrigation is, 

however, a very important point to consider. This will be manifested in terms of improved 

crop yields and increased water savings including the associated reduction in energy 

consumption resulting from the optimal matching of irrigation inputs to the spatial and 

temporal water demands of the crop, thus reducing costs (Smith et al., 2010). 

Precision irrigation is predicated on the hypothesis that the crop water requirements vary 

spatially and temporally across a field. In heterogeneous crops such as fruit orchards, this 

variability is also due to physiological factors such as leaf area and fruit load (Fernández, 

2014). It is assumed that varying water application across the field to meet this 

spatiotemporal crop water need will improve crop yield and reduce the costs of associated 

inputs. Smith et al. (2010) noted that the evidence to support this hypothesis in 

commercial crop production is not readily found in literature.  

Evans and King (2012) reviewed much of the work prior to that date focused on analysing 

the improvements in crop yield and water savings achievable with precision irrigation and 

suggested that the greatest savings are likely to occur in humid climates by the increased 

utilization of stored moisture and in-season precipitation. Results from simulation- and 

field-based case studies they reviewed showed water savings of 0% to 26% for well-

watered crop production employing precision irrigation strategies. No significant 

improvements in crop yields resulting from the adoption of precision irrigation were 

reported. They concluded that in arid and semi-arid regions, precision irrigation is more 

suited to maximize net return rather than yield and it may have greater potential in 

reducing irrigation water use in humid climates when irrigating to maximally utilize in-

season precipitation. They further noted that the economic benefit of adopting precision 

irrigation for field-scale crop production is limited. This is because the cost of equipment, 

maintenance and management are much greater than the revenue improvements 
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achieved as a result of improved yield and water savings. The payback period of 

implementing the technology may also exceed the useful life of the water application 

equipment, typically placed at 15 years. A payback period ranging from 5 to 20 years is 

reported in Smith et al. (2010) for the adoption of precision irrigation for crop production in 

New Zealand. 

Evans et al. (2013) reviewed the adoption trends of spatially varied irrigation in the USA 

covering a period of 20 years. They noted that about only 200 of the 175,000 moving 

irrigation systems in the USA were fitted with variable rate water application technology. 

They suggested higher net returns on investment as a stimulus for the adoption of 

spatially varied irrigation by growers. Growers that had adopted the technology reported 

no significant savings in water and energy use in non-limiting water situations. They noted 

that in more than 20 years of research pertaining to variable rate irrigation management, 

the economic benefit was yet to be demonstrated. This was attributed to the marginal 

water savings (5%–15%) which is insufficient to realize a payback for the initial investment 

in the water application technology. They concluded that an economic strategy that 

optimizes net return rather than total returns for the technology should be adopted as a 

long-term investment goal. 

Heeren et al. (2016) conducted a simulation study to assess the reductions in pumping 

costs through the adoption of spatially varied irrigation in 49,224 center-pivot irrigated 

fields in Nebraska, USA. The study focused on applying variable rate water applications in 

mining undepleted available water. They noted that the reduction in pumping costs 

achieved from the adoption of this technology in all fields may be negligible in comparison 

to the cost of variable rate water application equipment. They concluded that the adoption 

of this technology will be economically justifiable only with an increase in energy costs. 

An economic evaluation of spatially varied irrigation applications is presented in Lee 

(2016). The study assessed energy savings resulting from pumping lesser volumes of 

water for irrigation on a 67-acre field in Wyoming. The cost of installing the variable rate 

water application equipment on the field was reported as $29,513 with a useful equipment 

life of 15 years. The yearly return for the equipment based on energy savings achieved 

was computed as $1816.71, which equates to a payback period of 16.25 years. This 

suggests that a payback will only be realized for the technology outside the useful life of 

the equipment. 

Precision irrigation offers the benefit of providing water conservation benefits by avoiding 

over-irrigation and the associated adverse environmental impacts (Evans and King, 2012). 

Sadler et al. (2005) discussed water conservation strategies where precision irrigation can 

potentially reduce the total water applied and improve the environmental quality of 

irrigated fields. They suggested that programming zero irrigation amounts to non-cropped 

areas will improve water conservation using precision irrigation. They also noted that 

adjusting spatial water application based on the infiltration rate of the soil and soil water 
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storage capacity will reduce the occurrence of surface runoff and soil erosion. Surface 

runoff and leaching were identified as the major avenues for loss of nutrients from the soil. 

They suggested the occurrence of this can be eliminated by spatial application of precise 

irrigation volumes based on the soil water-holding characteristics. They presented several 

case studies in which the adoption of precision irrigation has been demonstrated to 

enhance the environmental quality of irrigated fields. They concluded that precision 

irrigation has the capability of improving water use efficiencies while reducing the adverse 

environmental impacts associated with conventional irrigation practices. 

The results from the above studies show that precision irrigation is a proven tool for 

improving sustainability in irrigated agriculture in terms of enhancing environmental health. 

Its economic justification in terms of significant yield improvements and water savings is 

however limited. 

Evans and King (2012) suggested that the lack of significant improvements in yield 

response when employing precision irrigation may result from the fact that the yield 

response to the water curve near maximum yield (100% ET) is almost flat, with small 

changes in water applied using precision irrigation having little effect on yield. The majority 

of these precision irrigation studies have used only soil data for irrigation management. 

The local microclimate and crop genetics may, however, have a direct influence on the 

yield response of the crops. 

Soil moisture status may also not provide a complete indication of crop water status, 

rather the plant may be the best indicator of water availability. The decision support 

systems employed by current precision irrigation systems assume that the soil–plant–

atmosphere system never varies with time. The characteristics of the crop, soil, and 

climate vary within the season, altering the timing and optimal amount of irrigation volume 

required at any irrigation application event. 

It is argued that the incorporation of multiple sensed variables (plant, soil and weather 

data) will enhance the possibility of arriving at optimal irrigation decisions and hence an 

improvement in economic outcomes. This should be integrated with a decision support 

system that has the capability to adapt to the time-varying nature of the cropping system. 

The decision support system should also have the capacity to ‘learn’ in order to improve 

its performance based on experience and a target crop production function. This review 

discusses how this can be achieved by exploiting improvements in monitoring and 

management considerations.  

 

7.1 Monitoring Considerations 

A precision irrigation system is designed to apply water at a differential rate in response to 

the temporal and spatial variation in crop water need across a field. This process is 

supported by a number of sensors providing data to a real-time decision support system. 

These sensors include weather stations, soil moisture sensors, environmental sensors, 



  

 34 

plant sensors and thermal sensors which may be integrated into a wireless sensor 

network. A careful design of these sensing systems including a consideration of factors 

affecting their performance is crucial in realizing the goal of improved water use through 

precision irrigation. 

Dielectric soil moisture sensors sense the water content of the immediate soil in their zone 

of influence. The zone of influence reported for most commercial dielectric soil moisture 

sensors corresponds to a cylindrical measurement volume of 1.5 L (Evett et al., 2006). It 

is therefore important to install the sensors in areas representative of the soil moisture 

available for plant use. The normal practice employed by most users is to place the 

sensors in the driest regions of the field or in the regions comprising of a soil profile with 

the lowest available water-holding capacity (Li et al., 2014). Adopting this approach will 

most likely lead to wetter regions in the field receiving more frequent irrigation which will 

consequently result in over-irrigation. A more efficient approach is to define irrigation 

management zones and place a number of sensors in each management zone to give the 

average soil moisture estimate. This may, however, be limited by cost. 

A structured installation profile is also necessary in order to capture soil water movement 

and availability. It is recommended that sensors should be installed at each soil horizon 

along the plant rooting zone (Chávez et al., 2011). An accepted convention is the 

installation of sensors at three to four depths along the rooting zone (1 per 25% of total 

rooting depth). The sensor located on the uppermost soil profile is able to detect 

precipitation events, the sensor in the deepest part of the profile is able to detect drainage 

and the other sensors located midway in the soil profile are able to capture soil moisture 

dynamics useful in supporting irrigation scheduling decisions (University of Florida, 2007). 

The variation in soil properties at the different rooting depths should also be taken into 

account. With an increasing knowledge of the site, it is usually possible to install the 

sensors at two depths and still adequately capture the soil moisture dynamics. The soil 

moisture sensors should also be deployed using soil-specific calibration equations to 

enable accurate estimates of soil moisture content. 

The actual crop evapotranspiration can vary spatially and temporally under conditions of 

unrestricted water supply. These variations can be the result of several factors including 

differences in crop genetics, plant density, weed competition, pest intensity, nutrient 

availability and stage of growth (Evans and King, 2012). Addressing the variation in ET 

across a field may result in significant water savings.  

The accurate measurement of evapotranspiration is crucial in arriving at optimal irrigation 

decisions (Mengistu and Savage, 2010). The FAO-PM procedure for calculating ET which 

is applied in many precision irrigation systems relies on information from weather stations 

applied in calculating a reference ET which is adjusted for specific crops using crop 

coefficients. This calculated ET is assumed to be uniform for every part of the field. This 

will, however, result in the application of inaccurate irrigation volumes to replace crop 
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water use, owing to the spatial nature of the actual ET. The application of the NDVI 

technique in determining site-specific crop coefficients provides a platform for overcoming 

this challenge. The surface renewal analysis procedure also presents a promising tool for 

quantifying the actual crop ET. It is, however, best suited to homogeneous, short and 

dense canopies. For protected crop cultivation, lysimeters can be applied in accurately 

quantifying the temporal dynamics of crop water use (Sun et al., 2008). 

Plant-based measurements provide the best indication of plant water status as they 

provide a direct measure of the plants’ response to soil moisture availability and climatic 

demand. An efficient plant-based monitoring system should, however, respond sensitively 

to the slightest change in water deficits. 

Measurements of leaf water potential and sap flow are contact methods which give direct 

information on plant water status but their spatial resolution is limited as many samples 

are required to effectively monitor the dynamics of field-scale plant water status (Kacira et 

al., 2002). Infrared thermometry has provided a robust platform for assessing plant water 

status. The CWSI calculated from the infrared measurements of crop canopy temperature 

can adequately quantify field-scale crop water status with high spatial and temporal 

resolution. This presents a robust and cost-effective tool for use in precision irrigation. Its 

application in humid regions is however marred with difficulties.  

A systems engineering approach can be applied in overcoming the difficulties 

encountered with applying the CWSI in humid climates. A mathematical model derived 

using this approach may adequately simulate the real-time dynamics of the baseline 

temperatures required for computing the index. 

A summary of the technology gaps and refinements necessary in monitoring tools in order 

to achieve robust precision irrigation management is presented in Smith et al. (2010). 

They include the limited volume of influence, high cost and the need to improve the 

measurement accuracy of soil moisture sensors. The refinements recommended include 

the development of low-cost soil measurement sensors with a wider volume of influence, 

low cost and resilient wireless communication networks able to link spatially deployed soil 

moisture sensors and the development of smart calibration software in order to improve 

the accuracy of soil moisture sensors. The technology gaps identified in plant sensing 

technology include the limited knowledge of irrigation thresholds and quantity, and low 

spatial resolution. The refinements recommended include the integration of plant-based 

sensing with soil moisture sensing tools in order to determine irrigation volumes, 

calibration of infra-red thermography against physiologically explicit plant measurements 

in order to determine critical thresholds and the deployment of IR thermography tools on 

low altitude UAVs to further enhance spatial coverage. 

A combination of multiple sensor inputs deployed at a density that captures spatial and 

temporal variability is therefore likely to yield the most robust and accurate solution for 

precision irrigation. This will ensure that the decision support system is robust to data 
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availability, gaps, and deficiencies. This will include data from soil, weather and plant 

sensors (Smith et al., 2010). An important consideration will also include developing cost-

effective and user-friendly tools which will enhance the adoption of these adaptive 

systems by farmers.  

 

7.2 Management considerations 

Management can perhaps be viewed as the most vital aspect of a precision irrigation 

system. Management acts as an interface between monitoring and decision support, 

culminating into irrigation decisions. This enables the implementation of vital management 

decisions of when and where to apply irrigation and also the irrigation volumes to be 

applied. The decision support system is perhaps the management backbone of a 

precision irrigation system and its proper implementation is vital for improving 

sustainability in irrigated agriculture. 

The adaptive decision support tools discussed have the capability of improving crop yield 

and water savings when deployed as part of a precision irrigation system. Smith et al. 

(2010) noted that the simulation of adaptive decision support strategies can be used in 

identifying optimal irrigation scheduling decisions. A simulation tool capable of 

representing a range of field conditions at different spatial and temporal scales is 

considered ideal. Such a simulation framework is presented in McCarthy et al. (2010). 

Model-based decision support systems using feedback from multiple sensors may present 

a platform for arriving at optimal water applications. MPC appears to be ideally suited for 

achieving the aim of improving sustainability in irrigated agriculture. A decision support 

system based on MPC employs an optimization algorithm to implement an input strategy 

with the best performance.  

McCarthy et al. (2013) noted that MPC implemented for a precision irrigation system could 

involve the use of real-time data from field sensors to calibrate a crop or soil model and 

then optimizing this calibrated model to arrive at optimal irrigation scheduling decisions. A 

combination of data from soil moisture sensors, thermal sensors and weather sensors 

would be appropriate for MPC. The data from the sensors would most likely be required 

daily, as measurements are not required at a high temporal resolution to calibrate the 

model. A dense deployment of these sensors is however required to account for the 

spatial nature of field-scale crop water use. The thermal sensors may be mounted on a 

moving platform for spatial data collection across the field. 

Equipment availability, irrigation system capacity and other operational considerations can 

be incorporated as system-level constraints in an MPC-based decision support system. 

These constraints can be considered to arrive at future irrigation scheduling decisions 

(McCarthy et al., 2013). 

MPC uses a model’s prediction to determine the optimum irrigation application timing and 

volume. When combined with a soft sensing system, variables that are not directly 
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measured can be controlled and optimized. This presents the possibility of applying 

decision support systems based on MPC in realizing a desired crop yield and also a 

water-saving goal (Qin and Badgwell, 2003).  

Data-driven decision support systems that employ real-time sensor data to update a 

statistical or machine learning model also present a vehicle for improved irrigation 

scheduling decisions. Such systems are able to adapt to the time-varying response of the 

cropping system and are able to learn robust functions that describe the response of the 

crop to water availability. 

Data-driven systems will also mostly require minimal input requirements. As an example, 

Sánchez et al. (2012) demonstrated that the crop transpiration of greenhouse crops can 

be predicted using the solar radiation, vapour pressure deficit, and air temperature as 

inputs into a data-driven dynamic model. Their model consistently outperformed a 

mechanistic model that required extensive instrumentation and explicit modelling of the 

crops stomata response. The limited instrumentation required by such data-driven models 

makes them attractive for use in irrigation decision support. Furthermore, the limited 

complexity associated with their implementation suggests that growers with limited 

knowledge of crop physiology can easily apply them for irrigation purposes.   

There has been considerable research into water use procedures that can achieve 

improved water savings in irrigated agriculture, particularly deficit irrigation. Deficit 

irrigation (DI) is an irrigation strategy in which a crop is exposed to a level of water stress 

at certain growth stages in its development (regulated deficit irrigation) or throughout its 

growth season. The growth stage in which the plant is subjected to water stress is 

predetermined as a drought tolerant stage. The goal of deficit irrigation is that there will be 

little adverse effect on yield and irrigation water can be conserved (Kirda, 2002). Evans 

and King (2012) suggested deficit irrigation as a tool for improving water use in precision 

irrigation. They noted that it can be applied in maximizing net returns and conserve large 

amounts of water in arid and semi-arid regions.  

It is, however, important to investigate the response of different crops to water deficits 

including timing tolerances in order to develop optimal deficit irrigation strategies that can 

be integrated into the precision irrigation decision support framework. It is also important 

to investigate the economics of yield reduction associated with deficit irrigation strategies. 

O’Shaughnessy and Rush (2014) suggested that implementing deficit irrigation as part of 

precision irrigation management will involve the continuous assessment of crop stress and 

growth stage throughout the growing season. This will be instrumental in avoiding 

temporary severe stress which could result in an uneconomic reduction in crop yield or 

quality. 

The high cost of the component technologies of precision irrigation including soil, plant 

and weather sensors, decision support systems and variable rate water application 

systems is presently a constraint to the wide-scale adoption of this technology by farmers 
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(Sadler et al., 2005). The minimal yield improvements and water savings currently 

achieved through field-scale precision irrigation may not justify the initial capital 

investment required for its adoption. As freshwater resources become scarcer, it is 

expected that more premium will be placed on water abstracted for irrigated agriculture. 

Regulatory agencies may also require farmers to continuously demonstrate the efficient 

use of water. These factors may promote the adoption of precision irrigation by farmers 

(Berbel et al., 2007). 

A conceptual model-based decision support system that uses the full range of plant, 

weather and soil data for irrigation management is illustrated in Figure 1. It involves the 

integration of various sensing systems, dynamic modelling, machine learning, and model 

predictive control into an adaptive decision support system for precision irrigation.  

 

Figure 1. Conceptual model-based decision support system for precision irrigation. 

Elements in blue represent novel ideas synthesized from the review and elements in 

orange are from the decision support system presented in McCarthy et al. (2010). 
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8 Conclusions 
Technological innovations that can improve sustainability in irrigated agriculture form an 

important vehicle for actualizing the optimal use of limited water resources. Precision 

irrigation has been demonstrated as such an innovation, though presently the economic 

benefit related to the adoption of this technology at field-scale crop production is minimal. 

This is because the potential for yield improvements and water savings may not cover the 

cost of technology required for its implementation.  

The application of adaptive control techniques to irrigation decision support and 

improvements in monitoring tools has the capability of dealing with the time-varying and 

stochastic nature of the soil–plant–atmosphere system while also considering operational 

limitations in arriving at optimal irrigation decisions. This ultimately presents a platform for 

actualizing the environmental and economic goals of sustainability in irrigated agriculture. 

A robust design of monitoring tools including a proper combination of soil, weather and 

plant sensors is however vital for the proper operation of an adaptive decision support 

system. The decision support system should be able to account for the varying crop water 

requirements within season as a result of both biotic and abiotic factors. The decision 

support system should also consider agronomic objectives to ensure the optimal irrigation 

strategy is delivered by the precision irrigation system. 

The high cost of sensors and the requirement for dense deployment in order to obtain 

data at high spatial resolutions is presently a constraint. The large dataset required for the 

calibration of crop simulation models is also another significant problem. Future research 

needs include the development of cost-effective soil moisture sensors with wider spheres 

of influence, identification of irrigation thresholds for plant-based sensors and the 

development of self-learning crop simulation models that are able to infer relationships 

from a limited data set. The field evaluation of adaptive decision support systems would 

also be beneficial in quantifying their sustainability improvement potential.  
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Supplementary Material 
1 Dielectric soil moisture sensors 

The mode of operation of the Time Domain Reflectometry (TDR) Sensors, Time Domain 

Transmission (TDT) Sensors and Frequency Domain Reflectometry (FDR) Sensors is 

explained below 

1.1 Time domain reflectometry (TDR) sensors 

The TDR technique determines the apparent dielectric permittivity of soil by calculating 

the travel time of a reflected high frequency electromagnetic pulse (2-3GHz) in form of a 

fast-rise-step voltage through a waveguide of known length consisting of a coaxial cable 

connected to a pair of parallel probes of known length buried in the soil at the desired 

depth for soil moisture measurement (Romano, 2014). The pulse is reflected to the 

beginning of the probes and its travel distance is calculated as twice the length of the 

probe. A data acquisition and signal processing system is connected to the setup to 

analyse the waveform and determine the travel time from which the propagation velocity, 

v can be determined. Recent TDR probes mostly have the data acquisition and signal 
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processing electronics housed on top of the probes eliminating the use of coaxial cables. 

The propagation velocity, v is expressed as (Genuchten, 1986).  

v =
2l

t
                                                                                                                                                                (S1)                                                                                                                                      

Where L is the length of the parallel probes, t is the travel time of the electromagnetic 

pulse and v is its propagation velocity. The dielectric permittivity, ε of a medium can be 

expressed in terms of the propagation velocity and the speed of light in a vacuum (c =

3 x 108ms−1) as  

v =
c

√ε
                                                                                                                                                                (S2)                                                                                                                                      

Combining the above equations and setting ε = Ka, the apparent dielectric permittivity of 

soil, Kais estimated by TDR as  (Noborio, 2001) 

Ka = (
ct

2l
)

2

                                                                                                                                                      (S3) 

The travel time of the pulse is determined by taking the first and second derivatives of the 

reflected waveform (Blonquist et al., 2005).  The calculated apparent dielectric permittivity 

can be related to the volumetric moisture content (VMC) through empirical equations. A 

concept known as the dielectric mixing model is employed by some researchers to define 

a more physically based relationship between the dielectric permittivity measured by the 

TDR and the volumetric moisture content. It involves taking into account the dielectric 

permittivity of the individual components of soil, mainly air, water and solid particles to 

determine a composite dielectric permittivity of soil (Iaea, 2008). The influence of soil 

texture, salinity, temperature and soil bulk density on the measured volumetric moisture 

content is usually negligible. A high level of organic content in soil however introduces 

errors in the determination of moisture content by TDR (Noborio, 2001). 

1.2 Time domain transmission (TDT) sensors 

The TDT technique of estimating the apparent dielectric permittivity of soil is basically the 

same with the TDR technique (Blonquist et al., 2005).  

The difference is that in TDT the pulse is generated at a much lower frequency (1-

1.75GHz) and travels the length of the probe in one direction with no pulse reflection. The 

apparent dielectric permittivity, Ka is calculated with the factor of 2 omitted to indicate one 

way pulse travel (Evett & Schwartz, 2011) 



  

 55 

Ka = (
ct

l
)

2

                                                                                                                                                      (S4) 

The performance characteristics have been reported so be similar to that of TDR 

(Blonquist et al., 2005). 

1.3 Frequency domain reflectometry (FDR) sensors 

The FDR technique also referred to as the capacitance technique measures the charge 

time of a capacitor inserted into soil with the soil acting as a dielectric medium (Romano, 

2014). The measured charge time is related to the apparent dielectric permittivity of soil.  

A capacitance soil moisture sensor is made up of a probe that forms a parallel plate 

capacitor which is connected to an oscillator circuit (Iaea, 2008). This connection forms an 

LC circuit. Most capacitance sensors are installed into the soil using an access tube 

system (Polyakov et al., 2005). When installed in the soil the changes in frequency of the 

oscillator system is dependent on the change in the dielectric properties of soil which in 

turn influences the capacitance of the system. Due to the high dielectric permittivity of 

water in comparison to the other constituents of soil, it has the largest influence on the 

capacitance of the system (Kelleners et al., 2005). The frequency of the system 

decreases as the apparent dielectric permittivity of the system increases due to an 

increase in system capacitance which corresponds to an increase in soil moisture content. 

The volumetric moisture content is related to the frequency change through empirical 

equations (Iaea, 2008). 

The capacitance, C (F) of the access tube system is given as 

C = gεa                                                                                                                                                              (S5) 

Where εa is the apparent dielectric permittivity of the system and g is a capacitance value 

dependent on the geometry of the system (Skierucha and Wilczek, 2010). 

The resonant frequency, F (HZ) of the system is (Iaea, 2008) 

F = [2π(L)0.5]−1(C−1 + Cb
−1 + Cc

−1)
0.5

                                                                                                   (S6) 

C, is the capacitance (F) of the access tube system defined previously, Cb and Cc are the 

capacitance of the probe and the internal circuit elements and L, is the inductance (H) of 

the coil in the LC circuit. The frequency of the oscillator system is also largely dependent 

on the soil bulk electrical conductivity (EC) which is determined by soil texture, bulk 

density and salinity. The temperature dependence of the permittivity of water also makes 



  

 56 

the system sensitive to changes in temperature. These problems can however be 

minimized using measurement frequencies greater than 50Hz. The frequency operation 

range of most capacitance sensors is usually between 20-100MHz although newer 

systems now operate at frequencies in the region of 300MHz (Romano, 2014). 
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General objective of the study 
The review clearly shows that the development of adaptive decision support systems to 

aid the precision irrigation management of crops will further enhance the sustainable use 

of limited water resources. This will be enabled by the availability of quality sensor data 

and robust data-driven models of crop response to water availability.  

The need to consider the various factors affecting the performance of dielectric sensors 

when deployed to provide data to aid irrigation scheduling decisions has been highlighted. 

Previous studies in the literature have shown that site-specific calibration equations 

developed for these sensors will generally improve their performance. Nevertheless, 

sensor manufacturers consistently claim that they will perform optimally when the factory 

supplied calibration functions are used. This is especially commonplace with the release 

of new sensor models into the market.  

Despite the advancements in the field of precision irrigation, research on the development 

of adaptive decision support tools is lacking. Consideration of the time-varying nature of 

the cropping system is an important aspect in the development of robust irrigation 

decision support systems. These systems will further benefit from the use of data-driven 

models for the prediction and fulfillment of crop water requirements. This will enable the 

system to adjust to external perturbations and learn from data in order to modify irrigation 

decisions based on the crop response. On this basis, it was hypothesized that data-driven 

models which are capable of predicting crop water requirements and the plant response to 

water supply can aid precision irrigation scheduling. 

 The general objective of this work was the development of novel data-driven models that 

are able to predict the crop water requirements while considering the time-varying nature 

of the cropping system. The application of such data-driven models for the prediction of 

irrigation timing and depth and the sustainability improvement potential of model-based 

predictive irrigation scheduling was demonstrated. The need to ensure the availability of 

quality data from soil moisture sensors to ensure robust irrigation decisions was also 

investigated. These objectives sum up the three key requirements of precision irrigation; 

measurement, monitoring, and management. Succinctly, measurement is viewed as the 

physical sensing of various attributes of the soil-plant-atmosphere continuum which relate 

to crop water use. Monitoring is the application of various modelling techniques to the 

sensor measurements in order to quantify the response of crops to water availability. 

Management is the synergy of the measurement and monitoring phase which informs the 

timing and amount of irrigation application. 

The remaining chapters (i.e. 2-5) of the thesis are written as a series of papers. Thus, 

each chapter is presented with an abstract, and an extended introduction, and a result 

and discussion.  
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The specific objectives for each chapter are explained below. 

Specific objectives 
Chapter 2: Performance evaluation of three dielectric soil moisture sensors. 

The objective in Chapter 2 was to develop soil-specific calibration equations for three soil 

moisture sensors to predict soil moisture in three different soil types. The effects of soil 

texture, bulk density, salinity and temperature on the performance of the sensors were 

also investigated.  

Chapter 3: Dynamic modelling of the baseline temperatures for computation of the crop 

water stress index (CWSI) of a greenhouse cultivated lettuce crop. 

