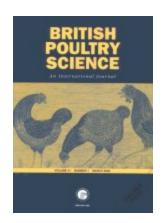
Dietary microbial muramidase improves feed efficiency, energy and nutrient availability, and welfare of broilers fed commercial type diets containing exogenous enzymes

By Pirgozliev, V., Simic, A., Rose, S.P. and Perez Calvo, E.


Copyright, publisher and additional information: .This is the authors' accepted manuscript. The published version is available via Taylor & Francis.

Please refer to any applicable terms of use of the publisher

DOI link to the version of record on the publisher's site

Pirgozliev, V., Simic, A., Rose, S.P. and Pérez Calvo, E. 2020. Dietary microbial muramidase improves feed efficiency, energy and nutrient availability, and welfare of broilers fed commercial type diets containing exogenous enzymes. *British Poultry Science*. 21 September 2020

Dietary microbial muramidase improves feed efficiency, energy and nutrient availability, and welfare of broilers fed commercial type diets containing exogenous enzymes

Journal:	British Poultry Science			
Manuscript ID	CBPS-2020-173.R3			
Manuscript Type:	Original Manuscript			
Date Submitted by the Author:	07-Jul-2020			
Complete List of Authors:	Pirgozliev, Vasil; Harper-Adams University College, Animals; Simic, Antonija; Harper-Adams University College, Animals Rose, Stephen; Harper Adams University College, National Institute of Poultry Husbandry PÉREZ CALVO, Estefania; DSM Nutritional Products France			
Keywords:	Muramidase, Feed efficiency, footpad dermatitis, metabolizable energy, Broilers			

SCHOLARONE[™] Manuscripts

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
18	
19	
19 20	
20 21 22 23	
22	
23	
24	
25	
26	
11	
28	
29	
30	
31	
32	
33 24	
34 35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50 51	
51 52	
52 53	
55 54	
55	
56	
57	
58	
59	
60	

Dietary microbial muramidase improves feed efficiency, energy and nutrient availability, 1 2 and welfare of broilers fed commercial type diets containing exogenous enzymes 3 V. PIRGOZLIEV¹, A. SIMIC¹, S.P. ROSE¹ AND E. PÉREZ CALVO² 4 5 ¹NIPH, Harper Adams University, Newport, Shropshire, UK 6 ²DSM Nutritional Products, Animal Nutrition & Health R & D, Village-Neuf, F-68128 7 8 Corresponding author: Dr V. Pirgozliev 9 Email: vpirgozliev@harper-adams.ac.uk The National Institute of Poultry Husbandry, Harper Adams University, Newport, UK 10 11 Abstract 12 13 1. The aim of this study was to evaluate the effect of graded levels of the microbially-derived feed lysozyme, muramidase (MUR) on feed intake (FI), weight gain (WG), feed conversion 14 ratio (FCR), European Performance Index (EPI), dietary N-corrected apparent metabolisable 15 16 energy (AMEn), footpad dermatitis score (FPD) and other welfare variables, when fed to broilers from 0 to 42d age. 17 2. A four-phase dietary program and four experimental pelleted diets were used; a control diet 18 (following breeder recommendations without MUR supplementation), and three diets based on 19 the control diet supplemented with 25,000, 35,000 and 45,000 LSU (F)/kg of MUR, 20 respectively. In addition, all experimental diets contained exogenous xylanase, phytase and a 21 coccidiostat. Each diet was fed to birds in 24 pens (20 male Ross 308 chicks in each pen) 22 following randomisation. Dietary AMEn was determined at 21 d of age, and FPD was 23 24 evaluated at the end of the study. Data were analysed by ANOVA, using orthogonal polynomials for assessing linear and quadratic responses to MUR activity. 25

3. The inclusion of MUR did not change FI (P>0.05), but increased WG in a linear manner
(P<0.05) and reduced FCR in a quadratic manner, with optimum WG and FCR observed in
birds fed approximately 35000 LSU (F)/kg. In accordance with the improvement in FCR,
35000 LSU (F)/kg MUR supplementation produced the highest EPI (P<0.05). FPD score was

linearly decreased with increased addition of MUR (P<0.05). Dietary AMEn responded in a

2 3	
4	
5 6	
7	
8 9	
10	
11	
12	
13	
14	
12 13 14 15 16 17 18	
16	
1/	
18	
19	
20	
20 21 22 23	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32 33 34	
33	
34	
35	
36	
37	
38 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

30

quadratic fashion to the MUR inclusion, as the highest values were obtained with the highest 31 inclusion rate (P<0.05). 32 4. In conclusion, the results showed that inclusion of MUR improved feed efficiency and the 33 foot health of birds. 34 35 . efficiency, me 36 Key words: Muramidase, feed efficiency, metabolisable energy, footpad dermatitis. 37 38

39 Introduction

The use of feed additives to improve the efficiency of growth and/or egg production, prevent disease and improve feed utilisation is a common strategy to improve efficiency in the poultry industry (Pirgozliev et al., 2019). Exogenous enzymes are the most commonly used feed additives. The enzymes widely used by the industry are non-starch polysaccharidases that cleave the non-starch polysaccharides in viscous cereals and microbial phytases that target the phytate-complexes in plant ingredients (Pirgozliev et al., 2010; Adeola and Cowieson, 2011; Ravindran, 2013). Recently a new category of feed enzymes, microbial muramidase (MUR) have become available, in which the substrate is not present in the feed but already present in the gastrointestinal tract. Muramidases (EC 3.2.1.17), also known as lysozyme or N-acetylmuramidase, are naturally found in a great variety of animal secretions, plants, or micro-organisms. Muramidases are glycosyl hydrolytic enzymes that cleave the β -1, 4 glycosidic linkages between N-acetylmuramic acid and N-acetyl glucosamine in the carbohydrate backbone of bacterial cell wall components, called peptidoglycans (PGNs). Recent studies have demonstrated the efficacy of microbial MUR on feed efficiency and gastrointestinal tract functions, enhancing nutrient digestibility and absorption (Goodarzi Booronjeri et al., 2019; Sais et al., 2019). Lichtenberg et al. (2017) suggested that catalysing the depolymerisation of PGNs from the bacterial cell debris present in the gut, as a result of the continuous bacterial turnover, may best describe the mode of action of this enzyme. During this process, 50% of the pre-existing PGNs in a bacterial cell are released from the wall and recycled within one generation (Reith and Mayer, 2011), although the fate of the remaining 50% is unclear. It can be speculated that accumulation of bacterial cell wall fragments at the gut surface could impair nutrient digestion and absorption and, in that case, the inclusion of microbial MUR in broiler diets could result in better nutrient availability and higher growth performance (Goodarzi Boroojeni et al., 2019). Thus, the combined application of different categories of enzymes in

commercial poultry diets may result in additive or synergistic effects on nutrient utilisation and animal performance.

The present study investigated the impact of different inclusion levels of microbial MUR on growth performance, including feed intake (FI), weigh gain (WG) and feed conversion ratio (FCR), dietary N-corrected apparent metabolisable energy (AMEn), dry matter (DMR), organic matter (OMR), nitrogen (NR) and fat retention (FR) coefficients, sialic acid (SA) in excreta, foot bad dermatitis score (FPD), European poultry efficiency factor (EPEF) and some litter quality variables when fed to broilers from 0 to 42d age.

73 Materials and methods

The experiment was conducted at the National Institute of Poultry Husbandry (NIPH) and
approved by the Research Ethics Committee of Harper Adams University, Newport, UK.

76 Animals and experimental design

A total of 1960, male, Ross 308 broilers were obtained from a commercial hatchery (Cyril
Bason Ltd, Craven Arms, UK). On the arrival, 1920 birds were divided into 96 floor pens with
20 birds in each (excluding ill and malformed birds). Each of the 96 pens had a solid floor and
measured 2.1 m² and bedded with wood shavings.

The room temperature was approximately 32°C at day old and was gradually reduced to about 20°C at 21 days of age. A standard lighting program for broilers was used, decreasing the light:dark ratio from 23h:1h from one day old to 18h:6h at seven days old, which was maintained until the end of the study. Access to feed and the water was *ad libitum*.

85 Four starter (day 1 to 10), grower (day 11 to 20), finisher-1 (day 21 to 35) and finisher-2 (day

86 35 to 42) wheat-soybean diets were produced (control; C), three containing different levels of

British Poultry Science

microbial MUR (BalanciusTM, DSM Nutritional Products Ltd, Kaiseraugst, Switzerland); low (L, 417 g/t; 25,000 LSU(F)/kg, medium (M, 583 g/t; 35,000 LSU(F)/kg), and high (H, 750 g/t; 45,000 LSU(F)/kg). Each single unit of LSU(F) is defined as the amount of enzyme that increases the fluorescence of 12.5 μ g/ml fluorescein-labelled peptidoglycan per minute at pH 6.0 and 30 C by a value that corresponds to the fluorescence of approximately 0.06 nmol fluorescein isothiocyanate isomer I.

The tested MUR product was included in powder form with a minimum analysed MUR activity of 60,000 LSU(F)/g product. Diets were supplemented with exogenous xylanase (RONOZYME®WX, endo-1,4-beta-xylanase; DSM Nutritional Products Ltd, Kaiseraugst, Switzerland), phytase (RONOZYME[®] HiPhos; DSM Nutritional Products Ltd, Kaiseraugst, Switzerland) and coccidiostat (CLINACOX[®], Elanco Ltd., Guelph, CA). No antibiotic was included in feed during the experimental period. The diets were isocaloric and isonitrogenous for each feeding phase, and met or exceeded breeder recommendations (Aviagen Ltd, Edinburgh, UK). The composition of the experimental diets is shown in Table 1.

102 Table 1 here

Mortality was recorded daily. A visual assessment for litter score of the entire pen was performed at 34 d old, using a five point scoring system, from 1 to 5, as previously described (Da Costa *et al.*, 2014; Mirza *et al.*, 2016). A lower score indicated better litter quality. The litter pH was determined at 35 d of age using a pH probe with a stainless steel penetration blade directly into the litter in four different sides in each pen. The pH probe was attached to a Hanna HI 99163 meter (Hanna Instruments Ltd, Bedfordshire, UK). Litter dry matter was determined at 35 d of age by taking five samples from the same locations of the floor in each pen, including

the area near the drinker, and drying them in an oven (see method below). The samples were then homogenised, milled and stored dry before further analysis.

Footpad and hock lesions were assessed and given a score at 35 d of age for both the left and right leg of all birds, and classified according to a scale published by Hocking *et al.*, (2008) from 0 (no lesion) to 4 (very severe lesions). A mean value per pen for each of the measurements was used in statistical analysis.

At 17 d of age, two randomly selected birds from each pen were transferred to one of 96 raised-floor battery pens (60×60 cm floor area) in a controlled environment room. Each pen was equipped with a metal feeder, providing 40 cm feeding space, and two nipple drinkers with spill cups. Treatments were randomly allocated to the pens. Feed and water were offered for ad libitum consumption. The selected birds were kept in the pens for 72 h, and total excreta were collected three times (every 24 h) from the trays beneath, and spilled feed and feathers were removed before weighing. Feed intake was weighed for the same period. The N-corrected apparent metabolisable energy (AMEn) of diets was determined following the procedure of Hill and Anderson (1958).

