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Abstract 

The grey field slug (Deroceras reticulatum) is an agricultural pest, causing economic 

damage to a range of crops in the UK. Legislation has led to a reduction of registered 

active ingredients and increased pressure to reduce pesticide usage. Discontinuous 

distributions of slugs in arable fields offers the potential to target control applications on 

patches of slugs, reducing pesticide use whilst maintaining efficiency. This thesis 

investigates the stability of patches and methods for locating them. Significant 

aggregations of slugs were found at all field sites with stable areas of higher slug densities 

occurring in the same area of the field at all five fields sites during the 2015-16 season. In 

the subsequent two seasons slug numbers were lower, however, similar patterns of 

stability were observed in the fields with the largest populations. Stability of patches 

between seasons requires further work. Alternative methods of locating areas of higher 

slug densities were investigated. Using crop damage from grazing was not found to be 

suitable, the highest correlation between slug numbers and damage was r = 0.52, no 

positive correlation was found in the field with the largest population. Using soil 

characteristics was also investigated with organic matter, pH, bulk density and soil texture 

found to be significantly different at some field sites within and outside of slug patches, 

providing potential candidates for further investigation. A method of identifying individual 

slugs was developed to improve understanding of patch formation. Radio frequency 

identification tags were used to track slugs in the field over two five-week periods. Slugs 

were found to remain close to their release point. The maximum distance moved from the 

point of release was 78.7 cm in April 2017 and 101.9 cm in November 2017. The 

combination of results from this work suggests there is strong potential for targeting 

molluscicides to areas of higher slug densities.   
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1. Chapter 1. Literature review 

1.1. General biology of slugs 

1.1.1. Taxonomy 

All terrestrial slug species evolved from terrestrial snails through several separate 

evolutionary events (Rowson et al., 2014). In the UK there are 43 species of terrestrial 

slug (Rowson et al., 2014), which belong to seven families (Agriolimacidae, Arionidae, 

Boettgerillidae, Milacidae, Limacidae, Testacellidae and Trigonochlamydidae) in the order 

Stylommatophora, class Gastropoda and phylum Mollusca (Rowson et al., 2014). Within 

the order Stylommatophora there are many pest species belonging to different families. 

Slugs are a worldwide crop pest, with examples including Sarasinula plebeian (family 

Veronicellidae) in dry beans in Central America, Urocyclus flavescens (family Urocyclidae) 

in bananas in South Africa and Deroceras reticulatum (Müller), Arion hortensis agg. and 

Tandonia budapestensis in cereal crops in Western Europe (Barker, 2002). Pest species 

in the UK are found in four of the six native families, Agriolimacidae, Arionidae, Limacidae 

and Milacidae, D. reticulatum is in the Agriolimacidae family (Rowson et al., 2004). 

Deroceras reticulatum is the most economically important slug pest in Europe and also 

damages a wide range of agricultural crops in Asia and USA (Kozlowski and Jaskulska 

2014; Ramsden et al., 2017). 

 

1.1.2. Slug morphology and physiology 

Families of slugs are characterised by several morphological differences. For example, 

the extent to which the shell has reduced varies; in the Testacellidae a reduced external 

shell is still visible on the dorsal body wall, while in the Agriolimacidae, Limacidae and 

Millacidae the shell has become a small plate under the mantle, whereas in the Arionidae 

only calcareous granules remain and in the Boettgerillidae the reduction is even more 

extreme (South, 1992; Rowson et al., 2014). Another difference between families is the 

presence of a keel, in the Arionidae there is no keel present, in contrast the Millacidae and 

Boettgerillidae have a keel running from the rear of the tail to just behind the mantle and 

the Limacidae and Agriolimacidae have a short keel from the rear of the tail finishing half 

way to the rear of the mantle (Rowson et al., 2014).   

  The mantle (Figure 1.1(A)), protects the slug’s organs, stomach, reproductive organs 

and anus ((Figure 1.1(B)), which are asymmetrical, to the right, in common with their snail 

ancestors (Rowson et al., 2014). There is also a small opening, the breathing pore, on the 

right-hand side of the mantle called the pneumostome (Figure 1.1(A)). Slugs have two 

sets of tentacles, the longer posterior optical tentacles and the shorter anterior sensory 

tentacles (Figure 1.1(A)) (South, 1992). The reduction of the shell has allowed slugs to 

exploit different niches to their snail ancestors, the production of a hard calcareous shell 

requires large amounts of specific resources restricting the soils and diets snails can 



2 
 

survive on, and without a large shell slugs are able to move faster than snails and access 

smaller spaces (Rowson et al., 2014). The disadvantage of the reduction of the shell is 

that slugs have less protection from predators and lose more water through evaporation 

from their skin, as they are unable to regulate their own body moisture they therefore rely 

on moisture in their environment (South, 1992).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. The morphology of Deroceras reticulatum. (A) external morphology (John Innes Centre, 
2019); (B) internal anatomy (Rowson et al., 2014). 

 

1.1.3. UK agricultural pest species 

Of the species recorded in the UK, D. reticulatum, Arion spp. and T. budapestensis 

account for the majority of damage resulting from slug activity in arable crops (Rowson et 

al., 2014). Distributed throughout the UK, D. reticulatum is an opportunistic species that 

reproduces rapidly to exploit the disturbance of soil in arable fields. It is the most 
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economically damaging species of slug affecting cereal and oilseed rape (OSR) crops 

(Kemp and Newell, 1987; South, 1992), with T. budapestensis being the main threat to 

potatoes (Thomas, 1947, Stephenson 1967, South, 1992). Much of the research related to 

slugs and crop damage was carried out during the 1980s and 1990s, however, more 

recent publications (Kozlowski and Jaskulska, 2014; Rowson et al., 2014; Ramsden et al., 

2017), have also contributed to the development of advice for farmers (AHDB, 2016) and 

these species continue to be considered the biggest threat to these crops in the UK.  

 

1.1.4. Deroceras reticulatum (Müller) 

The grey field slug, D. reticulatum (previously named Agriolimax reticulatus (Müller) is the 

most economically important slug species, accounting for the majority of damage to crops 

in the UK (Ramsden et al., 2017). Deroceras reticulatum is indigenous to Europe but has 

been introduced to other parts of the world including USA, South America, central Asia 

and New Zealand (Yildirim and Kebapçi, 2004). Deroceras reticulatum varies in size 

according to habitat, with the largest individuals being approximately 5 cm in length when 

fully extended (Rowson et al., 2014). Although it is difficult to distinguish D. reticulatum 

from other Deroceras species (particularly D. agreste) based solely on external 

characteristics, the geographical distribution is very different, D. reticulatum is found in 

commonly disturbed habitats whereas D. agreste is mainly found in woodland. Deroceras 

reticulatum is omnivorous but shows a preference for live or decaying plant material 

(South, 1992). The life span of D. reticulatum in their natural habitat is approximately 1 

year (South, 1989). Hereafter the term “slugs” will refer to D. reticulatum unless specified 

otherwise.       

 

1.1.5. Factors affecting slug activity 

Slugs are more active at night (Wareing and Bailey, 1985; Hommay et al., 1998; South, 

1992). During periods of inactivity slugs will seek out refuges under stones, at the base of 

plants or by moving down the soil profile using cracks. Hommay et al. (1998) carried out 

two laboratory experiments to investigate locomotor activity in relation to refuge traps. The 

first used a photoperiod of 12 hours: 12 hours (light: dark) with the temperature 

maintained between 15 and 18°C while a second experiment had a photoperiod of 10 

hours: 14 hours (light: dark) at a constant temperature of 14°C. In both experiments slugs 

left the refuges and activity increased rapidly soon after it became dark and decreased 

shortly after it became light, when slugs returned to a refuge. A feeding peak was 

observed 1-2 hours after it had become dark and a mating peak occurred during the 

middle part of the scotophase (Hommay et al., 1998). Research investigating patterns of 

activity in constant temperatures and light conditions has demonstrated that even in an 

absence of environmental cues such as changing light levels or temperature, patterns of 

daily activity can persist (South, 1992). These experiments suggest that photoperiod 
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rather than temperature is the primary driver of the onset of slug activity, although under 

field conditions diurnal temperature cycles mirror cyclical changes to light levels and 

interactions may occur.  

  Previous work on the effect of temperature and daylength under controlled moisture 

levels found that daylength had a significant effect on the optimum temperature for 

locomotor activity but not feeding of D. reticulatum (Wareing and Bailey, 1985). Under 

short daylengths (10 hours light: 14 hours dark) the optimum temperature for locomotor 

activity was 13°C increasing to 17°C under longer daylengths (14 hours light: 10 hours 

dark), whilst the optimum temperature for feeding remained at 14°C in both conditions. 

The study also showed both rate and direction of change of physical conditions were also 

important. With a daytime temperature of 12°C, cooling temperatures in the dark period 

stimulated locomotion and feeding activity, whereas rising temperatures supressed 

activity. 

  In combination, the results of the work carried out by Hommay et al. (1998) and Wareing 

and Bailey (1985) suggest that day light is the main factor in determining the onset of 

activity but temperature also has a role to play in the level of activity. Deroceras 

reticulatum is able to remain active and cause crop damage in a wider range of 

temperatures than most other slug species. For example, D. reticulatum have been 

recorded feeding at temperatures as low as 0.8°C, while other slug species were found to 

be inactive below 5°C (Mellanby, 1961).  

  Although daylength and temperature have been shown to influence the timing of slug 

activity, moisture is also widely acknowledged as affecting the number of slugs active on 

the soil surface. Daylength is a variable with known daily and seasonal cycles, while 

temperature and moisture fluctuate over shorter time periods. Whilst seasons may have 

typical weather conditions within seasons there is daily variation in temperature and soil 

moisture which can influence slug activity.  

 Models of slug populations have used parameters such as soil moisture, air temperature 

and leaf area index (Shirley et al., 2001) and rainfall and temperature (Choi et al., 2004). 

Whilst research has confirmed temperature and moisture play an important role in daily 

slug activity and long term population numbers, the precise combination of factors 

associated with slug abundance are often disputed. This could be in part due to factors 

which vary between study sites and were not considered in all experiments, such as 

cultivations, soil texture and predator abundance. Predation by carabids was shown to 

influence slug populations (Schley and Bees, 2003) and a model which included 

parameters relating to egg production, development of juveniles and mortality predicted 

population dynamics over a 3.5-year period more accurately than those based solely on 

weather data (Choi et al., 2006). 
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1.1.6. Slug reproduction 

Deroceras reticulatum has two main peaks of reproductive activity, one in spring and one 

in autumn, however, it is an opportunistic species which reproduces whenever favourable 

mild, wet conditions occur, resulting in overlapping generations/life stages throughout the 

year (Port and Port, 1986). In contrast, Arion spp. and T. budapestensis have an annual 

life cycle with a single peak of reproductive activity occurring in late spring to early 

summer (South, 1992). These alternative strategies allow the different species to exploit 

their niches, with D. reticulatum being found mainly in disturbed environments, and Arion 

spp. primarily inhabiting more stable environments (South, 1989). The annual pattern of 

D. reticulatum with two reproductive peaks, coupled with their response to environmental 

cues such as temperature (rather than photoperiod), enables populations to increase 

rapidly when environmental conditions are favourable, a response that is critical in 

disturbed environments. 

  Although slug eggs are widely known to be susceptible to desiccation, there is evidence 

that D. reticulatum can mitigate for this by adjusting the number of eggs laid depending on 

the environmental temperature and moisture conditions (Willis et al., 2008). This again 

allows reproductive efforts to exploit the disturbed environment to maximise population 

increases when conditions are optimum. Egg production in other species, such as Limax 

maximus and Ariolimax columbianus which inhabit more stable environments, is related to 

the photoperiod (Rollo, 1983; Kozłowski and Sionek, 2000). Laboratory experiments 

carried out by Hommay et al. (2001) also showed a response to daylength, with slugs 

producing more eggs in longer photoperiods. The data may however reflect an effect of 

temperature changes rather than photoperiod, as in the shorter photoperiods the 

temperature was increased in the dark whereas in the longer photoperiods the 

temperature was decreased during the dark. 

  Whilst eggs are susceptible to desiccation, the juveniles have the lowest rates of 

overwintering survival; eggs which fail to hatch by the end of the autumn may remain 

dormant until the following spring (Shley and Bees, 2002). Most slug species have three 

post-hatching life stages; infantile (rapid growth), juvenile (medium growth) and adult 

(minimal growth) (South, 1982; Hommay et al., 2001). Deroceras reticulatum and Arion 

circumscriptus (another species which inhabits disturbed ground (Rowson et al., 2014)) 

only have two post-hatching life stages, namely the juvenile (rapid growth) and adult (slow 

growth) stages (South, 1982).   

  Slugs are hermaphrodites. During the juvenile stage D. reticulatum are typically males 

(Schley and Bees, 2002), with older adults taking the female role. In the absence of 

juveniles, adult slugs can also take the male role to prevent a reduction in reproduction 

and so population size (Schley and Bees, 2002). Juveniles are not only vulnerable during 

over-wintering due to adverse environmental conditions, but are also at risk from 

predation by carabids (Schely and Bees, 2003). The faster growth rate during the juvenile 
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stage of D. reticulatum reduces the time that young slugs are at risk due to extreme 

environmental conditions or predation.    

 

1.1.7. Slug population dynamics 

The effect of weather-related environmental factors on slug activity and the long-term 

effect on their populations have previously been discussed. However, the variation in the 

number of slugs between fields is controlled by more stable factors, for instance, soil 

organic matter, pH and soil type affect slug population densities (South, 1992). In addition 

to providing a food source for slugs (Carrick, 1942), decomposing plant material 

influences other soil properties such as water holding capacity, soil structure and pH. 

Increased organic matter content can increase the water holding capacity of soil, meaning 

longer moisture retention during dry periods (Franzluebbers, 2002). Slugs are dependent 

on their environment for moisture as they are unable to regulate their own body moisture 

(South, 1992). Organic matter also improves the soil structure and stability of sandy soils 

and increases soil aggregation, decreasing the bulk density (Keller and Håkansson, 

2010), creating refuges for soil dwelling organisms (Franzluebbers, 2002).  

  There are mixed results in the literature regarding the effect of pH on slug abundance. 

The early research investigating the relationship between molluscs and pH used snails as 

the study species and showed a higher number of species present in soils with pH 6 or 

above (Atkins and Lebour, 1923). It is likely that slugs have a similar preference for 

neutral to alkaline soils. Slugs have several requirements for calcium carbonate, in the 

reduced calcareous shell under the mantle (Figure 1.1), an outer layer of calcium 

carbonate surrounding their eggs and granules of calcium carbonate within their slime 

(South, 1992). Calcium carbonate is found in more alkaline soils. A study in Iberia found 

higher D. reticulatum populations in areas with soils with high pH and calcium levels 

(Ondina et al., 2004).  

  Soils with a high clay content tend to form clods and cracks when they dry out (Hillel, 

2008). The clods and cracks in the soil provide refuges for slugs, which rely on them as an 

environment to assist in maintaining body moisture levels and for shelter (South, 1992). 