The objective in Chapter 3 was to exhibit the potential of using a data-driven dynamic 

model to predict the baseline temperatures and demonstrate the applicability in calculating 

an empirical CWSI for a lettuce crop (Lactuca sativa) grown under greenhouse conditions. 

This model will be capable of accounting for the time-varying nature of the crop response 

to water availability.  

Chapter 4: Dynamic modelling of lettuce transpiration for water status monitoring 

The objective in Chapter 4 was to develop a novel data-driven dynamic model capable of 

predicting the transpiration rate of a lettuce crop (Lactuca sativa) grown under greenhouse 

conditions. The predicted transpiration rate is used as a tool for monitoring the water 

status of the lettuce plants and real-time detection of deviations from a defined water 

status state. This model will be capable of accounting for the time-varying nature of the 

crop response to water availability.  

Chapter 5: Dynamic neural network modelling of soil moisture content for predictive 

irrigation scheduling. 

The objective in Chapter 5 was to develop dynamic neural network models for the 

prediction of volumetric soil moisture content in three different soil types. The application 

of the dynamic neural network models in predictive irrigation scheduling was explored. 

The water savings potential of a dynamic neural network model-based predictive irrigation 

scheduling system was also demonstrated using simulations. 
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Chapter 2 Performance Evaluation of Three Dielectric Soil 

Moisture Sensors  
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Abstract 
The various factors affecting the performance of dielectric soil moisture sensors include 

soil texture, bulk density, salinity, and temperature variations. It is therefore important to 

take these factors into account when deploying these sensors. This study evaluated the 

performance of three dielectric soil moisture sensors; GS 1 (Decagon Devices), Stevens 

Hydraprobe II (Stevens Water) and TDR 315 (Acclima Inc.) under laboratory conditions. 

Measured soil moisture contents on three sandy loam soils with contrasting particle 

composition (light, medium and heavier textured) were compared with corresponding 

values derived from gravimetric samples. The sensors were also evaluated under 

conditions of varying bulk density, temperature, and salinity. Results indicated that a linear 

calibration equation developed for the three sensors in the soils tested could improve their 

accuracy. The TDR 315 and Hydraprobe sensors underestimated soil moisture with an 

increase in compaction in the medium textured soil while the GS 1 sensor readings were 

slightly influenced. The results showed that the sensor outputs responded linearly to 

increasing temperature in the light and heavier textured soils, recording errors in soil 

moisture estimates over a 13°C temperature increase in the soils tested. An increase in 

salinity level in the light and heavier textured soils further increased the errors in the 

recorded soil moisture estimates. This was however not observed for the TDR 315 sensor 

when salinity was increased in the light textured soil. An empirical temperature 

compensation procedure substantially reduced the temperature effects on the sensor 

output in the soils tested. These sensors can be useful in monitoring soil moisture fluxes 

and in irrigation scheduling with laboratory-derived calibration and temperature 

compensation functions significantly improving their accuracy. 
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1 Introduction 
Due to the reduced global availability of fresh water, it has become imperative to develop 

methods that improve water use in irrigated agriculture. A common approach is the use of 

soil moisture sensors that monitor the field scale volumetric water content (VWC). This 

enables growers to schedule irrigation when the soil moisture is depleted to a defined 

threshold which results in improved irrigation timing and application depths (Chávez et al., 

2011). 

The neutron probe has long been considered a reliable method of estimating soil moisture 

content, but the associated radioactive hazards, high cost and inability to automate data 

collection, limits its application in irrigation management (Lukanu and Savage, 2006). 

Dielectric soil moisture sensors provide a suitable means of continuously monitoring field 

scale soil moisture status. They take advantage of the high dielectric permittivity of water 

relative to other soil constituents to infer soil moisture content. The dielectric permittivity of 

soil is however influenced by other factors including soil texture, bulk density, salinity, and 

temperature, therefore a careful consideration of these factors is essential for the accurate 

determination of soil moisture content (Paige and Keefer, 2008). 

The variability in the dielectric properties of different soil types and the influence of dry 

plant tissues make it necessary to calibrate dielectric sensors for every soil type (Polyakov 

et al., 2005). A number of researchers have conducted studies with dielectric sensors in 

various soil types and generally conclude that a soil specific calibration developed either 

in the field or laboratory will generally improve sensor accuracy (Kammerer et al., 2014; 

Keshavarzi et al., 2015; Mittelbach et al., 2012). Lukanu and Savage (2006) reported that 

variations in clay content and bulk density had an effect on the performance of a 

capacitance sensor; the Thetaprobe. Keshavarzi et al. (2015) reported a decrease in the 

measured VWC by a Time Domain Reflectometry (TDR) probe with an increase in 

percentage clay and organic matter content. Fares et al. (2011) also reported a similar 

decrease in measured volumetric water content by three different capacitance sensors in 

soils with high clay content.  

In irrigated agriculture, there is a tendency for the soil salinity to increase due to the 

quality of irrigation water used, application of various nutrients to the soil in form of 

fertigation and fertilizer application (Thompson et al., 2007). The dielectric measurement 

of electromagnetic soil moisture sensors is widely affected by salinity which is closely 

linked to the soil bulk electrical conductivity especially at low operating frequencies less 

than 50 MHz. The effect of salinity on the operation of dielectric soil moisture sensors is a 

function of the dielectric losses in the imaginary part of the complex permittivity and it is 

positively dependent on the soil’s ionic conductivity (Saito et al., 2008). The effect of 

salinity on dielectric measurements is usually masked at low temperatures (Bogena et al., 

2007). Dielectric losses in soils due to salinity can, however, be ignored in soils with 
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conductivities less than 0.5 dsm−1  at low operating frequencies (Bosch, 2004). Thompson 

et al. (2007) reported an increase in volumetric moisture measurements of 7.5% for every 

increase of 1 dsm−1 increase in pore water electrical conductivity in a sandy loam soil and 

an increase of 4% in VWC measurement for every increase of 1 dsm−1 in pore-water 

electrical conductivity in a clay soil when using a capacitance sensor. They employed a 

scaled frequency calibration approach to compensate for the salinity effect but no 

remarkable improvement was reported. Saito et al. (2008) reported a 16.2% error in VWC 

estimates by two capacitance sensors in a sandy soil with pore water electrical 

conductivities of up to 31dsm−1. An empirical calibration procedure reduced the error in 

the VWC estimates to around 1.1%. Benor et al. (2013) reported an underestimation of 

VWC by a TDR sensor in sand with an increase in salinity. 

Temperature variations in the field affect the performance of electromagnetic soil moisture 

sensors. The influence of increasing temperature occur via the following mechanisms 

 Decrease in the apparent dielectric permittivity of free water; usually predominant at 

a high moisture content in soils with low clay content. 

 Increase in the dielectric measurement due to the release of bound water; usually 

predominant at a low moisture content in soils with high clay content. 

 Increase in the dielectric measurement due to signal attenuation at high electrical 

conductivity with the influence of electrical conductivity positively dependent on soil 

temperature; usually predominant in soils with high salinity. 

Czarnomski et al. (2005) reported an underestimation of VWC of about 0.1% for every 

1°C increase in temperature by a capacitance probe installed in a sandy loam soil. 

Polyakov et al. (2005) evaluated a capacitance sensor in a clay soil and reported a 15% 

overestimation of VWC over a 45°C temperature range. Gong et al. (2003) reported an 

underestimation of VWC by a TDR sensor installed in a sandy loam soil at high moisture 

contents with increasing temperature. Theoretical approaches based on effective 

frequency and complex permittivity model for compensating for the effect of temperature 

and salinity on the accuracy of dielectric sensors have been successfully applied by  Evett 

et al. (2006) and Schwartz et al. (2009). These methods improve the accuracy of the 

sensors but they require an extensive knowledge of electromagnetics and high-cost 

spectrum analyzing equipment limiting their use to research. Benson and Wang (2006) 

and Saito et al. (2009) have successfully applied empirical compensation procedures to 

reduce the influence of temperature on the accuracy of several dielectric soil moisture 

sensors. 

Three dielectric soil moisture sensors are considered in this study; the GS 1 volumetric 

soil moisture sensor (Decagon Devices, Pullman, Washington, USA), the Hydraprobe II 

(Stevens Water, Portland, Oregon, USA) and the TDR 315 (Acclima Inc, Meridian, Idaho, 
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USA). The three sensors were recently released into the market and to the best of our 

knowledge, there are presently no peer-reviewed articles on their comparison. The 

sensors also have a different method of inferring the dielectric permittivity of the sensed 

media. Several researchers have previously evaluated the earlier version of the 

Hydraprobe. Merlin et al. (2007) reported that the Hydraprobe sensor’s response differs 

significantly with soil type. An overestimation of around 3% VWC was reported for a 15°C 

temperature rise in a clay soil. Seyfried and Murdock (2004) reported similar observations 

in a loam soil. Bosch (2004) and Kammerer et al. (2014) reported an improvement in the 

Hydraprobe sensor’s VWC estimates using laboratory derived calibration equations.  

The purpose of this study is therefore to develop soil-specific calibrations for the three soil 

moisture sensors to predict soil moisture in three different soil types. The effects of soil 

texture, bulk density, salinity and temperature on the performance of the sensors are also 

investigated. In order to achieve this, experiments were designed to answer the following 

research questions 

1. What empirical relationships adequately relate the output of the soil moisture 

sensors to the laboratory measured soil moisture content of different soil types from 

three different sites? 

2. What improvement in sensor accuracy can be achieved by using laboratory-

developed calibration equations in comparison to the default equations specified by 

the manufacturers? 

3. To what extent do variations in bulk density due to the compaction levels 

encountered in the field affect the accuracy of the soil moisture sensors? 

4. To what extent do temperature variations over the range encountered in the field 

soils affect the accuracy of the soil moisture sensors? 

5. To what extent does variable salinity over the range encountered in the field soils 

affect the accuracy of the soil moisture sensors? 

6. What improvement in sensor accuracy can be achieved by using laboratory derived 

empirical temperature corrections when sensors are used in soils with either high 

temperature or salinity? 

 

2 Material and Methods 

2.1 Sensors 

The Hydraprobe II and GS 1 are both frequency domain sensors. In order to infer the 

VWC of the soil, the Hydraprobe II sensor measures the real dielectric permittivity of the 

soil while the GS 1 sensor measures the apparent dielectric permittivity (a combination of 

the real and imaginary part of the dielectric permittivity). The TDR 315 operates in the time 

domain and infers the soil’s VWC from its measured apparent dielectric permittivity. The 

mode of operation of the sensors is further explained below. 
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2.1.1 GS 1 volumetric soil moisture sensor 

The GS 1 volumetric soil moisture sensor is a capacitance sensor operating at a 

frequency of 70 MHz.  The sensor applies an oscillating wave at the stated frequency to 

the soil to form a complete capacitor. The charge stored in the sensor probes after a 

predetermined time is directly proportional to the soil’s apparent dielectric permittivity 

which can be related empirically to the volumetric water content of the soil. According to 

the manufacturer, the sensor’s output is unaffected by variations in soil texture and has an 

accuracy of ±3% VWC in soils with EC of less than 8 dsm−1 and temperatures less than 

50°C. The manufacturer also states that the accuracy can be increased to ±1% VWC 

using soil-specific calibration. The GS 1 sensor has a measurement region with a 

diameter of 11 cm. The GS 1 sensor outputs an analog voltage of between 0 - 5 V which 

can be related to the VWC of the soil using the manufacturer supplied calibration equation 

for mineral soils.  

2.1.2 Hydraprobe II 

The Hydraprobe II sensor, hereafter referred to as Hydraprobe, operates at a frequency of 

50 MHz. The sensor calculates the amplitude ratio of reflected waves within its probes 

when installed in soil and applies a numerical solution of Maxwell’s equation to calculate 

the real dielectric permittivity of the surrounding soil based on this. The real dielectric 

permittivity is then related empirically to the volumetric water content of the soil. According 

to the manufacturer, this procedure makes the probe immune to variations in soil texture, 

salinity, and temperature. The sensor has a measurement region with a diameter of 3 cm.  

The stated accuracy of the sensor is ±3% VWC in all soil types. The Hydraprobe is an 

SDI-12 sensor which outputs the raw VWC of the soil in water fraction by volume 

(m3m−3). 

2.1.3 TDR 315 

The TDR 315 operates at a wave propagation bandwidth of 3500 MHz.  It measures the 

time taken by a reflected wave to travel through its probes which can be related to the 

apparent dielectric permittivity of the sensed soil medium.  

The calculated apparent dielectric permittivity is related to the volumetric soil water 

content using propriety equation similar to the Topp’s model (Topp et al., 1980). According 

to the manufacturer, this procedure makes the sensor immune to variations in soil texture, 

salinity, and temperature.  The stated accuracy of the sensor is ±2% VWC in all soil types 

up to a maximum bulk EC of 5 dsm−1. A temperature accuracy of ±1% VWC is reported by 

the manufacturer for a temperature range of 0 - 50°C. A measurement region with a 

diameter of 5 cm is reported for the sensor. The TDR 315 is an SDI-12 sensor which 

outputs the raw VWC of the soil in % water content. 
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Four of each of the respective sensor types were evaluated; making a total of twelve 

sensors (4 GS 1, 4 Hydraprobe, 4 TDR 315). The output of the GS 1 sensors was logged 

using a Campbell scientific CR 1000 datalogger (Campbell Scientific, Logan, Utah, USA) 

programmed with the manufacturer's default calibration equation for mineral soils. The 

output of the Hydraprobe and TDR 315 sensors was logged using an Acclima datasnap 

SDI-12 datalogger (Acclima Inc, Meridian, Idaho, USA). For the purpose of uniformity the 

output of all sensors are presented in units of water fraction by volume; m3m−3. 

2.2 Soils 

Soils were collected from the top 30 cm in three different sites in Harper Adams 

University, England (-2°25’39.06” W; 52°46’46.74” N) to represent a range of soil textures 

typical of the University’s Farms. The physical properties of the soils are summarized in 

Table 1 

Table 1. Physical properties of the soils tested 

Site Soil type Sand % Silt % Clay % Organic 

matter % 

Dry 

bulk 

density 

(gcm−3) 

Field 

capacity 

(m3m−3) 

Permanent 

wilting 

point 

(m3m−3) 

Crabtree 

(CT) 

Sandy 

loam 

(light 

textured) 

79 9 12 2.7 1.19 0.114 0.06 

Back of 

CERC 

(BOC) 

Sandy 

loam 

(medium 

textured) 

72 15 13 2.5 1.28 0.144 0.071 

Blackbirtch 

(BB) 

Sandy 

loam 

(heavier 

textured) 

67 16 17 2.7 1.30 0.18 0.082 

  

2.3 Experiments 

Three experiments were performed. The first experiment established the relationships 

between the output of the sensors and the gravimetrically measured volumetric water 

content (VWC) for the various soils. The second experiment examined the relationships 

between the VWC estimate of the sensors and the gravimetrically measured VWC 
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estimates in a soil subjected to both a medium and high level of compaction similar to that 

experienced in the field. The third experiment examined the effect of soil temperatures on 

the output of the three sensors. Soil temperatures were varied within the range typically 

experienced in the field.  

In all the experiments the performance of the calibration equations derived in the 

laboratory was compared with those supplied by the manufacturer. 

2.3.1 Experiment 1 

The laboratory calibrations were performed using the soils from the three sites at a room 

temperature of 22 ± 2°C. The laboratory calibration was based on the procedure proposed 

by  Campbell et al. (2009). Soils collected from each field were air dried and passed 

through a 5mm sieve. They were then packed into 4 L containers (diameter 16 cm, height 

19 cm) at the approximate field bulk density by adding equal volumes of soil in three 

layers. The water content of each container was altered by adding deionized water in 

increments of 400 ml to represent soil moisture contents from air dry to saturation. This 

produced soil moisture contents ranging from 0 – 0.45 m3m−3 in the three soils. The 

containers were wrapped with polythene to prevent surface evaporation and left for 48 

hours in order for the soil moisture to equilibrate. A total of twelve replicates for each 

soil/soil moisture content combination were prepared. The twelve sensors were randomly 

assigned to the containers and the readings over 10 mins intervals were averaged. After 

each reading gravimetric samples were taken from the containers and oven dried a 105°C 

for 24 h. The volumetric water content was calculated by multiplying the gravimetric water 

content by the soil’s bulk density and dividing by the density of pure water.  

2.3.2 Experiment 2 

The medium textured soil from BOC was used in this experiment. This is because all the 

soils had a similar range of dry bulk density and organic matter content. Therefore, the 

sensor response to variation in bulk density in the BOC soil will be similar to the response 

expected in the two other soils (Saini, 1966). Soils collected from the field were air dried 

and passed through a 5mm sieve. Adapting the methodology outlined by John et al. 

(1986), the soil was packed into 4 L calibration containers and compacted in three layers 

to a medium and high level of compaction similar to that experienced in the field by 

imposing a load of 2.1 KN and 3.5KN respectively using a tensile testing machine 

(Samuel Denison and Son Ltd, Leeds, UK). These values were calculated based on the 

Proctor compaction principle which is the laboratory standard for determining the 

maximum bulk density of soils (ASTM Standard D1557, 2009). The load imposed for the 

medium compaction level corresponds to 15 taps of the Proctor hammer while that for the 

high compaction level corresponds to 25 taps of the Proctor hammer based on the 

dimensions of the calibration container.  
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This produced an average bulk density of 1.35 gcm−3  in the moderately compacted soil 

and 1.42 gcm−3 in the highly compacted soil.  Laboratory calibration equations were then 

developed for the soils at both compaction levels following the methodology outlined in 

Experiment 1.  

2.3.3 Experiment 3 

For this experiment, the light textured soil from CT and the heavier textured soil from BB 

was used. This is because the two soils had the largest difference in clay content which is 

the major factor influencing the temperature response of dielectric soil moisture sensors in 

both saline and non-saline soils (Kizito et al., 2008). Soils collected from each field was air 

dried and passed through a 5mm sieve. They were then packed into 4 L containers at the 

approximate field bulk density by adding equal volumes of soil in layers. Following the 

methodology proposed by Benson and Wang (2006), the soils were brought to five 

moisture levels by adding deionized water in increments of 400 ml. This produced soil 

moisture content ranging from 0.05 – 0.35 m3m−3 in the soils from CT and 0.05 – 0.39 

m3m−3 in the soils from BB. The containers were then wrapped in polythene to prevent 

surface evaporation and left for 48 h for soil moisture to equilibrate. Each of the soil/soil 

moisture content combinations was then subjected to temperatures of 5, 15, 25 and 35°C 

in an incubator (Model ICI 180, Sanyo Electric Co, Osaka, Japan). The temperature of the 

soil was monitored with a thermocouple and at each temperature step, time was allowed 

for the soil temperature to equilibrate. A total of twelve replicates for each soil/soil 

moisture content combination was prepared. At each temperature step the averaged 

sensor readings were then logged over 10 mins intervals by randomly assigning each of 

the twelve sensors to a container. After the temperature variation procedure gravimetric 

samples were taken from the containers and oven dried at 105°C for 24 h. 

To investigate the effect of variable salinity on the performance of the sensors a one-time 

addition of salts to soils from both sites was performed. The aim was to increase the bulk 

EC at saturation of each soil to values less than 12 dsm−1 which is the recommended limit 

for agricultural soils (Kizito et al., 2008). To achieve this 100 g of calcium chloride 

dihydrate was dissolved in 400 ml of deionized water and mixed thoroughly with air-dried 

soils from CT and BB. They were then air-dried prior to the addition of deionized water in 

increments of 400 ml in order to produce five different moisture levels in the soils. This 

produced bulk EC readings in the range of 0.4 dSm−1 to 5 dSm−1 in the soil from CT and 

0.8 dSm−1  to 8.3 dSm−1  in the soils from BB. The bulk EC was measured using the TDR 

315 sensor.  Temperature variation tests on the soils were then conducted following the 

procedure outlined in the paragraph above. 
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2.4 Statistical analysis 

Calibration equations using linear least squares regression were developed to relate 

laboratory derived gravimetric water content to the values measured by the sensors. 

Following recommendations by Varble and Chávez (2011), two statistical tests were used 

to evaluate the default manufacturers calibration equations and the laboratory-derived 

calibration equations. They include the mean bias error (MBE) and root mean square error 

(RMSE). A calibration equation with an MBE value of ±0.02 m3m−3 and RMSE value less 

than 0.035 m3m−3 was considered accurate. These values are chosen to reflect the 

measurement accuracy of 0.01 – 0.02 m3m−3  required in agricultural applications (Iaea, 

2008). 

In the temperature changing experiment, the performance of the sensors was evaluated 

by relating the sensor output to the temperature range investigated using linear least 

squares regression.  

All statistical analysis was carried out using the JMP statistical package (SAS Institute, 

North Carolina, USA). 

3 Results 

3.1 Factory calibration evaluation 

The statistical parameters for the laboratory evaluation of the sensors are listed in Table 

2. Table 2 shows that under laboratory conditions the factory based calibration of the 

three sensors types achieved the required accuracy within the air dry to saturation range 

in the light textured soil (CT).  Varble and Chávez (2011) reported similar results for a 

Decagon 5TE sensor evaluated in a sandy soil. The MBE values for the TDR 315’s factory 

calibration in Table 2 show that the sensor underestimated volumetric water content 

(VWC) by an average of 0.034 m3m−3 in the heavier textured soil (BB) and an average of 

0.023 m3m−3 in the medium textured soil (BOC). The highest errors in VWC estimates by 

TDR 315 were recorded in the heavier textured soil from low moisture content to high 

moisture content range (P < 0.001). The Hydraprobe sensor’s factory calibration recorded 

the highest errors in VWC estimates in the heavier textured soil (P<0.001). The sensor 

underestimated VWC by an average of 0.047 m3m−3 in the heavier textured soil. The 

factory calibration of the GS 1 sensor was accurate in the light and medium textured soil. 

However, the calibration was not accurate in the heavier textured soil with an 

underestimation of VWC by an average of 0.021 m3m−3 and an RMSE of 0.05 m3m−3 . 

During the laboratory evaluation, a maximum EC of 0.1 dSm−1 was recorded in the soil 

from CT, 0.19 dSm−1 in the soil from BOC and 0.35 dSm−1 in the soil from BB. 

 

 



  

 69 

Table 2. Comparison of factory calibration based VWC (m3m−3) with laboratory 

measurements of VWC (m3m−3) for the different sensors and soils. BB is the heavier 

textured soil, BOC is the medium textured soil and CT is the light textured soil. 

 

Sensor and soil type R2 MBE (m3m−3) RMSE (m3m−3) 

TDR 315    

BB 0.76 -0.034 0.05 

BOC 0.85 -0.023 0.03 

CT 0.91 -0.015 0.03 

Hydraprobe    

BB 0.54 -0.047 0.06 

BOC 0.91 -0.017 0.03 

CT 0.94 -0.015 0.03 

GS 1    

BB 0.81 -0.021 0.05 

BOC 0.92 -0.006 0.03 

CT 0.92 0.009 0.03 

 

Figure 1 shows that a linear calibration equation provides a good fit for the data collected 

during the laboratory evaluation of all the three sensor types in the light, medium and 

heavier textured soils. Figure 1 indicates that the factory calibration equation of the TDR 

315 sensor was accurate at lower moisture contents in the light textured soil and 

underestimated VWC at higher moisture contents. This was also the case for the 

Hydraprobe sensor. The GS1 sensor was accurate at lower moisture contents in the light 

textured soil but overestimated VWC at higher moisture content. Figure 1 also shows that 
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in the medium textured soil, the factory calibration of the Hydraprobe sensor 

underestimated VWC at both lower and higher moisture contents with the magnitude of 

underestimation increasing at higher moisture contents. This was also the case for the 

TDR315 sensor. It also shows that the factory calibration of the GS 1 sensor was more 

accurate at lower moisture contents than at higher moisture contents. It can also be seen 

that the three sensors perform with less accuracy in the heavier textured soil. The sensors 

all underestimate the VWC in the lower and higher moisture range. This is in agreement 

with the data presented in Table 2. 
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Figure 1. Comparison of the factory calibrated sensor output and laboratory measured 
water content (A) CT (B) BOC (C) BB. CT is the light textured soil, BOC is the medium 
textured soil and BB is the heavier textured soil. 

 

3.2 Laboratory calibration evaluation 

The soil specific calibration equations developed for the three sensors types in the 

laboratory improved the accuracies of the sensors as shown in Table 3. These calibration 

equations yielded lower levels of errors in all soil types (P<0.001) in comparison to when 

the factory calibrations were used. The RMSE and MBE were within statistical targets in 
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all tests except in the Hydraprobe and BB combination where the RMSE value recorded 

was 0.04 m3m−3. 

Table 3. Comparison of laboratory calibration based VWC (m3m−3) with laboratory 

measurements of VWC (m3m−3) for the different sensors and soils. . BB is the heavier 

textured soil, BOC is the medium textured soil and CT is the light textured soil. 

 

Sensor and soil type R2 MBE (m3m−3) RMSE (m3m−3) 

TDR 315    

BB 0.89 0 0.03 

BOC 0.93 0 0.02 

CT 0.94 0 0.03 

Hydraprobe    

BB 0.84 0 0.04 

BOC 0.94 0 0.02 

CT 0.96 0 0.02 

GS 1    

BB 0.85 0 0.03 

BOC 0.93 0 0.02 

CT 0.94 0 0.02 

 

3.3 Sensor sensitivity to soil compaction 

The three sensor types tested in the compacted medium textured soil recorded the 

highest errors in VWC estimation in the high compaction treatment (P<0.05). The 

statistical parameters for the comparison between factory calibrated sensor output and 

gravimetric water content have been inserted in Table 4.  To ensure completeness, the 
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parameters for the non-compacted BOC soil from Table 2 are also listed. Table 4 shows 

that in the medium compacted soil, all sensors achieve a performance similar to that 

achieved in the non-compacted soil. Table 4 also shows that the magnitude of soil 

moisture underestimation by the TDR 315 and the Hydraprobe sensor increased in the 

highly compacted soil. An average underestimation of soil moisture by 0.035 m3m−3 was 

recorded for the TDR 315 and an average underestimation of soil moisture by 0.027 

m3m−3 was recorded for the Hydraprobe sensor. The GS 1 sensor performed within 

statistical targets at high levels of compaction as indicated in Table 4.  

Table 4. Comparison of factory calibration based VWC (m3m−3) with laboratory 

measurements of VWC (m3m−3) for the different sensors in the compacted medium 

textured soil (BOC). 

