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Abstract:  

Ecological reconstruction on bauxite residue disposal areas is regarded as an effective 

approach to eliminate potential environmental risks. Establishment of microbial 

communities and associated functions may improve physical and chemical properties, 

and may stimulate soil formation in bauxite residue. Spontaneous colonization at a 

disposal area in Shandong Province, China, over 50 years, indicated that natural 

weathering can ameliorate residues, and in turn, support the establishment of 

vegetation communities. Residue samples were collected from unrestored, poorly 

restored and well restored areas to investigate the development of microbial 

communities and associated functions. Microbiota significantly developed after long 

term natural restoration. Microbial biomass, respiration and enzyme activities 

significantly increased in restored bauxite residue, whereas the metabolic quotient 
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significantly decreased. In addition, the long-term natural restoration significantly 

shaped the microbial structure from alkalophilic and halophilic assemblages 

(Firmicutes and Actinobacteria) to neutrophilic assemblages (Acidobacteria and 

Planctomycetes). Both microbial communities and associated functions in well 

restored residue had high similarity with that in natural soil, indicating that long term 

restoration created diverse soil-like microbial communities and functions. 

Redundancy analysis (RDA) revealed that TN, followed by Na+, ESP, SOC, AP and 

pH were the major influence factors in the development of microbial communities in 

bauxite residue. These findings provide us a biogeochemical perspective to reveal soil 

formation in bauxite residue and suggest that nutrient supplement and regulation of 

salinity-alkalinity may benefit for the establishment of microbial communities and 

functions in bauxite residue.  

 

KEYWORDS: Bauxite residue; Natural restoration; Microbial functions; Microbial 

communities; Soil formation in bauxite residue; 

 

1｜ INTRODUCTION 

Bauxite residue is an alkaline product which is generated from the extraction of 

alumina by the Bayer process (Xue et al., 2016). To date, the global inventory of 

bauxite residues has reached over 4.6 billion tons and increases by 200 million tons 

per year, thus occupying large areas of the landscape (Xue et al., 2019b). In addition, 

ecological security issues including wind/water erosion and fugitive dust pollution 

have become increasingly prominent the surrounding environments (Gelencser et al., 

2011; Ruyters et al., 2011). Ecological reconstruction is theoretically, a most 

promising option to manage such large volumes of bauxite residue. However, it often 
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fails due to the lack of adequate soil which is beneficial to support vegetation 

establishment. Currently, converting bauxite residue into a soil-like medium, has been 

advocated to achieve the ultimate reconstruction of a self-sustaining ecosystem 

(Santini & Banning, 2016).  

The adverse physiochemical properties including extreme high alkalinity, fine 

grained structure and nutrient deficiency, hinder the soil formation in bauxite residue 

(Jones & Haynes, 2011). Various chemical and physical amendments have been 

applied to improve residue properties and encourage soil formation, but reported 

results have not been satisfactory (Courtney, Jordan, & Harrington, 2009; Zhu et al., 

2017; Xue et al., 2019a; Xue et al., 2020). Our previous studies have demonstrated 

that natural weathering process may ameliorate tailings to the extent that it could 

support vegetation (Kong et al., 2017; Zhu et al., 2018). Natural weathering promoted 

the dissolution of alkaline minerals such as calcite, hydrogarnet, and sodalite, and thus 

decrease the alkalinity and salinity in bauxite residue, consequently benefitting plant 

growth (Kong et al., 2017; Kong et al., 2018). In addition, natural weathering also 

induced the formation of stable aggregates, thus improving physical conditions for 

plant growth (Zhu et al., 2016; Zhu et al., 2018). These changes of physical and 

chemical properties indicated that long-term natural weathering converted bauxite 

residue to soil-like medium, which can support vegetation cover. However, the soil 

formation is not only the development of chemical and physical properties, but also 

largely associated with the development of microbial communities and 

biogeochemical functions (Mummey, Stahl, & Buyer, 2002). 

Microbial communities are essential promoters in biogeochemical cycling and 

ecological function construction, and may stimulate soil formation in mine tailings. 