Soil texture is widely considered to be an important factor in determining the slug 

population size in arable fields. For example, damage records from the 1957 and 1958 

growing seasons in East Anglia showed a high correlation between crop losses in winter 

wheat and the soil type, the majority of damage occurring on clay loam soil, with no 

reports of damage on sandy soil (Gould, 1961). Ondina et al. (2004) made similar 

observations during an investigation on slug population distributions in Iberia, where D. 

reticulatum showed a preference for soils with high silt and clay proportions. In recent 

literature produced by AHDB (2018) soil type is identified as a risk factor for slugs, with 

soils that have high clay and silt content being considered more prone to greater slug 

numbers.  
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1.1.8. Discontinuous distribution 

Discontinuous distribution of slugs in arable fields is widely reported in the literature 

(South, 1992; Bohan et al., 2000a; Archard et al., 2004; Mueller-Warrant et al., 2014). For 

example, Bohan et al. (2000a) demonstrated aggregation of juvenile D. reticulatum and 

Arion intermedius and Archard et al. (2004) identified areas (patches) with higher slug 

numbers using both soil samples (25 x 25 x 10 cm) and surface traps, positioned 16 m 

apart in a 6 by 4 rectangular grid. Subsequent work has indicated that although similar 

sampling grids consistently identify such slug patches, reducing the inter-trap distance to 

10 m or less increases the accuracy by which patch location can be established 

(Petrovskaya et al., 2018). Fewer studies have investigated environmental or behavioural 

mechanisms determining how and where such patches form or their temporal and spatial 

stability and this remains a significant constraint on our ability to use such patches for 

more accurate targeting of molluscicide application to reduce the volume of pesticides 

applied.  

 

1.1.9. Mucus trail following 

Trail following occurs in many different species from mammals to insects and gastropods 

(Ng et al., 2013) and can serve several different functions including homing, mate 

location, energy saving or aggregation. Mucus production is costly, and utilising trails 

which have recently been laid by another individual can reduce the amount of mucus 

produced by the following slug by as much as 73 % making locomotion more efficient 

(Davies and Blackwell, 2007).  

  In a review of trail following in gastropods Ng et al. (2013) concluded that trail following is 

not the primary mechanism in homing behaviour but can aid it. Rollo and Wellington 

(1981) investigated mucus trail following in relation to homing behaviour in nine different 

species of slugs and snails, including D. reticulatum. Only a small percentage of the 

mucus trail following that they reported was found to be for homing, with olfactory cues 

from refuges (mainly from faeces) being preferentially used. In field experiments 

observing eight slug species, D. reticulatum were observed travelling directly to a shelter 

up to 1.5 m away without following slime trails. Whilst travelling to a refuge, slugs were 

recorded lifting the anterior part of their body and swaying their head with their optical 

tentacles spread widely and then narrowing as they approached the refuge. This 

behaviour suggested that olfactory cues inside the shelter were influencing the direction 

the slugs travelled rather than slime trails (Rollo and Wellington, 1981). In bad weather 

(wind and rain), when such cues would be weaker, similar behaviour was observed but 

rather than heading directly towards the refuge they circled in increasingly smaller circles. 

Other instances of trail following resulted in mating or attacking other slugs (Rollo and 

Wellington, 1981).  
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  In many gastropod species trail following has been shown to be species specific and 

often results in mating. In species which are not hermaphrodite, the different sexes can 

also be distinguished (Ng et al., 2013). For example, in the marine snails Littoraria 

ardouiniana and L. melanostoma, it has been shown that males are able to both identify 

females from cues in the mucus trail and the direction of the trail, thus increasing mating 

success (Ng et al., 2013). The mechanism for directional trail following is unknown but 

there are several possibilities; a directional cue in the structure of the mucus, chemical 

cues in the mucus which deteriorate over time creating a gradient, or an olfactory cue 

from the slug which laid the trail (Cook, 2001). There is evidence that trail following for 

mating may be part of pre-courtship behaviour with both the trail layer and trail follower 

both being active participants (Reise, 2007). There may also be a benefit of trail following 

in that it will lead to aggregations which provide benefits in the form of protection from 

predators and reduced desiccation through huddling (Ng et al., 2013). 

  Although trail following may vary between species, directional trail following responses 

have been recorded in D. reticulatum, with one study demonstrating that in more than 90 

% of observed encounters, individuals that met a slime trail were able to identify the 

direction in which the trail was laid and turned to follow the slug that laid it (Wareing, 

1986). The slug following the trail moved faster than the slug laying the trail and caught 

the trail layer in more than 50 % of cases. In all cases where the slug caught up with the 

slug which had originally laid the trail courtship behaviour resulted. The age of the trail 

encountered significantly affected the response elicited. Those which had been laid up to 

6.5 hours prior to the encounter were followed, whereas there was no response to older 

trails (up to 3 days old). It is not known whether these trails were not detected or ignored 

as following older trails would be unlikely to result in finding a mate (Wareing, 1986). 

Understanding the biological significance of trail following and the tendency for an 

individual to follow a trail of another individual of the same species is important in relation 

to patch formation. Increased trail following will lead to increased aggregation (and thus 

coherence of patches), reinforcing any responses resulting in preference for specific 

environmental characteristics, as well as compounding aggregations in areas of preferred 

environmental conditions (Cook, 2001).  

 

1.1.10. Homing behaviour 

Both homing and aggregating behaviours may contribute to patch stability. Laboratory 

studies have demonstrated homing behaviour in slugs (Hommay et al., 1998; Cook, 1979; 

Gelperin, 1974) although homing behaviour observed in the laboratory may not be 

representative of behaviour in the field. In laboratory experiments, the available space is 

small, with a limited choice of refugia, and conditions are uniform when compared to the 

field. Rollo and Wellington (1981) assessed the homing behaviour of several species of 

slugs, including D. reticulatum under field and laboratory conditions. In field studies 
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individual slugs have been observed returning to the refuge used the previous night via a 

different route to the one they left by. When refuges have been artificially manipulated (i.e. 

relocated), individual slugs have been observed returning to the same refuge as they 

previously used in its new position (Rollo and Wellington, 1981). Other studies have 

shown when mucous trails have been removed, some slug species are still able to locate 

the same refuge, although these responses have been found to vary between species (Ng 

et al., 2013). There is evidence that some species will use air-borne chemical cues, 

potentially deposited in faeces, to find their way back to a refuge but in some 

circumstances e.g. a change in wind direction, they will switch to using contact 

chemoreception to follow mucus trails (Ng et al., 2013). Rollo and Wellington (1981) 

manipulated refuges, with carrot and faeces enclosed in some and only carrot in others. 

Significantly more Arion ater were found in the refuges containing faeces than carrot 

alone. These results suggest that the slugs are following olfactory cues, potentially in 

faeces in order to return to the shelter. Further evidence that slugs use olfactory cues to 

return to their shelter is provided by Cook (1980) who observed significantly more slugs 

(Limax pseudoflavus) returning upwind to refuges than would be expected if the 

movement was random, whereas there was no significant difference from random 

movement when leaving the shelter. The behaviour observed by Cook (1980) was not 

homing because it was not the same individuals returning to specific refuges each night. 

Individual slugs were more likely to use a refuge that others of the same species had 

utilised the previous night, suggesting that individuals were not following their own 

individual signal but rather a species-specific signal. The tendency to return to the same 

refuge, or even a refuge in the same area used by individuals of the same species, will 

contribute to the stability of patches.  

  Rollo and Wellington (1981) reported seasonal variations in the tendency for slugs to 

return to their previous refuge. There was also a tendency for slugs to use the same 

refuge in dry conditions, especially during summer months when the hours of darkness 

were limited and less time was available to seek refuges whereas in the autumn there was 

more movement of slugs between refuges (Rollo and Wellington, 1981). All slugs showed 

the ability to seek out alternative refuges when conditions became less favourable, for 

example when food became scare or a shelter became flooded, too dry or there were 

dead slugs present (Rollo and Wellington, 1981). A review of homing behaviour in 

gastropods (Cook, 2001) found that homing behaviours were more frequently observed in 

laboratory experiments compared to field studies. One possible explanation for this is that 

in field conditions suitable refuges are more abundant. The use of the same refuges 

during the summer or dry periods would increase the stability of patch location observed 

during these periods and the increase of movement between refuges in the autumn may 

make patch location less stable at a critical time for molluscicide applications.  

 



10 
 

1.2. Slugs as a crop pest  

Slugs cause damage to a range of crops including cereals, oilseed rape, potatoes, 

asparagus, brussel sprouts, carrots and lettuce. The damage caused by slugs can either 

affect the yield or make the crop unmarketable through cosmetic damage (AHDB, 2016). 

This thesis will concentrate on cereals and oilseed rape crops, the damage caused by 

slugs to these crops is discussed in more detail below.  

1.2.1. Cereals 

Damage caused by slugs varies between crops. Wheat and other cereals are most 

susceptible to damage before germination when seed hollowing caused by slugs can 

result in poor germination leading to poor crop establishment (South, 1992). Damage can 

also occur after germination from grazing on young shoots up to GS21 (AHDB, 2016). 

Wheat can recover from seed damage, provided it does not prevent germination. Feeding 

by slugs on mature plants is not considered to be of significant economic importance (Port 

and Port, 1986). Although few comparisons of variation in susceptibility of modern wheat 

cultivars have been conducted there is no evidence of significant differences occurring 

(ADAS, 2010; Cook et al., 1996).  

 

1.2.2. Oilseed rape 

Oilseed rape is most vulnerable during the establishment phase (between sowing and the 

four true leaf stage), with most damage caused by leaf shredding rather than by seed 

hollowing (AHDB, 2016). There is evidence that some OSR varieties are more 

susceptible, with those having higher concentrations of glucosinolates being less 

vulnerable to damage from slugs. Experiments investigating nine commercial cultivars of 

OSR found a strong inverse relationship between slug damage and the levels of 

glucosinolates (Glen et al., 1990a). Varietal differences are not commonly observed as 

OSR breeding targets lower glucosinolate level varieties due to the toxicity to livestock 

(Bellostas et al., 2007).  

 

1.2.3. Slug numbers and damage 

Correlations between slug population densities and resultant crop damage were observed 

during the establishment period of perennial rye grass crops in Oregon, USA (Mueller-

Warrant et al., 2014). Correlations were strongest in the two sites in which highest slug 

densities (mean trap counts of 9.8 and 21.1) were detected using surface refuge traps 

(accounting for 40-50 % of the damage). In comparison, sites with intermediate numbers 

of slugs displayed periodic (inconsistent) correlations, and no relationships were detected 

at those with low slug densities (mean < 3 slugs per trap). Irregular shaped patches of 

slug damage (approx. 50-150 m2) occurred in the field that suffered the highest crop 

losses (Mueller-Warrant et al., 2014). The weaker correlations may have resulted from 
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behavioural responses to adverse weather conditions (e.g. high temperatures or 

prolonged periods of low rainfall). This can result in a large proportion of a slug population 

taking refuge in more protected environments beneath the soil surface or under a refuge, 

such as a stone, where they are difficult to detect using surface traps (South, 1992). Thus 

crop damage is likely to be an unreliable approach for slug patch identification, as 

confirmed in a recent study in winter wheat (Forbes et al., 2017).  

 

1.3. Legislation affecting molluscicide use 

1.3.1. Pesticide Authorisation Directive 

Current EU and UK policy aims include optimising pesticide use in crop production to 

protect the environment and human health whilst maintaining agricultural efficiency. The 

Pesticides Authorisation Directive (PAD) (Council Directive 91/414/EEC) was introduced 

in 1993 and since its introduction there was a 50 % decrease in registered pesticides 

available for use between 1993 and 2012 (Carlile, 2006; Hillocks, 2012). Several other EU 

directives and regulations also govern the registration and use of pesticides, including 

Water Framework Directive (Council Directive 2000/60/EC), Sustainable Use Directive 

(Council Directive 2009/128/EC), Groundwater Directive (Council Directive 2006/118/EC), 

Regulation (EC) No 1107/2009 (approval of products), Regulation (EC) No. 396/2005 

(maximum permitted levels in food), Regulation (EC) No. 1272/2008 (classification, 

labelling and packaging of pesticides) and Regulation (EC) 1185/2009 (statistics on 

PPPs). Whilst the focus of legislation is on health and the environment, it is important that 

the decrease in available pesticides does not have damaging consequences for farming 

productivity (The Andersons Centre, 2014).  

 

1.3.2. Water Framework Directive 

The Water Framework Directive (WFD) (Council Directive 2000/60/EC) is focused on 

improving the quality of water with the objective of ensuring all water bodies had ‘good’ 

ecological and chemical status by 2015. Of the 10,379 water bodies assessed in the UK in 

2015, however, only 35 % were found to be of ‘good’ or ‘high’ ecological status, against 

the criteria set out in Annex V of the WFD (Council Directive 2000/60/EC). In addition, the 

EU Drinking Water Directive sets the maximum permissible level of any pesticide in 

drinking water at 0.1 µg L-1 (Council Directive 98/83/EC). In order to achieve this objective 

continuous improvement to pest management procedures are required to ensure that any 

overuse of PPPs is avoided. 

 

1.3.3. Sustainable Use Directive 

More recently, EU Directive 2009/128/EC (Sustainable Use Directive) requires each 

member country to establish a National Action Plan for pesticide reduction, the protection 

of water courses and promotion of low input regimes through Integrated Pest 

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060
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Management (IPM) (Council Directive 2009/128/EC). It is implemented in the UK by the 

resulting UK Plant Protection Products (Sustainable Use) Regulations (2012). The 

cumulative effect of such legislative action, combined with the cost of product 

development and registration, has led to fewer PPPs being available.  

 

1.3.4. UK policy 

There are regulations and acts which transpose the EU directives and regulations into UK 

law such as UK Plant Protection Products (Sustainable Use) regulations 2012 and a 

legally binding code of practice for using plant protection products (Defra, 2006), In 

response to the Sustainable Use Directive (2009/128/EC), Water Framework Directive 

(Council Directive 2000/60/EC), Groundwater Directive (Council Directive 2006/118/EC) 

and Drinking Water Directive (Council Directive 98/83/EC) the UK has adopted a voluntary 

approach to achieving implementation of legislation, with the Voluntary Initiative launched 

by the UK government in 2001 (Voluntary Initiative Steering Group, 2002). The aim of the 

Voluntary Initiative is to work with stakeholders to promote working practices that 

contribute to reducing the impact of farming on the environment, it also incorporates a 

National Register of Sprayer Operators (NRoSO), which during the first five years 

following its launch achieved a level of 88 % of arable land being sprayed by members of 

the NRoSO. The scheme ensures registered operators are kept up to date with legislation 

changes and best practice for applying chemicals (Glass et al., 2006). As new directives 

have been implemented the Voluntary Initiative has evolved, for example, asking farmers 

to complete Integrated Pest Management Plans (IPMPs; replacing Crop Protection 

Management Plans) thus moving the focus to an integrated approach to tackling 

environmental impacts. The impact of the voluntary approach on plant protection product 

(PPP) retention remains to be established but future advances relating to molluscicide 

may be dependent, in part, on improved knowledge of slug behaviour and ecology 

(Forbes et al., 2017).  

 

1.3.5. Potential effect of pesticide removal from market 

In 2014 the Agricultural Industries Confederation, the Crop Protection Association and the 

National Farmers Union commissioned a review conducted by The Andersons Centre 

(research consultants) investigating the impact of current EU and UK legislation on the 

future availability of pesticides. The resultant report categorised all the remaining PPPs 

into high, medium and low risk of removal from the market, and showed that in the UK 35 

% of remaining PPPs are at medium or high risk of loss (The Andersons Centre, 2014). 

Based on a scenario whereby only high-risk PPP’s (two out of the three active ingredients 

for slug control, (methiocarb and metaldehyde) were classed as at high risk of withdrawal) 

were lost annual yield losses due to slug damage were estimated at 3 % for winter wheat, 

4 % for OSR and 2 % for potato crops (The Andersons Centre, 2014), making them one of 

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060
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the main pest groups in the UK (profit reduction based on 2016 yields and prices; Table 

1.1.). Since the report was published both methiocarb and metaldehyde have or, in the 

latter case, likely will soon be removed from the market, which would leave ferric 

phosphate as the only active ingredient available for slug control (HSE, 2014; Appleby, 

2019; Pickstone, 2019). In order to maintain sustainable crop production growers will need 

to consider targeted application methods which reduce the total amount of pesticide 

application whilst ensuring adequate levels of control.  

