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Abstract  

Analysis methods for landscape-scale site-specific agricultural datasets have been adapted from a 

wide range of quantitative disciplines.  Due to spatial effects expected at landscape scales with 

respect to yield affecting factors, inference from aspatial analyses may lead to inefficient 

statistical inference. When spatial correlation exists within a random variable e.g. explanatory 

variables such as elevation or soil characteristics, spatial statistical methods can provide unbiased 

and efficient estimates on which to base economic analyses and farm management decisions. 

Simple continuous terrain variables derived from spatially lagged independent variable 

transformation of relative terrain position allowed models to be estimated using familiar linear 

aspatial models without introducing the problems associated with interpolated data in inferential 

spatial statistics. Using site-specific data from three example fields, cross regressive elevation 

variables complemented topographic attributes, rather than replacing them in a range of 

statistical models. Results indicated that cross regressive elevation variables, especially relative 

elevation, reduced estimation problems due to correlation among independent variables and bias 

arising from spatially interpolated data in statistical analysis.  
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Introduction 

The advent of global navigation satellite systems (GNSS) empowered farmers to test input 

choices before implementing farm management decisions across larger areas. Farmers are 

making decisions based on analysis of yield monitor data (Griffin et al. 2008). Data from yield 

monitors motivated the resurgence of on-farm experimentation because farmers could measure 

yield responses without interfering with harvest-time field operations (Griffin et al. 2014).  

Recent studies estimate 39% and 68% of midwestern US farms have georeferenced yield data 

and automated guidance, respectively (Griffin & Yeager 2019; Miller et al 2019). Farmers with 

GNSS-enabled yield monitors are likely to conduct landscape-scale on-farm experiments (Griffin 

2010). Technology-endowed farms are candidates for utilizing the analysis tools presented in this 

study. Farms with either GNSS-enabled yield monitors or automated guidance are likely to have 

access to elevation data sufficient to make use of these analyses. In addition, farms without high 

accuracy GNSS elevation data may have light detection and ranging (LiDAR) data available at 

near zero cost (Thomas et al., 2017). The overall objective of this study was to determine if 

microscale landscape position variables based on cross regression can add to the explanatory 

power of regression-based analysis of crop sensor data. While farmers are typically not fixated 

on statistical testing in the same way that researchers are, they are concerned about the reliability 

of the results. Statistical inference analysis is the most likely basis for reliability indicators in 

farm decision support tools. These tools are more likely utilized within automated cloud-

computing routines for farm-level data analysis rather than farmers interacting via desktop 

software. The advent of Big Data has encouraged researchers and agricultural entrepreneurs to 

develop automated decision-making tools (Coble et al., 2018). 

Supporting factors of production are needed for inference from analyzing yield monitor data. 

Explanatory variables include treatment information from deliberate interventions recombined 

with environmental soil characteristics such as elevation and terrain attributes. Landscape 

position is known to influence crop productivity, variability and yield response to input 

application. Simple searches within Precision Agriculture journal returned 206, 135 and 193 

articles for elevation, terrain and topography, respectively.  

Topographic modeling techniques applied to statistical models include hydrologic models, 

indices of variables, digital elevation models (DEM), elevation as simple covariates and 

derivatives of elevation surfaces such as slope, aspect and curvature. Even though elevation and 
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derivatives of elevation may have no direct interpretation with respect to crop yield, elevation-

derived covariates typically explain substantial portions of the noise component of the model, 

earning its place as one of most common topography variable regimes in the literature. These 

noise-explaining variables are likely to proxy for environmental properties that do influence crop 

growth and yield including total wetness and other factors that affect water availability. 

Additional advantages of elevation data include continual collection of data with nearly every 

equipment pass during field operations and regionally accessible publicly available LiDAR. A 

secondary benefit of GNSS-enabled automated guidance is accurate, high resolution and low-

cost elevation data collected during most field operations.  

Omitting variables important to statistical model specification leads to several problems 

influencing inference. Including variables measured incorrectly leads to errors in variables 

problems. These statistical failures with respect to topography, omitted variable or errors in 

variables, may be prevented with appropriate spatial techniques. A method to create a relative 

terrain position, i.e. relative elevation, via cross-regressive techniques requiring no spatial 

interpolation is proposed. The proposed cross-regressive models are compared to the more 

common spatial error process models that tend to be favored by many researchers seeking 

inferential statistics for yield response in field-scale experimentation. Some researchers, 

especially those with roots in geography or economics, favor the spatial error or spatial lag 

regression models for statistical inference (e.g. Anselin et al., 2004; Florax et al, 2002; Griffin et 

al., 2008; Hurley et al., 2005). Others, especially those coming from crop science or soil science, 

favor nearest neighbor analyses originally suggested by Papadakis (1937). Lambert et al. (2004) 

compared the most common spatial error process models, showed that they have a common 

theoretical base and provided empirical examples in which all the spatial error process models 

resulted in similar conclusions, which were quite different from the results of aspatial analysis. 

The overall objective of this study was to determine if microscale landscape position variables 

based on cross regression can add to the explanatory power of regression-based analysis of crop 

sensor data. The spatial error process model tends to be the standard model selected by the 

majority of researchers evaluating field-scale experiments. The simpler cross regressive model 

may be a viable alternative especially when topographic variables are included on the righthand 

side of the regression equation. The specific objectives were to determine in example data sets: 

1) if cross regression elevation variables create multicollinearity problems in estimation, and 2) if 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

4 

 

they avoid the statistical problems of using interpolated values as independent variables. Using 

spatial inferential statistics (i.e. spatial econometrics) that model local spatial autocorrelation, 

relative elevation, slope and overall micro-scale landscape position are used to model yields with 

a limited number of continuous covariates. Hypotheses include 1) model specifications including 

cross regression relative elevation variables facilitate estimation of treatment differences or 

optimal input rates and 2) model specification with the proposed cross regressive elevation 

variable does not affect the multicollinearity condition number. Multicollinearity is the inter-

correlation among explanatory variables in a regression model (Greene 2012). Multicollinearity 

is measured by condition number (CN) of the matrix of explanatory variables. Condition number 

is the ratio of largest and smallest eigenvalues of the matrix (Greene, 2012). 

