The potential of antitranspirants in drought management of arable crops: a review

by Mphande, W., Kettlewell, P.S., Grove, I.G. and Farrell, A.D.

Copyright, publisher and additional Information: This is the author accepted manuscript. The final published version (version of record) is available online via Elsevier.

This version is made available under the CC-BY-ND-NC licence: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Please refer to any applicable terms of use of the publisher

DOI: https://doi.org/10.1016/j.agwat.2020.106143

1 The potential of antitranspirants in drought management of arable crops: a 2 review.

3 Wiza Mphande^{a,c}, Peter S. Kettlewell^a, Ivan G. Grove^a and Aidan D. Farrell^b

⁴ ^aDrought Mitigation Group, Crop and Environment Sciences Department, Harper

5 Adams University, TF10 8NB, Newport, UK.

⁶ ^bDepartment of Life Sciences, The University of the West Indies Trinidad, West

7 Indies.

8 °Corresponding author. Email: <u>wmphande@harper-adams.ac.uk</u>

9 Abstract

10 About 80% of global farmland is under rain-fed conditions and most of it prone to drought, which limits crop productivity. Due to climate change, drought will 11 frequent and severe threatening world food 12 become more security. Antitranspirants, materials that reduce transpiration, could potentially result in 13 greater food production by realising more of a crop's potential yield during 14 drought. Despite antitranspirants also reducing photosynthesis, research has 15 shown that they can mitigate drought stress resulting in increased grain yield. 16 Although this paper is not restricted to specific years, part of it is a systematic 17 18 review of 173 original research articles published between 2009 and 2018. Overall, the analysis suggests that interest in the potential of antitranspirants is growing. 19 One major achievement in antitranspirant research during the past decade was 20 21 establishing the optimal timing of application of the substances, which is linked to reproductive processes most vulnerable to drought. Despite research evidence of 22 the efficacy of antitranspirants in ameliorating drought stress, they are not widely 23 used for commercial arable crop production. However, in fruit horticulture, 24

25	products with antitranspirant effects are being used for various non-antitranspirant								
26	purposes such as synchronising fruit ripening, enhancement of nutritional quality,								
27	protection against sunburn and controlling diseases and insect pests.								
28									
29	Keywords: Stomatal conductance, terminal drought, drought amelioration								
30									
31									
32									
33									
34									
35									
36									
37									
38									
39									
40									
41									
42									
43									
44									
45									
46									
47									
48 49									
49 50									
50									

51 **1.0 Introduction**

52

53 Future crop productivity and world food security will be undermined by severe and more frequent droughts and other abiotic stresses (IPCC, 2018), and reducing 54 transpiration with antitranspirants (ATs) may have a role in ameliorating drought. 55 56 About 80% of the total cropped area globally is under rain-fed agriculture (Huang 57 al.. 2019. supplementary information), and prone to droughts et (https://youtu.be/Sy0u8LCZK50, Singh et al., 2017). Under a frequent drought 58 scenario predicted for the future, reducing transpirational water loss will be 59 required to obtain improvements in grain yield. The rapidly increasing world 60 population, projected to reach 9.8 billion by 2050 (United Nations, 2017), will put 61 pressure on food demand. Cereal production must increase by 26% from 2.8 to 62 3.5 billion tonnes, as from the 2014 baseline (Hunter et al., 2017, supplementary 63 64 data) in order to avert global food insecurity.

One neglected agronomic technique that has potential to significantly contribute to 65 drought stress amelioration in food crop production is the use of ATs. ATs are 66 substances that are applied on leaves to reduce transpiration and hence improve 67 plant water potential (del Amor et al., 2010). However, to avoid reducing grain 68 yield biomass due to depression of transpiration, drought is a precondition as past 69 researched demonstrated (e.g. De and Giri, 1978 and del Amor et al., 2010). In 70 addition, a comprehensive study by Kettlewell et al. (2010) showed that AT should 71 72 target the most drought sensitive stage to avoid counterproductive effects. The 73 potential of ATs to 'waterproof' the most critical crop development stages (Kettlewell, 2014) through reduced transpiration and improve water use efficiency 74 (WUE) during drought is an active area of research. 75

Detailed reviews of drought avoidance and other plant adaptive strategies to water deficit stress have been dealt with in previous reviews (e.g. Farooq et al., 2009 and Luo, 2010). Also, not discussed here are silicon, and biostimulants like proline and the various compounds extracted from seaweed (such as betaines). These products have drought ameliorative effects which are unrelated to transpiration such as up-regulating flavonoid biosynthesis and antioxidant activities (Ma et al., 2015) and reducing osmotic stress (Ghaffari et al., 2019; Khan et al., 2009).

Thirty-eight years have passed since the last general review on ATs by Solarova 83 et al., (1981). This may in part be due to the negative research conclusion in the 84 85 late-1970s, which was echoed by Solarova et al., (1981) that ATs were not generally recommended for use in arable crop production. Much of the research 86 on ATs in the past was conducted between 1950 and 1979 (Kettlewell et al., 87 88 2010). Researchers at that time found that although ATs improved the water status of plants by reducing the rate of transpiration, the products also reduced the 89 intake of carbon-dioxide (CO₂) and hence the rate of photosynthesis (Kettlewell et 90 al., 2010). In fact, ATs were found to be less permeable to CO₂ than water vapor 91 92 (Plaut et al., 2004; Woolley, 1967). Because of this, the conclusion made was that 93 ATs were unsuitable for use in crop production except where survival of the plant was at stake, in which case photosynthesis was of secondary importance (Das 94 and Raghavendra, 1979; Davenport et al., 1972). This explains the decline in AT 95 96 research after the 1970s and why the technique remains largely neglected. However, it is important to note that photosynthesis is partially reduced and not 97 completely stopped by ATs, and that the reduction in carbon assimilation is 98 outweighed by the benefit if the products are applied to protect the most drought 99 sensitive stage (Kettlewell, 2014). Das and Raghavendra (1979) concluded that 100

AT products were only economically feasible for specific enterprises such as high value fruit production. Although AT products currently have commercial relevance in fruit horticulture (e.g. for protection against sunburn, synchronising ripening and pest protection), there is no evidence that they are being used for drought amelioration. This suggests that they may still be not be cost-effective for low value crop production systems like arable farming.

107 **2.0 Antitranspirant classes**

108 The mode of action of each one of the three classes of ATs and their 109 representative compounds (Table 1) are reviewed below.

110 **Position for Table 1**

111

112 **3.0 Research topics between 2009 and 2018**

113

A decadal overview of AT classes used and research objectives was done using 114 original research articles published between 2009 and 2018. Our sampling of 115 116 research papers in this decade was for a more quantitative assessment aiming to reveal the trends in research in recent years. Non-drought amelioration uses of 117 ATs were included in the analysis for the purpose of demonstrating the wider 118 range of uses of AT products. Papers were accessed using the search engines 119 Google Scholar and the Harper-Adams University's electronic library system, with 120 links to several databases including BioOne, Web of Science and ScienceDirect 121 which were relevant to this study. A total of 173 peer-reviewed original research 122 papers were collated and analysed on the basis of crop type, AT type and 123

research objective (Table 2). The trend of publications shows that researchinterest in the potential of ATs is increasing.

126 **Position for Table 2**

127

128

3.1 Reflective antitranspirants

129

As their name suggests, reflective ATs function on the basis of reflectance to 130 minimise leaf temperature and consequently the transpiration rate (Glenn, 2012). 131 Once reflective ATs have been applied, the foliar characteristics to absorb, reflect 132 133 and transmit light are altered, modifying leaf temperature and gas exchange 134 variables (Abou-Khaled et al., 1970). Kaolin (an aluminosilicate, Al₄Si₄O₁₀(OH)₈, Cantore et al., 2009) is foremost among the reflective ATs being the most studied 135 as the survey of published literature revealed (e.g. between 2009 and 2018, there 136 were 78 original research papers on kaolin versus 18 on the other reflective ATs). 137 Ordinary kaolin, in its crude form, has impurities of titanium dioxide (TiO₂) and 138 ferric oxide (Fe₂O₃), but as a particle film technology product, it is upgraded to a 139 highly light reflective, fine grained (< 2 μ m), low-abrasive product of over 99% 140 141 purity, after a spreader-sticker is added (Brito et al., 2019; Glenn and Puterka, 2005). Applied to the leaf surface, it forms a whitish film (Boari et al., 2015) by 142 which the optical properties of the target leaf are transformed. 143

With enhanced reflective properties, particle film kaolin is more effective than unprocessed kaolin in minimising the heat load on leaf surfaces, as more infrared radiation and ultraviolet rays are reflected (Brito et al., 2019; Glenn and Puterka, 2005). Despite reduced transpirational cooling, previous studies reported leaf

148 temperature reduction (or canopy temperature depression) effect due to kaolin of >3 °C e.g. by 5.6 °C in walnut (Gharaghani et al., 2018), and between 3 and 4 °C in 149 Valencia orange - corresponding to a 22-28% decline in transpiration -150 151 (Abou-Khaled et al., 1970), similar to 3.8 °C in snap beans (AbdAllah et al., 2019). Kaolin was effective in reducing transpiration and leaf temperature (by 1.4 °C) in 152 153 field beans (Tworkoski et al., 2002). However, kaolin can have an opposite effect 154 on leaf temperature if the target plant is not under drought stress. In grapes plants 155 sprayed with kaolin, Brillante et al., (2016) observed an increase in leaf 156 temperature of 1.47 °C in well-watered versus a 1.30 °C decrease in water-stressed. The increase in leaf temperature under well-watered conditions is attributable to 157 kaolin occluding stomata, reducing the transpirational cooling effect in the 158 process. This means that to reduce the negative effects of high temperature on 159 crop physiology, drought stress is a requisite. This may not be true in all cases as 160 161 kaolin is widely used to solely protect fruit from sunburn. In mung beans (Vigna radiata L), water deficit stress was demonstrated as a prerequisite to kaolin 162 application for improved yield (De and Giri, 1978). Kaolin can also cause an 163 increase in leaf temperature under low photosynthetic photon flux density 164 (Brillante et al., 2016) and also lead to reduced photosynthesis (Brito et al., 2019). 165 In apples, (Gindaba and Wand, 2005) observed up to 1.1 °C increase in leaf 166 temperature. Further, by partially occluding stomata, reflective ATs can also 167 partially contribute to a reduced gas exchange profile of the pores (Boari et al., 168 2015). 169

For transpiration to occur, a vapour pressure gradient between the leaf and the surrounding air is necessary (Bloomfield et al., 2019; Medina and Gilbert, 2015). By lowering the leaf heat energy balance, the vapour pressure gradient between

the leaf and the air is narrowed, thereby decreasing the transpiration rate (Kostka 173 and Aquatrols Corporation of America, 2018). Additionally, particle films confer 174 protection to the photosynthetic apparatus, particularly photosystem II reaction 175 176 centres against excessive irradiance (P.S.O. da Silva et al., 2019; Dinis et al., 2018). This suggests that plants that have been sprayed with particle films can 177 have not only higher but also longer-lasting photosynthesis before initiation of 178 179 senescence. While reflecting infrared radiation and ultraviolet rays, reflective ATs also reduce the amount of photosynthetically active radiation (PAR) absorbed 180 181 (Brillante et al., 2016) and hence have a negative effect on photosynthesis. However, depending on the canopy architecture, reflection can result in a positive 182 redistribution of light with an overall enhancement of whole canopy 183 184 photosynthesis, especially in dense canopies (Brito et al., 2019; Glenn, 2012).

185 The two calcium-based reflective ATs, CaCO₃ and CaO have a similar mode of action to kaolin. At the time of this review, there was no known study on arable 186 crops involving these ATs, and only a few on non-arable species (e.g. banana (El-187 Khawaga, 2013) and grapes (P.S.O. da Silva et al., 2019). This may be explained 188 by the novelty of calcium in particle films (Paulo Silas Oliveira da Silva et al., 189 190 2019). In grapes and coffee, CaO was found to have longer lasting physiological effects than CaCO₃. In 28 days after application (DAA) the luminosity value of 191 CaCO₃ declined by 31% against 17% for CaO. Besides higher luminosity, CaO 192 193 maintained reduced leaf temperature and gas exchange variables and higher chlorophyll (P.S.O. da Silva et al., 2019; Paulo Silas Oliveira da Silva et al., 2019). 194 195 To obtain a complete and equivalent foliar coverage to that of CaCO₃, the concentration of CaO needs to be doubled (e.g. 20% w/v CaO versus 10% w/v 196 CaCO₃). The higher concentration of CaO may account for this difference in 197

duration of efficacy (Paulo Silas Oliveira da Silva et al., 2019). Besides calcium compounds, reflective ATs less researched include any other mineral-based products such as magnesium carbonate (MgCO₃, Al-Desouki et al., 2009) and magnesium silicate (MgO₃Si, Schrader, 2011). One environmental concern with reflective ATs that needs addressing is the effect on non-target organisms as further reviewed in the last section.

204

3.2 Metabolic or stomata-closing antitranspirants.

205

Metabolic ATs are a group of substances that have hormone or hormone-like 206 207 effects, inducing partial stomatal closure by acting on guard cells (AbdAllah et al., 2018). Prominent in this class is exogenous abscisic acid (ABA) in its naturally-208 occurring bioactive form (S)-cis-ABA (s-ABA) or a commercially available mixture 209 210 with the synthetic (*R*)-*cis*-ABA (J. Li et al., 2017). ABA signalling causes an efflux of ions from guard cells, and water by osmosis, leading to flaccidity of the cells 211 212 with concomitant stomatal closure (Kim et al., 2012; Munemasa et al., 2015). 213 Several studies have reported drought tolerance and yield improvement effects of exogenous ABA e.g. in artichoke (Shinohara and Leskovar, 2014) and wheat 214 215 (Travaglia et al., 2010; Zhang et al., 2016).

ABA as an AT is perhaps the most prominent product in this group, as chitosan and fulvic acid are not solely ATs but are also used as biostimulants to improve uptake of both major and trace elements - even on crops under well-watered conditions - (Pettit, 2004; Sootahar et al., 2019). Plant biostimulants are substances or micro-organisms that are applied on plants on or in their growth medium to enhance growth by boosting nutrient uptake or tolerance to biotic or abiotic stress (Brown and Saa, 2015). The mechanism of interaction between

223 exogenous ABA as an AT and endogenous ABA is not well understood. However, it is known that benefits from endogenous ABA are short-term and occur only 224 under mild drought stress (Sreenivasulu et al., 2012). This corroborates with the 225 226 short-lived (less than seven days) effects of exogenous ABA on stomatal closure in wheat (Travaglia et al., 2010). During reproductive-stage drought stress, 227 endogenous ABA may induce premature senescence with undesirable effects 228 229 such as reproductive organ abortion (Pang et al., 2017); and loss of grain number if drought coincides with meiosis in grain-bearing crops like cereals and pulses 230 231 (Dolferus et al., 2011; Ji et al., 2011). Applying ABA as an AT during meiosis may therefore negatively affect crop productivity. In commercial fruit horticulture, ABA 232 is used for fruit quality enhancement, particularly of table and wines grapes 233 234 (Gonzalez et al., 2018).

235 Closely connected to ABA signalling is the metabolic pathway regulated by chitosan. In field bean plants (Phaseolus vulgaris L.), Iriti et al. (2009) found that a 236 237 foliar chitosan application led to stomatal closure and a reduction in transpiration. An increase in the endogenous ABA concentration (more than threefold) and that 238 of hydrogen peroxide (H₂O₂) was also observed one day after spraying. The 239 240 intrinsic WUE was not significantly improved. Chitosan is known to cause stomatal closure by promoting biosynthesis of ABA, but the mechanism by which this is 241 accomplished is not well understood (Hidangmayum et al., 2019). Although Iriti et 242 243 al. (2009) did not explain the link between ABA and H₂O₂, in faba beans (Vicia faba L.), it is known that ABA signalling downstream induces the production of 244 245 H₂O₂, as a secondary messenger, to cause stomatal closure (Arve et al., 2014). 246 Calcium ions, nitric oxide and reactive oxygen species are among the other secondary messengers in the ABA signalling network (Lee and Luan, 2012). 247

The other biostimulant-antitranspirant in the metabolic AT class is fulvic acid. 248 Fulvic acid is a by-product of organic matter decomposition that dissolves in both 249 alkaline and acid solutions (Klucakova et al., 2000). It is a variable mixture of both 250 251 aliphatic and aromatic organic acids, which are similar to humic acids but more reactive (Pettit, 2004). Along with this diverse chemical constitution, fulvic acid has 252 both AT and biostimulant functions. As an AT, the effects of fulvic acid on gas 253 254 exchange physiology have been studied in a number of crops and genotypes. In maize growing under drought stress (soil moisture at 35% of field capacity), Anjum 255 256 et al. (2011) found that fulvic acid applied at the tasselling stage insignificantly increased stomatal conductance by 13% while transpiration rate, 257 net photosynthesis and WUE were significantly improved, implying that fulvic acid 258 259 acted as a biostimulant instead. Zhang et al. (2016) found that while exogenous ABA significantly reduced both stomatal conductance and transpiration rate in 260 wheat under mild drought stress, fulvic acid was not effective. Zhang et al. (2016) 261 262 and Anjum et al. (2011) apparently contradict Xudan (1986), who observed that fulvic acid was effective in reducing stomatal conductance in wheat and improving 263 water potential and grain yield. This discrepancy might be attributed not solely to 264 genotypic and interspecific factors but also to the chemical variability of fulvic acid. 265 Working on wheat, Dunstone et al. (1988) confirmed that although fulvic acid 266 267 reduced stomatal conductance, its effects were highly variable. In a glasshouse experiment, a reduction in stomatal conductance was recorded only in well-268 watered but not in drought stressed plants. Furthermore, while in the four most 269 270 responsive genotypes the reduction ranged between 15 and 40%, it was only between 1 and 3% in the least. In addition, for the highly responsive genotypes, 271 the effect was stable in growth cabinets where artificial light was used, but rapidly 272

273 decayed under natural light, becoming marginally significant to non-significant within four to seven days. The heterogenous composition of the molecular 274 structure of fulvic acids and other biostimulants, particularly the functional groups, 275 276 affects their chemical and physico-chemical properties (Bai et al., 2015; Klucakova, 2018) and thus may partly explain the contradictory findings. For, this 277 reason, replicating experiments involving these products is impossible as there is 278 not a single mode of action (Brown and Saa, 2015). A consideration of these 279 findings by different researchers suggests that the mechanism of drought 280 281 amelioration by fulvic acid may not significantly be mediated by stomatal movement but rather through its biostimulant functionalities. Fulvic acid 282 biostimulant functionalities are its roles or functions for which it is have been found 283 284 to be more effective or better suited as a biostimulant (e.g. enhancing bioactivity of glutamic oxaloacetic transaminase to improve nutrient uptake in wheat, Zhimang 285 et al., 2001 and increasing gas exchange and carbon assimilation, Anjum et al., 286 287 2011, which are opposite effects of an AT).

Besides modifying gas exchange variables, both chitosan and fulvic acid confer 288 drought tolerance through biostimulant functions. By inducing antioxidant 289 290 activities, they enhance scavenging for reactive oxygen species and promote cellular membrane integrity (Bistgani et al., 2017; Z. Li et al., 2017). In addition to 291 improving the water potential of droughted wheat plants, fulvic acid was found to 292 293 alleviate the loss of chlorophyll and enhance the uptake of phosphorus by roots (Xudan, 1986). Z. Li et al. (2017) found that chitosan not only improved water 294 295 balance in droughted white clover but also up-regulated antioxidant activity and 296 chlorophyll content.

The short-lived effects of metabolic ATs and that the use of chitosan and fulvic acid is not restricted to drought stress conditions imply that concerns that these ATs may hinder crop growth and productivity in an event of improved soil moisture status (e.g. following rainfall) are unnecessary.