 

Table 1.1. A comparison of the potential threat of different pests and diseases in wheat, oilseed 

rape and potato crops in a scenario where high risk PPP’s are lost. Figures expressed as % yield 
loss (The Andersons Centre, 2014).   

Pest/disease Wheat Oilseed rape Potatoes 

Slugs 3 % 4 % 2 % 

Late blight (Phytophthora infestans) - - 10 % 

Aphids/plant parasitic nematodes 2 % 2.5 % 2 % 

Septoria tritici 3 % - - 

Yellow rust 5 % - - 

Volunteer cereals - 24 % 1 % 

Black grass 16 % - - 

Turnip yellow virus - 10 % - 

Cabbage stem flea beetle - 7 % - 

 

1.3.6. Reduction in pesticide use 

Increasingly EU policy is requiring growers to reduce the use of pesticides and investigate 

alternative options of control. For instance, the introduction of EU Directive 2009/128/EC 

requires National Action Plans for pesticide reduction to be established and the resulting 

UK Plant Protection Products (Sustainable Use) Regulations 2012 (PPP regulations) 

address the protection of watercourses and promotion of low input regimes, amongst 

other provisions (Defra, 2006). Cross compliance requires farmers to meet standards of 

good environmental practice (under Good Agriculture and Environmental Conditions and 

Statutory Management Requirements) in order to receive money from the basic payment 

scheme or from stewardship schemes (Defra, 2018a). This provides a financial incentive 

for farmers to meet the requirements of the PPP regulations and WFD. In recent years, 

metaldehyde has been detected in several water catchment areas at levels up to 8 µg L-1 

(Castle et al., 2017). A metaldehyde stewardship group (MSG) was set up to mitigate the 

risk of removal due to the levels detected in water courses (AHDB, 2010).  

  Conflicting with the pressure to reduce pesticide usage is the demand for increased food 

production as the population grows. To feed the growing population an estimated 200 % 
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increase in global food production is needed by 2050 (Clay, 2011). To meet these 

demands alternative methods of control and application must be investigated.  

 

1.4. Crop protection measures for slugs 

1.4.1. History of slug management 

Historically slugs have been managed through common farming practices including 

ploughing and crop rotations. Crop husbandry has changed over time, with many modern 

day farming practices being less beneficial in the reduction of slugs. For example, the 

prohibition of stubble burning (The Crop Residues (Burning) Regulations 1993), a move 

towards minimum tillage and direct drilling (Kennedy et al., 2013), shorter rotations and 

larger areas of OSR grown mean there is more demand for effective slug control methods. 

Stubble burning aided the control of slugs by directly killing individuals and reducing the 

amount of food available on the soil surface (Glen and Symondson, 2003). The reduction 

in cultivations reduces the number of slugs killed by the mechanical action of the 

machinery (Port and Port, 1986; Kennedy et al., 2013) and fewer slug eggs are exposed 

to the surface where they become desiccated (Glen and Symondson, 2003). Crops 

following OSR in rotation are more susceptible to damage from slugs, partly due to the 

dense canopy of the OSR crop, which provides ideal environmental conditions for 

increases in population size resulting in larger numbers being present during the often 

susceptible establishment period (Port and Port, 1986, Glen et al., 1993). The timing of 

planting and rotations also affect damage levels; winter grown crops are more susceptible 

to slug damage as growth is slower, lengthening the time for which vulnerable stages are 

exposed to the pest (South, 1992). Of the range of commercial products available for slug 

control in arable crops, molluscicide pellets are the industry’s preferred approach. In 2016, 

37 % of winter and spring sown wheat, 88 % of OSR and 100 % of potatoes were treated 

with a molluscicide in the UK (Garthwaite et al., 2018). 

 

1.4.2. Molluscicide pellets; Methiocarb 

For many years there have been at least two active ingredients (methiocarb and 

metaldehyde (discussed below)) concurrently available for the control of slugs. The 

primary method of application is in a bran based pellet containing the active ingredient, 

with the bran acting as an attractant to the slugs. Pellets can be broadcast across the field 

or mixed and drilled with the seed (South, 1992).  

  Methiocarb was one of most widely used active ingredient, especially in high value crops 

until it was removed from the market in September 2015 (HSE, 2014) due its detrimental 

effect on farmland birds (Clarke, 2014). Methiocarb is a carbamate, inhibiting 

acetylcholine esterase which causes paralysis (South, 1992). As well as the impact on 

farmland birds, negative effects have also been observed in other invertebrates (e.g. 
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Coleoptera). A 95 % reduction of carabid activity was detected following broadcast 

application and 85-90 % reduction when drilled (Purvis and Bannon, 1992).  

 

1.4.3. Molluscicide pellets; Metaldehyde 

Metaldehyde is a tetramer of acetaldehyde, which acts through contact or consumption by 

causing paralysis and excess mucus production (South, 1992). Metaldehyde has been the 

most widely used active ingredient for slug control, representing 75 % of the UK slug 

pellet market in 2016 (most recent figures; Garthwaite et al., 2018), the implications of its 

likely removal from the market will be significant for slug management. The removal of 

metaldehyde from the market was announced in December 2018 (Defra, 2018b), in July 

2019 an appeal meant the ruling was overturned on a technicality. Although the ban was 

lifted, it will likely be reinstated in the near future (Appleby, 2019; Pickstone, 2019), 

therefore for the purposes of this thesis it will be assumed that metaldehyde will not be 

available long term for slug control. Although metaldehyde has been detected in several 

water catchment areas at levels of up to 8 µgL-1 (Castle et al., 2017), 80 times higher than 

the level permitted under the Drinking Water Directive (Council Directive 98/83/EC), there 

were well established stewardship guidelines and voluntary efforts to facilitate significant 

mitigation of the risk of contamination of water bodies. Stewardship guidelines include 

leaving 10 m margins around field boundaries and along water courses, maximum 

application and dose rates and recommendations for pellet application timings in relation 

to weather (MSG, 2019). The announcement of the removal of metaldehyde from the 

market in December 2018 was not a result of water contamination but due to the risk it 

posed to farmland wildlife (Defra, 2018b).  

 

1.4.4. Molluscicide pellets; Ferric phosphate 

Ferric phosphate is a relatively new product, approved for use in the UK since 2005 

(AHDB, 2010). Ferric phosphate acts as a stomach poison, iron deposits in the digestive 

gland cause slugs to stop feeding and ultimately death (Triebskorn et al., 1999). Field 

experiments conducted in Switzerland found ferric phosphate was less effective than 

other products in reducing the number of D. reticulatum in lettuce plots. The plots treated 

with ferric phosphate had significantly higher numbers of D. reticulatum than those treated 

with metaldehyde, with an average of 2.25 slugs per trap compared to 0.25 in the 

metaldehyde plots (Speiser and Kistler, 2002). Damage was significantly reduced in 

lettuce plots where ferric phosphate was applied when compared with untreated plots and 

there was no significant difference in damage between plots treated with metaldehyde or 

ferric phosphate in the lettuce crop (Speiser & Kistler, 2002).  

  Other experiments have shown that ferric phosphate can offer comparable levels of 

control to metaldehyde, reducing slug damage by more than 50 % (Evans and Barker, 

2017). Field experiments conducted in potato crops in Lincolnshire and Edinburgh in 2015 
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and 2016 showed that ferric phosphate significantly reduced slug numbers compared to 

untreated controls and that three treatment applications were as effective as four over the 

growing season (Evans and Barker, 2017). There is evidence to suggest that ferric 

phosphate may have a detrimental effect on earthworms, with less activity and higher 

mortality observed in treatments containing ferric phosphate compared to metaldehyde 

and untreated controls (Langan and Shaw, 2006; Rae et al., 2007), which could be 

reduced by targeting applications to those areas of fields with higher slug densities. 

 

1.4.5. Integrated control 

EU legislation requires pesticides to be used in conjunction with a range of management 

strategies such as biological, biotechnical, cultural, genetic and physical controls and at 

the minimum level required to keep pest populations below those that cause unacceptable 

economic losses (Council Directive 2009/128/EC). Alternative methods for control of slugs 

have been well documented (see sections 1.4.5.1 – 1.4.5.4), and may contribute to IPM 

strategies that reduce conventional pesticide usage.  

 

1.4.5.1. Pathogenic nematodes 

Specific nematode species, in particular Phasmarhabditis hermaphrodita, offer 

comparable slug suppression to metaldehyde in high value crops such as sprouts, lettuce 

and asparagus (Wilson et al., 1995, Glen et al., 2000, Iglesias et al., 2003). 

Phasmarhabditis hermaphrodita enter under the mantle of the slug as dauer larvae, once 

inside the shell sac they develop into adults which reproduce until the slug dies. After the 

death of the slug they continue to feed and reproduce throughout the body of the slug until 

resources are exhausted (Wilson et al., 1993). The use of nematodes in cereals and 

oilseeds is limited due to the cost of application (nematodes (Nemaslug®): ~£110 per 

hectare; Metaldehyde: £10-15 per hectare; ferric phosphate: £17-24 per hectare (ADAS, 

2010). The cost coupled with limited published evidence documenting efficacy (Rae et al., 

2007) and conflicting results (Iglesias et al., 2003; Evans and Barker, 2017) has resulted 

in limited use in arable crops. Evans and Barker (2017) found that Nemaslug® did not 

effectively reduce slug damage in potato crops but could help reduce damage when used 

in conjunction with ferric phosphate. Iglesias et al. (2003) conducted studies in Spain 

between 1999 and 2001 to investigate the effect of the repeated use of molluscicides on 

non-target organisms. Treatments included metaldehyde pellets and four different 

nematode (Nemaslug®) treatments ((1) nematode application three days prior to planting, 

(2) slurry application seven days prior to planting, followed by nematode application three 

days prior to planting, (3) nematodes applied to the uncultivated area surrounding plots 

three days prior to planting and (4) nematodes applied three days prior to planting but only 

for the first crop) compared with an untreated control. Over the two-year experimental 

period crops (lettuce, leaf beet and cabbage) were planted as seedlings and harvested 
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after 6 weeks. No significant differences were found between the numbers of slugs on 

harvested plants which had received treatments 2, 3 and 4 compared with untreated 

controls, however, there was a significant reduction in the damage observed to the crop 

(percentage leaf loss), following the metaldehyde treatment and nematode treatment (1) 

(Iglesias et al., 2003). 

  Field experiments in winter wheat investigating application of different nematode dose 

applied either 1 or 4 days prior to planting (comparable treatment to treatment 1 in the 

work carried out by Igelsias et al., (2003)) have found comparable control outcomes for P. 

hermaphrodita and methiocarb (Wilson et al., 1995). Even if consistent and equivalent 

control levels to those achieved by ferric phosphate and metaldehyde were achieved in 

this crop, targeted approaches to nematode use would be still be required to reduce costs 

before commercial use became economically viable. Slugs are known to have a 

discontinuous distribution in arable fields (South, 1992; Bohan et al., 2000a; Archard et 

al., 2004; Mueller-Warrant et al., 2014), so specific targeting of nematodes at the discrete 

patches of high slug numbers may reduce the amount of product used and promote wider 

uptake of nematode treatments in lower value crops.  

 

1.4.5.2. Natural enemies 

Toads, snakes, slow worms, birds and hedgehogs have all been found to predate slugs 

(South, 1992), however, invertebrates, particularly carabid beetles are recognised as 

being the main predatators of D. reticulatum. Although not sufficiently effective on their 

own, naturally occurring predators and parasites of slugs such as the carabid beetles 

Pterostichus melanarius, Pterostichus madidus and Nebria brevicollis may be used as 

components of an IPM strategy (Nash et al., 2008). Laboratory experiments indicate 

ground beetle species vary in their potential as control agents and research investigating 

their impact on slug populations in the field should take account of the findings of Mair and 

Port (2001) who found that P. madidus and N. brevilcollis showed a preference for 

scavenging dead slugs over live slugs and only small slugs (<0.11g) were killed by either 

species. In particular, care must be taken when interpreting serological results from field 

studies as a high proportion of positive outcomes may result from scavenging of dead 

slugs rather than predation.  

  Carabid beetles are generalist predators and have the ability to utilise alternative prey 

when slug numbers are low. The frequent use of refuges below the soil surface when 

slugs encounter adverse environmental conditions and variations in slug populations 

between years may mean periods of low food availability for carabids. Switching to 

alternative prey during these times will reduce the impact on beetle numbers. Oberholzer 

and Frank (2003) investigated the feeding preferences of P. melanarius when presented 

with D. reticulatum alone and in combination with alternative prey. Alternative prey 

included live and dead crickets, live aphids and live dipteran larvae. Consumption of D. 



18 
 

reticulatum eggs was unaffected by the presence of any of the alternative prey offered. 

When beetles were offered live slugs on their own or in combination with alternative prey, 

despite no significant difference in the consumption of small/young slugs (average weight 

0.033g), fewer medium and large slugs were consumed when offered in conjunction with 

dead crickets (Oberholzer and Frank, 2003). Symondson et al., (2006) also found that the 

presence of alternative prey could impact the predation of slugs. In laboratory experiments 

there was significantly lower predation of slugs by P. melanarius when dipteran larvae 

were offered as an alternative prey. This effect was dependent on the combination of prey 

species available, for example no significant difference was recorded between the number 

of slugs remaining alive in the treatment group in which slugs were offered to the P. 

melanarius and the group in which slugs and earthworms were offered. The predation of 

slugs by carabids is supported by Ayre (2001), who found that in their experiments a large 

proportion of medium and large sized beetles predated one-day old slugs but that the 

level of predation at different temperatures varied between different species of carabid, 

reflecting the seasonal conditions during the peak activity period of each species. These 

results support the proposal that P. melanarius could contribute to the suppression of slug 

populations in the field, as consumption of eggs and juveniles of invertebrate pest species 

can significantly reduce population development.  

  The use of P. melanarius as a biocontrol agent was tested in a semi-field study 

comparing D. reticulatum populations in the presence of P. melanarius with varying levels 

of alternative prey (Oberholzer and Frank, 2003). Slug numbers in plots with the highest 

diversity of alternative prey and the largest numbers of beetles were lower than those 

without beetles, confirming the results of Symondson et al. (2006). Whilst P. melanarius 

has been shown to have potential as a useful control agent in experiments where they 

have been observed in a contained area, the predator-prey interaction is complex and 

requires further investigation. The importance of spatial and temporal coincidence of pest 

and predator in pest management systems was stressed by Schmitz and Barton (2014). 

Bohan et al. (2000b) mapped the spatial distribution of slugs (A. intermedius and D. 

reticulatum) and beetle populations (P. melanarius) in winter wheat and found that the 

distributions were temporally coincident, suggesting a direct association rather than 

opportunistic predation and supporting their potential use as a component of IPM 

strategies. Nebria brevicollis displays two activity peaks (late spring and autumn) which 

coincide with the peaks in reproduction of D. reticulatum, also enhancing their potential as 

a candidate biocontrol agent (Mair and Port, 2001). Further evidence of the predator-prey 

relationship between carabids and D. reticulatum is provided by the behavioural response 

of D. reticulatum to chemical cues. In an arena choice test, slugs avoided the zone on 

which P. melanarius had been maintained, with significantly more slugs found in the 

control zone after 24 hours. Slugs spent less time over the experimental period in the 

carabid exposed zone, moved faster and turned less frequently whilst in the exposed zone 
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(Armsworth et al., 2005). Smaller slugs responded most quickly, supporting the findings of 

Ayre (2001) and Oberholzer and Frank (2003) who showed that slug predation is primarily 

due to predation of juvenile slugs.    

 

1.4.5.3. Cultivation methods 

Cultivation techniques such as ploughing may contribute to reduction of slug numbers by 

causing both direct physical damage and exposure to adverse environmental conditions, 

with a more significant effect in dry conditions resulting from increased desiccation of eggs 

(Glen and Symondson, 2003). Ploughing, however, can also have detrimental effects on 

other organisms, including carabids (Symondson et al., 1996; Kromp, 1999). Conversely, 

zero tillage systems can help to maintain populations of predators such as carabids but 

may also lead to increased numbers of slugs, with the overall result of increasing damage. 