Spatial regression techniques modeled relative elevation, slope, overall micro-scale landscape 

position and local spatial autocorrection with a limited number of covariates. Implications of 

differing topography variables for spatial data analysis of field-scale on-farm comparisons were 

demonstrated. Effectiveness of various alternative specifications were assessed. Field scale 

experiments were managed by farmers in collaboration with the authors (Griffin et al. 2008). 

Research questions, treatments tested and experimental designs were chosen by farmers with 

guidance from the authors. This study builds upon Griffin et al. (2008) by updating the methods 

and applying tools to a wide range of data in development of automated tools for spatial data 

analysis and decision making. 

 

Background 

Agricultural productivity is influenced by terrain position. Elevation and other topographic 

information have been used in precision agriculture studies for three broad categories, 1) 

identification of management zones, 2) empirical crop modeling and 3) soil mapping (Bishop 

and McBratney 2002). Their third category is evident with USDA-NRCS soil mapping units 

being defined by slope class categories. Category 1 and category 2 are of interest to farmers now 

that elevation data are easily collected at relatively low cost. Although the highest accuracy 

GNSS are preferred to produce topographic maps (Clark and Lee, 1998), recent agricultural 

technology innovations for data gathering (e.g. combine yield monitors and other site-specific 

sensors) and navigation (e.g. lightbars and automated guidance) may provide sufficiently 

accurate elevation measurements for use as covariates in statistical models (Garrido et al., 2019).  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

5 

 

Elevation data is important in estimation of treatment effects in datasets acquired from fields 

with micro-scale topography differences. In cases such as precision leveled fields in flood 

irrigated crops such as rice, elevation would not be considered an important covariate. However, 

for broad area wheat, soybean and corn production, local terrain attributes may play a substantial 

role (Griffin et al. 2008). 

Although elevation has been successfully used as a covariate in field-scale precision 

agriculture datasets, the elevation variable alone cannot adequately model the relative terrain 

position for an observation. Even within the same field, an elevation measurement of say 200 m 

may be 1) on a hilltop, 2) valley bottom and 3) hill slope. Advanced elevation modeling 

techniques interpolate elevation into a so-called digital elevation model (DEM) surface from 

which slope and other elevation derivatives can be calculated, e.g. plan curvature, profile 

curvature and aspect. Although spatial interpolation has its place and elevation derivatives have 

been useful for many soils and crop modeling procedures, they may not be as useful in statistical 

modeling of on-farm research for two reasons. The first reason is that the elevation 

measurements must be interpolated on to a surface thus introducing a systematic error into the 

data (Anselin 2001). Unlike random errors, systematic errors affect the average of the 

explanatory variable and biases the estimated coefficient. Second, estimation of regression 

models suffers from too many continuous covariates especially when several variables are linear 

transformations, i.e. linearly or non-linearly dependent, of one another resulting in 

multicollinearity. A smaller number of variables that model relative terrain position without 

introducing systematic errors of spatial interpolation would be useful to spatial analysis of 

landscape-scale precision agriculture datasets. 

If slope or other variables created from an interpolation process are conceptually 

important to the statistical model, an omitted variable problem results from exclusion potentially 

leading to biased estimated coefficients. Conversely, if an interpolated surface from sparse data 

layers (e.g. soil fertility measurements), are used as explanatory variables, errors in variables 

may result. If these important spatially autocorrelated explanatory variables are not available in 

precision agriculture datasets, omitted variables problems result. For instance, many farmers 

collect supporting information at scales beyond the spatial range, e.g. phosphorus and potassium 

samples are commonly taken from 1-ha grid sizes resulting in observations being no closer than 

100 m. These distances often exceed the spatial range resulting in no spatial autocorrelation 
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detected in the data; thus, typical soil fertility measurements are not conducive for spatial 

analysis. However, it is feasible for some factors to be measured at relatively higher resolutions. 

Elevation is an example of a feasible relatively dense measurement. Geolocated 

technology innovations for data gathering (e.g. combine yield monitors and other sensors) and 

navigation (e.g. automated guidance) provide elevation measurements. Previous studies have 

shown elevation effects on crop response (Jiang and Thelan, 2004; Kaspar et al., 2004; 

Kravchenko et al., 2000) and others included elevation and other topographic measurements as 

explanatory variables for regression models (Anselin et al., 2004; Miao et al., 2006; Hartsock et 

al., 2005). Long and McCallum (2015) analyzed yield monitor data and LiDAR for wheat 

research.  Topographical data is useful to delineate zones with crop sensitivity to environmental 

factors (Kravchenko et al., 2000).  Elevation data and derivations including slope, aspect and 

curvature have been used as covariates; however, slope and other elevation surface derivatives 

rely upon spatial interpolation. To calculate elevation derivatives, elevation data must be 

interpolated on to a smooth surface, the so-called digital elevation model (DEM). From the 

elevation surface, slope calculations are based on simple calculus; however, the process of 

interpolating a finite set of elevation measurements on to a smooth surface introduces a random 

variable with a systematic error (Anselin, 2001).  

 One potential method to avoid errors in variables and omitted variable problems is spatially-

lagged independent variable models, i.e. cross regression (Arbia 2014). Cross-regressive models 

utilize spatially-lagged independent variable(s) including spatially-weighted exogenous variables 

on the right-hand side that can be estimated as ordinary least squares (OLS) (Anselin 2002; 

Arbia 2014; Florax and Folmer 1992). Cross-regressive models are an extension of familiar 

aspatial linear models (Eq. 1),  

 

𝒚 = 𝑿𝜷 + 𝝁           (1) 

 

where y is an n x 1 vector of observations on the dependent variable, X is an n by k matrix of 

explanatory variables, β is an k by 1 vector of regression coefficients and μ an independently and 

identically distributed error term. Arbia (2014) presented the general form of the linear spatial 

regression model and five special cases (p 51-52, note that Arbia used the phrase “remarkable 

cases”).  
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𝒚 = 𝜆𝑾𝒚 + 𝑿𝜷(1) + 𝑾𝑿𝜷(2) +  𝝁      |𝜆| < 1      (2) 

 

𝝁 = 𝜌𝑾𝝁 + 𝜺                                           |𝜌| < 1       (3) 

 

where X is a matrix of non-stochastic regressors, W is an exogenously defined row-standardized 

n by n spatial weights matrix, 𝜺|𝑿 ≈ 𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎𝜀
2 𝐈𝑛 𝑛) and 𝜷1, 𝜷2, λ and ρ parameters to be 

estimated (Arbia 2014 page 51). Rewriting Eq. 2 as 

 