Microbiota may assisted pH neutralization (You, Zhang, Ye, & Huang, 2019), 
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accumulate nutrients (Liu, Song, Wang, Li, & Shu, 2012), and form stable aggregates 

(Kumar, Singh, & Ghosh, 2018). Furthermore, the establishment of stable plant 

communities is closely correlated to microbial communities (Grandlic, Mendez, 

Chorover, Machado, & Maier, 2008). For example, high numbers of autotrophic iron- 

and sulfur-oxidizing bacteria are commonly associated with plant death by inducing 

soil acidification in mine tailings (Chen et al., 2015). On the contrary, neutrophilic 

heterotrophic bacteria often assist the establishment of stable plant communities by 

performing diverse ecological functions associated with nutrient cycling (Chen et al., 

2013). Thus, a better understanding of the microbial assemblage and its succession, 

especially the key geochemical driving factors, is of great importance for the 

restoration of mine tailings. 

Nevertheless, the process of microbial succession in bauxite residue is poorly 

understood, resulting in restoration failures. The extreme environmental conditions 

only permit colonization by tolerant microbial communities, which results in 

relatively low microbial diversity and limited biogeochemical processes (Krishna, 

Babu, & Reddy, 2014). The input of organic solids, including biosolids and compost, 

may encourage microbial establishment (Jones, Haynes, & Phillips, 2010, 2011), and 

thereby enhancing plant growth (Schmalenberger, O'Sullivan, Gahan, Cotter, & 

Courtney, 2013). To date, no studies have investigated microbial community 

succession in bauxite residue without the absence of targeted rehabilitation efforts, for 

example, addition of amendments. 

The present study investigated microbial communities and associated 

geochemical functions in bauxite residue undergoing natural restoration. The 

objectives of this study were to (1) characterize the development of microbial 

communities and associated functions, (2) determine the influence factors to 
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microbial communities and (3) evaluate the differences in microbial communities in 

restored bauxite residue and natural soil.  

2｜ MATERIALS AND METHODS 

2.1｜Site description and sampling 

This study was carried out at a Bauxite Residue Disposal Area (BRDA) in Zibo 

City, Shandong Province, China. This region has a typical temperate continental 

monsoon, with an average annual precipitation of 1346 mm and an average annual 

temperature of 16.0 ℃. Affected by the monsoon, climate change has obvious 

seasonality, which showed hot and rainy in summer, cold and dry in winter. 

After over 50 years of natural restoration, plant communities dominated by 

perennial herbs and woody plant species including Artemisia, Cynodon, Setaria, 

Corispermum and Hedysarum established. According to the development of 

vegetation cover, we selected three restored residue sites, including unrestored (UR), 

poorly restored (PR), and well restored (WR) residue site (Fig. 1; Table S1). In 

addition, one natural soil site (NS) was selected as the reference in order to compare 

the difference of microbial communities and functions with different developed 

residue site (Fig. 1; Table S1). 

Three quadrats (10 m × 10 m) were randomly selected at each site. The distance 

between each quadrat was > 30 m, which surpassed the space relatedness for the 

microbial variables; thus, each quadrat was independent from the others. At each 

quadrat, five samples were randomly collected, together forming one sample. Gravel 

and plant residues were removed, and the samples were transported to the laboratory 

under 4℃ by using icebox. When return to laboratory, the samples were processed 

and divided into three parts. One part dried and sieved (<2 mm mesh) for 
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physicochemical properties determination; One part stored at -20℃ for microbial 

biomass, enzyme assays and One part stored at -80℃ for microbial community. The 

physicochemical properties of bauxite residue and soil samples are shown in Table S2.  

2.2｜Measurement of microbial biomass and activity 

Microbial biomass carbon (MBC) was determined by chloroform 

fumigation-extraction method (Wu, Joergensen, Pommerening, Chaussod, & Brookes, 

1990). Briefly, two equal portions of fresh samples (equivalent to about 20 g of 

oven-dried soil) were fumigated with alcohol-free CHCl3 vapor in darkness for 24hin 

a vacuum desiccator. Both fumigated and unfumigated samples were extracted with 

80 mL of 0.5M K2SO4 (residue/extractant ratio 1:4 w/v) by shaking at 250 rpm for 30 

min. The resulting suspensions were filtered for the determination of organic carbon. 