The coefficients of apparent retention of dietary dry matter (DMR) and N (NR) retention coefficients were determined as the difference between nutrient intake (feed intake multiplied by the nutrient content in feed) and nutrient output (excreta voided for 72 h multiplied by the nutrient content in excreta) divided by the nutrient intake.

The European Poultry Efficiency Factor, which standardises technical results by considering FCR, mortality and daily weight gain, was determined for the broilers from 0 to 42 d age.

Chemical analysis

Dry matter in litter, feed and excreta was determined by drying samples in a forced draft oven at 105°C to a constant weight (AOAC 2000; method 934.01). Crude protein $(6.25 \times N)$ in litter,

British Poultry Science

feed and excreta samples was determined by the combustion method (AOAC 2000; method 990.03) using a LECO FP-528 N (Leco Corp., St. Joseph, MI, USA). Oil (as ether extract) was analysed using diethyl ether by the ether extraction method (AOAC 2000; method 945.16) using a Soxtec system (Foss Ltd., Warrington, UK). The gross energy (GE) values for feed and excreta samples were determined in a bomb calorimeter (model 6200; Parr Instrument Co., Moline, IL, USA), with benzoic acid used as the standard.

Endogenous mucin in the dry excreta was measured using the concentration of the SA as a marker, following the periodate-resorcinol method (Jourdian *et al.*, 1971). In brief, the method involves conversion of free and glycosidically bound SA to chromogenic substances, by treatment with periodic acid followed by resorcinol. The colour of the samples was stabilised by 2-methyl-propan-2-ol, and, after centrifugation, the absorbance of the supernatant was determined spectrophotometrically at 630 nm (Spectronic 301; Milton Roy Company, Warminster, PA). This procedure detected total, free, and glycosidically bound N acetyl neuraminic (sialic) acid. The MUR activity in the feed samples was determined according to the method described by Lichtenberg *et al.* (2017).

150 Statistical analysis

Prior to statistical analyses, data were checked for normality and homogeneity, and transformations were deemed not necessary. Statistical analyses were performed using GenStat (18th edition) statistical software package for Windows (IACR, Rothamstead, Hertfordshire, UK). The comparison between the experimental results was performed by ANOVA, using orthogonal polynomials for testing linear and quadratic responses to MUR inclusion. Differences were reported as significant at P<0.05, and trends towards significance (P<0.1), were included in the report.

Results

The birds remained healthy throughout the study period. No adverse effects due to feeding the experimental diets were observed, and the overall mortality was low at 3.4% and not treatment related. The determined chemical composition of the diets is presented in Table 1 and agreed with the calculated values. Table 1 here Results of analyses of MUR activity in the diets confirmed the correct addition of the product within the range of the expected values $\pm 20\%$ (Table 2). Review Table 2 here During the first three weeks of the feeding trial there were no effects (P>0.05) of diet on any growth performance variables, although birds fed the control diet tended (P=0.053) to have the lowest WG during the starter phase (1-10 d; Table 3). A change in performance was observed at 35 d of age when weight gain of the birds was

improved in a significant linear fashion (P<0.05) with increasing MUR dosage. The high
dosage of MUR gave the lowest FCR, although the response was curvilinear (P<0.05), i.e. low
MUR dosage produced a higher FCR compared to medium and high dosages. Overall, for the
entire period from one to 42 d of age, weight gain increased in a dose dependent linear manner
(P<0.001). The significant quadratic response of FCR at 42 d to MUR supplementation

Page 9 of 22

1

2		
3 4	181	(P=0.010) suggested that the optimum inclusion level at this age was at $35,000 \text{ LSU}(F)/\text{kg}$,
5 6	182	where FCR was 2.6% lower than the control. In agreement with the FCR at 42 d of age, the
7 8	183	EPEF responded in the same way to MUR activity (P=0.016), being 6.7% higher than the
9 10 11	184	control when the diet was supplemented with 35,000 LSU (F)/kg. The liveability of the birds
12 13	185	was unaffected (P>0.05) by MUR dosage.
14 15 16	186	The footpad dermatitis score, determined at 35 d of age, was reduced in a dose dependent linear
17 18 19	187	manner (P<0.001; Table 3) in agreement with the improved WG and FCR for the same period.
20 21	188	
22 23 24	189	Table 3 here
25 26 27	190	
28 29		
30 31	191	Dietary MUR significantly alter the litter dry matter, pH, N content or footpad dermatitis score
32 33	192	(P>0.05; Table 4). Fat retention increased in a dose dependent linear manner (P<0.001; Table
34 35	193	4).
36 37 38	194	
39 40	195	Table 4 here
41 42		
43 44 45	196	
46 47	197	There were no differences (P>0.05) in SA excretions. Exogenous MUR supplementation
48 49	198	significantly improved (P<0.05) dietary AMEn, and the coefficients of retention of dry matter,
50 51 52	199	organic matter and nitrogen (Table 5) in a quadratic manner.
53 54	200	
55 56 57	201	Table 5 here
58 59	202	
60	202	
		Accepted for publication 19 July 2020

203 Discussion

The positive responses in the growth performance variables and EPEF in this study are in accordance with recently published studies. When feeding the same levels of the same MUR product, Goodarzi Boroojeni et al. (2019) found a linear increase in WG and decrease in FCR at 35 d of age and the supplementation improved EPEF in similar way as in the present paper. Sais et al., (2019) reported reduced FCR in broilers fed MUR from day old to 36 d age. Most importantly, the improvement in FCR at 42 d of age in the current study agreed with the findings of Lichtenberg et al. (2017), who fed the same dosage of the same enzyme to broilers. The latter authors found an even greater improvement in final weight of birds, although they were fed much higher MUR dosages (225,000 and 450,000 LSU (F)/kg), although no changes at FCR were noted.

Studies on the use of MUR from different origins, e.g. modified rice expressing lysozyme (Humphrey *et al.*, 2002) or hen egg-white (HEW) lysozyme (Abdel-Latif *et al.*, 2017), in broiler diets have been reported to improve feed efficiency. However, Gong *et al.* (2017) found no effect on growth performance, but saw changes in the microbiome when feeding a HEW lysozyme preparation to broilers. Liu *et al.* (2010) and Zhang *et al.* (2010), reported improved growth when HEW lysozyme was fed to *Clostridium perfringens* challenged birds, but not in the unchallenged control group.

The variation in growth responses between published reports may be attributable to differences in dietary formulations, enzyme dose, application or the origin of the lysozyme or the simultaneous use of other enzymes. Given the diversity in origin between different lysozymes evaluated *in vivo*, it can be speculated that the mode of action can differ. In the current study, the microbial-derived product used was encoded by the MUR gene from the fungus Acremonium alcalophilum and was assessed to ensure it did not to possess any antibacterial activities at the intended doses (EFSA, 2018). Lichtenberg et al. (2017) showed an increase in

feed efficiency, without any significant differences in the caecal microbiome for microbially-derived MUR supplemented broiler diets.

In the current study, significant growth performance in response to dietary MUR was only observed in birds after 21 d of age. This suggested that the beneficial effect of MUR was related to the changing importance of the caeca in birds as they aged, as at 7 d of age the caeca represents only 13% of the weight of the small intestine, whereas at 35 d it comprises 24% of the small intestine (Yang et al., 2020). Apajalathi et al. (2002) reported that the numbers of microbes reach 10^{11} /g of caecal digesta and 10^{9} /g of ileal digesta during the first three days post hatch, and remain relatively stable for the following 34 d. As feed intake and the absolute size of the gastrointestinal tract (GIT) increases with the age of the birds, it is logical to assume that the content of digesta, i.e. the total number of microbes in the GIT, increases proportionally. The life span of bacteria is relatively short (Fuller, 1978) and a continuous and natural bacterial turnover occurs, releasing bacterial cell debris into the GIT. Through this process, in one generation, up to half of the pre-existing PGNs from the bacterial cell wall is released and recovered (Reith and Mayer, 2011). However, it is still unclear what happens with the remaining PGNs, and, as birds age, their GIT may accumulate bacterial cell debris, including PGNs. This might explain why the improvement of growth performance was only seen in older birds in the present study.

Metabolisable energy is a measurement of the available energy from dietary carbohydrates, fats and proteins, hence, it was expected that an improvement in nutrient retention coefficients would improve dietary AMEn (Woods *et al.*, 2020). The main ingredient in the diets was wheat, which may cause an increase in digesta viscosity due to high non-starch polysaccharide (NSP) content, that can reduce energy and nutrient availability (Pirgozliev *et al.*, 2015). Although viscosity was not measured in the reported study, the quadratic response between AMEn and the majority of the nutrients suggested that MUR may have an impact on digesta viscosity.

British Poultry Science

> However, further research into any interaction between MUR and other feed additives is warranted. Zanella *et al.* (1999) found that metabolisable energy and nutrient digestibility differed when determined using ileal digesta or excreta. This may provide an alternative explanation to the quadratic responses seen to MUR in the current study, where AMEn was performed on excreta and was linear, whereas the Goodarzi Boroojeni *et al.*, (2019) study used digesta samples for evaluation.

In addition, increased digesta viscosity has been shown to reduce conjugated bile acids, affecting fat emulsification and digestibility (Langhout et al., 1997). In the present study, fat retention increased with MUR in a dose dependent linear manner. Sais et al. (2019) showed that MUR inclusion increased ileal apparent digestibility of fat and increased fat-soluble vitamin A in plasma at 9 d of age. This suggested that MUR improves fat digestion and absorption in young birds. Goodarzi Boroojeni et al. (2019) observed that supplementing MUR in a 30% wheat-based diet containing exogenous carbohydrase showed improvement in the apparent ileal digestibility of fat in a linear fashion after 35 d of supplementation. Goodarzi Boroojeni et al. (2019) suggested that MUR might catalyse the depolymerisation of peptidoglycans from bacterial cell debris and reduce its accumulation in the gut, thus improving nutrient utilisation. During this process, negatively charged peptidoglycans (Marquis and Bender, 1990) may lose their charge, reducing the number of interactions with fat micelles, thus benefiting fat absorption.

Sialic acid has been used as a marker to measure the dynamics of mucin secretions in excreta
in enzyme fed birds. Early work with phytase (Cowieson *et al.*, 2004; Pirgozliev *et al.*, 2011)
showed a reduction in SA secretion due to supplementation, although feeding an enzyme
mixture to broilers (Abdulla *et al.*, 2016, 2017) did not change the concentration of SA secreted.
In the current study, the SA data measured in excreta after 17 d of supplementation did not
indicate differences due to MUR supplementation. Goodarzi Boroojeni *et al.* (2019) did not

British Poultry Science

observe any significant differences in goblet cell numbers at the jejunal and ileal level after 35 d supplementation with microbial MUR in a diet containing other enzymes (phytase and xylanase). However, Sais et al. (2019) detected an increase in goblet cell numbers after 36 d of microbial MUR supplementation in a diet without other feed enzymes. This can probably be explained by direct or indirect changes promoted by MUR in the intestinal ecosystem or in the release of bioactive factors. The variability in response may be due to the sampling region (small intestine or excreta), maturity of the birds, method of analyses or type of diet (with or without additives), and further research is needed to explore the mode of action of this microbial MUR and its role in improving gastrointestinal function.

