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Abstract 9 

About 80% of global farmland is under rain-fed conditions and most of it prone to 10 

drought, which limits crop productivity. Due to climate change, drought will 11 

become more frequent and severe threatening world food security. 12 

Antitranspirants, materials that reduce transpiration, could potentially result in 13 

greater food production by realising more of a crop’s potential yield during 14 

drought. Despite antitranspirants also reducing photosynthesis, research has 15 

shown that they can mitigate drought stress resulting in increased grain yield. 16 

Although this paper is not restricted to specific years, part of it is a systematic 17 

review of 173 original research articles published between 2009 and 2018.Overall, 18 

the analysis suggests that interest in the potential of antitranspirants is growing. 19 

One major achievement in antitranspirant research during the past decade was 20 

establishing the optimal timing of application of the substances, which is linked to 21 

reproductive processes most vulnerable to drought. Despite research evidence of 22 

the efficacy of antitranspirants in ameliorating drought stress, they are not widely 23 

used for commercial arable crop production. However, in fruit horticulture, 24 
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products with antitranspirant effects are being used for various non-antitranspirant 25 

purposes such as synchronising fruit ripening, enhancement of nutritional quality, 26 

protection against sunburn and controlling diseases and insect pests. 27 

---------------------------------------------------------------------------------------------------------------- 28 

Keywords:  Stomatal conductance, terminal drought, drought amelioration 29 
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1.0  Introduction  51 

 52 

Future crop productivity and world food security will be undermined by severe and 53 

more frequent droughts and other abiotic stresses (IPCC, 2018), and reducing 54 

transpiration with antitranspirants (ATs) may have a role in ameliorating drought. 55 

About 80% of the total cropped area globally is under rain-fed agriculture (Huang 56 

et al., 2019, supplementary information), and prone to droughts 57 

(https://youtu.be/Sy0u8LCZK50, Singh et al., 2017). Under a frequent drought 58 

scenario predicted for the future, reducing transpirational water loss will be 59 

required to obtain improvements in grain yield. The rapidly increasing world 60 

population, projected to reach 9.8 billion by 2050 (United Nations, 2017), will put 61 

pressure on food demand. Cereal production must increase by 26% from 2.8 to 62 

3.5 billion tonnes, as from the 2014 baseline (Hunter et al., 2017, supplementary 63 

data) in order to avert global food insecurity.    64 

One neglected agronomic technique that has potential to significantly contribute to 65 

drought stress amelioration in food crop production is the use of ATs. ATs are 66 

substances that are applied on leaves to reduce transpiration and hence improve 67 

plant water potential (del Amor et al., 2010). However, to avoid reducing grain 68 

yield biomass due to depression of transpiration, drought is a precondition as past 69 

researched demonstrated (e.g. De and Giri, 1978 and del Amor et al., 2010). In 70 

addition, a comprehensive study by Kettlewell et al. (2010) showed that AT should 71 

target the most drought sensitive stage to avoid counterproductive effects.  The 72 

potential of ATs to ‘waterproof’ the most critical crop development stages 73 

(Kettlewell, 2014) through reduced transpiration and improve water use efficiency 74 

(WUE) during drought is an active area of research. 75 

https://youtu.be/Sy0u8LCZK50
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Detailed reviews of drought avoidance and other plant adaptive strategies to water 76 

deficit stress have been dealt with in previous reviews (e.g. Farooq et al., 2009 77 

and Luo, 2010). Also, not discussed here are silicon, and biostimulants like proline 78 

and the various compounds extracted from seaweed (such as betaines). These 79 

products have drought ameliorative effects which are unrelated to transpiration 80 

such as up-regulating flavonoid biosynthesis and antioxidant activities (Ma et al., 81 

2015) and reducing osmotic stress (Ghaffari et al., 2019; Khan et al., 2009). 82 

Thirty-eight years have passed since the last general review on ATs by Solarova 83 

et al., (1981). This may in part be due to the negative research conclusion in the 84 

late-1970s, which was echoed by Solarova et al., (1981) that ATs were not 85 

generally recommended for use in arable crop production. Much of the research 86 

on ATs in the past was conducted between 1950 and 1979 (Kettlewell et al., 87 

2010). Researchers at that time found that although ATs improved the water 88 

status of plants by reducing the rate of transpiration, the products also reduced the 89 

intake of carbon-dioxide (CO2) and hence the rate of photosynthesis (Kettlewell et 90 

al., 2010). In fact, ATs were found to be less permeable to CO2 than water vapor 91 

(Plaut et al., 2004; Woolley, 1967). Because of this, the conclusion made was that 92 

ATs were unsuitable for use in crop production except where survival of the plant 93 

was at stake, in which case photosynthesis was of secondary importance (Das 94 

and Raghavendra, 1979; Davenport et al., 1972). This explains the decline in AT 95 

research after the 1970s and why the technique remains largely neglected. 96 

However, it is important to note that photosynthesis is partially reduced and not 97 

completely stopped by ATs, and that the reduction in carbon assimilation is 98 

outweighed by the benefit if the products are applied to protect the most drought 99 

sensitive stage (Kettlewell, 2014). Das and Raghavendra (1979) concluded that 100 
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AT products were only economically feasible for specific enterprises such as high 101 

value fruit production. Although AT products currently have commercial relevance 102 

in fruit horticulture (e.g. for protection against sunburn, synchronising ripening and 103 

pest protection), there is no evidence that they are being used for drought 104 

amelioration. This suggests that they may still be not be cost-effective for low 105 

value crop production systems like arable farming.  106 

2.0  Antitranspirant classes 107 

The mode of action of each one of the three classes of ATs and their 108 

representative compounds (Table 1) are reviewed below. 109 

 Position for Table 1 110 

 111 

3.0  Research topics between 2009 and 2018 112 

 113 

A decadal overview of AT classes used and research objectives was done using 114 

original research articles published between 2009 and 2018. Our sampling of 115 

research papers in this decade was for a more quantitative assessment aiming to 116 

reveal the trends in research in recent years. Non-drought amelioration uses of 117 

ATs were included in the analysis for the purpose of demonstrating the wider 118 

range of uses of AT products. Papers were accessed using the search engines 119 

Google Scholar and the Harper-Adams University’s electronic library system, with 120 

links to several databases including BioOne, Web of Science and ScienceDirect 121 

which were relevant to this study. A total of 173 peer-reviewed original research 122 

papers were collated and analysed on the basis of crop type, AT type and 123 
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research objective (Table 2). The trend of publications shows that research 124 

interest in the potential of ATs is increasing.  125 

Position for Table 2 126 

 127 

3.1 Reflective antitranspirants 128 

 129 

As their name suggests, reflective ATs function on the basis of reflectance to 130 

minimise leaf temperature and consequently the transpiration rate (Glenn, 2012). 131 

Once reflective ATs have been applied, the foliar characteristics to absorb, reflect 132 

and transmit light are altered, modifying leaf temperature and gas exchange 133 

variables (Abou‐Khaled et al., 1970). Kaolin (an aluminosilicate, Al4Si4O10(OH)8, 134 

Cantore et al., 2009) is foremost among the reflective ATs being the most studied 135 

as the survey of published literature revealed (e.g. between 2009 and 2018, there 136 

were 78 original research papers on kaolin versus 18 on the other reflective ATs). 137 

Ordinary kaolin, in its crude form, has impurities of titanium dioxide (TiO2) and 138 

ferric oxide (Fe2O3), but as a particle film technology product, it is upgraded to a 139 

highly light reflective, fine grained (< 2 μm), low-abrasive product of over 99% 140 

purity, after a spreader-sticker is added (Brito et al., 2019; Glenn and Puterka, 141 

2005). Applied to the leaf surface, it forms a whitish film (Boari et al., 2015) by 142 

which the optical properties of the target leaf are transformed.  143 

With enhanced reflective properties, particle film kaolin is more effective than 144 

unprocessed kaolin in minimising the heat load on leaf surfaces, as more infrared 145 

radiation and ultraviolet rays are reflected (Brito et al., 2019; Glenn and Puterka, 146 

2005). Despite reduced transpirational cooling, previous studies reported leaf 147 
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temperature reduction (or canopy temperature depression) effect due to kaolin of 148 

>3 C̊ e.g. by 5.6 ̊C in walnut (Gharaghani et al., 2018), and between 3 and 4 ̊C in 149 

Valencia orange - corresponding to a 22-28% decline in transpiration - 150 

(Abou‐Khaled et al., 1970), similar to 3.8 ̊C in snap beans (AbdAllah et al., 2019). 151 

Kaolin was effective in reducing transpiration and leaf temperature (by 1.4 ̊C) in 152 

field beans (Tworkoski et al., 2002). However, kaolin can have an opposite effect 153 

on leaf temperature if the target plant is not under drought stress. In grapes plants 154 

sprayed with kaolin, Brillante et al., (2016) observed an increase in leaf 155 

temperature of 1.47 ̊C in well-watered versus a 1.30 ̊C decrease in water-stressed. 156 

The increase in leaf temperature under well-watered conditions is attributable to 157 

kaolin occluding stomata, reducing the transpirational cooling effect in the 158 

process. This means that to reduce the negative effects of high temperature on 159 

crop physiology, drought stress is a requisite. This may not be true in all cases as 160 

kaolin is widely used to solely protect fruit from sunburn. In mung beans (Vigna 161 

radiata L), water deficit stress was demonstrated as a prerequisite to kaolin 162 

application for improved yield (De and Giri, 1978). Kaolin can also cause an 163 

increase in leaf temperature under low photosynthetic photon flux density 164 

(Brillante et al., 2016) and also lead to reduced photosynthesis (Brito et al., 2019). 165 

In apples, (Gindaba and Wand, 2005) observed up to 1.1 ̊C increase in leaf 166 

temperature.  Further, by partially occluding stomata, reflective ATs can also 167 

partially contribute to a reduced gas exchange profile of the pores (Boari et al., 168 

2015). 169 

For transpiration to occur, a vapour pressure gradient between the leaf and the 170 

surrounding air is necessary (Bloomfield et al., 2019; Medina and Gilbert, 2015). 171 

By lowering the leaf heat energy balance, the vapour pressure gradient between 172 
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the leaf and the air is narrowed, thereby decreasing the transpiration rate (Kostka 173 

and Aquatrols Corporation of America, 2018). Additionally, particle films confer 174 

protection to the photosynthetic apparatus, particularly photosystem II reaction 175 

centres against excessive irradiance (P.S.O. da Silva et al., 2019; Dinis et al., 176 