Organic carbon in fumigated and unfumigated extracts was measured using a TOC 

analyser (TOCVWP; Shimadzu, Kyoto, Japan). Microbial biomass carbon (MBC) 

was calculated as the difference in organic carbon between fumigated and 

unfumigated samples with a conversion factor KEC as 0.45. 

To determine microbial respiration rate, 50 g of fresh sample and 25 mL of 0.1 

mol·L−1 NaOH were placed in a hermetically sealed chamber (1 L). The produced 

CO2 from microbial respiration can be absorbed by NaOH. The samples were 

incubated at 25 °C for 24 h in darkness and the absorbed CO2was measured using a 

TOC analyser (TOCVWP; Shimadzu, Kyoto, Japan). 

2.3｜Measurement of enzyme activity 

Glucosidase, urease and alkaline phosphatase were selected to reflect the 

microbial functions involved in the turnover of carbon, nitrogen and phosphorus in 

bauxite residue. Direct soil zymography was applied as an in-situ technique to study 
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the enzyme activity in bauxite residue. The glucosidase and phosphatase activities 

were determined according to the fluorescence enzyme protocol (Deng, Popova, Dick, 

& Dick, 2013), in which 4-methylumbelliferone (MUF)-substrates can be hydrolyzed 

by a specific enzyme and then detected by using a microplate fluorometer 

(SynergyTM H1, Biotek) at 365 nm excitation and 450 nm emission wave lengths. 

Glucoside and phosphatase activity were detected by using 4-Methylumbelliferyl 

β-D-glucoside and 4-methylumbelliferyl-phosphate, respectively. Urease activity was 

measured by using 0.5 mol·L−1 urea as the substrate in 0.1 mol·L−1 phosphate buffer. 

The produced NH4
+–N was measured by using a phenol-sodium hypochlorite 

colorimetric method (Nannipieri, Ceccanti, Cervelli, & Sequi, 1974). 

2.4｜DNA extraction and PCR amplification 

Total DNA was extracted from the samples using the PowerSoil® DNA Isolation 

Kit (MO BIO Laboratories, Inc.) after cell enrichment. DNA concentration and 

quality were determined with a Nanodrop 2000 spectrophotometer (Thermo Scientific, 

Wilmington, USA). The hypervariable region V4 of the bacterial 16S rRNA gene 

were amplified with primer pairs 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 

806R (5′- GGACTACHVGGGTWTCTAAT-3′) by an ABIGeneAmp®9700 PCR 

thermocycler (ABI, CA, USA). The PCR amplification was performed as follows: 

pre-denaturation for 3 min at 95℃; 30 cycles of denaturation for 35 sec at 95 ℃, 

annealing for 35 sec at 58℃, and extension for 45 sec at 72 ℃; final extension for 10 

min at 72 ℃; and holding at 4 ℃ using a PCR instrument (XP Cycler, Bioer, 

Hangzhou,China). The PCR mixtures contain 5 × TransStartFastPfu buffer 4 μL, 2.5 

mM dNTPs 2 μL, forward primer (5 μM) 0.8 μL, reverse primer (5 μM) 0.8 μL, 

TransStartFastPfu DNA Polymerase 0.4 μL, template DNA 10 ng, and finally ddH2O 

up to 20 μL. PCR reactions were performed in triplicate. The PCR product was 
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extracted from 2% agarose gel and purified using the AxyPrep DNA Gel Extraction 

Kit (Axygen Biosciences,Union City, CA, USA) according to manufacturer’s 

instructions and quantified using Quantus™ Fluorometer (Promega, USA).  

2.5｜Illumina MiSeq sequencing 

Purified amplicons were pooled in equimolar and paired-end sequenced on 

anIllumina MiSeq PE300 platform (Illumina, San Diego,USA) according to the 

standard protocols by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China). 