𝒚 = 𝜆𝑾𝒚 + 𝒁𝑿𝜷 +  𝝁      |𝜆| < 1         (4) 

 

such that 𝒁 = [𝑿, 𝑾𝑿] and 𝜷 = [𝜷(1), 𝜷(2)] (Arbia 2014 page 52). Five special cases are derived 

from the spatial autoregressive model with additional autoregressive error structure (SARAR) 

(Anselin, 1988; Arbia 2014; Kelejian and Prucha 1998). Arbia (2014, page 52) presented these 

five special cases as 

 

(i) 𝜷 = 0 and either 𝜆 or 𝜌 = 0, the pure spatial autoregressive model 

(ii) 𝜆 = 𝜌 = 0, the lagged independent variable model 

(iii) 𝜆 = 0, 𝜌 ≠ 0, the spatial lag model (SLM) 

(iv) 𝜆 ≠ 0, 𝜌 = 0, the spatial error model (SEM) 

(v) 𝜆 ≠ 0, 𝜌 ≠ 0, the complete spatial model (SARAR) 

 

This study applied the second and fourth special cases to topography attributes. The second 

special case includes spatially-lagged independent variables and is sometimes referred to as the 

cross-regressive model with one or more cross-regressive variables WX.  It is assumed 𝒁 =

[𝑿, 𝑾𝑿] is full rank such that Z may contain a spatial lag of some or all the independent 

variables. Cross-regressive models are estimated as OLS and intended to explicitly account for 

local spatial externalities and given as Eq. 5 

 

𝒚 = 𝑿𝜷 + 𝑾𝒁𝜸 + 𝝁          (5) 
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where Z is a k by n matrix of k explanatory variables that can be the same as X except without 

the intercept term, γ is a k by 1 vector of regression coefficients on the cross-regressive term WZ 

and remaining terms have been previously defined (Arbia 2014).  

Cross-regression explicitly models local spillovers. In applications of spatial statistical 

techniques applied to precision agriculture cases, spatial spillover effects have almost exclusively 

been modeled as global processes, where ‘global’ refers to each location in the field being linked 

to any other location in the field. Global linkage processes are inherent to the frequently used 

spatial autoregressive models. Local spatial spillovers exist with only immediately adjacent 

observations. As an example, measurement errors are likely with precision agriculture sensors 

and these errors tend to “spill over” across spatial units. The errors for spatial unit i are likely to 

be correlated to the errors in a neighboring unit j; spatial dependence may be caused by these 

spatial spillovers (Anselin, 1988). In on-farm experimentation, the local spillover effect may 

include treatment edge effects where treatments applied to neighboring spatial units impact yield 

response in adjacent spatial units. When true model specifications include WZ terms but 

estimated as OLS without lagged independent variables, the estimated coefficients remained 

unbiased and efficient. Cross-regressive variables have rarely been used in production 

agriculture. An exhaustive review of the literature revealed no other mention of cross-regressive 

or spatially lagged independent variables for production agriculture especially with respect to 

analysis of site-specific data.  

Spatially-weighted exogenous variables can be included in linear aspatial and spatial process 

models such as spatial error models (SEM). The SEM (sometimes referred to as spatial 

autoregressive or SAR) explicitly models spatial autocorrelation in the error term, µ. Site-

specific data collected from landscape scale on-farm experiments are expected to have spatial 

effects such as dependence and autocorrelation. Given statistical failures, these data analyses 

likely benefit from spatial error process models due to omitted variable (e.g. subsoil 

characteristics, microclimate), rather than contagion within dependent variables. Omitting an 

important variable with its own spatial effects causes aspatial model residuals to be spatially 

autocorrelated. Diagnostics evaluating OLS residuals empirically test for spatial effects in 

residuals and dependent variable. These diagnostics provide quantitative insights into selection 

of the most appropriate spatial process model.  

The fourth special case described by Arbia (2014) is the SEM and given as  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

9 

 

 

𝒚 = 𝑿𝜷 + 𝜺, 𝜺 = 𝜆𝑾𝜺 + 𝝁         (6) 

 

or in reduced form as  

 

𝒚 = 𝑿𝜷 + (𝑰 − 𝜆𝑾)−1𝝁          (7) 

 

where ε is an n by 1 vector of residuals, λ a spatial autoregressive parameter, μ a well behaved, 

non-heteroskedastic uncorrelated error term (Anselin 1988) and others as previously defined. 

The (𝑰 − 𝜆𝑾)−1term is the spatial multiplier. When the spatial autoregressive term, λ, is 0, the 

spatial error model reverts to the familiar aspatial linear model (Eq. 1), 𝒚 = 𝑿𝜷 + 𝝁. The spatial 

error process can be characterized by the global spillovers due to spatial multipliers. When the 

spatial error model is appropriate, OLS estimators remain unbiased but are inefficient. 

 Comparison of spatial statistical methods have been conducted by simulation and field 

experimentation. Dubin (2003) stated geostatistical methods, which could be estimated as 

restricted maximum likelihood (REML), outperformed spatial process models when the true 

form of spatial variability was unknown. Conversely, several studies analyzing site-specific data 

determined SEM was an appropriate model. Spatial process models have been shown to provide 

a framework to appropriately model spatial effects (Anselin et al., 2004; Hurley et al., 2005; Liu 

et al., 2015; Long and McCallum, 2015; Trevisan et al., 2019). Anselin et al (2004) were likely 

the first to apply SEM to precision agriculture. They evaluated field-scale nitrogen fertilizer trials 

in Argentina and found aspatial models were not sufficient to address spatial effects. Lambert et 

al. (2004) compared ordinary least squares and four spatial regression methods on the Los Rosas 

dataset originally reported by Anselin et al., (2004). Lambert’s study reported that all four spatial 

regression methods provided similar estimates, although spatial processes and geostatistical 

techniques were able to model the treatment effects better than methods that did not explicitly 

account for spatial structure in the data. Liu et al (2015) compared spatial process models to 

evaluate nematicides in cotton production. They reported that SEM model results were more 

practical to build university Extension recommendations than other candidate models. 