In a long term no-till field experiment analysis of the gut content of beetles showed that 

more slugs were being consumed by beetles and there were 1.8 times more beetles in the 

no-till plots when compared with the tilled (either ploughed or non-inversion tillage) plots. 

There was also a considerably higher slug biomass (x91) in the no-till plots (Symondson 

et al., 1996). Seed bed preparation can also affect slug numbers; a fine, firm tilth reduces 

the number of cracks and refuges available to slugs. In heavier soils where this cannot be 

achieved, deeper drilling may make the seed less accessible to slugs reducing the 

damage to the crop caused by seed hollowing (Glen et al., 1990b). Conflicting 

environmental, biological and practical impacts need to be balanced when considering the 

use of cultivation methods in IPM approaches to slug control. 

 

1.4.5.4. Mixed cropping 

Mixed cropping, providing alternative food sources can also reduce slug damage. For 

example, growing winter wheat in combination with selected wild plant species, such as 

Taraxacum officinale (common dandelion) and Capsella bursa-pastoris (shepherd’s 

purse), resulted in reduced slug damage (Cook et al., 1996). If an integrated approach 

includes providing an alternative food source, then this alternative must be consumed in 

preference to the crop, but must not negatively affect crop growth and should be available 

in sufficient quantity during the susceptible stage of the crop. Brooks et al. (2006) 

examined the use of Trifolium pratense (red clover) as an alternative food source and 

found that slugs consumed red clover in preference to wheat. In addition, mixed cropping 

had no significant effect on crop emergence and damage to the wheat seeds was 

reduced, making it a strong candidate for use in IPM strategies.   

 

1.5. Techniques for estimating slug populations 

There are several methods for assessing slug populations, some of which can be carried 

out in the field whereas others require samples to be returned to a laboratory. In this 
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section soil washing, soil flooding, defined area traps (DAT) and refuge trapping will be 

reviewed, as the most common research methods, in relation to accuracy, efficiency and 

potential for use as a method of assessing slug populations in commercial settings. 

1.5.1. Soil washing 

Soil washing requires a known volume of soil to be returned to a laboratory where it is 

broken down using a water jet and 3 graduated sieves. The sieve and residue are put into 

a magnesium sulphate solution, where the organic matter floats to the surface and slugs 

and eggs can be removed (South, 1992). Soil washing is the most accurate sampling 

technique to determine absolute population numbers but its use for commercial 

assessments is limited as the method is too time consuming.  

 

1.5.2. Soil flooding 

Soil flooding is less destructive to the sample than soil washing. A known volume of soil is 

removed from the field and returned to the laboratory where it is placed in a container. 

Water is added to the container over a period of 4-5 days, forcing slugs to move to the 

surface of the sample where they can be removed and counted. Soil flooding gives 

comparable results (between 92 and 100 % of slugs being recovered) to soil washing for 

the number of juveniles and adults extracted, although eggs are not recovered (South, 

1992). Although soil flooding is less laborious than soil washing the requirement for soil to 

be extracted and flooded over a period of several days would make it too time consuming 

and unsuitable for commercial use (South, 1992).  

 

1.5.3. Defined area traps 

Defined area traps provide a non-destructive method of assessing populations. In this 

method a barrier is placed around a known surface area of soil to a minimum depth of 10 

cm, which prevents slugs moving in or out. As slugs appear on the soil surface they are 

removed until no further individuals are found. This technique is carried out in the field 

making it a less destructive method as well as saving time and labour. Under suitable 

environmental conditions i.e. mild and wet DATs can yield comparable results to soil 

flooding. For example, Ferguson and Hanks (1990) found no significant difference 

between the number of slugs found using the DAT and soil flooding techniques at four 

different field sites with different soil types. In less suitable environmental conditions the 

appearance of slugs on the surface may take longer as slugs are less active on the soil 

surface (Young et al., 1993). 

 

1.5.4. Refuge traps 

Refuge trapping is a non-destructive method of assessing slugs, which involves placing a 

artificial refuge on the ground under which slugs congregate, typically an upturned plant 

pot saucer, a board covered in plastic wrapping or inverted turf (South, 1992). Refuge 
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traps allow slugs to move freely in and out, providing an estimate of surface activity rather 

than an exact assessment of population density. Refuge traps are simple to use, and can 

be useful to compare levels of slug activity. Unfortunately, they do not provide absolute 

population sizes as slugs entering the traps may have travelled varying distances and a 

variable proportion of the population will be located below the soil surface and therefore 

not assessable by surface refuge traps (Clements and Murray, 1991; South, 1992). In 

addition, the number of slugs active on the soil surface will vary according to 

environmental conditions and time of day (Hommay et al., 2003). In comparison to other 

methods of assessing slug populations there is evidence that refuge traps may 

overestimate slug numbers, with a higher number of slugs found in open refuge traps 

compared to enclosed surface traps (Glen et al., 2003). There is conflicting evidence as to 

whether refuge traps underestimate the number of smaller slugs in a population. Archard 

et al. (2004) found the number of small slugs in traps were underestimated by refuge 

traps, whilst others such as Howlett et al. (2005) found no significant difference between 

the effectiveness in trapping large and small slugs. Although there are limitations for 

assessing absolute slug populations using refuge traps there is evidence that they can be 

used successfully to determine relative numbers of slugs (South, 1992). Research aimed 

at establishing which environmental factors determine patch location would benefit from a 

technique enabling slug dispersal below the soil surface to be tracked to enable an 

understanding of whether the slugs are remaining in the same area of the field when they 

are not visible above ground. 

 

1.6. Experimental techniques - tracking slugs 

Previous studies of D. reticulatum behaviour have attempted to track the movement of 

individuals using freeze-marking (Richter, 1976), dye injected into the slug (Hogan and 

Steele, 1986), UV dye (Foltan and Konvicka, 2008) and radioactive isotopes (Hakvoort 

and Schmidt, 2002). A common problem with these methods is the requirement for the 

slug to be on the soil surface in order to be located and be identified. In addition, the 

markers can be short-lived or difficult to distinguish in the field. For example, the 

radioactive isotopes used by Hakvoort and Schmidt (2002) could be identified for 

approximately 10 days after the radioactive feed source was removed whereas the freeze-

marks used on the slug’s mantle by Richer (1976) only lasted for up to 2 months on 

mature D. reticulatum and juveniles had to be rebranded several times a year. 

Additionally, injected dyes used by Hogan and Steele (1986) were difficult to detect on 

darker individuals making it difficult to distinguish the markings in the field. Finally, 

although the use of radioactive isotopes is useful for population studies, it does not allow 

the identification of individual slugs.  
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1.7. Radio Frequency Identification Technology 

1.7.1. Using Radio Frequency Identification tags to track slugs 

Although radio frequency identification (RFID) technology has been used since the 1940’s 

advances in the early 2000’s led to increasingly small tags becoming available. In passive 

RFID tags an internal antenna converts energy from a reader that powers the chip, which 

then sends back a unique signal (code) to the reader allowing for identification of the 

unique tag (Want, 2006).   

  Grimm (1996) demonstrated that an RFID tag injected into the foot of A. lusitanicus slugs 

could be used to identify individuals in the field. The technique has only previously been 

tested using a relatively large species (e.g. A. lusitanicus <13 cm long) when compared 

with D. reticulatum (<5 cm). Following tag insertion, survival and egg laying (number of 

batches, number of eggs/batch) of A. lusitanicus were found to be unaffected, but 

consequences for feeding or locomotor behaviour were not investigated. The technique 

developed by Grimm (1996) has since been used successfully by Ryser et al. (2011) to 

assess survival rates of A. lusitanicus and A. rufus in the field. Other than egg laying, no 

assays investigating the sub-lethal effects of tag insertion on either species were carried 

out, but post-tagging/post-release recovery was comparable and it was concluded that 

observed variation in survival probabilities were due to species-specific differences. The 

method of tag insertion has since been used by Knop et al. (2013) to investigate the 

dispersal of A. lusitanicus and A. rufus in arable fields, demonstrating that the invasive A. 

lusitanicus had higher locomotor activity than the native species.  

  Although these studies show RFID technology has the potential to be used in 

investigations of the behaviour of individual D. reticulatum, further work is required to 

establish the sub-lethal effects of tag insertion on the survival and behaviour of the smaller 

species. 

 

1.7.2. Individual based modelling of slug movement 

Individual Based Modelling (IBM) can be utilised to investigate and understand the 

mechanisms underpinning patch formation and stability (Grimm, 1999) but relies on data 

describing slug dispersion behaviour within the soil horizon (classical modelling 

techniques focusing on overall population density/dynamics (Uchmanski and Grimm  

1996)). IBM has been used successfully to identify driving variables underpinning practical 

conservation decisions in the agricultural environment. For example, landscape diversity 

but not the arrangement of habitats, was found to be crucial for long term survival of 

agrobiont linyphiid spiders in agricultural fields. In this case, increased number of refugia 

were found to support larger populations, whereas the tillage frequency was not an 

important factor (Thorbeck and Topping, 2005). 
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1.8. Precision agriculture 

1.8.1. Current uses of precision applications 

Precision agriculture is increasingly considered as a means of overcoming the issue of 

reducing inputs whilst maintaining production levels. Uniform applications of products 

such as pesticides and fertilisers across fields can result in inputs being applied to areas 

of the crop which do not require treatment. As many of the products applied to crops may 

have a negative impact on the environment if over-used, approaches that reduce the 

quantity applied may provide environmental benefits as well as reducing costs. Remote 

sensing using drones or sensors mounted on machinery can be used to detect disease 

(Mahlein, 2016), weeds, pests, soil nutrients and moisture (Liaghat and Balasundram, 

2010) allowing specific areas of fields to be identified for targeting of application of inputs. 

This is rapidly evolving area of research has potential to enable the earlier detection of 

issues in crops (Khanal et al., 2017). For example, global positioning systems (GPS) are 

used in conjunction with variable rate technology to apply product to the field at the rate 

required at the specific location according to disease, weed, pest and nutrient levels. 

Variable application of fertiliser and pre-emergence herbicide application using GPS bout-

matching (AHDB, 2009) can be cost saving and environmental benefits have been 

demonstrated.  

 

1.8.2. Potential for use in slug control  

There is evidence that slugs are not uniformly distributed across arable fields (discussed 

in section 1.1.8.) and that the distribution may be influenced by soil characteristics 

(outlined in section 1.1.7). If a method could be developed for identifying the location of 

areas with higher slug densities, for example using a combination of soil characteristics, 

then maps of fields may be produced and used to identify areas of the field at high risk 

from slug damage. These areas could then be targeted with slug pellets using a variable 

rate applicator reducing the amount of pesticide required.    
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This thesis aims to improve understanding of the behaviour of D. reticulatum which 

underlies the discontinuous distributions (resulting in patches of higher densities) 

observed in arable crops, the temporal and spatial stability of the patches and whether 

their location can be determined using either crop damage or physical characteristics of 

the soil. If a sufficiently accurate method of predicting patch location can be established 

then application of control measures might be targeted in response to an appropriate 

action threshold without the requirement for trapping or direct assessment of slug 

numbers across the whole field.  

  The work has been conducted in four stages. First, the design of a standard assessment 

grid was investigated and a suitable distance between traps to enable detection of higher 

density slug patches established (Chapter 2). This standard grid was subsequently used 

in all field work investigating slug patch stability and their relationship with crop damage 

and soil characteristics.  

  The work reported in Chapter 3 utilised the standard grid to establish the presence of 

patches in commercial fields located in major UK crop growing regions, and their spatial 

and temporal stability throughout single growing seasons and between consecutive 

seasons.  

  Building on these findings, later Chapters (4 and 5) examine the relationship between 

slug patches, crop damage (Chapter 4) and soil characteristics (Chapter 5). Work on soil 

characteristics in Chapter 5 employed both laboratory experiments and field sampling to 

identify factors that may determine the location of higher density patches. The objective of 

the work described in these chapters was to indicate a sub-set of soil characteristics 

which will be the subject of future work to determine whether individually or in combination 

they can accurately identify where patches will exist in the field.  

  Finally, a technique is developed in Chapter 6 which uses RFID technology to track the 

movement of D. reticulatum both above and below the soil surface in order to investigate 

behavioural mechanisms that may underpin patch cohesion and stability.  

 

Specific objectives and hypotheses will be defined in the relevant chapter.  
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Chapter 2. General Methodology  

 

Methodology that is common to several aspects of the work reported in this thesis is 

described in this chapter. A method which facilitated the identification of areas with higher 

slug densities and allowed the temporal stability of these areas to be investigated was 

required. The trapping options and different inter-trapping distances are discussed. The 

resulting methodology will be used to investigate the distribution of slugs in arable fields 

but also to map the damage to crops caused by slugs and the variation of soil 

characteristics across the commercial fields in subsequent work. Methods which are 

unique to specific aspects of this research are described in detail in the chapter to which 

they are relevant.  

 

2.1. Establishing a trapping method for assessing the distribution of slug 

populations in an arable field.  

Several methods which have been widely used for assessing slug populations are 

discussed in the literature review (section 1.5.). For the purposes of this study, the 

trapping method adopted must enable the accurate identification of the location and 

dimensions of discrete patches with higher slug densities whilst allowing for temporal 

variation in slug activity and distribution above and below the soil surface, sample and 

map a sufficiently large area of the field to facilitate comparisons between the various 

characteristics assessed in relation to these patches, and allow any slug population 

movement across the field to be determined. A key component of this study involved the 

investigation of the temporal stability of slug populations and their distribution within arable 

fields. To reduce the risk of the trapping technique affecting the size of populations 

following a series of assessments taken in a restricted area of a field crop, a non-

destructive sampling method was sought. Accordingly, DATs and refuge traps (see 

section 1.5.) were considered to be suitable candidates (Ferguson et al., 1990; Archard et 

al., 2004; Howlett et al., 2005).  

 

2.1.1. Comparison of defined area traps and refuge traps. 

Defined area traps and refuge traps were compared in field tests during November 2015 

to determine which method would allow the objectives of this thesis to be met most 

efficiently. Defined area traps and refuge traps were set in pairs (within 10 cm of each 

other) at the nodes of a 2 x 4 trapping grid with 20 m between adjacent nodes. The 

experiment was conducted at a field site South West of Harper Adams University (52° 45' 

55.5732'' N 2° 26' 33.1728'' W) with clay loam soil (Cranfield University, 2019), containing 

a winter wheat crop. The minimum distance from a trap to the field margin was 50 m. 

Defined area traps consisted of a metal ring (21 cm diameter, 15 cm high) inserted into 
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the ground to a depth of 10 cm, with a 14.5 cm diameter, 0.5 cm thick circular rubber mat 

placed inside the ring. On each assessment date, the number of slugs recovered from the 

soil surface inside the ring or on the rubber mat were recorded. Refuge traps, similar to 

those used by Glen et al. (1993), consisted of upturned 18 cm diameter plastic terracotta 

plant pot saucers (LBS Horticulture Supplies, Lancashire, UK). Saucers were chosen 

instead of mat traps as there is evidence that they are more efficient for use with D. 

reticulatum (Young, 1990). Refuge traps were checked on the same assessment dates as 

the DATs and any slugs found within the saucer or on the soil surface immediately below 

the saucer were recorded. Slug counts from both traps were carried out simultaneously, 

on seven occasions during a 15-day period (Table 2.1). 

  Meteorological data were collected from the Harper Adams University weather station 

(52° 46' 39.7056'' N 2° 25' 39.8928'' W), situated a linear distance of 1.7 km from the field 

site.  