Sensor and Soil R2 MBE (m3m−3) RMSE ( m3m−3) 

TDR 315 

 

   

BOC Non-Compacted 0.85 -0.023 0.03 

BOC Medium Compaction 0.85 -0.024 0.03 

BOC High Compaction 

 

0.77 -0.035 0.05 

Hydraprobe 

 

   

BOC Non-Compacted 0.91 -0.017 0.03 

BOC Medium Compaction 0.90 -0.019 0.03 

BOC High Compaction 

 

0.88 -0.027 0.03 

GS 1 

 

   

BOC Non-Compacted 0.92 -0.006 0.03 

BOC Medium Compaction 0.92 -0.008 0.03 

BOC High Compaction 0.90 -0.01 0.03 
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Table 5 shows that the laboratory calibration equation developed for all the sensor types 

improves their predictions enabling them to perform within statistical targets in both the 

medium and highly compacted medium textured soil.  

Table 5. Comparison of laboratory calibration based VWC (m3m−3) with laboratory 

measurements of VWC (m3m−3) for the different sensors in the compacted medium 

textured soil (BOC). 

 

Sensor and Soil R2 MBE (m3m−3) RMSE ( m3m−3) 

TDR 315 

 

   

BOC Medium Compaction 0.93 0 0.02 

BOC High Compaction 

 

0.90 0 0.03 

Hydraprobe 

 

   

BOC Medium Compaction 0.93 0 0.02 

BOC High Compaction 

 

0.92 0 0.03 

GS 1 

 

   

BOC Medium Compaction 0.93 0 0.02 

BOC High Compaction 0.92 0 0.03 

 

3.4 Sensor sensitivity to soil temperature and salinity variations 

The factory calibrated sensor output showed a significant linear response to an increase 

in temperature for all the soil/sensor combinations (the lowest R2=0.73) at all VWC values. 

The slopes of the linear regression between the factory calibrated output of the sensors 

and temperature at different VWC values in the non-saline soils are shown in Figure 2.  

Figure 2 shows that the slope of the linear response varied with VWC in every soil-sensor 

combination. It can be seen that the output of the TDR 315 probe in the light textured soil 

decreased with increasing temperature as indicated by the negative slope values. The 

rate of temperature effect increased with an increase in moisture, thus the highest effect 

0.00207 m3m−3℃−1 was observed at a moisture content of 0.3516 m3m−3. The output of 

the GS 1 sensor in the light textured soil exhibited a positive response to increasing 

temperature. The rate of temperature effect increased with increasing moisture content, 
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thus the highest effect 0.0016 m3m−3℃−1 was observed at a moisture content of 0.3516 

m3m−3. The Hydraprobe sensor’s output also exhibited a positive response to increasing 

temperature in the light textured soil, the response was however similar at all moisture 

content values with an increase in sensor output of between 0.0003 - 0.0005 m3m−3℃−1  

observed.  

Figure 2 also shows that the output of the TDR 315 sensor exhibited a positive response 

to an increase in temperature in the heavier textured. The response was however similar 

at all moisture content values with an increase in sensor output of between 0.0003 - 

0.0006 m3m−3℃−1  observed. The output of the Hydraprobe sensor exhibited a positive 

response to an increase in soil temperature in the heavier textured soil with the increase 

being more at medium moisture contents (highest response 0.00125 m3m−3℃−1). The GS 

1 exhibited a negative dependence of sensor output to increasing temperature at high 

moisture content as indicated by the negative slope values in Figure 2 (highest response 

0.0007 m3m−3℃−1). The sensor response to increasing temperature was however 

positive at low to medium moisture content values. 
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Figure 2. Dependence of the slope of the sensor output and temperature on water 
content in (A) CT non-saline (B) BB non-saline. CT is the light textured soil and BB is the 
heavier textured soil. 

An increase in salinity in the light textured soil had a significant effect (P<0.001) on the 

average error in VWC estimates by the three sensor types when compared with the errors 

observed in the non-saline soil. The slopes of the linear regression between the factory 

calibrated output of the sensors and temperature at different VWC values in the saline 

soils are shown in Figure 3. Figure 3 shows that the output of the TDR 315 in the saline 

light textured soil exhibited a response similar to that observed in the non-saline light 

textured soil. It is interesting to see that the temperature dependence of the TDR 315 

sensor output is generally less than that observed in the non-saline light textured soil. The 
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output of the Hydraprobe sensor exhibited a strong positive relationship with increasing 

soil temperature at all moisture content values (the lowest R2 = 0.83) in the saline light 

textured soil. The rate of increase in sensor output increased with an increase in moisture 

content, thus the highest response, 0.00418  m3m−3℃−1 was observed at a moisture 

content of 0.3519 m3m−3.  The output of the GS 1 sensor also exhibited a similar positive 

response to an increase in temperature in the saline light textured soil. The highest 

response, 0.0026 m3m−3℃−1 was recorded at a moisture content value of 0.3519 m3m−3. 

An increase in salinity in the heavier textured soil had a significant effect (P<0.001) on the 

average error in VWC estimates by the three sensor types when compared with the errors 

observed in the non-saline soil. Figure 3 shows that the VWC estimates by the three 

sensor types at all moisture content levels in the saline heavier textured soil were 

positively dependent on temperature (P<0.001). This is indicated by the positive slope 

values. Figure 3 also shows that the TDR 315 sensor output exhibited an increasingly 

positive response to temperature with an increase in volumetric water content. The 

highest response, 0.0048  m3m−3℃−1 was observed at a moisture content value of 

0.3877 m3m−3. The response of the Hydraprobe sensor was also increasingly positively 

dependent on temperature with an increase in VWC in the heavier textured saline soil 

(highest response 0.003 m3m−3℃−1). A similar response of sensor output to increase in 

temperature was also observed in the GS 1 sensor tested in the heavier textured saline 

soil. The rate of increase in sensor output increased with increase in moisture content and 

the highest increase in sensor output observed was 0.0031 m3m−3℃−1 at a moisture 

content value of 0.3877 m3m−3. 
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Figure 3. Dependence of the slope of the sensor output and temperature on water 

content in (A) CT saline and (B) BB saline soils. CT is the light textured soil and BB is the 

heavier textured soil.  
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3.5 Calibration with temperature compensation 

An empirical method to correct for the influence of temperature on sensor output was 

developed adopting the procedure proposed by Saito et al. (2009). This method is based 

on the linear correlation that exists between the output of the three sensors types and 

temperature in all the soil/sensor combinations as shown by the slope values plotted in 

Figures 2 and 3.  

The linear relationship illustrated can be expressed as 

θfc = aT + b                                                                                                                                                      (1)  

Where a and b are the slopes and intercept of the linear regression between the factory 

calibrated sensor output, θfc ( m3m−3) and soil temperature, T (℃) at a known VWC value. 

The slope of the regression, a ( m3m−3℃−1) is a function of the actual soil water content, θa 

( m3m−3). Thus, a is expressed as 

a =
dθfc

dT
= f(θa)                                                                                                                                               (2) 

Integrating the above equation and setting θfc=θlc at T = Tr gives: 

θfc = θlc + f(θa)(T − Tr)                                                                                                                               (3) 

In equation 3, θlc ( m
3m−3) is the laboratory calibrated water content (a function of θa), Tr 

(℃) is the temperature at which the laboratory calibration of the sensors was conducted and 

T (℃) is the soil temperature. 

f(θa) expresses the dependency of a on θa as shown in Figures 2 and 3. It clear that a 

second order polynomial will fit the data points in Figures 2 and 3. This is expressed as 

f(θa) = c1 + c2θa + c3θa
2                                                                                                                               (4) 

Substituting equation 4 into 3 results in a calibration equation that describes the factory 

calibrated probe output, θfc as a function of the actual water content,θa, the soil 

temperature, T and the reference temperature at which the laboratory calibration was 

conducted, Tr (in this study Tr= 22°C). 

An example application of the calibration equation with temperature correction on the 

heavier textured soil at 35°C is shown in Figure 4. It can be seen that the temperature 

compensated output of the three sensor types closely matches the 1:1 line indicating a 

high level of accuracy in VWC estimates. It can also be seen that both the factory and 

laboratory calibrated output without temperature compensation exhibit a high level of 

scatter around the 1:1 line. 
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Figure 4. Comparison of the temperature corrected, laboratory and factory calibrated 

outputs of (A) TDR 315 (B) Hydraprobe and (C) GS 1 sensors in the heavier textured soil 

(BB) at 35°C. θfc is the factory calibrated water content, θlc is the laboratory calibrated 

water content and θtc is the temperature compensated water content. 
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Table 6 summarizes the calibration results obtained with all soil/sensor combinations at 

35°C. The RMSE values obtained by the temperature corrected calibration equation are 

within statistical targets with the exception of the Hydraprobe and BB saline/non-saline 

combination. The RMSE values obtained by the temperature corrected equation are 

reduced compared to those obtained by the factory supplied equation and the laboratory 

equation without temperature compensation. 

Table 6. Root mean square errors between actual and predicted water content obtained 

by all calibration equations applied on the tested soils at 35°C. BB is the heavier textured 

soil, BOC is the medium textured soil and CT is the light textured soil. 

Sensor and soil type RMSE (m3m−3) 

θavs θfc θavs θtc θavs θlc 

TDR 315 

CT 0.04 0.03 0.04 

BB 0.05 0.03 0.04 

CT saline 0.04 0.03 0.04 

BB saline 0.06 0.03 0.05 

Hydraprobe 

CT 0.04 0.02 0.03 

BB 0.08 0.04 0.07 

CT saline 0.05 0.02 0.05 

BB saline 0.12 0.04 0.10 

GS 1 

CT 0.04 0.02 0.03 

BB 0.06 0.03 0.05 

CT saline 0.05 0.02 0.04 

BB saline 0.07 0.03 0.06 

4 Discussion 
The factory calibration of the sensors evaluated achieved the required accuracy only in 

the light textured soil, and the GS 1 and Hydraprobe sensors tested in the medium 

textured soil. The factory calibration of the three sensor types consistently underestimated 

soil moisture in the heavier textured soil. This may be due to a large amount of bound 

water present in soils with high clay content. The dielectric permittivity of bound water is 
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lower than that of free water leading to an underestimation of soil water content by 

dielectric sensors. Polyakov et al. (2005) and Fares et al. (2011) reported similar results 

for capacitance sensors evaluated in heavier textured soils, and Keshavarzi et al. (2015) 

reported similar results for a TDR sensor. The factory calibration of the three sensors can 

be applied in light textured soils but for heavier soils, a laboratory calibration procedure is 

recommended.  

The linear calibration developed in the laboratory improved the performance of the three 

sensor types in all the soils. This indicates that a laboratory calibration process is 

important for soil moisture sensors deployed in irrigation scheduling applications where 

slight inaccuracies in estimated soil moisture content may lead to the onset of plant water 

stress.  Bosch (2004) and Merlin et al. (2007) reported similar conclusions for the earlier 

version of the Hydraprobe.  Kizito et al. (2008) and Parsons and Bandaranayake (2009) 

reported that a linear laboratory calibration equation improved the accuracy of the 

predecessor of the G1 sensor, the EC-5 sensor. Varble and Chávez (2011) also reported 

similar findings for the predecessor of the TDR 315 sensor, the Acclima TDT sensor. 

The linear laboratory calibration of the Hydraprobe sensor in the heavier textured soil did 

not completely eliminate the errors in soil moisture estimates. It, however, performed 

close to statistical targets indicating that the laboratory-derived calibration of the sensor 

can be applied in heavier textured soils as long as growers understand some errors may 

exist in soil moisture estimates (± 0.04 m3m−3). 

A high level of compaction in the medium textured soil increased the magnitude of soil 

moisture underestimation by both the TDR 315 and Hydraprobe sensors. Gong et al. 

(2003) reported an underestimation of soil moisture content by a TDR sensor with 

increasing bulk density in a medium textured soil. Czarnomski et al. (2005) however 

reported an overestimation of soil moisture content by a TDR sensor with an increase in 

bulk density in a medium textured forest soil. Polyakov et al. (2005) reported similar 

findings for a capacitance sensor evaluated in a medium textured tropical soil. The 

underestimation of soil moisture content by the TDR 315 sensor and the Hydraprobe 

sensor can be explained by the increase in the volume ratio of solid particles to air with an 

increase in soil bulk density. This causes an increase in the dielectric permittivity of the 

solid particles accompanied by a decrease in the dielectric permittivity of the soil water. 

This mechanism consequently leads to an underestimation of soil moisture content by 

dielectric sensors. An increase in the level of compaction had a negligible effect on the 

accuracy of the GS 1 sensor in the medium textured soil. The GS 1 sensor performed 

within statistical targets at all levels of compaction. Lukanu and Savage (2006) reported 

similar findings for a capacitance sensor evaluated in a medium textured soil. The similar 

performance of all sensor types in the non-compacted and medium compacted soils may 
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be as a result of the marginal increase in bulk density recorded. Campbell et al. (2009) 

reported that a 16.2% change in bulk density will result in a 1% change in the predicted 

volumetric water content. The percentage change in bulk density recorded (5.2 %) when 

going from a level of no compaction to a level of medium compaction is less than this 

value. The calibration equation developed in the laboratory reduced the errors in soil 

moisture estimate by all the sensors tested in the compacted soils. This leads to the 

conclusion that it is beneficial to calibrate soil moisture sensors at compaction levels 

similar to that experienced on the field soils where they are intended for deployment. 

Quality control checks should also be performed periodically on the soils to monitor the 

level of compaction and if necessary sensors should be recalibrated to account for any 

increase in bulk density observed.  

Changes in soil temperature had an effect on the output of the three sensor types in all 

the soils tested. The TDR 315 sensor tested in the light textured soil exhibited a negative 

response to an increase in soil temperature. The most pronounced effect of soil 

temperature was observed at high moisture contents. This is because the dielectric 

permittivity of free water reduces with increasing temperature leading to an 

underestimation of soil moisture by the TDR sensor. Light textured soils such as the one 

evaluated in this study hold a large amount of free water. Gong et al. (2003) reported 

similar results for a TDR sensor evaluated in a light textured soil. The highest decrease in 

sensor output observed in this study corresponds to an underestimation of 0.027 m3m−3 

over a 13°C increase in temperature relative to a reference temperature of 22°C used in 

this study. The underestimation in soil moisture by the TDR 315 sensor applied in the light 

textured soil may be considered negligible for most applications, however, a temperature 

compensation procedure may still be beneficial in applications where a high level of 

accuracy is desired. The GS 1 and Hydraprobe sensors exhibited a positive response to 

increase in temperature in the light textured soil. Kizito et al. (2008) reported a negative 

response of the EC-5 sensor to increase in temperature in light textured soils and a similar 

response was also reported by Merlin et al. (2007) for the earlier version of the 

Hydraprobe sensor. Bogena et al. (2007) however reported findings similar to this study 

for the EC-5 sensor. The highest response to temperature observed for the GS 1 sensor 

corresponds to an overestimation of soil moisture content by 0.02 m3m−3 while the 

highest response to temperature observed for the Hydraprobe sensor corresponds to an 

overestimation of soil moisture by 0.007 m3m−3 over a 13°C increase in soil temperature. 

These errors in soil moisture estimates by the GS 1 and Hydraprobe sensor are 

considered negligible in most applications. 

The Hydraprobe and TDR 315 sensors tested in the heavier textured soil exhibited a 

positive response to an increase in temperature at all moisture contents. This may be due 

to the release of bound water in soils high in clay content with an increase in temperature. 
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The bound water effect will lead to an overestimation of soil moisture content with an 

increase in temperature. This is in agreement with the results presented by Benson and 

Wang (2006) and Seyfried and Murdock (2004). The temperature response of the TDR 

315 sensor indicated an overestimation of soil moisture by 0.001 m3m−3, an 

overestimation of 0.016 m3m−3 by the Hydraprobe sensor, and an overestimation of 0.001 

m3m−3 by the GS 1 sensor at medium moisture content over a 13°C increase in soil 

temperature. The range of soil moisture overestimation by the TDR 315, Hydraprobe and 

GS 1 sensors tested in the heavier textured soils may be considered negligible in most 

applications. The response of the Hydraprobe sensor to an increase in temperature 

leading to overestimation of soil moisture content was, however, more pronounced at 

medium moisture contents. This range of soil moisture is usually the most critical point for 

irrigation scheduling decisions leading to a conclusion that applying a temperature 

compensation procedure for this sensor when deployed in heavier textured soils will lead 

to an improvement in irrigation scheduling decisions.  

The TDR 315 sensor exhibited a negative response to increasing temperature in the 

saline light textured soil. The decrease in the dielectric permittivity of free water with an 

increase in temperature still seemed to have a predominant effect on the output of the 

TDR 315 sensor. The highest temperature effect observed corresponds to a soil moisture 

underestimation of 0.01 m3m−3  which may be considered negligible for most applications. 

The Hydraprobe and GS 1 sensor exhibited a positive response to increasing temperature 

in the saline light textured soil. The temperature effect was positively dependent on soil 

moisture for both sensors suggesting the greater contribution of pore water to the bulk 

electrical conductivity of the light textured soil. Results also indicate that both sensors 

were more sensitive to increasing temperature in the saline light textured soil. This may be 

due to increased signal attenuation resulting from an increase in salinity and the low 

operating frequencies of both sensors. This is in agreement with the results presented by 

Saito et al. (2009) for various capacitance sensors. The highest temperature effect 

observed for the Hydraprobe correspond to a soil moisture overestimation of 0.053 m3m−3 

while the highest effect observed for the GS 1 sensor corresponds to a soil moisture 

overestimation of 0.033m3m−3. This leads to a conclusion that a temperature 

compensation procedure is important when deploying low-frequency capacitance sensor 

under conditions of variable salinity in a light textured soil.  

The three sensor types evaluated exhibited a positive response to increasing temperature 

when tested in the saline heavier textured soil. Results indicated that the sensors 

overestimated soil moisture at low VWC with the magnitude of overestimation larger at 

higher VWC. Benson and Wang (2006) presented similar results for a water content 

reflectometer evaluated in a saline clay soil. This is explained by the contribution of the 

highly charged clay particles to the bulk EC of the soil and the positive dependence of the 
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bulk soil EC on VWC. The magnitude of soil moisture overestimation by the three sensors 

was remarkably larger than statistical targets over a 13°C increase in temperature. The 

highest temperature effect observed corresponds to a soil moisture overestimation of 0.06 

m3m−3 by TDR 315, 0.04 m3m−3  by Hydraprobe and 0.04 m3m−3 by GS 1.  This 

emphasizes the need for a temperature compensation procedure when deploying these 

sensors under conditions of variable salinity in a heavier textured soil. This is in line with 

the conclusions of Skierucha et al. (2012). 

The applicability of a generalized regression procedure in developing temperature 

compensation equations for dielectric soil moisture sensors was pursued. The empirical 

temperature compensation procedure sufficiently reduced the error in soil moisture 

estimation in all the soil/sensor combinations as shown in Table 6. This suggests that the 

sensors can be used for irrigation scheduling under conditions of high salinity in the soil 

types tested when a temperature compensation calibration has been applied.  

5 Conclusions 
This research evaluated the performance of TDR 315, Hydraprobe and GS 1 soil moisture 

sensors, within air dry to saturation range of soil moisture contents, under laboratory 

conditions for three soils. Acceptable statistical targets for this test were set as an MBE 

value of ±0.02 m3m−3 and an RMSE value less than 0.035 m3m−3. Linear calibration 

equations were developed for the three sensors in all soils tested. The factory based 

calibration of the three sensors performed within the required accuracy in the light 

textured soil, and the GS 1 and Hydraprobe sensors tested in the medium textured soil. It, 

however, failed to achieve the required accuracy when the sensors were tested in the 

heavier textured soil.  

The linear calibration equation developed in the laboratory reduced the error in soil 

moisture estimates by the three sensors in all the soils tested. The laboratory calibration 

did not, however, achieve the required accuracy with the Hydraprobe sensor tested in the 

heavier textured soil.  

The TDR 315 and Hydraprobe sensors experienced errors in reporting soil moisture 

content at a high level of soil compaction and bulk density. The GS 1 sensor was however 

not sensitive to increasing soil bulk density due to compaction. Laboratory calibration 

equations developed for the sensors in the compacted soils reduced the errors in soil 

moisture estimate to values within statistical targets in the three sensors evaluated.  

The output of the three soil moisture sensors exhibited a significant linear response to 

increasing temperature when tested in both the light and heavier textured soil. The TDR 

315 sensor underestimated soil moisture with an increase in temperature while the 

Hydraprobe and GS 1 sensors overestimated soil moisture with an increase in 

temperature in the light textured soil. At low to medium moisture content, the three 
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sensors overestimated soil moisture with increasing temperature in the heavier textured 

soil. The magnitude of errors in soil moisture estimate by the three sensors increased with 

an increase in salinity level in the heavier textured soil. A similar result was recorded for 

the Hydraprobe and GS 1 sensors tested in the saline light textured soil. An empirical 

temperature compensation approach was, however, able to reduce the magnitude of the 

temperature dependence of the output of the three sensor types in all soils tested 

achieving RMSE values close to the statistical targets specified.   

In summary, this study has demonstrated that laboratory developed calibration equations 

improved the accuracy of the evaluated soil moisture sensors. A temperature 

compensation procedure has also proven to further improve the accuracy of the sensors 

when deployed under conditions of variable temperature and salinity.   
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Abstract 
The crop water stress index (CWSI) has been shown to be a tool that could be used for 

non-contact and real-time monitoring of plant water status, which is a key requirement for 

the precision irrigation management of crops. However, its adoption for irrigation 

scheduling is limited because of the need to know the baseline temperatures which are 

required for its calculation. In this study, the canopy temperature of greenhouse cultivated 

lettuce plants which were maintained as either well-watered or non-transpiring was 

continuously monitored along with prevailing environmental conditions during a five-week 

period. This data was applied in developing a dynamic model that can be used for 

predicting the baseline temperatures. Input variables for the dynamic model included air 

temperature, shortwave irradiance, and air vapour pressure deficit measured at a 10 s 

interval.  During a follow-up study, the dynamic model successfully predicted the baseline 

temperatures producing mean absolute errors (MAE) that varied between 0.17°C and 

0.29°C, and root mean squared errors (RMSE) that varied between 0.21°C and 0.35°C 

when comparing model predictions with measured values. The model predicted baseline 

temperatures were applied in calculating an empirical CWSI for lettuce plants receiving 

one of two irrigation treatments. The empirical CWSI consistently differentiated between 

the irrigation treatments and was significantly correlated with the theoretical CWSI with 

correlation coefficient (𝑟) values greater than 0.9. The dynamic model presented in this 

study requires easily measured input parameters for the prediction of the baseline 

temperatures. This eliminates the need to maintain artificial reference surfaces required in 

other empirical approaches for the CWSI calculation and also eliminates the need for 

computing the complex theoretical CWSI.  
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1 Introduction 
Optimization of crop quality during protected crop cultivation requires finely tuned water 

management; here, protected crop cultivation refers to crops grown under fixed structures 

such as greenhouses and polytunnels. The improvement of crop quality is a major aim of 

protected crop cultivation in humid countries such as the UK (Monaghan et al., 2013). 

Imposing a certain degree of water stress in determined phenological periods has been 

found to improve crop quality in a number of crops including lettuce (Monaghan et al., 

2017; Oh et al., 2010), strawberries (Weber et al., 2016), tomatoes (Kuscu et al., 2014; 

Shao et al., 2008). Monitoring tools that provide accurate information regarding plant 

water status would, therefore, be beneficial for scheduling and management of irrigation in 

protected crop cultivation (Adeyemi et al., 2017).  

Plant canopy temperature (𝑇𝑐) has long been considered as an indicator of plant water 

status (Tanner, 1963) based on the cooling effect of the transpiration process (Jones & 

Schofield, 2008). Therefore, as a remote monitoring solution, infra-red thermometry offers 

the potential of acquiring the surface temperature of plant canopies from which plant water 

status can be inferred (Jones & Leinonen, 2003). 𝑇𝑐 is determined not only by the plant 

water status but also by prevailing environmental conditions including incoming shortwave 

irradiance, wind speed, air temperature and humidity (Jones et al., 1997).  

To use 𝑇𝑐 as an indicator of plant water status, it must be normalized to account for the 

varying environmental conditions (Agam et al., 2013). One of the most commonly used 

methods for normalizing 𝑇𝑐 as an indicator of plant water status is the crop water stress 

index (CWSI) originally proposed by Jackson et al. (1981); Idso et al. (1981) in which the 

measured crop canopy temperature (𝑇𝑐) is normalized using two baseline temperatures, 

both assumed to be achieved under the same environmental conditions as 𝑇𝑐; namely (a) 

the canopy temperature of a well-watered crop (𝑇𝑛𝑤𝑠); referred to as the non-water-

stressed baseline temperature, and (b) the temperature of a non-transpiring canopy 

(𝑇𝑑𝑟𝑦); referred to as the upper limit baseline temperature.   Ideally, the CWSI ranges from 

0 to 1, where 0 represents a well-watered condition and 1 represents a non-transpiring, 

water-stressed condition, hence providing intuitive crop water status quantification as a  

simple tool for irrigation scheduling (King and Shellie, 2016). 

Two forms of the CWSI are currently available. The first is the empirical CWSI, originally 

introduced by Idso et al. (1981). In their empirical approach to quantifying the CWSI, 𝑇𝑛𝑤𝑠 

and 𝑇𝑑𝑟𝑦 were determined by developing a linear relationship for the canopy-air 

temperature difference and the vapour pressure deficit (VPD). It has however been shown 

that 𝑇𝑛𝑤𝑠 is crop growth stage dependent and also dependent on the agro climatic zone in 

which the crop is being grown (Jones, 1999). The stable weather conditions required for 

the application of the original approach to quantifying the CWSI is also seldom 
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encountered in humid regions where weather conditions are highly variable in the short 

term (Maes and Steppe, 2012). Artificial wet and dry reference surfaces have been 

successfully applied to estimate 𝑇𝑛𝑤𝑠 and 𝑇𝑑𝑟𝑦 under the same environmental conditions 

as 𝑇𝑐 for the calculation of an empirical CWSI (Grant et al., 2007; Möller et al., 2007). 

These include the use of wet and dry filter papers, leaves sprayed with water and those 

covered with petroleum jelly, and plots maintained as well watered and water stressed. 

However, the required maintenance of these artificial surfaces limit their potential use for 

automation in a precision irrigation system including periods during which high frequency 

data acquisition is required (Maes and Steppe, 2012).  

The use of theoretical equations of CWSI based on the energy balance model of Jackson 

et al. (1981) involves the combination of 𝑇𝑐 and meteorological measurements to compute 

the CWSI. This approach eliminates the need to acquire separate measurements of 𝑇𝑛𝑤𝑠 

and 𝑇𝑑𝑟𝑦. It is however limited by the need to estimate net radiation and aerodynamic 

resistance, and also requires large model input parameters (Agam et al., 2013). The 

energy balance model proposed by Jones (1999) requires less model input parameters 

and the baseline temperatures computed using the model have been demonstrated to 

show excellent agreement with the measured temperatures of artificial reference leaf 

surfaces under minimal wind conditions (Fuentes et al., 2012). It has further been 

demonstrated as producing a robust quantification of the CWSI and eliminates the need 

for artificial reference surfaces (Ben-Gal et al., 2009). However, the model requires 

ancillary measurement to reliably estimate equation parameters including the boundary 

layer resistance to heat and water vapor which limits the potential of its application in 

commercial crop production. 

