
Roberts, J.M., Bruce, T.J., Monaghan, J.M., Pope, T.W., Leather, S.R. and Beacham, A.M. Vertical 

farming systems bring new considerations for pest and disease Management. Annals of Applied 

Biology. 

25 February 2020 

Vertical farming systems bring new 
considerations for pest and disease 
management 
  
by Roberts, J.M., Bruce, T.J., Monaghan, J.M., Pope, 
T.W., Leather, S.R. and Beacham, A.M. 

 
 
 
Copyright, publisher and additional information: this is the author accepted manuscript. The 

final published version (version of record) is available online via Wiley. This article may be used for 

non‐commercial purposes in accordance with Wiley Terms and Conditions for Self‐Archiving. 

 
Please refer to any applicable terms of use of the publisher.   

 

DOI: https://doi.org/10.1111/aab.12587 

  

 

 

 

 

 

 

 

 

 

     



2 

Vertical Farming Systems Bring New Considerations for Pest and Disease 

Management 

SUMMARY: Vertical Farming is an emerging area of food production that aims to provide 

sustainable intensification of agriculture by maximising the obtainable yield per unit area of 

land. This approach commonly utilises stacked horizontal levels of crop growth in glasshouse 

or controlled environment (CE) facilities. Vertical Farming has, however, received relatively 

little scientific investigation to date, meaning that important factors such as economic 

feasibility, system design, and optimisation of production methods are still being evaluated. 

Vertical Farming methods bring additional considerations for the effective management of 

pests and diseases compared with conventional protected horticulture, such as movement of 

both pest and beneficial insects between growth levels. This article aims to provide a 

perspective on the positive and negative issues facing pest and disease control in Vertical 

Farming systems. We highlight important considerations for system optimisation and areas for 

future investigation. 
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INTRODUCTION 

The world population is estimated to reach 9.7 billion by 2050 (United Nations, 2015), 

which, together with the effects of climate change, will place pressure on the agri-food industry 

to provide higher yields while also minimising land and resource use with the aim of increasing 

sustainability (Abou-Hussain, 2012; Wheeler and von Braun, 2013; Rosenzweig et al., 2014; 

Al-Chalabi, 2015; Godfray et al 2010).  To provide global food security for future generations, 

alternative food production systems are being investigated. One such system is vertical 

farming, an initiative that encompasses a variety of food production methods aiming to 

increase the quantity of crop produced per unit area of land by ‘farming up rather than out’. 

Although thought of as a relatively recent development, suggestions of such agricultural 

methods were made in the early 20th Century (Al-Kodmany, 2018). Current vertical farming, 

however, uses the latest technology and usually takes place within controlled environment 

(CE) facilities or glasshouses with glass or plastic outer walls. 

Approaches to vertical farming are numerous and varied, including green walls where 

produce is grown on a vertical or inclined surface and growth around vertically-orientated 

cylinders. However, the most commonly used approach comprises stacked horizontal beds of 

soil-based or soil-free cultivation (Beacham et al., 2019). Vertical farming is a rapidly 

expanding industry (Kopf, 2017) that is receiving much interest and investment from a range 

of different parties and, perhaps due to its close links to urban agriculture, is lauded by some 

as the future of food production (Despommier, 2010). Evidence of the growth in vertical 

farming can be seen in countries such as Japan, currently the world leader in the sector (Kozai, 

2013), where the number of farms has grown from 35 in 2009 to over 150 in 2017 (Hayashi, 

2017). Despite their increasing use, vertical farming systems have received little in the way of 

rigorous scientific investigation to date (Al-Chalabi, 2015; Eigenbrod and Gruda, 2015; Mok et 

al., 2014; Pinstrup-Andersen, 2018; Beacham et al., 2019). Consequently, there are several 

important questions that remain to be addressed to help determine the viability of vertical 

farming for meaningful food production in the future.  
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As a new and emerging area of agriculture that utilises novel production systems, 

vertical farming raises new questions to age-old issues such as the effective management of 

diseases and pests, which cause damage through herbivory and vector plant pathogens 

(Whitfield et al., 2015; Sarwar and Sarwar 2018). Some considerations will be familiar from 

conventional protected horticultural systems, but the innovative approaches of vertical farming 

may provide new challenges to producing healthy crops and therefore high-quality produce. 