  

2.1.1.1. Data analysis 

All statistical analysis was carried out using R Version 3.4.2. (R Core Team, 2013).  

Tests for normality (using Shapiro-Wilk test) and equal variance (using Levene test) 

indicated that the data were not normally distributed and did not have equal variance and 

accordingly a Mann Whitney U test was used to compare the two trapping methods.  

 

2.1.2. Results from the comparison of trapping methods 

During the whole assessment period only four slugs were recorded in the DATs compared 

with a total of 21 slugs in the refuge traps. Significantly higher numbers of slugs were 

consistently recorded in refuge traps when compared with DATs throughout the 

experiment (W = 1117, p = 0.00014; Table 2.1). The weather conditions recorded during 

the trapping period (Table 2.2) were unlikely to have significantly deterred surface activity 

see (section 1.1.5.), facilitating the comparison of the two trap designs.  
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Table 2.1. Total slug counts from adjacent refuge traps (R) and Defined area traps (D), at 20 metre 
intervals in a 2 by 4 grid over a two-week period.   

Date 
 11-11-

15 

12-11-

15 

16-11-

15 

18-11-

15 

20-11-

15 

23-11-

15 

25-11-

15 

Trap 

type 

R 1 1 4 5 3 2 5 

D 0 0 1 0 2 0 1 

 

 

Table 2.2. Weather data for trapping period 11/11/15 to 25/11/15.   

Date 
Minimum 

temperature 
°C 

Precipitation 
mm 

11/11/2015 13.1 0.0 

12/11/2015 7.9 3.4 

13/11/2015 5.9 0.2 

14/11/2015 4.7 4.2 

15/11/2015 7.5 0.8 

16/11/2015 9.2 2.4 

17/11/2015 4.4 0.8 

18/11/2015 8.3 3.0 

19/11/2015 8.6 0.6 

20/11/2015 4.3 3.4 

21/11/2015 1.1 0.8 

22/11/2015 -1.0 0.0 

23/11/2015 -2.9 4.6 

24/11/2015 -0.9 1.8 

25/11/2015 5.8 4.4 

 

2.1.3. Selection of trapping method  

Two of the main factors determining the onset and level of slug activity are reported to be 

daylight and temperature (Wareing and Bailey, 1985; Hommay et al.,1998; Section 1.1.5). 

Deroceras reticulatum can remain active and cause crop damage under a wider range of 

temperatures than most other slug species. Feeding has been recorded at temperatures 

as low as 0.8°C, while other slug species have been found to be inactive below 5°C 

(Mellanby, 1961). Moisture is also widely acknowledged to affect the number of slugs 

active on the soil surface with fewer occurring under dry (or waterlogged) conditions (Choi 

et al., 2004; Shirley et al., 2001; Young et al., 1991). Records of temperature and 

precipitation from a local weather station (Table 2.2) indicated that conditions remained 

suitable for slug activity during most of the period during which the experiment was 

conducted, facilitating comparisons of the two trapping methods. Consistently more slugs 
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were recorded from refuge traps than DATs on every sampling occasion, suggesting that 

refuge traps might offer a suitable method for use in the wider study. 

  The research in this thesis investigates the discontinuous distribution of slugs in 

commercial fields, the location of areas of higher densities and the stability of these higher 

density patches. Considering the aims, the trapping method should allow the free 

movement of slugs (both above and below the soil surface) to reduce the impact of 

assessment on patch formation and stability. There has been limited research on slug 

movement in the field but it has been suggested they can move up to 1.5 m each night 

(Rollo and Wellington, 1981). Using DATs would restrict slug activity, increasing the 

potential for inaccurate assessment of patch location and stability. Refuge traps allow 

slugs to both enter and leave, a new refuge to be selected each night and disintegration or 

movement of patches across the field to be unhindered and monitored over time.  

  A benefit of refuge trap design for the current study is that slugs are not removed from 

the study area, allowing natural variation in slug population size throughout the study 

period.  In the DAT, slugs are confined within the area defined by the trap, which may 

affect the rate or extent of changes in population size. DATs can be used to establish 

point estimates of population size within a defined volume of soil, but are less well suited 

to addressing the assessment of factors reliant on both population size and individual 

activity. One of the widely cited drawbacks of refuge traps is that they assess surface 

activity and are therefore a less accurate method of assessing populations (Clements and 

Murray, 1991). This study, however, requires an assessment method that incorporates 

both slug density and the impact of spatial dispersion, making refuge traps a suitable 

candidate.  

  Although DATs allow estimates of slug numbers to account for vertical movement, lateral 

movement is restricted. Refuge traps only assess activity on the soil surface but do not 

restrict lateral movement. Repeated assessments conducted over extended periods of 

time, however, will facilitate assessment of slugs sheltering in soil horizons when 

environmental conditions encourage a return to the surface, using refuge traps in a time-

series trapping programme may allow the accurate assessment of both patch stability and 

location. 

  The criteria for assessing the advantages and disadvantages of methods used for slug 

trapping are typically based on their suitability for farmers i.e. ease of use, cost 

effectiveness etc. For the purposes of research, methods are required, that take account 

of key aspects of the biology and behaviour of slugs. Refuge trapping used in protocols 

which incorporate assessment of surface activity and population size over time, without 

removing slugs from the study area offer a technique that addresses some of the major 

constraints of the work reported in this thesis. The selected standard trap was therefore, 

unbaited refuge traps consisting of upturned terracotta plant pot saucer 18 cm diameter 

(LBS Horticulture Supplies, Lancashire, UK).  
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2.2. Optimal characteristics of a trapping grid for investigation of slug 

patches in arable fields 

Determining an appropriate trapping frequency across fields is important if accurate 

assessment of the characteristics of the discontinuous distribution of slugs to be achieved 

(Clark and Evans, 1954). If a grid which is too fine or too coarse is used then populations 

can appear uniformly or randomly distributed and the ability to detect patches even if they 

exist is lost (Bohan et al., 2000a). A method which allows sufficiently large areas of fields 

to be monitored to facilitate identification of crop areas which lie between and within 

patches of higher slug density. Additional consideration of the time required to sample 

each grid, on each assessment day, were essential to allow the slug distribution in a 

number of fields to be carried out at regular intervals.  

 

2.2.1. Comparison of three trapping intervals 

To establish the appropriate resolution of refuge traps for assessing slug patches three 

sampling grids were tested over a two-week period during November 2015. Refuge traps 

(unbaited upturned plant pot saucers, 18 cm diameter, as described in section 2.1.3.) 

were placed at regular intervals in a rectangular grid at a field site sown with winter wheat, 

1.7 km South West of Harper Adams University (52° 45' 55.5732'' N 2° 26' 33.1728'' W). 

The three grids had different internode distances of 2.5 m, 10 m and 20 m, with a single 

refuge trap set at each node. Slug counts were carried out between 0830 and 1000 and 

the number of slugs in each refuge trap and the soil surface immediately below the trap 

were counted and recorded. Slugs were not removed from the traps. The data were used 

to construct heat maps to illustrate patch location and facilitate further analysis.  

 

2.2.1.1. Statistical analysis 

Data were tested for normality (Shapiro-Wilk test) and equal variance (Levene test). 

ANOVA was used to determine any differences in the average number of slugs across the 

different trapping intervals.  

 

2.2.2. Results of comparison of three different trapping intervals  

The average numbers of slugs found in each trap at the three internode intervals were not 

significantly different (F=1.99, d.f.=1,16, p=0.177). Although weather conditions were 

suitable for slug activity (Table 2.1) low numbers of slugs were detected on all 

assessment dates but despite these low numbers areas of higher slug densities were 

clearly visible as demonstrated by the heat maps constructed using data from counts 

taken on 11 November 2015 (Figure 2.1). 
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Figure 2.1. Map of slug distribution on 11-11-15 using a 2.5 metre minimum distance between traps 
(A), 10 metre minimum distance between traps (B) and 20 metre minimum distance between traps 
(C). X and Y axis scales show distance in metres and colours represent different numbers of slugs.  

 

C 

B 
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2.2.3. Design of standard trapping grid 

The 2.5 m interval trapping grid required a large number of traps to sample a relatively 

small area of the field; a total of 1369 regularly spaced traps would be required to monitor 

the same area as 100 traps if an internode distance of 10 m was adopted. This resulted in 

assessments being labour intensive and reducing the number of replicate fields which 

could be sampled with the resources available, and so was eliminated from further 

analysis. The grids with internode distances of 10 and 20 m showed similar patterns of 

slug densities and patch location (Figure 2.1), but in the latter the patches were less well 

defined. The data collected were further analysed to investigate the optimum internode 

distance to employ in future work. Although conducted in collaboration with the author of 

this thesis (who is also a co-author of the published findings; Petrovskaya et al., 2018), 

the work was additional to the scope of the PhD programme and therefore is summarised 

here, and a copy of the published paper is provided in Appendix A. 

  The models developed during the analysis of Petrovskaya et al. (2018) predicted that 

that a coarser sampling grid (internode intervals of greater than 10 metre intervals) can be 

used to obtain accurate trap count estimates in fields with larger slug populations. In a 

field with low slug counts (Oadby 2016-17 season, see Table 3.1 and section 3.3.3.2.), 

however, reducing the 10 by 10 grid (10 m internode interval) to a 5 by 5 grid (20 metre 

internode interval) led to a lower average trap count, (1.07 slugs per trap reduced to 0.88; 

18% error)). In this study the average difference between the number of slugs recorded in 

the 10 and 20 metre grids was 9.0%, varying between 1.9 and 17.9% on different 

assessment dates.  

  Petrovskaya et al. (2018) also found that a further reduction in the number of traps to a 3 

x 3 grid (30 metre internode interval) and a 2 by 2 grid (40 metre internode interval) 

increased the error to 27 and 40% respectively. Although the errors incurred by using a 

coarser grid would be similar to those normally recorded in population monitoring (Meir 

and Fagan, 2000), a finer grid, which allowed the edges of patches to be more clearly 

defined was required for the purposes of this research.     

  To investigate the potential impact of individual traps (thus slug distribution at the time of 

sampling), a simulation was run in which the original grid was split into a number of 

equally sized rectangular sub-sections and the slug count from a randomly selected trap 

within each sub-section was used in the analysis. The simulation was then re-run using a 

different trap from each of the sub-sections, until all combinations of traps had been 

tested. The average trap count for 25 sub-sections (5 by 5 grid) was 1.09 with an average 

error of 12%, the maximum error being 24%. Similar simulations were carried out for 9 

traps (3 by 3 grid), 4 traps (2 by 2 traps) and a single trap, demonstrating that as the 

number of traps decreased the error increased. For instance, the maximum error for 9 

traps was 46%, whereas for 4 traps it was 69% and for 1 trap it was 144% (Petrovskaya et 

al., 2018).  
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  The models were recalculated using data collected under the current project from 100m 

x 100m grids established in three different locations (Adeney (Middle), South Kyme (1) 

and Uppington (1); see Table 3.1 and section 3.3.3.2.). This work suggests that to sample 

a 100 m x 100 m area of crop, a 5 by 5 grid of traps (25 traps in total) would give sufficient 

accuracy for both estimating slug populations and defining the location of higher density 

patches. For research purposes, however, to ensure that the most accurate information 

regarding slug patches and population estimates, can be collected using the available 

resources under this project, a 10 by 10 grid of traps was a more suitable option. The 

trapping design adopted for use the work reported in this thesis utilised a 10 by 10 grid 

with 10 metre internode intervals, and a single refuge trap of the design defined in section 

2.1.3 set at each node.  
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Chapter 3. Identifying slug patches and their stability  

 

This chapter uses the standard grid identified in Chapter 2 to investigate the distribution of 

slugs in arable fields. Here, the focus is on establishing the presence of patches, how 

stable they are over a growing season and between seasons. Later chapters will develop 

this to examine the relationship between these patches, damage and soil characteristics 

to investigate the potential for developing alternative methods for locating patches which 

don’t require direct assessments of slug populations and facilitate targeted application of 

control measures.   

 

3.1. Introduction 

3.1.1. Spatial distribution 

There are three possible distributions for a population in a natural environment, random, 

aggregated or uniform. As discussed in Chapter 2 an important consideration when 

establishing the appropriate sampling intensity for investigating a slug population 

distribution is the size and distribution of patches of higher slug numbers within a 

commercial field. Individuals may seem randomly distributed when a small specified area 

of a field is sampled, but when put into the context of a larger area (the whole field) the 

distribution may actually be aggregated (Clark and Evans, 1954). When sampling is 

conducted in the same environment over extended periods of time, patterns of distribution 

may change, for example alternating patterns of aggregated and random distributions of 

thrips (Rhodes et al., 2011) and fruit flies (Papadopoulos et al., 2003) have been observed 

in fruit orchards. Spatial distributions of populations have traditionally been explained as 

being a result of environmental heterogeneity and population growth (Taylor, 1984). The 

explanation for the temporal changes in distribution is not always clear and often requires 

further investigation of the underpinning biological and behavioural mechanisms 

determining the distribution, but can often be due to seasonal variation in the development 

stage of the insect, different reproduction/mortality rates in different areas, the dispersal 

behaviour of the insect or the distribution of hosts/refuges (Sciarretta and Trematerra, 

2014).  

 

3.1.2. Quantifying distribution patterns 

When investigating the relationship between individual organisms within a defined area 

Clark and Evans (1954) devised a method of measuring the degree of randomness of a 

population. Calculating the expected mean distance between an individual and its nearest 

neighbour in a randomly distributed population, and sampling determined the actual 

(observed) distance, the ratio of observed to expected values can be determined, giving a 

measure (R) of randomness on a scale of 0 (maximum aggregation) to 1 (random 
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distribution). More recently geostatistics have become a more common method of 

analysing spatial distribution data (Sciarretta and Trematerra, 2014), with semivariograms 

being the most common method, the semivariance of sample pairs is plotted against the 

distance between sampling points and a model is then fitted to best describe the spatial 

distribution. Two common sources of error when sampling populations over extended time 

periods are frequently encountered and should be avoided in future studies. Failure to 

take into account the rapidly changing population densities of some species due to rapid 

reproduction or population decline during the assessment period can result in false 

conclusions. Secondly, using only theoretical statistics without also including empirical 

ecological principles can also lead to false conclusions (Taylor, 1984). A primary 

requirement is that the known biology and behaviour of the species studied, and 

exploratory surveys, are used to determine the size, number and location of sampling 

points (Sciarretta and Trematerra, 2014). In the current study, pilot work was conducted 

(Chapter 2) that contributes to the establishment of reliable sampling protocols and 

monitoring outcomes. 

 

3.1.3. Discontinuous distribution of slugs  

The aggregation of D. reticulatum in arable fields is widely reported (South, 1992; Bohan 

et al., 2000a; Archard et al., 2004) with areas of high slug densities dispersed among 

areas of lower density. There is limited and conflicting research into the longevity of high 

density patches. Bohan et al., (2000a) did not detect patch stability from a series of six 

assessments carried out between March 1997 and March 1998 in a winter wheat crop, 

whereas Mueller-Warrant et al. (2014) found stable patches in five grass fields when 

analysing between 8 and 15 assessments taken between October 2014 and February 

2015. The differences observed in these two studies could be due to sampling method, 

(soil flooding compared with refuge traps).  

  Non-uniform distribution of slug populations may offer the potential for reducing 

molluscicide use in agricultural fields. If such patches are found to be sufficiently spatially 

and temporally stable, and a commercially viable method of identifying their location and 

dimensions can be established without the need for refuge trap counts then control 

measures may be targeted at high slug density patches alone, leaving areas with lower 

slug numbers untreated. Further investigation of this approach requires definite 

conclusions of the longevity and spatial stability of slug patches. If sufficiently stable 

various factors might be used to identify patch location including (but not limited to) crop 

damage or environmental factors such as soil moisture, soil pH or organic matter.  