2018). This suggests that plants that have been sprayed with particle films can 177 

have not only higher but also longer-lasting photosynthesis before initiation of 178 

senescence. While reflecting infrared radiation and ultraviolet rays, reflective ATs 179 

also reduce the amount of photosynthetically active radiation (PAR) absorbed 180 

(Brillante et al., 2016) and hence have a negative effect on photosynthesis. 181 

However, depending on the canopy architecture, reflection can result in a positive 182 

redistribution of light with an overall enhancement of whole canopy 183 

photosynthesis, especially in dense canopies (Brito et al., 2019; Glenn, 2012).  184 

The two calcium-based reflective ATs, CaCO3 and CaO have a similar mode of 185 

action to kaolin. At the time of this review, there was no known study on arable 186 

crops involving these ATs, and only a few on non-arable species (e.g. banana (El-187 

Khawaga, 2013) and grapes (P.S.O. da Silva et al., 2019). This may be explained 188 

by the novelty of calcium in particle films (Paulo Silas Oliveira da Silva et al., 189 

2019). In grapes and coffee, CaO was found to have longer lasting physiological 190 

effects than CaCO3. In 28 days after application (DAA) the luminosity value of 191 

CaCO3 declined by 31% against 17% for CaO.  Besides higher luminosity, CaO 192 

maintained reduced leaf temperature and gas exchange variables and higher 193 

chlorophyll (P.S.O. da Silva et al., 2019; Paulo Silas Oliveira da Silva et al., 2019). 194 

To obtain a complete and equivalent foliar coverage to that of CaCO3, the 195 

concentration of CaO needs to be doubled (e.g. 20% w/v CaO versus 10% w/v 196 

CaCO3).  The higher concentration of CaO may account for this difference in 197 
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duration of efficacy (Paulo Silas Oliveira da Silva et al., 2019). Besides calcium 198 

compounds, reflective ATs less researched include any other mineral-based 199 

products such as magnesium carbonate (MgCO3, Al-Desouki et al., 2009) and 200 

magnesium silicate (MgO3Si, Schrader, 2011). One environmental concern with 201 

reflective ATs that needs addressing is the effect on non-target organisms as 202 

further reviewed in the last section.   203 

3.2 Metabolic or stomata-closing antitranspirants.  204 

 205 

Metabolic ATs are a group of substances that have hormone or hormone-like 206 

effects, inducing partial stomatal closure by acting on guard cells (AbdAllah et al., 207 

2018). Prominent in this class is exogenous abscisic acid (ABA) in its naturally-208 

occurring bioactive form (S)-cis-ABA (s-ABA) or a commercially available mixture 209 

with the synthetic (R)-cis-ABA (J. Li et al., 2017). ABA signalling causes an efflux 210 

of ions from guard cells, and water by osmosis, leading to flaccidity of the cells 211 

with concomitant stomatal closure (Kim et al., 2012; Munemasa et al., 2015). 212 

Several studies have reported drought tolerance and yield improvement effects of 213 

exogenous ABA e.g. in artichoke (Shinohara and Leskovar, 2014) and wheat 214 

(Travaglia et al., 2010; Zhang et al., 2016).  215 

ABA as an AT is perhaps the most prominent product in this group, as chitosan 216 

and fulvic acid are not solely ATs but are also used as biostimulants to improve 217 

uptake of both major and trace elements - even on crops under well-watered 218 

conditions - (Pettit, 2004; Sootahar et al., 2019). Plant biostimulants are 219 

substances or micro-organisms that are applied on plants on or in their growth 220 

medium to enhance growth by boosting nutrient uptake or tolerance to biotic or 221 

abiotic stress (Brown and Saa, 2015). The mechanism of interaction between 222 
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exogenous ABA as an AT and endogenous ABA is not well understood. However, 223 

it is known that benefits from endogenous ABA are short-term and occur only 224 

under mild drought stress (Sreenivasulu et al., 2012). This corroborates with the 225 

short-lived (less than seven days) effects of exogenous ABA on stomatal closure 226 

in wheat (Travaglia et al., 2010). During reproductive-stage drought stress, 227 

endogenous ABA may induce premature senescence with undesirable effects 228 

such as reproductive organ abortion (Pang et al., 2017); and loss of grain number 229 

if drought coincides with meiosis in grain-bearing crops like cereals and pulses 230 

(Dolferus et al., 2011; Ji et al., 2011). Applying ABA as an AT during meiosis may 231 

therefore negatively affect crop productivity. In commercial fruit horticulture, ABA 232 

is used for fruit quality enhancement, particularly of table and wines grapes 233 

(Gonzalez et al., 2018). 234 

Closely connected to ABA signalling is the metabolic pathway regulated by 235 

chitosan. In field bean plants (Phaseolus vulgaris L.), Iriti et al. (2009) found that a 236 

foliar chitosan application led to stomatal closure and a reduction in transpiration. 237 

An increase in the endogenous ABA concentration (more than threefold) and that 238 

of hydrogen peroxide (H2O2) was also observed one day after spraying. The 239 

intrinsic WUE was not significantly improved. Chitosan is known to cause stomatal 240 

closure by promoting biosynthesis of ABA, but the mechanism by which this is 241 

accomplished is not well understood (Hidangmayum et al., 2019). Although Iriti et 242 

al. (2009) did not explain the link between ABA and H2O2, in faba beans (Vicia 243 

faba L.), it is known that ABA signalling downstream induces the production of 244 

H2O2, as a secondary messenger, to cause stomatal closure (Arve et al., 2014). 245 

Calcium ions, nitric oxide and reactive oxygen species are among the other 246 

secondary messengers in the ABA signalling network (Lee and Luan, 2012).  247 
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The other biostimulant-antitranspirant in the metabolic AT class is fulvic acid. 248 

Fulvic acid is a by-product of organic matter decomposition that dissolves in both 249 

alkaline and acid solutions (Klucakova et al., 2000). It is a variable mixture of both 250 

aliphatic and aromatic organic acids, which are similar to humic acids but more 251 

reactive (Pettit, 2004). Along with this diverse chemical constitution, fulvic acid has 252 

both AT and biostimulant functions. As an AT, the effects of fulvic acid on gas 253 

exchange physiology have been studied in a number of crops and genotypes. In 254 

maize growing under drought stress (soil moisture at 35% of field capacity), Anjum 255 

et al. (2011) found that fulvic acid applied at the tasselling stage insignificantly 256 

increased stomatal conductance by 13% while transpiration rate, net 257 

photosynthesis and WUE were significantly improved, implying that fulvic acid 258 

acted as a biostimulant instead. Zhang et al. (2016) found that while exogenous 259 

ABA significantly reduced both stomatal conductance and transpiration rate in 260 

wheat under mild drought stress, fulvic acid was not effective. Zhang et al. (2016) 261 

and Anjum et al. (2011) apparently contradict Xudan (1986), who observed that 262 

fulvic acid was effective in reducing stomatal conductance in wheat and improving 263 

water potential and grain yield. This discrepancy might be attributed not solely to 264 

genotypic and interspecific factors but also to the chemical variability of fulvic acid.  265 

Working on wheat, Dunstone et al. (1988) confirmed that although fulvic acid 266 

reduced stomatal conductance, its effects were highly variable. In a glasshouse 267 

experiment, a reduction in stomatal conductance was recorded only in well-268 

watered but not in drought stressed plants. Furthermore, while in the four most 269 

responsive genotypes the reduction ranged between 15 and 40%, it was only 270 

between 1 and 3% in the least. In addition, for the highly responsive genotypes, 271 

the effect was stable in growth cabinets where artificial light was used, but rapidly 272 
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decayed under natural light, becoming marginally significant to non-significant 273 

within four to seven days. The heterogenous composition of the molecular 274 

structure of fulvic acids and other biostimulants, particularly the functional groups, 275 

affects their chemical and physico-chemical properties (Bai et al., 2015; 276 

Klucakova, 2018) and thus may partly explain the contradictory findings. For, this 277 

reason, replicating experiments involving these products is impossible as there is 278 

not a single mode of action (Brown and Saa, 2015). A consideration of these 279 

findings by different researchers suggests that the mechanism of drought 280 

amelioration by fulvic acid may not significantly be mediated by stomatal 281 

movement but rather through its biostimulant functionalities. Fulvic acid 282 

biostimulant functionalities are its roles or functions for which it is have been found 283 

to be more effective or better suited as a biostimulant (e.g. enhancing bioactivity of 284 

glutamic oxaloacetic transaminase to improve nutrient uptake in wheat, Zhimang 285 

et al., 2001 and increasing gas exchange and carbon assimilation, Anjum et al., 286 

2011, which are opposite effects of an AT).  287 

Besides modifying gas exchange variables, both chitosan and fulvic acid confer 288 

drought tolerance through biostimulant functions. By inducing antioxidant 289 

activities, they enhance scavenging for reactive oxygen species and promote 290 

cellular membrane integrity (Bistgani et al., 2017; Z. Li et al., 2017).  In addition to 291 

improving the water potential of droughted wheat plants, fulvic acid was found to 292 

alleviate the loss of chlorophyll and enhance the uptake of phosphorus by roots 293 

(Xudan, 1986).  Z. Li et al. (2017) found that chitosan not only improved water 294 

balance in droughted white clover but also up-regulated antioxidant activity and 295 

chlorophyll content.  296 
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The short-lived effects of metabolic ATs and that the use of chitosan and fulvic 297 

acid is not restricted to drought stress conditions imply that concerns that these 298 