Advantages of the spatial process model include being conducted in a single step, estimated with 

fewer observations and able to model spatial autocorrelation in the dependent variable, error term 
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or explanatory variables. The geostatistical approach estimated as REML is estimated in three 

steps, requires more observations and only applies to the error process. One criticism of the 

spatial process model is the exogenously-defined spatial interaction structure. Recently, Selle et 

al. (2019) suggested established models such as Integrated Nested Laplace Approximation 

(INLA) with Stochastic Partial Differential Equation (SPDE) could improve analysis of field 

experiments. Each of these statistical models are readily available in popular open source 

software environments. Spatial effects violating assumptions of classical statistics may be 

modeled in more than one method; these effects may be included as predictors in the model or 

could be explicitly modeled if properly parameterized and can have similar predictive power. In 

any case, these studies indicated that explicitly modeling spatial variability exhibited advantages 

over analyzing data with aspatial models.  

 

Methods 

Spatial analyses were conducted on landscape-scale on-farm experiments to demonstrate 

usefulness of alternative topographic variables. Cross-regressive variables, WZ, were created for 

each dataset to evaluate localized terrain effects on yield response to deliberate treatments. The 

first step was to choose the spatial interaction structure for use in calculating the spatially-

weighted elevation term. In general, spatial weights matrices were constructed such that 𝑤𝑖𝑖 = 0, 

𝑤𝑖𝑗 > 0 for observations considered neighbors, and 𝑤𝑖𝑗 = 0 for non-neighbors where w is an 

element of W and ij denotes the matrix position. Spatial weights matrices for local terrain effects 

(hereafter referred to as W1) were selected such that only immediately neighboring observations 

were of interest therefore specifications such as first-order queen contiguity or minimum 

Euclidean distances were considered. In either case, Boolean matrices were constructed with 

zeros as non-neighbors and ones as neighbors before row-standardizing.  

The n by 1 vector of continuous elevation data, E, was pre-multiplied by the n by n spatial 

weights matrix, W1, producing the n by 1 cross-regressive term 𝑾1𝑬. Cross-regressive terms 

measure spatially weighted average elevation of immediate neighbors as defined by spatial 

interaction structure, W1. The spatially weighted average elevation variables, 𝑾𝟏𝑬, results in a 

smoothed elevation variable. Rather than including smoothed elevation, 𝑾𝟏𝑬, was used to create 

a relative elevation variable. The cross-regressive term, 𝑾1𝐸, was subtracted from the elevation 

value of observation in question providing relative elevation, 𝑅𝐸 = 𝐸 − 𝑾𝟏𝐸.  
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Relative elevation, RE, captures localized terrain position for use in statistical models. When 

relative elevation is negative, 𝑅𝐸 < 0, observations are lower in elevation than average of 

immediate neighbors. When relative elevation is positive, 𝑅𝐸 > 0, observations are higher than 

spatially-weighted average of its neighbors. Observations are at the same elevation as the 

average of neighbors when equal to zero, 𝑅𝐸 = 0. When RE=0, the observation could be on a 

flat plain or hillside such that average of the neighbors equates to elevation of observation. This 

is a known limitation of relative elevation variables compared to slope variables distinguishing 

observations on hillsides. However, observations with slope equal to zero are unable to be 

discerned between hilltop and valley. Relative elevation indicates direction of relative position 

and magnitude of differences. Since terrain slopes are generally calculated from interpolated 

elevation surfaces, the magnitude of 𝑅𝐸 partially substitutes for slope allowing models to be 

estimated without systematic error associated with spatially interpolated values.  

Aspatial, cross-regressive, and SEM models were estimated to analyze field-scale site-specific 

data. Yield monitor data were cleaned to remove erroneously measured observations and to 

relocate points to correct locations per procedures suggested by Griffin et al., (2007) and 

Sudduth et al. (2012). Aspatial and cross-regression analyses were estimated as OLS.  Spatial 

error process models were estimated as general moments (GM) for all model specifications.  

General moments estimators were chosen due to large sample sizes of field experiments and no 

assurance of normal error distribution (Kelejian and Prucha 1999; Kelejian and Prucha 2010; 

Bell and Bockstael 2000; LeSage and Pace, 2009).  

An inverse distance spatial weights matrix 𝑤𝑖𝑗 =
1

𝑑𝑖𝑗
 hereafter referred to as 𝑾𝟐, was chosen 

to define the spatial interaction structure for SEM models. Each element of W2, 𝑤𝑖𝑗, were 

calculated as the inverse of the distance, d, from i to j, 𝑤𝑖𝑗 = 1
𝑑𝑖𝑗

⁄ .  Assigning weights based on 

inverse of proximity was chosen for the SEM model so that neighbors further away did not 

influence error process as much as nearby neighbors.  Model specifications were evaluated by 

Akaike Information Criterion (AIC) (Anselin 1988; Greene 2012). The AIC degrades as model 

size increases, i.e. penalties placed on increased numbers of explanatory variables.  The models 

were estimated as GM and sigma squared (�̂�𝑘
2) reported.  The measure of fit was calculated as 

𝐴𝐼𝐶 = 𝑁(𝑙𝑛 2 𝜋�̂�𝑘
2 + 1) + 𝑘, where N was number of observations and k number of variables.   
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Results 

Three example fields were evaluated and presented here. The first field presented, Field A, 

had no deliberate intervention. Field B and Field C included farmer-managed field-scale 

deliberate intervention research for categorical and continuous variables, respectively. The rate 

trial was a soybean seeding rate study (Field B hereafter referred to as SOYSEED). The 

categorical trial included pesticide treatments applied to popcorn seed (Field C hereafter referred 

to as SEEDTRT). Results from each dataset are reported after a demonstration of spatial 

correlation of relative elevation (RE) with other variables.   

 

Field A: Topographical terrain attributes 

Terrain attributes in Field A were suspected to be correlated with yield. Correlation between 

yield and terrain were demonstrated by measurements taken from a 160-ha field with highest 

level of elevation data quality available. Data included 286 survey-quality and 1,068 RTK-GNSS 

survey measurements combined into a single file (Figure 1). The survey-quality data were 

electronically collected including distance from observer and angles between base station and 

each marked location such that elevation could be calculated. Eight locations were measured by 

both survey and RTK-GNSS to align measurements, resulting in 1,346 elevation observations.  

A total of 3,859 electrical conductivity (EC) measurements were georeferenced on 20-m 

transects. Topography, EC and yield data were recombined into a single dataset resulting in 

1,075 observations. The final number of observations were less than the most sparse data layer 

(N=1,346) because not all data layers had observations within reasonable vicinity (for discussion 

of disparate spatial data layer assimilation see Griffin et al. 2007). 