Furthermore, with crop selection encompassing a large group of horticultural fresh produce 

species (Beacham et al., 2018), vertical farming requires the control of a very wide range of 

pests and diseases. Here we will focus on the considerations and opportunities for pest and 

disease management in stacked horizontal vertical farming systems, which use vertically 

stacked arrangements of horizontal growth beds in glasshouse or CE facilities and represent 

the most common system used globally (Beacham et al., 2019).  

 

Pest and Disease Management in Vertical Farming 

Pest and Disease Access 

Proponents of vertical farming and urban agriculture systems claim that their use will 

prevent all insect and disease access and eliminate any pest control requirements due to their 

situation in protective structures (Despommier, 2013). While glasshouses and, particularly, 

CE systems do restrict the entry of pests and diseases, they cannot realistically be expected 

to entirely prevent the occurrence of pests and diseases in a crop. Indeed, it is considered 

almost impossible to exclude many pests and pathogens from glasshouses (Jarvis, 1992; 

Goodman and Minner, 2019). Glasshouse-based vertical farms would be expected to 

encounter the same pest and disease pressure as conventional protected horticulture, while 

those utilising CE facilities will still be at risk.  

Introduction of arthropod pests or plant diseases into protected horticulture systems 

can occur through several mechanisms, including: accidental contamination via employees or 

seed; inadequate phytosanitation protocols; or poorly maintained glasshouse and CE 
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structures. Perhaps the most likely mechanism of introduction is through ventilation systems 

and doorways (Figure 1A). The resulting combination of disease and pest damage commonly 

results in significant economic losses in glasshouse-grown crops. Air filters and airlock-based 

systems with decontamination protocols such as the use of air showers can help to minimise 

pest entry but may provide difficulties when removing produce for sale as large entry/exit 

spaces are required. Even so, the small size of microorganisms, such as fungal spores (for 

example, conidia of Bremia lactucae, the causal agent of downy mildew in lettuce), arthropod 

pests (such as two-spotted spider mite (Tetranychus urticae)) and insects (such as western 

flower Thrips (Frankliniella occidentalis)) facilitates their access into even the most well-

maintained ‘pest proof’ protected growing systems. Vertical farm operators should therefore 

be prepared for the eventuality of pest and/or pathogen access and consider the factors that 

can influence their proliferation and control in such systems.   

Effects of Growth Conditions 

Once inside, the designs of vertical farming systems present their own unique 

challenges to pest and disease management. Many vertical farming systems use stacked 

horizontal growing surfaces contained within a high-sided glasshouse or CE facility, providing 

the possibility of vertical as well as horizontal spread of pests. Within glasshouses, there may 

be steep vertical temperature gradients (Hanan 1958; Carpenter and Bark 1967a, b), with a 

relatively large headspace required to provide as uniform a temperature as possible (Jarvis, 

1992). The increased height of vertical farming growth systems compared to conventional 

facilities could present large gradients of temperature, humidity, and light availability (Figure 

1B-C) from the top to the bottom of the facility. Whilst air circulation is essential to provide 

uniform temperatures, humidity and carbon dioxide concentrations for plant growth and to aid 

control of many diseases (Jarvis, 1992), air circulation may also facilitate the spread of pests 

and diseases within the crop. Spores of many plant pathogenic fungi, such as grey mould 

(Botrytis cinerea) (Figure 1D), are known to be dispersed by air currents (Li and LaMondia, 

2010, Figure 1D). Similarly, arthropod pests, such as the two-spotted spider mite (Tetranychus 
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urticae) also disperse via air currents to find host plants or mates (Yano, 2004). Stacked 

horizontal vertical farming system dimensions not only present challenges in producing a 

uniform crop but may also lead to a heterogeneous distribution of pests and disease. The 

different temperature optima of different disease-causing micro-organisms (Jarvis, 1992), 

could mean that tailored management approaches may be required for each growing level 

contained within the system.  