ATs may hinder crop growth and productivity in an event of improved soil moisture 299 

status (e.g. following rainfall) are unnecessary. 300 

Phenyl mercuric acetate (PMA), a popular subject of metabolic AT research in the 301 

past (Sinclair et al., 1975), was found to be toxic (Das and Raghavendra, 1979). It 302 

disappeared from AT research but was still used as a fungicide before being 303 

banned in some countries (Nandi, 1985). India is apparently the only country 304 

where the use of PMA as an AT (e.g. Pandey et al., 2017 and  Kumar et al., 2018) 305 

remains legal.  306 

Another compound with an ABA-related mechanism is pyrabactin, a synthetic 307 

growth inhibitor with a sulphonamide functional group (Cao et al., 2013). Though 308 

not among the popularly known ATs, it has a mode of action similar to ABA and is  309 

its agonist but not its structural analogue (Fan et al., 2015). In peas (Pisum 310 

sativum L.), Puli and Raghavendra (2012) found that pyrabactin had similar effects 311 

to ABA on stomatal closure. Stomatal apertures decreased by a larger percentage 312 

in plants where pyrabactin and ABA were used together, suggesting a synergistic 313 

mechanism. Nevertheless, pyrabactin may not play a significant role in drought 314 

stress mitigation as its bioactivity in vegetative parts is weaker than in seeds, 315 

where it inhibits germination (Cao et al., 2013; Park et al., 2009). There is limited 316 

published information on pyrabactin as an AT. None of the studies cited here (and 317 

more e.g. Park et al., 2009, Yu et al., 2017 and Han et al., 2019) were conducted 318 

in the field or on well established crops to provide conclusive evidence of the 319 

potential of pyrabactin as an AT.  320 
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3.3 Film-forming antitranspirants 321 

 322 

The currently available film-forming ATs are mostly water-emulsifiable organic 323 

polymers that form films after a spray application has dried (Moftah and Al-324 

humaid, 2005). The films act as a physical barrier over stomata by which 325 

transpirational water loss is reduced.  326 

Di-1-p-menthene (pinolene) is the oldest film-forming AT with one of the earliest 327 

references being Williamson (1963). Under glasshouse conditions, (Faralli et al., 328 

2016) compared the drought ameliorative effects of di-1-p-menthene and poly-1-p-329 

menthene on oil seed rape. Both compounds significantly reduced gas exchange, 330 

however, di-1-p-menthene was not only more effective in suppressing stomatal 331 

conductance (by 50% against 11%) but also sustained the effect for a longer 332 

period (>14 days versus < nine days). The yield component results were 333 

consistent with the stomatal conductance readings, with di-1-p-menthene having 334 

higher values for number of pods per plant and seed biomass, suggesting that the 335 

negative effect on CO2 fixation was compensated for by increased WUE. The 336 

efficacy of di-1-p-menthene in suppressing gas exchange has also been 337 

demonstrated on horticultural species, especially grapes, and not only for foliar but 338 

also bunch transpiration (Fahey and Rogiers, 2018; Vaio et al., 2019). In an AT 339 

comparative study on droughted grapes, di-1-p-menthene was found to depress 340 

photosynthesis and intrinsic WUE while kaolin enhanced these variables (Brillante 341 

et al., 2016). This suggests that different classes of AT do not induce similar 342 

physiological responses.  343 

One group of compounds in this class, paraffinic hydrocarbon waxes - Folicote - 344 

(Francini et al., 2011; Fuehring, 1973) was effective in suppressing gas exchange 345 
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variables and increasing yield (e.g. between 11 and 17% in maize (Fuehring and 346 

Finkner, 1983) and five to 17% in sorghum (Fuehring, 1973). However, paraffinic 347 

hydrocarbon waxes do not feature in recent AT research. Other less important 348 

compounds, on which limited research has been published include vegetable oils 349 

and acrylic polymers. The former may become important in future as they are not 350 

only cheaper (Granger and Trager, 2002) but more readily available than synthetic 351 

products.  352 

A film-forming AT end-user advantage over other AT classes is the less frequent 353 

application, typically once for 30 days for an acrylic polymer in a glasshouse (Plaut 354 

et al., 2004), though for poly-1-p-menthene it was less than nine days in the OSR 355 

study above. In comparison, weathering agents can significantly reduce the foliar 356 

coverage and efficacy of reflective ATs to less than half a month (e.g. CaCO3 357 

(P.S.O. da Silva et al., 2019). As for metabolic ATs, their effects generally last for 358 

a few days (Travaglia et al., 2010), being controlled by the plant biochemistry 359 

since they are absorbed unlike the other ATs.  360 

Although the use of ATs is valid only under drought stress conditions, in an event 361 

of improved soil moisture status due to rainfall, it would be desirable to remove 362 

them from the plant surface, particularly film antitranspirants. The importance of 363 

removing film antitranspirants in an event of unexpected rains is one research gap 364 

that needs pursuing. However, in the case of cereal stands the impact of film 365 

antitranspirants will reduce over time as new leaves emerge and take their place 366 

at the top of the canopy. This is particularly relevant in this case as it is these later 367 

emerging leaves that act as the source of carbohydrates supplied to the growing 368 

grain. 369 
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Finally, one other concern during early AT research that is more relevant to film-370 

forming types was the effect on leaf temperature. However, the review by Gale 371 

and Hagan (1966) shows that an intersection of high solar radiation and very low 372 

wind speed was required to significantly increase leaf temperature due to reduced 373 

transpiration. In fact, a 30% reduction of transpiration attributed to ATs was found 374 

to have no significant effect on leaf temperature (Gale and Poljakoff-Mayber, 375 

1965). However due to global warming, the use of reflective ATs may play a more 376 

important role in drought stress mitigation. 377 

 378 

3.4  Carbon-dioxide: the climate change antitranspirant 379 

Anthropogenic activities have elevated levels of atmospheric CO2 leading to 380 

climate change (IPCC, 2018). Elevated CO2 reduces transpiration rate (e.g. up to 381 

30% in carnation plants), however there is no consensus due to environmental 382 

and interspecific differences (Xu et al., 2016). Drought, one of the consequences 383 

of climate change, reduces plant nutrient uptake (Nawaz et al., 2012). There is 384 

currently limited information on the interaction of antitranspirants, elevated CO2 385 

and drought. One particular source is del Amor et al. (2010) who tested the effects 386 

on pepper. They showed that under elevated CO2 (2000 ppm) and drought, 387 

stomatal conductance was higher with antitranspirant (di-1-p-menthene) 388 

application four and eight days after spraying (when measurements were taken), 389 

although the difference was not significant. The corresponding CO2 assimilation 390 

effect was inconsistent being significantly higher in antitranspirant treated plants 391 

four days after spraying, and becoming non-significant at eight days after 392 

spraying. The response of transpiration rate was consistent with stomatal 393 

conductance. Interestingly, benefits of elevated CO2 were only attainable under 394 
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well irrigated conditions, with no significant difference between antitranspirant 395 

treated and untreated plants. These findings suggest that elevated CO2 may not 396 

be as potent as di-1-p-menthene in suppressing gas exchange. Further, this may 397 

eliminate concerns of reduced transpiration-driven nutrient uptake by mass flow 398 

induced by elevated CO2 and other factors that suppress transpiration (Mcgrath 399 

and Lobell, 2013). However, further research is needed to make well established 400 

conclusions on interactions between drought, ATs and elevated CO2 and how 401 

these affect plant nutrition and growth of various crops. Other impacts of global 402 

climate change will reduce the availability of soil moisture in some cases and 403 

affect transpirational processes. This may make dynamic drought management 404 

become more important. 405 

4.0  The basis for timing of antitranspirant application 406 

 407 

Drought has varying effects on crop performance depending on its timing in 408 

relation to crop growth stage (GS). In cereals, drought at any time before the end 409 

of grain filling will affect grain yield. However, the worst is terminal drought (soil 410 

moisture deficit during a crop’s reproductive development stages) as it has a grain 411 

yield limiting effect by reducing grain number (Saradadevi et al., 2017). 412 

Reproductive processes such as meiosis and microgametogenesis that occur 413 

during booting are the most susceptible to abiotic stresses such as drought 414 

(Barber et al., 2015). There is a strong correlation between grain number per ear 415 

and grain yield (Liu et al., 2015). In rice Kato et al. (2008), found that a mild 416 

drought stress at meiosis triggered secondary rachis and spikelet abortion per 417 

panicle of 70% and 45% respectively while drought at panicle initiation did not 418 

cause abortion of these reproductive structures. In oil seed rape (Brassica napus) 419 
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Faralli et al. (2016) showed that improving the water status of drought-stressed 420 

plants with film-forming AT during the reproductive stage was positively correlated 421 

with not only an increase in the number of pods per plant but also the seed yield. 422 

The processes of microsporogenesis (involving meiosis in pollen mother cells) and 423 

microgametogenesis (development of microspores into mature pollen grains) are 424 

known to be more sensitive to water stress than their female counterparts (De 425 

Storme and Geelen, 2014; Jager et al., 2008). Sensitivity to drought is most critical 426 

at the young microspore stage during microgametogenesis (Dolferus et al., 2011; 427 

Ji et al., 2010). However, Barber et al. (2015) argued that due to the influence of 428 

environmental and genotypic aspects, it was not possible to associate the most 429 

sensitive development processes with any one particular GS. Nevertheless, it is 430 

considered to be during booting; and in wheat there is evidence that it occurs 431 

between GS41 and GS43 (Alghabari et al., 2013; Barber et al., 2015). While it is 432 

not until near anthesis that the male gametophyte begins to accumulate starch 433 

grains, the process begins earlier in the female gametophyte (Ji et al., 2010; 434 

Raghavan, 1988), implying that in early development, pollen grains accumulate 435 

less carbohydrate reserves than ovaries. This could partly explain the higher 436 

vulnerability of pollen grains to abiotic stress during this period compared to 437 

ovaries. It may be for the same reason that most of the abiotic stress research on 438 

reproductive performance has focussed on the male gametophyte. A study by 439 

Onyemaobi et al. (2017) involving reciprocal crosses between well-watered and 440 

water stressed wheat plants provides evidence. Onyemaobi et al. (2017) found 441 

that only four out of 13 genotypes showed the female gametophyte to be 442 

significantly more sensitive to drought than the male gametophyte. Nearly 70% of 443 

cultivars studied showed the male gametophyte to be more susceptible to water 444 
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deficit stress than the female counterpart. It is the susceptibility of these 445 

reproductive processes coinciding with terminal drought that forms the foundation 446 

for the timing of AT application. 447 

5.0  Re-evaluating antitranspirants  448 

 449 

With reproductive processes identified as the most sensitive to drought, AT 450 

application timed to protect these stages is expected to result in the highest 451 

possible benefits to grain yield under water stress. One of the important 452 

developments in AT research in the recent past has been the identification of the 453 

most critical stage at which to apply ATs in order to optimise their usefulness 454 

under drought conditions. Overall, early AT researchers overlooked the role of 455 

plant GS in modulating the efficacy of ATs leading to the erroneous conclusion in 456 

the 1970s that AT use was only recommended if plant survival was at stake due to 457 

the negative effects on photosynthesis. In fact, even in the 1970’s, the necessity of 458 

studying the effects of timing of AT application was mentioned by Davenport et al. 459 