Phenyl mercuric acetate (PMA), a popular subject of metabolic AT research in the past (Sinclair et al., 1975), was found to be toxic (Das and Raghavendra, 1979). It disappeared from AT research but was still used as a fungicide before being banned in some countries (Nandi, 1985). India is apparently the only country where the use of PMA as an AT (e.g. Pandey et al., 2017 and Kumar et al., 2018) remains legal.

307 Another compound with an ABA-related mechanism is pyrabactin, a synthetic 308 growth inhibitor with a sulphonamide functional group (Cao et al., 2013). Though not among the popularly known ATs, it has a mode of action similar to ABA and is 309 310 its agonist but not its structural analogue (Fan et al., 2015). In peas (Pisum 311 sativum L.), Puli and Raghavendra (2012) found that pyrabactin had similar effects 312 to ABA on stomatal closure. Stomatal apertures decreased by a larger percentage in plants where pyrabactin and ABA were used together, suggesting a synergistic 313 mechanism. Nevertheless, pyrabactin may not play a significant role in drought 314 stress mitigation as its bioactivity in vegetative parts is weaker than in seeds, 315 316 where it inhibits germination (Cao et al., 2013; Park et al., 2009). There is limited published information on pyrabactin as an AT. None of the studies cited here (and 317 more e.g. Park et al., 2009, Yu et al., 2017 and Han et al., 2019) were conducted 318 in the field or on well established crops to provide conclusive evidence of the 319 potential of pyrabactin as an AT. 320

3.3 Film-forming antitranspirants

322

The currently available film-forming ATs are mostly water-emulsifiable organic polymers that form films after a spray application has dried (Moftah and Alhumaid, 2005). The films act as a physical barrier over stomata by which transpirational water loss is reduced.

327 Di-1-p-menthene (pinolene) is the oldest film-forming AT with one of the earliest references being Williamson (1963). Under glasshouse conditions, (Faralli et al., 328 2016) compared the drought ameliorative effects of di-1-p-menthene and poly-1-p-329 330 menthene on oil seed rape. Both compounds significantly reduced gas exchange, however, di-1-p-menthene was not only more effective in suppressing stomatal 331 conductance (by 50% against 11%) but also sustained the effect for a longer 332 333 period (>14 days versus < nine days). The yield component results were consistent with the stomatal conductance readings, with di-1-p-menthene having 334 335 higher values for number of pods per plant and seed biomass, suggesting that the negative effect on CO₂ fixation was compensated for by increased WUE. The 336 efficacy of di-1-p-menthene in suppressing gas exchange has also been 337 338 demonstrated on horticultural species, especially grapes, and not only for foliar but also bunch transpiration (Fahey and Rogiers, 2018; Vaio et al., 2019). In an AT 339 comparative study on droughted grapes, di-1-p-menthene was found to depress 340 341 photosynthesis and intrinsic WUE while kaolin enhanced these variables (Brillante et al., 2016). This suggests that different classes of AT do not induce similar 342 343 physiological responses.

One group of compounds in this class, paraffinic hydrocarbon waxes - Folicote -(Francini et al., 2011; Fuehring, 1973) was effective in suppressing gas exchange

variables and increasing yield (e.g. between 11 and 17% in maize (Fuehring and
Finkner, 1983) and five to 17% in sorghum (Fuehring, 1973). However, paraffinic
hydrocarbon waxes do not feature in recent AT research. Other less important
compounds, on which limited research has been published include vegetable oils
and acrylic polymers. The former may become important in future as they are not
only cheaper (Granger and Trager, 2002) but more readily available than synthetic
products.

A film-forming AT end-user advantage over other AT classes is the less frequent 353 application, typically once for 30 days for an acrylic polymer in a glasshouse (Plaut 354 355 et al., 2004), though for poly-1-p-menthene it was less than nine days in the OSR study above. In comparison, weathering agents can significantly reduce the foliar 356 coverage and efficacy of reflective ATs to less than half a month (e.g. CaCO₃ 357 358 (P.S.O. da Silva et al., 2019). As for metabolic ATs, their effects generally last for a few days (Travaglia et al., 2010), being controlled by the plant biochemistry 359 360 since they are absorbed unlike the other ATs.

Although the use of ATs is valid only under drought stress conditions, in an event 361 of improved soil moisture status due to rainfall, it would be desirable to remove 362 them from the plant surface, particularly film antitranspirants. The importance of 363 removing film antitranspirants in an event of unexpected rains is one research gap 364 that needs pursuing. However, in the case of cereal stands the impact of film 365 antitranspirants will reduce over time as new leaves emerge and take their place 366 at the top of the canopy. This is particularly relevant in this case as it is these later 367 368 emerging leaves that act as the source of carbohydrates supplied to the growing grain. 369

370 Finally, one other concern during early AT research that is more relevant to filmforming types was the effect on leaf temperature. However, the review by Gale 371 and Hagan (1966) shows that an intersection of high solar radiation and very low 372 373 wind speed was required to significantly increase leaf temperature due to reduced transpiration. In fact, a 30% reduction of transpiration attributed to ATs was found 374 to have no significant effect on leaf temperature (Gale and Poljakoff-Mayber, 375 376 1965). However due to global warming, the use of reflective ATs may play a more important role in drought stress mitigation. 377

378 379

3.4 Carbon-dioxide: the climate change antitranspirant

Anthropogenic activities have elevated levels of atmospheric CO₂ leading to 380 climate change (IPCC, 2018). Elevated CO₂ reduces transpiration rate (e.g. up to 381 30% in carnation plants), however there is no consensus due to environmental 382 and interspecific differences (Xu et al., 2016). Drought, one of the consequences 383 384 of climate change, reduces plant nutrient uptake (Nawaz et al., 2012). There is currently limited information on the interaction of antitranspirants, elevated CO₂ 385 and drought. One particular source is del Amor et al. (2010) who tested the effects 386 on pepper. They showed that under elevated CO₂ (2000 ppm) and drought, 387 stomatal conductance was higher with antitranspirant (di-1-p-menthene) 388 389 application four and eight days after spraying (when measurements were taken), although the difference was not significant. The corresponding CO₂ assimilation 390 effect was inconsistent being significantly higher in antitranspirant treated plants 391 392 four days after spraying, and becoming non-significant at eight days after spraying. The response of transpiration rate was consistent with stomatal 393 conductance. Interestingly, benefits of elevated CO₂ were only attainable under 394

395 well irrigated conditions, with no significant difference between antitranspirant treated and untreated plants. These findings suggest that elevated CO₂ may not 396 be as potent as di-1-*p*-menthene in suppressing gas exchange. Further, this may 397 398 eliminate concerns of reduced transpiration-driven nutrient uptake by mass flow induced by elevated CO₂ and other factors that suppress transpiration (Mcgrath 399 and Lobell, 2013). However, further research is needed to make well established 400 401 conclusions on interactions between drought, ATs and elevated CO₂ and how these affect plant nutrition and growth of various crops. Other impacts of global 402 403 climate change will reduce the availability of soil moisture in some cases and affect transpirational processes. This may make dynamic drought management 404 become more important. 405

406 **4.0** The basis for timing of antitranspirant application

407

Drought has varying effects on crop performance depending on its timing in 408 relation to crop growth stage (GS). In cereals, drought at any time before the end 409 of grain filling will affect grain yield. However, the worst is terminal drought (soil 410 411 moisture deficit during a crop's reproductive development stages) as it has a grain 412 yield limiting effect by reducing grain number (Saradadevi et al., 2017). 413 Reproductive processes such as meiosis and microgametogenesis that occur during booting are the most susceptible to abiotic stresses such as drought 414 415 (Barber et al., 2015). There is a strong correlation between grain number per ear and grain yield (Liu et al., 2015). In rice Kato et al. (2008), found that a mild 416 drought stress at meiosis triggered secondary rachis and spikelet abortion per 417 panicle of 70% and 45% respectively while drought at panicle initiation did not 418 cause abortion of these reproductive structures. In oil seed rape (*Brassica napus*) 419

420 Faralli et al. (2016) showed that improving the water status of drought-stressed plants with film-forming AT during the reproductive stage was positively correlated 421 with not only an increase in the number of pods per plant but also the seed yield. 422 423 The processes of microsporogenesis (involving meiosis in pollen mother cells) and microgametogenesis (development of microspores into mature pollen grains) are 424 known to be more sensitive to water stress than their female counterparts (De 425 426 Storme and Geelen, 2014; Jager et al., 2008). Sensitivity to drought is most critical at the young microspore stage during microgametogenesis (Dolferus et al., 2011; 427 428 Ji et al., 2010). However, Barber et al. (2015) argued that due to the influence of environmental and genotypic aspects, it was not possible to associate the most 429 sensitive development processes with any one particular GS. Nevertheless, it is 430 431 considered to be during booting; and in wheat there is evidence that it occurs 432 between GS41 and GS43 (Alghabari et al., 2013; Barber et al., 2015). While it is not until near anthesis that the male gametophyte begins to accumulate starch 433 434 grains, the process begins earlier in the female gametophyte (Ji et al., 2010; Raghavan, 1988), implying that in early development, pollen grains accumulate 435 436 less carbohydrate reserves than ovaries. This could partly explain the higher vulnerability of pollen grains to abiotic stress during this period compared to 437 ovaries. It may be for the same reason that most of the abiotic stress research on 438 439 reproductive performance has focussed on the male gametophyte. A study by 440 Onyemaobi et al. (2017) involving reciprocal crosses between well-watered and water stressed wheat plants provides evidence. Onyemaobi et al. (2017) found 441 442 that only four out of 13 genotypes showed the female gametophyte to be significantly more sensitive to drought than the male gametophyte. Nearly 70% of 443 cultivars studied showed the male gametophyte to be more susceptible to water 444

deficit stress than the female counterpart. It is the susceptibility of these
reproductive processes coinciding with terminal drought that forms the foundation
for the timing of AT application.

448 **5.0 Re-evaluating antitranspirants**

449

With reproductive processes identified as the most sensitive to drought, AT 450 application timed to protect these stages is expected to result in the highest 451 possible benefits to grain yield under water stress. One of the important 452 453 developments in AT research in the recent past has been the identification of the 454 most critical stage at which to apply ATs in order to optimise their usefulness under drought conditions. Overall, early AT researchers overlooked the role of 455 plant GS in modulating the efficacy of ATs leading to the erroneous conclusion in 456 the 1970s that AT use was only recommended if plant survival was at stake due to 457 the negative effects on photosynthesis. In fact, even in the 1970's, the necessity of 458 studying the effects of timing of AT application was mentioned by Davenport et al. 459 (1972). 460

There are two notable exceptions to early AT researchers overlooking the 461 importance of development stage. Fuehring (1973) researched the effects of rate 462 463 of application of three ATs (metabolic - atrazine and PMA and film-forming-Folicote) and of irrigation frequency on the transpiration and yield performance of 464 sorghum. In addition, he tested the effects of timing of application of PMA sprayed 465 on three sets of plants at eight days before booting, 20 days after booting and a 466 third set receiving double sprays - once on each of these days- and the unsprayed 467 control plants. He found that the effects on grain yield of the lower rates of 468

469 atrazine and PMA, and the higher rate of Folicote were not significantly different 470 from the unsprayed control plants. However, the higher rates of atrazine and PMA 471 and lower rate of Folicote increased yield. Concerning timing of PMA application, 472 spraying at eight days before booting resulted in significantly the highest yield 473 response followed by double sprays. This research showed that not only the type 474 of compound but also the rate of AT application modulates agronomic efficacy.

Later, Patil and De (1978) conducted a similar study but on oilseed rape and using Mobileaf (film-forming AT), kaolin (reflective AT) and PMA (metabolic AT). All ATs improved grain yield above the unsprayed and droughted plants. PMA applications were repeated, at the initiation of flowering and during pod development. Since the treatments at these different GSs involved the same plants, there was no basis for a comparative analysis. Nevertheless, it is noteworthy to state that they focused on the most drought-sensitive stages.

482 Recent research has been more robust in terms of understanding timing effects of 483 AT application. Results have shown that despite reducing photosynthesis, ATs applied within specific plant GS can improve the performance of crops growing 484 under water stress. Kettlewell et al. (2010) found that di-1-p-menthene (film-485 forming AT) improved grain yield of droughted wheat if the reproductive stages 486 most sensitive to drought stress were protected. They tested the timing response 487 of winter wheat to di-1-p-menthene application at five GSs (GS described by 488 Zadoks et al. (1974) as GS37, GS39, GS45, GS55 and GS69). Their results 489 490 revealed that di-1-p-menthene was most beneficial to yield improvement if applied 491 at GS37 and GS39, unlike at GS45. On the other hand, much later applications at GS55 and GS69 were counterproductive in that they reduced crop yield – thus 492 493 being corroborative of the 1970s research conclusion. Further, the AT was also

494 found to reduce yield if soil water deficit was not high. Soil moisture deficit was earlier found as a precondition for kaolin application to obtain yield improvement in 495 mung beans De and Giri (1978). These findings agree with the analysis presented 496 497 by Gale and Hagan (1966). The importance of the shoot/root ratio theory as presented by Gale and Hagan (1966) suggests that antitranspirants would be 498 more effective for plants with high values (i.e. higher shoot-to-root biomass, due to 499 500 lower actual-to-potential evapotranspiration ratio under well-watered conditions, below 0.9). Their argument implies that antitranspirants should not be used where 501 502 the shoot/root ratio is lower as evapotranspiration is higher, except in an event of 503 abiotic stress such as reduced mineral uptake from the soil (e.g. due to drought) that leads to the breakdown of the photosynthetic machinery (chlorosis). In such a 504 505 situation antitranspirants would have a reduced inhibitory effect on photosynthesis 506 as the mesophyll resistance to CO₂ conductance is high. This analysis indicates that shallow-rooted plants, being more prone to drought stress, would need AT 507 application before deep-rooted ones. Taken together, the works by De and Giri 508 (1978) and Kettlewell et al. (2010) demonstrated that not only drought stress was 509 required as a precondition for AT application but the crop growth stage most 510 sensitive to water stress must be protected for ATs to improve crop yield. 511

As discussed by Barber et al. (2015), the period of pollen development can last several days within a spike and much longer in a crop due to asynchrony between the male and female gametophytes. For this reason, reproductive stages sensitive to drought damage have a wider span in a crop and are not limited to a single GS. Refining limits within which farmers may apply AT to maximise benefits is critical and therefore requires further research. Nevertheless, Kettlewell et al. (2010)

established that crop development stages most sensitive to water stress dictate
timing of di-1-*p*-menthene application for optimum benefits.

Following the work of Kettlewell et al. (2010) on the role of crop development 520 stage, other researchers have found corroborative evidence. Kettlewell and 521 Holloway (2010) applied di-1-p-menthene at the boots swollen stage, GS45, and 522 523 found that it improved yield of droughted wheat by as much as 42% compared 524 with droughted-and-unsprayed plants. In a separate study involving two water treatments and two GS, Abdullah et al. (2015) observed 30% more wheat grain 525 yield in droughted plants treated with di-1-*p*-menthene at the booting stage than in 526 527 the droughted but unsprayed plants, while application at anthesis had no significant effect on yield. Recently, Faralli et al. (2017) reported 22% yield 528 improvement in oil seed rape plants treated with film-forming AT as floral initiation 529 530 was taking place but with no improvement from applications at initiation of seed development. These findings during the last decade are a refutation of earlier 531 532 research in terms of ameliorative effects of ATs on droughted crops.

Though in part, the mechanisms by which metabolic and reflective ATs ameliorate 533 drought are better understood than those of film-forming types. However, 534 535 discrepancies between researchers indicate the need for more research. As Gale and Hagan (1966) indicated, this may be attributed to ambient, edaphic and plant 536 factors such as wind speed, soil water status and turgor of cells, respectively, 537 prevailing at and after AT application - necessitating the need for researchers to 538 provide sufficient details in these areas. In spite of our knowledge that di-1-p-539 menthene applied at the right GS and under drought conditions improves grain 540 yield, the underlying physiological mechanisms by which this compound 541 542 ameliorates drought beyond blockage of stomata are unknown. A study by

543 Weerasinghe et al. (2016) attributed wheat grain yield improvement under drought conditions using di-1-p-menthene to increasing of pollen viability, via increased 544 plant water conservation. Nevertheless, the discovery of this relationship was only 545 546 correlative and not a conclusive cause-and-effect one. Thus, the underlying mechanisms by which di-1-p-menthene improves reproductive development - be 547 they hormonal or metabolic or otherwise - are yet to be established. In a drought 548 stressed oil seed rape study by Faralli et al. (2016), a four-fold decrease in 549 endogenous ABA concentration following an application of di-1-p-menthene was 550 551 correlated with a 17% yield improvement. This suggests that the drought 552 amelioration effects of di-1-p-menthene may be related to increased catabolism and/or reduced biosynthesis of ABA. Increased ABA concentration is known to 553 554 repress cell wall invertase (CWIN) via down-regulation of genes controlling the synthesis of this enzyme (Ji et al., 2010; Koonjul et al., 2005). The significance of 555 CWIN to reproductive development lies in their hydrolysis of sucrose into glucose 556 and fructose required by anthers and ovaries (Braun et al., 2014; Ruan et al., 557 2010). Researching the effects of ATs on ABA signalling with respect to CWIN is 558 therefore required. Knowledge of mechanisms, if established, could further feed 559 into developing relevant plant breeding and agronomic management strategies for 560 improving WUE and crop production. 561

6.0 Challenges in using antitranspirants and other research gaps

563

There are other research gaps in the use of ATs that need addressing besides those identified above and in the conclusion. This review has shown that the effects of ATs on crop development are modulated by prevailing environmental conditions and intraspecific and interspecific factors. This accounts for apparently

568 contradictory findings by different researchers, hence the need for thorough description of experimental conditions and materials used. The use of biostimulant 569 ATs such as fulvic acid will be particularly necessary due to their heterogenous 570 571 nature. The type of AT used in research also modulates plant response. Concerning the effect on leaf temperature, Gale and Hagan (1966) downplayed 572 the risk of overheating due to AT use (Section 3.3). However, global warming is 573 574 likely to increase the risk of heat stress. This may see film-forming ATs play a minor role than the reflective types that attenuate solar radiation, thereby reducing 575 576 the heat load on the leaf.

577 Due to suppressing both transpiration and photosynthesis, ATs reduce not only the uptake of minerals from the soil but also carbon assimilation. The negative 578 effect can be minimised by selecting appropriate ATs for a given drought scenario. 579 580 Metabolic ATs would be ideal in situations where a dry spell which coincides with the most drought-sensitive crop growth stage is expected, while film-forming types 581 582 would suit prolonged drought events as they have longer-lasting effects (30 to 40 days, Plaut et al., 2004). Nevertheless, finding a product that is more permeable to 583 CO₂ than water vapour has been a long standing AT challenge yet to be 584 585 addressed. Product research is therefore needed to find suitable ATs. Further, ATs may not be used as a sole drought mitigation technique. However, most if not 586 all current research focuses on ATs in isolation. An integrated approach is 587 required, for example, De et al. (1983) demonstrated reduced irrigation 588 requirement in wheat by using combinations of rice stubble and kaolin. Agarwal 589 (1979) obtained the highest barley yield under a combined stubble mulch-and-590 kaolin treatment. 591

592 The environmental risks associated with the use of the three most popular ATs, ABA, di-1-p-methene and kaolin are likely very low. ABA can be extracted from 593 plants, obtained through microbial fermentation or synthesised (Shi et al., 2017), 594 595 while di-1-*p*-methene is extracted from pine resin (Francini et al., 2011). Kaolin, an aluminosilicate, Al₄Si₄O₁₀(OH)₈, is obtained from clay (Cantore *et al.* 2009). 596 However, kaolin is also used to control insect pests, and studies have 597 598 demonstrated that it is effective (Table 2) against some studied species. Unfortunately, almost all papers reviewed in this article focussed on plant 599 response to ATs, neglecting the potential negative effects on the environment. 600 One exception is Pascual et al., 2010 who showed that while kaolin significantly 601 reduced the incidence of fruit fly (Bactrocera oleae) and black scale (Saissetia 602 603 oleae), pests of olives, the AT also caused mortality of their natural enemies (e.g. 604 coccinellids or ladybird beetles: Scymnus mediterraneus and Stethorus punctillum, among other families of natural enemies). Earlier, Marko et al. (2008) established 605 606 that severity of infestation with a number of apple pests (e.g. leaf miner moth and woolly apple aphid) was linked to the use of kaolin. The AT was toxic not only to 607 pests but also their natural enemies (e.g. spiders and common black ants). More 608 research is therefore required to establish off-target effects of other ATs, 609 particularly in this class and in other crops, and how the products can be made 610 611 safe.