Despite the increased level of environmental control offered by glasshouse and CE 

growth systems, residual spatial heterogeneity in growth conditions could lead to a portion of 

the crop experiencing sub-optimal environmental conditions. Such conditions can lead to plant 

abiotic (environmental) stress which, in turn, affects the ability of disease-causing 

microorganisms to infect the crop. The simultaneous occurrence of both abiotic and biotic 

(biological) stress can have either a positive or negative interaction depending on the timing, 

nature and severity of each stress. For example, non-optimal high or low temperatures can 

lower the resistance of plant hosts to bacterial, viral, fungal and nematode pathogens (Szittya 

et al., 2003; Atkinson and Urwin, 2012; Bostock et al., 2014; Suzuki et al., 2014). Positive 

interactions between abiotic and biotic stress, meanwhile, include increased resistance to B. 

cinerea in tomato associated with drought stress (Achuo et al., 2006). 

In protected growth systems, transpiration from the crop and evaporation from 

exposed hydroponic nutrient solution causes an increase in humidity, which can aid crop 

growth (Maher and O’Flaherty, 1973; Cockshull 1985) but also provides suitable conditions 

for the proliferation of pathogens (including powdery mildews (Whipps and Budge, 2000) and 

B. cinerea (Elad and Shtienberg, 1995)). In stacked vertical farming systems, humidity build-

up in the restricted airspace between shelves may provide conditions conducive to disease 

development (Figure 1E). High humidity also increases the activity of insects (Hussey et al., 

1967), which could lead to increased pest damage. However, such conditions may also 

increase the efficacy of arthropod and fungal biocontrol measures, such as the chalcidoid 

wasp Encarsia formosa, used to treat whitefly (Trialeurodes vaporariorum), and 

entomopathogenic fungi, such as Beauveria bassiana (Luz and Fargues, 1999). By contrast, 
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low humidity can also favour certain pests, including spider mites (Tetranychus urticae) (Resh, 

1998). Proper control of humidity is therefore key to minimising pests and diseases in 

protected systems such as vertical farms.   

Condensation forming on the undersides of stacked growing levels could generate 

water droplets that may fall back onto the surface of plants growing on the level below (Figure 

1F). Such droplets could promote the spread of disease through dispersal of fungal spores 

(McCartney, 1994) or bacteria (Butterworth and McCartney, 1991) as has been found for 

droplets falling from glasshouse roofs or overhead irrigation (Beaumont et al., 1936; Yarwood 

1956; Kamerman 1975; Hirano and Upper 1983).  Indeed, overhead irrigation is discouraged 

to prevent spread of Botrytis and Peronospora spores (Jarvis, 1992). Therefore, water droplets 

falling between levels in vertical farming systems due to the condensation of humidity, from 

irrigation or growing medium could act as a route for encouraging disease spread. Similarly, 

insects or fungal spores could fall from higher to lower shelves under the influence of gravity 

alone, acting to encourage the spread of infection or damage from upper to lower shelves 

even without the aid of water droplets (Figure 1G).  

It should also be considered that, for chemical pest control methods that use 

insecticides and fungicides, settlement of spray droplets under the influence of gravity could 

lead to the accumulation of higher levels of the pesticide on lower levels, potentially exceeding 

regulatory thresholds, increased treatment intervals prior to harvest or phytotoxicity.  

 

Movement of insects and adoption of biocontrol 

For flightless pests, the separation of growth levels could prove beneficial in reducing 

their ease of movement across the entire crop (Figure 1H) but could also mean that flightless 

biocontrol agents such as the predatory mite Phytoseiulus persimilis are unable to move easily 

between levels. In this scenario growers may be required to use higher numbers of mites to 

tackle pest problems, at increased cost compared to conventional growing systems as each 

level in the system will need to be treated separately (Figure 1J). This could potentially be 
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addressed by introducing ‘bridges’ between growing levels to facilitate biocontrol movement, 

though this has potential to also be exploited by pests.  