Baseline temperature prediction models which have limited data requirements and 

straightforward calculation will, therefore, enhance the adoption of the CWSI as a practical 

irrigation monitoring tool. Maes and Steppe (2012) noted that this could be realized 

through improvements in the prediction of the baseline temperatures employed in the 

empirical CWSI approach. Including air temperature, solar radiation, wind speed and VPD 

as predictors in multiple linear regression models (MLR) has been found to improve the 

predictions of the baseline temperatures (Payero and Irmak, 2006). King and Shellie 

(2016) also reported improved predictions of the baseline temperatures using an artificial 

neural network (ANN), with air temperature, solar radiation, wind speed and VPD applied 

as input variables. The plant response will typically vary over the growth season due to 

crop growth and various adaptation processes (Boonen et al., 2000). Dhillon et al. (2014) 

showed that baseline temperature prediction models for tree crops varied as the season 

progressed. Hedley et al. (2014) noted that adaptive monitoring systems which are able to 

account for the temporal variability in plant response and water requirements would 

improve the performance of irrigation management tools. The ANN and MLR approaches 
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however fail to consider the time-varying nature of the plant systems as their model 

parameters are assumed to remain constant once identified.  

Dynamic models provide a possible approach for accounting for the time-varying nature of 

the plant system in the prediction of the baseline temperatures.  Dynamic models have 

been successfully applied in simplifying and modelling complex environmental and 

biological processes(Taylor et al., 2007; Young, 2006), predicting time-varying biological 

responses (Kirchsteiger et al., 2011; Quanten et al., 2006), and in many other irrigation 

decision support applications (Delgoda et al., 2016; Lozoya et al., 2016). To the best of 

our knowledge, a dynamic model has not ever been used to predict 𝑇𝑛𝑤𝑠 or 𝑇𝑑𝑟𝑦 for 

calculation of a CWSI. A dynamic model is particularly well suited for predicting 𝑇𝑛𝑤𝑠 and 

𝑇𝑑𝑟𝑦 because the time varying nature of the system under study can be taken into account 

through and adaptive and online estimation of the model parameters. This means the 

model parameters are updated recursively using all new incoming data from the system. 

Predicting plant canopy temperature may involve an understanding of the timing of the 

opening and closing of the stomates (Al-Faraj et al., 2000). A dynamic model is however 

able to implicitly account for the stomatal response by the inclusion of the time delay 

associated with each model input parameter. 

The objectives of this paper are to exhibit the potential of using a dynamic model to 

predict 𝑇𝑛𝑤𝑠 and 𝑇𝑑𝑟𝑦 (baseline temperatures) and demonstrate the applicability in 

calculating an empirical CWSI for a lettuce crop (Lactuca sativa) grown under greenhouse 

conditions. Performance of the dynamic model was evaluated by comparing the model 

predicted baseline temperatures with measured baseline temperatures. The calculated 

empirical CWSI values were also compared with theoretical CWSI values. 

2 Theoretical background 

2.1 Empirical CWSI 

The empirical CWSI introduced by Idso et al. (1981) hereafter referred to as CWSIE , is 

defined as   

CWSIE =
𝑇𝐶 − 𝑇𝑛𝑤𝑠

𝑇𝑑𝑟𝑦 − 𝑇𝑛𝑤𝑠
                                                                                                                                     (1) 

 

Where 𝑇𝐶 (°C) is the actual canopy surface temperature under given environmental 

conditions, 𝑇𝑑𝑟𝑦 (°C) is the upper limit for canopy temperature and equates to the 

temperature of a non-transpiring canopy such as would occur if the stomata were 

completely closed as a result of drought, while 𝑇𝑛𝑤𝑠 (°C) is the non-water stressed 

baseline representing the typical canopy of a well-watered crop transpiring at maximum 

rate. 
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Therefore, the temperature of a plant transpiring without soil water shortage can be 

assumed to represent 𝑇𝑛𝑤𝑠 and the temperature of a plant canopy from which all 

transpiration has been blocked, for example using petroleum jelly, can be assumed to 

represent  𝑇𝑑𝑟𝑦. This is similar to the methodology employed by Rojo et al. (2016) to 

calculate an empirical CWSI for grape and almond trees. In their study, 𝑇𝑛𝑤𝑠 and 𝑇𝑑𝑟𝑦 

were measured using a well-watered tree and a simulated dry canopy.  

2.2 Theoretical CWSI 

The theoretical CWSI proposed by Jackson et al. (1981) hereafter referred to as CWSIT is 

calculated as 

CWSIT =
(𝑇𝑐 − 𝑇𝑎) − (𝑇𝑐 − 𝑇𝑎)𝐿𝐿

(𝑇𝑐 − 𝑇𝑎)𝑈𝐿 − (𝑇𝑐 − 𝑇𝑎)𝐿𝐿
                                                                                                          (2) 

Where 𝑇𝑐 − 𝑇𝑎  is the canopy-air temperature difference, (𝑇𝑐 − 𝑇𝑎)𝐿𝐿 is the lower baseline 

representing a non-stressed canopy, transpiring at potential rate and (𝑇𝑐 − 𝑇𝑎)𝑈𝐿 is the 

upper baseline representing a stressed, non-transpiring canopy. The lower and upper 

baselines are given as 

(𝑇𝑐 − 𝑇𝑎)𝑈𝐿 =
𝑟𝑎𝐼𝑐

𝜌𝑎𝑐𝑝
𝑅𝑛                                                                                                                                    (3) 

(𝑇𝑐 − 𝑇𝑎)𝐿𝐿 =
𝑟𝑎𝐼𝑐

𝜌𝑎𝑐𝑝

𝛾(1 + 𝑟𝑐,𝑝𝑜𝑡 𝑟𝑎⁄ )

𝑠 + 𝛾(1 + 𝑟𝑐,𝑝𝑜𝑡 𝑟𝑎⁄ )
𝑅𝑛 −

1

𝑠 + 𝛾(1 + 𝑟𝑐,𝑝𝑜𝑡 𝑟𝑎⁄ )
𝛿𝑒                                            (4) 

Where 𝑟𝑎 is the aerodynamic resistance (sm−1), 𝐼𝑐 is the interception coefficient, 𝜌𝑎 is the 

air density (kgm−3), 𝑐𝑝 is the specific heat capacity of air (JKg−1K−1), 𝑅𝑛 is the net 

radiation (Wm−2), 𝑠 is the slope relating temperature with the saturation vapour pressure 

deficit (PaK−1), 𝑟𝑐,𝑝𝑜𝑡 is the canopy resistance at potential transpiration (sm−1), 𝛾 is the 

psychometric constant (kPaK−1), and 𝛿𝑒 is the vapour pressure deficit (kPa).  

CWSIT has been shown to provide a robust quantification of the water status of various 

crops (Osroosh et al., 2015; Shaughnessy et al., 2012; Yuan et al., 2004). It can be 

estimated using the canopy temperature as measured by infrared radiometers and 

appropriate environmental measurements, including aerodynamic and canopy 

resistances.  

2.3 Dynamic response of the plant canopy temperature 

The plant canopy can be viewed as a natural dynamic input/output system. The inputs 

(prevailing meteorological conditions) applied to the system causes the system to respond 

with an output (canopy temperature) (Al-Faraj et al., 2000). Under minimal wind speed 

(𝑢, 𝑚𝑠−1) conditions, the dynamic response of the canopy temperature can be expressed 

in form of a first-order differential equation given as (Jones, 2014) 
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d𝑇𝑐(𝑡)

𝑑𝑡
+ (

𝜌𝐶𝑝

𝜉𝑟𝐻

) 𝑇𝑐(𝑡) = (
𝜌𝐶𝑝

𝜉𝑟𝐻

) 𝑇𝑎(𝑡 − 𝜏𝑎) + (
1

𝜉
) 𝑅𝑛(𝑡 − 𝜏𝑟) − (

𝜌𝐶𝑝

𝜉𝛾(𝑟𝐶 + 𝑟𝐻

) (𝑒𝐶
∗ − 𝑒𝑎)(𝑡 − 𝜏𝑣)                 (5) 

With 𝜌∗𝐶𝑝
∗𝑙∗ = 𝜉  

Where 𝑡 is the time (s), 𝜏(𝑎,𝑟,𝑣) are the advective time delays (s) associated with the air 

temperature, radiation and vapour pressure deficit inputs respectively, 𝜌 is the air density 

(Kg m−3), 𝐶𝑝 is the heat capacity of air (J Kg−1 °C−1), 𝑇𝑐 is the canopy temperature (°C), 𝑇𝑎 

is the air temperature (°C), 𝑒𝐶
∗ is the saturated vapour pressure at canopy temperature 

(kPa), 𝑒𝑎 is the vapour pressure of air (kPa), 𝑟𝐻 is the aerodynamic resistance (s m−1), 

𝑟𝐶  is the canopy resistance (s m−1) , 𝑅𝑛 is the net radiation  (Wm−2) and 𝛾 is the 

psychrometric constant (Pa °C−1).  

Using Laplace transform, Eq.(5) can be rewritten as (Al-Faraj et al., 2000) 

(𝑠 + 𝑎)𝑇𝑐(𝑡) = 𝑎𝑇𝑎(𝑡 − 𝜏𝑎) + 𝑏𝑅𝑛(𝑡 − 𝜏𝑟) − 𝑐(𝑒𝑐
∗ − 𝑒𝑎) (𝑡 − 𝜏𝑣)                                                    (6) 

Where 

𝑠 = 𝑑 𝑑𝑡⁄  is the time derivative operator 

𝑎 = [𝜌𝐶𝑝] [ 𝜉𝑟𝐻]⁄   (s−1)                                                                                                                                        

𝑏 = 𝜉−1(m2°CW−1s−1)                                                                                                                                         

𝑐 = [𝜌𝐶𝑝] [⁄  𝜉𝛾(𝑟𝑐 + 𝑟𝐻)](°CPa−1s−1)                                                                                                              

The net radiation flux (𝑅𝑛) absorbed by the crop can be systematically assumed to be 

equal to the net radiation measured above the crop, thus neglecting the radiation 

exchanged below the canopy and the ground. Thus, net radiation above the canopy is 

almost equal to the total shortwave irradiance 𝑅𝑠𝑤 (Wm−2) during the day (Cannavo et al., 

2016).  

The canopy-air vapor pressure difference in Eq. (6). can be expressed in terms of vapor 

pressure deficit of the ambient air as  

𝑒𝑐
∗ − 𝑒𝑎 = (𝑒𝑎

∗ − 𝑒𝑎) + ∆                                                                                                                                (7) 

Where ∆  (k Pa° C−1) is the slope of the curve relating the saturation vapor pressure to 

temperature which is assumed to be approximately constant over the range Tc to Ta 

(Jones, 2014).  

Since ∆ is a constant, Eq. (7) is expressed with respect to time as (𝑒𝑎
∗ − 𝑒𝑎) which is the 

VPD of the ambient air as a function of time. 

Therefore, Eq. (5) can be expressed as a first-order continuous time multiple-input-single-

output (MISO) transfer function model 
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𝑇𝑐(𝑡) =
𝑎

𝑠 + 𝑎
𝑇𝑎(𝑡 − 𝜏𝑎) +

𝑏

𝑠 + 𝑎
𝑅𝑠𝑤(𝑡 − 𝜏𝑟) −

𝑐

𝑠 + 𝑎
𝑉𝑃𝐷(𝑡 − 𝜏𝑣)                                                (8) 

The dynamic model in Eq. (8) has the canopy temperature (𝑇𝑐) as the model output. The 

model inputs are the dynamic course of air temperature (𝑇𝑎), shortwave irradiance (𝑅𝑠𝑤) 

and the air vapour pressure deficit (VPD). The physical meaningfully model parameters to 

be estimated are 𝑎, 𝑏 and 𝑐 which can be accomplished using a suitable system 

identification technique described in section 2.4. The identified parameters will be unique 

to the well-watered and non-transpiring canopies, and will also drive the dynamic 

response of their temperatures to the prevailing meteorological conditions.  

 

2.4 Data-based mechanistic modelling approach 

Data-based mechanistic (DBM) modelling is a dynamic modelling approach applicable to 

transfer function models (Young, 2006). It consists of two phases as illustrated in Figure 1. 

In the mechanistic phase, a model structure is formulated based on the physical 

knowledge of the process under consideration. In the data-based phase, time-series 

input/output data are exploited to estimate the physically meaningful model parameters 

and the advective time delay associated with each model input (Desta et al., 2004).  

 

  

Figure 1. The Data-based mechanistic (DBM) modelling approach (Desta et al., 2004) 
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The DBM model can be formulated in the form of a MISO continuous-time transfer 

function written as 

𝑦(𝑡) =
𝐵1(𝑠)

𝐴(𝑠)
𝑢1(𝑡 − 𝜕1) + ⋯ +

𝐵𝑘(𝑠)

𝐴(𝑠)
𝑢𝑘(𝑡 − 𝜕𝑘) +

1

𝐶(𝑠)
𝑒(𝑡)                                                           (9) 

In Eq. 9, 𝑦(𝑡) is the output which is 𝑇𝑐 in this study, 𝑢𝑘 are the set of k inputs into the 

system which are 𝑇𝑎, 𝑅𝑠𝑤 and VPD in this study, 𝜕𝑘 are the advective time delays 

associated with each input and 𝑒(𝑡) is the noise signal considered as zero mean, white 

noise with Gaussian amplitude distribution and variance.  

𝐴(𝑠) and 𝐵(𝑠) are polynomials in the derivative operator 𝑠 = 𝑑 𝑑𝑡⁄  of the form 

𝐴(𝑠) = 𝑠𝑛 + 𝑦1𝑠𝑛−1 + ⋯ 𝑦𝑛−1𝑠 + 𝑦𝑛                                                                                                      (10) 

𝐵(𝑠) = 𝑥0𝑠𝑚 + 𝑥1𝑠𝑚−1 + ⋯ 𝑥𝑚−1𝑠 + 𝑥𝑚                                                                                              (11) 

 Where 𝑥, 𝑦 are model parameters to be estimated for the 𝐴(𝑠) and 𝐵1(𝑠) … 𝐵𝑘(𝑠) 

polynomials. The model structure is denoted by the triad [𝑛, 𝑚, 𝜕] where 𝑛 represents the 

number of parameters in the 𝐴(𝑠) polynomial, 𝑚 represents the number of parameters in 

each 𝐵(𝑠) polynomial and 𝜕 is the time delay associated with each input. By comparing 

Eq. (8) with Eq. (9-11), in the present study, the model parameters to be identified are 

𝑎, 𝑏, 𝑐, n=1 (𝑎 in the denominators of Eq. 8) and m=1 for each input (𝑎, 𝑏, 𝑐 in the 

numerators of Eq.8). The time delays are 𝜏𝑎, 𝜏𝑟 and 𝜏𝑣. 

The continuous time MISO transfer function model parameters and time delays are 

estimated from the experimental input/output time-series data using the recursive refined 

instrumental variable algorithm for continuous time systems (RIVC) (Taylor et al., 2007). 

This algorithm has been applied and validated for many practical applications (Young & 

Garnier, 2006). The RIVC optimally filters the data which ensures the estimation is 

statistically efficient and also generates the filtered derivatives of the input and output 

signals. The model estimated using the RIVC approach has statistically optimum 

properties due to the iterative and adaptive mode of solution used by the algorithm 

(Youssef et al., 2011). 
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3 Methodology 
Plant canopy temperature and meteorological data for lettuce plants cultivated under 

greenhouse conditions were collected for the development and testing of the dynamic 

model.  

The lettuce crop was selected for our study because of its highly sensitive response to 

water stress. Irrigation is also widely optimized to enhance the post-harvest quality of the 

crop (Monaghan et al., 2017). Some previous studies have reported the canopy 

temperature as a useful indicator of the plant water status of the lettuce crop (Qiu et al., 

2009; Story and Kacira, 2015). 

3.1 Plants and measurements 

The canopy temperature of randomly selected lettuce plants was continuously measured 

for two five-week study periods.  

At the start of the initial five-week study, eight plants were maintained as well-watered by 

adding irrigation volumes to fully replace daily water loss through crop evapotranspiration 

(ETC). The water loss through ETC for all plants was measured using a load balance 

system (Model ALC, Acculab, Englewood, USA) with a 16 𝑘𝑔 capacity and ±0.1 𝑔 

resolution. This set of plants were used for 𝑇𝑛𝑤𝑠 measurements. Petroleum jelly was 

applied on the leaves of eight other plants to completely inhibit transpiration, and this set 

of plants were used for 𝑇𝑑𝑟𝑦 measurements. Prior to the application of the petroleum jelly, 

these plants received irrigation volumes to fully replace ETC water loss. The plants 

selected for 𝑇𝑑𝑟𝑦 measurements were replaced after three days with a new set of plants 

which had been receiving full irrigation volumes in order to ensure uniform development of 

the plant canopy.  

During a follow up five-week study with a new set of lettuce plants receiving irrigation 

volumes to fully replace water loss through ETC, two days prior to the commencement of 

measurements, four replicate lettuce plants received one of two irrigation treatments 

supplying; 80% of ETC and 40% of ETC. The treatments are hereafter referred to as 80ET 

and 40ET respectively. These sets of plants were used for 𝑇𝑐 measurements for the 

calculation of the CWSI. This methodology was applied in order to ensure uniform 

development of the plant canopy. A total of ten plants were also maintained as well-

watered and stressed for assessing the model prediction of the baseline temperatures. 

The canopy temperature of each of the plants was continuously measured using Pyro 

NFC infrared (IR) sensors (Calex Electronic Limited, Bedfordshire, UK). The IR sensors 

operate at a spectral range of 8 – 14𝜇𝑚. The sensors were positioned approximately 30 - 

50𝑐𝑚 above the plant canopy and pointed in a nadir direction. The temperature sensing 

area was approximately 3 - 5𝑐𝑚 to ensure only the plant canopy was in the view of the IR 

sensors. Readings from the IR sensors were recorded every 10 s.  
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Environmental variables measured at plant canopy level included ambient air temperature 

and relative humidity using a temperature and humidity probe (Model EE08, E+E 

Elektronik, Engerwitzdorf, Austria), and shortwave irradiance using a pyranometer sensor 

(Model SP-110,  Apogee Instruments, Logan, Utah, USA). Wind speed was measured 

using a hot wire anemometer (Model AM – 4202, Lutron Electronics, London, UK) 

installed 10cm above the crop canopy. The VPD was calculated using temperature and 

relative humidity data following the equations outlined in Allen et al. (1998).  Readings 

from the sensors were recorded every 10 s. All sensors were factory calibrated by their 

respective manufacturers.  

Data from all the sensors were collected and stored using a CR1000 data acquisition 

system (Campbell Scientific, Logan, Utah, USA). 

The leaf area index (LAI) values for the plants used for IR measurement were assessed 

using digital images captured with a mobile phone camera. The LAI values were then 

extracted from the digital images using the Easy leaf area software (Department of Plant 

Sciences, University of California). During the initial study period, leaf area measurement 

was conducted on six random plants every three days. The measurements were 

conducted prior to the application of petroleum jelly on the 𝑇𝑑𝑟𝑦 plants. During the follow 

up study leaf area measurement was conducted on six random plants, prior to the 

initiation of irrigation treatments.  

3.2 Dynamic model development for the baseline temperatures 

The DBM modelling approach was applied in developing the dynamic model of the 

baseline temperatures. This was achieved using all incoming time-series measurements 

of 𝑇𝑛𝑤𝑠, 𝑇𝑑𝑟𝑦 and environmental variables recorded during the initial five week period, 

resulting in an approximate total of 302, 000 data points for each measured variable. The 

parameter estimation was constrained to a first-order model following Eq. (8), and the 

model parameters and the time delay associated with each input were identified using the 

recursive RIVC algorithm. 

3.3 CWSI calculations 

The CWSI proposed by Idso et al. (1981) was intended as a tool for detecting the water 

status of plants around noon which corresponds to the period of peak plant transpiration. 

However, an extended period of between 8:00 and 16:00 h was explored during this 

study.  

CWSIE was calculated for the 40ET and 80ET plants using their measured canopy 

temperature and the baseline temperatures predicted using the dynamic model. CWSIT 

was also calculated for these plants using their measured canopy temperature and 
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ancillary meteorological measurements. The aerodynamic resistance, 𝑟𝑎   was calculated 

following the equations of  Thom and Oliver (1977) given as  

𝑟𝑎 =
4.72 {𝐼𝑛 [

𝑧 − 𝑑
𝑧𝑜

]}
2

1 + 0.54𝑢
                                                                                                         (12)                        

Where 𝑧 is the measurement height (𝑚), 𝑑 the displacement height (𝑚), 𝑧𝑜 the roughness 

length (𝑚), and 𝑢 the windspeed (𝑚𝑠−1). Values of 𝑧𝑜 and 𝑑 were derived from the plant 

height ℎ (m) as 𝑧𝑜 = 0.13 ℎ and 𝑑 = 0.67 ℎ. The canopy resistance at potential 

transpiration, 𝑟𝑐,𝑝𝑜𝑡 was determined for each of the evaluation days by adjusting its value 

until the lowest CWSI value on that day was zero (González-Dugo et al., 2006). 

The CWSI values were computed using 15 mins average values of the measured canopy 

temperature and environmental variables.  

3.4 Statistical analysis 

Model evaluation was carried out by comparing the 𝑇𝑛𝑤𝑠 and 𝑇𝑑𝑟𝑦 values predicted by the 

dynamic model and the measured values using several goodness-of-fit statistical 

indicators. These included the coefficient of determination (𝑅2), the mean absolute error 

(MAE) and the root mean square error (RMSE). The coefficient of correlation (𝑟) was 

applied in comparing CWSIE with CWSIT. 

The MAE and RMSE were calculated as (Chai and Draxler, 2014). 

MAE =
1

𝑛
∑|𝑃𝑖 − 𝑂𝑖|

𝑛

𝑖=1

                                                                                                                                  (13) 

 

RMSE = [
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1

𝑛
]

0.5

                                                                                                                      (14) 

 

Where 𝑂𝑖 and 𝑃𝑖 are measured and predicted value at time 𝑖 (𝑖 = 1,2, … … 𝑛) respectively. 

𝑅2 values close to 1 indicate that the model explains well the variance of observations, 

and MAE and RMSE values close to zero indicate good model predictions (González et 

al., 2015). 𝑟 values close to 1 indicate a strong positive linear relationship between the 

compared variables.  

4 Results and discussion 

The recursive parameter identification for the development of the dynamic model was 

conducted using all incoming time-series of data collected during the initial five-week 
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study period.  Data from four selected days during the follow-up study, however, seem to 

be sufficient to conduct the model evaluation as this data shows a contrast in the 

prevailing environmental conditions (Appendix A) and crop growth stage( Appendix B). 

These days are hereafter referred to as D1, D2, D3 and D4 respectively.  

4.1 Dynamic modelling of the baseline temperatures 

The measured canopy temperatures of each of the plants maintained as either 𝑇𝑛𝑤𝑠 or 

𝑇𝑑𝑟𝑦 were usually within 1°C of each other. The average coefficient of variance was 1.8% 

for 𝑇𝑛𝑤𝑠 measurements and 2% for 𝑇𝑑𝑟𝑦 measurements. The average measured canopy 

temperature of the plants in each baseline temperature group was therefore applied in 

recursive parameter identification. 

The dynamics of 𝑇𝑛𝑤𝑠 and 𝑇𝑑𝑟𝑦 were consistently described by a first order model as 

indicated in the transfer function model in Eq. (8). The standard errors associated with the 

recursive parameter estimates ranged from 4 % to 10 %. The model residuals also had a 

zero mean with a standard deviation less than ± 1°C. These low parameter standard 

errors and residuals give evidence in favour of the first order model. It was however 

observed that the recursively identified model parameters and the time delay associated 

with the model inputs varied temporally over the plant growth cycle. For this reason, the 

LAI was used to divide the models into four intervals as shown in Table 1. The intervals 

include LAI values less than 0.8, 0.8 to 1.6, 1.6 to 2.5 and above 2.5. For the division, it is 

easy to change the LAI into other time units such as days after planting. The LAI evolution 

over the study period and identified model parameters are presented in Appendix C. 

 

Table 1. Model Identified for the different leaf area index (LAI) intervals 

LAI interval 𝑇𝑛𝑤𝑠 

n  m  𝜏𝑎  𝜏𝑟  𝜏𝑣 

𝑇𝑑𝑟𝑦 

n  m  𝜏𝑎  𝜏𝑟  𝜏𝑣 

0.8 or lower 1  1  2  2  2 1  1  2  2  2 

0.8 to 1.6 1  1  1  2  2 1  1  1  2  2 

1.6 to 2.5 1  1  1  1  2 1  1  2  1  2 

2.5 or higher 1  1  1  1  1 1  1  1  1  2 



  

 102 

Taking plant growth into account when predicting baseline temperatures would greatly 

reduce the errors associated with the prediction as a result of the time-varying nature of 

the plant system. Payero and Irmak (2006) noted that plant growth affects the crop 

aerodynamic resistance, surface albedo and canopy resistance which affects the canopy 

temperature response and hence induces a change in established model parameters. The 

accuracy of regression models developed by the authors for predicting baseline 

temperatures for corn and soybean was greatly improved when they accounted for the 

evolution of the plant height.  

4.2 Baseline temperature prediction 

The comparisons between the model predicted and measured baseline temperatures are 

presented in Figure 2. The data points in Figure 2 are selected from D1 – D4 which 

corresponds to a day in each of the four LAI intervals used to divide the models (Appendix 

B). It is seen that the predicted 𝑇𝑛𝑤𝑠 are highly correlated with the measured 𝑇𝑛𝑤𝑠 values 

(𝑅2 = 0.92). The predicted 𝑇𝑑𝑟𝑦 values are also highly correlated with the measured 𝑇𝑑𝑟𝑦 

values (𝑅2 = 0.95). Summary statistics on the comparison between the measured and 

model predicted baseline temperatures are also presented in Table 2. 