(1972).  460 

There are two notable exceptions to early AT researchers overlooking the 461 

importance of development stage. Fuehring (1973) researched the effects of rate 462 

of application of three ATs (metabolic - atrazine and PMA and film-forming- 463 

Folicote) and of irrigation frequency on the transpiration and yield performance of 464 

sorghum. In addition, he tested the effects of timing of application of PMA sprayed 465 

on three sets of plants at eight days before booting, 20 days after booting and a 466 

third set receiving double sprays - once on each of these days- and the unsprayed 467 

control plants. He found that the effects on grain yield of the lower rates of 468 
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atrazine and PMA, and the higher rate of Folicote were not significantly different 469 

from the unsprayed control plants. However, the higher rates of atrazine and PMA 470 

and lower rate of Folicote increased yield. Concerning timing of PMA application, 471 

spraying at eight days before booting resulted in significantly the highest yield 472 

response followed by double sprays. This research showed that not only the type 473 

of compound but also the rate of AT application modulates agronomic efficacy. 474 

Later, Patil and De (1978) conducted a similar study but on oilseed rape and using 475 

Mobileaf (film-forming AT), kaolin (reflective AT) and PMA (metabolic AT). All ATs 476 

improved grain yield above the unsprayed and droughted plants. PMA 477 

applications were repeated, at the initiation of flowering and during pod 478 

development. Since the treatments at these different GSs involved the same 479 

plants, there was no basis for a comparative analysis. Nevertheless, it is 480 

noteworthy to state that they focused on the most drought-sensitive stages.  481 

Recent research has been more robust in terms of understanding timing effects of 482 

AT application. Results have shown that despite reducing photosynthesis, ATs 483 

applied within specific plant GS can improve the performance of crops growing 484 

under water stress.  Kettlewell et al. (2010) found that di-1-p-menthene (film-485 

forming AT) improved grain yield of droughted wheat if the reproductive stages 486 

most sensitive to drought stress were protected. They tested the timing response 487 

of winter wheat to di-1-p-menthene application at five GSs (GS described by 488 

Zadoks et al. (1974) as GS37, GS39, GS45, GS55 and GS69). Their results 489 

revealed that di-1-p-menthene was most beneficial to yield improvement if applied 490 

at GS37 and GS39, unlike at GS45. On the other hand, much later applications at 491 

GS55 and GS69 were counterproductive in that they reduced crop yield – thus 492 

being corroborative of the 1970s research conclusion.  Further, the AT was also 493 
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found to reduce yield if soil water deficit was not high. Soil moisture deficit was 494 

earlier found as a precondition for kaolin application to obtain yield improvement in 495 

mung beans De and Giri (1978). These findings agree with the analysis presented 496 

by Gale and Hagan (1966). The importance of the shoot/root ratio theory as 497 

presented by Gale and Hagan (1966) suggests that antitranspirants would be 498 

more effective for plants with high values (i.e. higher shoot-to-root biomass, due to 499 

lower actual-to-potential evapotranspiration ratio under well-watered conditions, 500 

below 0.9). Their argument implies that antitranspirants should not be used where 501 

the shoot/root ratio is lower as evapotranspiration is higher, except in an event of 502 

abiotic stress such as reduced mineral uptake from the soil (e.g. due to drought) 503 

that leads to the breakdown of the photosynthetic machinery (chlorosis). In such a 504 

situation antitranspirants would have a reduced inhibitory effect on photosynthesis 505 

as the mesophyll resistance to CO2 conductance is high. This analysis indicates 506 

that shallow-rooted plants, being more prone to drought stress, would need AT 507 

application before deep-rooted ones. Taken together, the works by De and Giri 508 

(1978) and Kettlewell et al. (2010) demonstrated that not only drought stress was 509 

required as a precondition for AT application but the crop growth stage most 510 

sensitive to water stress must be protected for ATs to improve crop yield. 511 

As discussed by Barber et al. (2015), the period of pollen development can last 512 

several days within a spike and much longer in a crop due to asynchrony between 513 

the male and female gametophytes. For this reason, reproductive stages sensitive 514 

to drought damage have a wider span in a crop and are not limited to a single GS. 515 

Refining limits within which farmers may apply AT to maximise benefits is critical 516 

and therefore requires further research. Nevertheless, Kettlewell et al. (2010) 517 
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established that crop development stages most sensitive to water stress dictate 518 

timing of di-1-p-menthene application for optimum benefits.  519 

Following the work of Kettlewell et al. (2010) on the role of crop development 520 

stage, other researchers have found corroborative evidence. Kettlewell and 521 

Holloway (2010) applied di-1-p-menthene at the boots swollen stage, GS45, and 522 

found that it improved yield of droughted wheat by as much as 42% compared 523 

with droughted-and-unsprayed plants. In a separate study involving two water 524 

treatments and two GS, Abdullah et al. (2015) observed 30% more wheat grain 525 

yield in droughted plants treated with di-1-p-menthene at the booting stage than in 526 

the droughted but unsprayed plants, while application at anthesis had no 527 

significant effect on yield. Recently, Faralli et al. (2017) reported 22% yield 528 

improvement in oil seed rape plants treated with film-forming AT as floral initiation 529 

was taking place but with no improvement from applications at initiation of seed 530 

development. These findings during the last decade are a refutation of earlier 531 

research in terms of ameliorative effects of ATs on droughted crops.  532 

Though in part, the mechanisms by which metabolic and reflective ATs ameliorate 533 

drought are better understood than those of film-forming types. However, 534 

discrepancies between researchers indicate the need for more research. As Gale 535 

and Hagan (1966) indicated, this may be attributed to ambient, edaphic and plant 536 

factors such as wind speed, soil water status and turgor of cells, respectively, 537 

prevailing at and after AT application - necessitating the need for researchers to 538 

provide sufficient details in these areas. In spite of our knowledge that di-1-p-539 

menthene applied at the right GS and under drought conditions improves grain 540 

yield, the underlying physiological mechanisms by which this compound 541 

ameliorates drought beyond blockage of stomata are unknown. A study by 542 
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Weerasinghe et al. (2016) attributed wheat grain yield improvement under drought 543 

conditions using di-1-p-menthene to increasing of pollen viability, via increased 544 

plant water conservation. Nevertheless, the discovery of this relationship was only 545 

correlative and not a conclusive cause-and-effect one. Thus, the underlying 546 

mechanisms by which di-1-p-menthene improves reproductive development - be 547 

they hormonal or metabolic or otherwise - are yet to be established.  In a drought 548 

stressed oil seed rape study by Faralli et al. (2016), a four-fold decrease in 549 

endogenous ABA concentration following an application of di-1-p-menthene was 550 

correlated with a 17% yield improvement. This suggests that the drought 551 

amelioration effects of di-1-p-menthene may be related to increased catabolism 552 

and/or reduced biosynthesis of ABA. Increased ABA concentration is known to 553 

repress cell wall invertase (CWIN) via down-regulation of genes controlling the 554 

synthesis of this enzyme (Ji et al., 2010; Koonjul et al., 2005). The significance of 555 

CWIN to reproductive development lies in their hydrolysis of sucrose into glucose 556 

and fructose required by anthers and ovaries (Braun et al., 2014; Ruan et al., 557 

2010). Researching the effects of ATs on ABA signalling with respect to CWIN is 558 

therefore required. Knowledge of mechanisms, if established, could further feed 559 

into developing relevant plant breeding and agronomic management strategies for 560 

improving WUE and crop production. 561 

6.0  Challenges in using antitranspirants and other research gaps  562 

 563 

There are other research gaps in the use of ATs that need addressing besides 564 

those identified above and in the conclusion. This review has shown that the 565 

effects of ATs on crop development are modulated by prevailing environmental 566 

conditions and intraspecific and interspecific factors. This accounts for apparently 567 
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contradictory findings by different researchers, hence the need for thorough 568 

description of experimental conditions and materials used. The use of biostimulant 569 

ATs such as fulvic acid will be particularly necessary due to their heterogenous 570 

nature. The type of AT used in research also modulates plant response. 571 

Concerning the effect on leaf temperature, Gale and Hagan (1966) downplayed 572 

the risk of overheating due to AT use (Section 3.3). However, global warming is 573 

likely to increase the risk of heat stress. This may see film-forming ATs play a 574 

minor role than the reflective types that attenuate solar radiation, thereby reducing 575 

the heat load on the leaf.  576 

Due to suppressing both transpiration and photosynthesis, ATs reduce not only 577 

the uptake of minerals from the soil but also carbon assimilation. The negative 578 

effect can be minimised by selecting appropriate ATs for a given drought scenario. 579 

Metabolic ATs would be ideal in situations where a dry spell which coincides with 580 

the most drought-sensitive crop growth stage is expected, while film-forming types 581 

would suit prolonged drought events as they have longer-lasting effects (30 to 40 582 

days, Plaut et al., 2004). Nevertheless, finding a product that is more permeable to 583 

CO2 than water vapour has been a long standing AT challenge yet to be 584 

addressed. Product research is therefore needed to find suitable ATs. Further, 585 

ATs may not be used as a sole drought mitigation technique. However, most if not 586 

all current research focuses on ATs in isolation. An integrated approach is 587 

required, for example, De et al. (1983) demonstrated reduced irrigation 588 

requirement in wheat by using combinations of rice stubble and kaolin. Agarwal 589 

(1979) obtained the highest barley yield under a combined stubble mulch-and-590 

kaolin treatment.  591 
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The environmental risks associated with the use of the three most popular ATs, 592 

ABA, di-1-p-methene and kaolin are likely very low. ABA can be extracted from 593 

plants, obtained through microbial fermentation or synthesised (Shi et al., 2017), 594 

while di-1-p-methene is extracted from pine resin (Francini et al., 2011). Kaolin, an 595 

aluminosilicate, Al4Si4O10(OH)8, is obtained from clay (Cantore et al. 2009).  596 

However, kaolin is also used to control insect pests, and studies have 597 

demonstrated that it is effective (Table 2) against some studied species. 598 

Unfortunately, almost all papers reviewed in this article focussed on plant 599 

response to ATs, neglecting the potential negative effects on the environment. 600 