Lack of cost-benefit analysis: Clearer, evidence-based messages on the economic feasibility of using ATs in crops production, especially in arable farming, are needed to help prospective adopters make firm decisions. However, the number of research papers with information on the cost-benefit analysis of using ATs in crop production is meagre (e.g. Kettlewell, 2011 and Brahma et al., 2007). This is not

surprising since yield improvement has been the primary focus of most researchers. Yield loss due to drought needs to be quantified and valued; and the yield benefit due to AT application demonstrated in monetary terms. Lack of thorough, in-depth analyses on the cost-effectiveness of ATs in most crops may partly be blamed for the erratic response of crop producers in the adoption of ATs as a drought mitigation option in arable farming. This might also have stifled research in novel products that could be cheaper.

An examination of research findings in Table 2 shows that there has been a number of studies on nutritional aspects of fruit, particularly involving ABA and kaolin ATs. Except for two studies on arable crops, the rest of the research on nutritional effects of ATs were on horticultural crops. This may be attributed to the fact that most of the studies involving AT products have been on horticulture (Table 2).

630 **7.0 Conclusion and future prospects**

631

632 The agronomic benefits of ATs have been highlighted in this review. ATs improve yield, conserve irrigation water and also reduce disease and insect pest 633 incidences. The physiological mechanisms by which metabolic and reflective ATs 634 635 ameliorate drought have been described but exactly how they affect reproductive processes is still unknown. Similarly, although timing of AT application was studied 636 using the film-forming product, di-1-p-menthene, the mode of action of this class of 637 ATs is yet to be established. The discovery of the role of crop GS in modulating 638 AT efficacy in wheat by Kettlewell et al. (2010) has been a major research 639

breakthrough of the last decade. This might be the reason behind the increasinginterest in AT research besides the threat of increasing frequency of droughts.

As the findings of Kettlewell et al. (2010) were based on a film-forming AT, there is 642 need for a comparative study involving all the three classes to determine the most 643 effective types. It would also be interesting to examine interspecific responses to 644 645 the AT classes. Discrepancies in plant response suggest that species, genotype, 646 environment, chemical nature and rate of AT applied further modulate the efficacy of ATs. In wheat and oil seed rape, film-forming di-1-p-menthene has shown 647 consistent positive results in different growth environments. Further research 648 649 opportunities include understanding possible interaction between ATs and heat stress, testing the efficacy of vegetable oils and integrating ATs with other drought 650 management techniques (e.g. mulching or cover crops). The broader 651 652 environmental impacts of different types of AT must also be considered. Finally, one of the challenges against achieving world food security ahead of 2050 is not 653 just finding effective drought amelioration techniques but also increasing the 654 655 knowledge and accessibility to the end users of the technologies. ATs are yet to 656 enter drought amelioration in arable crop production, despite research providing 657 empirical evidence of agronomic benefits. ATs may still be too expensive for use in low value crop production systems hence the need to find cheaper alternatives. 658 Increasing frequency and intensity of droughts and the associated crop failure 659 660 may stimulate farmers' adoption of ATs for a role in arable crop production.

661

662

663

664
665
666
667
668
669
670
671

672

Table 1: Examples of the main antitranspirant compounds and their modes of action in the surveyed literature between 2009 and 2019.

Antitranspirant	Compounds	References
classes		
	s-ABA	Park <i>et al.</i> 2016
Metabolic	Chitosan (poly (D-	Li, Zhang, <i>et al.</i> 2017;
Metabolic	glucosamine))	Rieger <i>et al.</i> 2016
	Fulvic acid	Zhang <i>et al.</i> 2016
	Aluminosilicate (kaolin)	Cantore et al. 2009
Reflective	Calcium carbonate	da Silva <i>et al.</i> 2019
Kenedive	(CaCO ₃)	
	Calcium oxide (CaO)	da Silva <i>et al.</i> 2019

	di-1- <i>p</i> -menthene	AbdAllah et	<i>al.</i> (2019)
Film-forming	poly-1- <i>p</i> -menthene	Faralli et al.	(2016)
	Acrylic polymers	AgroBest	Australia
		(2017)	

Table 2: Summary of antitranspirant research based on 173 peer review articles published between 2009 and 2018.

Year	Antitranspirant	Antitranspirant	Research	Crop/plant	Some of the reported effects on	Citation
	class	product	area/objective	species	crop/plant performance	
2009	Reflective	Kaolin	Drought and heat stress	Tomato	Reduced drought and heat stress and improved marketable yield by 21%	Cantore et al., 2009
2009	Reflective	Kaolin	Heat stress management	Apple	Reduced heat stress, increased carbon fixation and fruit size	Glenn, 2009
2010	Reflective	Kaolin	Fruit protection from sunburn	Apple	Increased light reflectance and leaf expansion, reduced sunburn, increased fruit weight and yield	Aly et al., 2010
2010	Reflective	Kaolin	Water stress	Apple	Increased photosynthesis, reduced WUE	Glenn, 2010
2010	Reflective	Kaolin	Insect pest control	Olives	Significant mortality of pests Bactrocera oleae and Saissetia oleae and natural enemies (e.g. Scymnus mediterraneus).	Pascual et al., 2010
2010	Reflective	Kaolin	Insect pest control	Cotton	Reduced oviposition and egg number of bollworms, <i>Helicoverpa</i> <i>armigera</i>	Alavo et al., 2010
2010	Reflective	Kaolin	Physiological responses	Grapes	Reduced leaf temperature and stomatal conductance but increased leaf water potential under well-watered conditions	Michael Glenn et al., 2010
2010	Reflective	Kaolin	Drought stress	Olives	Maintained plant water status, increased canopy biomass, did not improve chlorophyll content and fruit yield	Roussos et al., 2010
2010	Reflective	Kaolin	Protection from sunburn	Pomegranate	Reduced sunburn damage, no effect on phenolic compounds and antioxidant activity	Weerakkody et al., 2010
2011	Reflective	Kaolin	Insect (Medfly)	Nectarines and	Decreased landing of the pest and	D'Aquino et al.,

			control	peaches	fruit damage	2011
2012	Reflective	Kaolin	Drought stress	Olives	Increased photosynthesis, plant water content, leaf tissue density and reduced leaf temperature	Denaxa et al., 2012
2012	Reflective	Kaolin	Drought stress	Tomato	Improved WUE (by 43%) and increased total biomass and economic yield	Lukic et al., 2012
2012	Reflective	Kaolin plus deficit irrigation	Irrigation management	Grapes	Increased terpene alcohols and anthocyanins, negligible effect on volatile compounds	Song et al., 2012
2012	Reflective	Kaolin, calcium carbonate	Control of cherry fruit fly	Sweet cherry	Kaolin more effective than calcium carbonate in decreasing landing and oviposition and also with higher mortality rates	Yee, 2012
2012	Reflective	Kaolin, magnesium carbonate	Drought stress	Jatropha	Increased relative water content, reduced osmotic pressure and carbohydrate content	Khalil et al., 2012
2012	Reflective	Kaolin	Irrigation management	Strawberry	Reduced irrigation frequency, saved 20% of water required, increased fruit weight	Santos et al., 2012
2013	Reflective	Kaolin	Drought and heat stress	Mango	Reduced irradiance and leaf temperature and improved stomata conductance and photosynthesis. Increased fruit number and yield by 41 and 44%, respectively	Chamchaiyaporn et al., 2013
2013	Reflective	Kaolin, magnesium carbonate	Drought stress	Wheat	Improved photosynthetic pigments, increased yield	Desoky et al., 2013
2013	Reflective	Kaolin	Aphid control	Wheat	Reduced damage, improved biomass and grain yields	Nateghi et al., 2013
2013	Reflective	Kaolin	Drought stress	Soyabeans	Increased yield components, biomass and grain yield	Javan et al., 2013

2013	Reflective	Kaolin	Boll weevil (Anthonomus grandis) control	Cotton	Reduced oviposition and boll damage	Silva and Ramalho, 2013
2013	Reflective	Kaolin	Drought stress	Pistachio	Increased fresh weight and soluble solids, reduced early nut splitting	Azizi et al., 2013
2013	Reflective	Kaolin and calcium carbonate	Drought stress	Banana	Reduced irrigation frequency, improved crop productivity	El-Khawaga, 2013
2013	Reflective	Calcium carbonate	Fruit protection from sunburn	Grapes	Chlorophyll and carotenoid enhancement, berry setting and yield improvement	Ahmed et al., 2013
2013	Reflective	Calcium carbonate	Control of potato psyllid (<i>Bactericera</i> <i>cockerelli</i>)	Irish potatoes	Reduced oviposition, no effect on mortality	Prager et al., 2013
2013	Reflective	Kaolin	Drought stress	Grapes	Reduced stomatal conductance and temperature, increased anthocyanin and phenolics content and berry fresh weight	Shellie and King, 2013
2014	Reflective	Kaolin	Insect pest and disease control	Wheat	Decreased reproduction of beetle, <i>Rhyzopertha dominica</i> , reduced multiplication of yeast moulds	Campolo et al., 2014
2014	Reflective	Kaolin plus other materials	Drought stress	Wheat	Improved yield components and yield	Patil et al., 2014
2014	Reflective	Kaolin	Heat stress	Grapes	Increased photosynthesis, transpiration, total soluble solids, berry weight, diameter and improved yield by 44%.	Tepkaew et al., 2014
2015	Reflective	Kaolin	Fruit quality enhancement	Grapes	Effective in reducing leaf temperature through reflectance, did not significantly decrease gas exchange variables, reduced fruit	Lobos et al., 2015

					damage, no effect on fruit nutritional quality	
2015	Reflective	Kaolin	Irrigation management	Bananas	Decreased transpiration rate and amount of irrigation water, increased yield	Gawad, 2015
2015	Reflective	Kaolin	Drought stress	Gooseberry	Reduced transpiration, leaf temperature, improved stem elongation, total biomass and WUE	Segura-Monroy et al., 2015
2015	Reflective	Kaolin	Irrigation water management	Oil seed rape	Reduced irrigation frequency	Badukale et al., 2015
2015	Reflective	Kaolin	Drought stress, transplant survival	Citrus, beans	Decreased transplant shock, improved biomass	Boari et al., 2015
2015	Reflective	Kaolin	Irrigation water management	Egg plant	Reduced irrigation water by 33%, increased chlorophyll content, fruit weight, nutritional quality, plant biomass and economic yield	El-Said, 2015
2015	Reflective	Kaolin	Drought stress and fruit quality	Olives	Enhanced chlorophyll and carotenoid contents, increased oleic acid in olive oil	Khaleghi et al., 2015
2015	Reflective	Kaolin	Heat and drought stress	Grapes	Higher accumulation of active photosystem II reaction centres, lowered mesophyll limitations, increased net photosynthesis, reduced sunburn, improved yield	Correia et al., 2015
2015	Reflective	Kaolin and calcium carbonate	Fruit protection from sunburn	Pomegranate	Reduced sunburn, increased anthocyanin and total sugar content, fruit weight and yield	El-wafa, 2015
2015	Reflective	Potassium silicate	Drought stress	Tomato	Increased relative water content, leaf expansion, WUE, plant biomass and yield	El-azm and Youssef, 2015

2015	Reflective	Kaolin	Pest (whitefly) control	Beans	Reduced the number of eggs, nymphs and adult insects by 70, 75 and 80%, respectively. Suppressed transpiration by 40%, increased chlorophyll content by 43%	Nunez-Lopez et al., 2015
2015	Reflective	Kaolin	Drought stress	Peruvian Ground Cherry	Reduced transpiration, leaf temperature, leaf thickness and trichome density, increased WUE, stem elongation and biomass yield	Segura-Monroy et al., 2015
2016	Reflective	Kaolin	Drought stress and fruit quality	Grapes	Improved intrinsic WUE and anthocyanin content	Brillante et al., 2016
2016	Reflective	Kaolin	Salinity tolerance	Tomato	Mitigated salinity stress and reduced damage by insects: increased marketable yield and reduced sunburn by 17.7 and 76.4%, respectively,	Boari et al., 2016
2016	Reflective	Kaolin	Drought stress	Tomato	Improved WUE, increased individual fruit weight and total yield by 27%	Djurovic et al., 2016
2016	Reflective	Kaolin	Drought stress and fruit quality	Grapes	Enhanced flavonoid and anthocyanin contents	Conde et al., 2016
2016	Reflective	Kaolin	Drought stress	Tomato and pepper	Did not affect stomatal conductance and plant water status significantly	Cosic et al., 2016
2016	Reflective	Kaolin	Drought and heat stress; and fruit quality	Grapes	Increased phenol, flavonoid anthocyanin and vitamin C contents by 40, 24, 32 and 12%, respectively, reduced reactive oxygen species and improving fruit quality	Dinis et al., 2016
2016	Reflective	Kaolin	Heat stress mitigation	Apples	Reduced photosynthetically active radiation interception, increased fruit weight	Glenn, 2016

2016	Reflective	Kaolin	WUE	Apples	Reduced WUE, increased stomatal conductance and transpiration, improved yield	Glenn, 2016b
2017	Reflective	Kaolin	Fruit protection from sunburn	Grapes	Reduced sunburn	Ferrari et al., 2017
2017	Reflective	Kaolin	Control of leafhopper	Grapes	Effective in inducing mortality of nymphs	Tacoli et al., 2017
2017	Reflective	Kaolin	Control of leafhopper	Grapes	Caused mortality of nymphs through inhibition of feeding; and reduced leaf symptoms and damage	Tacoli et al., 2017b
2017	Reflective	Magnesium carbonate, sodium carbonate, potassium nitrate	Drought stress	Soyabeans	Magnesium carbonate and potassium nitrate improved grain yield and protein content	Dass and Bhattacharyya, 2017
2017	Reflective	Kaolin, calcium carbonate (with conservation tillage)	Insect (thrips) control	Cotton and groundnuts	Increased incidence of thrips (<i>Frankliniella fusca</i>) in cotton, decreased incidence of tomato spotted wilt virus in groundnuts. No effect on yield in both crops	Knight et al., 2017
2017	Reflective	Potassium nitrate, sodium carbonate and magnesium carbonate	Drought stress	Soyabeans	Increased relative water content, and total biomass and grain yield	Sanbagavalli et al., 2017
2017	Reflective	Kaolin, calcium carbonate	Fruit protection from sunburn	Pomegranate	Reduced sunburn damage, enhanced total soluble solids	Abdel-Sattar et al., 2017
2017	Reflective	Kaolin	Irrigation management	Aubergine	Reduced irrigation frequency and water use, increased yield	Abd El-Hady and Doklega, 2017
2017	Reflective	Kaolin	Light extinction coefficient and radiation use	Pistachio	Reduced single leaf light interception but increased canopy absorbance, light extinction	Vatandoost et al., 2017

			efficiency		coefficient (<i>K</i>) not significantly affected, improved light use efficiency in some cultivars	
2018	Reflective	Kaolin	Drought stress	Olives	Maintained leaf water status, improved photosynthesis, ameliorated oxidative damage, whole-plant WUE and biomass not improved	Brito et al., 2018
2018	Reflective	Kaolin	Irrigation and heat stress management	Pepper	Water deficit with kaolin reduced canopy temperature, full irrigation with kaolin increased temperature	Cosic et al., 2018
2018	Reflective	Kaolin	Heat stress	Walnut	Decreased heat stress, enhanced photosynthesis, gas exchange and WUE	Gharaghani et al., 2018
2018	Reflective	Kaolin	Pest (<i>Diaphorina</i> citri) control	Citrus	Reduction in host apparency (40%) and recognition (50%)	Miranda et al., 2018
2018	Reflective	Kaolin	Heat stress and fruit quality	Grapes	Enhanced contents of phenolic compounds and anthocyanins	Kok and Bal, 2018
2018	Reflective	Kaolin, calcium carbonate	Pest (<i>Diaphorina citri</i>) control	Citrus	Decreased photosynthesis (25%), leaf temperature, incidence of imagoes, nymphs and egg laying	Ramírez-Godoy et al., 2018
2018	Reflective	Kaolin	Fruit protection from sunburn and cracking	Pomegranates	Decreased sunburn (47%) and fruit cracking (46%), increased anthocyanins and phenolic contents and antioxidant activity	Sharma et al., 2018
2018	Reflective	Kaolin	Drought stress	Sunflower	Increased chlorophyll and proline contents, reduced stomatal conductance and transpiration, improved relative water content and yield	El Mantawy and El Bialy, 2018
2018	Reflective	Kaolin	Drought stress	Grapes	Enhanced stomatal conductance, photosynthesis and intrinsic WUE, reduced ABA concentration,	Dinis et al., 2018

					enhanced drought tolerance.	
2018	Reflective	Kaolin	Drought stress	Tomato	Reduced canopy temperature, irrigation water required, net CO ₂ assimilation rate and marketable yield	AbdAllah et al., 2018
2018	Reflective	Calcium carbonate	Drought stress	Tomato	Reduced transpiration (by 47 - 58%) and leaf temperature, improved vitamin C and total phenols contents by 15 and 12% respectively, increased antioxidant activity and marketable yield	Patane et al., 2018
2018	Reflective	Kaolin	Irrigation management	Maize	Increased leaf number and plant height, improved biomass accumulation	Ulameer and Ahmed, 2018
2018	Reflective	Kaolin	Graft survival	Mango	Depressed transpiration, enhanced photosynthesis, increased relative water content and survival of grafts	Thorat et al., 2018
2018	Reflective	Kaolin	Drought stress	Pears	Reduced irrigation water applied, elevated indoleacetic acid and gibberellic acid activities	Fayed et al., 2018
2018	Reflective	Kaolin (deficit irrigation; mulch)	Irrigation management	Common Zinnia	Increased plant height and biomass accumulation	El-Deen et al., 2018
2009	Metabolic	ABA	Fruit quality enhancement	Grapes	Increased anthocyanin content, reduced fruit firmness, no effect on soluble solids content, titratable acidity, and berry size	Lurie et al., 2009
2009	Metabolic	Chitosan	Drought stress	Beans	Depressed stomatal conductance – reduced transpiration and photosynthesis, mode of action mediated by ABA, elevated endogenous ABA concentration threefold, no effect on intrinsic WUE	Iriti et al., 2009

2009	Metabolic	ABA	Fruit ripening	Grapes	Promoted fruit ripening and increased berry size	Wheeler et al., 2009
2009	Metabolic	ABA	Vase life extension	Eustoma flowers	Reduced leaf damage attributed to sucrose solution, slowed loss of fresh weight, extended vase life	Shimizu-Yumoto and Ichimura, 2009
2010	Metabolic	ABA	Drought stress	Various woody ornamentals	Reduced stomatal conductance and cumulative water loss, increased stem water potential, extended marketability by one to seven days	Hebert et al., 2010
2010	Metabolic	Chitosan	Drought stress	Bean	Reduced stomatal conductance and transpiration	Ludwig et al., 2010
2010	Metabolic	ABA	Vase life extension	Cut roses	Pre-treatment with ABA did not increase vase life but reduced electrolyte leakage	Pompodakis et al., 2010
2010	Metabolic	ABA	Drought stress	Pansy and Viola	Induced leaf chlorosis, improved drought tolerance by delaying wilting and maintained marketable quality in the presence of benzyladenine and gibberellic acid	Waterland et al., 2010
2010	Metabolic	ABA	Drought stress	Seed Geranium, petunia, marigold and others	Reduced water loss, induced chlorosis, delayed wilting by 1.7 to 4.3 days	Waterland et al., 2010a
2010	Metabolic	ABA	Drought stress	Chrysanthemu ms	Suppressed stomatal conductance, delayed wilting by 1.2 to 4.0 days, induced recovery from severe drought	Waterland et al., 2010c
2011	Metabolic	Salicylic acid	Vase life extension	Cut roses	Enhanced uptake of vase solution increasing relative fresh weight of flowers, improved antioxidant activities of catalase, extending the vase life	Alaey et al., 2011