 

<FIGURE 1 about here> 

 

Although no deliberate on-farm experiment was available for this field, these data were 

useful to demonstrate spatial correlation among yield and elevation variables. Univariate and 

bivariate Moran’s I tested global spatial autocorrelation between variables and spatially-weighted 

average of immediate neighboring observations as defined by spatial weights matrices. One of 

the first steps in exploratory spatial data analysis (ESDA) is evaluation of Moran’s I tests for 

global spatial autocorrelation in a random variable (Anselin, 1988; Cliff and Ord, 1981): 
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𝐼 =
𝑛

𝑆𝑜

𝒙′𝑾𝒙

𝒙′𝒙
          (8)  

 

where x is an n by 1 vector of a random variable as deviations from the mean, W is an n by n 

spatial weights matrix described earlier in relation to spatial process models and So is the sum of 

the elements of W (Anselin, 1988; Cliff and Ord, 1981). Moran’s I is a spatial correlation 

coefficient not strictly bounded between [−1,1] but rather [
1

Λ(𝑛−1)
,

1

Λ(1)
]where Λ(𝑛−1) and Λ(1) are 

the minimum and maximum eigenvalues of W, respectively.  Moran’s I can comfortably be 

interpreted as a correlation coefficient (Cliff and Ord, 1981; Anselin, 1988). Positive values of 

Moran’s I are interpreted as high (low) values having neighbors of high (low) values, whereas 

negative values signify that high and low value observations occur as neighbors. Near-zero, i.e. 

not statistically significantly different from zero, Moran’s I value signifies a random spatial 

distribution. Rather than considering a random variable with a spatially-weighted average of the 

same random variable, the bivariate Moran’s I considers a random variable (xk) with the 

spatially-weighted average, or lag, of another random variable (xl) (Eq. 9).  

 

𝐼 =
𝑛

𝑆𝑜

𝒙𝒌
′ 𝑾𝒙𝒍

𝑥𝑘
′ 𝒙𝒌

          (9) 

 

Although yield (YIELD), elevation (ELEV) and electrical conductivity (EC) had 

expected high levels of spatial autocorrelation (I= 0.70,0.97 and 0.81, respectively), relative 

elevation (RE) has relatively small Moran’s I (0.07) but statistically different from zero (Table 

1). Moran’s I estimation is sensitive to the connectedness of the spatial interaction structure, W1, 

(Bell and Bockstael 2000) used to calculate the cross-regressive term 𝑾1𝑬. The relatively 

limited geographic proximity that observations were considered neighbors caused micro-scale 

changes in RE to influence spatial autocorrection metrics. If greater connectedness, i.e. larger 

proximity, were used to define the spatial interaction structure, then higher Moran’s I values 

would have been expected for RE.  The bivariate Moran’s I values between YIELD and ELEV 

(I=0.21) and EC (I=-0.35) showed moderate spatial association. Spatial autocorrelation between 
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RE and the other variables were relatively small, but statistically significantly different from 

zero. Note that Table 1 is not necessarily required to be symmetric. 

 

 Table 1. Univariate and bivariate Moran's I test statistic for select random variables  

Spatially lagged variable 

Random Variable 

YIELD ELEV EC RE 

YIELD 0.70 0.21 -0.35 0.05 

ELEV 0.21 0.97 -0.54 0.10 

EC -0.35 -0.54 0.81 -0.08 

RE 0.03 0.07 -0.05 0.07 

N=1,075 

Null of no spatial autocorrection rejected at 5% level for all 16 Moran’s I tests 

 

Although bivariate Moran’s I for RE with other values were significantly different from zero, 

magnitudes of spatial autocorrelation were relatively small. Low levels of spatial autocorrelation 

indicated RE may be a candidate explanatory variable in aspatial models. When explanatory 

variables were spatially autocorrelated with the dependent variable, itself or other explanatory 

variables, residuals from aspatial regression models will be spatially autocorrelated resulting in 

inefficient aspatial estimation.   

 

Field B: Popcorn seed treatments, SEEDTRT 

Seven combinations of seed-applied insecticides and fungicides were compared on irrigated 

popcorn production in pseudo-replicated strip-trial experimental design for SEEDTRT in 

Tazewell County, Illinois, USA (Griffin et al. 2008). The 10-ha experiment (Figure 2) was 

planted with two passes of an 8-row planter with the control treatment (CHECK) between each 

of the six treatments and both sides of the experiment. Each treatment strip was harvested by two 

combine harvester passes.  

 

<FIGURE 2 about here> 

 

Treatment X1 and X2 were two recommended rates of the same insecticide.  Treatment X3 

was the fungicide. Treatments X4 and X5 were combinations of X3 with X1 and X2, 

respectively.  Treatments X6 and X7 were two recommended rates of a second insecticide.  The 
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farmer’s prior expectations included Treatment X7 dominating other treatments from a priori 

experiences. Therefore, Treatment X7 was the reference that other treatments were compared.  

Full model specification (FULL) included binary variables for treatments (Xi), soil binary 

variables (Si), elevation (E), elevation squared (E2), RE and interaction terms between elevation 

and treatments (EXi). Second model specifications (EL) omitted RE. The WE model 

specification was the same as FULL except RE variable was replaced by cross-regressive 

variable, WE. Fourth model specification (RE) included RE but omitted all other topography 

variables.  

In FULL and WE model specifications, aspatial results indicated Treatment X6 was 

statistically different from the control treatment, while aspatial estimation of RE model indicated 

Treatments X1, X3, X4 and X6 were statistically different from the control (Table 2).  Results 

from SEM estimation were similar for models given that Treatments X2, X3, X4 and X6 

statistically different from Treatment X7 for FULL, EL and WE models. Treatments X4 and X6 

were statistically significant under the RE model specification.   

Rankings within SEM models more closely resembled prior farmer expectations (Griffin et 

al., 2008) than OLS when evaluated at mean elevation (Table 3). The SEM model dominated 

OLS for FULL, EL and WE models. The RE model resulted in different agronomic rankings 

with Treatment X6 ranked second. The FULL and WE model specifications produced the same 

agronomic rankings for both OLS and SEM estimation. Although the RE model specification did 

not dominate the other models based on AIC, the inclusion of the RE variable in the FULL 

model was beneficial to the overall model fit for both OLS and SEM estimation based on AIC. 