Improvements in litter quality and footpad dermatitis contribute to welfare in poultry. The current study showed an improvement in FPD when animals were supplemented with microbial MUR, but there was no impact on litter moisture and NH₃ concentration. An increase in litter moisture and NH₃ are the main predisposing factors for footpad dermatitis in broilers (Dawkins et al., 2004), although there was no obvious correlation between the improved FPD and the litter parameters. Mirza et al. (2016) reported that good litter scores (based on physical appearance) were not related to litter NH₃ or pH, showing that scoring *per se* is of limited value in terms of lowering FPD incidences in poultry production. This suggests that dietary MUR may provide better nutrient availability and have a direct positive impact on the development of skin of the foot pad in poultry.

It can be concluded that the exogenous microbial MUR (Balancius TM) used in this study was effective in improving growth performance and welfare in broilers. This was attributed to improved dietary nutrient and energy availability. There is a need to study potential interactions of MUR in combination with other exogenous enzymes, plant extracts and feed additives. Strategies to incorporate MUR with other feed ingredients in poultry diets, in order to improve production and welfare, may increase the profitability of broiler production.

1		14
2		
3 4	303	
5		
6	304	References
7 8 9	305	Abdulla, J. M., S. P. Rose, A. M. Mackenzie, S. G. Ivanova, G. P. Staykova, and V. R.
10 11	306	Pirgozliev. 2016. "Nutritional Value of Raw and Micronised Field Beans (Vicia faba
12 13	307	L. var. minor) With and Without Enzyme Supplementation Containing Tannase for
14 15 16	308	Growing Chickens." Archives of Animal Nutrition 70 (5): 350-363.
17 18	309	doi:10.1080/1745039X.2016.1214344.
19 20		
20 21	310	Abdulla, J. M., S. P. Rose, A. M. Mackenzie, and V. R. Pirgozliev. 2017. "Feeding Value of
22 23	311	Field Beans (Vicia faba L. var. minor) With and Without Enzyme Containing Tannase,
24 25 26	312	Pectinase and Xylanase Activities for Broilers." Archives of Animal Nutrition 71 (2):
20 27 28	313	150-164. doi:10.1080/1745039X.2017.1283823.
29 30	314	Adeola, O., and A. J. Cowieson. 2011. "Board-Invited Review: Opportunities and Challenges
31 32 33	315	in Using Exogenous Enzymes to Improve Non-Ruminant Animal Production." Journal
34 35	316	of Animal Science 89 (10): 3189-3218. doi:10.2527/jas.2010-3715.
36 37		
38	317	Apajalahti, J. H. A., H. Kettunen, A. Kettunen, W. E. Holben, P. H. Nurminen, N. Rautonen,
39 40	318	and M. Mutanen. 2002. "Culture-Independent Microbial Community Analysis Reveals
41 42 43	319	that Inulin in the Diet Primarily Affects Previously Unknown Bacteria in the Mouse
44 45	320	Cecum." Applied and Environmental Microbiology 68 (10): 4986-4995.
46 47 48	321	doi:10.1128/AEM.68.10.4986-4995.2002.
49 50	322	Abdel-Latif, M. A., H. Ali, A. R. Elbestawy, R. Ghanem, S. A. Mousa, and H. S. A. El-Hamid.
51 52 53	323	2017. Exogenous Dietary Lysozyme Improves the Growth Performance and Gut
54 55	324	Microbiota in Broiler Chickens Targeting the Antioxidant and Non-specific Immunity
56 57	325	mRNA Expression. PLOS ONE 12:E0185153.
58 59 60	326	

1 ว		
2 3 4	327	Cowieson, A. J., T. Acamovic, and M. R. Bedford. 2004. "The Effects of Phytase and Phytic
5 6	328	Acid on the Loss of Endogenous Amino Acids and Minerals from Broiler Chickens."
7 8 9	329	British Poultry Science 45 (1): 101-108. doi:10.1080/00071660410001668923.
10 11	330	Da Costa, M., J. L. Grimes, E. Oviedo-Rondón, I. Barasch, C. Evans, M. Dalmagro, and J.
12 13 14	331	Nixon. 2014. "Footpad Dermatitis Severity on Turkey Flocks and Correlations with
15 16	332	Locomotion, Litter Conditions, and Body Weight at Market Age." The Journal of
17 18 19	333	Applied Poultry Research 23 (2): 268-279. doi:10.3382/japr.2013-00848.
20 21	334	Dawkins, M. S., C. A. Donnelly, and T. A. Jones. 2004. "Chicken Welfare is Influenced More
22 23 24	335	by Housing Conditions Than by Stocking Density." Nature 427 (6972): 342-344.
25 26	336	doi:10.1038/nature02226.
27 28 29	337	EFSA (European Food Safety Authority). 2018. "Safety and Efficacy of Muramidase From
30 31	338	Trichoderma Reesei DSM 32338 as a Feed Additive for Chickens for Fattening and
32 33 34	339	Minor Poultry Species." EFSA Journal 16 (7): 5342. doi:10.2903/j.efsa.2018.5342.
35 36	340	Gong, M., D. Anderson, B. Rathgeber, and J. Macisaac. 2017. "The Effect of Dietary
37 38 39	341	Lysozyme with EDTA on Growth Performance and Intestinal Microbiota of Broiler
40 41	342	Chickens in Each Period of the Growth Cycle." Journal of Applied Poultry Research
42 43 44	343	26 (1): 1-8. doi:10.3382/japr/pfw041.
45 46	344	Goodarzi Boroojeni, F., K. Männer, J. Rieger, E. Pérez Calvo, and J. Zentek. 2019. "Evaluation
47 48 49	345	of a Microbial Muramidase Supplementation on Growth Performance, Apparent Ileal
50 51	346	Digestibility, and Intestinal Histology of Broiler Chickens." Poultry Science 98 (5):
52 53 54	347	2080-2086. doi: 10.3382/ps/pey556.
54 55 56	348	Hill, F. W., and D. L. Anderson. 1958. "Comparison of Metabolisable Energy and Productive
57 58	349	Energy Determinations with Growing Chicks". Journal of Nutrition 64: 587-603.
59 60	350	

2										
3 4	351	Hocking, P.M., Mayne, R.K., Else, R.W., French, N.A., and Gatcliffe, J. 2008. "Standard								
5	352	European footpad dermatitis scoring system for use in turkey processing plants".								
6 7	353	World's Poultry Science Journal, 64: 323–328.								
8 9	354	https://doi.org/10.1017/S0043933908000068								
10 11 12	355	Humphrey, B. D., N. Huang, and K. C. Klasing. 2002. "Rice Expressing Lactoferrin and								
13 14	356	Lysozyme Has Antibiotic-Like Properties When Fed to Chicks." The Journal of								
15 16	357	Nutrition 132 (6): 1214-1218. doi:10.1093/jn/132.6.1214.								
17 18 19	358	Jourdian, G., L. Dean, and S. Roseman. 1971. "A Periodate-Resorcinol Method for the								
20 21 22	359	Quantitative Estimation of Free Sialic Acids and Their Glycosides." The Journal of								
23 24	360	Biological Chemistry 246 (2): 430-435.								
25 26 27	361	Fuller, R. 1978. "Epithelial Attachment and Other Factors Controlling the Colonization of the								
28 29	362	Intestine of the Gnotobiotic Chicken by Lactobacilli." Journal of Applied Bacteriology								
30 31 32	363	45 (3): 389-395. doi: 10.1111/j.1365-2672.1978.tb04240.x.								
33 34	364	Langhout, D. J., J. B. Schutte, C. Geerse, A. K. Kies, J. De Jong, and M. W. A. Verstegen.								
35 36 37	365	1997. "Effects on Chick Performance and Nutrient Digestibility of an Endo-Xylanase								
38 39	366	Added to a Wheat and Rye-Based Diet in Relation to Fat Source." British Poultry								
40 41 42	367	Science 38 (5): 557-563. doi: 10.1080/00071669708418036.								
43 44	368	Lichtenberg, J., E. Perez Calvo, K. Madsen, T. Østergaard Lund, F. Kramer Birkved, S. van								
45 46 47	369	Cauwenberghe, M. Mourier, L. Wulf-Andersen, A. J. M. Jansman, and R. Lopez-								
47 48 49	370	Ulibarri. 2017. "Safety Evaluation of a Novel Muramidase for Feed Application."								
50 51 52	371	Regulatory Toxicology and Pharmacology 89: 57-69. doi:10.1016/j.yrtph.2017.07.014.								
53 54	372	Liu, D., Y. Guo, Z. Wang, and J. Yuan. 2010. "Exogenous Lysozyme Influences Clostridium								
55 56	373	Perfringens Colonization and Intestinal Barrier Function in Broiler Chickens." Avian								
57 58 59 60	374	Pathology 39 (1): 17-24. doi:10.1080/03079450903447404.								

Accepted for publication 19 July 2020

2 3 4	375	Marquis, R.E., and G.R. Bender. 1990. "Compact Structure of Cortical Peptidoglycans from									
5 6 7	376	Bacterial Spores." Canadian Journal of Microbiology 36 (6): 426-429.									
8 9	377	Mirza, M. W., V. Pirgozliev, S. P. Rose, and N. H. C. Sparks. 2016. "Dietary Modelling of									
10 11 12	378	Nutrient Densities: Effect and Response in Different Growing Phases on Growth									
13 14	379	Performance, Nutrient Digestibility, Litter Quality and Leg Health in Turkey									
 Production." Journal of World's Poultry Research 6 (3): 161-190. Production." Journal of World's Poultry Research 6 (3): 161-190. 											
18 19	381	Pirgozliev, V., M. R. Bedford, and T. Acamovic. 2010. "Effect of Dietary Xylanase on Energy,									
20 21 22	382	Amino Acid and Mineral Metabolism, and Egg Production and Quality in Laying									
22 23 24	383	Hens." British Poultry Science 51 (5). 639-647.									
25 26 27	384	HTTPS://DOI.ORG/10.1080/00071668.2010.514325									
28 29	385	Pirgozliev, V., M. R. Bedford, T. Acamovic, and M. Allimehr. 2011. "The Effects of									
30 31	386	Supplementary Bacterial Phytase on Dietary True Metabolisable Energy, Nutrient									
32 33 34	387	Digestibility and Endogenous Losses in Precision Fed Turkeys." British Poultry									
35 36	388	Science 52 (2): 214-220. doi:10.1080/00071668.2011.560594.									
37 38 39	389	Pirgozliev, V., A. Beccaccia, S. P. Rose, and D. Bravo. 2015. "Partitioning of Dietary Energy									
40 41	390	of Chickens Fed Maize- or Wheat-Based Diets With and Without a Commercial Blend									
42 43	391	of Phytogenic Feed Additives." Journal of Animal Science 93 (4): 1695-1702.									
44 45 46	392	doi:10.2527/jas2014-8175.									
47 48 49	393	Pirgozliev, V., S. P. Rose, and S. Ivanova. 2019 "Feed Additives in Poultry Nutrition."									
50 51 52	394	Bulgarian Journal of Agricultural Science 25 (1): 8-11.									
52 53 54	395	Ravindran, V. 2013. "Feed Enzymes: The Science, Practice and Metabolic Realities." Journal									
55 56 57 58 59 60	396	of Applied Poultry Research 22 (3): 628-836. doi:10.3382/japr.2013-00739.									