2011	Metabolic	ABA	Extension of shelf life	Tomato	Decreased transpiration, stomatal conductance, photosynthesis and irrigation water use. Increased shelf life	Astacio and van Iersel, 2011
2011	Metabolic	ABA	Drought stress	Apples	Enhanced water potential by 62% and reduced endogenous leaf ABA by 45%.	Tworkoski et al., 2011
2011	Metabolic	ABA	Cold tolerance	Citrus	Reduced electrolyte leakage	Yang et al., 2011
2011	Metabolic	Fulvic acid	Drought stress	Maize	Maintained chlorophyll content and gas exchange, enhanced plant growth and yield	Anjum et al., 2011
2011	Metabolic	Chitosan	Disease control	Grapes	Reduced powdery mildew infestation, upregulated polyphenol content and removal of free radicals	Iriti et al., 2011
2011	Metabolic	ABA	Fruit quality enhancement	Grapes	Increased anthocyanin content up to 85%, marginal improvement of total soluble solids contents	Gu et al., 2011
2011	Metabolic	ABA	Drought stress	Smoke bush	Elevated endogenous ABA, did not increased relative water content, reduced stomatal conductance, transpiration and photosynthesis, improved drought tolerance	Li et al., 2011
2011	Metabolic	Salicylic acid	Salt stress	Sunflower	Promoted plant growth, chlorophyll and calcium contents and improved leaf turgor	Noreen et al., 2011
2011	Metabolic	ABA	Fruit quality enhancement	Grapes	Upregulated antioxidant activities by 38%, increased anthocyanins and phenolic contents	Sandhu et al., 2011
2011	Metabolic	ABA	Cold tolerance	Grapes	Effective in inducing leaf senescence, abscission and shoot dormancy and promoting freeze tolerance	Zhang et al., 2011

2011	Metabolic	ABA	Vase life extension	Iris flowers	Prevented flag petal expansion, induced ethylene-independent senescence, upregulating proteolytic degradation and electrolyte leakage	Zhong and Ciafre, 2011
2012	Metabolic	ABA	Cold tolerance	Grapes	Enhanced shoot dormancy and freeze tolerance	Zhang and Dami, 2012
2013	Metabolic	ABA	Fruit ripening	Cucumber	Effective in promoting fruit ripening	Wang et al., 2013
2013	Metabolic	ABA	Flowering regulation	Litchi	Increased flowering per panicle	Cui et al., 2013
2013	Metabolic	Fulvic acid	Drought stress	Wheat	Improved photosynthetic pigments, increased yield	Desoky et al., 2013
2013	Metabolic	Chitosan	Drought stress	Soyabeans	Increased yield components, biomass and grain yield	Javan et al., 2013
2013	Metabolic	Salicylic acid and acetylsalicylic acid	Drought stress	Fibrous flax.	Enhanced stem elongation and fibre yield	Heller et al., 2013
2014	Metabolic	ABA	Fruit quality enhancement	Tomato	Increased both chlorophyll and carotenoid contents in leaf and fruit tissue	Barickman et al., 2014
2014	Metabolic	ABA	Control of blossom end-rot	Tomato	Improved uptake of calcium and reduced blossom end-rot	Casey Barickman et al., 2014
2014	Metabolic	ABA	Vase life extension	Gladiolus	Reduced water uptake, fresh weight, enhanced senescence in cut flowers, decreased vase life by two days	Kumar et al., 2014
2014	Metabolic	ABA (used with ABA Analog: (+)-8'- acetylene ABA)	Fruit set control and gas exchange	Apples	Reduced stomatal conductance and photosynthesis inducing a decline in fruit set	McArtney et al., 2014
2014	Metabolic	Chitosan	Drought stress	Pomegranate	Decreased sugar and anthocyanin contents, increased fruit set, weight and yield	El-Khawaga and Mansour, 2014

2014	Metabolic	ABA	Fruit quality enhancement	Citrus	Increased fruit size and weight, enhanced potassium content, reduced sugar accumulation	Kawai et al., 2014
2014	Metabolic	ABA	Fruit quality enhancement	Grapes	No effect on cluster size or weight, increased anthocyanin polyphenolic compounds	Koyama et al., 2014
2014	Metabolic	ABA	Protection from sunburn	Apples	No effect on sunburn, significantly reduced fruit size and weight and total soluble solids	Mupambi et al., 2014
2014	Metabolic	ABA	Transplant shock	Leafy vegetables	Improved quality of seedlings pre- planting, increased marketability of spinach at harvest	Racsko et al., 2014
2014	Metabolic	ABA	Transplant shock	Artichoke	Induced stomatal closure, increased plant water potential, reduced electrolyte leakage, enhanced drought tolerance	Shinohara and Leskovar, 2014
2014	Metabolic	ABA	Drought stress	Pansies	Decreased leaf chlorophyll content, stomatal conductance and carbon assimilation, induced chlorosis.	Weaver and van Iersel, 2014
2015	Metabolic	ABA	Vase life extension	Lilium Sorbonne	Increased sucrose uptake from solution, contents of simple sugars and fresh weight	Geng et al., 2015
2015	Metabolic	ABA	Cold tolerance	Grapes	Enhanced cold tolerance, did not have an effect on yield and berry quality, no evidence of toxicity	Dami et al., 2015
2015	Metabolic	ABA	Fruit quality enhancement	Grapes	Increased anthocyanin content, antioxidant activity and bunch yield	Ferrara et al., 2015
2015	Metabolic	ABA	Fruit quality enhancement	Grapes	Increased anthocyanins content and improved flavour of juice	Yamamoto et al., 2015
2015	Metabolic	Fulvic acid	Drought stress	Tomato	Improved relative water content and marketable yield by 24%, irrigation WUE by 34.82%.	Aggag et al., 2015

2015	Metabolic	Fulvic acid	Drought stress	Oil seed rape	Enhanced maximum quantum efficiency of photosystem II, fluorescence of chlorophyll a, antioxidant activities, ameliorated lipid peroxidation.	Lotfi et al., 2015
2016	Metabolic	ABA	Drought stress	Apple	Depressed gas exchange variables, water deficit stress not alleviated	Al-Absi and Archbold, 2016
2016	Metabolic	ABA	Cold stress	Blueberry	Reduced electrolyte leakage of floral parts increasing their tolerance to freezing injury	Panicker and Matta, 2016
2016	Metabolic	ABA	Cold stress	Grapes	Reduced bud damage	Bowen et al., 2016
2016	Metabolic	Acetylsalicylic acid	Vase life extension	Cut roses	Reduced transpiration, extended vase life	Fanourakis et al., 2016
2016	Metabolic	ABA	Cold stress and fruit quality	Grapes	Induced early leaf senescence, abscission, enhanced dormancy, increased cold tolerance	Li and Dami, 2016
2016	Metabolic	ABA	Fruit quality enhancement	Grapes	Upregulated flavonoid and anthocyanin biosynthesis genes, increased anthocyanin content	Katayama-Ikegami et al., 2016
2016	Metabolic	ABA	Drought stress	Various bedding plants	Depressed stomatal conductance, improved drought tolerance by delaying wilting by between 1.3 and 3.7 days	Park et al., 2016
2016	Metabolic	ABA	Fruit quality enhancement	Grapes	Improved berry and bunch sizes, total soluble solids and fruit firmness	Singh et al., 2016
2016	Metabolic	Fulvic acid	Water deficit conditions	Wheat	Improved WUE, carbon assimilation and yield	Zhang et al., 2016
2016	Metabolic	ABA	Water deficit conditions	Grapes	Reduced electrolyte leakage and lipid peroxidation, improved antioxidant activity	Wang et al., 2016
2016	Metabolic	ABA	Water deficit	Wheat	Improved WUE and yield	Zhang et al., 2016

2017	Metabolic	ABA	Fruit thinning	Pears	Suppression of net photosynthesis by 75-90%, increased fruit size, fruit quality unaffected	Arrington et al., 2017
2017	Metabolic	Salicylic acid, Benzoic acid	Drought stress	Tomato	Increased leaf area index, fruit number and marketable yield	lsa et al., 2017
2017	Metabolic	ABA	Fruit quality enhancement	Tomato	Enhanced the concentrations of fructose, glucose and the contents of chlorophyll and carotenoids	Barickman et al., 2017
2017	Metabolic	ABA	Fruit quality enhancement	Grapes	Elevated accumulation of ethanol, depressed aroma quality	Gonzalez et al., 2018
2017	Metabolic	Salicylic acid	Vase life extension	Cut roses	Sustained membrane stability, attenuated lipid peroxidation, reduced weight loss, enhanced antioxidant activities, extended vase life	Kazemi et al., 2017
2017	Metabolic	Chitosan	Vase life extension	Macaw flower	Increased anthocyanin and flavonoid contents by 48 and 46%, respectively, sustained fresh weight, extended vase life by 10.3 days	Banuelos- Hernandez et al., 2017
2017	Metabolic	ABA	Fruit quality enhancement	Grapes	Enhanced soluble solids, anthocyanin and total phenolic contents	Neto et al., 2017
2017	Metabolic	ABA	Post-harvest preservation	Grapes	Decreased shatter, decay and loss of fruit weight	F. J. D. Neto et al., 2017
2017	Metabolic	ABA	Fruit quality enhancement	Grapes	Upregulated anthocyanin biosynthesis genes, elevated anthocyanins content	Olivares et al., 2017
2017	Metabolic	ABA	Berry and cluster manipulation	Grapes	Reduced berry number, improved berry and cluster uniformity	Padmalatha et al., 2017
2017	Metabolic	ABA	Extension of marketability	Tomato	Inhibited stem elongation, leaf expansion and shoot biomass accumulation by 22% effectively	Agehara and Leskovar, 2017

					prolonging market value	
2017	Metabolic	Chitosan	Drought stress	White clover	Increased contents of amino acids, sugars, sugar alcohols, antioxidants and other metabolites associated with drought resistance mechanisms	Z. Li et al., 2017
2017	Metabolic	Fulvic acid	Crop productivity	Safflower	Improved seed yield by 36% and oil content by 86%	Moradi et al., 2017
2018	Metabolic	ABA	Stomatal physiology	Cut gerberas	Increased percentage of closed stomata, reduced stomatal aperture, decreased water loss	Huang et al., 2018
2018	Metabolic	ABA	Fruit quality enhancement	Grapes	Increased anthocyanin and aroma volatiles contents, decreased fruit firmness	Jia et al., 2018
2018	Metabolic	ABA	Fruit quality enhancement	Grapes	Enhanced phenolic compounds and anthocyanin contents, increased grape yield	Kok and Bal, 2018b
2018	Metabolic	ABA	Fruit quality enhancement	Grapes	Upregulated anthocyanin and flavonoid gene expression	Koyama et al., 2018
2018	Metabolic	ABA	Fruit quality enhancement	Blueberry	Elevated endogenous ABA, increased anthocyanins (malvidin, delphinidin, petunidin glycosides) and fruit softening	Oh et al., 2018
2018	Metabolic	ABA	Fruit quality enhancement	Oranges	Enhanced colour index and carotenoid content, reduced organic acids, no effect on sugar content	Rehman et al., 2018
2018	Metabolic	Chitosan	Drought stress	Wheat	Improved chlorophyll, carotenoid, proline and superoxide dismutase contents	Singh et al., 2018
2018	Metabolic	Chitosan, deficit irrigation	Irrigation management	Wheat	Increased stem extension and leaf expansion	Reddy et al., 2018

2018	Metabolic	Fulvic acid	Low rainfall/drought stress	Maize	Increased kernel number per ear, did not increase yield	Yang et al., 2018
2018	Metabolic	Fulvic acid	Drought stress	Tomato	Reduced canopy temperature, irrigation water required (by 28%), net CO ₂ assimilation rate and marketable yield, increased WUE by 33.45%	AbdAllah et al., 2018
2018	Metabolic	Phenyl mercuric acetate	Drought stress	Oil seed rape	Increased plant height and total biomass, but not seed oil and protein contents	Kumar et al., 2018
2009	Film-forming	Di-1- <i>p</i> -menthene	Drought stress	Kiwi fruit	Enhanced efficiency of photosystem II and chlorophyll content, non-significant effect on yield	Latocha et al., 2009
2009	Film-forming	Di-1- <i>p</i> -menthene	Drought stress	Sultani fig	Reduced sugars and total soluble solids, improved vegetative growth and yield	Al-Desouki et al., 2009
2009	Film-forming	Di-1- <i>p</i> -menthene	Physiology, nutrient uptake and yield	Pepper	Suppressed carbon assimilation, reduced water absorption, no effect on cation uptake and dry weight and yield, reduced incidence of blossom-end rot	del Amor and Rubio, 2009
2009	Film-forming	Canola oil (other vegetable oils)	Control of powdery and downy mildews	Cucumber	Reduced powdery and downy mildews by 99 and 96%, respectively	Jee et al., 2009
2009	Film-forming	Di-1- <i>p</i> -menthene, poly-1-p menthene	Control of apple scab (Venturia inaequalis)	Apples	Increased chlorophyll fluorescence, decreased conidia germination and foliar and fruit scab severity, improved yield	Percival and Boyle, 2009
2010	Film-forming	Di-1- <i>p</i> -menthene	Drought stress	Wheat	Improved yield at high soil water deficit	Kettlewell et al., 2010

2010	Film-forming	Di-1- <i>p</i> -menthene	Drought stress	Wheat	Improved yield	Kettlewell and Holloway, 2010
2010	Film-forming	Di-1-p-menthene	Drought stress	Bean	Reduced stomatal conductance	Ludwig et al., 2010
2010	Film-forming	Di-1- <i>p</i> -menthene	Drought stress	Pepper	Reduced gas exchange under ambient CO ₂ concentration, higher water potential and photosynthesis under combined elevated CO ₂ and AT	del Amor et al., 2010
2010	Film-forming	Di-1- <i>p</i> -menthene	Drought stress	Citrus	Non-significant effect on gas exchange, plant water status, chlorophyll and proline contents	Mohawesh et al., 2010
2010	Film-forming	Di-1- <i>p</i> -menthene	Fruit quality control	Grapes	Depressed transpiration and carbon assimilation rates, increased intrinsic WUE and anthocyanin content, reduced yield	Palliotti et al., 2010
2011	Film-forming	Di-1- <i>p</i> -menthene	Ozone stress	Beans	Reduced membrane damage, maintained stomatal conductance and photosynthesis	Francini et al., 2011
2012	Film-forming	Carboxylated hydrophilic polymer (Envy)	Transplant shock	Agarwood	Neither improved growth rates nor reduce stress and mortality of transplants	Page and Awarau, 2012
2013	Film-forming	Castor bean oil	Drought stress	Soyabeans	Increased yield components, biomass and grain yield	Javan et al., 2013
2013	Film-forming	Di-1- <i>p</i> -menthene	Micronutrient and trace element quality	Sweet cherry	No effect on quantity of manganese, nickel, cadmium, copper or zinc	Mikiciuk et al., 2013
2013	Film-forming	Di-1-p-menthene	Control of sugar content	Grapes	Reduced transpiration, photosynthesis, intrinsic WUE, anthocyanin content (by 19%) and sugar content	Palliotti et al., 2013
2014	Film-forming	Di-1- <i>p</i> -menthene	Drought stress	Wheat and barley	Improved water potential in both crops, increased photosynthesis in wheat only	Ouerghi et al., 2014

2015	Film-forming	Di-1- <i>p</i> -menthene	Drought stress	Wheat	Improved plant water status, photosynthesis and yield	Abdullah et al., 2015
2015	Film-forming	Paraffin	Drought stress	Potatoes	Reduced transpiration, improved WUE, total yield and marketable yield	Khalel, A. M. S., 2015
2015	Film-forming	Di-1- <i>p</i> -menthene		Strawberry	Reduced transpiration without depressing carbon assimilation, increased relative water content and WUE, no effect on chlorophyll	Mikiciuk et al., 2015
2016	Film-forming	Di-1- <i>p</i> -menthene	Drought stress	Wheat	Improved water potential, pollen viability and grain yield	Weerasinghe et al., 2016
2016	Film-forming	Poly-1- <i>p</i> - menthene and di- 1- <i>p</i> -menthene	Drought stress	Oil seed rape	Decreased endogenous ABA, improved flower and pod water potential.	Faralli et al., 2016
2016	Film-forming	Di-1- <i>p</i> -menthene	Fruit quality	Grapes	No effect on intrinsic WUE, depressed gas exchange, sugar and anthocyanin content	Brillante et al., 2016
2016	Film-forming	Di-1- <i>p</i> -menthene	Controlled ripening	Grapes	Reduced gas exchange, slowed sugar accumulation	Gatti et al., 2016
2017	Film-forming	Poly-1- <i>p</i> - menthene and di- 1- <i>p</i> -menthene	Drought stress	Oil seed rape	Reduced transpiration and stomatal conductance, enhanced water potential and yield	Faralli et al., 2017
2017	Film-forming	Di-1- <i>p</i> -menthene	Drought stress	Oil seed rape	Reduced CO ₂ assimilation and relative water content, increased intrinsic WUE	M. Faralli et al., 2017
2018	Film-forming	Poly-1-p- menthene	Vase life extension	Roses	Reduced transpiration, increased vase life	Di Stasio et al., 2018
2018	Film-forming	Di-1- <i>p</i> -menthene	Drought stress	Grapes	Reduced both leaf and bunch stomatal conductance, photosynthesis and transpiration, elevated leaf and berry temperature	Fahey and Rogiers, 2018

683 Conflicts of Interest

684 The authors declare no conflicts of interest.

685 Acknowledgements

- This paper was written during the tenure of a Commonwealth Scholarship
- 687 awarded to Wiza Mphande

- 706 8. References
- 707

708 709

710

AbdAllah, A.M., Burkey, K.O., Mashaheet, A.M., 2018. Reduction of plant water 711 consumption through anti-transpirants foliar application in tomato plants 712 (Solanum lycopersicum L). Sci. Hortic. (Amsterdam). 235, 373-381. 713 714 https://doi.org/10.1016/j.scienta.2018.03.005 AbdAllah, A.M., Mashaheet, A.M., Zobel, R., Burkey, K.O., 2019. Physiological 715 716 basis for controlling water consumption by two snap beans genotypes using different anti-transpirants. Agric. Water Manag. 214, 17-27. 717 https://doi.org/10.1016/j.agwat.2018.12.029 718 Abdel-Sattar, M., Eissa, A.M., El-shazly, S.M., Alabd, A., 2017. Improving Quality 719 of Wonderful Pomegranate by Using Bagging and Different Agrochemical 720 721 Treatments. Alexandria J. Agric. Sci. 2017, 103–109. https://doi.org/10.21608/alexja.2017.5760 722 Abdullah, A.S., Aziz, M.M., Siddique, K.H.M., Flower, K.C., 2015. Film 723 724 antitranspirants increase yield in drought stressed wheat plants by maintaining high grain number. Agric. Water Manag. 159, 11–18. 725 726 https://doi.org/10.1016/j.agwat.2015.05.018 Abou-Khaled, A., Hagan, R.M., Davenport, D.C., 1970. Effects of kaolinite as a 727 728 reflective antitranspirant on leaf temperature, transpiration, photosynthesis, and water-use efficiency. Water Resour. Res. 6, 280–289. 729 https://doi.org/10.1081/E-EBBE 730 731 Agarwal, S.K., 1979. Effect of nitrogen rates, mulching and antitranspirants on water use and water use efficiency of barley (hordeum vulgare I.) varieties 732 733 grown under dryland conditions. J. Agric. Sci. 92, 263-268. https://doi.org/10.1017/S0021859600062754 734 735 Agehara, S., Leskovar, D.I., 2017. Growth suppression by exogenous abscisic acid and uniconazole for prolonged marketability of tomato transplants in 736 commercial conditions. HortScience 52, 606-611. 737 738 https://doi.org/10.21273/HORTSCI11518-16 Aggag, A.M., Alzoheiry, A.M., Abdallah, A.E., 2015. Effect of Kaolin and Fulvic 739 740 Acid Antitranspirants on Tomato Plants Grown under Different Water

Abd El-Hady, M., Doklega, S., 2017. Response of Two Eggplant Cultivars to

Prod. 8, 1395–1401. https://doi.org/10.21608/jpp.2017.42015

Irrigation Intervals and Foliar Application with some Antitranspirants. J. Plant

- 741 Regimes. Alexandria Sci. Exch. J. 36, 169–179.
- 742 https://doi.org/10.21608/asejaiqjsae.2015.2875
- AgroBest Australia, 2017. Envy safety data sheet [WWW Document]. URL
 http://www.agrobest.com.au/files/MSDS/Envy_2017.pdf (accessed 6.23.19).
- Ahmed, F.F., Abdel Aal, A.M.K., El- Sayed, M.A., Sayed, H.R., 2013. Protecting
 Red Roomy Grapevines Growing Under Minia Region Conditions from
 Sunburn Damage. Stem Cell 4, 15–20.
- Al-Absi, K., Archbold, D., 2016. Apple Tree Responses to Deficit Irrigation
 Combined with Periodic Applications of Particle Film or Abscisic Acid.