 

Table 2. Results of the comparison between the measured and model predicted baseline 

temperatures 

 

LAI interval 𝑇𝑛𝑤𝑠 

RMSE (°C)      MAE (°C)          

𝑇𝑑𝑟𝑦 

RMSE (°C)      MAE (°C)          

0.8 or lower 0.35                0.29 0.31                 0.24 

0.8 to 1.6 0.23                0.18 0.25                 0.20 

1.6 to 2.5 0.21                0.17 0.28                 0.21 

2.5 or higher 0.22                0.18 0.22                 0.17 

 

Table 2 shows the model performs with reasonable accuracy in each LAI interval, 

recording low MAE and RMSE values. This suggests that the dynamic model can account 
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for the time-varying response of the plant system and its influence on the canopy 

temperature response.  

 

 

Figure 2. Comparison between the measured and modelled predicted baseline 
temperatures for the four model evaluation days (A) 𝑇𝑛𝑤𝑠 (B) 𝑇𝑑𝑟𝑦 

The dynamic response of the measured baseline temperatures along with prevailing 

shortwave irradiance and ambient air temperature for a sunny and cloudy day is 

presented in Figure 3. 𝑇𝑑𝑟𝑦 values are consistently higher than 𝑇𝑛𝑤𝑠 values which in turn 

maintain values lower than the ambient air temperature.  It can also be seen that the 

fluctuations in the baseline temperature values closely follow the fluctuations in the 

incoming solar radiation. This is in agreement with  results presented by  Agam et al. 

(2013). The importance of considering the diurnal dynamics of the baseline temperatures 

was highlighted in a study by Payero and Irmak (2006). In their study, significant diurnal 

variations as high as 5°C was recorded for the baseline canopy and air temperature 

difference measured on corn and soybean crops. They attributed these variations to 

diurnal variations in the incoming solar radiation. They concluded that accounting for 

these diurnal variations and its effect on the canopy temperature dynamics will result in 

more accurate and realistic baseline temperature predictions. The empirical CWSI 



  

 104 

approach proposed by Idso et al. (1981) assumes the baseline temperatures are constant 

often leading to erroneous values during cloudy periods.  Agam et al. (2013) has shown 

that neglecting the influence of the prevailing environment on the baseline temperatures 

leads to a severe underestimation of CWSI values for stressed olive trees during periods 

of abrupt changes in radiation intensity.  

It should be noted that the DBM modelling technique constitutes a data-driven approach in 

which the dynamic response of the baseline temperatures is parametrized for the specific 

ranges of environmental and crop conditions encountered during model development, and 

therefore the models are only applicable to the specific crop and environment for which 

they are developed. The methodology can, however, be adapted to any other location and 

crop grown under greenhouse conditions.  

The high speed of the prevailing wind under field conditions results in turbulent and 

atmospheric and canopy exchanges which in turn alters the canopy energy balance. 

Hence, it may be important to consider the influence of the prevailing wind when 

developing dynamic models to estimate baseline temperatures for field grown crops.  
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Figure 3. The diurnal dynamics of the baseline temperatures (𝑇𝑑𝑟𝑦 and  𝑇𝑛𝑤𝑠)  along with 

the incoming shortwave irradiance (𝑅𝑠𝑤) and ambient air temperature (𝑇𝑎𝑖𝑟). (A) Sunny 

day (B) Cloudy day 

4.3 Comparison of the empirical and theoretical CWSI 

A comparison of the CWSIE and CWSIT values calculated during the four model evaluation 

days for the 40ET and 80ET plants is presented in Figure 4. Both CWSI approaches are 

able to clearly separate the water status of the plants which explains the gaps in the plots. 

The CWSI values are significantly correlated (p < 0.01) during all days with 𝑟 values 

greater than 0.9. These high correlation values are demonstrated during all crop growth 

stages in form of the LAI evolution.  
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Figure 4. Comparison of empirical (CWSIE) and theoretical (CWSIT) crop water stress 

index during the model evaluation period (A) D1 (B) D2 (C) D3 (D) D4 

The empirical CWSI approach demonstrated in this paper requires easily measured 

meteorological variables and crop canopy temperature for its computation. The high 

correlation between the empirical CWSI and the widely validated theoretical CWSI further 

suggests it can be deployed as part of an irrigation monitoring tool. This will eliminate the 

need for the computation of the crop canopy and aerodynamic resistance which is 

required for the computation of the theoretical CWSI. It also eliminates the need to 

physically maintain dry and wet reference surfaces which are required for the baseline 

temperature computation in other empirical CWSI approaches. 

4.4 Daily dynamics of the crop water stress index 

The diurnal dynamics  CWSIE calculated for the 40ET and 80ET plants were well 

differentiated during the four model evaluation days as shown in Figure 5. The CWSI 

recorded for the 80ET crops ranged between 0.1 – 0.4 while those of the 40ET plants 

consistently approached values ranging from 0.8 – 1 at noon which coincides with the 
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period of maximum atmospheric evaporative demand.   The dynamics of the modelled 

baseline temperatures are also presented in Figure 6. 

Agam et al. (2013) suggested that the diurnal course of CWSI of well-watered plants will 

maintain a relatively constant level while that of stressed plants will increase until early 

afternoon and decrease after that, following the dynamics of evaporative demand. Indeed 

the diurnal course of  CWSIE calculated for both 80ET and 40ET plants followed these 

patterns as shown in Figure 5. The cloudless conditions that are required for the 

application of the original empirical CWSI approach may not occur often enough during 

noon in humid climates such as UK (Jones, 1999). The ability of the empirical CWSI 

approach proposed in this paper to depict the plant water status of lettuce over an 

extended diurnal period should, however, make its application in practice more flexible. 

This is because the baseline temperature values applied in its calculation are predicted as 

a function of the prevailing environment, limiting the underestimation of CWSI of stressed 

plants during cloudy periods as shown by  Agam et al. (2013). Furthermore, the results 

indicate that the CWSI calculated during diurnal periods different from the solar noon 

separates the water status of the stressed and well-watered plants, which will be 

particularly attractive for applications where there is a rapid change in the plant's water 

status due to limited container volume or substrate water holding capacity.  
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Figure 5. Diurnal dynamics of empirical crop water stress index (CWSI_E) during the 
model evaluation period (A) D1 (B) D2 (C) D3 (D) D4 
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Figure 6. Diurnal dynamics of the baseline temperatures (𝑇𝑑𝑟𝑦 and  𝑇𝑛𝑤𝑠)   during the 

model evaluation period (A) D1 (B) D2 (C) D3 (D) D4 

It is however noted that while the empirical CWSI described in this paper can provide a 

useful indication of the need for irrigation, it is unable to estimate the amount of irrigation 

water that is needed. As such, this tool should be complemented with soil moisture 

measurements or estimations of ETC in order to implement a robust irrigation decision 

support system.  

5 Conclusions 

In this paper, the feasibility of using a dynamic model to predict the baseline temperatures 

needed to calculate an empirical CWSI was demonstrated for the lettuce crop cultivated in 

a greenhouse. The dynamic response of the baseline temperatures was modelled as a 

function of shortwave irradiance, air temperature and VPD, and parameters of the model 

varied in response to crop growth. The empirical CWSI values computed using the 

dynamic model predicted baseline temperatures were significantly correlated with 
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theoretical CWSI values at all crop growth stages and successfully differentiated between 

two levels of irrigation treatment for the lettuce crop. 

The dynamic modelling approach adopted in this study for predicting the baseline 

temperatures should enhance the application of the CWSI method for irrigation 

scheduling. It requires easily measured meteorological variables as input parameters, and 

it is able to account for the diurnal fluctuations in these variables in the baseline 

temperature prediction. It can also be applied in computing the CWSI over an extended 

diurnal period making its application more flexible.  The requirement for the calculation of 

the aerodynamic resistances needed in the theoretical CWSI computation is eliminated. 

The need to maintain artificial reference surfaces applicable in other empirical CWSI 

approaches is also eliminated. The implementation of this model in a commercial 

greenhouse and model development for other high-value crops will be the focus of future 

research.  
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Appendices 

Appendix A: Climatic conditions during model evaluation 

 

Figure A1. Climatic conditions during D1 (A) 𝑇𝑎𝑖𝑟 (Air temperature) and VPD (Vapour 

pressure deficit) (B) 𝑅𝑠𝑤 (Incoming shortwave irradiance) 
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Figure A2. Climatic conditions during D2 (A) 𝑇𝑎𝑖𝑟 (Air temperature) and VPD (Vapour 

pressure deficit) (B)  𝑅𝑠𝑤 (Incoming shortwave irradiance) 
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Figure A3. Climatic conditions during D3 (A) 𝑇𝑎𝑖𝑟 (Air temperature) and VPD (Vapour 

pressure deficit) (B) 𝑅𝑠𝑤 (Incoming shortwave irradiance) 
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Figure A4. Climatic conditions during D4 (A) 𝑇𝑎𝑖𝑟 (Air temperature) and VPD (Vapour 

pressure deficit) (B)  𝑅𝑠𝑤 (Incoming shortwave irradiance) 
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Appendix B: Crop growth stage during the model evaluation days 

Table B1. Leaf area index (LAI) values (standard deviations in brackets) during the model 
evaluation days 

LAI value LAI interval Model evaluation day 

0.6 (0.03) 0.8 or lower D1 

1.3 (0.05) 0.8 to 1.6 D2 

2.2 (0.15) 1.6 to 2.5 D3 

4.2 (0.11) 2.5 or higher D4 

Appendix C: Model parameters as a function of LAI evolution 

 

Figure C1. Leaf area index (LAI) evolution during the study period 
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Table C1. Model parameter estimation (standard errors in brackets) at different leaf area 

index (LAI) intervals 

 

 

 

 

 

 

  

Baseline 

temperature 

 Parameter 

estimates 

 LAI interval 

 a b c  

𝑇𝑛𝑤𝑠 0.0043 

(0.0003) 

0.0018 

(0.0002) 

0.0060 

(0.0004) 

0.8 or lower 

𝑇𝑛𝑤𝑠 0.0055 

(0.0004) 

0.0032 

(0.0003) 

0.0094 

(0.0003) 

0.8 to 1.6 

𝑇𝑛𝑤𝑠 0.0058 

(0.0002) 

 0.0037 

(0.0005) 

0.0098 

(0.0011) 

1.6 to 2.5 

𝑇𝑛𝑤𝑠 0.0049 

(0.0003) 

 0.0040 

(0.0005) 

0.0087 

(0.0002) 

2.5 or higher 

𝑇𝑑𝑟𝑦 0.0022 

(0.0004) 

0.0013 

(0.0001) 

0.0028 

(0.0003) 

0.8 or lower 

𝑇𝑑𝑟𝑦 0.0032 

(0.0007) 

0.0025 

(0.0002) 

0.0033 

(0.0002) 

0.8 to 1.6 

𝑇𝑑𝑟𝑦 0.0037 

(0.0001) 

0.0031 

(0.0004) 

0.0038 

(0.0003) 

1.6 to 2.5 

𝑇𝑑𝑟𝑦 0.0025 

(0.0002) 

0.0028 

(0.0001) 

0.0035 

(0.0001) 

2.5 or higher 
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Abstract 
Real-time information on the plant water status is an important prerequisite for the 

precision irrigation management of crops. The plant transpiration has been shown to 

provide a good indication of its water status. In this paper, a novel plant water status 

monitoring framework based on the transpiration dynamics of greenhouse grown lettuce 

plants is presented. Experimental results indicated that lettuce plants experiencing 

adequate water supply transpired at a higher rate compared to plants experiencing a 

shortage in water supply. A data-driven model for predicting the transpiration dynamics of 

the plants was developed using a system identification approach.  Results indicated that a 

second order discrete-time transfer function model with incoming radiation, vapour 

pressure deficit, and leaf area index as inputs sufficiently explained the dynamics with an 

average coefficient of determination of 𝑅𝑇
2 = 0.93 ± 0.04. The parameters of the model 

were updated online and then applied in predicting the transpiration dynamics of the 

plants in real-time. The model predicted dynamics closely matched the measured values 

when the plants were in a predefined water status state. The reverse was the case when 

there was a significant change in the water status state. The information contained in the 

model residuals (measured transpiration – model predicted transpiration) was then 

exploited as a means of inferring the plant water status. This framework provides a simple 

and intuitive means of monitoring the plant water status in real-time while achieving a 

sensitivity similar to that of stomatal conductance measurements. It can be applied in 

regulating the water deficit of greenhouse grown crops, with specific advantages over 

other available techniques. 
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1 Introduction 
The precise determination of irrigation water requirement and timing is a precursor to the 

successful precision irrigation management of crops (Kochler et al., 2007). This requires a 

knowledge of the plant water status in real-time which can then guide in arriving at optimal 

irrigation scheduling decisions. 

Contact monitoring methods such as measurements of stomatal conductance, sap-flow, 

and leaf turgor pressure have been shown to provide an adequate indication of plant 

water status. However, these methods are plant-based, requiring large replication to 

provide an indication of water status at crop level. They also require technical expertise for 

implementation, laborious and difficult to deploy as a real-time monitoring tool (Jones, 

2004). Non-contact measurement of plant canopy temperature (𝑇𝑐) which is normalized 

using a crop water stress index (CWSI) also provides a good indication of plant water 

status (Ben-Gal et al., 2009). Its application as a monitoring tool in commercial crop 

production is however limited because of the need to know the baseline temperatures 

which are required for its computation under the same environmental conditions as 𝑇𝑐 

(Maes and Steppe, 2012). Non-contact monitoring tools which can provide a real-time 

indication of the plant water status at crop level, with non- laborious implementation, and 

minimal instrumentation and computation requirements  will therefore be beneficial in 

implementing precision irrigation management in commercial crop production (Adeyemi et 

al., 2017).  

The plant transpiration is perhaps the best indication of plant water status (Jones, 2008; 

Maes and Steppe, 2012). Plants experiencing unrestricted water supply (well-watered 

plants) have been shown to transpire at a higher rate when compared to plants 

experiencing a shortage in water supply (Ben-Gal et al., 2010; Villarreal-Guerrero et al., 

2012). This is due to the regulation of water loss by the plant's stomates with the stomates 

of well-watered plants opening up more in response to atmospheric demand. The 

stomates of plants experiencing water shortage open up less in response to atmospheric 

demand in order to limit water loss (Blonquist et al., 2009). Therefore, the water status of 

a plant can be inferred from measurements of its transpiration rate.  

Traditionally, the knowledge of crop transpiration over time has been applied in the 

dynamic control of water supply to greenhouse crops (Daniel et al., 2013). This is usually 

in form of an off/off control strategy in which irrigation is applied after the accumulation of 

a set point cumulative transpiration amount (Davis and Dukes, 2010). These computer-

controlled irrigation systems make use of mechanistic or empirical models to estimate 

crop transpiration based on environmental and physiological factors (Barnard and 

Bauerle, 2015).  
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Several models have been developed for the estimation of transpiration from greenhouse 

cultivated ornamental and vegetable crops (Baptista et al., 2005; Fatnassi et al., 2004; 

Jolliet and Bailey, 1992; Montero et al., 2001). Most of these models are based on the 

thermal energy balance equation of the plant canopy and are similar to the Penman-

Monteith (PM) equation (Howell and Evett, 2004). These models are able to account for 

the effect of actual water supply on transpiration through the incorporation of a stomatal 

resistance component. The stomatal resistance is expressed as a function of several 

factors including solar radiation, leaf vapour pressure deficit, leaf temperature, 𝐶𝑂2 

concentration, photosynthetically active radiation, leaf water potential etc. (Kochler et al., 

2007). The development of these models requires the calibration of several hard-to-

measure parameters which limit their practical application as an irrigation monitoring tool 

(Villarreal-Guerrero et al., 2012). Furthermore, these models are unable to account for the 

time varying nature of the plant system, as their parameters are assumed to remain 

constant once identified. The response of a plant will vary as a result of growth, biotic and 

abiotic factors, and adaptation processes (Boonen et al., 2000).  

Data-driven modelling approaches based on measured input-output data of a process 

have been shown to provide robust approximations of various biological processes and 

often require fewer input parameters when compared to mechanistic models (Navarro-

Hellín et al., 2016). The later is difficult to implement as a perfect knowledge of the 

physical process under consideration is often required (Bennis et al., 2008). Sánchez et 

al. (2012) applied a system identification approach in predicting the transpiration rate of a 

greenhouse grown tomato crop. Their approach showed promise in accounting for the 

time-varying plant response through an online update of the model parameters. Speetjens 

et al. (2009) also applied an extended Kalman filtering algorithm for the online estimation 

of model parameters for predicting the transpiration of a greenhouse grown crop. Both 

studies reported improved prediction of plant transpiration rates when compared to values 

predicted by mechanistic models. The modelling approach presented in both studies are 

data-driven making their practical application as an irrigation monitoring tool viable. They 

also do not require the stomatal behaviour to be modelled explicitly as it is accounted for 

in the online parameter estimation process.  

System identification is a data-driven modelling approach which is applied in modelling 

dynamic systems (Chen and Chang, 2008). It has been successfully applied in simplifying 

and modelling complex environmental and biological processes(Taylor et al., 2007; 

Young, 2006), predicting time-varying biological responses (Kirchsteiger et al., 2011; 

Quanten et al., 2006)  and in many other irrigation decision support applications (Delgoda 

et al., 2016; Lozoya et al., 2016). It is extensively applied as part of the fault detection 

methodologies in the advanced process control industry (Young, 2006). During fault 

detection, a system identification approach is used to build a dynamic model of a process 
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in a known healthy state. The output predicted by the model can then be compared to the 

actual real-time measurements from the process. The parameters of the model can also 

be updated as new data is acquired from the process (Gil et al., 2015).  This methodology, 

which has proven to be successful in the process control industry, can be adapted and 

applied as part of an adaptive decision support system for irrigation monitoring (Adeyemi 

et al., 2017). 

The objectives of this study are to investigate if the transpiration rates of greenhouse 

grown lettuce plants (Lactuca sativa) maintained at different water deficit levels will differ. 

This will provide a justification for the application of this measurement as a plant water 

status monitoring tool. A system identification approach is thereafter applied in developing 

a model of the transpiration dynamics and predicting the transpiration rate of these plants. 

Finally, the predicted transpiration rate is used as a tool for monitoring the water status of 

the lettuce plants and real-time detection of deviations from a defined water status state. 

2 Background 

2.1 Plant transpiration 

Plant transpiration can be described by the Penman-Monteith equation (Monteith, 1973). 

This equation and other transpiration models derived from it specify that the transpiration 

(𝑇𝑝(𝑔𝑚−2𝑚𝑖𝑛−1)) is dependent on the incoming solar radiation (𝑅𝑠𝑤(𝑊𝑚−2)) and the 

vapour pressure deficit of the ambient air (∆(𝑘𝑃𝑎)). This is expressed as  

𝑇𝑝 = 𝑅𝑠𝑤𝐶𝐴 + ∆𝐶𝐵                                                                                                                                          (1) 

Where the coefficients 𝐶𝐴 and 𝐶𝐵 are crop dependent parameters. 

Baille et al. (1994) noted that the coefficient 𝐶𝐵 is a function of the plant leaf area index 

(LAI), and it adopts different values during the day due to oscillations in stomatal 

resistance. 

2.2 System identification 

System identification is applied in constructing mathematical models of dynamic systems 

based on the incoming time-series of input (𝑢(𝑡)) and output (𝑦(𝑡)) data. The goal is to 

infer the relationship between the sampled input/output data. During system identification, 

the model structure is first identified using objective methods of time series analysis based 

on a given general class of time-series models (here, linear discrete time transfer 

functions). The resulting model must be able to explain the structure of the observed data. 

System identification is used to simultaneously linearize and reduce model complexity, so 

exposing its ‘dominant modes’ of dynamic behaviour.  

In this study, the identification process was conducted based on prior knowledge of the 

plant transpiration process as shown in equation 1. The vapour pressure deficit and 

incoming radiation were selected as climatic input, and the LAI was selected as crop 
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growth input. The identification of the model structure is considered the first step of the 

identification problem in the present study. An online estimation algorithm is thereafter 

implemented to update the model parameters based on the real-time data obtained from 

the process. 

In this way, it is possible to detect the changes in the dynamics of the system thus 

accounting for the time-varying nature of the plant system. 

The linear discrete-time transfer function is written as 

𝑦(𝑡) =  
𝐵1(𝐿)

𝐴(𝐿)
𝑈1(𝑡 − 𝛿1) + ⋯ +

𝐵𝑘(𝐿)

𝐴(𝐿)
𝑈𝑘(𝑡 − 𝛿𝑘) + 𝑒(𝑡); 𝑒~𝑊𝑁(0, 𝜎𝑒

2)                                      (2) 

Where 𝑦(𝑡) is the output (transpiration rate), 𝑈𝑖(𝑡) (𝑖 = 1,2, … . . , 𝐾) are a set of 𝐾 inputs 

that affect the output (incoming radiation, vapour pressure deficit), 𝛿𝑖(𝑖 = 1,2, … . , 𝐾) are 

the delays associated with each input. 

In equation 2, 

𝐴(𝐿) = 1 +  𝑎1𝐿 + ⋯ + 𝑎𝑛𝐿𝑛                                                                                                                        (3) 

𝐵(𝐿) =  𝑏0 + 𝑏1𝐿 + ⋯ + 𝑏𝑚𝐿𝑚                                                                                                                           

𝐴(𝐿) and 𝐵(𝐿) are polynomials of the order 𝑛 and 𝑚 respectively. The backshift operator 𝐿 

is such that 𝐿𝑗𝑦𝑡 = 𝑦𝑡−𝑗. 𝑎𝑖(𝑖 = 1,2, … . . , 𝑛) and 𝑏𝑗(𝑗 = 1,2, … . . . , 𝑚) are coefficients of the 

polynomials 𝐴(𝐿) and 𝐵(𝐿). They represent the unknown parameters that are to be 

identified. The identified model is defined by the triad [𝑛, 𝑚𝑖, 𝛿𝑖], where 𝑛 is the number of 

denominator parameters; indicating the model order, and 𝑚𝑖 is the number of numerator 

parameters associated with each input. 𝛿𝑖 is defined earlier. 

The identification process was conducted using the refined instrumental variable algorithm 

(Taylor et al., 2007) implemented in the Captain toolbox (Young et al., 2007) on the 

MATLAB® software. 
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2.3 Plant water status monitoring framework 

The plant water status monitoring algorithm proposed in this paper is data-driven. The 

algorithm is founded on an estimated dynamic model of the plant transpiration. The model 

is identified as a time domain model and the parameters of the model are identified online 

from the real-time measurements of input-output data.  The water status monitoring 

principle is based on a premise that the transpiration dynamics of a plant will vary as a 

function of the prevailing climatic conditions and its water status. A model of the plant is 

built at a known water status state and predictions from this model is then compared to 

real-time output data obtained from the plant. A schematic illustration of the algorithm is 

presented in Figure 1. 

 

Figure 1. Schematic illustration of the proposed water status monitoring framework 

 

The decision-making module assumes that the residuals (measured transpiration – model 

predicted transpiration) generated from a healthy mode of the process i.e. non-significant 

deviation in water status state will conform to an established statistical distribution. A 

change in this distribution will indicate a significant deviation in the water status state of 

the plant. 

When there is a significant change in plant water status, the model obtained during a 

particular water status state is unable to predict the observed plant response. This causes 

the difference between the measured and predicted transpiration rate i.e. the magnitude 

of the residuals to increase. The decision-making algorithm is further explained in section 

2.3.1 
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2.3.1 Decision-making algorithm 

During system identification, the residuals obtained between the measured and modelled 

output is assumed to be a normally distributed Gaussian sequence (Taylor et al., 2007). 

For a properly defined model identified during a known process state, the residuals 

obtained between the measured and predicted output will also conform to this distribution. 

However, when there is a significant change in the process state, the distribution of the 

residuals obtained as a function of the predicted output will deviate from the distribution 

obtained during the modelling phase. 

A Gaussian Mixture Model (GMM) can be applied in modelling the distribution of the 

residuals obtained during the identification process. The GMM assumes we have 𝑘 normal 

distributions to describe the data {𝑁(𝜇1, 𝜎1) … … 𝑁(𝜇𝑘 , 𝜎𝑘)} and estimates the parameters 

for those individual distributions that when combined best describes the data (Reynolds, 

2015). The probability of observing a value 𝑋𝑛
𝑗
 for a specific data point is expressed as 

(Reynolds, 2015) 

𝑝(𝑋𝑛
𝑗
) =  ∑ 𝜋𝑘ℵ(

𝑘

𝑘=1

𝑋𝑛
𝑗|𝜇𝑘 , 𝜎𝑘)                                                                                                                       (4) 

With 

∑ 𝜋𝑘 = 1𝑘
𝑘=1   

∀𝑘: 0 ≤ 𝜋𝑘 ≤ 1                                                                                                                                                         

Where 𝜇𝑘 and 𝜎𝑘 are the mean and standard deviations of each 𝑘 distribution and 𝜋𝑘 

expresses the weight of each distribution.  

An expectation maximization algorithm is applied in deriving the parameters that maximize 

the likelihood of the GMM given the training data, here, the residuals obtained during 

identification. These parameters are then applied in computing the probability of each 

observation. The best number of distributions to fit the data is also determined by 

minimizing the Akaike information criterion (AIC) (Xiao et al., 2016). 

Once the GMM is fitted on the training data, a normal or anomalous process state can be 

identified by computing the probability of observing the residuals computed for that state 

using the GMM fitted on the residuals obtained during identification. The probabilities of 

observing the residuals during the anomalous state will be much lower compared to the 

probability of observing the residuals obtained during the normal process state and also 

during identification. This methodology has been shown to achieve state of the art 

performance when detecting faults in rotary machinery and high-voltage electronic 

equipment (Yan et al., 2017). 
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3 Materials and Methods 

3.1 Greenhouse and experimental setup 

Two six week studies were conducted in a climate controlled greenhouse. The heating 

and ventilation set points were approximately 17 and 23°C respectively. Lettuce plants 

were planted in individual 2.5 L containers containing a sandy loam soil (FC= 

0.186 𝑚3𝑚−3 , PWP= 0.071 𝑚3𝑚−3). To prevent evaporation, the soil surface of the pots 

were covered with a 5 cm layer of plastic beads.   

During the initial study, the plants were irrigated every two hours. However, four hours 

prior to the initiation of measurements, four lettuce plants were selected and irrigated to 

replace 100% of the water lost by transpiration, four plants were irrigated to replace 90% 

of the water lost by transpiration, and four other plants were irrigated to replace 75% of 

water lost by transpiration. These irrigation treatments are hereafter referred to as 100ET, 

90ET and 75ET respectively. Irrigation volumes corresponding to the treatments was 

applied every two hours. This approach was used in other to ensure the uniform 

development of the plant population’s leaf area index. 

During a follow-up study, after four hours into a diurnal measurement period, irrigation 

was withheld from four lettuce plants which have been receiving the 100ET irrigation 

treatment. Four other lettuce plants also received the 100ET irrigation treatment all 

through the diurnal measurement period. Irrigation was applied every two hours to these 

set of plants.  