One exception is Pascual et al., 2010 who showed that while kaolin significantly 601 

reduced the incidence of fruit fly (Bactrocera oleae) and black scale (Saissetia 602 

oleae), pests of olives, the AT also caused mortality of their natural enemies (e.g. 603 

coccinellids or ladybird beetles: Scymnus mediterraneus and Stethorus punctillum, 604 

among other families of natural enemies). Earlier, Marko et al. (2008) established 605 

that severity of infestation with a number of apple pests (e.g. leaf miner moth and 606 

woolly apple aphid) was linked to the use of kaolin. The AT was toxic not only to 607 

pests but also their natural enemies (e.g. spiders and common black ants). More 608 

research is therefore required to establish off-target effects of other ATs, 609 

particularly in this class and in other crops, and how the products can be made 610 

safe.  611 

Lack of cost-benefit analysis: Clearer, evidence-based messages on the economic 612 

feasibility of using ATs in crops production, especially in arable farming, are 613 

needed to help prospective adopters make firm decisions. However, the number of 614 

research papers with information on the cost-benefit analysis of using ATs in crop 615 

production is meagre (e.g. Kettlewell, 2011 and Brahma et al., 2007). This is not 616 
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surprising since yield improvement has been the primary focus of most 617 

researchers. Yield loss due to drought needs to be quantified and valued; and the 618 

yield benefit due to AT application demonstrated in monetary terms. Lack of 619 

thorough, in-depth analyses on the cost-effectiveness of ATs in most crops may 620 

partly be blamed for the erratic response of crop producers in the adoption of ATs 621 

as a drought mitigation option in arable farming. This might also have stifled 622 

research in novel products that could be cheaper.  623 

An examination of research findings in Table 2 shows that there has been a 624 

number of studies on nutritional aspects of fruit, particularly involving ABA and 625 

kaolin ATs. Except for two studies on arable crops, the rest of the research on 626 

nutritional effects of ATs were on horticultural crops. This may be attributed to the 627 

fact that most of the studies involving AT products have been on horticulture 628 

(Table 2). 629 

7.0  Conclusion and future prospects 630 

 631 

The agronomic benefits of ATs have been highlighted in this review. ATs improve 632 

yield, conserve irrigation water and also reduce disease and insect pest 633 

incidences. The physiological mechanisms by which metabolic and reflective ATs 634 

ameliorate drought have been described but exactly how they affect reproductive 635 

processes is still unknown. Similarly, although timing of AT application was studied 636 

using the film-forming product, di-1-p-menthene, the mode of action of this class of 637 

ATs is yet to be established. The discovery of the role of crop GS in modulating 638 

AT efficacy in wheat by Kettlewell et al. (2010) has been a major research 639 



27 
 

breakthrough of the last decade. This might be the reason behind the increasing 640 

interest in AT research besides the threat of increasing frequency of droughts.  641 

As the findings of Kettlewell et al. (2010) were based on a film-forming AT, there is 642 

need for a comparative study involving all the three classes to determine the most 643 

effective types. It would also be interesting to examine interspecific responses to 644 

the AT classes. Discrepancies in plant response suggest that species, genotype, 645 

environment, chemical nature and rate of AT applied further modulate the efficacy 646 

of ATs. In wheat and oil seed rape, film-forming di-1-p-menthene has shown 647 

consistent positive results in different growth environments. Further research 648 

opportunities include understanding possible interaction between ATs and heat 649 

stress, testing the efficacy of vegetable oils and integrating ATs with other drought 650 

management techniques (e.g. mulching or cover crops). The broader 651 

environmental impacts of different types of AT must also be considered. Finally, 652 

one of the challenges against achieving world food security ahead of 2050 is not 653 

just finding effective drought amelioration techniques but also increasing the 654 

knowledge and accessibility to the end users of the technologies. ATs are yet to 655 

enter drought amelioration in arable crop production, despite research providing 656 

empirical evidence of agronomic benefits. ATs may still be too expensive for use 657 

in low value crop production systems hence the need to find cheaper alternatives. 658 

Increasing frequency and intensity of droughts and the associated crop failure 659 

may stimulate farmers’ adoption of ATs for a role in arable crop production. 660 

 661 

 662 

 663 
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 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 

Table 1: Examples of the main antitranspirant compounds and their modes of 673 

action in the surveyed literature between 2009 and 2019. 674 

Antitranspirant 

classes  

Compounds  References  

Metabolic 

s-ABA Park et al. 2016 

Chitosan (poly (D-

glucosamine)) 

 Li, Zhang, et al. 2017; 

Rieger et al. 2016 

Fulvic acid  Zhang et al. 2016 

Reflective  

Aluminosilicate (kaolin) Cantore et al. 2009 

Calcium carbonate 

(CaCO3) 

da Silva et al. 2019 

Calcium oxide (CaO) da Silva et al. 2019 
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Film-forming  

di-1-p-menthene AbdAllah et al. (2019) 

poly-1-p-menthene Faralli et al. (2016) 

Acrylic polymers AgroBest Australia 

(2017) 

 675 

 676 

 677 

 678 

 679 
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Table 2: Summary of antitranspirant research based on 173 peer review articles published between 2009 and 2018.  680 

Year  Antitranspirant 
class 

Antitranspirant 
product 

Research 
area/objective 

Crop/plant 
species  

Some of the reported effects on 
crop/plant performance 

Citation  

2009 Reflective  Kaolin Drought and heat 
stress 

Tomato  Reduced drought and heat stress 
and improved marketable yield by 
21% 

Cantore et al., 
2009 

2009 Reflective  Kaolin  Heat stress 
management 

Apple  Reduced heat stress, increased 
carbon fixation and fruit size 

Glenn, 2009 

2010 Reflective  Kaolin  Fruit protection 
from sunburn 

Apple  Increased light reflectance and leaf 
expansion, reduced sunburn, 
increased fruit weight and yield 

Aly et al., 2010 

2010 Reflective  Kaolin  Water stress Apple  Increased photosynthesis, reduced 
WUE 

Glenn, 2010 

2010 Reflective  Kaolin  Insect pest 
control 

Olives  Significant mortality of pests 
Bactrocera oleae and Saissetia 
oleae and natural enemies (e.g. 
Scymnus mediterraneus). 

Pascual et al., 
2010 

2010 Reflective  Kaolin  Insect pest 
control 

Cotton  Reduced oviposition and egg 
number of bollworms, Helicoverpa 
armigera 

Alavo et al., 2010 

2010 Reflective  Kaolin  Physiological 
responses 

Grapes  Reduced leaf temperature and 
stomatal conductance but 
increased leaf water potential 
under well-watered conditions 

Michael Glenn et 
al., 2010 

2010 Reflective  Kaolin  Drought stress  Olives  Maintained plant water status, 
increased canopy biomass, did not 
improve chlorophyll content and 
fruit yield  

Roussos et al., 
2010 

2010 Reflective  Kaolin  Protection from 
sunburn  

Pomegranate  Reduced sunburn damage, no 
effect on phenolic compounds and 
antioxidant activity 

Weerakkody et al., 
2010 

2011 Reflective  Kaolin  Insect (Medfly) Nectarines and Decreased landing of the pest and D’Aquino et al., 
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control peaches  fruit damage  2011  

2012 Reflective  Kaolin  Drought stress Olives  Increased photosynthesis, plant 
water content, leaf tissue density 
and reduced leaf temperature  

Denaxa et al., 2012 

2012 Reflective  Kaolin  Drought stress  Tomato  Improved WUE (by 43%) and 
increased total biomass and 
economic yield 

Lukic et al., 2012 

2012 Reflective  Kaolin plus deficit 
irrigation 

Irrigation 
management 

Grapes  Increased terpene alcohols and 
anthocyanins, negligible effect on 
volatile compounds 

Song et al., 2012 

2012 Reflective  Kaolin, calcium 
carbonate 

Control of cherry 
fruit fly 

Sweet cherry  Kaolin more effective than calcium 
carbonate in decreasing landing 
and oviposition and also with 
higher mortality rates 

Yee, 2012 

2012 Reflective  Kaolin, 
magnesium 
carbonate 

Drought stress Jatropha  Increased relative water content, 
reduced osmotic pressure and 
carbohydrate content 

Khalil et al., 2012 

2012 Reflective  Kaolin  Irrigation 
management 

Strawberry  Reduced irrigation frequency, 
saved 20% of water required, 
increased fruit weight 

Santos et al., 2012 

2013 Reflective  Kaolin  Drought and heat 
stress 

Mango  Reduced irradiance and leaf 
temperature and improved stomata 
conductance and photosynthesis. 
Increased fruit number and yield by 
41 and 44%, respectively 

Chamchaiyaporn et 
al., 2013 

2013 Reflective  Kaolin, 
magnesium 
carbonate 

Drought stress Wheat  Improved photosynthetic pigments, 
increased yield  

Desoky et al., 2013 

2013 Reflective  Kaolin  Aphid control Wheat  Reduced damage, improved 
biomass and grain yields 

Nateghi et al., 2013 

2013 Reflective  Kaolin Drought stress Soyabeans Increased yield components, 
biomass and grain yield 

Javan et al., 2013 
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2013 Reflective  Kaolin  Boll weevil 
(Anthonomus 
grandis) control 

Cotton  Reduced oviposition and boll 
damage  

Silva and Ramalho, 
2013 

2013 Reflective  Kaolin  Drought stress Pistachio Increased fresh weight and soluble 
solids, reduced early nut splitting  

Azizi et al., 2013 

2013 Reflective  Kaolin and 
calcium 
carbonate 

Drought stress Banana  Reduced irrigation frequency, 
improved crop productivity  

El-Khawaga, 2013 

2013 Reflective  Calcium 
carbonate 

Fruit protection 
from sunburn 

Grapes  Chlorophyll and carotenoid 
enhancement, berry setting and 
yield improvement 

Ahmed et al., 2013 

2013 Reflective  Calcium 
carbonate 

Control of potato 
psyllid 
(Bactericera 
cockerelli) 

Irish potatoes Reduced oviposition, no effect on 
mortality 

Prager et al., 2013 

2013 Reflective  Kaolin  Drought stress  Grapes  Reduced stomatal conductance 
and temperature, increased 
anthocyanin and phenolics content 
and berry fresh weight 

Shellie and King, 
2013 

2014 Reflective  Kaolin  Insect pest and 
disease control 

Wheat  Decreased reproduction of beetle, 
Rhyzopertha dominica, reduced 
multiplication of yeast moulds   

Campolo et al., 
2014 

2014 Reflective  Kaolin plus other 
materials 

Drought stress Wheat  Improved yield components and 
yield 

Patil et al., 2014 

2014 Reflective  Kaolin  Heat stress Grapes  Increased photosynthesis, 
transpiration, total soluble solids, 
berry weight, diameter and 
improved yield by 44%. 