Reith, J., and C. Mayer. 2011. "Peptidoglycan Turnover and Recycling in Gram-positive
Bacteria." *Applied Microbiology and Biotechnology* 92 (1): 1-11. doi:10.1007/s00253011-3486-x.
Sais, M., A. C. Barroeta, P. López-Colom, M. Nofrarías, N. Majó, R. Lopez-Ulibarri, E. Pérez

- Calvo, and S. M. Martín-Orúe. 2019. "Evaluation of Dietary Supplementation of a Novel Microbial Muramidase on Gastrointestinal Functionality and Growth Chickens." Performance in Broiler Poultry Science (1): 235-245. doi:10.3382/ps/pez466.
- Yang, Z., V. R. Pirgozliev, S. P. Rose, S. Woods, H. M. Yang, Z. Y. Wang, and M. R. Bedford. 2020. "Effect of Age on the Relationship Between Metabolizable Energy and Digestible Energy for Broiler Chickens." Poultry Science 99 (1): 320-330. doi:10.3382/ps/pez495.
- Woods, S. L., S. Sobolewska, S. P. Rose, I. M. Whiting, A. Blanchard, C. Ionescu, D. Bravo, and V. Pirgozliev. 2020. "Effect of Feeding Different Sources of Selenium on Growth Performance and Antioxidant Status of Broilers." British Poultry Science - just accepted. doi:10.1080/00071668.2020.1716301.
- 42
 43 Zanella, I., N. K. Sakomura, F.G. Silversides, A. Fiqueirdo, and M. Pack. 1999. "Effect of
 44
 45 414 Enzyme Supplementation of Broiler Diets Based on Corn and Soybeans." *Poultry*46
 415 Science 78 (4): 561-568. doi: org/10.1093/ps/78.4.561.
- Zhang, G., G. F. Mathis, C. L. Hofacre, P. Yaghmaee, R. A. Holley, and T. D Durance. 2010. "Effect of a Radiant Energy–Treated Lysozyme Antimicrobial Blend on the Control of Clostridial Necrotic Enteritis in Broiler Chickens." Avian Diseases 54 (4): 1298-1300. doi:10.1637/9370-041410-ResNote.1.
 - Accepted for publication 19 July 2020

	Ingredients (g/kg)	Starter	Grower	Finisher 1	Finisher 2				
	Wheat	586.9	680.7	700.9	724.9				
	Soybean meal (CP 480)	342.7	247.1	228.3	205.8				
	Soybean oil	36.3	41.9	42.4	43.2				
	Limestone	12.8	11.3	10.7	9.9				
	Monocalcium phosphate	9.2	7.5	6.6	5.6				
	Lysine HCL	2.7	3.3	3.1	2.9				
	Methionine DL	3.4	3.0	2.8	2.5				
	L-Threonine	1.3	1.5	1.4	1.3				
	Salt	1.9	1.6	1.7	1.7				
	Sodium bicarbonate	2.5	1.8	1.7	1.7				
	Xylanase ¹	0.0075	0.0075	0.0075	0.0075				
	Phytase ²	0.0100	0.0100	0.0100	0.0100				
	Premix (VitMin) ³	0.2000	0.2000	0.2000	0.2000				
	Calculated values								
	ME (MJ/kg)	12.70	13.20	13.29	13.40				
	Crude protein (g/kg)	235	198	190	181				
	Ether extract (g/kg)	51	57	57	58				
	Ash (g/kg)	53	45	43	40				
	Digestible Lys (g/kg)	12.9	11.0	10.4	9.7				
	Digestible Met+Cys (g/kg)	9.5	8.4	8.0	7.6				
	Ca (g/kg)	10.0	9.0	8.5	8.0				
	Available P (g/kg)	5.0	4.5	4.3	4.0				
	Determined values	5.0	1.5	1.5	1.0				
	DM (g/kg)	904	902	898	898				
	GE (MJ/kg)	16.59	16.94	17.02	16.95				
	Crude protein (g/kg)	245	198	200	174				
	Ether extract (g/kg)	24 <i>3</i> 50	58	56	56				
	Ash (g/kg)	50 54	53	47	43				
	Xylanase (FXU/kg)	183	185	177	158				
	Phytase (FYT/kg)	2427	2720	2408	2537				
22	1 IIytase (1° 1 1/Kg)		2120	2400	2331				

¹ Ronozyme® WX2000: minimum 2 000 FXU/ g endo-1,4-beta-xylanase; 1 xylanase unit (FXU) is defined as the amount of enzyme that releases 7.8 µmol of reducing sugar (xylose equivalents) from azo-wheat arabinoxylan per minute at pH 6.0 and 50 C

² Ronozyme ® HiPhos 20000GT: minimum 20 000 FYT/g; 1 phytase unit (FYT) is defined as the amount of enzyme that releases 1 µmol of inorganic phosphate from phytate per minute under reaction conditions with a phytate concentration of 5.0 mM and pH 5.5 and temperature 37°C.

³The vitamin and mineral premix contained vitamins and trace elements to meet breeder's recommendation (Aviagen Ltd., Edinburgh, UK). The premix provided is as follows (units/kg diet): retinol 3600 μ g, cholecalciferol 125 μ g, α - tocopherol 34 mg, menadione 3 mg, thiamine 2 mg, riboflavin 7 mg, pyridoxine 5 mg, cobalamin 15 µg, nicotinic acid 50 mg, pantothenic acid 15 mg, folic acid 1 mg, biotin 200 µg, iron 80 mg, copper 10 mg, manganese 100 mg, cobalt 0.5 mg, zinc 80 mg, iodine 1 mg, selenium 0.2 mg and molybdenum 0.5 mg.

	-	Maggur	ad activity (I	SU(E)/kg	
		Measure	ed activity (L	.5U(F)/kg	
Treatment	Inclusion leve		~		
	(LSU(F)/kg)*	Starter	Grower	Finisher 1	Finisher 2
Control	0	-	-	-	-
Low	25 000	26472	26469	30186	26500
Medium	35 000	31422	39569	38106	45180
High	45 000	33932	49049	53036	51650

Table 2. Analysed muramidase activity in samples of the experimental diets

* One unit of muramidase (LSU(F)) is the amount of enzyme that increases the fluorescence of a 12.5 μ g/ml fluorescein-labelled peptidoglycan suspension by a value that corresponds to the fluorescence of 0.077 mM fluorescein isothiocyanate (FITC), per minute at pH 7.5 and 30°C.

Table 3. Effect of different inclusion levels of muramidase on growth performance of broiler
chickens

							Probability	
Treatment					SEM	Р	L	Q
groups ¹	Control	Low	Medium	High				
	Starter p	eriod (1 to	o 10 d old)					
Feed intake (g/b)	294	293	296	295	2.2	0.800	0.610	0.99
Weight gain (g/b)	216	222	223	223	2.5	0.173	0.053	0.27
Feed conversion					0.0248	0.394	0.183	0.34
ratio ²	1.376	1.325	1.329	1.325				
	Grower	period (10	to 21 d ol	d)				
Feed intake	1142	1134	1136	1139	7.9	0.885	0.850	0.46
(g/b)								
Weight gain	933	956	937	935	14.4	0.663	0.809	0.40
(g/b)								
Feed	1.218	1.181	1.224	1.233	0.0317	0.670	0.538	0.46
conversion								
ratio								
		-	21 to 42 d	/				
Feed intake (g/b)	2961	2972	2951	2978	16.5	0.682	0.698	0.63
Weight gain (g/b)	1957 ^a	2008 ^b	2003 ^b	2014 ^b	12.4	0.007	0.004	0.10
Feed	1.492ª	1.454 ^b	1.457 ^b	1.451 ^b	0.0067	< 0.001	< 0.001	0.01
conversion								
ratio	o "	• • / •	10 1 1 1					
	Overall	period (1 f	to 42 d old)				