 

3.1.4. Current guidelines for pesticide application for slug control 

Current guidelines for the application of slug control products recommend using refuge 

traps (upturned plant pot saucers) baited with chicken layers mash when the soil surface 
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is moist and temperatures are between 5 and 25°C. In crops of up to 20 ha nine traps set 

in a ‘W’ shaped transect across the field are recommended (13 in larger fields). Traps 

should be left overnight and the number of slugs counted the following morning (AHDB, 

2016). Established thresholds for OSR and wheat recommended that control measures 

are applied when a mean of 4 slugs per trap are recorded in a standing cereal crop 

(AHDB, 2016). The number of slugs active on the surface and so found in surface refuge 

traps varies widely according to weather conditions (Choi et al., 2006; Hommay et al., 

1998; Willis et al., 2008). Using the ‘W’ shaped transect, as recommended by AHDB 

(2016), may reduce inaccuracies associated with the discontinuous distribution of D. 

reticulatum resulting in more accurate assessment of slug populations (Petrovskaya et al., 

2012) but it does not distinguish sufficiently accurately between discrete areas of high and 

low slug densities to allow targeting of controls.  

 

3.1.5. Current pressure on pesticide reduction 

Increasingly farmers are facing pressure to reduce the amount of pesticide they use for 

the control of disease and pests (Hillocks, 2012). In regard to the control of slugs the two 

most widely used active ingredients until 2014 were metaldehyde (366 618 ha treated of 

the total 416 925 ha of wheat grown and 460 375 ha treated of the total 515 358 ha of 

OSR grown in 2014) and methiocarb (28 859 ha of wheat treated and 25 515 ha of OSR 

treated) (Garthwaite et al., 2015). Ferric phosphate is a relatively new active ingredient, 

approved in 2005 and in 2014 it accounted for 21 379 ha of the 931 123 wheat and OSR 

area treated with molluscicides. In 2014 methiocarb was withdrawn for sale in Europe and 

distribution and permitted use of existing stocks ended in 2015 (HSE, 2014), as there was 

evidence it was detrimental to grain-eating farmland birds (Clarke, 2014). The withdrawal 

of methiocarb led to an increase in the usage of ferric phosphate, in 2016 13.7 % of 

molluscicide applications to wheat and OSR crops were ferric phosphate, an increase 

from 5.3 % in 2014 (Garthwaite et al., 2015; Garthwaite et al., 2018). Metaldehyde 

approval is also likely to be withdrawn imminently (Appleby, 2019; Pickstone, 2019), which 

would leave only one active ingredient, ferric phosphate, or more expensive alternatives 

such nematodes available for slug control (ADAS, 2010; Dörler et al., 2019).  

 

3.1.6. Measuring species aggregation 

3.1.6.1. Nearest neighbour technique  

Before a method for assessing patch location can be developed a definition of the 

characteristics of a patch is first required. Defining aggregation or patches has been a 

contentious issue for a long time (Taylor, 1984) as there is no commonly agreed definition 

of aggregation. Using trap counts from a grid of traps, such as that described in Chapter 2 

means nearest neighbour techniques such as those described by Clark and Evans (1954) 

and Cook (1981) are redundant, and so will not be used in the current study.  
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3.1.6.2. Threshold value 

Different options have been proposed for patch definition from trap counts. A crude 

method which includes all traps with a count above a threshold value as being part of a 

patch, regardless of the number of traps within each patch has been used in some studies 

but has proved to be relatively inaccurate when compared to other methods. 

 

3.1.6.3. Mean count  

An alternative approached has been suggested whereby the mean for the sampling area 

is calculated and if above the action threshold traps with the highest counts removed and 

allocated for treatment. The mean is then recalculated for the remaining traps and if it still 

exceeds the threshold the procedure is repeated until the last mean is below the 

recognised action threshold. This method could, however, leave traps in untreated areas 

outside of the patches with very high slug counts. An approach which uses the mean and 

variance could alleviate this issue. Taylor's power law a widely used index of aggregation 

which was originally defined to assess the spatial clustering of organisms in ecological 

systems (Cohen and Xu, 2015). It relates the variance of the number of individuals of a 

species per unit area of habitat to the corresponding mean by a power law relationship 

(Taylor, 1961). For a population mean size m and variance S2, Taylor's law states that: 

 

S2 = amb 

 

Where a = constant; b = the index of aggregation estimated from the gradient of the line 

when the log variance is plotted against log mean  

 

3.1.6.4. Comparison of distribution to random 

Hotspot analysis can isolate areas where a population distribution is significantly different 

to that expected for a randomly distributed population. Individual counts within a sample 

are compared to the other values based on the deviance from a statistical distribution and 

the relative magnitude to other values within the data set. Individual data points, which are 

significantly higher than expected are identified (Darrouzet-Nardi, 2018). Taylor’s Power 

Law allows the aggregation of a species to be measured but there is no method of 

identifying which trap counts are contributing to the aggregation, therefore the index of 

aggregation will initially be used to confirm that the slugs are not randomly distributed and 

then Hotspot analysis will be used in this chapter to identify the trap counts which are 

significantly higher than if the distribution was random across the grid.  

 

https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Population_density
https://en.wikipedia.org/wiki/Population_density
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Power_law
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3.1.7. Commercial considerations  

To develop a commercially realistic approach to targeting patches with controls some 

assumptions must be made. Firstly, when spreading molluscicides, the application 

equipment will be driven along tram lines, with pellets distributed onto the crop a standard 

distance from the centre point on either side. Thus, it can be assumed that applications 

are made to rectangular areas of land which contain (but are not necessarily fully covered 

by) one or more patches with higher slug numbers (Figure 3.1). The second assumption 

made here is that in order to achieve adequate control current threshold values are 

reliable, current advice in winter cereal or OSR crops suggest applying slug control when 

the mean number of slugs in 20 traps spread across the field is 4 or above (AHDB, 2016).     

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Application of slug pellets to a rectangular area of crop (inside the red line) containing 
irregular shaped high density slug patch (shaded grey), black lines represent tram lines. 

 

The commercial feasibility of targeting application of control products to patches of higher 

numbers of slugs (potentially when current action thresholds are exceeded) relies on 

growers gaining either an advantage related to product stewardship/reduction in 

environmental impact, or cost saving. Advantages accrued in relation to either 

consideration relies on of the proportion of the field that would be treated. In this study this 

will be calculated from the rectangular treatment areas rather than proportion of the field 

covered by slug patches alone.  
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3.1.8. Objectives and hypotheses 

The work reported in this chapter investigates patches of higher slug numbers occurring in 

commercial winter wheat or oilseed rape fields with the aim of investigating the spatial and 

temporal stability of areas of high slug densities in arable fields for the purpose of 

targeting the application of control measures. 

 

Objectives  

• To locate high density slug patches using the 10 x 10 trapping grid identified in 

Chapter 2. 

• To determine how stable these areas are over time. 

• To assess suitability of the size, number and stability of patches in relation to 

targeting application of molluscicides.   

 

Hypotheses 

• Clear areas with high slug densities can be identified and defined within arable 

fields in the UK. 

• The areas of high slug densities identified are sufficiently spatially and temporally 

stable to facilitate the targeted application of controls.  

• The individual and cumulative size of the slug patches would allow the efficient 

targeting of control treatments. 

 

3.2 Materials and Methods 

3.2.1. Field sites 

During the first year of the study (2015-2016) experimental work was conducted at five 

field sites within close proximity of each other (maximum 17.4 km apart), and each with a 

similar crop rotation (fields 1-5; Table 3.1). In the second year of the study (2016-2017) 

fields were selected from a wider geographical area (incorporating eastern counties; 

Lincolnshire, Nottinghamshire and Leicestershire, as well as Shropshire and Lancashire) 

and different crop rotations (fields 2-13; Table 3.1). In the final year (2017-2018) a sub-set 

of these fields were studied, maintaining the geographical spread, with the addition of two 

new sites not previously sampled (fields 2, 6, 7, 14 and 15; Table 3.1) and facilitating 

comparisons in successive cropping years.  
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Table 3.1. Summary of field locations and crop rotations for field sites used during 2015-16, 2016-
17 and 2017-18. In each case the crop grown prior to the commencement of experimental work is 
also reported. Crops two years prior to the commencement of assessments and post-assessment 
completion are not shown (shaded grey).    

Field no.  County Field 
Crop 
14- 15 

Crop 
15-16 

Crop 
16-17 

Crop 
17-18 

1 
Shropshire Adeney (Corner) 

oilseed 
rape 

winter 
wheat     

2 
Shropshire Adeney (Middle) 

oilseed 
rape 

winter 
wheat 

winter 
barley 

oilseed 
rape 

3 
Shropshire  Lynn (Badjics) 

oilseed 
rape 

winter 
wheat fallow   

4 
Shropshire Lynn (Stoney Lawn) 

oilseed 
rape 

winter 
wheat fallow   

5 
Shropshire Uppington (1) 

oilseed 
rape 

winter 
wheat fallow   

6 
Leicestershire Oadby   

oilseed 
rape 

winter 
wheat 

cover 
crop 

7 
Lancashire Wigan   

oilseed 
rape 

winter 
wheat fallow 

8 
Lincolnshire South Kyme (1)   

oilseed 
rape 

winter 
wheat   

9 
Lincolnshire  South Kyme (2)   

spring 
wheat 

spring 
wheat   

10 
Lincolnshire Dog Dyke   

winter 
wheat 

winter 
wheat   

11 
Leicestershire Hoby   

oilseed 
rape 

winter 
wheat  

12 
Nottinghamshire Flawborough  

oilseed 
rape 

winter 
wheat  

13 
 Shropshire Bridgnorth   

winter 
wheat 

oilseed 
rape  

14 
Shropshire Uppington (2)     

oilseed 
rape 

winter 
wheat 

15 
Lincolnshire Belchford     

spring 
beans 

winter 
wheat 

 

3.2.2. Trap counts 

The 10 by 10 grid (10 m between nodes) described in section 2.2. of this thesis was used 

at all field sites to assess the number of active slugs on the soil surface. Grids were 

positioned within fields to include an area where the grower had historically found high 

numbers of slugs and to extend beyond to an area with historically fewer slugs (based on 

the grower’s knowledge of the field). The minimum distance of the grid from the field 

boundary was 20 m. Refuge traps (upturned terracotta plant pot saucers (LBS Horticulture 

Supplies, Lancashire, UK), 18 cm diameter) placed at each node of the grid were not 

baited (in order to not attract slugs to a food source). In 2015 – 16 slug assessments were 

carried out at 14-day intervals, with additional assessments at approximately 5-day 

intervals in two of the fields; Adeney (Middle) and Lynn (Stoney Lawn) between January 
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and February 2016. In 2016 – 17 and 2017 – 18 slug assessments were carried out at 

approximately monthly intervals.  

 

3.2.3. Slug classification 

At each assessment, the slugs found in each refuge trap were identified (as D. 

reticulatum, Arion spp or T. budapestensis), counted and recorded under three size 

categories (large (>100 mg), small (<100 mg and >5 mg) or very small (<5 mg)). Slugs 

were counted in situ and were immediately released under the trap in which they were 

found.  

 

3.2.4. Environmental conditions 

Maximum and minimum air temperatures, soil temperature at 10 cm depth and rainfall 

were obtained from the Harper Adams University weather station, situated a minimum 1.6 

km from the nearest (Adeney (Middle) and maximum of 15.3 km (Uppington (1) field site 

in Shropshire in all three field season, 2015-16, 2016-17 and 2017-18.  

 

3.2.5. Statistical analysis of slug patches and stability within and between growing 

seasons 

All statistical analysis was carried out in R Version 3.3.1. (R Core Team, 2013).  

 

3.2.5.1. Slug counts 

ANOVA was used to determine differences between slug counts in different fields and 

years. Post-hoc Tukey’s test was used to determine where differences occurred.  

Maps of slug counts created using the interp and filled.contour functions in R. The number 

of slugs in between traps was calculated by polynomial interpolation. 

 

3.2.5.2. Hotspot analysis 

The presence of hotspots was determined using the ScanLRTS function in R. The 

ScanLRTS function compares the observed number of individuals at each location on the 

grid with those expected if the population was randomly distributed. Areas where 

significantly higher counts than expected are identified are highlighted.  

 

3.2.5.3. Taylors Power Law 

Taylor’s Power Law was used to calculate an index of aggregation during each growing 

season. The mean and variance for each assessment date were calculated and then the 

log of each was taken. The correlation between the log (mean) and log (variance) was 

calculated using Pearson’s correlation coefficient (r) and was calculated for the 

assessments within each field season (2015-16, 2016-17 and 2017-18) as well as for the 
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three field seasons combined. In each case the regression coefficient of the line of best fit 

was calculated, which equates to the index of aggregation.   

 

3.2.5.4. Patch stability 

The stability of patches was investigated using Pearson’s Product Moment Correlation 

coefficient (r). Areas of higher slug densities were identified by locating the highest trap 

counts on each sampling occasion and where these occurred in the same area on more 

than 50 % of assessments the area was identified by a red box.  

 

3.3. Results 

3.3.1. Slug counts 

The number of slugs detected varied between assessment dates within fields, between 

fields and years. There was a significant difference between the mean slug counts in each 

year (F= 41.74, d.f.=2, 157, p<0.001). The mean number of slugs at each field site was 

451.3 (±63.8) in 2015-16, 55.5 (±7.0) in 2016-17 and 145.7 (±40.2) in 2017-18. There was 

also a significant difference between fields in all years, identified by a post-hoc Tukey’s 

test, in 2015-16 Lynn (Stoney Lawn) had a significantly higher mean number of slugs than 

the other fields (F=12.10, d.f.=4,41, p<0.001), in 2016-17 the mean number of slugs in 

Dogdyke had significantly fewer slugs than Wigan and Uppington (1) and the mean 

number of slugs was significantly higher in Uppington (1) than Lynn (Badjics), 

Flawborough, Lynn (Stoney Lawn), Bridgnorth, South Kyme (2) and Adeney (Middle) 

(F=3.89, d.f.=311,77, p<0.001). In 2017-18, Uppington (2) had a significantly higher mean 

number of slugs compared to the other fields sampled (F=8.14, d.f.=4,27, p<0.001).  

  In general numbers of slugs were lower in assessments carried out in August, 

September and October and then, a small peak occurred between November and January 

followed by a larger peak in the spring (between March and May), where assessments 

continued after May numbers decreased (Figure 3.2). In 2015-16 assessments started in 

December, a peak in the spring was observed with a significantly higher number of slugs 

occurring in March (F=16.79, d.f.=5, 30, p<0.001; Figure 3.3). Although there appears to 

be some indication of the general trend for an autumn and spring in the 2016-17 and 

2017-18 sampling periods (Figure 3.3), there were no significant differences in the number 

of slugs observed in different months. The number of slugs recorded in the 2016-17 and 

2017-18 sampling periods were significantly lower (F=24.27, d.f.=2, 134, p<0.001). 
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Figure 3.2. Mean number (±standard error) of slugs observed on each sampling visit in each month 
during the 2015-16 sampling period.  

 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

December January February March April May

M
ea

n
 n

u
m

b
er

 o
f 

sl
u

gs
 p

er
 a

ss
es

sm
en

t

Month



43 
 

 

Figure 3.3. Variation in slug numbers during three winter wheat and oilseed rape growing seasons; 
(A) 2015-16, (B) 2016-17 and (C) 2017-18. Assessments represent the total number of slugs 
recorded in 100 refuge traps in each field; Adeney (Corner), Shropshire, Adeney (Middle), 
Shropshire, Lynn (Badjics), Shropshire, Belchford, Lincolnshire, Flawborough, Nottinghamshire, 
Hoby, Leicestershire, Oadby, Leicestershire, South Kyme (1), Lincolnshire, South Kyme (2), 
Lincolnshire, Uppington (1), Shropshire, Uppington (2), Shropshire and Wigan, Lancashire.   
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3.3.2. Slug aggregation 

3.3.2.1. Hotspot analysis 

Hotspot analysis was carried out for all sampling visits to all field sites over three seasons. 