2.6｜Processing of sequencing data 

Raw sequences were analyzed on the QIIME pipeline (Caporaso et al., 2010). 

Low quality sequences with ambiguous bases (quality scores of <20) and short 

sequences (length <150 bp) were removed. Then, the chimeras were eliminated using 

UCHIME software (Edgar et al., 2011). The remaining high-quality sequences were 

clustered into operational taxonomic units (OTUs) at 97% similarity cutoff by using 

UPARSE version7.1 (Edgar, 2013). The taxonomy of each OTU representative 

sequence was analyzed by RDP Classifier version 2.2 (Wang, Garrity, Tiedje, & Cole, 

2007) against the 16S rRNA database (Silva v138) using confidence threshold of 0.7.  

2.7｜Statistical analysis 

Physicochemical and physiological data were analyzed using SPSS (v 20.0) and 

R package “vegan”. Independent samples t-test and one-way ANOVA were applied to 

compare the correlations between the physicochemical properties, physiological 

properties, microbial relative abundances and α-diversity indices. Unconstrained 

principal coordinate analysis (PCoA) basing on UniFrac distance was applied to 

analyze the β-diversity of microbial communities. Two nonparametric multivariate 

statistical tests (ANOSIM and PERMANOVA) were used to determine the 
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significance of β-diversity. redundancy analysis (RDA) was conducted to reveal 

correlations between microbial community and environmental factors.  

3｜ RESULTS 

3.1｜ Development of microbial biomass and microbial activity  

In this study, microbial biomass carbon (MBC) was chosen to reflect the 

microbial biomass in bauxite residue. The MBC significantly differed among the 

residue site (Fig. 2A). The microbial biomass carbon (MBC) was significantly lower 

in UR site compared to that in NS site (Fig. 2A). After 50 years of natural restoration, 

the microbial biomass carbon (MBC) significantly increased to 137.2 mg/kg (PR) and 

317.9 mg/kg (WR), increased by 3.49 times and 9.42 times compared with that in NR 

(Fig. 2A). 

Natural restoration not only increased the microbial biomass, but also 

significantly promoted microbial activities (Fig. 2B). The microbial respiration rate 

(PRR) increased to 89.71 CO2 mg/kg/d (PR) and 111.70 CO2 mg/kg/d (WR), 

increased by 0.67 times and 1.07 times compared with that in NR (Fig. 2B). 

Notably, both microbial biomass (MBC) and microbial respiration rate (PRR) 

showed no significantly difference between well restored residue (WR) and natural 

soil (NS) (p<0.05; Fig. 2A-B). 

3.2｜ Development of enzyme activities  

In this study, glucosidase, invertase, urease and alkaline phosphatase were 

selected to reflect the microbial functions involved in the turnover of carbon, nitrogen 

and phosphorus in bauxite residue. The activities of glucosidase, invertase, urease and 

phosphatase significantly differed among the residue site, and increased as the 

restoration level increased (P < 0.05) (Fig.3A-D). Glucosidase in PR and WR 
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significantly increased by 1.76 times and 3.55 times compared with that in NR 

(Fig.3A). Invertase was lowest in NR, and increased by 2.12 times and 4.96 times in 

PR and WR (Fig.3B). Urease was lower in NR and increased by 1.72 times and 5.09 

times in PR and WR (Fig.3C). In terms of phosphatase, PR and WR exhibited 

increased phosphatase by 1.08 times and 2.601 times compared with that in NR 

(Fig.3D). 

Notably, the enzyme activities, except for invertase, showed no significantly 

difference between WR and NS (p>0.05; Fig. 3A-D). 