- Horticulturae 2, 16. https://doi.org/10.3390/horticulturae2040016
- Al-Desouki, M.I., El-Rhman, I.E.A., Sahar, A.F., 2009. Effect of Some
 Antitranspirants and Supplementery Irrigation on Growth, Yield and Fruit
 Quality of Sultani Fig (Ficus Carica) Grown in the Egyption Western Coastal
 Zone under Rainfed Conditions. Res. J. Agric. Biol. Sci. 5, 899–908.
- Alaey, M., Babalar, M., Naderi, R., Kafi, M., 2011. Effect of pre- and postharvest salicylic acid treatment on physio-chemical attributes in relation to the vase life of cut rose flowers. Postharvest Biol. Technol. 61, 91–94.
 https://doi.org/https://doi.org/10.1016/j.postharvbio.2011.02.002
- Alavo, T.B.C., Yarou, B.B., Atachi, P., 2010. Field effects of kaolin particle film
 formulation against major cotton lepidopteran pests in North Benin, West
 Africa. Int. J. Pest Manag. 56, 287–290.
- 762 https://doi.org/10.1080/09670871003628389
- Alghabari, F., Lukac, M., Jones, H.E., Gooding, M.J., 2013. Effect of Rht Alleles on
 the Tolerance of Wheat Grain Set to High Temperature and Drought Stress
 During Booting and Anthesis. J. Agron. Crop Sci. 200, 36–45.
 https://doi.org/10.1111/jac.12038
- Aly, M., El-megeed, N.A., Awad, R.M., 2010. Reflective Particle Films Affected on
 , Sunburn, Yield, Mineral Composition and Fruit Maturity of 'Anna' Apple (
 Malus domestica) Trees . 6, 84–92.
- Anjum, S.A., Wang, L., Farooq, M., Xue, L., Ali, S., 2011. Fulvic Acid Application
 Improves the Maize Performance under Well-watered and Drought
 Conditions. J. Agron. Crop Sci. 197, 409–417. https://doi.org/10.1111/j.1439037X.2011.00483.x
- Arrington, M., Pasa, M.S., Einhorn, T.C., 2017. Postbloom thinning response of
 'Bartlett' pears to abscisic acid. HortScience 52, 1765–1771.
 https://doi.org/10.21273/HORTSCI12429-17
- Arve, L.E., Carvalho, D.R.A., Olsen, J.E., Torre, S., 2014. ABA induces H 2 O 2
 production in guard cells, but does not close the stomata on Vicia faba
 leaves developed at high air humidity 1–9.
- Astacio, M.G., van Iersel, M.W., 2011. Determining the effects of abscisic acid
 drenches on evapotranspiration and leaf gas exchange of tomato.
 HortScience 46, 1512–1517. https://doi.org/10.21273/hortsci.46.11.1512
- Azizi, A., Hokmabadi, H., Piri, S., Rabie, V., 2013. Effect of Kaolin Application on
 Water Stress in P istachio cv. " Ohadi ". J. Nuts 4, 9–14.
- Badukale, K.E., Mankar, D.D., Jaiswal, S.G., Desai, A., 2015. Effect of
 antitranspirants and frequency of irrigations on growth, yield attributes and
 yield of Indian mustard (Brassica juncea L.). J. Soils Crop. 25, 210–214.
- Bai, Y., Wu, F., Xing, B., Meng, W., Shi, G., Ma, Y., Giesy, J.P., 2015. Isolation
 and characterization of chinese standard fulvic acid sub-fractions separated
 from forest soil by stepwise elution with pyrophosphate buffer. Sci. Rep. 5, 1–
 8. https://doi.org/10.1038/srep08723
- Banuelos-Hernandez, K.P., Garcia-Nava, J.R., Leyva-Ovalle, O.R., Pena-Valdivia,
 C.B., Trejo, C., Ybarra-Moncada, M.C., 2017. Chitosan coating effect on vase

- ⁷⁹⁴ life of flowering stems of Heliconia bihai (L.) L. cv. Halloween. Postharvest
- Biol. Technol. 132, 179–187.
- 796 https://doi.org/10.1016/j.postharvbio.2017.05.009
- Barber, H.M., Carney, J., Alghabari, F., Gooding, M.J., 2015. Decimal growth
 stages for precision wheat production in changing environments? Ann. Appl.
 Biol. 166, 355–371. https://doi.org/10.1111/aab.12207
- Barickman, T.C., Kopsell, D.A., Sams, C.E., 2017. Abscisic acid improves tomato
 fruit quality by increasing soluble sugar concentrations. J. Plant Nutr. 40, 964–
 973. https://doi.org/10.1080/01904167.2016.1231812
- Barickman, T.C., Kopsell, D.A., Sams, C.E., 2014. Abscisic acid increases
 carotenoid and chlorophyll concentrations in leaves and fruit of two tomato
 genotypes. J. Am. Soc. Hortic. Sci. 139, 261–266.
 https://doi.org/10.21273/jashs.139.3.261
- Bistgani, Z.E., Siadat, S.A., Bakhshandeh, A., Pirbalouti, A.G., Hashemi, M., 2017.
 Interactive effects of drought stress and chitosan application on physiological
 characteristics and essential oil yield of Thymus daenensis Celak. Crop J. 5,
 407–415. https://doi.org/10.1016/j.cj.2017.04.003
- Bloomfield, K.J., Prentice, I.C., Cernusak, L.A., Eamus, D., Medlyn, B.E.,
 Rumman, R., Wright, I.J., Boer, M.M., Cale, P., Cleverly, J., Egerton, J.J.G.,
 Ellsworth, D.S., Evans, B.J., Hayes, L.S., Hutchinson, M.F., Liddell, M.J.,
 Macfarlane, C., Meyer, W.S., Togashi, H.F., Wardlaw, T., Zhu, L., Atkin, O.K.,
 2019. The validity of optimal leaf traits modelled on environmental conditions.
 New Phytol. 221, 1409–1423. https://doi.org/10.1111/nph.15495
- Boari, F., Donadio, A., Pace, B., Schiattone, M.I., Cantore, V., 2016. Kaolin
 improves salinity tolerance, water use efficiency and quality of tomato. Agric.
 Water Manag. 167, 29–37. https://doi.org/10.1016/j.agwat.2015.12.021
- Boari, F., Donadio, A., Schiattone, M.I., Cantore, V., 2015. Particle film
 technology: A supplemental tool to save water. Agric. Water Manag. 147,
 154–162. https://doi.org/10.1016/j.agwat.2014.07.014
- Bodner, G., Nakhforoosh, A., Kaul, H., 2015. Management of crop water under
 drought : a review. Agron. Sustain. Dev. 35, 401–442.
 https://doi.org/10.1007/s13593-015-0283-4
- Bowen, P., Shellie, K.C., Mills, L., Willwerth, J., Bogdanoff, C., Keller, M., 2016.
 Abscisic acid form, concentration, and application timing influence phenology
 and bud cold hardiness in Merlot grapevines. Can. J. Plant Sci. 96, 347–359.
 https://doi.org/10.1139/cjps-2015-0257
- Brahma, R., Janawade, A.D., Palled, Y.B., 2007. Effect of Irrigation Schedules ,
 Mulch and Antitranspirant on Growth , Yield and Economics of Wheat.
 Karnataka J. Agric. Sci. 20(1) 20, 6–9.
- Braun, D.M., Wang, L., Ruan, Y.L., 2014. Understanding and manipulating
 sucrose phloem loading, unloading, metabolism, and signalling to enhance
 crop yield and food security. J. Exp. Bot. 65, 1713–1735.
 https://doi.org/10.1093/jxb/ert416
- Brillante, L., Belfiore, N., Gaiotti, F., Lovat, L., Sansone, L., Poni, S., Tomasi, D.,
 2016. Comparing kaolin and pinolene to improve sustainable grapevine

- production during drought. PLoS One 11, 1–19.
- 840 https://doi.org/10.1371/journal.pone.0156631
- Brito, C., Dinis, L., Moutinho-pereira, J., Correia, C., 2019. Scientia Horticulturae
 Kaolin , an emerging tool to alleviate the e ff ects of abiotic stresses on crop
 performance. Sci. Hortic. (Amsterdam). 250, 310–316.
- 844 https://doi.org/10.1016/j.scienta.2019.02.070
- Brito, C., Dinis, L.T., Ferreira, H., Rocha, L., Pavia, I., Moutinho-Pereira, J.,
- 846 Correia, C.M., 2018. Kaolin particle film modulates morphological,
- physiological and biochemical olive tree responses to drought and rewatering.
 Plant Physiol. Biochem. 133, 29–39.
- 849 https://doi.org/10.1016/j.plaphy.2018.10.028
- Brown, P., Saa, S., 2015. Biostimulants in agriculture. Front. Plant Sci. 6, 671.
 https://doi.org/https://doi.org/10.3389/fpls.2015.00671
- Campolo, O., Romeo, F.V., Malacrinò, A., Laudani, F., Carpinteri, G., Fabroni, S.,
 Rapisarda, P., Palmeri, V., 2014. Effects of inert dusts applied alone and in
 combination with sweet orange essential oil against Rhyzopertha dominica
 (Coleoptera: Bostrichidae) and wheat microbial population. Ind. Crops Prod.
 61, 361–369. https://doi.org/10.1016/j.indcrop.2014.07.028
- Cantore, V., Pace, B., Albrizio, R., 2009. Kaolin-based particle film technology
 affects tomato physiology, yield and quality. Environ. Exp. Bot. 66, 279–288.
 https://doi.org/10.1016/j.envexpbot.2009.03.008
- Cao, M., Liu, X., Zhang, Y., Xue, X., Zhou, X.E., Melcher, K., Gao, P., Wang, F.,
 2013. An ABA-mimicking ligand that reduces water loss and promotes
 drought resistance in plants. Nat. Publ. Gr. 23, 1043–1054.
 https://doi.org/10.1038/cr.2013.95
- Casey Barickman, T., Kopsell, D.A., Sams, C.E., 2014. Foliar applications of
 abscisic acid decrease the incidence of blossom-end rot in tomato fruit. Sci.
 Hortic. (Amsterdam). 179, 356–362.
- 867 https://doi.org/10.1016/j.scienta.2014.10.004
- Chamchaiyaporn, T., Jutamanee, K., Kasemsap, P., Vaithanomsat, P., Henpitak,
 C., 2013. Effects of kaolin clay coating on mango leaf gas exchange, fruit
 yield and quality. Kasetsart J. Nat. Sci. 47, 479–491.
- Conde, A., Pimentel, D., Neves, A., Dinis, L.T., Bernardo, S., Correia, C.M.,
 Gerós, H., Moutinho-Pereira, J., 2016. Kaolin foliar application has a
 stimulatory effect on phenylpropanoid and flavonoid pathways in grape
 berries. Front. Plant Sci. 7, 1–14. https://doi.org/10.3389/fpls.2016.01150
- Correia, C.M., Dinis, L.-T., Fraga, H., Pinheiro, R., Ferreira, H.M., Costa, J.,
 Gonçalves, I., Oliveira, A.A., Pinto, G., Santos, J.A., Malheiro, A.C., MoutinhoPereira, J.M., 2015. Enhanced Yield and Physiological Performance of
 Mediterranean Grapevines through Foliar Kaolin Spray. Procedia Environ.
 Sci. 29, 247–248. https://doi.org/10.1016/j.proenv.2015.07.295
- Cosic, M., Stricevic, R., Djurovic, N., Lipovac, A., Bogdan, I., Pavlovic, M., 2018.
 Effects of irrigation regime and application of kaolin on canopy temperatures
 of sweet pepper and tomato. Sci. Hortic. (Amsterdam). 238, 23–31.
 https://doi.org/10.1016/j.scienta.2018.04.035

- Cosic, M., Stricevic, R., Djurovic, N., Prokic, L., Marjanovic, M., Moravcevic, D.,
 2016. Impact of irrigation regime and application of kaolin on the stomatal
 conductance and leaf water potential of pepper and tomato. Agric. Mont.
 Cadastre Ser. 46, 92–100.
- Cui, Z., Zhou, B., Zhang, Z., Hu, Z., 2013. Abscisic acid promotes flowering and
 enhances LcAP1 expression in Litchi chinensis Sonn. South African J. Bot.
 88, 76–79. https://doi.org/10.1016/j.sajb.2013.05.008
- D'Aquino, S., Cocco, A., Ortu, S., Schirra, M., 2011. Effects of kaolin-based
 particle fi Im to control Ceratitis capitata (Diptera : Tephritidae) infestations
 and postharvest decay in citrus and stone fruit. Crop Prot. 30, 1079–1086.
 https://doi.org/10.1016/j.cropro.2011.03.019
- da Silva, P.S.O., de Oliveira Junior, L.F.G., de Mattos, E.C., dos Santos Maciel,
 L.B., dos Santos, M.P.F., Sena, E.D.O.A., Barbosa, N.T.B., Carnelossi,
 M.A.G., Fagundes, J.L., 2019. Calcium particle films promote artificial shading
 and photoprotection in leaves of American grapevines (Vitis labrusca L .).
 Sci. Hortic. (Amsterdam). 252, 77–84.
- da Silva, Paulo Silas Oliveira, Oliveira, L.F.G., Silva Gonzaga, M.I., de Oliveira
 Alves Sena, E., dos Santos Maciel, L.B., Pinheiro Fiaes, M., de Mattos, E.C.,
 Gutierrez Carnelossi, M.A., 2019. Effects of calcium particle films and natural
 shading on ecophysiological parameters of conilon coffee. Sci. Hortic.
 (Amsterdam). 245, 171–177. https://doi.org/10.1016/j.scienta.2018.10.010
- Dami, I.E., Li, S., Bowen, P.A., Bogdanoff, C.P., Shellie, K.C., Willwerth, J., 2015.
 Foliar applied abscisic acid increases 'chardonnay' grapevine bud freezing
 tolerance during autumn cold acclimation. Horttechnology 25, 293–305.
 https://doi.org/10.21273/horttech.25.3.293
- Das, V.S., Raghavendra, A., 1979. Antitranspirants for improvement of water use
 efficiency of crops. Outlook Agric. 10, 92–98.
- Dass, A., Bhattacharyya, R., 2017. Wheat residue mulch and anti-transpirants
 improve productivity and quality of rainfed soybean in semi-arid north-Indian
 plains. F. Crop. Res. 210, 9–19. https://doi.org/10.1016/j.fcr.2017.05.011
- Davenport, D.C., Fisher, M.A., Hagan, R.M., 1972. Some Counteractive Effects of Antitranspirants. Plant Physiol 49, 722–724.
- De, R., Bhujanga Rao, D.V.S., Yogeswara Rao, Y., Giri Rao, L.G., Ikramullah, M.,
 1983. Modification of irrigation requirement of wheat through mulching and
 foliar application of transpiration suppressants. Irrig. Sci. 4, 215–223.
 https://doi.org/10.1007/BF00285527
- De, R., Giri, G., 1978. Effect of mulching and kaolin foliar spray on mung (Vigna radiata) rapeseed (Brassica campestris) double cropping system under rainfed conditions. J. Agric. Sci. 91, 191–197.
- De Storme, N., Geelen, D., 2014. The impact of environmental stress on male
 reproductive development in plants: biological processes and molecular
 mechanisms. Plant. Cell Environ. 37, 1–18. https://doi.org/10.1111/pce.12142
- del Amor, F.M., Cuadra-Crespo, P., Walker, D.J., Cámara, J.M., Madrid, R., 2010.
 Effect of foliar application of antitranspirant on photosynthesis and water
 relations of pepper plants under different levels of CO2and water stress. J.