3.2 Microclimate measurements 

Environmental variables measured at plant canopy level included ambient air temperature 

and relative humidity using a temperature and humidity probe (Model EE08, E+E 

Elektronik, Engerwitzdorf, Austria), and incoming radiation using a pyranometer sensor 

(Model SP-110,  Apogee Instruments, Logan, Utah, USA). Wind speed was measured 

using a hot wire anemometer (Model AM – 4202, Lutron Electronics, London, UK) 

installed 10cm above the crop canopy. The VPD was calculated using temperature and 

relative humidity data following the equations outlined in Allen et al. (1998). Sensor 

readings were obtained at a  5 s interval and averaged online over 1 min periods with a 

CR1000 data acquisition system (Campbell Scientific, Logan, Utah, USA). All sensors 

were factory calibrated by their respective manufacturers.  

3.3 Transpiration measurements 

Crop transpiration of the lettuce plants was measured using three load balance systems 

(Model ALC, Acculab, Englewood, USA) with a 16 𝑘𝑔  capacity and ±0.1 𝑔 resolution.  

Each load balance recorded the mass of the four plants in each treatment group. 

The total transpiration for a time period was calculated as the mass difference, ∆𝑀 

between two consecutive time instants as recorded by the mass balance system. This 
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was then converted to the units of volume by multiplying ∆𝑀 by the density of water 

(1000 𝑘𝑔𝑚−3). In the various irrigation treatments, a computer controlled irrigation system 

applied irrigation to replace the predefined percentage of water loss based on the 

calculated water loss volume. The total irrigation volume calculated for a treatment group 

was divided equally among the plants assigned to that group. 

The transpiration rate was calculated as  

𝑇𝑝 =
𝑀(𝑡𝑖+1) − 𝑀(𝑡𝑖)

𝐴. (𝑡𝑖+1 − 𝑡𝑖)

𝑗

𝑛
                                                                                                                                 (5) 

Where 𝑀(𝑡𝑖) is the mass (𝑔) given by the balance at time 𝑡𝑖 (𝑚𝑖𝑛), 𝐴 (𝑚2) is the area of 

the shelve on which the plants are placed, 𝑛 is the number of pots on the balance tray and 

𝑗 is the number of plants on the shelve. During irrigation, the transpiration rate was 

assumed to be constant. Data from the balance system was directly stored every minute. 

3.4 Leaf area index measurements 

The leaf area index (LAI) values for the plants placed on the balance were assessed using 

digital images captured with a mobile phone camera. The LAI values were then extracted 

from the digital images using the Easy leaf area software (Department of Plant Sciences, 

University of California).  

3.5 Ancillary measurements 

The soil moisture status of the plants placed on the balance was measured at hourly 

intervals using a model GS1 soil moisture sensor (Decagon Devices, Pullman, 

Washington, USA). The stomatal conductance of the plants was also measured using a 

diffusion leaf porometer (Model AP4, Delta-T Devices, Cambridge, UK) between 13:00 

and 15:00 hrs local standard time.  
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4 Results and discussion 

The night-time transpiration of the plants was negligible all through the study period, with 

a maximum cumulative transpiration of 3 𝑔 being recorded. As such, the daytime 

transpiration recorded between 8:00 am and 4:00 pm was further explored.  

4.1 Dynamics of crop transpiration 

The measured typical daily dynamics of the crop transpiration along with prevailing 

environmental conditions for a sunny and cloudy day are presented in Figure 2 and Figure 

3 respectively. It is seen that the 100ET and 90ET plants maintain a higher transpiration 

rate when compared to the 75ET plants.  The transpiration dynamics also seem to follow 

the dynamics of the incoming radiation. However, there isn’t a significant difference in the 

transpiration rates of the 100ET and 90ET plants (𝑝 > 0.1). Stomatal conductance 

measurements conducted on the plants also didn’t indicate a significant difference in their 

water status (𝑝 > 0.1). The reverse was the case for comparisons of stomatal 

conductance measurements of both the 100ET and 90ET plants with the 75ET plants. In 

Figure 2 and Figure 3, the datapoints indicating a higher transpiration rate for the 75ET 

plants are attributed to measurement errors. This anomaly is addressed in section 4.2.  

Overall, the difference in transpiration rate between both the 100ET and 90ET plants, and 

the 75ET plants indicated a significant difference in their plant water status. This is in 

agreement with the results presented by Agam et al. (2013). They reported a significant 

difference in the transpiration rates of well-watered and water-stressed olive trees. During 

the course of the study, a maximum transpiration rate of 1.8 𝑔𝑚−2𝑚𝑖𝑛−1 was recorded for 

the 75ET plants while a value of 3.2 𝑔𝑚−2𝑚𝑖𝑛−1 was recorded for the 90ET and 100ET 

plants. 

Due to the non-significant difference in the transpiration and water status of the 100ET 

and 90ET plants, the 100ET and 75ET plants were considered in the subsequent 

analysis. 
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Figure 2. Measured incoming radiation and transpiration dynamics of the lettuce plants 

during a sunny day (A) incoming radiation (B) transpiration 
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Figure 3. Measured incoming radiation and transpiration dynamics of the lettuce plants 

during a cloudy day (A) incoming radiation (B) transpiration 

 

4.2 Decoupling and filtering of the transpiration signals 

The measured transpiration signals contained different components, some of which were 

of low amplitude and others characterized by higher amplitudes. The higher amplitude 

components were determined to be a result of measurement noise and short-term 

variability in the environment. Such components were decoupled and analysed by 

calculating the power spectrum of the measured signals using the Fast Fourier 

transformation algorithm (FFT) (Welch, 1967). Figure 4 shows an example of the power 

spectrum results obtained from the measured transpiration signals. The results showed 

that the signals are a combination of different components that have statistical 

characteristics but which cannot be observed directly (Taylor et al., 2007).  
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Figure 4. Power spectrum of the measured transpiration signals 

 

The overall transpiration signal 𝑇𝑝(𝑡) as a function of the different components can be 

represented by the following discrete time equation 

𝑇𝑝(𝑡) =  𝑇𝑘 +  𝐶𝑘 + 𝑓(𝑢𝑘) +  𝑒𝑘                                                                                                                     (6) 

Where 𝑇𝑘 is the trend or low frequency component, 𝐶𝑘 is the cyclical or higher frequency 

component, 𝑓(𝑢𝑘) captures the influence of the input variables and 𝑒𝑘 is the noise 

component.  

To reduce model complexity, only the 𝑇𝑘 and 𝑓(𝑢𝑘) components of the transpiration signal 

were considered. The components are decoupled from the measured transpiration signals 

and represented as  

𝑦(𝑘) =  𝑇𝑘 +  𝑓(𝑢𝑘)                                                                                                                                          (7) 

Where 𝑦(𝑘) is the decoupled transpiration signal. As an example, the decoupled 

transpiration signals of the 100ET and 75ET plants shown in Figure 3 are presented in 
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Figure 5. It can be seen that their transpiration dynamics is clearly separated and the 

measurement noise is sufficiently filtered. 

 

 

Figure 5. The transpiration signals decoupled from the noisy transpiration measurements 
presented in Figure 3 

 

4.3 System Identification and dynamic modelling of the plant transpiration 

The dynamic model of the plant transpiration was identified online by applying system 

identification on the incoming time-series data of the measured transpiration rate and 

environmental variables. 

A second-order discrete-time transfer function model was sufficient to describe the 

transpiration dynamics with an average coefficient of determination 𝑅𝑇
2 = 0.93 ± 0.04 and 

average Young identification criterion 𝑌𝐼𝐶 =  −8.00 ± 3.00 (Young and Jakeman, 1980). 

An example of the measured and modelled transpiration rate for the 100ET and 75ET 

plants is presented in Figure 6. It is seen that the modelled values closely match that 

measured values while capturing the dominant dynamics.  
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Figure 6. Measured (MS) and modelled (MD) transpiration (Trans) dynamics of the lettuce 

plants (A) Dynamic plot 100ET (B) Dynamic plot 75ET (C) Scatter plot 100ET (D) Scatter 

plot 75ET 

The time delay associated with the input parameters was however found to vary as a 

function of plant growth. As such, the LAI was used to divide the model into different 

intervals as summarized in Table 1. For the division, it is easy to change the LAI into other 

time units such as days after planting. 
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Table 1. Results of the model identification as a function of the Leaf area index (LAI) 

interval. 𝑛 is the equation’s order, 𝑚𝑆𝑅 is the number of parameters associated with the 

radiation input, 𝑚𝑉𝑃𝐷 is the number of parameters associated with the VPD input. 𝛿𝑆𝑅 and 

𝛿𝑉𝑃𝐷 are the time delay associated with the radiation and VPD inputs respectively.  

 

LAI interval 𝑛 𝑚𝑆𝑅 𝑚𝑉𝑃𝐷 𝛿𝑆𝑅 𝛿𝑉𝑃𝐷 

0.8 or lower 2 2 2 0 0 

0.8 to 1.6 2 2 2 2 0 

1.6 or higher 2 2 2 4 0 

Sánchez et al. (2012) reported that a dynamic model of the transpiration is able to 

overcome the limitations encountered by steady-state models of crop transpiration. These 

include the overestimation of transpiration rates at low values of LAI and underestimation 

at higher values. The steady-state models are also unable to sufficiently capture the 

dominant dynamics which results in an advancement of the real dynamics over the 

modelled values.  

4.4 Online update of model parameters and prediction of the plant transpiration rate 

The biosystem, such as the lettuce plant, is a complex assemblage of interacting physical, 

chemical and biological processes. As such, its transpiration dynamics will vary from day 

to day due to changes in the stomatal response, biological adaptation, and the prevailing 

environment.  Accordingly, during the follow-up study, the parameters of the identified 

models were updated at the start of each diurnal measurement period.  

It was found that the incoming time-series measurements of input/output data obtained 

during the first 120 mins of active transpiration were sufficient to model the transpiration 

dynamics of the plants in a defined water status state. The parameterized model was then 

applied in predicting the transpiration dynamics for the subsequent time period and 

updated after 240 mins. Explained further, at the start of active transpiration at time 𝑡 −

120, the data points recorded during the time period 𝑡 − 120 to 𝑡  were used for parameter 

identification and prediction was made during time 𝑡 to 𝑡 + 240. At time 𝑡 + 240, the model 

parameters were then updated recursively using data points recorded during  𝑡 to 𝑡 + 240 

which were flagged as conforming to the defined water status state. Predictions are then 

made for the subsequent time period.  
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 The average prediction performance of the model is summarized in Table 2. Table 2 

shows that the models are able to achieve a satisfactory level of performance at all crop 

growth stages 

Table 2. Average prediction performance of the identified models. Standard deviations are 
included in the brackets 

LAI interval Mean absolute 

error(𝑔𝑚−2𝑚𝑖𝑛−1) 

Root mean square error 

(𝑔𝑚−2𝑚𝑖𝑛−1) 

0.8 or lower 0.05 (± 0.0035) 0.06 (± 0.0044) 

0.8 to 1.6 0.13 (± 0.0106) 0.15 (± 0.0128) 

1.6 or higher 0.09 (± 0.0046) 0.11 (± 0.0059) 

 

Pollet et al. (2000) reported results for a PM type model for estimating the transpiration of 

greenhouse grown lettuce plants. They reported a 6% overestimation of transpiration by 

the model. It should also be noted that the parameters of PM type models are fitted for a 

particular water status state. The dynamic modelling approach presented in the paper can 

easily be applied to a plant at any water status state. This is because the parametrization 

of the model can be achieved using routinely measured environmental variables and 

transpiration measurements. The need to explicitly model the stomatal response is 

eliminated as this is implicitly accounted for in the online estimated model parameters and 

time delay. This is in agreement with the conclusions of Sánchez et al. (2012). 

4.5 Monitoring of plant water status 

The transpiration rate of lettuce plants is dependent on their water status as demonstrated 

in section 4.1. This suggests that the difference in the transpiration dynamics as a function 

of water status can be exploited as a means of monitoring the water status of the plants.  

As an example, in Figure 7, the model predicted transpiration dynamics of lettuce plants 

for which irrigation was not withheld along with the measured values during a 

measurement period is shown.  It should be noted that data points applied in parameter 

identification are not included in the prediction phase. The measured and modelled values 

closely match each other during this period as irrigation was not withheld from the plants; 

this period of normal irrigation is defined as state 1. Succinctly, parameter identification 

was conducted in state 1 and prediction was made at a later period when the plants 
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remained in state 1. The average stomatal conductance recorded for the plants during this 

period was 139.22(±1.14) 𝑚𝑚𝑜𝑙𝑚−2𝑠1 and the average soil moisture content was 

0.18(±0.002) 𝑚3𝑚−3, a value close to the field capacity of the growing media.  

 

 

Figure 7. Measured and model predicted transpiration dynamics of the lettuce plants 

during a period of normal irrigation (A) Dynamic plot (B) Scatter plot 

Figure 8 shows the measured and model predicted transpiration dynamics of the set of 

plants for which irrigation was withheld after a period of normal irrigation, defined as state 

2. It is seen that there is a wide deviation between the measured and model predicted 

values. This is because the model was parameterized for a water status state of the plant 

during which irrigation was constantly applied to replace transpiration water loss (state 1). 
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The average stomatal conductance recorded during this period was 116.94(±0.92) 

𝑚𝑚𝑜𝑙𝑚−2𝑠1 while the average soil moisture content was 0.16(±0.001)  𝑚3𝑚−3. The 

stomatal conductance values show a clear significant difference (𝑝 < 0.05) in water status 

of the plants in state 1 and state 2. It is interesting to note that this difference in plant 

water status is also indicated in the measured transpiration rate even though  the soil 

moisture status was above the maximum allowable depletion level of 35% (lower soil 

moisture target = 0.15 𝑚3𝑚−3) defined for the lettuce crop.  

 

Figure 8. Measured and model predicted transpiration dynamics during a period after 

which irrigation had been withheld from the lettuce plants (A) Dynamic plot (B) Scatter plot 
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These results give evidence that the transpiration dynamics can indeed be applied as a 

tool for monitoring the water status of the lettuce crop.  This was consistently shown in the 

data obtained all through the follow-up study.  

Figure 9 shows the distribution of the residuals during the identification phase in state 1 

(normal irrigation). The residuals conform to a Gaussian distribution suggesting a well-

defined model for the state.  

Figure 10 shows the range of the predicted probabilities of observing the data points of 

the residuals in the identification phase in state 1, during prediction in state 1 and during 

prediction in state 2.  

 

Figure 9. The distribution of the residuals obtained during the system identification phase 

These predictions were made using the Gaussian mixture model fitted on the residuals 

obtained during system identification.  Figure 10 shows that there is a high probability of 

observing the data points during the identification phase and also during prediction in the 

state for which the model was identified. The lowest probability of observing the data point 

of the residuals during the prediction in state 1 was 0.8. The reverse was the case during 

predictions in state 2. Low probabilities were predicted for observing the data points of the 

residuals in this state, with the highest probability predicted being 0.53. In Figure 10, the 

notches of the identification and state 1 boxes overlap which indicates that the median of 

their predicted probabilities is not significantly different at 5% significance level. It can also 
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be seen that notches of the state 2 box do not overlap with the two other boxes indicating 

a significant difference in its median value when compared with the other predicted 

probabilities. The information contained in the predicted probabilities of observing the data 

points of the residuals provides an adequate indication of the water status state of the 

plants i.e. high probabilities will be predicted when the plant is in the state for which the 

model was identified and low probabilities will be predicted when there is a significant 

change in the water status state.   

 

Figure 10. Boxplot of the probabilities predicted by the Gaussian Mixture Model fitted on 
the residuals obtained during the system identification phase for the identification 
residuals, state 1 residuals and state 2 residuals 

Previous studies e.g. Earl (2003), Prehn et al. (2010), Beeson (2011) have also attempted 

to use the measured transpiration rate as a tool for monitoring the onset of drought/water 

stress. They attempt to achieve this by comparing the measured transpiration rate at a 

particular instance to the initial transpiration rate of the same plant when in a well-watered 

state. They, however, neglect the influence of the prevailing environment on the 

transpiration dynamics. The model presented in this paper addresses this drawback by 

predicting the ‘healthy state’ transpiration rate as a function of the known water status and 

real-time measurements of the environmental variables.  

The water status monitoring tool proposed in this paper can be applied in regulating the 

water deficit of greenhouse crops. This can be achieved by applying system identification 

to identify a model for the plant transpiration at a known water status state and then 
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comparing the real-time measurements to the model prediction. This approach is used 

extensively for performing fault detection in the process industry (Das et al., 2012; Sharma 

et al., 2010).  

The intensity of water deficit can be easily quantified by computing the transpiration ratio 

proposed by Fernández et al. (2008). This is defined as the ratio between the actual 

transpiration measured on a plant and the transpiration rate expected for a well-watered 

plant. A value of 1 will indicate the absence of a deficit and a value of zero will indicate a 

severe deficit. This can be adapted to compute a deficit intensity for any desired reference 

water status state.  

It should be noted that the system identification modelling technique constitutes a data-

driven approach in which the dynamic response of the plant transpiration is parametrized 

for the specific ranges of environmental and crop conditions encountered during model 

development, and therefore the models are only applicable to the specific crop and 

environment for which they are developed. 

5 Conclusions 

A model for predicting the transpiration dynamics of greenhouse cultivated lettuce plants 

is presented in this paper. The data-driven model has the incoming radiation, vapour 

pressure deficit as input variables, and its structure varies as a function of plant growth in 

form of the LAI evolution. 

Experimental results indicated that the transpiration dynamics of lettuce plants varied as a 

function of their water status. This phenomenon was therefore exploited as a tool for 

monitoring the water status of the plants. A model of the plant transpiration is identified 

online at a period during which the plant is in a desirable and known water status state. 

This model is then applied in predicting the crop transpiration. When there is a significant 

change in the water status state, the identified model is unable to explain the measured 

transpiration, resulting in a change in the statistical properties of the calculated residuals.   

This approach has an advantage over similar approaches which use the plant 

transpiration as an indicator of its water status because it takes the time-varying nature of 

the plant system into account through the online adaptation of the model parameters. The 

difficult to model variation in stomatal response is also implicitly accounted during the 

online parameter estimation. This makes it a suitable plant water status monitoring tool in 

commercial greenhouses where the application of mechanistic models has received 

limited attention, due to their complexity and large input requirements. The implementation 

of this model in a commercial greenhouse and model development for other high-value 

crops will be the focus of future research.  
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Chapter 5 Dynamic Neural Network Modelling of Soil Moisture 

Content for Predictive Irrigation Scheduling 
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Abstract 
Sustainable freshwater management is underpinned by technologies which improve the 

efficiency of agricultural irrigation systems. Irrigation scheduling has the potential to 

incorporate real-time feedback from soil moisture and climatic sensors. However, for 

robust closed-loop decision support, models of the soil moisture dynamics are essential in 

order to predict crop water needs while adapting to external perturbation and 

disturbances. This paper presents a Dynamic Neural Network approach for modelling of 

the temporal soil moisture fluxes. The models are trained to generate a one-day-ahead 

prediction of the volumetric soil moisture content based on past soil moisture, precipitation 

and climatic measurements. Using field data from three sites, a 𝑅2 value above 0.94 was 

obtained during model evaluation in all sites. The models were also able to generate 

robust soil moisture predictions for independent sites which were not used in training the 

models. The application of the Dynamic Neural Network models in a predictive irrigation 

scheduling system was demonstrated using AQUACROP simulations of the potato-

growing season. The predictive irrigation scheduling system was evaluated against a rule-

based system which applies irrigation based on predefined thresholds. Results indicate 

that the predictive system achieves a water saving ranging between 20 – 46% while 

realizing a yield and water use efficiency similar to that of the rule-based system.  
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1 Introduction 
An increasing world population and climate change have placed a considerable amount of 

pressure on global freshwater supplies (Adeyemi et al., 2017). Irrigated agriculture is the 

world’s largest consumptive user of fresh water, accounting for over 70% of its global use 

(Hedley et al., 2014). It is therefore important to develop technologies which enable 

sustainable and efficient water use for irrigated agriculture while obtaining a healthy plant 

growth.  

It is desirable to irrigate to meet specific plant water demands at the right time while 

avoiding over and under irrigation. This usually involves irrigation scheduling and control 

operations on an hourly, daily or a time period usually less than a week (Ali and Talukder, 

2001). Precision irrigation aims to accurately determine and quantify plant water needs. 

The irrigation amount and timing is based on measurements of soil, plant and climatic 

variables from which the plant water need is inferred (Smith et al., 2009). Precision 

irrigation has been shown to improve water use efficiency, reduce energy consumption, 

and enhance crop productivity by leveraging advances in sensor, control and modelling 

technologies (Hedley and Yule, 2009; Monaghan et al., 2013; Morillo et al., 2015; Ro-

Hellín et al., 2015). Such advances include the development of energy efficient and fault-

tolerant wireless sensor networks (Nesa Sudha et al., 2011; Parra et al., 2018), intelligent 

proximal sensing for the detection of plant water stress (Alvino and Marino, 2017; 

Gonzalez-Dugo et al., 2013; Marin et al., 2018), and variable rate irrigation systems 

(Evans et al., 2013; Hedley and Yule, 2009; Stone et al., 2015).  

The temporal dynamics of field-scale soil moisture is perhaps the most leveraged tool for 

irrigation scheduling. This is because the soil moisture status is indicative of the water 

available for uptake by crops (Romano et al., 2013). A number of irrigation scheduling 

methods estimate crop water needs using soil moisture and climatic data, and rules 

created by expert agronomists. Most of the commercial automated irrigation systems are 

programmed to irrigate at specific time intervals and apply a fixed irrigation volume. A 

number of these systems are also programmed to irrigate after a predefined soil moisture 

threshold is reached (Pardossi and Incrocci, 2011). Due to their open-loop structure, these 

methods may not guarantee optimum irrigation scheduling decisions resulting in 

suboptimal plant health and efficiency in water use (McCarthy et al., 2013). These 

shortcomings can be alleviated with the use of feedback control where sensor feedback is 

employed in optimizing irrigation timing and volume (Raine et al., 2007). Although these 

approaches improve irrigation scheduling decisions, they do not include a model for the 

process dynamics and as a result, the overall system may not be robust to external 

perturbations (Park et al., 2009). 

Model-based irrigation scheduling systems consist of a calibrated internal model which 

employs feedback from soil, plant and climatic sensors in order to predict crop water 
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needs (Park et al., 2009). McCarthy et al. (2014) implemented a model-based control 

system for predicting the irrigation requirements of cotton with an objective of maximizing 

crop yield. Their system relied on a complex crop model which requires detailed 

information on various climatic, soil and crop parameters. Park et al. (2009) developed a 

model predictive control system for center pivot irrigation which used measured soil and 

climatic data to calibrate a complex soil-water model. The use of mechanistic models in 

these systems has many practical limitations because they are data demanding and 

require time-consuming calibrations during model development.  

In recent years, many studies have investigated the applicability of data-driven machine 

learning models to irrigation decision support. Navarro-Hellín et al. (2016) presented a 

regression model applied in predicting the weekly irrigation needs of a plantation using 

climatic and soil data as inputs. Giusti and Marsili-Libelli (2015) applied a fuzzy decision 

system in predicting the volumetric soil moisture content based on local weather data. 

King and Shellie (2016) used neural network modelling to estimate the lower threshold 

(Tnws) needed to calculate the crop water stress index for wine grapes. In Delgoda et al. 

(2014), the authors applied a system identification model in predicting the soil moisture 

deficit using climatic and soil moisture data as model inputs. These statistical methods 

explore the spatial and temporal patterns hidden in historical data in order to map input 

data to an output space. They do not rely on a physical model of the system as they are 

data-driven (i.e. they learn from data). In many cases, these machine learning methods 

have been shown to achieve a good prediction performance (Karandish and Šimůnek, 

2016). They also have less data requirements when compared to mechanistic models 

(King and Shellie, 2016; Payero and Irmak, 2006; Young, 2006).  

For real-time irrigation scheduling, a model which is able to predict the soil moisture 

dynamics is desirable (McCarthy et al., 2013). In order to achieve this with traditional 

machine learning and system identification methods, an extensive physical knowledge of 

vadose zone hydrology and boundary layer meteorology is required to derive robust input 

features from soil and climatic data. This is because of the complex nonlinear relationship 

between the climatic parameters, soil hydraulic properties and the soil moisture dynamics 

(Mashayekhi et al., 2016). In Lozoya et al. (2016), Delgoda et al. (2014), Giusti and 

Marsili-Libelli (2015) and Saleem et al. (2013) the authors presented system identification 

models for the prediction of soil moisture dynamics which are parameterized based on the 

soil water balance method. This involved assumptions relating to the absence of surface 

run-off and deep percolation. The estimated evapotranspiration was also used as an input 

to the models. In practice, the true crop evapotranspiration may be significantly different 

from the estimated values. Furthermore, these models are only applicable to the site for 

which they are developed limiting their use for a different environment. This is because 

models developed using traditional machine learning and system identification 
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approaches are mostly only applicable to the environment for which they were developed 

(Navarro-Hellín et al., 2016).   

Machine learning approaches such as Support vector machines (SVM) and Adaptive 

neuro-fuzzy inference systems (ANFIS) are another group of models that have been 

applied for the prediction of soil moisture dynamics (Deng et al., 2011; Hong et al., 2016; 

Karandish and Šimůnek, 2016; Liu et al., 2010). These approaches have good prediction 

capability and limited input requirements. Karandish and Šimůnek (2016) compared 

various machine learning models including ANFIS and SVM for simulating the time series 

of soil moisture content using meteorological, precipitation and crop coefficient data as 

model input. The authors reported that the models achieved a prediction performance 

comparable to that of a mechanistic physical process-based model; HYDRUS – 2D. 

However, they noted that these machine learning models are not suitable for the entire 

range of soil moisture prediction i.e. water stress conditions. It is therefore evident that 

robust and scalable data-driven models need to be developed for irrigation scheduling 

applications.  

Neural network (NN) methods have a strong learning ability and are able to represent the 

nonlinear relationship between the inputs and outputs of a system (Capraro et al., 2008). 

Some specific applications of neural networks to irrigation and water resource 

management include the prediction of soil moisture to aid irrigation scheduling (Capraro et 

al., 2008; Tsang and Jim, 2016), crop yield prediction (Gandhi et al., 2016; Guo and Xue, 

2014), prediction of irrigation water demand (Pulido-Calvo et al., 2003; Pulido-Calvo and 

Gutiérrez-Estrada, 2009), rainfall-runoff modelling (Khan and Coulibaly, 2006; Sarkar and 

Kumar, 2012) and groundwater modelling (Joorabchi et al., 2009; Sun et al., 2016). 