3.3｜ Development of microbial communities 

3.3.1 ｜Diversity of microbial communities  

In this study, OTU numbers and Shannon index were used to represent the 

species richness and diversity of bacterial communities. The OTU numbers and 

Shannon index were significantly lower in UR compared with that in NS (P < 0.05; 

Fig 4A-B). After over 50 years of natural weathering, the richness and diversity of 

bacterial communities significantly increased (P < 0.05; Fig 4A-B). The OTU 

numbers increased to 1717 ± 368 and 1944 ± 76 in PR and PR residue. The Shannon 

index in PR and PR significantly increased to 5.80 ± 0.21 and 6.06 ± 0.09 (Table 3). 

The OTU numbers and Shannon index in PR and PR both were significantly higher 

than that in LR, whereas no significant difference was observed between PR and PR. 

Notably, the microbial diversity indices in PR and PR were similar to that in NS 

(p>0.05; Fig. 4A-B). 

The analysis of similarities (ANOSIM) (r = 0.74, P < 0.01) (Fig. 5A) showed that 

the samples from the restored residue (PR and PR) significantly differed from 

unrestored residue (UR). The Principal coordinate analysis (PCoA) analysis was 

applied to evaluate differences in microbial structure across all samples (Fig. 5B). 
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According to PCoA analysis, the natural restoration clearly separated unrestored 

residue (UR) and restored residue (PR and PR). In addition, the bacterial communities 

in restored residue PR showed high similarity with that in natural soil (NS) (p>0.05). 

3.3.2｜ Structure of microbial communities 

Based on the taxonomic analysis, six major phyla including Firmictes, 

Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria and Planctomycetes 

dominated the microbial communities in residue samples, accounting for 84.4% to 

88.1% of all the sequence (Fig. 6; Table S4-S5). However, the microbial communities 

significantly differed among all the residue samples. In unrestored residue (UR), the 

most abundant phyla were Firmicutes (33.8%) and Actinobacteria (32.2%), followed 

by Proteobacteria (11.1%) (Fig. 6; Table S4-S5). After 50 years of restoration, groups 

including Firmicutes, Actinobacteria, Gemmatimonadetes and Deinococcu were 

observed to be significantly decreased, whereas Chloroflexi and Proteobacteria were 

observed to be significantly increased in abundance (p<0.05; Fig. 6; Table S4-S5). In 

addition, several new taxonomic groups such as Acidobacteria and Planctomycetes, 

which are rarely found in unrestored residue (UR), were found to be increased 

(p<0.05; Fig. 6; Table S4-S5). Although both suffered from long term restoration, 

significant taxonomic differences were observed in poorly restored residue (PR) and 

well restored residue (WR). Well restored residue (WR) had higher abundance of 

Chloroflexi, Acidobacteria and Planctomycetes, whereas the poorly restored (PR) had 

greater abundance of Firmicutes (p<0.05; Fig. 6; Table S4-S5). Notably, compared the 

microbial community in well restored residue and natural soil, high similarity was 

found in both dominated groups and abundance (p>0.05; Fig. 6; Table S4-S5). 

At the genus level, the microbial communities significantly differed during 

natural restoration, which coincided with the PCoA analysis (Fig. 5). In unrestored 

This article is protected by copyright. All rights reserved.



 

 

residue (UR), the most abundant genera were norank_f_Euzebyaceae (18.9%), 

Lactococcus (14.1%), Bacillus (11.0%), Egicoccus (5.69%), Truepera (4.42%), 

Nitrolancea (4.02%), Oceanobacillus (3.19%) (Fig. 7; Table S6-S7). After 50 years of 

restoration, genus including norank_f_Euzebyaceae, Lactococcus, Bacillus, Egicoccus, 

Truepera, Nitrolancea and Oceanobacillus significantly decreased, in which 

Egicoccus, Truepera, Nitrolancea and Oceanobacillus disappeared in well restored 

residue (WR) (p<0.05; Fig. 7; Table S6-S7). On the contrary, several new genera such 

as norank_c_4_KD-96, norank_c_Subgroup_6, norank_c_Gitt-GS-163, 

norank_f_A4b and norank_f_AKYG1722 significantly increased after long term 

restoration, especially in well restored residue (WR) (p<0.05; Fig. 7; Table S6-S7). 