For biocontrol agents that can fly, there is a major advantage of being in a protected 

environment compared to an outdoor one because released insects are kept within the 

structure and cannot fly off elsewhere. This partly explains the higher adoption of biocontrol in 

conventional horizontal protected crops compared to outdoor crops (Paulitz and Bélanger, 

2001). It is likely that biocontrol will be a major opportunity for pest management in vertical 

farming systems. Vertical farming is amenable to provide structural features such as banker 

plants (Frank, 2010) that could be used to maintain populations of biocontrol agents. 

 

Hydroponic Vertical Farming Systems 

Many vertical farming approaches utilise hydroponic growing systems. Such systems 

bring further considerations for disease management. Many microorganism species have 

been found in recirculating hydroponic systems, where it is normal for fungi such as Pythium 

to multiply and spread (Vanachter et al., 1983). The hydroponic system may however, also 

lack sufficient microorganism content and diversity to compete with pathogenic species 

(Zinnen, 1988). Close control of system sanitisation and microbiome is therefore required to 

minimise disease development (Figure 1I). The relatively small volume of nutrient solution in 

nutrient film technique (NFT) systems, can, provide easier draining, flushing and cleaning if 

disease occurs (Hanan, 1998). Water treatment systems such as UV irradiation, ozone, 

ultrafiltration or heat treatment can be used for cleaning of hydroponic solution (Jarvis, 1992) 

and may help reduce disease occurrence. While these issues are relevant to hydroponic 

culture in general, they could be exacerbated by the large and complex hydroponic systems 

required in some vertical farming units. However, multi-level vertical farming systems may 

provide a useful opportunity to isolate nutrient solution flow to and from each level to restrict 

any nutrient solution-associated disease outbreaks to a single level. In addition to nutrients it 

may also be possible to add plant protection products or biostimulants to hydroponic growing 

systems to aid pest and disease control.  
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Effects on Semiochemical Communication 

Interactions between organisms are mediated through the perception of visual, tactile, 

auditory, or chemical information from their environment (de Boer and Dicke, 2005). Those 

chemical compounds that relay information, known as semiochemicals, have a diverse array 

of functions from mate location to predator avoidance (Mori, 2010). Semiochemicals can be 

exploited for integrated pest management (IPM) and synthetic versions are often used for pest 

monitoring, pest trapping, or mating disruption purposes (Heuskin et al. 2011). Vertical farming 

units may be well suited to mating disruption as the protected environment would prevent 

mated females invading from outside the treated area. The release rates of synthetic 

semiochemicals is influenced by environmental conditions (e.g. van der Kraan and Ebbers, 

1990; Bradley et al., 1995; Torr et al., 1997), which could be altered in vertical farming systems 

that have different temperature, humidity or airflow patterns. The more controlled, less windy 

conditions of indoor environments may improve prospects for application of semiochemicals. 

Conversely, a temperature gradient within a vertical farming system from top to bottom, if not 

carefully managed, may result in a gradient of semiochemical release and reduces its efficacy 

through the system. Increased humidity has been shown to decrease semiochemical release 

rates when formulated in alginate (Heuskin et al., 2012), whilst increased airflow reduces 

semiochemical concentration and therefore efficacy (Jain and Bhargava, 2007) as 

concentration is an important factor for olfactory recognition by invertebrates (Bruce et al., 

2005). For synthetic semiochemicals to be deployed effectively within vertical farming systems 

it is important to consider the system design, environmental conditions, and how the 

semiochemical is deployed. There are opportunities to introduce semiochemical dispensers 

into the design of vertical farming structures. 

 

Effects of Lighting 

Shading of the crop from levels of the growth system arranged above is an issue 

addressed in the design of many vertical farming systems. Adequate illumination is required 
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not only for optimal growth of the crop, but the quality and quantity of available light also 

influences the response of plants to pests and pathogens, with crops grown in low light often 

being more susceptible to disease (reviewed by Roberts and Paul, 2006). For example, full 

sun has been shown to reduce herbivory in many species, particularly for leaf-chewing insects, 

but not in all cases (Roberts and Paul, 2006), while shade can promote infection by a range 

of pathogens (Pennypacker, 2000).  