$^{\circ}$	1
2	

muramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram we ³ European poultry efficiency factor: averaged grams gained per day × survival rate (9 conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen describes significance between treatments determined by ANOVA. Linear (L) and (Q) effects of dietary treatment. Results are statistically significant when P \leq 0.05. Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age	Weight gain 2834 ^a 2874 ^{ab} 2910 ^b 2896 ^b 19.1 0.038 0.012 (g/b) Feed 0.0069 <0.001 <0.001 <0.001 conversion ratio 1.579 ^a 1.551 ^b 1.538 ^b 1.547 ^b Liveability 0.797 0.582 0.954 (%) 96.25 96.67 97.50 96.04 EPEF ³ 403.0 ^a 417.9 ^{ab} 430.9 ^b 419.1 ^{ab} 5.43 0.007 0.014 ¹ Control: control diet, low (25,000 LSU(F)/kg muramidase), medium (35,000 L muramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram we ³ European poultry efficiency factor: averaged grams gained per day × survival rate (% Suropean poultry efficiency factor: averaged grams gained per day × survival rate (% conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen describes significance between treatments determined by ANOVA. Linear (L) and (Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age 0.0179 0.804 0.539 [g/kg] 0.667 0.652 0.643 0.654 P L <	Weight gain2834a2874ab2910b2896b19.10.0380.012(g/b)Feed0.0069<0.001<0.001<0.001ratio1.579a1.551b1.538b1.547bLiveability0.7970.5820.954(%)96.2596.6797.5096.04EPEF3403.0a417.9ab430.9b419.1ab5.430.0070.014Control:control diet, low (25,000LSU(F)/kg muramidase), medium (35,000nuramidase), high (45,000LSU(F)/kg muramidase). ² Gram feed intake per gram wEuropean poultry efficiency factor:averaged grams gained per day × survival rateconversion ratio × 10.Data are means of 24 replicate pens with 20 birds per pelescribes significance between treatments determined by ANOVA.Linear (L) andQ) effects of dietary treatment on dry matter (DM), pH and N of litter, litter arcores at 35 days of age0.01790.8040.539(g/kg)0.6670.6520.6430.654Dry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654N litter (g/kg)40.841.840.540.90.810.0650.3220.17557Footpad score2.6.024.013.015.84.450.1230.039Control liet, low (25,000 LSU (F)/kg muramidase), medium (35,000 L10.3015.84.450.1230.039Control:control diet, low (25,000 LSU	Feed intake	4565	4536	4539	4562	26.3	0.809	0.970	
Feed $0.0069 < 0.001 < 0.001$ conversion 1.579^{a} 1.551^{b} 1.538^{b} 1.547^{b} Liveability 0.797 0.582 0.954 $(\%)$ 96.25 96.67 97.50 96.04 EPEF ³ 403.0^{a} 417.9^{ab} 430.9^{b} 419.1^{ab} 5.43 0.007 0.014 ¹ Control: control diet, low ($25,000$ LSU(F)/kg muramidase), medium ($35,000$ L ⁿ uramidase), high ($45,000$ LSU(F)/kg muramidase). ² Gram feed intake per gram we ³ European poultry efficiency factor: averaged grams gained per day × survival rate (9000 conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen describes significance between treatments determined by ANOVA. Linear (L) and (Q) effects of dietary treatment. Results are statistically significant when P<0.05.	Feed $0.0069 < 0.001 < 0.001$ conversionratio 1.579^{a} 1.551^{b} 1.538^{b} 1.547^{b} Liveability 0.797 0.582 0.954 (%) 96.25 96.67 97.50 96.04 EPEF ³ 403.0^{a} 417.9^{ab} 430.9^{b} 419.1^{ab} 5.43 0.007 0.014 ¹ Control:control diet, low (25,000 LSU(F)/kg muramidase), medium (35,000 Lmuramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram we ³ European poultry efficiency factor:averaged grams gained per day × survival rate (%conversion ratio × 10.Data are means of 24 replicate pens with 20 birds per pendescribes significance between treatments determined by ANOVA.Linear (L) and(Q) effects of dietary treatment.Results are statistically significant when P≤0.05.Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of ageTreatmentSEMProbabilityProbabilityProbabilityOntrol Low Medium HighDry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.332 <t< td=""><td>Feed$0.0069 < 0.001 < 0.001$conversionratio1.579^{a}ratio$1.579^{a}$$1.579^{a}$$1.531^{b}$$1.538^{b}$$1.547^{b}$$(\%)$$96.25$$96.67$$97.50$$96.04$EPEF3$403.0^{a}$$417.9^{ab}$$430.9^{b}$$419.1^{ab}$$5.43$$0.007$$0.014$Control:control diet, low (25,000 LSU(F)/kg muramidase). and take per gram wEuropean poultry efficiency factor: averaged grams gained per day × survival ratesonversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pelescribes significance between treatments determined by ANOVA. Linear (L) andQ) effects of dietary treatment on dry matter (DM), pH and N of litter, litter arscores at 35 days of ageTreatmentSEMTreatmentgroups¹Control LowMediumPiltter (g/kg)0.6670.6520.6430.654PH litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.200.1230.039Control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 Lnuramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate20 birds per pen. P value describes significance between treatments determined byLinear (L) and quadratic (Q) effects of dietary treatment.</td><td></td><td>2834^a</td><td>2874^{ab}</td><td>2910^b</td><td>2896^b</td><td>19.1</td><td>0.038</td><td>0.012</td><td></td></t<>	Feed $0.0069 < 0.001 < 0.001$ conversionratio 1.579^{a} ratio 1.579^{a} 1.579^{a} 1.531^{b} 1.538^{b} 1.547^{b} $(\%)$ 96.25 96.67 97.50 96.04 EPEF3 403.0^{a} 417.9^{ab} 430.9^{b} 419.1^{ab} 5.43 0.007 0.014 Control:control diet, low (25,000 LSU(F)/kg muramidase). and take per gram wEuropean poultry efficiency factor: averaged grams gained per day × survival ratesonversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pelescribes significance between treatments determined by ANOVA. Linear (L) andQ) effects of dietary treatment on dry matter (DM), pH and N of litter, litter arscores at 35 days of ageTreatmentSEMTreatmentgroups ¹ Control LowMediumPiltter (g/kg)0.6670.6520.6430.654PH litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.200.1230.039Control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 Lnuramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate20 birds per pen. P value describes significance between treatments determined byLinear (L) and quadratic (Q) effects of dietary treatment.		2834 ^a	2874 ^{ab}	2910 ^b	2896 ^b	19.1	0.038	0.012	
ratio 1.579 ^a 1.551 ^b 1.538 ^b 1.547 ^b Liveability 0.797 0.582 0.954 (%) 96.25 96.67 97.50 96.04 EPEF ³ 403.0 ^a 417.9 ^{ab} 430.9 ^b 419.1 ^{ab} 5.43 0.007 0.014 ¹ Control: control diet, low (25,000 LSU(F)/kg muramidase), medium (35,000 L30 muramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram we ³ European poultry efficiency factor: averaged grams gained per day × survival rate (9 conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen describes significance between treatments determined by ANOVA. Linear (L) and (Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age Treatment SEM P L 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 pH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808	ratio 1.579 ^a 1.551 ^b 1.538 ^b 1.547 ^b Liveability 0.797 0.582 0.954 (%) 96.25 96.67 97.50 96.04 EPEF ³ 403.0 ^a 417.9 ^{ab} 430.9 ^b 419.1 ^{ab} 5.43 0.007 0.014 ¹ Control: control diet, low (25,000 LSU(F)/kg muramidase), medium (35,000 L muramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram we ³ European poultry efficiency factor: averaged grams gained per day × survival rate (9 conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen describes significance between treatments determined by ANOVA. Linear (L) and (Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age Treatment groups ¹ Control Low Medium High Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 pH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 <	ratio 1.579^{a} 1.551^{b} 1.538^{b} 1.547^{b} Liveability 0.797 0.582 0.954 (%) 96.25 96.67 97.50 96.04 EPEF ³ 403.0 ^a 417.9 ^{ab} 430.9 ^b 419.1 ^{ab} 5.43 0.007 0.014 Control: control diet, low (25,000 LSU(F)/kg muramidase), medium (35,000 muramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram we European poultry efficiency factor: averaged grams gained per day × survival rate conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per per lescribes significance between treatments determined by ANOVA. Linear (L) and Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Fable 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter are cores at 35 days of age Treatment SEM Probability Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 pH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175 Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039 Control: control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 L muramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically when P≤0.05. Fable 5. Effect of dietary treatment on N-corrected apparent metabolisable energy try matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients trici (SA) excretions.						0.0069	< 0.001	< 0.001	
Liveability 0.797 0.582 0.954 (%) 96.25 96.67 97.50 96.04 EPEF ³ 403.0 ^a 417.9 ^{ab} 430.9 ^b 419.1 ^{ab} 5.43 0.007 0.014 ¹ Control: control diet, low (25,000 LSU(F)/kg muramidase), medium (35,000 LSU(F)/kg muramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram we ³ European poultry efficiency factor: averaged grams gained per day × survival rate (9 conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen describes significance between treatments determined by ANOVA. Linear (L) and (Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age Treatment SEM Probability groups ¹ Control Low Medium High Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 pH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808	Liveability 0.797 0.582 0.954 (%) 96.25 96.67 97.50 96.04 EPEF ³ 403.0 ^a 417.9 ^{ab} 430.9 ^b 419.1 ^{ab} 5.43 0.007 0.014 ¹ Control: control diet, low (25,000 LSU(F)/kg muramidase), medium (35,000 LSU(F)/kg muramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram we ³ European poultry efficiency factor: averaged grams gained per day × survival rate (9 conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen describes significance between treatments determined by ANOVA. Linear (L) and (Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age Treatment SEM Probability groups ¹ Control Low Medium High Dry matter litter 0.0179 0.804 0.539 (g/kg) pH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 <td< td=""><td>Liveability 0.797 0.582 0.954 (%) 96.25 96.67 97.50 96.04 EPEF³ 403.0^a 417.9^{ab} 430.9^b 419.1^{ab} 5.43 0.007 0.014 Control: control diet, low (25,000 LSU(F)/kg muramidase), medium (35,000 muramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram w European poultry efficiency factor: averaged grams gained per day × survival rate conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pe describes significance between treatments determined by ANOVA. Linear (L) and Q) effects of dietary treatment on dry matter (DM), pH and N of litter, litter an accores at 35 days of age Treatment SEM Probabili groups¹ Control Low Medium High Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 pH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175 Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039 Control: control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 L muramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment on N-corrected apparent metabolisable energy fry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients ticid (SA) excretions.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Liveability 0.797 0.582 0.954 (%) 96.25 96.67 97.50 96.04 EPEF ³ 403.0 ^a 417.9 ^{ab} 430.9 ^b 419.1 ^{ab} 5.43 0.007 0.014 Control: control diet, low (25,000 LSU(F)/kg muramidase), medium (35,000 muramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram w European poultry efficiency factor: averaged grams gained per day × survival rate conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pe describes significance between treatments determined by ANOVA. Linear (L) and Q) effects of dietary treatment on dry matter (DM), pH and N of litter, litter an accores at 35 days of age Treatment SEM Probabili groups ¹ Control Low Medium High Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 pH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175 Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039 Control: control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 L muramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment on N-corrected apparent metabolisable energy fry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients ticid (SA) excretions.									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(%)96.2596.6797.5096.04EPEF3403.0a417.9ab430.9b419.1ab5.430.0070.014 ¹ Control: control diet, low (25,000 LSU(F)/kg muramidase), medium (35,000 L5muramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram we ³ European poultry efficiency factor: averaged grams gained per day × survival rate (9conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pendescribes significance between treatments determined by ANOVA. Linear (L) and(Q) effects of dietary treatment. Results are statistically significant when P≤0.05.Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of ageTreatmentSEMProbabilityPromuter littergroups1Control LowMediumHighDry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.3320.175Footpad score26.024.013.015.84.450.1230.039	(%) 96.25 96.67 97.50 96.04 EPEF ³ 403.0 ^a 417.9 ^{ab} 430.9 ^b 419.1 ^{ab} 5.43 0.007 0.014 Control: control diet, low (25,000 LSU(F)/kg muramidase), medium (35,000 muramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram w European poultry efficiency factor: averaged grams gained per day × survival rate conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per per describes significance between treatments determined by ANOVA. Linear (L) and Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Fable 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age Treatment SEM Probabili Treatment SEM Probabili Treatment SEM Probabili P L groups ¹ Control Low Medium High Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 PH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175 Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039 Control: control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 L muramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically when P≤0.05. Fable 5. Effect of dietary treatment on N-corrected apparent metabolisable energy fry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.		1.579 ^a 1	.551 ^b	1.538 ^b	1.547 ^b	0 707	0.500	0.054	
EPEF3403.0a417.9ab430.9b419.1ab5.430.0070.014Control: control diet, low (25,000 LSU(F)/kg muramidase), high (45,000 LSU(F)/kg muramidase). 2 Gram feed intake per gram we Beuropean poultry efficiency factor: averaged grams gained per day × survival rate (9 conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen describes significance between treatments determined by ANOVA. Linear (L) and (Q) effects of dietary treatment. Results are statistically significant when P≤0.05.Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of ageProbability PTreatment groups1Control Low 0.667Medium 0.6520.6430.654 0.654pH litter N litter (g/kg)0.6670.6520.6430.654 0.6540.1200.7700.451 0.451N litter (g/kg)41.840.540.90.810.6930.808 0.808Litter score3.273.143.203.120.0650.3320.175	EPEF3403.0a417.9ab430.9b419.1ab5.430.0070.014Control: control diet, low (25,000 LSU(F)/kg muramidase), medium (35,000 LSU(F)/kg muramidase), high (45,000 LSU(F)/kg muramidase). 2 Gram feed intake per gram we Beuropean poultry efficiency factor: averaged grams gained per day × survival rate (9 conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen describes significance between treatments determined by ANOVA. Linear (L) and (Q) effects of dietary treatment. Results are statistically significant when P≤0.05.Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of ageTreatmentProbability PDry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.3320.175Footpad score26.024.013.015.84.450.1230.039	EPEF3403.0 ^a 417.9 ^{ab} 430.9 ^b 419.1 ^{ab} 5.430.0070.014Control: control diet, low (25,000 LSU(F)/kg muramidase), ² Gram feed intake per gram wEuropean poultry efficiency factor: averaged grams gained per day × survival rate conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pe describes significance between treatments determined by ANOVA. Linear (L) and Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Fable 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter are scores at 35 days of ageTreatment groups ¹ Control Low Medium High Dry matter litter (g/kg)0.6670.6520.6430.654 0.654 0.1200.7700.451 0.451 0.3320.175 0.3320.175 0.175Footpad score 3.273.143.203.120.0650.3320.175 0.1230.039Control liet, low (25,000 LSU (F)/kg muramidase), medium (35,000 L unramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically when P≤0.05.Fable 5. Effect of dietary treatment on N-corrected apparent metabolisable energy fry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.		06.25	6 67	07.50	06.04	0.797	0.582	0.954	