3.4｜ Relation of Microbial communities and residue properties 

To explore whether natural restoration had driven the shift in microbial 

community structure, as well as what factors contributed to this shift, multivariate 

analyses were performed on data for microbial communities and residue properties. 

The Shannon index showed positively correlations with the contents of TOC, TN 

and AP (R2 = 0.8954, P < 0.001 for TOC; R2 = 0.8771, P < 0.001 for TN; and R2 = 

0.6956, P < 0.001 for AP), whilst negatively correlations with the pH, Na and ESP (R2 

= 0.7776, P < 0.001 for pH; R2 = 0.8635, P < 0.001 for Na; and R2 = 0.839, P < 0.001 

for ESP) (Fig. 8).  

Based on the redundancy analysis (RDA) (Fig. 9), the first two axes explained 

76.51% of the variation in microbial composition, and the correlation of 

species-environment on both axes was > 95%, which suggested a notable correlation 

between microbial community composition and residue properties. The development 

of microbial communities was strongly driven by TN (R2 = 0.9576, P = 0.001), 

Exchangeable Na (R2 = 0.9291, P = 0.002), ESP (R2 = 0.9118, P = 0.001), SOC (R2 = 

This article is protected by copyright. All rights reserved.



 

 

0.8642, P = 0.002), AP (R2 = 0.8544, P = 0.003) and pH (R2 = 0.8314, P = 0.003). 

4｜ DISSCUSSION 

4.1 Effect of natural restoration on microbial biomass and activity 

Soil microbial properties such microbial biomass and microbial respiration are 

important bioindicators of soil quality (Bastida et al., 2006, Karlen et al., 1994, 

Puglisi et al., 2006). They were both commonly enhanced during ecosystem 

succession (Sourkova et al., 2005). In this study, both microbial biomass and 

microbial respiration significantly increased following long-term natural restoration 

upon the disposal area (p< 0.05; Fig. 2, Table S2), which were also observed on other 

mining areas (Frouz & Novakova, 2005; Huang et al., 2011; Zhan & Sun, 2014). 

Normally, microbial biomass increased at earlier stages of natural succession and then 

decreased gradually due to the limited resources (Baldrian et al., 2008; Fierer, 

Nemergut, Knight, & Craine, 2010). According to the increased ratio of microbial 

biomass carbon to total organic carbon (MBC/TOC), the disposal area was supposed 

to be in the primary stage of ecological succession.  

The development of microbial properties was often influenced by plant 

communities including plant coverage and species richness (Frouz et al., 2008; Singh, 

Singh, & Singh, 2012), as well as soil properties such as organic matter, total nitrogen 

and pH (Baldrian et al., 2008; Moreno-de las Heras, 2009). Baldrian et al. (2008) 

concluded that pH and available nutrients (CNP) were the main influence factors to 

the development of microbial biomass and respiration. In this study, all the measured 

residue properties showed significantly correlations with the microbial biomass and 

respiration in bauxite residue (p < 0.05). On one hand, the decreased alkalinity (pH) 

and salinity (exchangeable Na) may alleviate the microbial metabolic stress, which 

microorganisms can use limited resources to synthesize more living matter (Padan, 
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Bibi, Ito, & Krulwich, 2005). On the other hand, the accumulated of TOC, TN and AP 

regulated basic microbiological activation and element cycling processes, regulating 

the microbial biomass and microbial activity (Moreno-de las Heras, 2009). In addition, 

plant community may also protect from wind and water erosion, alleviating the 

disturbance of temperature and moisture variations, and thus contributed to the 

development of microbial biomass (Frouz et al., 2008; Singh, Singh, & Singh, 2012). 

4.2 Effect of natural restoration on microbial functions 

Soil enzyme including glucosidase, invertase, urease and phosphatase played 

vital roles in the accumulation and circulation of nutrients (e.g. organic carbon, 

nitrogen and phosphorus) and could be regarded as important indicators to reflect 

microbial functioning (Raiesi & Salek-Gilani, 2018). In this study, the activities of 

glucosidase, invertase, urease and phosphatase significantly increased during natural 

restoration process (p< 0.05, Fig. 3), which indicated that natural restoration enhanced 

enzyme activity in bauxite residues. This coincided with the development of enzyme 

during successional process (Zhan & Sun, 2014). 