- 929 Plant Physiol. 167, 1232–1238. https://doi.org/10.1016/j.jplph.2010.04.010
- del Amor, F.M., Rubio, J.S., 2009. Effects of antitranspirant spray and potassium:
 Calcium: Magnesium ratio on photosynthesis, nutrient and water uptake,
 growth, and yield of sweet pepper. J. Plant Nutr. 32, 97–111.
 https://doi.org/10.1080/01904160802531043
- Denaxa, N.K., Roussos, P.A., Damvakaris, T., Stournaras, V., 2012. Comparative
 effects of exogenous glycine betaine, kaolin clay particles and Ambiol on
 photosynthesis, leaf sclerophylly indexes and heat load of olive cv. Chondrolia
 Chalkidikis under drought. Sci. Hortic. (Amsterdam). 137, 87–94.
 https://doi.org/10.1016/j.scienta.2012.01.012
- Desoky, E.M., Tohamy, M.R.A., Eisa, G.S.A., 2013. Effect of some antitranspirant
 substances on growth, yield and flag leaf structure of wheat plant(Triticum
 aestivum L .)grown under water stress conditions. Zagazig J. Agric. Res. 40,
 223–233.
- Di Stasio, E., Rouphael, Y., Raimondi, G., El-Nakhel, C., De Pascale, S., 2018.
 Postharvest performance of cut rose cv. Lovely red as affected by
 osmoprotec-tant and antitraspirant compounds. Adv. Hortic. Sci. 32, 311–318.
 https://doi.org/10.13128/ahs-22302
- Dinis, L.T., Bernardo, S., Conde, A., Pimentel, D., Ferreira, H., Félix, L., Gerós, H.,
 Correia, C.M., Moutinho-Pereira, J., 2016. Kaolin exogenous application
 boosts antioxidant capacity and phenolic content in berries and leaves of
 grapevine under summer stress. J. Plant Physiol. 191, 45–53.
 https://doi.org/10.1016/j.jplph.2015.12.005
- Dinis, L.T., Bernardo, S., Luzio, A., Pinto, G., Meijón, M., Pintó-Marijuan, M.,
 Cotado, A., Correia, C., Moutinho-Pereira, J., 2018. Kaolin modulates ABA
 and IAA dynamics and physiology of grapevine under Mediterranean summer
 stress. J. Plant Physiol. 220, 181–192.
- 956 https://doi.org/10.1016/j.jplph.2017.11.007
- Djurovic, N., Cosic, M., Stricevic, R., Savic, S., Domazet, M., 2016. Effect of
 irrigation regime and application of kaolin on yield, quality and water use
 efficiency of tomato. Sci. Hortic. (Amsterdam). 201, 271–278.
 https://doi.org/10.1016/j.scienta.2016.02.017
- Dolferus, R., Ji, X., Richards, R.A., 2011. Abiotic stress and control of grain
 number in cereals. Plant Sci. 181, 331–341.
 https://doi.org/10.1016/j.plantsci.2011.05.015
- Dunstone, R.L., Richards, R.A., Rawson, H.M., 1988. Variable responses of
 stomatal conductance, growth, and yield to fulvic acid applications to wheat.
 Aust. J. Agric. Res. 39, 547–553. https://doi.org/10.1071/AR9880547
- El-azm, N.A.I.A., Youssef, S.M.S., 2015. Spraying potassium silicate and sugar
 beet molasses on tomato plants minimizes transpiration, relieves drought
 stress and rationalizes water use. Middle East J 4, 1047–1064.
- El-Deen, T.N., Elbohy, N.F., Attia, K.E., Mokhtar, N.A.Y., 2018. Synergistic impact
 of soil mulching and kaolin concentration on Zinnia elegans plants grown
 under different irrigation levels. Bull. Fac. Agric. Cairo Univ. 69, 403–425.
 https://doi.org/10.1093/imamci/dnt037

974 El-Khawaga, A.S., 2013. Response of grand naine banana plants grown under different soil moisture levels to antitranspirants application. Asian J. Crop Sci. 975 5, 238-250. https://doi.org/10.3923/ajcs.2013.238.250 976 El-Khawaga, A.S., Mansour, A.E.M., 2014. Enhancing the Efficiency of Irrigation 977 Water Use by Using Some Antitranspirants in Wounderful Pomegranate 978 979 Orchards. Middle East J. Agric. Res. 3, 694-700. El-Said, E., 2015. Effect of Irrigation Intervals and Some Antitranspirants on 980 981 Growth, Yield and Fruit Quality of Eggplant. J. Plant Prod. 6, 2079–2091. 982 https://doi.org/10.21608/jpp.2015.52435 983 El-wafa, M.A., 2015. Effect of Some Treatments on Reducing Sunburn in 984 Wonderful Pomegranate Fruit Trees. Egypt. J. Hortic. 42, 795–806 985 El Mantawy, R.F., El Bialy, M., 2018. Effect of antitranspirant application on growth and productivity of sunflower under soil moisture stress. Nat. Sci. 16, 92–106. 986 https://doi.org/10.7537/marsnsj160218.15.Key 987 Fahey, D.J., Rogiers, S.Y., 2018. Di-1- p -menthene reduces grape leaf and bunch 988 transpiration. Aust. J. grape wine Res. 25, 134-141. 989 990 https://doi.org/10.1111/ajgw.12371 Fan, W., Li, J., Jia, J., Wang, F., Cao, C., Hu, J., Mu, Z., 2015. Pyrabactin 991 992 regulates root hydraulic properties in maize seedlings by affecting PIP aquaporins in a phosphorylation-dependent manner. Plant Physiol. Biochem. 993 94, 28-34. https://doi.org/10.1016/j.plaphy.2015.05.005 994 Fanourakis, D., Giday, H., Li, T., Kambourakis, E., Ligoxigakis, E.K., 995 Papadimitriou, M., Strataridaki, A., Bouranis, D., Fiorani, F., Heuvelink, E., 996 Ottosen, C.O., 2016. Antitranspirant compounds alleviate the mild-997 998 desiccation-induced reduction of vase life in cut roses. Postharvest Biol. Technol. 117, 110–117. https://doi.org/10.1016/j.postharvbio.2016.02.007 999 1000 Faralli, M., Grove, I.G., Hare, M.C., Alcalde-Barrios, A., Williams, K.S., Corke, F.M.K., Kettlewell, P.S., 2017. Modulation of Brassica napus source-sink 1001 1002 physiology through film antitranspirant induced drought tolerance amelioration that is dependent on the stress magnitude. J. Agron. Crop Sci. 203, 360-372. 1003 https://doi.org/10.1111/jac.12198 1004 Faralli, M., Grove, I.G., Hare, M.C., Boyle, R.D., Williams, K.S., Corke, F.M.K., 1005 1006 Kettlewell, P.S., 2016, Canopy application of film antitranspirants over the reproductive phase enhances yield and yield-related physiological traits of 1007 water-stressed oilseed rape (Brassica napus). Crop Pasture Sci. 67, 751-1008 765. https://doi.org/10.1071/CP15421 1009 Faralli, Michele, Grove, I.G., Hare, M.C., Kettlewell, P.S., 2017. In-field film 1010 1011 antitranspirant application shows potential yield protection from floweringstage drought periods in winter canola (Brassica napus). Crop Pasture Sci. 1012 68, 243–253. https://doi.org/10.1071/CP16427 1013 Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A., 2009. Plant 1014 drought stress : effects, mechanisms and management. Agron. Sustain. Dev. 1015 29, 185–212. 1016 Fayed, T., El-mohsen, M.A.A., Ali, M.M., El-karim, M.S.A., 2018. Enhancing water 1017 use efficiency of "Le Conte" pear trees under deficit irrigation conditions. 1018

- 1019 Biosci. Res. 15, 4452–4464.
- Ferrara, G., Mazzeo, A., Matarrese, A.M.S., Pacucci, C., Punzi, R., Faccia, M.,
 Trani, A., Gambacorta, G., 2015. Application of abscisic acid (S-ABA) and
 sucrose to improve colour, anthocyanin content and antioxidant activity of cv.
 Crimson Seedless grape berries. Aust. J. Grape Wine Res. 21, 18–29.
 https://doi.org/10.1111/ajgw.12112
- Ferrari, V., Disegna, E., Dellacassa, E., Coniberti, A., 2017. Influence of timing
 and intensity of fruit zone leaf removal and kaolin applications on bunch rot
 control and quality improvement of Sauvignon blanc grapes, and wines, in a
 temperate humid climate. Sci. Hortic. (Amsterdam). 223, 62–71.
 https://doi.org/10.1016/j.scienta.2017.05.034
- Francini, A., Lorenzini, G., Nali, C., 2011. The antitranspirant Di-1-p-menthene, a
 potential chemical protectant of ozone damage to plants. Water. Air. Soil
 Pollut. 219, 459–472. https://doi.org/10.1007/s11270-010-0720-6
- Fuehring, H.D., 1973. Effect of Antitranspirants on Yield of Grain Sorghum Under
 Limited Irrigation. Agron. J. 65, 348–351.
- Fuehring, H.D., Finkner, M.D., 1983. Effect of Folicote Antitranspirant Application
 on Field Grain Yield of Moisture–Stressed Corn. Agron. J. 75, 579.
 https://doi.org/10.2134/agronj1983.00021962007500040003x
- 1038 Gale, J., Hagan, R.M., 1966. Plant antitranspirants. Annu. Rev. Plant Physiol. 17, 269–282.
- Gale, J., Poljakoff-Mayber, A., 1965. Effect of antitranspirant treatment on leaf
 temperatures. Plant Cell Physiol. 6, 111–115.
 https://doi.org/10.1093/oxfordjournals.pcp.a079076
- Gatti, M., Galbignani, M., Garavani, A., Bernizzoni, F., Tombesi, S., Palliotti, A.,
 Poni, S., 2016. Manipulation of ripening via antitranspirants in cv. Barbera
 (Vitis viniferaL.). Aust. J. Grape Wine Res. 22, 245–255.
 https://doi.org/10.1111/ajgw.12212
- Gawad, N.M.A.A., 2015. Effect of Some Anti-transpirant to Reduce Amount of
 Irrigation Water Added to the Banana cv."Grand Nain" in Sandy Soil. Egypt. J.
 Hortic. 42, 69–86. https://doi.org/10.21608/ejoh.2014.1181
- Geng, X.M., Li, M., Lu, L., Okubo, H., Ozaki, Y., 2015. ABA improves postharvest
 quality of Cut Lilium "Sorbonne" Harvested in Late Period. J. Fac. Agric.
 Kyushu Univ. 60, 81–86.
- Ghaffari, H., Reza, M., Muhammad, T., Cheema, M., Razmjoo, J., 2019. Prolinemediated changes in antioxidant enzymatic activities and the physiology of
 sugar beet under drought stress. Acta Physiol. Plant. 41, 23.
 https://doi.org/10.1007/s11738-019-2815-z
- Gharaghani, A., Mohammadi Javarzari, A., Vahdati, K., 2018. Kaolin particle film
 alleviates adverse effects of light and heat stresses and improves nut and
 kernel quality in Persian walnut. Sci. Hortic. (Amsterdam). 239, 35–40.
 https://doi.org/10.1016/j.scienta.2018.05.024
- Gindaba, J., Wand, S.J.E., 2005. Comparative effects of evaporative cooling,
 kaolin particle film, and shade net on sunburn and fruit quality in apples.

- 1063 HortScience 40, 592–596.
- Glenn, D.M., 2016a. Effect of highly processed calcined kaolin residues on apple
 productivity and quality D.M. Sci. Hortic. (Amsterdam). 201, 101–108.
 https://doi.org/https://doi.org/10.1016/j.scienta.2016.01.035
- Glenn, D.M., 2016b. Effect of highly processed calcined kaolin residues on apple
 water use efficiency. Sci. Hortic. (Amsterdam). 205, 127–132.
 https://doi.org/10.1016/j.scienta.2016.04.022
- Glenn, D.M., 2010. Canopy Gas Exchange and Water Use Efficiency of {'Empire'}
 Apple in Response to Particle Film, Irrigation, and Microclimatic Factors. J.
 Am. Soc. Hortic. Sci. 135, 25–32.
- Glenn, D.M., 2009. Particle Film Mechanisms of Action That Reduce the Effect of
 Environmental Stress in {'Empire'} Apple. J. Am. Soc. Hortic. Sci. 134, 314–
 321. https://doi.org/10.1016/j.scienta.2015.02.030
- Glenn, D.M., Puterka, G.J., 2005. Particle Films: A New Technology for
 Agriculture. Hortic. Rev. (Am. Soc. Hortic. Sci). 31, 1–44.
 https://doi.org/10.1002/9780470650882.ch1
- Glenn, M.D., 2012. The mechanisms of plant stress mitigation by kaolin-based
 particle films and applications in horticultural and agricultural crops.
 HortScience 47, 710–711.
- Gonzalez, R., Gonzalez, M.R., Martin, P., 2018. Abscisic acid and ethephon
 treatments applied to 'verdejo' white grapes affect the quality of wine in
 different ways. Sci. Agric. 75, 381–386. https://doi.org/10.1590/1678-992x2017-0177
- Granger, A., Trager, D., 2002. Effect of pre-harvest applications of an
 antitranspirant and vegetable oil on cracking and size of cherry (Prunus avium
 L.) cv. Van fruit. Aust. J. Exp. Agric. 42, 93–96.
- Gu, S., Jacobs, S., Du, G., 2011. Efficacy, rate and timing of applications of
 abscisic acid to enhance fruit anthocyanin contents in "Cabernet Sauvignon"
 grapes. J. Hortic. Sci. Biotechnol. 86, 505–510.
 https://doi.org/10.1080/14620316.2011.11512796
- Han, S., Lee, Yeongmok, Park, E.J., Min, M.K., Lee, Yongsang, Kim, T.H., Kim,
 B.G., Lee, S., 2019. Structural determinants for pyrabactin recognition in ABA
 receptors in Oryza sativa. Plant Mol. Biol. https://doi.org/10.1007/s11103-01900862-6
- Hebert, C.J., Lebude, A. V, Campbell, C., 2010. Effects of s-ABA on the
 Physiology and Marketability of Various Container-Grown Taxa During Short Term. J. Environ. Hortic. 28, 202–208.
- Heller, K., Woznica, Z., Byczynska, M., Wielgusz, K., Baraniecki, P., 2013. The
 Efficacy of Salicylic and Acetylsalicylic Acids in the Protection of Fibrous Flax
 Against Drought Stress. J. Nat. Fibers 10, 29–39.
- 1103 https://doi.org/10.1080/15440478.2012.748298
- Hidangmayum, A., Dwivedi, P., Katiyar, D., Hemantaranjan, A., 2019. Application
 of chitosan on plant responses with special reference to abiotic stress.
 Physiol. Mol. Biol. Plants 25, 313–326. https://doi.org/10.1007/s12298-018-

- 1107 0633-1
- Huang, X., Lin, S., He, S., Lin, X., Liu, J., Chen, R., Li, H., 2018. Characterization
 of stomata on floral organs and scapes of cut 'Real' gerberas and their
 involvement in postharvest water loss. Postharvest Biol. Technol. 142, 39–45.
 https://doi.org/10.1016/j.postharvbio.2018.04.001
- Huang, Z., Hejazi, M., Tang, Q., Vernon, C.R., Liu, Y., Chen, M., Calvin, K., 2019.
 Global agricultural green and blue water consumption under future climate
 and land use changes. J. Hydrol. 574, 242–256.
 https://doi.org/10.1016/j.jhydrol.2019.04.046
- Hunter, M.C., Smith, R.G., Schipanski, M.E., Atwood, L.W., Mortensen, D.A.,
 2017. Agriculture in 2050 : Recalibrating Targets for Sustainable
 Intensification 67, 386–391. https://doi.org/10.1093/biosci/bix010
- IPCC, 2018. Impacts of 1.5°C of Global Warming on Natural and Human Systems
 [WWW Document]. Glob. Warm. 1.5°C. An IPCC Spec. Rep. impacts Glob.
 Warm. 1.5°C above pre-industrial levels Relat. Glob. Greenh. gas Emiss.
 pathways, Context Strength. Glob. response to Threat Clim. Chang. URL
 https://www.ipcc.ch/sr15 (accessed 5.16.19).
- Iriti, M., Picchi, V., Rossoni, M., Gomarasca, S., Ludwig, N., Gargano, M., Faoro,
 F., 2009. Chitosan antitranspirant activity is due to abscisic acid-dependent
 stomatal closure. Environ. Exp. Bot. 66, 493–500.
 https://doi.org/10.1016/j.envexpbot.2009.01.004
- Iriti, M., Vitalini, S., Di Tommaso, G., D'Amico, S., Borgo, M., Faoro, F.,
 2011. New chitosan formulation prevents grapevine powdery mildew infection
 and improves polyphenol content and free radical scavenging activity of grape
 and wine. Aust. J. Grape Wine Res. 17, 263–269.
 https://doi.org/10.1111/j.1755-0238.2011.00149.x
- Isa, H.M., Manga, A.A., Hussaini, M.A., 2017. Response of Tomato (Solanum
 Iycopersicon L.) to Antitranspirants and Moisture Stress in Kano, Sudan
- 1135 Savanna of Nigeria. J. Dryl. Agric. 3, 48–58.
- Jager, K., Fabian, A., Barnabas, B., 2008. Effect of water deficit and elevated
 temperature on pollen development of drought sensitive and tolerant winter
 wheat (Triticum aestivum L.) genotypes. Acta Biol. Szeged. 52, 67–71.
- Javan, M., Tajbakhsh, M., Mandoulakani, B.A., 2013. Effect of antitranspirants
 application on yield and yield components in soybean (Glycine max L.)
 under limited irrigation 7, 70–74.
- Jee, H.J., Shim, C.K., Ryu, K.Y., Park, J.H., Lee, B.M., Choi, D.H., Ryu, G.H.,
 2009. Control of powdery and downy mildews of cucumber by using cooking
 oils and yolk mixture. Plant Pathol. J. 25, 280–285.
- Ji, X., Dong, B., Shiran, B., Talbot, M.J., Edlington, J.E., Hughes, T., White, R.G.,
 Gubler, F., Dolferus, R., 2011. Control of Abscisic Acid Catabolism and
 Abscisic Acid Homeostasis Is Important for Reproductive Stage Stress
 Tolerance in Cereals. Plant Physiol. 156, 647–662.
 https://doi.org/10.1104/pp.111.176164
- Ji, X., Shiran, B., Wan, J., Lewis, D.C., Jenkins, C.L.D., Condon, A.G., Richards,
 R.A., Dolferus, R., 2010. Importance of pre-anthesis anther sink strength for

- maintenance of grain number during reproductive stage water stress in wheat.
 Plant, Cell Environ. 33, 926–942. https://doi.org/10.1111/j.13653040.2010.02130.x
- Jia, H., Wang, S., Lin, H., Satio, T., Ampa, K., Todoroki, Y., Kondo, S., 2018.
 Effects of abscisic acid agonist or antagonist applications on aroma volatiles and anthocyanin biosynthesis in grape berries. J. Hortic. Sci. Biotechnol. 93, 392–399. https://doi.org/10.1080/14620316.2017.1379364
- Katayama-Ikegami, A., Sakamoto, T., Shibuya, K., Katayama, T., Gao-Takai, M.,
 2016. Effects of Abscisic Acid Treatment on Berry Coloration and Expression
 of Flavonoid Biosynthesis Genes in Grape. Am. J. Plant Sci. 07, 1325–1336.
 https://doi.org/10.4236/ajps.2016.79127
- 1163 Kato, Y., Kamoshita, A., Yamagishi, J., 2008. Preflowering abortion reduces
 1164 spikelet number in upland rice (Oryza sativa L.) under water stress. Crop Sci.
 1165 48, 2389–2395. https://doi.org/10.2135/cropsci2007.11.0627
- Kawai, Y., Okamoto, M., Shiraishi, R., Fujisawa, H., 2014. Effects of Soil
 Application of the Naturally Occurring Form of Abscisic acid (S-ABA) on
 Development and Quality of Satsuma Mandarin Fruit. J. Agric. Sci. Tokyo
 Nogyo Daigaku 59, 114–120.
- Kazemi, M., Abdossi, V., Kalateh Jari, S., Ladan Moghadam, A.R., 2017. Effect of pre- and postharvest salicylic acid treatment on physio-chemical attributes in relation to the vase life of cut rose flowers. J. Hortic. Sci. Biotechnol. 93, 81– 90. https://doi.org/10.1080/14620316.2017.1344571
- 1174 Kettlewell, P., 2011. Economics of film antitranspirant application : a new approach
 1175 to protecting wheat crops from drought-induced yield loss. Int. J. Agric.
 1176 Manag. 1, 43–45.
- 1177 Kettlewell, P.S., 2014. Waterproofing wheat a re-evaluation of film
 1178 antitranspirants in the context of reproductive drought physiology. Outlook
 1179 Agric. 43, 25–29. https://doi.org/10.5367/oa.2014.0156
- Kettlewell, P.S., Heath, W.L., Haigh, I.M., 2010. Yield enhancement of droughted
 wheat by film antitranspirant application: rationale and evidence. Agric. Sci.
 01, 143–147. https://doi.org/10.4236/as.2010.13017
- 1183 Kettlewell, P.S., Holloway, J.R., 2010. Connecting developmental and process
 physiology to improve yield of droughted wheat with a film antitra nspirant.
 1185 Asp. Appl. Biol. 105, 23–24.
- Khaleghi, E., Arzani, K., Moallemi, N., Barzegar, M., 2015. The efficacy of kaolin
 particle film on oil quality indices of olive trees (Olea europaea L.) cv "Zard"
 grown under warm and semi-arid region of Iran. Food Chem. 166, 35–41.
 https://doi.org/10.1016/j.foodchem.2014.06.006
- Khalel, A. M. S., 2015. Effect of Drip Irrigation Intervals and Some Antitranspirants
 on the Water Status, Growth and Yield of Potato (Solanum tuberosum L.). J.
 Agric. Sci. Technol. B 5, 15–23. https://doi.org/10.17265/21616264/2015.01.002
- Khalil, S.E., Hussein, M.M., Teixeira, J.A., 2012. Roles of Antitranspirants in
 Improving Growth and Water Relations of Jatropha curcas L . Grown under
 Water Stress Conditions.