Irrespective of the variation between the size of slug populations discrete areas of higher 

slug densities were observed in all fields (except on one occasion in each of Adeney 

(Middle) (August 2016), Belchford (June 2018), Dogdyke (April 2017), Hoby (September 

2016), South Kyme (1) (August 2016) and Wigan (March 2018); Figure 3.4 - Figure 3.9; 

Table 3.2).  

Table 3.2. The number of sampling occasions in each field and field season when hotspots 
(significant aggregations) were detected or undetected from slug counts across a 10 by 10 grid. 
Hotspot analysis identified areas where slug numbers were significantly (p<0.05) different to that 
expected if the population was uniformly distributed across the sampling grid. 

Field 
Field 

season 

Number of occasions 
significant  

Hotspots detected 

Number of occasions 
no significant  

Hotspots detected 

Adeney (Corner) 2015-16 7 0 

Adeney (Middle) 2015-16 11 0 

Adeney(Middle) 2016-17 8 1 

Adeney (Middle) 2017-18 8 0 

Lynn (Badjics) 2015-16 7 0 

Lynn (Badjics) 2016-17 5 0 

Belchford 2017-18 5 1 

Bridgnorth 2016-17 7 0 

Dogdyke 2016-17 7 1 

Flawborough 2016-17 7 0 

Hoby 2016-17 6 1 

Oadby 2016-17 8 0 

Oadby 2017-18 5 0 

South Kyme (1) 2016-17 8 1 

South Kyme (2) 2016-17 8 0 

Lynn (Stoney lawn) 2015-16 13 0 

Lynn (Stoney lawn) 2016-17 5 0 

Uppington (1) 2015-16 8 0 

Uppington (1) 2016-17 7 0 

Uppington (2) 2017-18 7 0 

Wigan 2016-17 10 0 

Wigan 2017-18 4 1 

 

The results of the hotspot analysis for two fields in each of the three field seasons are 

summarised in Figure 3.4 to Figure 3.9. The hotspots (areas of significantly higher 

numbers of slugs than expected in a random distribution) in 2015-16 season in Adeney 

(Middle) appear in the same area of the field in 10 of the 11 assessments (Figure 3.4) and 

in Lynn (Badjics) on 7 out of 7 assessments (Figure 3.5). In 2016-17 the hotspots at 

Uppington (1) occur in three areas of the field, with those in the largest of the three areas 
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occurring in all 7 assessments. Of the two smaller areas, one area contains a hotspot on 5 

of the 7 assessments and the other 4 of the 7 assessments (Figure 3.6). In Wigan, 

hotspots occurred in the same area of the field on all 10 assessment dates (Figure 3.7). In 

2017-18 the hotspots in Uppington (2), hotspots were detected on all assessment dates, 

occurring in the same area of the field on all 7 occassions (Figure 3.8). Although hotspot 

analysis indicated that in most fields in most years areas of higher slug densities 

consistently appeared in the same locations in the arable fields some exceptions 

occurred. For example, in Wigan (2017-18), hotspots were not consistently found in one 

area of the grid and on one assessment date no hotspots were present (Figure 3.9).    
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Figure 3.4. Hotspot analysis for Adeney (Middle) for assessment dates throughout the 2015-16 
growing season. Orange represents significant aggregations of slugs, areas where more slugs 
were found than would be expected if the slugs were randomly distributed across the field at 
p<0.05 significance level. Purple shows the areas of the field where the number of slugs observed 
was not significantly different to that expected if they were randomly distributed. The red boxes 
highlight the areas where hotspots most frequently occur.  
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Figure 3.5. Hotspot analysis for Lynn (Badjics) for assessment dates throughout the 2015-16 
growing season. Orange represents significant aggregations of slugs, areas where more slugs 
were found than would be expected if the slugs were randomly distributed across the field at 
p<0.05 significance level. Purple shows the areas of the field where the number of slugs observed 
was not significantly different to that expected if they were randomly distributed. The red boxes 
highlight the areas where hotspots most frequently occur.  
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Figure 3.6. Hotspot analysis for Uppington (1) for assessment dates throughout the 2016-17 
growing season. Orange represents significant aggregations of slugs, areas where more slugs 
were found than would be expected if the slugs were randomly distributed across the field at 
p<0.05 significance level. Purple shows the areas of the field where the number of slugs observed 
was not significantly different to that expected if they were randomly distributed. The red boxes 
highlight the areas where hotspots most frequently occur.  
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10-5-17 8-6-17 

 

 

  

 

 

 

 

Figure 3.7. Hotspot analysis for Wigan for assessment dates throughout the 2016-17 growing 
season. Orange represents significant aggregations of slugs, areas where more slugs were found 
than would be expected if the slugs were randomly distributed across the field at p<0.05 
significance level. Purple shows the areas of the field where the number of slugs observed was not 
significantly different to that expected if they were randomly distributed. The red boxes highlight the 
areas where hotspots most frequently occur.  
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Figure 3.8. Hotspot analysis for Uppington (2) for assessment dates throughout the 2017-18 
growing season. Orange represents significant aggregations of slugs, areas where more slugs 
were found than would be expected if the slugs were randomly distributed across the field at 
p<0.05 significance level. Purple shows the areas of the field where the number of slugs observed 
was not significantly different to that expected if they were randomly distributed. The red boxes 
highlight the areas where hotspots most frequently occur.  
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Figure 3.9. Hotspot analysis for Wigan for assessment dates throughout the 2017-18 growing 
season. Orange represents significant aggregations of slugs, areas where more slugs were found 
than would be expected if the slugs were randomly distributed across the field at p<0.05 
significance level. Purple shows the areas of the field where the number of slugs observed was not 
significantly different to that expected if they were randomly distributed.  

 

3.3.2.2. Taylor’s Power law  

The index of aggregation varied between years (Table 3.33), being highest in the year in 

which larger slug counts were recorded (1.67 in 2015-16) and lowest in the year with the 

fewest slugs (0.88 in 2016-17). According to Taylor’s Power law if a species has a regular 

distribution the index of aggregation tends towards zero, an index of aggregation close to 

1 suggests a random distribution, the higher the index of aggregation above 1 the more 

aggregated the species is, with an index of aggregation above 2 considered to show that 

the species is highly aggregated (Taylor, 1961). These results suggest that in the years 
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when larger populations of surface active slugs were recorded the distribution is more 

highly aggregated than in years when numbers were lower (Table 3.33; Figure 3.1010). 

 

Table 3.3. Index of aggregation (b) of Taylors Power Law calculated using slug counts taken during 
the three cropping seasons between 2015-16 and 2017-18, and for the combined data collected in 
all three seasons.  

Year 
Mean slug 

count 

Index of 

aggregation 

(b) 

2015-16 451.3 1.67 

2016-17 55.5 0.88 

2017-18 145.7 1.05 

2015-18 170.0 1.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Calculation of the index of aggregation (b) of Taylors Power Law: Regression lines for 
the relationship between log S2 against log mean, for slug counts taken in arable fields in 2015-16 
(A), 2016-17 (B), 2017-18 (C) and the combined data for all three years, 2015-18 (D). Each point 
represents a single assessment at a field site.  

A B 

C D 
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3.3.3. Within season stability of slug patches 

3.3.3.1. 2015-16 season 

There was variation in the number of slugs that were active on the soil surface (reflected 

in refuge trap catches) between assessment visits and field sites (Table 3.44). Patches of 

higher slug numbers were located in all five fields during the 2015-16 season, the size and 

shape of these patches varied between fields but remained spatially stable within each 

field, with patches ranging from 300 to 7000 m2. Throughout the 2015-16 growing season 

the locations of individual slug patches were highly correlated between assessments 

(Table 3.55). At Adeney (Corner) correlations as high as r = 0.38 (t=4.09, d.f.=98, 

p<0.001) were observed between assessments, at Adeney (Middle) the highest 

correlation was r = 0.65 (t=8.46, d.f.=98, p<0.001), Lynn (Badjics) r = 0.53 (t=6.20,d.f.=98, 

p<0.001), Lynn (Stoney Lawn) r = 0.85 (t=15.81, d.f.=98, p<0.001) and Uppington (1) r = 

0.3 (t=3.12, d.f.=98, p=0.002). High correlations were not only observed between 

assessment sites in temporal proximity to each other but also across the season, for 

example, at Adeney (Middle) a correlation of r = 0.41 (t=4.46, d.f.=98, p<0.001) was 

observed between the assessment on 14/1/16 and 26/4/16, at Lynn (Badjics) a correlation 

of r = 0.4 (t=4.29, d.f.=98, p<0.001) was found between the assessment on 8/12/15 and 

3/2/16 and at Lynn (Stoney Lawn) there was a correlation of r = 0.43 (t=4.68, d.f.=98, 

p<0.001) between assessments on 18/12/15 and 15/3/16. The correlations between trap 

counts demonstrates that the highest trap counts are reappearing in the same location, 

further work investigated whether traps in close proximity to each other displayed similar 

stability.  

  Figure 3.11 shows that when the surface activity of slugs at the Adeney (Corner) site 

was sufficiently high to identify areas of the field with an average count of more than 4 per 

trap, the location of these areas remained stable whenever they appeared (in this case 

they were apparent in four of the seven assessments). Within the stable area of higher 

slug numbers, the individual trap recording the highest count could vary between 

assessment dates. A similar pattern of stability was observed at the other field sites 

monitored in the 2015-16 season, with the area of the field with the highest number of 

slugs occurring in the same location in nine out of eleven assessments of Adeney (Middle) 

(Figure 3.12), six out of seven in Lynn (Badjics) (Figure 3.13), 11 out of 13 in Lynn 

(Stoney Lawn) (Figure 3.14), and of the two areas containing hotspots in Uppington (1), 

one occurred on six out of eight assessment dates and the other four out of eight (Figure 

3.15). 
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Table 3.4. Maximum total slug count and maximum individual trap count in arable fields assessed 
during the 2015-16 field season (between November 2015 and May 2016). 100 refuge traps were 
set up in each field in a 10 by 10 grid at 10 metre intervals. 
    

Field 
Maximum  
total count 

Maximum  
individual  
trap count 

Adeney (Corner) 133 7 

Adeney (Middle) 677 33 

Lynn (Badjics) 400 14 

Lynn (Stoney Lawn) 1796 143 

Uppington (1) 673 23 
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Table 3.5. Pearson’s Product Moment Correlation coefficient (r) between slug counts from 100 refuge traps in Adeney (Corner), Adeney (Middle), Lynn 
(Badjics), Lynn (Stoney Lawn) and Uppington (1) on assessment dates between November 2015 and May 2016. Refuge traps were set up in a 10 by 10 
grid at 10 metre intervals. Significant correlations between trap counts on different assessment dates are highlighted in yellow. 
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15/03/2016 0.02 0.43 0.55 0.50 0.66 0.67 0.72 0.64 0.52 0.71   

02/05/2016 0.15 0.26 0.27 0.29 0.27 0.34 0.29 0.37 0.30 0.21 0.25  

24/05/2016 0.00 0.14 0.22 0.14 0.14 0.17 0.22 0.32 0.32 0.17 0.33 0.41 
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Figure 3.11. Heat maps showing slug distribution at Adeney (Corner) from assessments carried out 
between November 2015 and April 2016. The numbers along the x and y axis show dimensions of 
the sampling grid in metres. 100 refuge traps were positioned at 10 metre intervals in a 10 by 10 
grid. Colour scale represents the number of slugs, with the numbers in between traps calculated by 
polynomial interpolation. The areas highlighted in red shows the location of the traps with the 
highest slug counts. 
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Figure 3.12. Heat maps showing slug distribution at Adeney (Middle) from assessments carried out 
between December 2015 and April 2016. The numbers along the x and y axis show dimensions of 
the sampling grid in metres. 100 refuge traps were positioned at 10 metre intervals in a 10 by 10 
grid. Colour scale represents the number of slugs, with the numbers in between traps calculated by 
polynomial interpolation. The areas highlighted in red shows the location of the traps with the 
highest slug counts.  
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Figure 3.13. Heat maps showing slug distribution at Lynn (Badjics) from assessments carried out 
between December 2015 and May 2016. The numbers along the x and y axis show dimensions of 
the sampling grid in metres. 100 refuge traps were positioned at 10 metre intervals in a 10 by 10 
grid. Colour scale represents the number of slugs, with the numbers in between traps calculated by 
polynomial interpolation. The areas highlighted in red shows the location of the traps with the 
highest slug counts.  
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Figure 3.14. Heat maps showing slug distribution at Lynn (Stoney Lawn) from assessments carried 
out between December 2015 and May 2016. The numbers along the x and y axis show dimensions 
of the sampling grid in metres. 100 refuge traps were positioned at 10 metre intervals in a 10 by 10 
grid. Colour scale represents the number of slugs, with the numbers in between traps calculated by 
polynomial interpolation. The areas highlighted in red shows the location of the traps with the 
highest slug counts. 
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Figure 3.15. Heat maps showing slug distribution at Uppington (1) from assessments carried out 
between December 2015 and May 2016. The numbers along the x and y axis show dimensions of 
the sampling grid in metres. 100 refuge traps were positioned at 10 metre intervals in a 10 by 10 
grid. Colour scale represents the number of slugs, with the numbers in between traps calculated by 
polynomial interpolation. The areas highlighted in red shows the location of the traps with the 
highest slug counts.  
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3.3.3.2. 2016-17 season  

The total number of slugs observed in 2016-17 was significantly lower (F= 41.74, d.f.= 2, 

157, p<0.001) than the 2015-16 season (mean of 55.5 ±7.0 slugs recorded per 

assessment date compared with 451.3 ±63.8 in 2015-16). The average number of slugs 

per trap was below the AHDB threshold level (average 4 slugs per trap in a standing crop, 

(AHDB, 2016)) on all assessment dates at all field sites. In fields where slug numbers 

were lowest there was little variation between the maximum and minimum slug catches in 

individual refuge traps (Table 3.66). The generally lower catches in individual refuge traps 

also resulted in no distinct patches being detectable in some fields, as illustrated by the 

heat map for Adeney (Middle) (Figure 3.16). Despite the low slug populations in the two 

fields with the highest maximum total counts (Uppington (1) and South Kyme (1)) and in 

one field with a low population (Wigan) (Table 3.66), some correlations between trap 

counts on different assessment dates were found. The highest correlations were in South 

Kyme (1), r = 0.33 (t=3.41, d.f.=98, p<0.001) between assessments on 17/2/17 and 

9/3/17, Uppington (1), r = 0.38 (t=4.11, d.f.=98, p<0.001) between assessments on 

13/9/16 and 28/2/17 and Wigan,  r = 0.53 (t=6.23, d.f.=98, p<0.001) between 

assessments on 12/4/17 and 10/5/17 (Table 3.77). In these field, similar patterns of 

stability to those detected in the 2015-16 field season were observed, in Uppington (1) on 

all seven assessments (Figure 3.17). Slightly lower populations resulted in clusters of 

patches of higher slug areas being more difficult to identify, but the areas they formed 

were still visible in South Kyme (1) on five out of nine assessments (Figure 3.18) and in 

Wigan on seven out of ten assessments (Figure 3.199).  

Table 3.6. Maximum total slug count and maximum individual trap count in each field assessed in 
the 2016-17 field season (between August 2016 and May 2017). Refuge traps were set up in each 
field in a 10 by 10 grid at 10 metre intervals.  