Tepkaew et al., 
2014 

2015 Reflective  Kaolin  Fruit quality 
enhancement 

Grapes  Effective in reducing leaf 
temperature through reflectance, 
did not significantly decrease gas 
exchange variables, reduced fruit 

Lobos et al., 2015 
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damage, no effect on fruit 
nutritional quality 

2015 Reflective  Kaolin  Irrigation 
management  

Bananas  Decreased transpiration rate and 
amount of irrigation water, 
increased yield 

Gawad, 2015 

2015 Reflective  Kaolin  Drought stress Gooseberry  Reduced transpiration, leaf 
temperature, improved  
stem elongation, total biomass and 
WUE 

Segura-Monroy et 
al., 2015 

2015 Reflective  Kaolin Irrigation water 
management 

Oil seed rape  Reduced irrigation frequency Badukale et al., 
2015  

2015 Reflective  Kaolin  Drought stress, 
transplant 
survival 

Citrus, beans Decreased transplant shock, 
improved biomass 

Boari et al., 2015 

2015 Reflective  Kaolin  Irrigation water 
management 

Egg plant Reduced irrigation water by 33%, 
increased chlorophyll content, fruit 
weight, nutritional quality, plant 
biomass and economic yield  

El-Said, 2015 

2015 Reflective  Kaolin  Drought stress 
and fruit quality  

Olives  Enhanced chlorophyll and 
carotenoid contents, increased 
oleic acid in olive oil 

Khaleghi et al., 
2015 

2015 Reflective  Kaolin  Heat and drought 
stress  

Grapes  Higher accumulation of active 
photosystem II reaction centres, 
lowered mesophyll limitations, 
increased net photosynthesis, 
reduced sunburn, improved yield 

Correia et al., 2015 

2015 Reflective  Kaolin and 
calcium 
carbonate 

Fruit protection 
from sunburn 

Pomegranate  Reduced sunburn, increased 
anthocyanin and total sugar 
content, fruit weight and yield 

El-wafa, 2015 

2015 Reflective  Potassium 
silicate 

Drought stress  Tomato Increased relative water content, 
leaf expansion, WUE, plant 
biomass and yield 

El-azm and 
Youssef, 2015 
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2015 Reflective  Kaolin  Pest (whitefly) 
control 

Beans  Reduced the number of eggs, 
nymphs and adult insects by 70, 75 
and 80%, respectively. Suppressed 
transpiration by 40%, increased 
chlorophyll content by 43% 

Nunez-Lopez et al., 
2015 

2015 Reflective  Kaolin  Drought stress   Peruvian 
Ground Cherry  

Reduced transpiration, leaf 
temperature, leaf thickness and 
trichome density, increased WUE, 
stem elongation and biomass yield 

Segura-Monroy et 
al., 2015 

2016 Reflective  Kaolin  Drought stress 
and fruit quality  

Grapes  Improved intrinsic WUE and 
anthocyanin content 

Brillante et al., 
2016 

2016 Reflective  Kaolin  Salinity tolerance  Tomato  Mitigated salinity stress and 
reduced damage by insects: 
increased marketable yield and 
reduced sunburn by 17.7 and 
76.4%, respectively,  

Boari et al., 2016 

2016 Reflective  Kaolin  Drought stress  Tomato  Improved WUE, increased 
individual fruit weight and total yield 
by 27% 

Djurovic et al., 
2016 

2016 Reflective  Kaolin  Drought stress 
and fruit quality 

Grapes  Enhanced flavonoid and 
anthocyanin contents 

Conde et al., 2016 

2016 Reflective  Kaolin  Drought stress  Tomato and  
 pepper 

Did not affect stomatal 
conductance and plant water status 
significantly 

Cosic et al., 2016 

2016 Reflective  Kaolin  Drought and heat 
stress; and fruit 
quality 

Grapes  Increased phenol, flavonoid 
anthocyanin and vitamin C 
contents by 40, 24,  
32 and 12%, respectively, reduced 
reactive oxygen species and 
improving fruit quality  

Dinis et al., 2016 

2016 Reflective  Kaolin  Heat stress 
mitigation  

Apples  Reduced photosynthetically active 
radiation interception, increased 
fruit weight 

Glenn, 2016 
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2016  Reflective  Kaolin  WUE Apples  Reduced WUE, increased stomatal 
conductance and transpiration, 
improved yield 

Glenn, 2016b 

2017 Reflective  Kaolin Fruit protection 
from sunburn 

Grapes  Reduced sunburn  Ferrari et al., 2017 
 

2017 Reflective  Kaolin  Control of 
leafhopper  

Grapes  Effective in inducing mortality of 
nymphs  

Tacoli et al., 2017 

2017 Reflective  Kaolin  Control of 
leafhopper  

Grapes  Caused mortality of nymphs 
through inhibition of feeding; and 
reduced leaf symptoms and 
damage 

Tacoli et al., 2017b 

2017 Reflective  Magnesium 
carbonate, 
sodium 
carbonate, 
potassium nitrate 

Drought stress Soyabeans Magnesium carbonate and 
potassium nitrate improved grain 
yield and protein content 

Dass and 
Bhattacharyya, 
2017 

2017 Reflective  Kaolin, calcium 
carbonate (with 
conservation 
tillage) 

Insect (thrips) 
control 

Cotton and 
groundnuts 

Increased incidence of thrips 
(Frankliniella fusca) in cotton, 
decreased incidence of tomato 
spotted wilt virus in groundnuts. No 
effect on yield in both crops 

Knight et al., 2017 

2017 Reflective  Potassium 
nitrate,  
sodium 
carbonate and 
magnesium 
carbonate  

Drought stress Soyabeans Increased relative water content, 
and total biomass and grain yield  

Sanbagavalli et al., 
2017 

2017 Reflective  Kaolin, calcium 
carbonate 

Fruit protection 
from sunburn 

Pomegranate Reduced sunburn damage, 
enhanced total soluble solids 

Abdel-Sattar et al., 
2017 

2017 Reflective  Kaolin  Irrigation 
management  

Aubergine  Reduced irrigation frequency and 
water use, increased yield 

Abd El-Hady and 
Doklega, 2017 

2017 Reflective  Kaolin  Light extinction 
coefficient and 
radiation use 

Pistachio  Reduced single leaf light 
interception but increased canopy 
absorbance, light extinction 

Vatandoost et al., 
2017 
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efficiency  coefficient (K) not significantly 
affected, improved light use 
efficiency in some cultivars 

2018 Reflective  Kaolin  Drought stress  Olives Maintained leaf water status, 
improved photosynthesis, 
ameliorated oxidative damage, 
whole-plant WUE and biomass not 
improved  

Brito et al., 2018 

2018  Reflective  Kaolin  Irrigation and 
heat stress 
management  

Pepper  Water deficit with kaolin reduced 
canopy temperature, full irrigation 
with kaolin increased temperature 

Cosic et al., 2018 

2018 Reflective  Kaolin  Heat stress  Walnut  Decreased heat stress, enhanced 
photosynthesis, gas exchange and 
WUE 

Gharaghani et al., 
2018 

2018  Reflective  Kaolin  Pest (Diaphorina 
citri) control 

Citrus  Reduction in host apparency (40%) 
and recognition (50%) 

Miranda et al., 
2018 

2018 Reflective  Kaolin  Heat stress and 
fruit quality 

Grapes  Enhanced contents of phenolic 
compounds and anthocyanins 

Kok and Bal, 2018 

2018 Reflective  Kaolin, calcium 
carbonate 

Pest (Diaphorina 
citri) control 

Citrus Decreased photosynthesis (25%), 
leaf temperature, incidence of 
imagoes, nymphs and egg laying 

Ramírez-Godoy et 
al., 2018 

2018 Reflective  Kaolin  Fruit protection 
from sunburn and 
cracking 

Pomegranates  Decreased sunburn (47%) and fruit 
cracking (46%), increased 
anthocyanins and phenolic 
contents and antioxidant activity 

Sharma et al., 
2018 

2018 Reflective   Kaolin  Drought stress  Sunflower  Increased chlorophyll and proline 
contents, reduced stomatal 
conductance and transpiration, 
improved relative water content 
and yield 

El Mantawy and El 
Bialy, 2018 

2018 Reflective  Kaolin  Drought stress Grapes  Enhanced stomatal conductance, 
photosynthesis and intrinsic WUE, 
reduced ABA concentration, 

Dinis et al., 2018 
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enhanced drought tolerance. 

2018 Reflective  Kaolin  Drought stress  Tomato  Reduced canopy temperature, 
irrigation water required, net CO2 
assimilation rate and marketable 
yield 

AbdAllah et al., 
2018 

2018 Reflective  Calcium 
carbonate 

Drought stress  Tomato  Reduced transpiration (by 47 -
58%) and leaf temperature, 
improved vitamin C and total 
phenols contents by 15 and 12% 
respectively, increased antioxidant 
activity and marketable yield  

Patane et al., 2018 

2018 Reflective  Kaolin  Irrigation 
management   

Maize  Increased leaf number and plant 
height, improved biomass 
accumulation 

Ulameer and 
Ahmed, 2018 

2018 Reflective  Kaolin  Graft survival Mango  Depressed transpiration, enhanced 
photosynthesis, increased relative 
water content and survival of grafts  

Thorat et al., 2018 

2018 Reflective  Kaolin  Drought stress Pears  Reduced irrigation water applied, 
elevated indoleacetic acid and 
gibberellic acid activities 

Fayed et al., 2018 

2018 Reflective  Kaolin (deficit 
irrigation; mulch) 

Irrigation 
management   

Common 
Zinnia 

Increased plant height and 
biomass accumulation  

El-Deen et al., 
2018 

2009 Metabolic ABA Fruit quality 
enhancement 

Grapes  Increased anthocyanin content, 
reduced fruit firmness, no effect on 
soluble solids content, titratable 
acidity, and berry size 

Lurie et al., 2009 

2009 Metabolic Chitosan  Drought stress Beans Depressed stomatal conductance – 
reduced transpiration and 
photosynthesis, mode of action 
mediated by ABA, elevated 
endogenous ABA concentration 
threefold, no effect on intrinsic 
WUE 