Enzyme activities are often restricted by the adverse physicochemical properties 

such as high salinity, alkalinity (acidity), and nutrient deficiencies in the mine tailings. 

High alkalinity (pH) and salinity (EC) commonly denature enzymes by destroying 

protein structures (Rietz & Haynes, 2003). In addition, high alkalinity and salinity 

may inhibit metabolic activity of bacteria and damage the bacterial cell structure 

(Hamdy & Williams, 2001). After long term restoration, the reduction of alkalinity 

(pH) and salinity (EC) alleviated environmental pressure for the development of 

microbial communities and thus increased enzyme activity in bauxite residue. With 

the development of plant communities, the content of organic carbon increased, which 

may provide nutrients for microbial metabolism, thereby increasing enzyme activities 
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(Wei et al., 2019). The increased organic matter may activate microbial functions and 

thus accelerate element cycling in mining spoils (Moreno-de las Heras, 2009). 

Furthermore, enzyme activity was also affected by biotic factors including microbial 

biomass (Shillam, Hopkins, Badalucco, & Laudicina, 2008). In this study, enzyme 

activities were positively correlated with microbial biomass carbon, which indicated 

that increasing microbial biomass may contribute to the increase in enzyme activities 

(Table S2). Therefore, our results indicated that natural restoration reduced the salinity 

and alkalinity, accumulated the contents of nutrients, and then improved enzyme 

activities in bauxite residue.  

4.3 Effect of natural restoration on microbial communities 

Development of the microbial community was not only affected by 

environmental resources, but also influenced by environmental pressures (Fierer, 

Nemergut, Knight, & Craine, 2010). In this study, the Shannon diversity of unrestored 

residue (UR) was relative low, and was similar to other unrestored alkaline, saline 

tailings (Santini, Raudsepp, Hamilton, & Nunn, 2018). The low microbial diversity 

may be caused by the adverse geochemical conditions (e.g., extreme pH, salinity, 

metal toxicity) and nutrient deficiencies in the mine tailings (e.g., limited nitrogen and 

phosphorus) (Santini, Raudsepp, Hamilton, & Nunn, 2018). After long term natural 

weathering, microbial diversity significantly increased, which coincided with other 

mine tailings (Chao et al., 2016; Harantova et al., 2017).  

Sequence analysis indicated that the microbial community was mainly 

dominated by Firmicutes, Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria 

and Planctomycetes in all residue samples, but dramatically changed with different 

restoration status (Fig. 6). In unrestored residue (UR), the most abundant phyla were 

Firmicutes and Actinobacteria, which were commonly found in other saline-alkali 
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environments including saline soils, soda lakes and alkaline mine tailings (Antony et 

al., 2013; Santini, Warren, & Kendra, 2015; Santini, Raudsepp, Hamilton, & Nunn, 

2018). Adaptive mechanisms such as generating stress resistant endospores and 

self-repairing DNA under high alkalinity or salinity, allowed these bacterial to 

dominate such hostile environments (Johnson et al., 2007). In addition, the abundant 

genus including Lactococcus (Firmicutes) and Bacillus (Firmicutes) can produce acid, 

which alleviate the alkali stress to microbial growth (Meng, Xue, Yu, Gao, & Ma, 

2012; Martinez et al., 2013). In addition, Bacillus (Firmicutes) also could fix N2 and 

solubilize P, thereby providing nutrients for the growth and propagation of organisms 

colonizing mine wastelands (Uroz et al., 2011). 

After 50 years of restoration, the microbial community shifted from alkalophilic 

and halophilic (Firmicutes and Actinobacteria) in unrestored residue to neutrophilic 

assemblages (Acidobacteria and Planctomycetes) in long term restored bauxite 

residue, due to the development of plant community and improvement of residue 

properties. Schmalenberger found that the microbial community in restored residue 

dominated by typical soil taxonomic group such as Acidobacteriaceae, 

Nitrosomonadaceae, and Caulobacteraceae (Schmalenberger, O'Sullivan, Gahan, 

Cotter, & Courtney, 2013). Wu also found the similar microbial succession under 

natural weathering processes (Wu et al., 2020). 