A Neural network (NN) method is applied in this study for predicting the soil moisture 

dynamics because of their ability to produce robust functions approximating complex 

processes (Goodfellow et al., 2016). However, traditional feedforward neural networks 

(FFNN) have limited ability to model dynamic data because they are unable to preserve 

previous information, resulting in suboptimal predictions when they are applied in 

modelling highly causal systems (Brezak et al., 2012). The learning capability of FFNN’s 

can be improved through additional pre-processing of dynamic data and combining the 

FFNN with other methods including genetic algorithms (Gu et al., 2017) and fuzzy logic 

(Tsang and Jim, 2016). For example, Pulido-Calvo and Gutiérrez-Estrada (2009) applied 

a hybrid FFNN model to generate a one-day-ahead forecast of daily irrigation water 

demand. The forecast produced by the FFNN was corrected via a fuzzy logic approach 

whose parameters were adjusted using genetic algorithms. While this sort of hybrid 

modelling approach can strengthen the ability of a FFNN to learn dynamic data, the long-

term generalization ability of such models is limited due to the ad hoc nature of fuzzy logic 



  

 155 

rules. Furthermore, the methods which employ additional pre-processing of dynamic data 

are time-consuming because of the extensive time and frequency domain computations 

they rely on. The data pre-processing steps also rely on subjective user intervention which 

limits the scalability of the models to new environments.  

This present study focuses on a dynamic modelling task, for which the Recurrent Neural 

Network (RNN) presents a suitable solution. A RNN has internal self-looped cells, allowing 

it to preserve information from previous time steps (Funahashi and Nakamura, 1993). The 

Long Short-Term Memory Network (LSTM), a class of RNN’s was selected for this study 

because of its successful application in the control of nonlinear dynamic systems (Wang 

et al., 2017; Yu Wang, 2017). The LSTM requires minimal input data pre-processing and it 

is able to preserve useful information across multiple time steps (Chauhan and Vig, 2015). 

They have been shown to achieve robust performance in modelling sequential data in 

fields such as natural language processing (Mikolov et al., 2011), time series classification 

of chaotic systems (Ordóñez and Roggen, 2016) and speech recognition (Graves et al., 

2013).  

Zhang et al. (2018) demonstrated a hydrological application of LSTM models for the 

prediction of water table depth. Time series data on water diversion, evaporation, 

precipitation and temperature were applied as inputs to the model. The authors reported 

R2 scores ranging between 0.789 – 0.952 for the LSTM models, largely outperforming 

FFNN models which achieved a maximum R2 score of 0.495. The robust water table 

depth prediction achieved by the LSTM models highlights their ability to preserve and 

learn previous information from long-term time series data typical of hydrological 

application. This ability is particularly desirable in soil moisture based irrigation scheduling 

where the present soil moisture content is dependent on past soil moisture, precipitation 

and climatic data.  

The objective of this study was to develop LSTM models for the prediction of volumetric 

soil moisture content for three sites with different soil characteristics. Performance of the 

LSTM models was evaluated by comparing the LSTM predicted soil moisture content with 

measured soil moisture content and estimated soil moisture content using traditional Feed 

Forward Neural Networks (FFNN). The applicability of the LSTM models for prediction in 

sites not used in model training was also investigated. Finally, the application of the LSTM 

models in predictive irrigation scheduling was demonstrated using model-based 

simulations of the potato-growing season.  

The rest of the paper is structured as follows. In Section 2, the theoretical background of 

neural networks is presented, in Section 3, the methodology employed for the study is 

presented. Section 4 shows the performance evaluation of the neural network models and 
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the predictive irrigation scheduling system, and in Section 5, the conclusions and 

recommendations for future work are presented.  

 

2 Background 
This section presents a theoretical background on artificial neural networks including the 

feedforward neural network and the recurrent neural network. 

2.1 Neural network preliminaries 

The basic building block of neural networks is the neuron. It is a processing element that 

takes a number of inputs, applies a weight to them, sums them up, includes a bias term 

and passes the result to an activation function which then produces an output. This 

activation function implements a nonlinear transformation to the linearly combined input in 

order to produce a nonlinear output. 

Through a combination of these neurons across the input space and connections of the 

neurons outputs to other neurons, a function can be learned which maps the nonlinear 

relationship between an input feature space and an output target. The input-output 

relation of the system can be described by equation 1 (Goodfellow et al., 2016). 

 

𝑍𝑗
𝑖(𝑘) = 𝑓 (∑ 𝑤𝑖𝑗

𝑖

𝑁

𝑖=1

𝑥𝑖
𝑖−1(𝑘) +  𝛿𝑖)                                                                                                             (1) 

 

Where 𝑓(: ) is the nonlinear activation function, 𝑤𝑖𝑗
𝑖  is the connection weight of the j th 

neuron unit in the (i-1) th layer to those of the i th layer. 𝑥𝑖
𝑖−1 is the input from the (i-1) th 

layer and  𝛿𝑖 are the respective bias terms.  

2.2 Feedforward neural network  

The Feedforward neural network (FFNN) also known as the multilayer perceptron (MLP) 

network is built by ordering neurons in layers and letting each neuron in a layer take as 

input only the outputs of the units in the previous layer or external inputs. A network with 

𝑁 = 1,2,3, … … 𝑛 layers is called a 𝑛 layer network. The FFNN is shown in Figure 1. 
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Figure 1. The Feedforward neural network 

 

The second layer in Figure 1 is called the output layer as it produces the output of the 

network. The first layer is known as the hidden layer since it is located between the 

external inputs and the output layer. The mathematical formula expressing the FFNN is 

detailed in equation 2 (Goodfellow et al., 2016) 

�̂�𝑖 = 𝑔𝑖[𝑥, 𝜃] = 𝐹𝑖 [∑ 𝜑𝑖,𝑗𝑓𝑗 (∑ 𝑤𝑗,𝑙𝑥𝑙 + 𝑤𝑗,0

𝑛𝜑

𝑙=1

)

𝑛ℎ

𝑗=1

+ 𝜑𝑖,0]                                                                      (2) 

In equation 2, 𝜃 is the parameter vector containing all the adjustable parameters of the 

network i.e. the weight and the biases {𝑤𝑗,𝑙 , 𝜑𝑖,𝑗} and 𝑓𝑗 is the nonlinear activation function. 

The biases usually take a value of 1. 

In order to determine the value of the weights, the network is trained with data containing 

examples of the inputs 𝑥𝑙  and outputs 𝑦𝑖 pairs; known as the training set. The weights are 

chosen to minimize a global loss function which measures the cost of predicting �̂� when 

the true output 𝑦 is a function over the training set. For regression problems which 

encompasses dynamic modelling tasks, the cost function to be minimized is the mean-

squared error which is computed as shown in equation 3 
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𝑙(�̂�, 𝑦) =  ∑ 𝐸(𝑘) =
1

2𝑛
∑ ∑‖�̂�𝑖(𝑘) − 𝑦𝑖(𝑘)‖2                                                                                 (3)

𝑛

𝑖=1

𝐾

𝑘=1

𝐾

𝑘=1

 

Where 𝑙(�̂�, 𝑦) is the loss function and 𝑛 is the number of training examples. The 

minimization of the loss function and update of weights is achieved using the 

backpropagation algorithm (Rumelhart et al., 1986).  

2.3 Long short-term memory network 

The Long short-term memory network (LSTM) is a variant of the Recurrent neural network 

(RNN), therefore, it is expedient to introduce the RNN before describing the LSTM. 

Recurrent neural networks are similar to Feedforward neural networks except that there is 

a self-feedback of neurons in the hidden layers as illustrated in Figure 2. This gives the 

network memory and it is able to learn from an entire sequence given portions of the 

overall sequence i.e. it is a dynamic system.  

 

Figure 2. An unrolled recurrent neural network 

The hidden nodes ℎ = (ℎ1, … … , ℎ𝑁) and output nodes 𝑦 = (𝑦1, … … , 𝑦𝑁) are computed by 

looping through the equations 4 and 5 below (Goodfellow et al., 2016) 

ℎ𝑡 = tanh(𝑏ℎ + 𝑊ℎ𝑡−1 + 𝑈𝑥𝑡)                                                                                                                    (4) 

𝑦𝑡 = 𝑏𝑜 + 𝑉ℎ𝑡                                                                                                                                                    (5) 

Where 𝑥𝑡 is the input vector at time 𝑡 and ℎ𝑡−1  is the hidden cell state at time 𝑡 − 1, 𝑏𝑜 and 

𝑏ℎ are the vectorised bias terms and 𝑈, 𝑊, 𝑉 are the weight matrices for input-to-hidden, 

hidden-to-hidden and hidden-to-output connections respectively.  

The loss is calculated as the total loss for each time-step and the gradients are computed 

via Back-Propagation Through Time (BPTT) (Werbos, 1990). 

However, BPTT is not able to learn a pattern from long-term dependency because of the 

gradient vanishing problem (Hochreiter, 1998). The RNN’s use their back-coupling 
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connections to memorize short-term dependency in a sequence and as a result, the 

backpropagated error signals in time can become infinitely high or vanish (Pascanu et al., 

2013). Hochreiter and Schmidhuber (1997) proposed the LTSM which is able to solve the 

exploding or vanishing gradients problem by enforcing constant error flows through 

constant error carousels within special multiplicative units. These units regulate the error 

flow in the network by learning how to open or close specialized gates in the network. The 

constant error carousels (CEC), the multiplicative and gates units form the memory block 

of the LSTM (Zhang et al., 2018). 

The CEC loops through the network without an activation function and thus the vanishing 

gradient problem doesn’t occur when BPTT is applied to train an LSTM (Goodfellow et al., 

2016). Therefore, LSTM’s are able to approximate long-term information because the 

information can flow easily along the cells unchanged. The input, forget and output gates 

of the memory block control the input into the CEC cell, the information retained in the 

cells and the output from the cell into other blocks in the network. A schematic 

representation of the LSTM memory block along with its associated components is shown 

in Figure 3. 

 

Figure 3. The long short-term network memory block 

The LSTM computes the mapping from an input sequence 𝑥 to the output by looping 

through equations 6 – 11 with initial values 𝐶𝑜 = 0 and ℎ𝑜 = 0 (Goodfellow et al., 2016) 

 

𝑖𝑡 = 𝜎(𝑤𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)                                                                                                                          (6) 
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𝑓𝑡 =  𝜎(𝑤𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)                                                                                                                        (7) 

𝜎𝑡 = 𝜎(𝑤𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)                                                                                                                        (8) 

�̃�𝑡 = tanh(𝑤𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)                                                                                                                  (9)  

𝐶𝑡 =  𝑓𝑡 ⊗ 𝐶𝑡−1 + 𝑖𝑡 ⊗ �̃�𝑡                                                                                                                           (10) 

ℎ𝑡 = 𝑜𝑡 ⊗ tanh(𝐶𝑡)                                                                                                                                      (11) 

Where 𝑤𝑖 , 𝑤𝑓 , 𝑤𝑜 are the weight matrices from the input, forget and output gates to the 

input respectively, 𝑈𝑖 , 𝑈𝑓 , 𝑈𝑜 are the matrices of the weights from the input, forget and 

output gates to the hidden layer respectively, 𝑏𝑖, 𝑏𝑓 , 𝑏𝑜 are the bias vectors associated with 

the input, forget and output gates, 𝜎 is the nonlinear sigmoid activation function 𝜎(𝑥) =

 
1

1+ 𝑒−𝑥 , and 𝑖𝑡 , 𝑓𝑡, 𝑜𝑡 , 𝐶𝑡 are the input, forget, output gate and the cell state vectors at time 𝑡 

respectively. The element-wise vector multiplication is denoted with ⊗.  

 

3 Methodology 
The methodology employed for this study is presented in this section. This includes an 

overview of the data applied for developing the soil moisture prediction models, the 

structure of the neural network models and the structure of the predictive irrigation 

scheduling system. 

3.1 Study sites and data source 

The data applied in developing the neural network (NN) models for soil moisture 

prediction were obtained from three study sites which are part of the Cosmic-ray Soil 

Moisture Observing System (COSMOS) monitoring project in the United Kingdom 

(Shuttleworth et al., 2010). Briefly, the COSMOS project is a soil moisture and climate 

monitoring network operating in the UK, USA, Australia and China. The project provides 

near real-time soil moisture and climatic data for use in a variety of applications including 

agriculture, water resources management, flood prediction and land-surface modelling.  

The data obtained for the three study sites included hourly measurements of windspeed, 

rainfall, air temperature, net radiation, relative humidity, and volumetric soil moisture 

content. Details of the three sites are summarized in Table 1. 
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Table 1. Details of the sites used for model training 

Site name Soil type Land cover Date range 

Baluderry Sandy loam Farmland May 2014 – 

September 2017 

Stoughton Loam Arable August 2015 – 

September 2017 

Waddeston Clay Grassland December 2013 – 

September 2017 

 

The volumetric soil moisture content in all sites is measured using the cosmic-ray soil 

moisture sensor (Model CRS-1000/B, Hydroinnova LLC, Albuquerque, USA) deployed 

using a site-specific calibration. The cosmic-ray soil moisture sensor consists of a non-

invasive probe which measures the neutron emitted by cosmic rays within the air and soil. 

These neutrons are moderated by hydrogen atoms emitted from soil water into the 

atmosphere. The neutrons and hydrogen atoms combine instantaneously and its density 

is inversely correlated with soil moisture (Zreda et al., 2012). A calibration function defines 

the relationship between the neutron intensity and soil moisture. This calibration function 

is simple, monotonic and invariant with soil texture and chemical composition (Desilets et 

al., 2010). The sensor has a horizontal measurement range of 200m and an effective 

measurement depth of up to 60m. The sensor is reported to have an accuracy of ±2 % 

measured volumetric soil moisture content (Franz et al., 2013). Full details on the 

operating principle of the sensor can be found in Shuttleworth et al. (2010). The 

meteorological variables (e.g. air temperature, relative humidity, net radiation, windspeed 

and precipitation) in all sites are measured by a MetPak Pro Base automatic weather 

station (Gill Instruments, Hampshire, UK).  

The NN models trained on data from the sites listed in Table 1 were also applied in 

predicting the soil moisture content in two independent sites with soil characteristics 

similar to that of the sites for which the models were trained. This was done to evaluate 

the applicability of the models for prediction in new sites which were not used in model 

training. A summary of the independent sites is presented in Table 2.  
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Table 2. The independent sites corresponding to each model training site 

Training site  Independent 

site 1 

  Independent 

site 2 

 

 Name Land cover Soil type Name Land cover Soil type 

Baluderry Bunny 

Park 

Arable Sandy 

loam 

Bickley 

Hall 

Grassland Sandy 

loam 

Stoughton Morley Arable Loam Cockle 

Park 

Grassland Loam 

Waddeston Hollin Hill Grassland Clay Chimney 

Meadows 

Grassland Clay 

 

3.2 Data cleaning and pre-processing 

The hourly data was resampled to daily (24 hours) intervals as this is a time period 

applicable for field scale irrigation scheduling (Delgoda et al., 2016). The daily averages of 

the climatic variables were calculated during the resampling while the daily precipitation 

was calculated as the sum of daily rainfall and irrigation depths. The volumetric soil 

moisture content was also resampled to its average daily value. The data cleaning steps 

included imputing of missing values and removal of outliers.  

The pre-processing steps applied for the data modelled with the FFNN included a box-cox 

transform (Box and Cox, 1964) of the soil moisture and air temperature data in order to 

stabilize their variance. The transformed data were thereafter deseasonalized using the 

seasonal and trend decomposition using loess (STL), as proposed by Cleveland et al. 

(1990). Several studies have shown that deseasonalizing dynamic data which exhibits 

seasonality prior to modelling is necessary in order to produce robust predictions with a 

FFNN model (Ben Taieb et al., 2012; Crone et al., 2011). The STL technique decomposes 

the soil moisture and air temperature data into their trend, seasonal and residual 

components. Thereafter, the sums of the trend and level were passed to the next step of 

the data pre-processing. An example of the transformed and decomposed soil moisture 

data is shown in Figure 4. In the next data pre-processing step, the climatic, precipitation 

and soil moisture data were standardized by computing the z-score of their data points. In 

the post-processing stage, the soil moisture predictions were back-transformed to their 

actual scale through an inverse z-score transformation, addition of the seasonal 

component and an inverse box-cox transformation. 
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For the LSTM, the only data pre-processing step applied was a standardization of the 

climatic, precipitation and soil moisture data. This was accomplished by computing the z-

score of their data points. In the post-processing stage, the soil moisture predictions were 

back-transformed to their actual scale through an inverse z-score transformation. 

For the model training sites, the dataset was divided into a 70:30 ratio for the purpose of 

model training and evaluation. The division was done such that the temporal nature of the 

data was accounted for i.e. the evaluation dataset is posterior to the training dataset.  

Data spanning 2016 – 2017 for the independent sites (Table 2) was applied in evaluating 

the prediction performance of the trained NN models on those sites.  
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Figure 4. Soil moisture data transformation and decomposition prior to modelling (A) 

Observed data (B) Box-cox transformed data (C) Seasonal component (D) Trend 

component (E) Residual component 
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3.3 Proposed Model Framework 

For predictive irrigation scheduling, a one-day-ahead prediction of the soil moisture 

content is required.  

The soil moisture content at time 𝑡 + 1 is a nonlinear function of past and present climatic, 

and precipitation inputs. It is also influenced by the past and present soil moisture content 

values. This is a Multiple Input and Single Output (MISO) system. The FFNN and LSTM 

networks are encoded in various suitable architectures appropriate for the learning task. 

The neural networks were developed using the Keras Deep Learning library on the Python 

programming platform (Chollet, 2015).  

3.3.1 Feedforward neural network structure 

The FFNN is straightforward to employ for discrete-time modelling of dynamic systems for 

which there is a nonlinear relationship between the system’s inputs and output. The soil 

moisture dynamics can be modelled as a Nonlinear Autoregressive with Exogenous Input 

System (NARX) as shown in equation 12 

𝑦(𝑡 + 1) = 𝑆[𝑦(𝑡), , … … , 𝑦(𝑡 − 𝑗), 𝑢(𝑡), … … , 𝑢(𝑡 − 𝑛), 𝑝(𝑡), … … , 𝑝(𝑡 − 𝑚)]                             (12)  

Where 𝑦(𝑡 + 1) is the one day ahead prediction of the volumetric soil moisture content, 

𝑦(𝑡 = 0 … 𝑗) are the present and past soil moisture content at day 𝑡 = 0 … 𝑗, 𝑢(𝑡 = 0 … 𝑛) 

are the climatic inputs at day 𝑡 = 0 … 𝑛, 𝑝(𝑡 = 0 … 𝑚) are the precipitation inputs at day 𝑡 =

0 … 𝑚 and 𝑆 is a nonlinear function which is approximated using the FFNN.  

The time lags 𝑚, 𝑛 and 𝑗 are determined through experimentation. The number of hidden 

layers in the network and the number of neurons in each hidden layer are also determined 

through experimentation. The soil moisture prediction is framed as a regression problem, 

and as such, an appropriate activation function is required for the hidden layers of the 

FFNN. For regression problems, the most robust nonlinear activation function is the point-

wise rectified linear units (RELU), max (0, 𝑥) where 𝑥 is the input into the neuron. The 

RELU activation function is reported to provide easier optimization, faster convergence 

and better generalization with the added bonus of being computationally efficient (Dahl et 

al., 2013).  

During the study, the RELU nonlinearity was applied in the hidden layers while the 

network loss was minimized using the adaptive moment estimation (ADAM) optimization 

algorithm which is reported to improve network convergence (Kingma and Ba, 2015). 
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3.3.2 Long short-term memory network structure 

For modelling dynamic systems, the LSTM introduces a nonlinearity from the input to 

system states followed by a dynamic linearity from the states to the output. This can be 

represented in the state space form as shown in equations 13𝑎 and 13𝑏 

𝑥(𝑡 + 1) = 𝑁𝑁𝑖[𝑥(𝑡) … 𝑥(𝑡 − 𝑘), 𝑢(𝑡) … 𝑢(𝑡 − 𝑛), 𝑦(𝑡) … 𝑦(𝑡 − 𝑗), 𝑝(𝑡) … 𝑝(𝑡 − 𝑚); 𝑉]    (13𝑎)    

𝑦(𝑡 + 1) = 𝑁𝑁𝑜[𝑥(𝑡 + 1); 𝑊]                                                                                                                (13𝑏) 

Where 𝑥(𝑡 + 1) is the future state of the network at day 𝑡 + 1, 𝑥(𝑡 = 0 … 𝑘) are the present 

and past network states at day 𝑡 = 0 … 𝑘, 𝑦(𝑡 = 0 … 𝑗) are the present and past soil 

moisture content at day 𝑡 = 0 … 𝑗, 𝑢(𝑡 = 0 … 𝑛) are the climatic inputs at day 𝑡 = 0 … 𝑛, 

𝑝(𝑡 = 0 … 𝑚) are the precipitation inputs at day 𝑡 = 0 … 𝑚 and 𝑦(𝑡 + 1) is the one day 

ahead prediction of the volumetric soil moisture content. 𝑉 is the parameter set of the 

network that corresponds to the states and 𝑊 is the parameter set of the network that 

corresponds to the output. 

The time lags 𝑚, 𝑛 and 𝑗 are determined through experimentation while the time delay 𝑘 

for the states is learned implicitly by the network during training. The network is designed 

as an LSTM nonlinear element (𝑁𝑁𝑖) followed by a linear output layer (𝑁𝑁𝑜). The number 

of LSTM layers and the number of memory blocks in each layer are also determined 

through experimentation. During the study, the network loss was minimized using the 

ADAM optimization algorithm (Kingma and Ba, 2015).  

3.4 Irrigation scheduling 

A predictive irrigation scheduling system is enabled by a model which uses feedback from 

soil and climatic sensors to predict the crop water demand (Park et al., 2009). A trained 

neural network model is able to generate soil moisture predictions and presents an 

opportunity for implementing predictive irrigation scheduling.  

In order to demonstrate the applicability of a trained LSTM for predictive irrigation 

scheduling, the AQUACROP model developed by the Food and Agricultural Organization 

was used in simulating soil-plant-atmosphere interactions for the potato crop (Hsiao et al., 

2009; Raes et al., 2009; Steduto et al., 2009). The AQUACROP model has been widely 

validated and it is able to simulate soil moisture dynamics and crop response to water 

deficits across various soil types as a function of climatic inputs and water availability 

(Akumaga et al., 2017; Kim and Kaluarachchi, 2015; Linker et al., 2016; Perez‑Ortola et 

al., 2015).  

Climatic and rainfall data for the model training sites were used as inputs into the 

AQUACROP model. The LSTM models trained for each site was applied in generating a 

one-day-ahead prediction of soil moisture content using the climatic data and 
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AQUACROP simulated soil moisture as inputs. Thereafter, the prediction was used to 

determine the irrigation depth and timing during the AQUACROP simulations. This formed 

the basis of the predictive irrigation system described in section 3.4.1. The AQUACROP 

soil file was modified to represent the soil types and characteristics for the model training 

sites as summarized in Table 3. The crop characteristics of the default Lima potato file 

was used during the simulations. 

Table 3. Soil characteristics of the model development sites applied in the AQUACROP 
simulation 

Site Field capacity 

(𝑚3𝑚−3) 

Permanent wilting 

point (𝑚3𝑚−3) 

Profile 

Baluderry 0.22 0.10 Sandy loam 

Stoughton 0.31 0.15 Deep uniform loam 

Waddeston 0.33 0.138 Clay  

 

The predictive irrigation system was compared to a rule-based irrigation scheduling 

system set up on AQUACROP. The rule-based system was programmed to apply 

irrigation based on specified soil moisture thresholds and applied water depths to refill the 

soil moisture content to field capacity. It was set up as an open-loop system, which does 

not consider soil moisture feedback after irrigation events.  

It should be noted that only data from the evaluation dataset set of the model training sites 

was applied in the simulations. 

3.4.1. Predictive irrigation scheduling system 

The goal of irrigation scheduling is to maintain the soil moisture content between an upper 

and lower bound. The upper bound is usually defined as the field capacity while the lower 

bound is a point above the permanent wilting point expressed a function of the 

management allowable depletion (MAD). 

In irrigation, it is common practice to express the amount of water retained in the plant 

root zone (𝑊𝑟) as an equivalent depth of soil water (𝑚𝑚 of water). This is expressed as 

shown in equation 14 

𝑊𝑟 = 1000𝜃𝑍𝑟                                                                                                                                                (14) 

Where 𝜃 is the volumetric soil moisture content and 𝑍𝑟   is the thickness of the root zone is 

meters. 

The water deficit at time 𝑡 (𝐷𝑃𝑡) is expressed as shown in equation 15 
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𝐷𝑃𝑡 = 𝑊𝑟,𝐹𝐶 − 𝑊𝑟,𝑡                                                                                                                                       (15) 

Where 𝑊𝑟,𝐹𝐶 is the water depth at field capacity and 𝑊𝑟,𝑡 is the water depth at time 𝑡. It is 

evident from equation 15 that the water deficit at the upper bound (𝐷𝑃𝑈) will be zero i.e. 

(𝑊𝑟,𝐹𝐶 − 𝑊𝑟,𝐹𝐶). The deficit at the lower bound (𝐷𝑃𝐿) is determined from a knowledge of 

the soils available water and the crops MAD. This is expressed as shown in equations 16𝑎 

and 16𝑏 

𝐷𝑃𝐿 = 𝑊𝑟,𝐹𝐶 − 𝑊𝑟,𝐿𝐵                                                                                                                                    (16𝑎) 

with 

𝑊𝑟,𝐿𝐵 = 𝑊𝑟,𝐹𝐶 − 𝑀𝐴𝐷(𝑊𝑟,𝐹𝐶 − 𝑊𝑟,𝑃𝑊𝑃)                                                                                             (16𝑏) 

 

Where 𝑊𝑟,𝐿𝐵 is the water depth at the lower bound and 𝑊𝑟,𝑃𝑊𝑃 is the water depth at 

permanent wilting point. 𝐷𝑃𝐿 will vary over the growth season as a result of root growth. 

If a prediction of the soil volumetric soil moisture content at time 𝑡 + 1 is available from the 

LSTM model, the deficit at time 𝑡 + 1 (𝐷𝑃𝑡+1) can be easily calculated. The irrigation 

amount is computed as the water application depth that will replenish the water deficit to 

the upper bound i.e. Irrigation = (𝐷𝑃𝑡+1). For close-loop irrigation scheduling, the irrigation 

threshold is set at a safe point below 𝐷𝑃𝐿. The advantage of this simplified irrigation 

scheduling system is the inclusion of a time variable lower bound. Delgoda et al. (2016) 

noted that this is difficult to achieve with the optimization schemes applied in model 

predictive control systems. A block diagram of the proposed irrigation scheduling system 

is presented in Figure 5. Figure 5 shows that soil moisture, precipitation, irrigation and 

climatic data are applied as inputs into a trained LSTM model in order to generate a 

prediction of the soil moisture content. The predicted soil moisture content is then used in 

conjunction with information on crop water requirement and soil water retention to 

determine the irrigation timing and amount. 