Iriti et al., 2009  
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2009  Metabolic ABA Fruit ripening Grapes  Promoted fruit ripening and 
increased berry size 

Wheeler et al., 
2009 

2009 Metabolic ABA Vase life 
extension 

Eustoma 
flowers 

Reduced leaf damage attributed to 
sucrose solution, slowed loss of 
fresh weight, extended vase life 

Shimizu-Yumoto 
and Ichimura, 2009 

2010 Metabolic ABA Drought stress  Various woody 
ornamentals 

Reduced stomatal conductance 
and cumulative water loss, 
increased stem water potential, 
extended marketability by one to 
seven days 

Hebert et al., 2010 

2010 Metabolic Chitosan Drought stress Bean  Reduced stomatal conductance 
and transpiration  

Ludwig et al., 2010 

2010 Metabolic ABA Vase life 
extension 

Cut roses Pre-treatment with ABA did not 
increase vase life but reduced 
electrolyte leakage  

Pompodakis et al., 
2010 

2010 Metabolic ABA Drought stress  Pansy and 
Viola 

Induced leaf chlorosis, improved 
drought tolerance by delaying 
wilting and maintained marketable 
quality in the presence of 
benzyladenine and gibberellic acid 

Waterland et al., 
2010 

2010 Metabolic ABA  Drought stress Seed  
Geranium, 
petunia, 
marigold and 
others 

Reduced water loss, induced 
chlorosis, delayed wilting by 1.7 to 
4.3 days  

Waterland et al., 
2010a 

2010 Metabolic ABA Drought stress  Chrysanthemu
ms 

Suppressed stomatal conductance, 
delayed wilting by 1.2 to 4.0 days, 
induced recovery from severe 
drought  

Waterland et al., 
2010c 

2011 Metabolic Salicylic acid Vase life 
extension 

Cut roses Enhanced uptake of vase solution 
increasing relative fresh weight of 
flowers, improved antioxidant 
activities of catalase, extending the 
vase life 

Alaey et al., 2011 
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2011 Metabolic ABA Extension of shelf 
life 

Tomato  Decreased transpiration, stomatal 
conductance, photosynthesis and 
irrigation water use. Increased 
shelf life 

Astacio and van 
Iersel, 2011 

2011 Metabolic ABA Drought stress Apples  Enhanced water potential by 62% 
and reduced endogenous leaf ABA 
by 45%. 

Tworkoski et al., 
2011 

2011 Metabolic ABA Cold tolerance Citrus  Reduced electrolyte 
leakage 

Yang et al., 2011 

2011 Metabolic Fulvic acid Drought stress  Maize  Maintained chlorophyll content 
and gas exchange, enhanced plant 
growth and yield 

Anjum et al., 2011 

2011 Metabolic Chitosan  Disease control Grapes  Reduced powdery mildew 
infestation, upregulated polyphenol 
content and removal of free 
radicals 

Iriti et al., 2011 

2011 Metabolic ABA Fruit quality 
enhancement 

Grapes  Increased anthocyanin content up 
to 85%, marginal improvement of 
total soluble solids contents 

Gu et al., 2011 

2011 Metabolic ABA Drought stress  Smoke bush Elevated endogenous ABA, did not 
increased relative water content, 
reduced stomatal conductance, 
transpiration and photosynthesis, 
improved drought tolerance  

Li et al., 2011 

2011 Metabolic Salicylic acid Salt stress  Sunflower  Promoted plant growth, chlorophyll 
and calcium contents and improved 
leaf turgor  

Noreen et al., 2011 

2011 Metabolic ABA Fruit quality 
enhancement 

Grapes  Upregulated antioxidant activities 
by 38%, increased anthocyanins 
and phenolic contents 

Sandhu et al., 2011 

2011 Metabolic ABA Cold tolerance  Grapes  Effective in inducing leaf 
senescence, abscission and shoot 
dormancy and promoting freeze 
tolerance 

Zhang et al., 2011 
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2011 Metabolic ABA Vase life 
extension 

Iris flowers Prevented flag petal expansion, 
induced ethylene-independent 
senescence, upregulating 
proteolytic degradation and 
electrolyte leakage 

Zhong and Ciafre, 
2011 

2012 Metabolic ABA Cold tolerance  Grapes  Enhanced shoot dormancy and 
freeze tolerance 

Zhang and Dami, 
2012 

2013 Metabolic ABA Fruit ripening Cucumber  Effective in promoting fruit ripening  Wang et al., 2013 

2013 Metabolic ABA Flowering 
regulation  

Litchi  Increased flowering per panicle Cui et al., 2013 

2013 Metabolic Fulvic acid Drought stress Wheat  Improved photosynthetic pigments, 
increased yield 

Desoky et al., 2013 

2013 Metabolic Chitosan Drought stress Soyabeans Increased yield components, 
biomass and grain yield 

Javan et al., 2013 

2013 Metabolic Salicylic acid and 
acetylsalicylic 
acid 

Drought stress Fibrous flax. Enhanced stem elongation and 
fibre yield 

Heller et al., 2013 

2014 Metabolic ABA Fruit quality 
enhancement 

Tomato  Increased both chlorophyll and 
carotenoid contents in leaf and fruit 
tissue 

Barickman et al., 
2014 

2014 Metabolic ABA Control of 
blossom end-rot 

Tomato  Improved uptake of calcium and 
reduced blossom end-rot 

Casey Barickman 
et al., 2014 

2014 Metabolic ABA Vase life 
extension 

Gladiolus  Reduced water uptake, fresh 
weight, enhanced senescence in 
cut flowers, decreased vase life by 
two days 

Kumar et al., 2014 

2014 Metabolic ABA (used with 
ABA 

Analog: (+)-8’-
acetylene ABA)  

Fruit set control 
and gas 
exchange 

Apples  Reduced stomatal conductance 
and photosynthesis inducing a 
decline in fruit set 

McArtney et al., 
2014 

2014  Metabolic Chitosan  Drought stress  Pomegranate  Decreased sugar and anthocyanin 
contents, increased fruit set, weight 
and yield 

El-Khawaga and 
Mansour, 2014 
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2014 Metabolic ABA Fruit quality 
enhancement 

Citrus  Increased fruit size and weight, 
enhanced potassium content, 
reduced sugar accumulation 

Kawai et al., 2014 

2014 Metabolic ABA Fruit quality 
enhancement 

Grapes  No effect on cluster size or weight, 
increased anthocyanin 
polyphenolic compounds 

Koyama et al., 
2014 

2014 Metabolic ABA Protection from 
sunburn  

Apples  No effect on sunburn, significantly 
reduced fruit size and weight and 
total soluble solids 

Mupambi et al., 
2014 

2014 Metabolic ABA Transplant shock Leafy 
vegetables  

Improved quality of seedlings pre-
planting, increased marketability of 
spinach at harvest 

Racsko et al., 2014 

2014 Metabolic ABA Transplant shock Artichoke  Induced stomatal closure, 
increased plant water potential, 
reduced electrolyte leakage, 
enhanced drought tolerance 

Shinohara and 
Leskovar, 2014 

2014 Metabolic ABA Drought stress  Pansies  Decreased leaf chlorophyll content, 
stomatal conductance and carbon 
assimilation, induced chlorosis.  

Weaver and van 
Iersel, 2014 

2015 Metabolic ABA Vase life 
extension  

Lilium 
Sorbonne 

Increased sucrose uptake from 
solution, contents of simple sugars 
and fresh weight  

Geng et al., 2015 

2015 Metabolic ABA Cold tolerance  Grapes  Enhanced cold tolerance, did not 
have an effect on yield and berry 
quality, no evidence of toxicity 

Dami et al., 2015 

2015 Metabolic ABA Fruit quality 
enhancement 

Grapes  Increased anthocyanin content, 
antioxidant activity and bunch yield 

Ferrara et al., 2015 

2015 Metabolic ABA Fruit quality 
enhancement 

Grapes Increased anthocyanins content 
and improved flavour of juice 

Yamamoto et al., 
2015 

2015  Metabolic Fulvic acid Drought stress  Tomato  Improved relative water content 
and marketable yield by 24%, 
irrigation WUE by 34.82%. 

Aggag et al., 2015 
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2015 Metabolic Fulvic acid Drought stress Oil seed rape Enhanced maximum quantum 
efficiency of photosystem II, 
fluorescence of chlorophyll a, 
antioxidant activities, ameliorated 
lipid peroxidation. 

Lotfi et al., 2015 

2016 Metabolic ABA 
  

Drought stress Apple  Depressed gas exchange 
variables, water deficit stress not 
alleviated 

Al-Absi and 
Archbold, 2016 

2016 Metabolic ABA Cold stress Blueberry  Reduced electrolyte leakage of 
floral parts increasing their 
tolerance to freezing injury 

Panicker and 
Matta, 2016 

2016 Metabolic ABA Cold stress Grapes  Reduced bud damage Bowen et al., 2016 

2016 Metabolic Acetylsalicylic 
acid 

Vase life 
extension  

Cut roses Reduced transpiration, extended 
vase life 

Fanourakis et al., 
2016 

2016 Metabolic ABA Cold stress and 
fruit quality  

Grapes  Induced early leaf senescence, 
abscission, enhanced dormancy, 
increased cold tolerance 

Li and Dami, 2016 

2016 Metabolic ABA Fruit quality 
enhancement 

Grapes  Upregulated flavonoid and 
anthocyanin biosynthesis genes, 
increased anthocyanin content 

Katayama-Ikegami 
et al., 2016 

2016 Metabolic ABA Drought stress Various 
bedding plants 

Depressed stomatal conductance, 
improved drought tolerance by 
delaying wilting by between 1.3 
and 3.7 days 

Park et al., 2016 

2016 Metabolic ABA Fruit quality 
enhancement 

Grapes Improved berry and bunch sizes, 
total soluble solids and fruit 
firmness  

Singh et al., 2016 

2016 Metabolic Fulvic acid Water deficit 
conditions 

Wheat  Improved WUE, carbon 
assimilation and yield 

Zhang et al., 2016 

2016 Metabolic ABA Water deficit 
conditions 

Grapes  Reduced electrolyte leakage and 
lipid peroxidation, improved 
antioxidant activity 

Wang et al., 2016 

2016 Metabolic ABA Water deficit  Wheat  Improved WUE and yield Zhang et al., 2016 
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2017 Metabolic ABA Fruit thinning  Pears  Suppression of net photosynthesis 
by 75-90%, increased fruit size, 
fruit quality unaffected 