Since elevation by treatment interaction terms was usually significant under SEM estimation, 

treatment rankings were sensitive to elevation and terrain position.  
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Table 2. Regression results for SEEDTRT   

Variable 

OLS SEM OLS SEM OLS SEM OLS SEM 

FULL FULL EL EL WE WE RE RE 

Intercept 5.898*** 0.727*** 5.894*** 0.744*** 5.903*** 0.437*** 5.686*** 1.569*** 

X1 -0.211 0.082 -0.173 0.029 -0.211 0.049 -0.101** -0.096 

X2 -0.061 0.950*** -0.078 0.996*** -0.061 0.571*** 0.071 -0.011 

X3 0.067 0.387*** 0.057 0.438*** 0.067 0.232*** 0.251*** -0.013 

X4 -0.024 0.989*** -0.068 1.116*** -0.023 0.594*** -0.111** 0.353*** 

X5 0.146 -0.012 0.114 0.072 0.146 -0.007 0.009 -0.001 

X6 0.248*** 0.713*** 0.198 0.835*** 0.247** 0.428*** 0.110** 0.318*** 

S1 -0.236*** 0.063 -0.278*** 0.197* -0.237*** 0.038 -0.596*** 3.868*** 

S2 0.073 0.290** 0.043 0.420*** 0.073 0.174** -0.241*** 4.178*** 

S3 -1.452*** -0.145 -1.484*** -0.029 -1.454*** -0.087 -1.698*** 3.119*** 

S4 -0.407 -0.303 -0.455 -0.156 -0.407 -0.181 -0.658** 3.805*** 

EX1 0.01 -0.022 0.006 -0.018 0.010 -0.013   

EX2 0.019 -0.099*** 0.017 -0.099*** 0.019 -0.059***   

EX3 0.022 -0.041** 0.022 -0.043** 0.023 -0.025**   

EX4 -0.013 -0.129*** -0.008 -0.145*** -0.013 -0.078***   

EX5 -0.018 0.012 -0.015 0 -0.018 0.007   

EX6 -0.019 -0.047*** -0.015 -0.061*** -0.019 -0.028***   

E -0.114*** 0.734*** -0.109*** 0.720*** -0.005 0.325***   

E2 0.006*** -0.024*** 0.006*** -0.025*** 0.006*** -0.014***   

RE 0.110*** -0.193***     0.091*** 0.092*** 

WE     -0.110*** 0.116***   

         

Lambda  0.183  0.115  0.183  0.116 

         

AIC 20,822 20,056 20,833 20,105 20,822 20,056  20,846 21,585 

Significance denoted at 1, 5, 10% levels by *, ** and ***, respectively 
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Table 3. Topography variable and estimator influence on estimated rankings of seed treatments 

 
 OLS SEM OLS SEM OLS SEM OLS SEM 

 FULL FULL EL EL WE WE RE RE 

Check 4 5 4 5 4 5 5 3 

X1 7 7 6 7 7 7 6 7 

X2 3 2 3 2 3 2 3 5 

X3 1 4 1 3 1 4 1 6 

X4 6 6 7 6 6 6 7 1 

X5 5 3 5 4 5 3 4 4 

X6 2 1 2 1 2 1 2 2 

 

Field C: Soybean seeding rates, SOYSEED 

Five soybean seeding rates were replicated four times in a 19-ha strip-trial design two 

harvester passes wide per treatment in Montgomery County, Indiana, USA (Griffin et al. 2008). 

Seeding rates included very low rates (197,600) to relatively high rates (395,200) in increments 

of 49,400 seeds ha-1. Elevation data were collected via RTK-GNSS enabled automated guidance 

on the planter tractor (Figure 3). Yields were reported in Mg ha-1. 

 

<FIGURE 3 about here> 

 

Full model specification (FULL) included seeding rate, rate squared, elevation, elevation 

squared, RE and interaction terms between rate and elevation (Table 4). For comparison, one 

model specification omitted all topography variables and included only seeding rate and its 

square (POP). The WE model specification was the same as FULL except RE variable was 

replaced by cross-regressive variable WE.  The remaining model specification, EL, dropped RE 

from FULL.  

Small changes in agronomically optimal seeding rates were observed between SEM and other 

model specifications. When agronomically-optimal seeding rates from any model specification 

were applied, estimated economic returns were similar to SEM with full model specification. For 

economic analyses, choice of estimator impacted the optimal population decision. In several 

model specifications, economic analyses using aspatial regression results calculated optimal 

seeding rate below the range of rates tested in the experiment.  In these cases, the range of 

seeding rates was constrained to be within the vicinity of 197,600 to 395,200 seeds ha-1range. 
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Agronomically-optimal rates similar to current practices were estimated with OLS, but 

unconstrained economic analysis did not result in feasible solutions.      

The AIC goodness-of-fit rankings for SEM resulted in FULL and WE model specifications 

being superior followed by EL model. With OLS, the AIC rankings held FULL superior to WE 

and WE superior to EL.  The AIC value for RE and POP model specifications were identical, 

indicating that RE variable on its own was not beneficial to the model in this case.  The SEM 

model dominated the aspatial and cross-regressive models in every model specification.  Overall, 

regression model diagnostics indicated that RE models were not useful in this dataset.  
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Table 4.  SOYSEED regression results 

Variable 

OLS SEM OLS SEM OLS SEM OLS SEM OLS SEM 

FULL FULL EL EL WE WE RE RE POP  POP 

Constant 3.686*** 0.022 3.676*** 0.015 3.603*** 0.022 4.136 0.120** 4.134 0.124** 

POP 0.001 0.059*** 0.000 0.058*** -0.052** 0.059*** 0.003 0.072*** 0.003 0.072*** 

POP_SQ 0.000* 0.000*** 0.000* 0.000*** 0.000 0.000*** 0.000 0.000*** 0.000 0.000*** 

NELEV 0.116*** 0.132*** 0.117*** 0.133*** 0.184*** 0.181***     

E2 -0.005*** -0.005*** -0.005*** -0.005*** -0.005*** -0.005***     

POP_ELV 0.000*** 0.000 0.000*** 0.000 0.000** 0.000     

RE 0.051*** 0.048***     -0.022 0.011***   

WE     -0.061*** -0.048***     

           

Lambda  0.375  0.375  0.375  0.347  0.347 

           

AIC 23,954 21,461 23,969 21,479 23,960 21,461 24,992 21,731 

24,99

2 21,731 

Significance denoted at 1, 5, 10% levels by *, ** and ***, respectively 
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Multicollinearity condition number of Field B and Field C 

Compared to full elevation models that include elevation, its square and interaction terms, 

model specifications with RE as the only topographic variable had minimal multicollinearity 

condition numbers. Condition numbers are based on the ratio of largest and smallest eigenvalues, 

Λ, of the matrix (Eq. 10) (Greene, 2012). Condition numbers larger than 20 were considered 

large meaning that the matrix is nearly singular (Greene, 2012).  However, multicollinearity 

typically is not a problem if coefficients remain robust. The larger the condition number, the 

more computationally difficult it is to invert the matrix. In regressions, the level of 

multicollinearity in matrices of explanatory variables X was of interest, so the condition number 

(CN) of the cross product of X (𝑿′𝑿) was calculated.  