Control: control diet, low (25,000 LSU(F)/kg muramidase), medium (35,000 LSU(F)/kg muramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram we European poultry efficiency factor: averaged grams gained per day × survival rate (9 conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen lescribes significance between treatments determined by ANOVA. Linear (L) and Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Fable 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and cores at 35 days of age $\frac{Probability}{P}$ Treatment $\frac{Probability}{P}$ $Prob$	Control: control diet, low (25,000 LSU(F)/kg muramidase), medium (35,000 LSU(F)/kg muramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram we European poultry efficiency factor: averaged grams gained per day × survival rate (9 conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen lescribes significance between treatments determined by ANOVA. Linear (L) and Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Fable 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and cores at 35 days of age $\frac{Probability}{P}$ Treatment groups ¹ Control Low Medium High Dry matter litter (g/kg) 0.667 0.652 0.643 0.654 PH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175 Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039	Control: control diet, low (25,000 LSU(F)/kg muramidase), medium (35,000 nuramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram w European poultry efficiency factor: averaged grams gained per day × survival rate conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pelescribes significance between treatments determined by ANOVA. Linear (L) and Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Fable 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter arcores at 35 days of age $\frac{Probabilit}{P L}$ Treatment $\frac{SEM}{P}$ $\frac{Probabilit}{P L}$ $\frac{Probabilit}{P}$ $$	• •					5.43	0.007	0.014	
nuramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram we European poultry efficiency factor: averaged grams gained per day × survival rate (9 conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen describes significance between treatments determined by ANOVA. Linear (L) and Q) effects of dietary treatment. Results are statistically significant when P \leq 0.05. Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and cores at 35 days of age Treatment SEM P L groups ¹ Control Low Medium High Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 pH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175	nuramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram we European poultry efficiency factor: averaged grams gained per day × survival rate (9 conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen describes significance between treatments determined by ANOVA. Linear (L) and Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age Treatment groups ¹ Control Low Medium High Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 pH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175 Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039	nuramidase), high (45,000 LSU(F)/kg muramidase). ² Gram feed intake per gram w European poultry efficiency factor: averaged grams gained per day × survival rate conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per per describes significance between treatments determined by ANOVA. Linear (L) and Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Fable 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter are accres at 35 days of age Treatment groups ¹ Control Low Medium High Dry matter litter (g/kg) 0.667 0.652 0.643 0.654 pH litter 7.35 7.44 7.35 7.44 7.35 7.44 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.322 0.175 Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039 Control: control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 L muramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically when P≤0.05.									
³ European poultry efficiency factor: averaged grams gained per day × survival rate (9, conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen describes significance between treatments determined by ANOVA. Linear (L) and (Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age $ \frac{Probability}{P L} $ Treatment $ \frac{Probability}{P L} $	³ European poultry efficiency factor: averaged grams gained per day × survival rate (9 conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen describes significance between treatments determined by ANOVA. Linear (L) and (Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age $\frac{Probability}{P L}$ Treatment groups ¹ Control Low Medium High Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 pH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175 Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039	European poultry efficiency factor: averaged grams gained per day × survival rate conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per per describes significance between treatments determined by ANOVA. Linear (L) and Q) effects of dietary treatment. Results are statistically significant when P \leq 0.05. Fable 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and accress at 35 days of age $\frac{Probabili}{P}$ Treatment $\frac{SEM}{P}$ $\frac{Probabili}{P}$ $\frac{Probabili}$	Control: cont	rol diet, lov	w (25,0	00 LSU(F)/	kg mura	midase)	medium	n (35,000	LS
³ European poultry efficiency factor: averaged grams gained per day × survival rate (9, conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen describes significance between treatments determined by ANOVA. Linear (L) and (Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age $ \frac{Probability}{P L} $ Treatment $ \frac{Probability}{P L} $	³ European poultry efficiency factor: averaged grams gained per day × survival rate (9 conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen describes significance between treatments determined by ANOVA. Linear (L) and (Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age $\frac{Probability}{P L}$ Treatment groups ¹ Control Low Medium High Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 pH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175 Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039	European poultry efficiency factor: averaged grams gained per day × survival rate conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per per describes significance between treatments determined by ANOVA. Linear (L) and Q) effects of dietary treatment. Results are statistically significant when P \leq 0.05. Fable 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and accress at 35 days of age $\frac{Probabili}{P}$ Treatment $\frac{SEM}{P}$ $\frac{Probabili}{P}$ $\frac{Probabili}$					-				
conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen describes significance between treatments determined by ANOVA. Linear (L) and (Q) effects of dietary treatment. Results are statistically significant when P≤0.05.Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of ageTreatment groups1Probability PDescriptionDescriptionOutrol Low Medium HighDry matter litter (g/kg)0.06670.6520.6430.654pH litter0.01790.8040.539(g/kg)0.6670.6520.6430.654pH litter (g/kg)0.8040.539(g/kg)0.6670.6520.6430.654pH litter (g/kg)0.8040.539(g/kg)0.80670.6520.6430.654pH litter (g/kg)0.8040.539(g/kg)0.8040.539(g/kg)0.8040.539(g/kg)0.8040.539(g/kg)0.8040.451N litter	conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per pen describes significance between treatments determined by ANOVA. Linear (L) and (Q) effects of dietary treatment. Results are statistically significant when P \leq 0.05. Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age $\frac{1}{\frac{\text{Treatment}}{\text{groups}^{1}} + \frac{\text{Control Low Medium High}}{\text{Dry matter litter}} + \frac{1}{\frac{1}{\frac{1}{2}} + \frac{1}{\frac{1}{2}} + \frac$	conversion ratio × 10. Data are means of 24 replicate pens with 20 birds per per describes significance between treatments determined by ANOVA. Linear (L) and Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Fable 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter are scores at 35 days of age $\frac{Probabili}{P} L$ Pr									
describes significance between treatments determined by ANOVA. Linear (L) and (Q) effects of dietary treatment. Results are statistically significant when P \leq 0.05. Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age $\frac{Probability}{P \qquad L}$	describes significance between treatments determined by ANOVA. Linear (L) and (Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age $ \frac{Probability}{P} L \\ P L \\ P$	describes significance between treatments determined by ANOVA. Linear (L) and Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Fable 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter are scores at 35 days of age $\frac{Probabili}{P}$				-		-	-		
(Q) effects of dietary treatment. Results are statistically significant when P<0.05.Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of ageProbabilityTreatment groups1Probability PDry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.01790.8040.539(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.3320.175	(Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age Treatment Probability Treatment SEM Probability Treatment SEM Probability Treatment SEM Probability Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 Probability Probability Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 PH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693	Q) effects of dietary treatment. Results are statistically significant when P≤0.05. Fable 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter are scores at 35 days of ageTreatmentSEMProbabiliTreatmentSEMProbabiligroups ¹ ControlLowMedium HighDry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654DITY matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654DITY matter (g/kg)0.8670.01790.8040.539(g/kg)0.6670.6520.6430.654DITY matter (g/kg)0.8040.8030.808Litter (g/kg)0.0650.3220.175Footpad score26.024.013.015.84.450.1230.039Control diet, low (25,000 LSU (F)/kg muramidase). Data are means of 24 replicateCobirds per pen. P value describes sig					-	-			
Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age Probability Treatment groups ¹ Control Low Medium High Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 Probability Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 PH Pitter 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175	Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter and scores at 35 days of age Treatment Probability Treatment SEM Probability Treatment SEM Probability Treatment SEM Probability Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 Probability Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 Philitter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 Philitter (g/kg) 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175 Footpad score 26	Table 4. Effect of dietary treatment on dry matter (DM), pH and N of litter, litter at scores at 35 days of ageTreatmentProbabilitTreatmentSEMProbabilitgroups ¹ Control Low Medium HighDry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.43.203.143.203.120.0650.3320.175Footpad score26.024.013.015.84.450.1230.039Control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 LPuramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate20 birds per pen. P value describes significance between treatments determined byLinear (L) and quadratic (Q) effects of dietary treatment. Results are statisticallywhen P≤0.05.Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energyInter (DMR), organic matter (OMR), N (NR), fat (FR) retention coeffi	-					•			d (
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	scores at 35 days of ageTreatmentSEMProbabilitTreatmentSEMProbabilitgroups1ControlLowMediumHighDry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.06550.3320.175Footpad score26.024.013.015.84.450.1230.039Control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 LRumamidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate20 birds per pen. P value describes significance between treatments determined byClinear (L) and quadratic (Q) effects of dietary treatment. Results are statisticallyWhen P<0.05.	Q) effects of a	lietary treati	nent. Re	esults are sta	tistically	/ signific	ant when	P≤0.05.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	scores at 35 days of ageTreatmentSEMProbabilitTreatmentSEMProbabilitgroups1ControlLowMediumHighDry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.06550.3320.175Footpad score26.024.013.015.84.450.1230.039Control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 LRumamidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate20 birds per pen. P value describes significance between treatments determined byClinear (L) and quadratic (Q) effects of dietary treatment. Results are statisticallyWhen P<0.05.									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	scores at 35 days of ageTreatmentSEMProbabilitTreatmentSEMProbabilitgroups1ControlLowMediumHighDry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.06550.3320.175Footpad score26.024.013.015.84.450.1230.039Control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 LRumamidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate20 birds per pen. P value describes significance between treatments determined byClinear (L) and quadratic (Q) effects of dietary treatment. Results are statisticallyWhen P<0.05.									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	scores at 35 days of ageTreatmentSEMProbabilitTreatmentSEMProbabilitgroups1ControlLowMediumHighDry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.06550.3320.175Footpad score26.024.013.015.84.450.1230.039Control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 LRumamidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate20 birds per pen. P value describes significance between treatments determined byClinear (L) and quadratic (Q) effects of dietary treatment. Results are statisticallyWhen P<0.05.Table 5. Effect of die	able 4 Effec	t of dietary 1	treatmer	nt on dry ma	tter (DM	nH an	d N of lit	ter litter a	inc
Treatment SEM P L groups ¹ Control Low Medium High Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 pH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ProbabiliTreatmentSEMPgroups1Control Low Medium HighDry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.3320.175Footpad score26.024.013.015.84.450.1230.039Control: control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 Lnuramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate20 birds per pen. P value describes significance between treatments determined byLinear (L) and quadratic (Q) effects of dietary treatment. Results are statisticallywhen P≤0.05.Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energydry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficientsacid (SA) excretions.			licatifici	it off dry fild		i), pii uii			ina
Treatment groups1ControlLowMediumHighDry matter litterControlLowMediumHighDry matter litter0.6670.6520.6430.654(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.3320.175	Treatment groups1ControlLowMediumHighDry matter litter0.01790.8040.539 (g/kg) 0.6670.6520.6430.654pH litter7.357.447.537.460.120N litter (g/kg) 40.841.840.540.90.810.693Litter score3.273.143.203.120.0650.3320.175Footpad score26.024.013.015.84.450.1230.039	TreatmentSEMPLgroups1ControlLowMediumHighDry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.3320.175Footpad score26.024.013.015.84.450.1230.039Control: control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 Lnuramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate20 birds per pen. P value describes significance between treatments determined byLinear (L) and quadratic (Q) effects of dietary treatment. Results are statisticallywhen P≤0.05.Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energydry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficientsacid (SA) excretions.									
Treatment groups1ControlLowMediumHighDry matter litterControlLowMediumHighDry matter litter0.6670.6520.6430.654(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.3320.175	Treatment groups1ControlLowMediumHighDry matter litter0.01790.8040.539 (g/kg) 0.6670.6520.6430.654pH litter7.357.447.537.460.120N litter (g/kg) 40.841.840.540.90.810.693Litter score3.273.143.203.120.0650.3320.175Footpad score26.024.013.015.84.450.1230.039	TreatmentSEMPLgroups1ControlLowMediumHighDry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.3320.175Footpad score26.024.013.015.84.450.1230.039Control: control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 Lnuramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate20 birds per pen. P value describes significance between treatments determined byLinear (L) and quadratic (Q) effects of dietary treatment. Results are statisticallywhen P≤0.05.Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energydry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficientsacid (SA) excretions.	00105 at 55 ua	ys of uge							
groups1ControlLowMediumHighDry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.3320.175	groups1ControlLowMediumHighDry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.3320.175Footpad score26.024.013.015.84.450.1230.039	groups!ControlLowMediumHighDry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.3320.175Footpad score26.024.013.015.84.450.1230.039Control: control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 Lnuramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate20 birds per pen. P value describes significance between treatments determined byLinear (L) and quadratic (Q) effects of dietary treatment. Results are statisticallywhen P≤0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energydry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficientsacid (SA) excretions.	u	ys of uge						Probabil	itv