Arrington et al., 
2017 

2017 Metabolic Salicylic acid,  
 Benzoic acid 

Drought stress Tomato Increased leaf area index, fruit 
number and marketable yield  

Isa et al., 2017 

2017 Metabolic ABA Fruit quality 
enhancement 

Tomato  Enhanced the concentrations of 
fructose, glucose and the contents 
of chlorophyll and carotenoids 

Barickman et al., 
2017 

2017 Metabolic ABA Fruit quality 
enhancement 

Grapes  Elevated accumulation of ethanol, 
depressed aroma quality  

Gonzalez et al., 
2018 

2017 Metabolic Salicylic acid  Vase life 
extension 

Cut roses  Sustained membrane stability, 
attenuated lipid peroxidation, 
reduced weight loss, enhanced 
antioxidant activities, extended 
vase life 

Kazemi et al., 2017 

2017 Metabolic Chitosan  Vase life 
extension 

Macaw flower  Increased anthocyanin and 
flavonoid contents by 48 and 46%, 
respectively, sustained fresh 
weight, extended vase life by 10.3 
days 

Banuelos-
Hernandez et al., 
2017 

2017 Metabolic ABA Fruit quality 
enhancement 

Grapes  Enhanced soluble solids, 
anthocyanin and total phenolic 
contents 

Neto et al., 2017 

2017 Metabolic ABA Post-harvest 
preservation 

Grapes  Decreased shatter, decay and loss 
of fruit weight 

F. J. D. Neto et al., 
2017  

2017 Metabolic ABA Fruit quality 
enhancement 

Grapes  Upregulated anthocyanin 
biosynthesis genes, elevated 
anthocyanins content 

Olivares et al., 
2017 

2017 Metabolic ABA Berry and cluster 
manipulation 

Grapes  Reduced berry number, improved 
berry and cluster uniformity  

Padmalatha et al., 
2017 

2017 Metabolic ABA Extension of 
marketability  

Tomato  Inhibited stem elongation, leaf 
expansion and shoot biomass 
accumulation by 22% effectively 

Agehara and 
Leskovar, 2017 
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prolonging market value 

2017 Metabolic Chitosan  Drought stress  White clover Increased contents of amino acids, 
sugars, sugar alcohols, 
antioxidants and other metabolites 
associated with drought resistance 
mechanisms 

Z. Li et al., 2017 

2017 Metabolic Fulvic acid  Crop productivity  Safflower  Improved seed yield by 36% and 
oil content by 86% 

Moradi et al., 2017 

2018 Metabolic ABA Stomatal 
physiology  

Cut gerberas Increased percentage of closed 
stomata, reduced stomatal 
aperture, decreased water loss 

Huang et al., 2018 

2018 Metabolic ABA Fruit quality 
enhancement 

Grapes  Increased anthocyanin and aroma 
volatiles contents, decreased fruit 
firmness 

Jia et al., 2018 

2018 Metabolic ABA Fruit quality 
enhancement 

Grapes  Enhanced phenolic 
compounds and anthocyanin 
contents, increased grape yield 

Kok and Bal, 
2018b 

2018 Metabolic ABA Fruit quality 
enhancement 

Grapes  Upregulated anthocyanin and 
flavonoid gene expression 

Koyama et al., 
2018 

2018  Metabolic ABA Fruit quality 
enhancement 

Blueberry  Elevated endogenous ABA, 
increased anthocyanins (malvidin, 
delphinidin, petunidin glycosides) 
and fruit softening 

Oh et al., 2018 

2018 Metabolic ABA Fruit quality 
enhancement 

Oranges  Enhanced colour index and 
carotenoid content, reduced 
organic acids, no effect on sugar 
content 

Rehman et al., 
2018 

2018 Metabolic Chitosan  Drought stress  Wheat  Improved chlorophyll, carotenoid, 
proline and superoxide dismutase 
contents 

Singh et al., 2018 

2018 Metabolic Chitosan, deficit 
irrigation  

Irrigation 
management  

Wheat 
 

Increased stem extension and leaf 
expansion 

Reddy et al., 2018 
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2018 Metabolic Fulvic acid  Low 
rainfall/drought 
stress 

Maize  Increased kernel number per ear, 
did not increase yield 

Yang et al., 2018 

2018 Metabolic Fulvic acid Drought stress  Tomato  Reduced canopy temperature, 
irrigation water required (by 28%), 
net CO2 assimilation rate and 
marketable yield, increased WUE 
by 33.45% 

AbdAllah et al., 
2018 

2018 Metabolic Phenyl mercuric 
acetate  

Drought stress Oil seed rape Increased plant height and total 
biomass, but not seed oil and 
protein contents  

Kumar et al., 2018 

2009 Film-forming Di-1-p-menthene Drought stress Kiwi fruit Enhanced efficiency of 
photosystem II and chlorophyll 
content, non-significant effect on 
yield 

Latocha et al., 
2009 

2009 Film-forming Di-1-p-menthene Drought stress  Sultani fig  Reduced sugars and total soluble 
solids, improved vegetative growth 
and yield 

Al-Desouki et al., 
2009 

2009 Film-forming Di-1-p-menthene Physiology, 
nutrient uptake 
and yield 

Pepper  Suppressed carbon assimilation, 
reduced water absorption, no effect 
on cation uptake and dry weight 
and yield, reduced incidence of 
blossom-end rot 

del Amor and 
Rubio, 2009 

2009 Film-forming Canola oil 
(other vegetable 
oils) 

Control of 
powdery and 
downy mildews 

Cucumber  Reduced powdery and downy 
mildews by 99 and 96%, 
respectively  

Jee et al., 2009 

2009 Film-forming Di-1-p-menthene, 
poly-1-p 
menthene 

Control of apple 
scab (Venturia 
inaequalis) 

Apples  Increased chlorophyll fluorescence, 
decreased conidia germination and 
foliar and fruit scab severity, 
improved yield 

Percival and Boyle, 
2009 

2010 Film-forming Di-1-p-menthene Drought stress Wheat  Improved yield at high soil water 
deficit 

Kettlewell et al., 
2010 
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2010 Film-forming Di-1-p-menthene Drought stress Wheat  Improved yield  Kettlewell and 
Holloway, 2010 

2010 Film-forming Di-1-p-menthene Drought stress Bean  Reduced stomatal conductance Ludwig et al., 2010 

2010 Film-forming Di-1-p-menthene Drought stress Pepper  Reduced gas exchange under 
ambient CO2 concentration, higher 
water potential and photosynthesis 
under combined elevated CO2 and 
AT 

del Amor et al., 
2010 

2010 Film-forming Di-1-p-menthene Drought stress Citrus  Non-significant effect on gas 
exchange, plant water status, 
chlorophyll and proline contents 

Mohawesh et al., 
2010 

2010 Film-forming Di-1-p-menthene Fruit quality 
control 

Grapes  Depressed transpiration and 
carbon assimilation rates, 
increased intrinsic WUE and 
anthocyanin content, reduced yield 

Palliotti et al., 2010 

2011 Film-forming Di-1-p-menthene Ozone stress Beans  Reduced membrane damage, 
maintained stomatal conductance 
and photosynthesis 

Francini et al., 
2011 

2012 Film-forming Carboxylated 
hydrophilic 
polymer (Envy) 

Transplant shock Agarwood  Neither improved growth rates nor 
reduce stress and mortality of 
transplants 

Page and Awarau, 
2012 

2013 Film-forming Castor bean oil Drought stress Soyabeans Increased yield components, 
biomass and grain yield 

Javan et al., 2013 

2013 Film-forming Di-1-p-menthene Micronutrient and 
trace element 
quality  

Sweet cherry No effect on quantity of 
manganese, nickel, cadmium, 
copper or zinc 

Mikiciuk et al., 
2013 

2013 Film-forming Di-1-p-menthene Control of sugar 
content 

Grapes  Reduced transpiration, 
photosynthesis, intrinsic WUE, 
anthocyanin content (by 19%) and 
sugar content 

Palliotti et al., 2013 

2014 Film-forming Di-1-p-menthene Drought stress Wheat and 
barley 

Improved water potential in both 
crops, increased photosynthesis in 
wheat only 

Ouerghi et al., 
2014 
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2015 Film-forming Di-1-p-menthene Drought stress Wheat  Improved plant water status, 
photosynthesis and yield 

Abdullah et al., 
2015 

2015 Film-forming Paraffin  Drought stress  Potatoes  Reduced transpiration, improved 
WUE, total yield and marketable 
yield 

Khalel, A. M. S., 
2015 

2015 Film-forming Di-1-p-menthene  Strawberry  Reduced transpiration without 
depressing carbon assimilation, 
increased relative water content 
and WUE, no effect on chlorophyll 

Mikiciuk et al., 
2015 

2016 Film-forming Di-1-p-menthene Drought stress Wheat  Improved water potential, pollen 
viability and grain yield  

Weerasinghe et al., 
2016 

2016 Film-forming Poly-1-p-
menthene and di-
1-p-menthene 

Drought stress Oil seed rape Decreased endogenous ABA, 
improved flower and pod water 
potential.  

Faralli et al., 2016 

2016 Film-forming Di-1-p-menthene Fruit quality  Grapes  No effect on intrinsic WUE, 
depressed gas exchange, sugar 
and anthocyanin content 

Brillante et al., 
2016 

2016  Film-forming Di-1-p-menthene Controlled 
ripening 

Grapes  Reduced gas exchange, slowed 
sugar accumulation 

Gatti et al., 2016 

2017 Film-forming Poly-1-p-
menthene and di-
1-p-menthene 

Drought stress Oil seed rape Reduced transpiration and 
stomatal conductance, enhanced 
water potential and yield 

Faralli et al., 2017 

2017 Film-forming Di-1-p-menthene Drought stress Oil seed rape Reduced CO2 assimilation and 
relative water content, increased 
intrinsic WUE 

M. Faralli et al., 
2017 

2018 Film-forming Poly-1-p-
menthene 

Vase life 
extension  

Roses  Reduced transpiration, increased 
vase life 

Di Stasio et al., 
2018 

2018 Film-forming Di-1-p-menthene Drought stress Grapes  Reduced both leaf and bunch 
stomatal conductance, 
photosynthesis and transpiration, 
elevated leaf and berry 
temperature 

Fahey and 
Rogiers, 2018 
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