 

𝐶𝑁 = [
𝛬𝑚𝑎𝑥

𝛬𝑚𝑖𝑛
]

0.5

          (10) 

 

where CN is condition number and Λ are eigenvalues of X. 

Full model specification (FULL) including all topography variables (RE, elevation, elevation 

squared) and EL models had the same multicollinearity number (Table 5). For both SEEDTRT 

and SOYSEED trials, dropping the RE variable leaving only the seeding rate and its square as 

only explanatory variables in the model, no difference in condition number was detected. The 

classic cross regressive term, WE, increased multicollinearity condition numbers for both data 

sets. Model specifications including only the relative elevation variable, RE, substantially 

reduced the multicollinearity condition number compared to model specifications using 

elevation, its square and interaction terms (EL), i.e. the FULL model (Table 5).  

 

 

Table 5. Multicollinearity Condition Number for selected studies and model specifications 

Model SEEDTRT SOYSEED 

FULL 45 133 

EL 45 133 

WE 82 154 

RE 7 92 

No topo 7 92 
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Conclusions 

Cross-regressive variables were useful in modeling field-scale precision agriculture datasets; 

however, they did not globally dominate status quo models that explicitly account for spatial 

effects. Rather than substituting for conventional terrain variables, WE and RE complemented 

those variables in field examples evaluated. Proposed relative elevation (RE) variables did not 

strictly dominate nor were strictly dominated by other model specifications including 

conventional topography variables.  This was demonstrated by the AIC regression diagnostics 

and low bivariate Moran’s I value for RE relative to other continuous variables. Both hypotheses 

were supported. Thus, the conclusions of this research are: 

1) Cross regression relative elevation variables facilitated testing of treatment differences 

because they did not aggravate multicollinearity the way that elevation and its derivatives 

often do.  

2) The next step is to try cross regression with a wider range of data. For example, ongoing 

research is evaluating cross-regressive variables explicitly for modeling treatment edge 

effects in field-scale on-farm research.  

3) Cross regression should be considered for incorporation into decision tools that use yield 

monitoring data.  

 

 

References 

 

Anselin, L. (1988). Spatial Econometrics: Methods and Models, Dordrecht, Netherlands: Kluwer 

Academic Publishers. 

 

Anselin, L. (2001). Spatial Effects in Econometric Practice in Environmental and Resource 

Economics. American Journal of Agricultural Economics 83(3), 705-710.  

 

Anselin, L. (2002). Under the hood Issues in the specification and interpretation of spatial 

regression models. Agricultural Economics. 27(3), 247-267.  

 

Anselin, L., Bongiovanni, R., & Lowenberg-DeBoer, J. (2004). “A Spatial 

Econometric Approach to the Economics of Site-Specific Nitrogen Management in 

Corn Production,” American Journal of Agricultural Economics , 86(3), 675-687. 

Arbia, G. (2014). A Primer for Spatial Econometrics with Applications in R. New York, NY, 

USA: Palgrave MacMillan.   

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

22 

 

Bell, K. P. & Bockstael, N. E. (2000). Applying the Generalized-Moment Estimation Approach 

to Spatial Problems Involving Micro-level Data. The Review of Economics and Statistics, 82(1), 

72-82.   

 

Bishop,T. F. A. & McBratney, A. B. (2002). Creating Field Extent Digital Elevation Models for 

Precision Agriculture. Precision Agriculture, 3(1), 37-46.  

 

Clark, R. L. & Lee, R.  (1998). Development of Topographic Maps for Precision Farming with 

Kinematic GPS. Transactions of the ASAE, 41(4), 909-916.  
 

Cliff, A.D. & Ord, J.K. (1981) Spatial processes: Models and applications. London, UK: Pion 

Limited. 
 

Coble, K., Ferrell, S.L., Mishra, A., & Griffin, T.W. (2018). Big Data in Agriculture: A 

Challenge for the Future. Applied Economics Perspectives and Policy, 40(1), 79–96. 

 

Dubin, R.A. (2003).  Robustness of Spatial Autocorrelation Specifications: Some Monte Carlo 

Evidence. Journal of Regional Science, May 2003, p. 221-248. 

 

Florax, R. & Folmer, H. (1992). Specification and Estimation of Spatial Linear Regression 

Models: Monte Carlo Evaluation of Pre-Test Estimators. Regional Science and Urban 

Economics, 22, 405-432.  

 

Florax, R.J.G.M., Voortman, R.L., and Brouwer, J. (2002). Spatial Dimensions of Precision 

Agriculture: A Spatial Econometric Analysis of Millet Yield on Sahelian Coversands.  

Agricultural Economics. 27(3), 425-443.  

 

Garrido, M. S., de Lacy, M. C., Ramos, M.I., Borque, M. J., & Susi, M. 2019. Assessing the 

accuracy of NRTK altimetric positioning for precision agriculture: test results in an olive grove 

environment in Southeast Spain. Precision Agriculture, 20(3), 461-476. 

 

Greene, W. H. (2012). Econometric Analysis 7th Ed., Pearson Education, Upper Saddle River, 

New Jersey, USA: Prentice Hall. 1,232 pp. 

 

Griffin, T. W., Brown, J. P., & Lowenberg-DeBoer, J.  (2007). Yield Monitor Data Analysis 

Protocol:  A Primer in the Management and Analysis of Precision Agriculture Data.  Purdue 

University.  Available at https://ssrn.com/abstract=2891888 Accessed 16 November 2019 

 

Griffin, T. W., Dobbins, C. L., Vyn, T. J, Florax, R. J. G. M., & Lowenberg-DeBoer, J. (2008). 