Dry matter litter0.01790.8040.539(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.3320.175	Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 pH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175 Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039	Dry matter litter 0.0179 0.804 0.539 (g/kg) 0.667 0.652 0.643 0.654 pH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175 Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039 Control: control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 L nuramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically when P≤0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.				1		SEM			ity
(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.3320.175	(g/kg)0.6670.6520.6430.654pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.3320.175Footpad score26.024.013.015.84.450.1230.039	(g/kg) 0.667 0.652 0.643 0.654 pH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175 Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039 Control: control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 L nuramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically when P≤0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy fry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.	Treatment		ol Low	v Medium	High	SEM	Р		ity
pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.3320.175	pH litter7.357.447.537.460.1200.7700.451N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.3320.175Footpad score26.024.013.015.84.450.1230.039	pH litter 7.35 7.44 7.53 7.46 0.120 0.770 0.451 N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175 Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039 Control: control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 L muramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically when P \leq 0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.	Treatment groups ¹	Contro	ol Low	v Medium	n High			L	ity
N litter (g/kg)40.841.840.540.90.810.6930.808Litter score3.273.143.203.120.0650.3320.175	N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175 Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039	N litter (g/kg) 40.8 41.8 40.5 40.9 0.81 0.693 0.808 Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175 Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039 Control: control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 L nuramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically when P≤0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.	Treatment groups ¹ Dry matter li	Contro				0.0179		L	ity
Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175	Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175 Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039	Litter score 3.27 3.14 3.20 3.12 0.065 0.332 0.175 Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039 Control: control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 L nuramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically when P \leq 0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.	Treatment groups ¹ Dry matter li (g/kg)	Contro tter 0.667	0.65	52 0.643	0.654	0.0179	0.804	L 0.539	ity
	Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039	Footpad score 26.0 24.0 13.0 15.8 4.45 0.123 0.039 Control: control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 L nuramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically when P \leq 0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.	Treatment groups ¹ Dry matter li (g/kg) pH litter	Contro tter 0.667 7.35	0.65 7.44	52 0.643 4 7.53	0.654 7.46	0.0179	0.804	L 0.539 0.451	ity
rootpad score 20.0 24.0 15.0 15.8 4.45 0.125 0.039		Control: control diet, low (25,000 LSU (F)/kg muramidase), medium (35,000 L nuramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically when P≤0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.	Treatment groups ¹ Dry matter li (g/kg) pH litter N litter (g/kg)	Contro tter 0.667 7.35 40.8	0.65 7.44 41.8	52 0.643 4 7.53 3 40.5	0.654 7.46 40.9	0.0179 0.120 0.81	0.804 0.770 0.693	L 0.539 0.451 0.808	ity
	Control: control diat low (25 000 I SU (E)/kg muramidage) madium (25 000 I S	nuramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically when P≤0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.	Treatment groups ¹ Dry matter li (g/kg) pH litter N litter (g/kg) Litter score	Contro tter 0.667 7.35 40.8 3.27	0.65 7.44 41.8 3.14	52 0.643 4 7.53 3 40.5 4 3.20	0.654 7.46 40.9 3.12	0.0179 0.120 0.81 0.065	0.804 0.770 0.693 0.332	L 0.539 0.451 0.808 0.175	ity
	Control: control diet low (25 000 I SU (E)/kg muramidage) madium (25 000 I S	nuramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically when P≤0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.	Treatment groups ¹ Dry matter li (g/kg) pH litter N litter (g/kg) Litter score	Contro tter 0.667 7.35 40.8 3.27	0.65 7.44 41.8 3.14	52 0.643 4 7.53 3 40.5 4 3.20	0.654 7.46 40.9 3.12	0.0179 0.120 0.81 0.065	0.804 0.770 0.693 0.332	L 0.539 0.451 0.808 0.175	ity
		Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically when P≤0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.	Treatment groups ¹ Dry matter li (g/kg) pH litter N litter (g/kg) Litter score Footpad score	Contro tter 0.667 7.35 40.8 3.27 26.0	0.65 7.44 41.8 3.14 24.0	52 0.643 4 7.53 3 40.5 4 3.20 0 13.0 00 LSU (F)/	0.654 7.46 40.9 3.12 15.8 kg mura	0.0179 0.120 0.81 0.065 4.45 midase),	0.804 0.770 0.693 0.332 0.123 medium	L 0.539 0.451 0.808 0.175 0.039	
muramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate		when P≤0.05. Fable 5. Effect of dietary treatment on N-corrected apparent metabolisable energy dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.	Treatment groups ¹ Dry matter li (g/kg) pH litter N litter (g/kg) Litter score Footpad score Control: contte nuramidase), h	Contro tter 0.667 7.35 40.8 3.27 26.0 rol diet, low nigh (45,000	0.65 7.44 41.8 3.14 24.0 V (25,00 V (25,00	52 0.643 4 7.53 3 40.5 4 3.20 0 13.0 0 LSU (F)/	0.654 7.46 40.9 3.12 15.8 kg mura iidase). E	0.0179 0.120 0.81 0.065 4.45 midase), Data are r	0.804 0.770 0.693 0.332 0.123 medium	L 0.539 0.451 0.808 0.175 0.039 (35,000 1 24 replicat	LS te j
muramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate		when P≤0.05. Fable 5. Effect of dietary treatment on N-corrected apparent metabolisable energy dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.	Treatment groups ¹ Dry matter li (g/kg) pH litter N litter (g/kg) Litter score Footpad score Control: contte nuramidase), h	Contro tter 0.667 7.35 40.8 3.27 26.0 rol diet, low nigh (45,000	0.65 7.44 41.8 3.14 24.0 V (25,00 V (25,00	52 0.643 4 7.53 3 40.5 4 3.20 0 13.0 0 LSU (F)/	0.654 7.46 40.9 3.12 15.8 kg mura iidase). E	0.0179 0.120 0.81 0.065 4.45 midase), Data are r	0.804 0.770 0.693 0.332 0.123 medium	L 0.539 0.451 0.808 0.175 0.039 (35,000 1 24 replicat	LS
muramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate j 20 birds per pen. P value describes significance between treatments determined by A	20 birds per pen. P value describes significance between treatments determined by 2 Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically significance between treatments are statistically significance between treatment.	Fable 5. Effect of dietary treatment on N-corrected apparent metabolisable energy dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.	Treatment groups ¹ Dry matter li (g/kg) pH litter N litter (g/kg) Litter score Footpad score Control: contro nuramidase), li 0 birds per per	Contro tter 0.667 7.35 40.8 3.27 26.0 rol diet, low nigh (45,000 en. P value o	0.65 7.44 41.8 3.14 24.0 V (25,00 V (25,00 D LSU (F describe	52 0.643 4 7.53 3 40.5 4 3.20 0 13.0 0 LSU (F)/ F)/kg muram s significant	0.654 7.46 40.9 3.12 15.8 kg mura iidase). E ce betwe	0.0179 0.120 0.81 0.065 4.45 midase), Data are r en treatm	0.804 0.770 0.693 0.332 0.123 medium neans of the	L 0.539 0.451 0.808 0.175 0.039 (35,000 1 24 replicate ermined b	LS te j y 4
muramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate j 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically significance between the statistical statistical significance between the statistical statistical significance between the statistical significance between the statistical statistical significance between the statistical significance between the statistical significance between the statistical statisti	20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically significance between the statistical statis	dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.	Treatment groups ¹ Dry matter li (g/kg) pH litter N litter (g/kg) Litter score Footpad score Control: contr nuramidase), l 0 birds per per Linear (L) and	Contro tter 0.667 7.35 40.8 3.27 26.0 rol diet, low nigh (45,000 en. P value o	0.65 7.44 41.8 3.14 24.0 V (25,00 V (25,00 D LSU (F describe	52 0.643 4 7.53 3 40.5 4 3.20 0 13.0 0 LSU (F)/ F)/kg muram s significant	0.654 7.46 40.9 3.12 15.8 kg mura iidase). E ce betwe	0.0179 0.120 0.81 0.065 4.45 midase), Data are r en treatm	0.804 0.770 0.693 0.332 0.123 medium neans of the	L 0.539 0.451 0.808 0.175 0.039 (35,000 1 24 replicate ermined b	LS te j y 4
muramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate j 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically significance between the statistical statistical significance between the statistical statistical significance between the statistical significance between the statistical statistical significance between the statistical significance between the statistical significance between the statistical statisti	20 birds per pen. P value describes significance between treatments determined by	dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.	Treatment groups ¹ Dry matter li (g/kg) pH litter N litter (g/kg) Litter score Footpad score Control: contr nuramidase), l 0 birds per per Linear (L) and	Contro tter 0.667 7.35 40.8 3.27 26.0 rol diet, low nigh (45,000 en. P value o	0.65 7.44 41.8 3.14 24.0 V (25,00 V (25,00 D LSU (F describe	52 0.643 4 7.53 3 40.5 4 3.20 0 13.0 0 LSU (F)/ F)/kg muram s significant	0.654 7.46 40.9 3.12 15.8 kg mura iidase). E ce betwe	0.0179 0.120 0.81 0.065 4.45 midase), Data are r en treatm	0.804 0.770 0.693 0.332 0.123 medium neans of the	L 0.539 0.451 0.808 0.175 0.039 (35,000 1 24 replicate ermined b	LS te j
muramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate j 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically significance between the statistical statistical significance between the statistical statistical significance between the statistical significance between the statistical statistical significance between the statistical significance between the statistical significance between the statistical statisti	20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically significance between the statistical statis	dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients acid (SA) excretions.	Treatment groups ¹ Dry matter li (g/kg) pH litter N litter (g/kg) Litter score Footpad score Control: contr nuramidase), l 0 birds per per Linear (L) and	Contro tter 0.667 7.35 40.8 3.27 26.0 rol diet, low nigh (45,000 en. P value o	0.65 7.44 41.8 3.14 24.0 V (25,00 V (25,00 D LSU (F describe	52 0.643 4 7.53 3 40.5 4 3.20 0 13.0 0 LSU (F)/ F)/kg muram s significant	0.654 7.46 40.9 3.12 15.8 kg mura iidase). E ce betwe	0.0179 0.120 0.81 0.065 4.45 midase), Data are r en treatm	0.804 0.770 0.693 0.332 0.123 medium neans of the	L 0.539 0.451 0.808 0.175 0.039 (35,000 1 24 replicate ermined b	LS te p
muramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate p 20 birds per pen. P value describes significance between treatments determined by Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically significance $P \le 0.05$.	20 birds per pen. P value describes significance between treatments determined by L Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically si when $P \le 0.05$.	acid (SA) excretions.	Treatment groups ¹ Dry matter li (g/kg) pH litter N litter (g/kg) Litter score Footpad score Control: contr nuramidase), l 0 birds per per Linear (L) and when P≤0.05.	Contro tter 0.667 7.35 40.8 3.27 26.0 rol diet, low high (45,000 en. P value of quadratic (0.65 7.44 41.8 3.14 24.0 7 (25,00 9 LSU (F describe (Q) effect	52 0.643 4 7.53 3 40.5 4 3.20 0 LSU (F)/ F)/kg muram s significant cts of dietar	0.654 7.46 40.9 3.12 15.8 kg mura iidase). E ce betwe y treatmo	0.0179 0.120 0.81 0.065 4.45 midase), Data are r en treatment. Rest	0 0.804 0.770 0.693 0.332 0.123 medium neans of 2 nents detailts are s	L 0.539 0.451 0.808 0.175 0.039 (35,000 1 24 replicat ermined b tatistically	LS te j y z
muramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate p 20 birds per pen. P value describes significance between treatments determined by L inear (L) and quadratic (Q) effects of dietary treatment. Results are statistically si when P \leq 0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy	 20 birds per pen. P value describes significance between treatments determined by A Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically si when P≤0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy 		Treatment groups ¹ Dry matter li (g/kg) pH litter N litter (g/kg) Litter score Footpad score Control: continuramidase), H 0 birds per per Linear (L) and when P \leq 0.05.	<u>Contro</u> tter 0.667 7.35 40.8 3.27 26.0 rol diet, low nigh (45,000 en. P value of quadratic (0.65 7.44 41.8 3.14 24.0 v (25,00 0 LSU (F describe (Q) effect treatme	52 0.643 4 7.53 3 40.5 4 3.20 0 LSU (F)/ F)/kg muram s significant cts of dietar	0.654 7.46 40.9 3.12 15.8 kg mura iidase). E ce betwe y treatmo	0.0179 0.120 0.81 0.065 4.45 midase), Data are r en treatment. Rest	0 0.804 0.770 0.693 0.332 0.123 medium neans of nents det alts are s	L 0.539 0.451 0.808 0.175 0.039 (35,000 L 24 replicat ermined b tatistically	LS te p y A si
muramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate p 20 birds per pen. P value describes significance between treatments determined by L inear (L) and quadratic (Q) effects of dietary treatment. Results are statistically si when P≤0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients a	20 birds per pen. P value describes significance between treatments determined by A Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically si when P≤0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients a	Probabil	Treatment groups ¹ Dry matter li (g/kg) pH litter N litter (g/kg) Litter score Footpad score Control: contronuramidase), H 0 birds per per Linear (L) and when P \leq 0.05. Fable 5. Effect ry matter (DM	Contro tter 0.667 7.35 40.8 3.27 26.0 rol diet, low high (45,000 en. P value of quadratic (t of dietary MR), organi	0.65 7.44 41.8 3.14 24.0 v (25,00 0 LSU (F describe (Q) effect treatme	52 0.643 4 7.53 3 40.5 4 3.20 0 LSU (F)/ F)/kg muram s significant cts of dietar	0.654 7.46 40.9 3.12 15.8 kg mura iidase). E ce betwe y treatmo	0.0179 0.120 0.81 0.065 4.45 midase), Data are r en treatment. Rest	0 0.804 0.770 0.693 0.332 0.123 medium neans of inents det alts are s	L 0.539 0.451 0.808 0.175 0.039 (35,000 L 24 replicat ermined b tatistically	LS te p y A si
muramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate p 20 birds per pen. P value describes significance between treatments determined by A Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically si when P≤0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy	20 birds per pen. P value describes significance between treatments determined by A Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically signed when P≤0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy dry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients a	V	Treatment groups ¹ Dry matter li (g/kg) pH litter N litter (g/kg) Litter score Footpad score Control: contronuramidase), H 0 birds per per Linear (L) and when P \leq 0.05. Fable 5. Effect ry matter (DM	Contro tter 0.667 7.35 40.8 3.27 26.0 rol diet, low high (45,000 en. P value of quadratic (t of dietary MR), organi	0.65 7.44 41.8 3.14 24.0 v (25,00 0 LSU (F describe (Q) effect treatme	52 0.643 4 7.53 3 40.5 4 3.20 0 LSU (F)/ F)/kg muram s significant cts of dietar	0.654 7.46 40.9 3.12 15.8 kg mura iidase). E ce betwe y treatmo	0.0179 0.120 0.81 0.065 4.45 midase), Data are r en treatment. Rest	0 0.804 0.770 0.693 0.332 0.123 medium neans of inents det alts are s	L 0.539 0.451 0.808 0.175 0.039 (35,000 L 24 replicat ermined b tatistically	LS te I y Z si
nuramidase), high (45,000 LSU (F)/kg muramidase). Data are means of 24 replicate p 20 birds per pen. P value describes significance between treatments determined by 2 Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically sign when P \leq 0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy hry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients a neid (SA) excretions.	20 birds per pen. P value describes significance between treatments determined by A Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically sign when P≤0.05. Table 5. Effect of dietary treatment on N-corrected apparent metabolisable energy fry matter (DMR), organic matter (OMR), N (NR), fat (FR) retention coefficients a heid (SA) excretions.		Treatment groups ¹ Dry matter li (g/kg) pH litter N litter (g/kg) Litter score Footpad score Control: contronuramidase), H 0 birds per per Linear (L) and when P \leq 0.05. Fable 5. Effect ry matter (DM	Contro tter 0.667 7.35 40.8 3.27 26.0 rol diet, low high (45,000 en. P value of quadratic (t of dietary MR), organi	0.65 7.44 41.8 3.14 24.0 v (25,00 0 LSU (F describe (Q) effect treatme	52 0.643 4 7.53 3 40.5 4 3.20 0 LSU (F)/ F)/kg muram s significant cts of dietar	0.654 7.46 40.9 3.12 15.8 kg mura iidase). E ce betwe y treatmo	0.0179 0.120 0.81 0.065 4.45 midase), Data are r en treatment. Rest	0 0.804 0.770 0.693 0.332 0.123 medium neans of inents det alts are s	L 0.539 0.451 0.808 0.175 0.039 (35,000 J 24 replicat ermined b tatistically able energ	LS te j y z si