Proteobacteria played a key role in ecological values and participated in energy 

metabolism (Bryant & Frigaard, 2006). Chloroflexi could sequestrate organic carbon 

and nitrogen from atmospheric CO2 or N2 (Chen et al., 2008), which may result in the 

accumulation of C/N nutrients in bauxite residue. Furthermore, the dominated 

heterotrophic microorganisms including Acidobacteria and Planctomycetes could 

improve the decomposition of organic matter and the circulation of nutrient (Eichorst 
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et al., 2018). This successional pattern of microbial communities suggested that the 

diverse soil-like microbial communities with diverse ecological functions established 

in long term restored residue.  

Development of microbial communities may be explained by the development of 

plant communities and improvement in residue properties in bauxite residue. With the 

development of plant community, the input of root exudates, sloughed-off root cells 

and mucilage significantly increased, providing plenty of nutrients for microbial 

growth (Haichar et al., 2008). In return, microbial community could secrete acid 

metabolites or extracellular polysaccharide, further reduced alkalinity and promoted 

aggregate formation in bauxite residue (Wu et al., 2020). RDA analysis showed TN, 

followed by Na+, ESP, SOC, AP and pH were the major factors to influence microbial 

communities (Fig. 9). These results suggested that the amendment strategy, targeted at 

the reduction of alkalinity and salinity, as well as accumulation of nutrients, may help 

to establish microbial communities and their functions in the restoration of bauxite 

residue.  

5｜ CONCLUSION 

This study investigated the development of microbial communities and functions in 

bauxite residue after 50 years of natural restoration. Microbial biomass carbon, 

microbial respiration rate, enzyme activities and microbial diversity, significantly 

increased after long term natural restoration. Microbial structure changed from 

alkalophilic and halophilic assemblages (Firmicutes and Actinobacteria) to 

neutrophilic assemblages (Acidobacteria and Planctomycetes). Both microbial 

communities and associated functions in well restored residue had high similarity 

with that in natural soil, indicating that long term restoration created diverse soil-like 

microbial communities and functions. Redundancy analysis (RDA) revealed that TN, 
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followed by Na+, ESP, SOC, AP and pH were the major influence factors in the 

development of microbial communities in bauxite residue. These findings provide us 

a biogeochemical perspective to reveal soil formation in bauxite residue and suggest 

that nutrient supplement and regulation of salinity-alkalinity may benefit for the 

establishment of microbial communities and functions in bauxite residue. These 

findings enhance our understanding of soil formation at bauxite residue disposal areas. 

Further studies are now required that focus on the screening of exchangeable 

Na-tolerant and pH-tolerant functional microorganisms and their rehabilitation 

potential in the residues.  
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FIGURE 1. The location map and restoration status of bauxite residue and natural soil. 
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FIGURE 2. Microbial biomass carbon (A) and microbial respiration rate (B) in bauxite residue and natural 
soil. 
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FIGURE 3. Enzyme activity in bauxite residue and natural soil. (A) glucosidase; (B) invertase; (C) urease; 
(D) phosphatase.
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FIGURE 4. α-Diversity of microbial community in bauxite residue and natural soil. (A) OTU richness; (B) 
Shannon diversity. 
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FIGURE 5. β-Diversity of microbial community (PCoA analysis) in bauxite residue and natural soil. (A) 
weighted_unifrac; (B) unweighted_ unifrac. 
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FIGURE 6. Microbial community composition at the phylum level in bauxite residue and natural soil. 
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FIGURE 7. Microbial community composition at the genus level in bauxite residue and natural soil. 
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FIGURE 8. Relationships between residue properties and microbial community diversity. 
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FIGURE 9. Redundancy analysis (RDA) of microbial community vs residue property. 
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