Spatial analysis of yield monitor data: case studies of on-farm trials and farm management 

decision making. Precision Agriculture, 9(5), 269-283.  

 

Griffin, T.W., Mark, T.B., Dobbins, C.L., & Lowenberg-DeBoer, J. (2014). Estimating Whole 

Farm Costs of Conducting On-farm Research: A Linear Programming Approach. International 

Journal of Agricultural Management. 4(1), 21-27.   

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

23 

 

Griffin, T.W. (2010). The Spatial Analysis of Yield Data. In M. Oliver (Ed.) Geostatistical 

Applications for Precision Agriculture.  Dordrecht, Netherlands: Springer. 295p. 

 

Griffin, T.W., & Yeager, E.A. (2019). How quickly do farmers adopt technology? A duration 

analysis. In J.V. Stafford (Ed.) Precision agriculture ’19. 12th European Conference on Precision 

Agriculture. Wageningen, The Netherlands: Wageningen Academic Publishers, pp 843-849. 

 

Hartsock, N. J., Mueller, T. G., Karathanasis, A. D., & Cornelius, P. L. (2005). Interpreting Soil 

Electrical Conductivity and Terrain Attribute Variability with Soil Surveys. Precision 

Agriculture, 6(1), 53-72. 

  

Hurley, T. M., Oishi, K., & Malzer, G. L. (2005). Estimating the potential value of variable rate 

nitrogen applications: A comparison of spatial econometric and geostatistical models. Journal of 

Agricultural and Resource Economics, 30(2), 231-249. 

 

Jiang, P. & Thelen, K.D. (2004). Effect of Soil and Topographic Properties on Crop Yield in a 

North-Central Corn–Soybean Cropping System. Agronomy Journal, 96(1), 252-258. 

 

Kaspar, T.C., Pulido, D. J., Fenton, T. E., Colvin, T. S., Karlen, D. L., Jaynes, D. B., et al. 

(2004). Relationship of Corn and Soybean Yield to Soil and Terrain Properties. Agronomy 

Journal, 96(3), 700-709. 

 

Kelejian, H. H. & Prucha, I. R. (1999). A Generalized Moments Estimator for the Autoregressive 

Parameter in a Spatial Model. International Economic Review, 40, 509-533.  

 

Kelejian, H. H., & Prucha, I. R. (2010). Specification and Estimation of Spatial Autoregressive 

Models with Autoregressive and Heteroskedastic Disturbances. Journal of Econometrics, 157(1), 

53-67.  

 

Kelejian, H. & Prucha, I. (1998). A Generalized Spatial Two Stage Least Squares Procedure for 

Estimating a Spatial Autoregressive Model with Autoregressive Disturbances. Journal of Real 

Estate Finance and Economics, 17(1), 99-121. 

 

Kravchenko, A.N., Bullock, D.G., & Boast, C.W. (2000). Joint Multifractal Analysis of Crop 

Yield and Terrain Slope. Agronomy Journal, 92(6), 1279-1290. 

 

Lambert, D.M., Lowenberg-DeBoer, J., & Bongiovanni, R. (2004). A Comparison of Four 

Spatial Regression Models for Yield Monitor Data: A Case Study from Argentina. Precision 

Agriculture, 5:579–600. 

 

LeSage, J. & Pace, R.K. (2009) Introduction to Spatial Econometrics 1st Edition. Boca Raton, 

FL, USA:  Taylor & Francis. 394 pp.  

 

Liu, Z., Griffin, T.W., Kirkpatrick, T.L., & Monfort , W.S. (2015). Spatial 

Econometric Approaches to Site-Specific Nematode Management Strategies. 

Precision Agriculture . 16(5), 587-600. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

24 

 

Long, D.S. & McCallum, J.D. (2015). On-combine, multi-sensor data collection for post-harvest 

assessment of environmental stress in wheat. Precision Agriculture, 16(5), 492-504. 

 

Miao, Y., Mulla, D.J., & Robert, P.C. (2006). Spatial Variability of Soil Properties, Corn Quality 

and Yield in Two Illinois, USA Fields: Implications for Precision Corn Management. Precision 

Agriculture, 7(1), 5-20. 

 

Miller, N.J., Griffin, T.W., Ciampitti, I., & Sharda, A. (2019). Farm Adoption of 

Embodied Knowledge and Information Intensive Precision Agriculture Technology 

Bundles. Precision Agriculture, 20(2), 348-361. 

Papadakis, J. S. (1937). Methode statistique pour des experiences sur champs (‘Statistical 

Methods for Field Experiments.) Bulletin de l‘Institut de l’Amelioration des Plantes, 

Thessaloniki (Greece), p. 23. 

Selle, M.L., Steinsland, I., Hickey, J. M., & Gorjanc, G. (2019). Modelling spatial 

variation in agricultural field trials with INLA. bioRxiv. doi:10.1101/612036  

Sudduth, K.A., Drummond, S.T., & Myers, D.B. (2012). Yield Editor 2.0: Software 

for automated removal of yield map errors. Paper no. 121338343. St. Joseph, MI, 

USA: ASABE. Retrieved from 

http://extension.missouri.edu/sare/documents/ASABEYieldEditor2012.pdf  Accessed 

16 November 2019. 

Thomas, I.A., Jordan, P., Shine, O., Fenton, O., Mellander, P.-E., Dunlop, P., et al. (2017). 

Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive 

areas in agricultural catchments dominated by microtopography, International Journal of 

Applied Earth Observation and Geoinformation, 54: 38-52. 

 

Trevisan, R. G., Bullock, D.S., & N.F. Martin. (2019). Site-Specific Treatment Responses in On-

Farm Precision Experimentation. Preprints, 10.20944/preprints201902.0007.v1. Accessed 18 

November 2019. 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

25 

 

 
Figure 1. Field A elevation  
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Figure 2. Field B elevation  
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Figure 3. Field C elevation  

 

 

Legend

elevation (m)

251.6 - 254.3

254.4 - 255.8

255.9 - 256.9

257.0 - 258.0

258.1 - 260.1

0 150 300 450 60075
Meters

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


	James Lowenberg-DeBoer modeling local terrain front sheet
	James Lowenberg-DeBoer modeling local terrain