To offset decreased light levels found in the lower growing levels, many vertical farming 

systems use artificial lighting to provide either supplementary (in the case of glasshouses) or 

the entire (in the case of CE facilities) illumination for the crop. High-efficiency LED is 

frequently used as it provides a relatively low energy use requirement, the output spectrum 

can be tailored to the needs of the crop species being produced and their low heat output 

allows them to be placed close to the crop (Massa et al., 2008), for example between the 

levels of a vertical farming system (Figure 1J). LED illumination wavelength could however, 

also affect insect behaviour and/or pathogen growth and development and consequently alter 

approaches to their management (Roberts and Paul, 2006; Johansen et al., 2011). Artificial 

light and its spectral composition is expected to influence factors including orientation, host 

location, predation and dispersion behaviours in addition to reproduction, development and 

survival in both pests (e.g. the thrips Frankliniella occidentalis, which is attracted to blue light 

(Chen et al., 2004), whilst Frankliniella schulzei is attracted to red (Yaku et al., 2007)) and 

biocontrol agents (illumination with red and blue light may reduce prey visibility for ladybirds 

(Harmon et al., 1998) and red/blue light ratio alters population dynamics of the parasitoid wasp 

Aphidius ervi (Cochard et al., 2019)) (reviewed in Johansen et al., 2011). This also raises the 

possibility of using artificial lighting as part of an IPM control strategy through increased 

attraction to traps, disruption of host detection, use of directly harmful wavelengths and 

manipulation of circadian or photoperiod responses (Johansen et al., 2011). Red/blue LED 

lighting also can make visualising the colour green more difficult, potentially increasing the 

difficulty of pest and disease monitoring. This could be overcome by incorporating a small 

amount of white light. 
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Light quality has been also shown to affect disease development. The spectral 

composition of LED light influences disease development arising from virus, fungal and 

bacterial sources (Schuerger and Brown, 1997). In the case of fungi, the inhibition of 

sporulation and germ tube growth by light is strongly wavelength-dependent, for example, 

near UV light induces and blue light inhibits sporulation in B. cinerea (Hite 1973; Peterson et 

al., 1988). Enhancing relative blue light levels or reducing UV irradiation through screening 

can help reduce disease in some cases, although foliage grown under reduced UV-B 

irradiation can often present a more attractive food source for herbivores (Roberts and Paul, 

2006). In contrast, red light has been found to improve resistance, for example, to the leaf spot 

fungus Alternaria tenuissima in broad bean (Vicia faba) (Rahman et al., 2003) and powdery 

mildew (Sphaerotheca fuliginea) in cucumber (Cucumis sativus) (Wang et al., 2010). The 

effect of light on pests and diseases could occur by affecting leaf physical properties such as 

water content, mechanical toughness and trichome density, leaf chemical content, quality of 

the host as a food resource and host defence responses (Roberts and Paul, 2006). The choice 

of artificial illumination spectrum for vertical farming systems therefore must consider 

implications not only for the crop but also for pest and pathogen behaviour.   

 

Plant density 

One of the main aims of vertical farming is to enable production of higher yields of 

crops per unit area of land used. However, in optimising the number of plants that can be 

grown on any given building footprint, regard to plant spacing should be made as plant density 

is an important factor in pest and disease management due to the effect it has on the 

surrounding plant microclimate (Bravenboer, 1974; Burdon and Chivers, 1982) and therefore 

to disease development and spread (Burdon et al., 1989). To prevent the spread of disease 

entirely, the spacing of plants would need to be unrealistically and prohibitively large (Burdon 

and Chivers, 1982; Thresh, 1982). Therefore, the aim of producing as much crop per unit area 

must be balanced against plant overcrowding for good crop growth and health (Figure 1K).  
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Rotating Vertical Farming Systems 

To compensate for gradients in growth condition parameters such as temperature and 

light level, some vertical farming systems incorporate rotating systems of shelves that aim to 

provide a more even growth environment for each level of planting. Such systems bring 

additional considerations for pest and disease management. The movement of shelving could 

aid dispersal of fungal spores, bacteria and insects through mechanical disturbance of plants 

and water droplets, generation of additional air currents or by providing more opportunities for 

pests to fall from one shelf to another.  The increased level of automation present in these and 

similar vertical farming systems may however, help to reduce the problem of disease spread 

via human labour if the design and cleaning of robotic management and harvesting systems 

are carefully considered. Research would be required to establish biocontrol and pollinator 

efficacy in vertical farming systems.   