- 1197 Khan, W., Rayirath, U.P., Subramanian, S., Jithesh, M.N., Rayorath, P., Hodges, D.M., Critchley, A.T., Craigie, J.S., Orrie, J., Prithiviraj, B., 2009. Seaweed 1198 Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth 1199 Regul. 28, 386-399. 1200
- Kim, J., Malladi, A., Van Iersel, M.W., 2012. Physiological and molecular 1201 1202 responses to drought in Petunia: The importance of stress severity. J. Exp. Bot. https://doi.org/10.1093/jxb/ers285 1203
- Klucakova, M., 2018. Size and Charge Evaluation of Standard Humic and Fulvic 1204 1205 Acids as Crucial Factors to Determine Their Environmental Behavior and Impact. Front. Chem. 6, 1–8. https://doi.org/10.3389/fchem.2018.00235 1206
- Klucakova, M., Pelikan, P., Lapcik, L., Lapcikova, B., Kucerik, J., Kalab, M., 2000. 1207 Structure and properties of humic and fulvic acids. I. Properties and reactivity 1208 1209 of humic acids and fulvic acids. J. Polym. Mater. 17, 337-356.
- Knight, I.A., Rains, G.C., Culbreath, A.K., Toews, M.D., 2017. Thrips counts and 1210 1211 disease incidence in response to reflective particle films and conservation tillage in cotton and peanut cropping systems. Entomol. Exp. Appl. 162, 19-1212 29. https://doi.org/10.1111/eea.12523 1213
- Kok, D., Bal, E., 2018a. Leaf Removal Treatments Combined with Kaolin Particle 1214 Film Technique from Different Directions of Grapevine's Canopy Affect the 1215 1216 Composition of Phytochemicals of cv. Muscat Hamburg (V. Vinifera L.). Erwerbs-Obstbau 60, 39–45. https://doi.org/10.1007/s10341-017-0337-7 1217
- Kok, D., Bal, E., 2018b. Enhancing Skin Color and Phenolic Compounds of Cv. 1218 1219 Red Globe Table Grape (V. Vinifera L.) Utilizing of Different Preharvest Treatments. Erwerbs-Obstbau 60, 75-81. 1220
- 1221 https://doi.org/https://doi.org/10.1007/s10341-017-0352-8
- Koonjul, P.K., Minhas, J.S., Nunes, C., Sheoran, I.S., Saini, H.S., 2005. Selective 1222 1223 transcriptional down-regulation of anther invertases precedes the failure of pollen development in water-stressed wheat. J. Exp. Bot. 56, 179–190. 1224 https://doi.org/10.1093/jxb/eri018 1225
- Kostka and Aquatrols Corporation of America, 2018. Systemic mitigation of 1226 environmental stress on plants and the fruit thereof. U.S. Patent 9,980,485. 1227
- Koyama, R., de Assis, A.M., Yamamoto, L.Y., Borges, W.F., Sá Borges, R. de, 1228 Prudêncio, S.H., Roberto, S.R., 2014. Exogenous abscisic acid increases the 1229 anthocyanin concentration of berry and juice from "Isabel" grapes (Vitis 1230 labrusca L.). HortScience 49, 460-464. 1231
- https://doi.org/10.21273/hortsci.49.4.460 1232
- Koyama, R., Roberto, S.R., de Souza, R.T., Borges, W.F.S., Anderson, M., 1233 Waterhouse, A.L., Cantu, D., Fidelibus, M.W., Blanco-Ulate, B., 2018. 1234 Exogenous Abscisic Acid Promotes Anthocyanin Biosynthesis and Increased 1235 Expression of Flavonoid Synthesis Genes in Vitis vinifera × Vitis labrusca 1236 Table Grapes in a Subtropical Region. Front. Plant Sci. 9, 1–12. 1237 1238 https://doi.org/10.3389/fpls.2018.00323
- Kumar, K., Kumar, Y., Katiyar, N.K., 2018. Effect of plant geometry, nitrogen level 1239 1240 and antitranspirants on physiological growth, yield attributes, WUE and economics of mustard (Brassica juncea) under semi-arid conditions of 1241

- 1242 western Uttar Pradesh. J. Pharmacogn. Phytochem. 7, 226–229.
- Kumar, M., Singh, V.P., Arora, A., Singh, N., 2014. The role of abscisic acid (ABA)
 in ethylene insensitive Gladiolus (Gladiolus grandiflora Hort.) flower
 senescence. Acta Physiol. Plant. 36, 151–159.
 https://doi.org/10.1007/s11738-013-1395-6
- Latocha, P., Ciechocinska, M., Pietkiewicz, S., Kalaji, M., 2009. Preliminary
 assessment of antitranspirant Vapor Gard influence on Actinidia arguta
 growing under drought stress conditions. Ann. Warsaw Univ. Life Sci. SGGW. Hortic. Landsc. Archit. 30.
- Lee, S.C., Luan, S., 2012. ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant, Cell Environ. 35, 53–60. https://doi.org/10.1111/j.1365-3040.2011.02426.x
- Li, J., Wu, Y., Xie, Q., Gong, Z., 2017. Abscisic acid, in: Hormone Metabolism and
 Signaling in Plants. Academic, New York, p. pp.161-89.
 https://doi.org/10.1016/B978-0-12-811562-6.00005-0
- Li, S., Dami, I.E., 2016. Responses of Vitis vinifera 'Pinot gris' Grapevines to
 Exogenous Abscisic Acid (ABA): I. Yield, Fruit Quality, Dormancy, and
 Freezing Tolerance. J. Plant Growth Regul. 35, 245–255.
 https://doi.org/10.1007/s00344-015-9529-2
- Li, Y., Zhao, H., Duan, B., Korpelainen, H., Li, C., 2011. Effect of drought and ABA
 on growth, photosynthesis and antioxidant system of Cotinus coggygria
 seedlings under two different light conditions. Environ. Exp. Bot. 71, 107–113.
 https://doi.org/10.1016/j.envexpbot.2010.11.005
- Li, Z., Zhang, Y., Zhang, X., Merewitz, E., Peng, Y., Ma, X., Huang, L., Yan, Y.,
 2017. Metabolic Pathways Regulated by Chitosan Contributing to Drought
 Resistance in White Clover. J. Proteome Res. 16, 3039–3052.
 https://doi.org/10.1021/acs.jproteome.7b00334
- Liu, H., Searle, I.R., Mather, D.E., Able, A.J., Able, J.A., 2015. Morphological, physiological and yield responses of durum wheat to pre-anthesis waterdeficit stress are genotype-dependent. Crop Pasture Sci. 66, 1024–1038. https://doi.org/10.1071/CP15013
- Lobos, G.A., Acevedo-opazo, C., Guajardo-moreno, A., Valdés-gómez, H., Taylor,
 J.A., Laurie, V.F., 2015. effects of kaolin on Cab.Sauv.grapevine physiology
 and fruit quality. J. Int. Sci. Vigne Vin 49, 137–144.
- Lotfi, R., Pessarakli, M., Gharavi-Kouchebagh, P., Khoshvaghti, H., 2015.
 Physiological responses of Brassica napus to fulvic acid under water stress:
 Chlorophyll a fluorescence and antioxidant enzyme activity. Crop J. 3, 434–
 https://doi.org/10.1016/j.cj.2015.05.006
- Ludwig, N., Cabrini, R., Faoro, F., Gargano, M., Gomarasca, S., Iriti, M., Picchi, V.,
 Soave, C., 2010. Reduction of evaporative flux in bean leaves due to chitosan
 treatment assessed by infrared thermography. Infrared Phys. Technol. 53,
 65–70. https://doi.org/10.1016/j.infrared.2009.08.008
- Lukic, I., Stricevic, R., Đurovic, N., Cosic, M., 2012. Tomato Water Use Efficiency,
 in: International Conference on Water, Climate & Environment, , Ohrid,
 Makedonija (Vol. 28). BALWOIS, Ohrid, pp. 1–10.

- Luo, L.J., 2010. Breeding for water-saving and drought-resistance rice (WDR) in China. J. Exp. Bot. 61, 3509–3517. https://doi.org/10.1093/jxb/erq185
- Lurie, S., Ovadia, R., Nissim-Levi, A., Oren-Shamir, M., Kaplunov, T., Zutahy, Y.,
 Weksler, H., Lichter, A., 2009. Abscisic acid improves colour development in
 "Crimson Seedless" grapes in the vineyard and on detached berries. J. Hortic.
 Sci. Biotechnol. 84, 639–644.
- 1293 https://doi.org/10.1080/14620316.2009.11512579
- Ma, D., Sun, D., Wang, C., Qin, H., 2015. Silicon Application Alleviates Drought
 Stress in Wheat Through Transcriptional Regulation of Multiple Antioxidant
 Defense Pathways. https://doi.org/10.1007/s00344-015-9500-2
- Marko, V., Blommers, L.H.M., Bogya, S., Helsen, H., 2008. Kaolin particle films
 suppress many apple pests, disrupt natural enemies and promote woolly
 apple aphid. J. Appl. Entomol. 132, 26–35. https://doi.org/10.1111/j.14390418.2007.01233.x
- McArtney, S.J., Abrams, S.R., Woolard, D.D., Petracek, P.D., 2014. Effects of Sabscisic acid and (+)-8'-acetylene abscisic acid on fruit set and stomatal
 conductance in apple. HortScience 49, 763–768.
 https://doi.org/10.21273/hortsci.49.6.763
- Mcgrath, J.M., Lobell, D.B., 2013. Reduction of transpiration and altered nutrient
 allocation contribute to nutrient decline of crops grown in elevated CO2
 concentrations. Plant, Cell Environ. 36, 697–705.
 https://doi.org/10.1111/pce.12007
- Medina, V., Gilbert, M.E., 2015. Physiological trade-offs of stomatal closure under
 high evaporative gradients in fi eld grown soybean. Funct. plant Biol. 43, 40–
 51.
- Michael Glenn, D., Cooley, N., Walker, R., Clingeleffer, P., Shellie, K., 2010.
 Impact of kaolin particle film and water deficit on wine grape water use
 efficiency and plant water relations. HortScience 45, 1178–1187.
 https://doi.org/10.21273/hortsci.45.8.1178
- Mikiciuk, G., Mikiciuk, M., Ptak, P., 2015. The effects of anitranspirant di-1-p menthene on some physiological traits of strawberry. J. Ecol. Eng. 16, 161–
 167. https://doi.org/10.12911/22998993/59366
- Mikiciuk, G., Mozdzer, E., Mikiciuk, M., Chełpiński, P., 2013. The effect of
 antitranspirant on the content of microelements and trace elements in sweet
 cherry leaves and fruits. J. Ecol. Eng. 14, 36–38.
 https://doi.org/10.5604/2081139X.1066229
- Miranda, M.P., Zanardi, O.Z., Tomaseto, A.F., Volpe, H.X.L., Garcia, R.B., Prado,
 E., 2018. Processed kaolin affects the probing and settling behavior of
 Diaphorina citri (Hemiptera: Lividae). Pest Manag. Sci. 74, 1964–1972.
 https://doi.org/10.1002/ps.4901
- Moftah, A.E., Al-humaid, A.I., 2005. Effects of Kaolin and Pinolene Film-forming
 Polymers on Water Relations and Photosynthetic Rate of Tuberose (
 Polianthes tuberosa L .). Agric. Sci. 18, 35–49.
- Mohawesh, O.E., Al-Absi, K.M., Tadros, M.J., 2010. Effect of antitranspirant
 application on physiological and biochemical parameters of three orange

- 1332 cultivars grown under progressive water deficit. Adv. Hortic. Sci. 24, 183–194.
- Moradi, P., Pasari, B., Fayyaz, F., 2017. The effects of fulvic acid application on
 seed and oil yield of safflower cultivars. J. Cent. Eur. Agric. 18, 584–597.
 https://doi.org/10.5513/JCEA01/18.3.1933
- Munemasa, S., Hauser, F., Park, J., Waadt, R., Brandt, B., Schroeder, J.I., 2015.
 Mechanisms of abscisic acid-mediated control of stomatal aperture. Curr.
 Opin. Plant Biol. 28, 154–162.
- 1339 https://doi.org/10.1080/10937404.2015.1051611.INHALATION
- Mupambi, G., Reynolds, J.S., Steyn, W.J., 2014. Foliar S-ABA application does
 not reduce sunburn in "Granny Smith" apple. Acta Hortic. 1042, 303–309.
 https://doi.org/10.17660/ActaHortic.2014.1042.36
- Nandi, S., 1985. Studies on the cytogenetic effect of some mercuric fungicides.
 Cytologia (Tokyo). 50, 921–926.
- Nateghi, M., Paknejad, F., Moarefi, M., 2013. Effect of Concentrations and Time of
 Kaolin Spraying on Wheat Aphid. J. Biol. Environ. Sci. 7, 163–168.
- Nawaz, F., Ahmad, R., Waraich, E.A., Naeem, M.S., Shabbir, R.N., 2012. Nutrient
 uptake, physiological responses, and yield attributes of wheat (triticum
 aestivum I.) exposed to early and late drought stress. J. Plant Nutr. 35, 961–
 974. https://doi.org/10.1080/01904167.2012.663637
- Neto, F. J. D., Adilson, P.J., Daniel, C., Silvia, R.C., Fernando, F.P., Giuseppina,
 P.P.L., Renata, K., Sergio, R.R., Marco, A.T., 2017. Post-harvest
 conservation of Rubi grapes treated with abscisic acid. African J. Biotechnol.
 16, 1758–1763. https://doi.org/10.5897/ajb2017.16134
- Neto, Francisco José Domingues, Tecchio, M.A., Junior, A.P., Vedoato, B.T.F.,
 Lima, G.P.P., Roberto, S.R., 2017. Effect of ABA on colour of berries,
 anthocyanin accumulation and total phenolic compounds of "Rubi" table
 grape (Vitis vinifera). Aust. J. Crop Sci. 11, 199–205.
 https://doi.org/10.21475/ajcs.17.11.02.p269
- Noreen, S., Ashraf, M., Akram, N.A., 2011. Does exogenous application of
 salicylic acid improve growth and some key physiological attributes in
 sunflower plants subjected to salt stress? J. Appl. Bot. Food Qual. 84, 169–
 177.
- Nunez-Lopez, D.C., Ramirez-Godoy, A., Restrepo-Diaz, H., 2015. Impact of kaolin particle film and synthetic insecticide applications on whitefly populations Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) and physiological attributes in bean (Phaseolus vulgaris) crop. HortScience 50, 1503–1508.
 https://doi.org/10.21273/hortsci.50.10.1503
- Oh, H.D., Yu, D.J., Chung, S.W., Chea, S., Lee, H.J., 2018. Abscisic acid
 stimulates anthocyanin accumulation in 'Jersey' highbush blueberry fruits
 during ripening. Food Chem. 244, 403–407.
 https://doi.org/10.1016/j.foodchem.2017.10.051
- Olivares, D., Contreras, C., Muñoz, V., Rivera, S., González-Agüero, M.,
 Retamales, J., Defilippi, B.G., 2017. Relationship among color development,
 anthocyanin and pigment-related gene expression in 'Crimson Seedless'
 grapes treated with abscisic acid and sucrose. Plant Physiol. Biochem. 115,

- 1377 286–297. https://doi.org/10.1016/j.plaphy.2017.04.007
- Onyemaobi, I., Liu, H., Siddique, K.H.M., Yan, G., 2017. Both Male and Female
 Malfunction Contributes to Yield Reduction under Water Stress during Meiosis
 in Bread Wheat. Front. Plant Sci. 7.
- Ouerghi, F., Ben-Hammouda, M., Teixeira Da Silva, J.A., Albouchi, A., Bouzaien,
 G., Aloui, S., Cheikh-M'hamed, H., Nasraoui, B., 2014. The Effects of Vapor
 Gard on some Physiological Traits of Durum Wheat and Barley Leaves under
 Water Stress. Agric. Conspec. Sci. 79, 261–267.
- Padmalatha, K., Weksler, H., Mugzach, A., Acheampong, A.K., Zheng, C., HalalyBasha, T., Or, E., 2017. ABA application during flowering and fruit set reduces
 berry number and improves cluster uniformity. Am. J. Enol. Vitic. 68, 275–
 282. https://doi.org/10.5344/ajev.2017.16079
- Page, T., Awarau, W., 2012. Performance of agarwood (Aquilaria crassna)
 seedling transplants improved by shade and fertiliser. For. Ecol. Manage.
 265, 258–269. https://doi.org/10.1016/j.foreco.2011.10.041
- Palliotti, A., Panara, F., Famiani, F., Sabbatini, P., Howell, G.S., Silvestroni, O.,
 Poni, S., 2013. Postveraison application of antitranspirant di-1-p-menthene to
 control sugar accumulation in sangiovese grapevines. Am. J. Enol. Vitic. 64,
 378–385. https://doi.org/10.5344/ajev.2013.13015
- Palliotti, A., Poni, S., Berrios, J.G., Bernizzoni, F., 2010. Vine performance and
 grape composition as affected by early-season source limitation induced with
 anti-transpirants in two red Vitis vinifera L. cultivars. Aust. J. Grape Wine Res.
 16, 426–433. https://doi.org/10.1111/j.1755-0238.2010.00103.x
- Pandey, P.P., Sharma, R., Neelkanthe, S.S., 2017. Climate change: combating
 drought with antitranspirants and super absorbent. Plant Arch. 17, 1146–
 1156.
- Pang, J., Turner, N.C., Khan, T., Du, Y., Xiong, J., Colmer, T.D., Devilla, R.,
 Stefanova, K., Siddique, K.H.M., 2017. Response of chickpea (Cicer
 arietinum L .) to terminal drought : leaf stomatal conductance , pod abscisic
 acid concentration , and seed set. J. Exp. Bot. 68, 1973–1985.
 https://doi.org/10.1093/jxb/erw153
- Panicker, G.K., Matta, F.B., 2016. Effect of abscisic acid and paclobutrazol on cold
 hardiness of rabbiteye blueberry (Vaccinium ashei Reade). Acta Hortic. 1117,
 315–320. https://doi.org/10.17660/ActaHortic.2016.1117.51
- Park, S., Mills, S.A., Moon, Y., Waterland, N.L., 2016. Evaluation of
 antitranspirants for enhancing temporary water stress tolerance in bedding
 plants. Horttechnology 26, 444–452.
- Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S.,
 Santiago, J., Rodrigues, A., Chow, T.F.F., Alfred, S.E., Bonetta, D.,
- 1416 Finkelstein, R., Provart, N.J., Desveaux, D., Rodriguez, P.L., McCourt, P.,
- 1417 Zhu, J.K., Schroeder, J.I., Volkman, B.F., Cutler, S.R., 2009. Abscisic acid
- inhibits type 2C protein phosphatases via the PYR/PYL family of START
 proteins. Science (80-.). 324, 1068–1071.
- 1420 https://doi.org/10.1126/science.1173041
- 1421 Pascual, S., Cobos, G., Seris, E., González-Núñez, M., 2010. Effects of processed

kaolin on pests and non-target arthropods in a Spanish olive grove. J. Pest 1422 Sci. (2004). 83, 121-133. https://doi.org/10.1007/s10340-009-0278-5 1423 1424 Patane, C., Pellegrino, A., DI Silvestro, I., 2018. Effects of calcium carbonate application on physiology, yield and quality of field-grown tomatoes in a semi-1425 arid Mediterranean climate. Crop Pasture Sci. 69, 411-418. 1426 https://doi.org/10.1071/CP17424 1427 Patil, B.B., De, R., 1978. Studies on the effect of nitrogen fertilizer, row spacing 1428 1429 and use of antitranspirants on rapeseed (Brassica campestris) grown under 1430 dryland conditions. J. Agric. Sci. UK 91, 257-264. Patil, M.D., Dhindwal, A.S., Rajanna, G.A., 2014. Integrated moisture stress 1431 management in wheat (Triticum aestivum). Indian J. Agron. 59, 629-633. 1432 1433 Percival, G.C., Boyle, S., 2009. Evaluation of film forming polymers to control apple scab (Venturia inaequalis (Cooke) G. Wint.) under laboratory and field 1434 conditions. Crop Prot. 28, 30–35. https://doi.org/10.1016/j.cropro.2008.08.005 1435 Pettit, R.E., 2004. Organic matter, humus, humate, humic acid, fulvic acid and 1436 humin: their importance in soil fertility and plant health [WWW Document]. CTI 1437 1438 Res. URL http://www.harvestgrow.com/.pdf web site/Humates General 1439 Info.pdf (accessed 6.20.19). 1440 Plaut, Z., Magril, Y., Kedem, U., 2004. A new film forming material, which reduces water vapour conductance more than CO2fixation in several horticultural 1441 crops. J. Hortic. Sci. Biotechnol. 79, 528-532. 1442 1443 https://doi.org/10.1080/14620316.2004.11511800 Pompodakis, N.E., Terry, L.A., Joyce, D.C., Papadimitriou, M.D., Lydakis, D.E., 1444 1445 Darras, A.I., 2010. Effects of storage temperature and abscisic acid treatment 1446 on the vase-life of cut "First Red" and "Akito" roses. J. Hortic. Sci. Biotechnol. 85, 253-259. https://doi.org/10.1080/14620316.2010.11512664 1447 1448 Prager, S.M., Vaughn, K., Lewis, M., Nansen, C., 2013. Oviposition and leaf probing by Bactericera cockerelli (Homoptera: Psyllidae) in response to a 1449 1450 limestone particle film or a plant growth regulator applied to potato plants. Crop Prot. 45, 57-62. 1451 1452 Puli, M.R., Raghavendra, A.S., 2012. Pyrabactin, an ABA agonist, induced stomatal closure and changes in signalling components of guard cells in 1453 abaxial epidermis of Pisum sativum 63, 1349-1356. 1454 https://doi.org/10.1093/jxb/err364 1455 Racsko, J., Marmor, F., Hopkins, C.R., Petracek, P., Silverman, F.P., Fritts, R., 1456 Liu, X., Woolard, D., Lopez, J., Leep, D., Pienaar, J., 2014. Use of S-abscisic 1457 acid (ConTego[™] SL) in vegetable production. Acta Hortic. 1042, 243–253. 1458 1459 https://doi.org/10.17660/ActaHortic.2014.1042.30 Raghavan, V., 1988. Anther and Pollen Development in Rice (Oryza Sativa). Am. 1460 J. Bot. 75, 183–196. 1461 Ramírez-Godoy, A., Puentes-Peréz, G., Restrepo-Díaz, H., 2018. Evaluation of 1462 the effect of foliar application of kaolin clay and calcium carbonate on 1463 populations of Diaphorina citri (Hemiptera: Liviidae) in Tahiti lime. Crop Prot. 1464 109, 62-71. https://doi.org/10.1016/j.cropro.2018.01.012 1465