During the simulations, for both the predictive and rule-based irrigation scheduling system, 

a MAD of 30% was assumed for the potato crop and the lower bound was dynamically 

adjusted as a function of rooting depth growth during the simulated growing season.  
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Figure 5. Block diagram of the predictive irrigation scheduling system. t is the time in 

days, m,n, and j are past time steps. 

 

3.5 Model evaluation criteria 

To assess the performance of the trained models for the prediction of the soil moisture 

content during the model evaluation, several measures of accuracy were applied. The 

model’s accuracy between the observed and predicted soil moisture content was 

evaluated using the coefficient of determination (𝑅2), root mean squared error (𝑅𝑀𝑆𝐸) 

and the mean absolute error (𝑀𝐴𝐸).  

The 𝑅2 describes the proportion of the total variance in the observed data that is 

explained by the model and ranges between [−∞, 1]. A 𝑅2 close to 1 indicates that the 

model explains well the variance of observations. It is expressed as 𝑅2 in equation 17 

𝑅2 =
∑ (𝑦𝑖 − �̅�)2 − ∑ (𝑦𝑖 − �̂�𝑖)2𝑁

𝑖=1
𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

                                                                                                    (17) 

 

where 𝑦𝑖 is the measured value at time 𝑖, �̅� is the mean of 𝑦𝑖 (𝑖 = 1 … . 𝑁) and �̂�𝑖 is the 

predicted value at time 𝑖.  

However, the 𝑅𝑀𝑆𝐸 strongly penalizes large outliers and as such, it is preferable to 

compliment it with the 𝑀𝐴𝐸 (Chai and Draxler, 2014). 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 values close to zero 

indicate good model predictions. The MAE and RMSE are defined as  

MAE =
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

                                                                                                                                   (18) 
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RMSE = [
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

𝑛
]

0.5

                                                                                                                      (19) 

 

In equations 18 and 19, 𝑦𝑖 and �̂�𝑖 are observed and predicted value at time 𝑖 (𝑖 =

1,2, … … 𝑛) respectively.  

4 Results and Discussion 
The structure of the neural network models, their predictive performance and the 

performance of the predictive irrigation scheduling system are presented and evaluated in 

this section. 

4.1 Model structure 

The model structure and hyper-parameters of the neural network (NN) models were 

determined through a five-fold cross-validation on the training dataset.  The model 

structures which achieved the best performance for the one-day-ahead prediction of the 

soil moisture content across the different sites are summarized in Table 4.  

Table 4. The identified model structure with the best one-day ahead prediction 

performance across the training sites.  

 

Site Model FFNN     LSTM      

 N M J Neurons Layers 𝑅2 N M J Blocks Layers 𝑅2 

Baluderry 1 1 1 40 1 0.95 

 

1 1 1 20 1 0.95 

Stoughton 1 1 1 20 1 0.97 1 1 1 20 1 0.97 

Waddeston 1 2 2 20 1 0.99 1 2 2 40 1 0.99 

N is the time lag associated with the climatic inputs, M is the time lag associated with the 

precipitation input, and J is the time lag associated with the past soil moisture content input. 
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Table 4 shows that a first-order model taking the precipitation, climatic variables and soil 

moisture content at the present day as inputs is able to predict the soil moisture content of 

the next day for the sandy loam (Baluderry) and loam (Stoughton) sites. For the heavier 

textured clay site (Waddeston), the soil moisture content at the next day is dependent on 

the precipitation and soil moisture during the present and previous day. This can be 

explained by the low infiltration capacity of heavier textured soils. The precipitation input 

on any day may take a time period greater than a day to completely infiltrate into the soil 

column. 

It was also found that a single layer of neurons and memory blocks in both the 

feedforward neural network (FFNN) and long short-term memory network (LSTM) 

respectively is able to satisfactorily model the soil moisture dynamics across all the sites. 

Additional layers could not further improve the learning capabilities of both networks. As 

an example, the performance of NN models with the same model structure with those 

listed in Table 4 but with two hidden layers is presented in Table 5. It is seen that the two-

layer models achieve a lower prediction accuracy across all sites. Moreover, as part of the 

model training experiments, the best cross-validation performance achieved by a FFNN 

which included only a z-score transformation of the modelled data was a 𝑅2 value of 0.68. 

Table 5. Training Cross-validation performance of two-layer neural network models 

Site FFNN LSTM 

 𝑅2 𝑅2 

Baluderry 0.93 0.91 

Stoughton 0.92 0.95 

Waddeston 0.95 0.97 

 

4.2 Soil moisture content prediction 

The prediction capability of a model is exemplified by its performance on data not seen by 

the model during training. As such, the prediction capability of the models was tested on 

the evaluation dataset set aside for each of the model training sites.  

The prediction performance of a non-machine learning baseline which predicts the soil 

moisture content at a particular day as the average soil moisture content of the three 

previous days is presented in Table 6. This is presented along with the prediction 

performance of the trained NN models. A model will only be accepted as skillful if its 

performance surpasses that of the non-machine learning baseline. This is considered a 

good practice for approaching predictive modelling tasks (Géron, 2017).  
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Table 6. Prediction performance of the non-machine learning (naïve) and neural network 

models when tested on the evaluation dataset for all the model training sites 

Site Model Naive   FFNN   LSTM  

 𝑅2 𝑀𝐴𝐸 

(𝑚3𝑚−3) 

𝑅𝑀𝑆𝐸 

(𝑚3𝑚−3) 

𝑅2 𝑀𝐴𝐸 

(𝑚3𝑚−3) 

𝑅𝑀𝑆𝐸 

(𝑚3𝑚−3) 

𝑅2 𝑀𝐴𝐸 

(𝑚3𝑚−3) 

𝑅𝑀𝑆𝐸 

(𝑚3𝑚−3) 

Baluderry 0.89 0.02 0.03 0.94 0.01 0.01 0.95 0.01 0.01 

Stoughton 0.88 0.02 0.03 0.97 0.01 0.01 0.97 0.01 0.01 

Waddeston 0.92 0.01 0.02 0.99 0.01 0.01 0.99 0.01 0.01 

 

Table 6 shows that both the FFNN and LSTM outperform the non-machine learning 

(naïve) baseline across all the sites. Therefore, the NN models can be accepted as being 

skillful. The FFNN and LSTM models are also shown to achieve a comparable prediction 

performance across all the sites. However, it is interesting that the LSTM achieves a 

comparable performance to the FFNN without extensive pre-processing of input data. This 

highlights the ability of the LSTM to sufficiently learn the underlying function approximating 

dynamic data (Chauhan and Vig, 2015). This ability is particularly desirable because the 

data pre-processing pipeline applied for the FFNN required subjective human intervention 

which may not lead to an improvement in model performance for more complex dynamic 

systems.  

The soil moisture predicted by the FFNN and LSTM models along with the observed soil 

moisture content for the evaluation dataset is presented in Figure 6. Figure 6 shows that 

the LSTM models are able to accurately model the soil moisture dynamics while capturing 

its dominant modes. The LSTM models are also able to respond to perturbation from the 

precipitation input shown in the stem plots. Again, it is clear that the LSTM model is able 

to achieve a performance comparable to that of the FFNN with minimal input data pre-

processing. 

There have been previous attempts in literature to model the soil moisture dynamics and 

predict the soil moisture content in order to aid irrigation scheduling. In Delgoda et al. 

(2014) the authors presented a linear dynamic model with assumptions made on the 

absence of saturation flows. This lead to a degradation in the modelling results. The 

saturation flows are a nonlinear function of the soils hydraulic properties (Mashayekhi et 

al., 2016). The LSTM models presented in this study are able to implicitly learn such 

nonlinear relations during training. This is done during the adjustment of the network 

weights in order to define a function relating the climatic and precipitation inputs to the soil 
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moisture content. Since soil moisture depends on the balance between water input and 

output, saturation flows have been incorporated in the LSTM model.  In Lozoya et al. 

(2016) the authors highlighted the need to parametrize several linear dynamics models for 

the prediction of soil moisture content for any particular site. This was attributed to the 

differing dynamics at saturation, available water content and below the permanent wilting 

point. The LSTM models are able to model these nonlinearities for the entire range of a 

sites soil moisture content.  The use of a single model for the entire range of operation of 

a process is usually favored for decision support purposes because of the need to ensure 

simple debugging and test procedures (Qin and Badgwell, 2003). This may become 

complex when several models are used as part of a decision support system. This gives 

further evidence in favor of the application of the LSTM models for the purpose of soil 

moisture prediction and irrigation scheduling.  
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Figure 6. Measured soil moisture content and soil moisture content predicted by the 
feedforward neural network (FFNN) and the long short-term memory network (LSTM) 
using the evaluation dataset for the three training sites (A) Baluderry (B) Stoughton (C) 
Waddeston 
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4.3 Prediction performance in the independent sites 

For the purpose of irrigation scheduling, it may be necessary to predict the soil moisture 

content for a new site for which historical data required to train a NN model is not 

available. The predictions will be generated using the climatic and soil variables of the 

new site as input into a model trained exclusively with data from another site.  As such, 

the ability of the LSTM models to generate soil moisture predictions for independent sites 

using models from the training sites was evaluated. The prediction performance of the 

trained LSTM and FFNN models for these independent sites is presented in Table 7. 

 

Table 7. Prediction performance of the neural network models for the independent sites 

  Independent Site 1 Independent Site 2 

Models Training Site 𝑅2 𝑀𝐴𝐸 

(𝑚3𝑚−3) 

𝑅𝑀𝑆𝐸 

(𝑚3𝑚−3) 

𝑅2 𝑀𝐴𝐸 

(𝑚3𝑚−3) 

𝑅𝑀𝑆𝐸 

(𝑚3𝑚−3) 

FFNN Baluderry 0.74 0.04 0.07 0.93 0.01 0.01 

Stoughton 0.94 0.01 0.01 0.96 0.01 0.01 

Waddeston 0.95 0.01 0.01 0.94 0.01 0.01 

LSTM Baluderry 0.92 0.01 0.01 0.98 0.01 0.01 

Stoughton 0.96 0.01 0.01 0.98 0.01 0.01 

Waddeston 0.98 0.01 0.01 0.97 0.01 0.01 

 

Table 7 shows that the LTSM models generate accurate predictions for the independent 

sites and these predictions outperform those generated by the FFNN in terms of 𝑅2 

scores. This is because of the dynamic nature of the LSTM which enables it to generate 

predictions as a function of model inputs and state maintained for a learned past time 

period. Table 7 also shows that the FFNN is unable to achieve a good prediction 

performance when the model trained in Baluderry was applied for prediction in 

independent site 1. This may be because the data pre-processing steps applied on the 

training data were not applicable to the data of independent site 1. This further highlights 

the robustness of the LSTM model which is able to sufficiently learn the underlying 

function approximating the dynamic data. The data in Table 7 demonstrates the excellent 

approximation ability of the LSTM which makes them useful for generating prediction for 

processes with an underlying dynamics similar to the process they were trained on. This 

approximation ability of the LSTM has been widely exploited in the field of time series 
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forecasting where a single LSTM model is trained to predict data points for a group of time 

series belonging a common cluster (Kobayashi and Shirayama, 2017).  

The applicability of data-driven models trained for a particular site for prediction in a 

different site will further enhance the precision water management of various crops. 

Navarro-Hellín et al. (2016) showed that models which are able to generalize to new sites 

not included in the model development are difficult to realize using traditional machine 

learning methods. The excellent generalization ability of the LSTM presents an 

opportunity for the development of multi-site soil moisture prediction models as 

demonstrated by the robust performance of the LSTM models presented in this study 

when tested on the independent sites.  

4.4 Application in predictive irrigation scheduling 

In this study, the purpose of modelling the soil moisture dynamics is to generate 

predictions of the volumetric soil moisture content which is required for predictive irrigation 

scheduling. As such, the LSTM model developed for each of the training sites was applied 

as part of a predictive irrigation scheduling system, which was evaluated alongside a rule-

based system using AQUACROP simulations of the potato-growing season. The resulting 

soil moisture deficit for the predictive and rule-based systems, and the lower bound deficit 

during simulations for the three training sites are shown in Figure 7. 
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Figure 7. Comparison between the predictive and rule-based irrigation scheduling system 
for AQUACROP simulations of the potato-growing season on the three model training 
sites. (A) Baluderry (B) Stoughton (C) Waddeston 

 

It should be noted that the negative deficit values in Figure 7 indicate soil moisture values 

above the field capacity, hence overwatering. Figure 7 shows that in the heavy textured 

clay site (Waddeston), the predictive system violates the lower bound threshold during the 

mid-growing season. This occurred because the LSTM model applied in predicting the soil 

moisture content was not trained specifically for the potato crop. The high mid-season 
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water demand of potato altered the dynamics learned by the model. Nevertheless, it is 

seen that the deficits are close to the lower bound threshold and they are later minimized. 

It can also be seen that across all sites, the rule-based system tends to over-irrigate as 

indicated by the negative deficit values. Overall, the predictive system is able to maintain 

the soil moisture deficits within the allowable range and it is able to account for the change 

in crop water requirements over the growing season. 

The total water applied during the growing season along with the simulated crop yield and 

water use efficiency (WUE) is summarized in Table 8.  

Table 8. Total irrigation application depth along with the simulated crop yield and water 
use efficiency for the potato growing season 

Site Total 

irrigation 

(𝑚𝑚) 

 Yield  

(𝑡𝑜𝑛/ℎ𝑎) 

 WUE 

(𝑘𝑔𝑚−3) 

 

 Predictive 

system 

Rule-based 

system 

Predictive 

system 

Rule-based 

system 

Predictive 

system 

Rule-based 

system 

Baluderry 69.50 129.80 12.64 12.64 4.08 3.93 

Stoughton 141 177.20 12.64 12.64 3.68 3.68 

Waddeston 55 79.90 12.64 12.64 3.82 3.85 

 

It can be seen from Table 8 that the predictive system consistently applied less irrigation 

depths when compared with the rule-based system. The predictive system achieved a 

water saving of 46% in Baluderry, 20% in Stoughton and 31% in Waddeston. The 

predictive system also achieved a yield and water use efficiency (WUE) similar to that of 

the rule-based system. These results confirm that the predictive system is suitable for 

irrigation scheduling and it is able to improve water conservation. 

5 Conclusions 
The precise water management of crops will immensely benefit from automated decision 

support systems which integrate climatic and soil moisture measurements with a robust 

data-driven model of the soil moisture dynamics. This technology development will 

facilitate the prediction of crop water needs and an improvement in water conservation. 

This paper has presented a dynamic neural network approach for modelling the time 

series of soil moisture content. The performance of the long short-term memory network 

(LSTM) for the prediction of soil moisture content was evaluated for three sites with 
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different soil characteristics. Using an independent evaluation dataset, the LSTM models 

developed for the sites achieved accuracies (𝑅2 > 0.94) for a one-day ahead prediction. 

The LSTM models also generated accurate soil moisture predictions for independent sites 

not used in training the models. 

The use of the LSTM models in predictive irrigation scheduling was also demonstrated 

using AQUACROP simulations of the potato-growing season. The performance of the 

proposed predictive irrigation scheduling system was evaluated by comparing its irrigation 

policies to those of a rule-based system. The predictive system was able to maintain the 

soil moisture deficit within allowable limits for the most part of the simulated growing 

season while minimizing over-irrigation. Furthermore, the predictive system was able to 

achieve a yield and WUE similar to that achieved by the rule-based system using less 

irrigation application depths. 

For future research, the predictive system should be extended to include rainfall forecasts. 

This will ensure that irrigation is optimized to further increase water savings through the 

maximum utilization of forecasted rainfall depths. The development of crop specific LSTM 

models trained on a rich dataset obtained from sites with similar soil types will enhance the 

adoption of data-driven soil moisture models for use in irrigation scheduling applications. 
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Precision irrigation holds the promise for the conservation of the world’s scarce freshwater 

resources. However, there is a need to further improve the sustainability potential of this 

technology. This research focused on the critical elements of precision irrigation 

(measurement, monitoring, and management) and showed that adaptive decision support 

tools can leverage a synergistic combination of these critical elements to realize a robust 

precision irrigation scheduling system. Below are the general conclusions of this research. 

Measurement  
Monitoring of soil moisture content is perhaps the most leveraged measurement for 

scheduling irrigation both in field-scale and protected crop cultivation (Romano, 2014). 

Therefore, the availability of reliable data from soil moisture sensors is an important 

requirement for the realization of robust irrigation scheduling decisions.  Chapter 2 of this 

study has shown that the reliability of data acquired from dielectric soil moisture sensors is 

only assured when the various factors affecting their performance is considered prior to 

their deployment.  

The results presented in the study shows that the accuracy of dielectric soil moisture 

sensors in various soil types can be improved when they are deployed using soil specific 

calibration equations developed in either the field or laboratory. Overall, this process will 

improve the reliability of data available to inform precision irrigation scheduling decisions. 

Significant variations in bulk density due to compaction will reduce the accuracy of 

dielectric soil moisture sensors. However, calibration equations developed at the 

compaction level obtainable in the field in which they will be deployed will generally 

improve their accuracy. 

The dielectric soil moisture sensors tested in this study were marginally affected by 

increasing temperature in a non-saline light and heavy textured soil respectively. 

However, an empirical temperature compensation procedure was demonstrated to 

improve their overall accuracy. The temperature compensation procedure is important, as 

the range of soil moisture values where the sensors exhibited the highest sensitivity to 

temperature increase is critical for irrigation scheduling decisions. The data of the present 

study shows that these sensors are unable to achieve the accuracy required for 

agricultural purposes when operated in soils experiencing high temperature and salinity 

conditions. Therefore, in saline soils, a temperature compensation procedure is beneficial 

when deploying dielectric soil moisture sensors in order to assure data quality. 

This study focused on the evaluation of dielectric soil moisture sensors under laboratory 

conditions. Further investigation is required in order to characterize the response of the 

sensors to dynamics wetting and drying events. This will form a basis for assessing the 

performance of the sensors during high-frequency irrigation events and applications 

where the soil moisture content experiences relatively short time constants. In such 
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applications, the availability of robust temporal soil moisture data sampled at high 

frequencies is required to guide irrigation scheduling decisions.  

Adaptive monitoring and decision support systems 
Adaptive monitoring and decision support tools are an important component of a robust 

precision irrigation system. These tools ensure that the overall precision irrigation system 

is able to account for the time-varying and stochastic crop response in order to adequately 

fulfill crop water requirements. Adaptive monitoring and decision support systems have 

been shown to improve the performance of manufacturing and chemical process systems 

(Qin and Badgwell, 2003). This gives evidence in favor of their application as 

technological tools for improving agricultural water management. 

Chapter 3 of this study demonstrated a novel application of dynamic modelling for the 

prediction of the baseline temperatures which are required for the computation of the crop 

water stress index (CWSI). The baseline temperatures will vary as a result of crop growth 

limiting the application of the empirical CWSI proposed by  Idso et al. (1981). The 

theoretical CWSI proposed by Jackson et al. (1981) however addresses the time-varying 

plant response by including an aerodynamic resistance parameter in its computation. This 

aerodynamic resistance is dependent on the plant and environmental temporal response, 

hence, making it a time-varying parameter. The computation of the theoretical CWSI 

requires extensive instrumentation and knowledge of crop physiology. These factors limit 

its practical application for irrigation scheduling (Maes and Steppe, 2012). Nevertheless, it 

has been demonstrated to provide an adequate indication of the plant water status 

(Osroosh et al., 2015).  

The dynamic modelling approach presented in this study is able to account for the time-

varying plant response in the prediction of the baseline temperatures. Results also show 

that the CWSI values computed using the predicted baseline temperatures are well 

correlated with theoretical CWSI values. The dynamic model requires easily measured 

plant and environmental variables (Leaf area index, solar radiation, vapour pressure 

deficit, air temperature) as inputs. This makes it a promising tool for irrigation scheduling 

applications where it is important to monitor the plant response to aid finely tuned water 

management. The CWSI has previously been demonstrated as a tool for guiding spatially 

varied water application (Shaughnessy et al., 2014). This suggests that the dynamic 

modelling approach for baseline temperature prediction is amenable for variable rate 

irrigation applications. The modelling approach can be adapted for field data. It is, 

however, important to account for the influence of varying wind speeds in such 

applications. 

Chapter 4 of this study presents a novel data-driven dynamic modelling framework for 

real-time monitoring of the plant water status. This framework utilizes measurements and 
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model predictions of the crop transpiration to infer the plant water status. The dynamic 

modelling approach employed in the framework is able to account for the time-varying 

plant response. The proposed framework provides an intuitive means of monitoring the 

plant response to water deficits in order to aid irrigation scheduling decisions. It is directly 

applicable to protected crop production systems where the real-time transpiration 

dynamics can be monitored with lysimeters.  

For field-scale deployment, a robust means of measuring the real-time spatiotemporal 

plant transpiration dynamics is required. Surface renewal analysis fulfills the temporal 

resolution requirements but it is unable to provide transpiration measurements at low 

spatial dimensions associated with irrigation management units. Fernández et al. (2008) 

demonstrated the use of sap-flow sensors for monitoring the plant transpiration dynamics 

in orchards. These sensors can be deployed in different irrigation management units due 

to their portability. The authors further demonstrated the potential of using the 

transpiration ratio as an irrigation scheduling tool. The transpiration ratio is obtained by 

dividing the transpiration measured on a target plant by the model predicted transpiration 

for a similar-sized well-watered plant. They, however, noted that the development of 

simplified transpiration prediction models is a requirement for the adoption of the 

transpiration ratio approach for scheduling irrigation. The dynamic modelling approach 

presents a simplified method for predicting crop transpiration.  

The dynamic model can be parameterized for a crop at a desired water deficit level and 

the model predictions can be applied for irrigation management of other target plants to 

maintain that desired deficit. This will be beneficial for deficit irrigation applications. It 

should be noted that for spatially varied irrigation applications, a dynamic model would be 

parametrized for each of the identified irrigation management zones. Transpiration 

measurements would also be acquired in each management zone. 

Management 
The predictive irrigation scheduling system presented in chapter 5 demonstrates the use 

of data-driven models for improving irrigation management. The dynamic neural network 

model presented in this chapter is able to generate a one-day-ahead prediction of the soil 

moisture content. The predicted soil moisture content is then applied in predictive 

irrigation scheduling. The model inputs include routinely measured climatic variables that 

can be acquired from local weather stations. Furthermore, the dynamic neural network 

models are applicable to other sites with soil characteristics similar to the sites used in 

training the models. The availability of robust and scalable data-driven soil moisture 

prediction models will further contribute to the development of precision irrigation systems 

that are capable of the proactive fulfillment of crop water needs. Model-based irrigation 

scheduling systems have been shown to improve water management and crop growth 

(Delgoda et al., 2016; Giusti and Marsili-Libelli, 2015; McCarthy et al., 2014). This is 
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because the underlying models are able to assure a closed-loop control structure that 

adapts to soil and weather perturbations. This suggests that the adoption of model-based 

decision support systems will further contribute to the conservation of scarce freshwater 

resources. 

The dynamic neural network model presented in this study has been demonstrated as 

robust to the stochastic soil-plant-atmosphere interactions. For variable rate irrigation 

applications, such models can be independently applied for predicting the soil moisture 

content in each irrigation management zone. Each management zone would be defined 

according to differing soil and crop properties across the field. 

Collectively, this study has shown that 

 The accuracy of dielectric soil moisture sensors can be improved with soil specific 

calibration equations. The negative effect of varying bulk density, salinity and 

temperature on sensor performance can be mitigated using empirical calibration 

procedures. 

 A dynamic modelling approach can be applied for developing models which are able 

to predict the plant response to water supply in form of canopy temperature and 

transpiration. These models are able to account for the time-varying plant response. 

The dynamic models require minimal input parameters and are amenable for 

irrigation scheduling in commercial crop production. 

 Dynamic neural network models can be used as part of a field scale predictive 

irrigation scheduling system. These models require minimal pre-processing of input 

data and are able to generate accurate volumetric soil moisture content predictions. 

Using model based simulations of the potato growing season, it was demonstrated 

that a dynamic neural network based predictive irrigation scheduling system is able 

to reduce irrigation water use without an adverse effect on crop yield 

In conclusion, this study has demonstrated the applicability of data-driven dynamic models 

for adaptive monitoring, decision support and management purposes. The proposed 

adaptive monitoring and decision support tools can be combined to realize a synergistic 

sustainable precision irrigation system. This can be viewed as a real-time decision-making 

system that combines field variability, plant response, plant growth, atmospheric demand, 

and predictions of soil water availability to increase crop yield and water use efficiency 

while lowering the costs associated with irrigation and the corresponding environmental 

impacts (Veraa et al., 2017).  

Recommendations for future study  
The dynamic model for the prediction of the baseline temperatures presented in chapter 3 

of this study was developed under greenhouse conditions. The modelling methodology is 

applicable to different environments and crops. Therefore, future research should focus on 
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the development of dynamic baseline temperature prediction models for field conditions. 

The simplicity and robustness associated with such models will further enhance the 

adoption of the CWSI as an irrigation scheduling tool. 

The water status monitoring framework presented in chapter 4 can also be adapted for 

field conditions. However, this will be dependent on the availability of transpiration 

measurement sensors with high spatial and temporal resolutions. Presently, the sap flow 

sensor partly fulfills this requirement but a dense sensor deployment is required to 

achieve a high spatial resolution. Furthermore, commercial sap flow sensors are mostly 

designed for deployment on tree crops.  Therefore, future research should focus on the 

development of robust and cost-effective sap flow sensors that can be deployed on 

various high-value crops. 

The predictive irrigation scheduling system presented in chapter 5 was evaluated using 

simulations. The evaluation of similar systems adapted for various soil types and crops 

will be beneficial for further quantification of their sustainability potential. Future research 

should also focus on the development of crop and soil specific data-driven soil moisture 

prediction models. The predictive irrigation scheduling system presented in this study was 

designed to assure a short-term objective of maintaining a suitable soil moisture deficit. 

Based on the simulation results of McCarthy et al. (2014), field evaluation of predictive 

irrigation scheduling systems which are designed to maximize an end of season objective 

(e.g. final yield) will be beneficial for overall quantification of the sustainability 

improvement potential of model-based irrigation decision support.  
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