							110040	1111
							У	
	Contro		Mediu		SEM	Р	L	Q
Treatment groups ¹	1	Low	m	High				

\sim	\sim
/	/
_	_

			12.6		13.2	0.162	0.06	0.985	0.00
	AMEn (MJ/kg DM)	12.98	2	12.96	6		2		7
			0.68		0.71	0.010	0.10	0.701	0.01
	DMR	0.705	1	0.696	7	4	7		6
			0.70		0.74	0.009	0.05	0.844	0.00
	OMR	0.729	6	0.725	3	5	8		7
			0.57		0.61	0.014	0.17	0.889	0.04
	NR	0.592	1	0.577	3	0	5		5
			0.81		0.84	0.010	0.09	0.050	0.18
	FR	0.815	1	0.834	3	4	9		7
						0.074	0.42	0.408	0.42
	SA (µg/g)	1.88	2.00	1.91	1.96		3		2
						0.22	0.10	0.871	0.22
	SA total (μ g/24h)	32.8	37.1	31.8	34.0		8		5
1									

¹Control: control diet, low (25,000 LSU(F)/kg muramidase), medium (35,000 LSU(F)/kg muramidase), high (45,000 LSU(F)/kg muramidase). Data are means of 24 replicate pens with 2 birds per pen. P value describes significance between treatments determined by ANOVA. Linear (L) and quadratic (Q) effects of dietary treatment. Results are statistically significant when P<0.05.