- Reddy, A.N., Sharma, R., Sravani, M., 2018. Impact of Different Levels of
 Irrigation and Antitranspirant upon Wheat (Triticum aestivum L.) PhysioBiochemical and Economical Yield under Soil Application of Hydrogel. Int. J.
 Curr. Microbiol. Appl. Sci. 7, 3361–3368.
- 1470 https://doi.org/10.20546/ijcmas.2018.709.417
- 1471 Rehman, M., Singh, Z., Khurshid, T., 2018. Scientia Horticulturae Pre-harvest
 1472 spray application of abscisic acid (S-ABA) regulates fruit colour development
 1473 and quality in early maturing M7 Navel orange. Sci. Hortic. (Amsterdam). 229,
 1474 1–9. https://doi.org/10.1016/j.scienta.2017.10.012
- Roussos, P.A., Denaxa, N.K., Damvakaris, T., Stournaras, V., Argyrokastritis, I.,
 2010. Effect of alleviating products with different mode of action on physiology
 and yield of olive under drought. Sci. Hortic. (Amsterdam). 125, 700–711.
 https://doi.org/10.1016/j.scienta.2010.06.003
- Ruan, Y.L., Jin, Y., Yang, Y.J., Li, G.J., Boyer, J.S., 2010. Sugar input,
 metabolism, and signaling mediated by invertase: Roles in development, yield
 potential, and response to drought and heat. Mol. Plant 3, 942–955.
 https://doi.org/10.1093/mp/ssq044
- Sanbagavalli, S., Vaiyapuri, K., Marimuthu, S., 2017. Impact of mulching and antitranspirants on growth and yield of soybean (Glycine max L. Merril). Adv.
 Environ. Biol. 11, 84–89.
- Sandhu, A.K., Gray, D.J., Lu, J., Gu, L., 2011. Effects of exogenous abscisic acid
 on antioxidant capacities, anthocyanins, and flavonol contents of muscadine
 grape (Vitis rotundifolia) skins. Food Chem. 126, 982–988.
 https://doi.org/10.1016/j.foodchem.2010.11.105
- Santos, B.M., Salame-Donoso, T.P., Whidden, A.J., 2012. Reducing sprinkler
 irrigation volumes for strawberry transplant establishment in Florida.
 Horttechnology 22, 224–227. https://doi.org/10.21273/horttech.22.2.224
- Saradadevi, R., Palta, J.A., Siddique, K.H.M., 2017. ABA-Mediated Stomatal
 Response in Regulating Water Use during the Development of Terminal
 Drought in Wheat. Front. Plant Sci. 8, 1–14.
 https://doi.org/10.3389/fpls.2017.01251
- Schrader, L.E., 2011. Scientific basis of a unique formulation for reducing sunburn
 of fruits. HortScience 46, 6–11.
- Segura-Monroy, S., Uribe-Vallejo, A., Ramirez-Godoy, A., Restrepo-Diaz, H.,
 2015. Effect of kaolin application on growth, water use efficiency, and leaf
 epidermis characteristics of Physalis peruviana L. seedlings under two
 irrigation regimes. J. Agric. Sci. Technol. 17, 1585–1596.
- Sharma, R.R., Datta, S.C., Varghese, E., 2018. Effect of Surround WP®, a kaolinbased particle film on sunburn, fruit cracking and postharvest quality of
 'Kandhari' pomegranates. Crop Prot. 114, 18–22.
 https://doi.org/10.1016/j.cropro.2018.08.009
- Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L.,
 Koekemoer, F., de Groot, S., Soole, K., Langridge, P., 2017. Early Flowering
 as a Drought Escape Mechanism in Plants: How Can It Aid Wheat
 Production? Front. Plant Sci. 8, 1–8. https://doi.org/10.3389/fpls.2017.01950

- Shellie, K.C., King, B.A., 2013. Kaolin particle film and water deficit influence red
 winegrape color under high solar radiation in an arid climate. Am. J. Enol.
 Vitic. 64, 214–222. https://doi.org/10.5344/ajev.2013.12067
- Shi, T.Q., Peng, H., Zeng, S.Y., Ji, R.Y., Shi, K., Huang, H., Ji, X.J., 2017.
 Microbial production of plant hormones: Opportunities and challenges.
 Bioengineered 8, 124–128. https://doi.org/10.1080/21655979.2016.1212138
- Shimizu-Yumoto, H., Ichimura, K., 2009. Abscisic acid, in combination with
 sucrose, is effective as a pulse treatment to suppress leaf damage and
 extend foliage vase-life in cut Eustoma flowers. J. Hortic. Sci. Biotechnol. 84,
 107–111. https://doi.org/10.1080/14620316.2009.11512489
- Shinohara, T., Leskovar, D.I., 2014. Effects of ABA, antitranspirants, heat and drought stress on plant growth, physiology and water status of artichoke transplants. Sci. Hortic. (Amsterdam).
- 1524 https://doi.org/10.1016/j.scienta.2013.10.045
- Silva, C.A.D., Ramalho, F.S., 2013. Kaolin spraying protects cotton plants against
 damages by boll weevil Anthonomus grandis Boheman (Coleoptera:
 Curculionidae). J. Pest Sci. (2004). 86, 563–569.
- 1528 https://doi.org/10.1007/s10340-013-0483-0
- Sinclair, T.R., Bingham, G.E., Lemon, E.R., Allen, L.H., 1975. Water Use
 Efficiency of Field-grown Maize during Moisture Stress. Plant Physiol. 56, 245–249. https://doi.org/10.1104/pp.56.2.245
- Singh, A.S., Sharma, R., Burondkar, S.S., Dubey, S., 2018. Efficacy of Pusa
 Hydrogel and Chitosan on Wheat (Triticum aestivum L.) Growth and Yield
 under Water Deficit Condition. Int. J. Curr. Microbiol. Appl. Sci. 7, 3064–3071.
 https://doi.org/10.20546/ijcmas.2018.709.382
- Singh, K., Mcclean, C.J., Büker, P., Hartley, S.E., Hill, J.K., 2017. Mapping
 regional risks from climate change for rainfed rice cultivation in India. Agric.
 Syst. 156, 76–84. https://doi.org/10.1016/j.agsy.2017.05.009
- Singh, S., Arora, N.K., Gill, M.I.S., Gill, K.S., 2016. Pre-harvest application of
 abscisic acid improves the fruit quality of flame seedless grapes (Vitis vinifera
 l.). The Bioscan 11, 1351–1355.
- Solarova, J., Pospisilova, J., Slavik, B., 1981. Gas exchange regulation by
 changing of epidermal conductance with antitranspirants. Photosynthetica 15,
 365–400.
- Song, J., Shellie, K.C., Wang, H., Qian, M.C., 2012. Influence of deficit irrigation
 and kaolin particle film on grape composition and volatile compounds in
 Merlot grape (Vitis vinifera L.). Food Chem. 134, 841–850.
 https://doi.org/10.1016/i foodchem.2012.02.193
- 1548 https://doi.org/10.1016/j.foodchem.2012.02.193
- Sootahar, M.K., Zeng, X., Su, S., Wang, Y., Bai, L., 2019. molecules The E ff ect
 of Fulvic Acids Derived from Di ff erent Materials on Changing Properties of
 Albic Black Soil in the Northeast Plain of China. Molecules 24, 1–12.
- Sreenivasulu, N., Harshavardhan, V.T., Govind, G., Seiler, C., Kohli, A., 2012.
 Contrapuntal role of ABA: Does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506, 265–273. https://doi.org/10.1016/j.gene.2012.06.076

- Tacoli, F., Mori, N., Pozzebon, A., Cargnus, E., Da Vià, S., Zandigiacomo, P.,
 Duso, C., Pavan, F., 2017a. Control of scaphoideus titanus with natural
 products in organic vineyards. Insects 8, 1–10.
 https://doi.org/10.3390/insects8040129
- Tacoli, F., Pavan, F., Cargnus, E., Tilatti, E., Pozzebon, A., Zandigiacomo, P.,
 2017b. Efficacy and Mode of Action of Kaolin in the Control of Empoasca vitis
 and Zygina rhamni (Hemiptera: Cicadellidae) in Vineyards. J. Econ. Entomol.
 110, 1164–1178. https://doi.org/10.1093/jee/tox105
- Tepkaew, T., Duangsrisai, S., Vaithanomsat, P., Jutamanee, K., 2014.
 Photosynthetic performance, carbohydrate contents and yield affected by
 kaolin particle film application in grape, in: The International Bioscience
 Conference and the 5th Joint International PSU-UNS Bioscience. Phuket, pp.
 61–65.
- Thorat, D., Tandel, Y., Thakriya, H., 2018. Effect of antitranspirants on growth and
 survival of epicotyl grafts of mango (Mangifera indica L.) cv. kesar. Int. J.
 Chem. Stud. 6, 29–31.
- Travaglia, C., Reinoso, H., Cohen, A., Luna, C., Tommasino, E., Castillo, C.,
 Bottini, R., 2010. Exogenous ABA increases yield in field-grown wheat with
 moderate water restriction. J. Plant Growth Regul. 29, 366–374.
 https://doi.org/10.1007/s00344-010-9147-y
- 1576 Tworkoski, T., Wisniewski, M., Artlip, T., 2011. Application of BABA and s-ABA for 1577 drought resistance in apple. J. Appl. Hortic. 13, 85–90.
- Tworkoski, T.J., Michael Glenn, D., Puterka, G.J., 2002. Response of bean to
 applications of hydrophobic mineral particles. Can. J. Plant Sci. 82, 217–219.
 https://doi.org/10.4141/p01-008
- Ulameer, O.Q.A., Ahmed, S.A.A.H., 2018. Anti-transpirant role in improving the
 morphological growth traits of maize plants subjected to water stress ! Res.
 Crop. 19, 593–603. https://doi.org/10.31830/2348-7542.2018.0001.35
- United Nations, 2017. World population projected to reach 9.8 billion in 2050, and
 11.2 billion in 2100. Dep. Econ. Soc. Aff. News, 21 June 2017.
 https://doi.org/10.4135/9781452234311.n318
- Vaio, C. Di, Marallo, N., Lorenzo, R. Di, Pisciotta, A., 2019. Anti-Transpirant
 Effects on Vine Physiology , Berry and Wine Composition of cv . Aglianico (
 Vitis vinifera L .) Grown in South Italy. Agronomy 9, 1–16.
 https://doi.org/10.3390/agronomy9050244
- Vatandoost, S., Davarynejad, G., Tehranifar, A., 2017. Impact of kaolin particle
 film on light extinction coefficient and radiation use efficiency of pistachio (
 Pistachia vera). AgroLife Sci. J. 6, 214-218.
- Wang, J., Xia, H., Lin, L.J., He, H., Liang, D., Lv, X.L., 2016. Exogenous abscisic
 acid increases resistances against abiotic stress and improve fruit quality of
 grape. J. Anim. Plant Sci. 26, 1–13.
- Wang, Yanping, Wang, Ya, Ji, K., Dai, S., Hu, Y., Sun, L., Li, Q., Chen, P., Sun,
 Y., Duan, C., Wu, Y., Luo, H., Zhang, D., Guo, Y., Leng, P., 2013. The role of
 abscisic acid in regulating cucumber fruit development and ripening and its
 transcriptional regulation. Plant Physiol. Biochem. 64, 70–79.

- 1601 https://doi.org/10.1016/j.plaphy.2012.12.015
- Waterland, N.L., Campbell, C.A., Finer, J.J., Jones, M.L., 2010a. Abscisic acid
 application enhances drought stress tolerance in bedding plants. HortScience
 45, 409–413. https://doi.org/10.21273/hortsci.45.3.409
- Waterland, N.L., Finer, J.J., Jones, M.L., 2010b. Benzyladenine and gibberellic
 acid application prevents abscisic acid-induced leaf chlorosis in pansy and
 Viola. HortScience 45, 925–933.
- Waterland, N.L., Finer, J.J., Jones, M.L., 2010c. Abscisic acid applications
 decrease stomatal conductance and delay wilting in drought-stressed
 chrysanthemums. Horttechnology 20, 896–901.
- Weaver, G.M., van Iersel, M.W., 2014. Antitranspirational efficacy and longevity of
 abscisic acid and a synthetic abscisic acid analog in pansies (viola
 xwittrockiana). HortScience 49, 779–784.
 https://doi.org/10.21273/bortsci.49.6.779
- 1614 https://doi.org/10.21273/hortsci.49.6.779
- Weerakkody, P., Jobling, J., Infante, M.M., Rogers, G., 2010. The effect of
 maturity, sunburn and the application of sunscreens on the internal and
 external qualities of pomegranate fruit grown in Australia Scientia
 Horticulturae The effect of maturity, sunburn and the application of
 sunscreens on the internal and. https://doi.org/10.1016/j.scienta.2009.12.003
- Weerasinghe, M.M., Kettlewell, P.S., Grove, I.G., Hare, M.C., 2016. Evidence for
 improved pollen viability as the mechanism for filmantitranspirant mitigation of
 drought damage to wheat yield. Crop Pasture Sci. 67, 137–146.
 https://doi.org/10.1071/CP15356
- Wheeler, S., Loveys, B., Ford, C., Davies, C., 2009. The relationship between the
 expression of abscisic acid biosynthesis genes, accumulation of abscisic acid
 and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Aust. J.
 Grape Wine Res. 15, 195–204. https://doi.org/10.1111/j.17550238.2008.00045.x
- Williamson, R.E., 1963. The Effect of a Transpiration-Suppressant on Tobacco
 Leaf Temperature. Soil Sci. Soc. Am. J. 27, pp.106-106.
- Woolley, J.T., 1967. Relative Permeabilities of Plastic Films to Water and Carbon
 Dioxide. Plant Physiol. 42, 641–643. https://doi.org/10.1104/pp.42.5.641
- Xu, Z., Jiang, Y., Jia, B., Zhou, G., 2016. Elevated-CO2 response of stomata and
 its dependence on environmental factors. Front. Plant Sci. 7, 1–15.
 https://doi.org/10.3389/fpls.2016.00657
- 1636 Xudan, X., 1986. The effect of foliar application of fulvic acid on water use, nutrient
 1637 uptake and yield in wheat. Aust. J. Agric. Res. 37, 343–350.
 1638 https://doi.org/10.1071/AR9860343
- Yamamoto, L.Y., Koyama, R., De Assis, A.M., Borges, W.F.S., De Oliveira, I.R.,
 Roberto, S.R., 2015. Color of berry and juice of "Isabel" grape treated with
 abscisic acid in different ripening stages. Pesqui. Agropecu. Bras. 50, 1160–
 1167. https://doi.org/10.1590/S0100-204X2015001200005
- Yang, H., Li, H., Rao, L. qun, Long, G. you, Shi, G. rong, Peng, G. ping, 2011.
 Effects of exogenous ABA on antioxidant enzymes in detached citrus leaves

- treated by rapid freezing. African J. Biotechnol. 10, 9779–9785.
- Yang, W., Guo, S., Li, P., Yu, J., 2018. Foliar antitranspirant and soil
 superabsorbent hydrogel affect photosynthetic gas exchange and water use
 efficiency of maize grown under low rainfall conditions. J. Sci. Food Agric. 99,
 350–359. https://doi.org/10.1002/jsfa.9195
- Yee, W.L., 2012. Behavioural responses by Rhagoletis indifferens (Dipt.,
 Tephritidae) to sweet cherry treated with kaolin- and limestone-based
 products. J. Appl. Entomol. 136, 124–132. https://doi.org/10.1111/j.14390418.2010.01603.x
- Yu, J., Ge, H., Wang, X., Tang, R., Wang, Y., Zhao, F., Lan, W., Luan, S., Yang,
 L., 2017. Overexpression of Pyrabactin Resistance-Like Abscisic Acid
 Receptors Enhances Drought, Osmotic, and Cold Tolerance in Transgenic
 Poplars. Front. Plant Sci. 8, 1–13. https://doi.org/10.3389/fpls.2017.01752
- Zadoks, J., Chang, T., Konzak, C., 1974. A decimal growth code for the growth
 stages of cereals. Weed Res. 14, 415–421.
- Zhang, Xiaoyu, Zhang, Xiying, Liu, X., Shao, L., Sun, H., Chen, S., 2016.
 Improving Winter Wheat Performance by Foliar Spray of ABA and FA Under
 Water Deficit Conditions. J. Plant Growth Regul. 35, 83–96.
 https://doi.org/10.1007/s00344-015-9509-6
- Zhang, Y., Dami, I., 2012. Improving freezing tolerance of "chambourcin"
 grapevines with exogenous abscisic acid. HortScience 47, 1750–1757.
 https://doi.org/10.21273/hortsci.47.12.1750
- Zhang, Y., Mechlin, T., Dami, I., 2011. Foliar application of abscisic acid induces
 dormancy responses in greenhouse-grown grapevines. HortScience 46,
 1271–1277. https://doi.org/10.21273/hortsci.46.9.1271
- Zhimang, G., Xiaorong, W., Xueyuan, G., Jing, C., Liansheng, W., Lemei, D.,
 Yijun, C., 2001. Effects of fulvic acid on the bioavailability of rare earth
- 1672 elements and GOT enzyme activity in wheat (Triticum aestivum).
- 1673 Chemosphere 44, 545–551. https://doi.org/10.1016/S0045-6535(00)00484-7
- Zhong, Y., Ciafre, C., 2011. Role of ABA in ethylene-independent Iris flower
 senescence. Food Eng. 9, 261–266.