 

Conclusion 

Vertical farming represents a novel approach to food production, building on 

methodological and technical innovations in protected growth systems. Knowledge of pest and 

disease control in conventional protected horticulture is well established, however, vertical 

farms bring additional considerations which are specific to the optimal operation of such 

systems. It is likely that challenges have been underestimated, particularly in news items 

claiming that vertical farming has near zero pest or disease risk. Whilst restricting pest and 

pathogen ingress, vertical farming systems, particularly those in glasshouses, are unlikely to 

eliminate all infection risk, rendering infection or damage an eventuality. Growers should 

therefore consider the control requirements specific to such growth systems and be prepared 

to act appropriately in the event of a pest or disease outbreak.  

Vertical farming systems have vulnerabilities to pests but there are also unique 

opportunities to provide new crop protection features in these environments. The adoption of 

standard operating procedures (SOPs) for control of staff and equipment movement and 

sterility, together with the use of high-resolution sensor-based monitoring of growth conditions 
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are existing means to aid pest and disease control in vertical farms. The potential exists to 

enhance this control through adoption of IPM-based strategies encompassing artificial light-

based manipulation of pest and disease behaviour, combined with sophisticated nutrient 

solution treatment, control and isolation systems and semiochemical employment. Such 

methods would need to be tailored to each vertical farm type and to each growth level 

separately to enable maximal efficacy and minimised pest and disease risk. As with protected 

horizontal farming systems, vertical farming systems are well-suited to augmented biological 

control practices (i.e. releasing large numbers of mass-reared beneficial arthropods). 

Biological control can be extremely effective in controlling arthropod pests, with growers in the 

Almeria region of Spain almost completely replacing insecticides with biological control (Calvo 

et al., 2015). Vertical farming systems present new challenges for deploying biological control 

agents but also provide new opportunities to develop new deployment technologies.  

However, there is a current lack of rigorous scientific investigation of pest and diseases 

in vertical farming systems. We suggest several key areas for filling knowledge gaps, namely: 

1) What is the effect of gradients in environmental conditions from the top to the base of vertical 

farms on crop growth and interaction with pest and pathogen development and control 

measures? 2) What is the potential of disease, pest and biocontrol transfer between different 

growth levels in static and rotating vertical farm systems? 3) What is the role of humidity build 

up between growth levels regarding crop growth and pathogen dispersal? 4) How can pest 

management features, e.g. for enhancing sanitation and biological control, be built into the 

design of vertical farming units. Outputs of such research will help to determine the efficacy of 

pest and disease control strategies for vertical farming and ultimately its success in the food 

production supply chain and ability to optimise land use to feeding a growing world. 
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FIGURE LEGENDS 

FIGURE 1: Vertical Farming systems present several considerations for pest and disease management, 

some shared with conventional protected horticulture and others unique to vertical farming. Pests and 

micro-organisms can enter the system via doorways (A) and ventilation systems. Gradients of 

parameters such as temperature (B) and light level (C) within the vertical farming system provide varied 
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conditions for both the growth of plants and development of pests and disease. Whilst necessary to 

address such gradients and control humidity, air circulation (D) and rotating vertical farming systems 

can aid dispersal of fungal spores and could interrupt insect chemical communication. Humidity build-

up between growth levels in vertical farming systems (E) can provide conditions conducive to disease 

development and pest movement and can lead to the formation of water droplets (F) that further aid 

pest and disease dispersal through water splash. Insect pests may transfer between levels in the growth 

system by falling from upper levels (G). The physical isolation of the different growth levels, however, 

may also provide a barrier to insect movement (H) which may prove beneficial for pest species but 

could impact negatively on biocontrol efficacy. Disease can also spread through hydroponic nutrient 

solution (I). Light levels and the provision of artificial lighting (J) also influence crop growth, pest 

behaviour and pathogen lifecycles so must be chosen with care. Finally, consideration should also be 

given to plant spacing (K) which influences humidity and physical transfer of pests.  
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