Field 
Maximum  
total count 

Minimum 
individual 
trap count 

Maximum  
individual  
trap count 

Adeney (Middle) 58 0 4 

Lynn (Badjics) 44 0 4 

Bridgnorth 52 0 3 

Dogdyke 20 0 3 

Flawborough 45 0 3 

Hoby 132 0 6 

Oadby 107 0 6 

South Kyme (1) 151 0 6 

South Kyme (2) 57 0 5 

Lynn (Stoney Lawn) 67 0 10 

Uppington (1) 225 0 10 

Wigan 90 0 24 
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Table 3.7. Pearsons Correlation coefficient (r) between slug counts from 100 refuge traps in South Kyme (1), Uppington (1) and Wigan on assessment 
dates between August 2016 and June 2017. Refuge traps were set up in a 10 by 10 grid at 10 metre intervals. Significant correlations between trap counts 
on different assessment dates are highlighted in yellow. 
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Figure 3.16. Heat maps showing slug distribution at Adeney (Middle) from assessments carried out 
between August 2016 and May 2017. The numbers along the x and y axis show dimensions of the 
sampling grid in metres. 100 refuge traps were positioned at 10 metre intervals in a 10 by 10 grid. 
Colour scale represents the number of slugs, with the numbers in between traps calculated by 
polynomial interpolation. 
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Figure 3.17. Heat maps showing slug distribution at Uppington (1) from assessments carried out 
between September 2016 and February 2017. The numbers along the x and y axis show 
dimensions of the sampling grid in metres. 100 refuge traps were positioned at 10 metre intervals 
in a 10 by 10 grid. Colour scale represents the number of slugs, with the numbers in between traps 
calculated by polynomial interpolation. The areas highlighted in red shows the location of the traps 
with the highest slug counts. 
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Figure 3.18. Heat maps showing slug distribution at South Kyme (1) from assessments carried out 
between August 2016 and May 2017. The numbers along the x and y axis show dimensions of the 
sampling grid in metres. 100 refuge traps were positioned at 10 metre intervals in a 10 by 10 grid. 
Colour scale represents the number of slugs, with the numbers in between traps calculated by 
polynomial interpolation. The areas highlighted in red shows the location of the traps with the 
highest slug counts. 

 

  



75 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20-10-16 21-11-16 

21-12-16 18-1-17 

8-2-17 2-3-17 

22-3-17 12-4-17 



76 
 

 

 

 

 

 

 

 

Figure 3.19. Heat maps showing slug distribution at Wigan from assessments carried out between 
October 2016 and June 2017. The numbers along the x and y axis show dimensions of the 
sampling grid in metres. 100 refuge traps were positioned at 10 metre intervals in a 10 by 10 grid. 
Colour scale represents the number of slugs, with the numbers in between traps calculated by 
polynomial interpolation. The areas highlighted in red shows the location of the traps with the 
highest slug counts. 

 

3.3.3.4. 2017-18 season 

The mean number of slugs observed at each assessment in 2017-18 was significantly 

higher than in 2016-17 and lower than in 2015-16 (mean of 145.7 ±40.2 slugs at each 

assessment compared to 55.5 ±7.0 in 2016-17 and 451.3 ±63.8 in 2015-16) (F= 41.74, 

d.f.= 2, 157, p<0.001). The variation between fields was high (Table 3.8), the mean total 

count, for each assessment visit, at Uppington (2) was 457 slugs compared with 26 at 

Oadby. At four of the five field sites where the slug counts were low (mean number of 

slugs per trap <2.7, in each case, lower than the AHDB 4/trap action threshold) no stable 

patches were detectable (Adeney (Middle), Figure 3.2020; Belchford, Figure 3.2121; 

Oadby, Figure 3.2222 and Wigan, Figure 3.2323). In Uppington (2), where the highest 

mean number of slugs was detected higher density patches were present and occurred in 

the same areas of the field on all seven assessment dates (Figure 3.24). The correlations 

between trap counts on different assessments dates were similar to the 2016-17 field 

season, the highest correlation was in Uppington (2) where r = 0.47 (t=5.33, d.f.=98, 

p<0.001) between assessments on 18/4/18 and 26/4/18 (Table 3.9).   
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Table 3.8. Maximum total slug count and maximum individual trap count in each field assessed in 
the 2017-18 field season (between September 2017 and June 2018). Refuge traps were set up in 
each field in a 10 by 10 grid at 10 metre intervals. 

 

Field 
Maximum  
total count 

Maximum  
individual  
trap count 

Adeney 
(Middle) 

120 6 

Belchford 267 17 

Oadby 47 3 

Uppington (2) 990 31 

Wigan 205 8 
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Table 3.9. Pearson’s Product Moment Correlation coefficient (r) between slug counts from 100 refuge traps in Adeney (Middle), Belchford, Uppington (2) 
and Wigan on assessment dates between September 2017 and June 2018. Refuge traps were set up in a 10 by 10 grid at 10 metre intervals. Significant 
correlations between trap counts on different assessment dates are highlighted in yellow. 
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Figure 3.20. Heat maps showing slug distribution at Adeney (Middle) from assessments carried out 
between September 2017 and May 2018. The numbers along the x and y axis show dimensions of 
the sampling grid in metres. 100 refuge traps were positioned at 10 metre intervals in a 10 by 10 
grid. Colour scale represents the number of slugs, with the numbers in between traps calculated by 
polynomial interpolation. 
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Figure 3.21. Heat maps showing slug distribution at Belchford from assessments carried out 
between December 2017 and June 2018. The numbers along the x and y axis show dimensions of 
the sampling grid in metres. 100 refuge traps were positioned at 10 metre intervals in a 10 by 10 
grid. Colour scale represents the number of slugs, with the numbers in between traps calculated by 
polynomial interpolation. 
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Figure 3.22. Heat maps showing slug distribution at Oadby from assessments carried out between 
October 2017 and March 2018. The numbers along the x and y axis show dimensions of the 
sampling grid in metres. 100 refuge traps were positioned at 10 metre intervals in a 10 by 10 grid. 
Colour scale represents the number of slugs, with the numbers in between traps calculated by 
polynomial interpolation. 

 

  



83 
 

7-12-17 12-1-18 

16-2-18 20-3-18 

11-4-18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23. Heat maps showing slug distribution at Wigan from assessments carried out between 
December 2017 and April 2018. The numbers along the x and y axis show dimensions of the 
sampling grid in metres. 100 refuge traps were positioned at 10 metre intervals in a 10 by 10 grid. 
Colour scale represents the number of slugs, with the numbers in between traps calculated by 
polynomial interpolation. 
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Figure 3.24. Heat maps showing slug distribution at Uppington (2) from assessments carried out 
between November 2017 and May 2018. The numbers along the x and y axis show dimensions of 
the sampling grid in metres. 100 refuge traps were positioned at 10 metre intervals in a 10 by 10 
grid. Colour scale represents the number of slugs, with the numbers in between traps calculated by 
polynomial interpolation. The areas highlighted in red shows the location of the traps with the 
highest slug counts.3.3.4. Stability of patches between seasons 
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3.3.4. Between season stability of slug patches 

Of the six fields where assessments were carried out in multiple years there were two 

fields, Uppington (1) and Adeney (Middle) where stable patches were detected in multiple 

seasons. In Uppington (1) the patches located in 2016-17 (Figure 3.17) were largely 

located in a different part of the grid to the patches located in 2015-16 (Figure 3.15). The 

correlation between counts in 2015-16 and 2016-17 at Uppington (1) was low (Table 

3.110). There were only three significant correlations between seasons, two were 

positively correlated between 7-12-15 and 18-10-16 (r = 0.23, t=2.34, d.f.=98, p=0.021) 

and between 1-2-16 and 20-12-16 (r = 0.22, t=2018, d.f.=98, p=0.031)) and one was 

negatively correlated between 19-1-16 and 13-9-16 (r = -0.28, t=-2.93, d.f.=98, p=0.004) 

(Table 3.110)). Although patches were not detectable in Adeney (Middle) in 2016-17 or 

2017-18 due to the low number of slugs recorded when the area of the field with the 

highest slug counts in 2015-16 (Figure 3.12) was compared with the 2016-17 and 2017-18 

data on two out of nine and three out of eight assessments respectively the traps with the 

highest slug counts were located within the same area (Figure 3.25). The highest 

correlation was recorded between assessments on 18-1-16 and 7-3-17 (r = 0.33, t=3.50, 

d.f.=98, p<0.001; Table 3.10). In 2016-17 at Lynn (Stoney Lawn) patches were not 

detectable, however, on the assessment date with the highest individual trap count (10 on 

16-12-16; Table 3.66), the area of the field with the highest number of slugs appeared in 

the same location as the highest trap counts in 2015-16 (Figure 3.144 and Figure 3.266). 

There were no significant correlations between the trap counts on the 16-12-16 and any of 

the assessments in the 2015-16 field season (Table 3.10). Weak correlations between 

counts on 24-5-16 and 11-1-17 and 15-3-17 and between 2-5-16 and 11-1-17 were 

observed (r=0.22, 0.22 and 0.27 respectively; Table 3.10). The data collected in this study 

do not provide sufficient evidence that the level of stability in the location of higher density 

slug patches over the life cycle of an individual crop (identified in earlier sections of this 

thesis), is reflected in similar stability between crops or cropping seasons. 
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Figure 3.25. Heat maps showing slug distribution at Adeney (Middle) on 16-1-17, 7-3-17, 20-10-17, 
21-3-18 and 30-5-18. The numbers along the x and y axis show dimensions of the sampling grid in 
metres. 100 refuge traps were positioned at 10 metre intervals in a 10 by 10 grid. Colour scale 
represents the number of slugs, with the numbers in between traps calculated by polynomial 
interpolation. The areas highlighted in red shows the location of the traps with the highest slug 
counts imposed from the 2015-16 season.  
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Figure 3.26. Heat map showing slug distribution at Lynn (Stoney Lawn) on 16-12-16. The numbers 
along the x and y axis show dimensions of the sampling grid in metres. 100 refuge traps were 
positioned at 10 metre intervals in a 10 by 10 grid. Colour scale represents the number of slugs, 
with the numbers in between traps calculated by polynomial interpolation. The areas highlighted in 
red shows the location of the traps with the highest slug counts imposed from the 2015-16 season. 
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Table 3.10. Pearson’s Product Moment Correlation coefficient (r) between slug counts from 100 refuge traps in Adeney (Middle) on assessment dates 
between December 2015- April 2016 and January 2017- May 2018, Lynn (Stoney Lawn) on assessment dates between December 2015- May 2016 and 
December 2016 and Uppington (1) on assessment dates between December 2015-16 and September 2016- February 2017. Refuge traps were set up in a 
10 by 10 grid at 10 metre intervals. Significant correlations between trap counts on different assessment dates are highlighted in yellow. 
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07/03/2017 -0.28 0.07 0.21 0.21 0.23 0.33 0.14 0.11 0.24 0.14 -0.01 

20/10/2017 -0.10 -0.07 0.02 -0.12 -0.08 -0.02 0.00 -0.01 0.07 0.20 0.02 

21/03/2018 0.00 -0.22 0.13 0.05 -0.11 0.05 -0.05 -0.16 0.14 0.14 0.11 
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16/12/2016 0.01 -0.03 -0.09 -0.13 -0.04 -0.05 -0.07 -0.03 -0.03 0.00 -0.06 -0.03 -0.04 

11/01/2017 -0.04 -0.06 -0.08 -0.02 -0.02 -0.05 -0.02 -0.04 -0.07 -0.14 -0.04 0.22 0.22 

01/02/2017 0.19 0.07 0.03 0.04 0.12 0.14 0.10 0.07 0.09 0.17 0.13 -0.12 0.02 

02/03/2017 -0.13 -0.02 0.02 -0.02 0.09 0.06 0.12 -0.01 -0.02 -0.04 0.09 0.00 0.10 

15/03/2017 -0.02 0.07 0.06 0.00 0.10 0.00 0.05 0.12 0.02 0.02 0.05 0.05 0.27 
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Uppington (1) 
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07/12/2015 0.11 0.23 0.01 -0.05 -0.07 -0.01 0.02 

17/12/2015 -0.11 0.17 -0.02 -0.04 -0.09 -0.02 -0.08 

04/01/2016 -0.14 0.11 0.12 -0.11 -0.03 0.10 -0.08 

19/01/2016 -0.28 0.02 -0.05 -0.14 0.03 -0.15 -0.12 

01/02/2016 0.03 0.16 0.19 0.22 0.11 -0.04 0.04 

16/02/2016 0.06 -0.04 0.08 -0.08 -0.07 -0.05 0.06 

29/04/2016 -0.05 0.05 -0.06 -0.10 -0.06 0.05 -0.09 

23/05/2016 -0.18 0.06 0.05 0.05 -0.07 -0.04 -0.06 

 

 

 

 

 

 



90 
 

3.3.5. Environmental conditions 

The weather in the three field seasons was variable. In 2015-16 the mean maximum and 

minimum air temperatures were higher in November (3.7 and 2.5°C respectively) and 

December (5.0 and 4.5°C respectively) than either of the other two field seasons and the 

30-year average. Temperatures in March 2017 were also higher (mean maximum air 

temperature by 3.5°C and mean minimum air temperature by 2.5°C; Figure 3.27(A) and 

(B)). Differences in air temperatures were reflected in higher soil temperatures compared 

with the other field seasons in November and December 2015 and January 2016, there 

was no observable difference in soil temperature in 2017 as a result of the higher 

temperatures in March (Figure 3.27(C)). Rainfall was more variable (Figure 3.27(D)). 

Above average rainfall was recorded in eight of the twelve months between June and May 

in 2015-16 (difference >0.5 ml per day). In 2016-17 four of the twelve months had below 

average rainfall (including September, October, December and April) and in the 2017-18 

field season there were six months with above (July, August, September, December, 

March and April) and two months with below average rainfall (October and May) (Figure 

3.27(D)).     
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Figure 3.27. Mean maximum (A) and minimum (B) daily air temperatures, soil temperature (C) and 
daily rainfall (D) for each month during the 2015-16, 2016-7 and 2017-18 field seasons. Data 
collected from the Harper Adams University weather station. 30-year averages are also shown 
where data is available (MetOffice, 2019).   
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3.4. Discussion 

Deroceras reticulatum can cause damage to a wide range of agricultural and horticultural 

crops, leading to significant economic losses (Nicholls, 2014; Twining et al., 2009). There 

is increasing pressure for growers to reduce pesticide usage and investigate alternative 

options of control. For example, the introduction of EU Directive 2009/128/EC requires 

National Action Plans for pesticide reduction to be established and along with the resulting 

UK Plant Protection Products (Sustainable Use) Regulations 2012 (PPP regulations) 

address the protection of watercourses and promotion of low input regimes, amongst 

other provisions (Defra, 2006). Non-uniform distribution of slug populations may offer the 

potential for reducing molluscicide use in agricultural fields. If areas of higher slug 

densities are found to be sufficiently spatially and temporally stable, and a commercially 

viable method of identifying their location and dimensions can be established without the 

need for refuge trap counts then control measures may be targeted at the patches, 

leaving areas with lower slug numbers untreated. 

  The species is known to display two peaks of reproductive activity in arable fields, in the 

spring and autumn (Port & Port, 1986) which were observed in this study. Raised slug 

activity during autumn was reflected in refuge trap catches between November and 

December and a second, higher peak was recorded between late February and May. 

Thereafter catches remained low until the winter wheat crops were harvested in August. 

Slug numbers varied widely between fields with some exceeding recommended treatment 

thresholds (AHDB, 2016).  

The discontinuous distribution of slugs in arable fields reported by Bohan et al. (2000a) 

and Archard et al. (2004) resulted in patches of higher slug numbers interspersed within 

areas of lower slug densities being readily detected in all fields investigated in this study, 

even when different environmental conditions prevailed. The first hypothesis “Clear areas 

with high slug densities can be identified and defined within arable fields in the UK” is 

upheld by this study. Refuge traps were used to assess slug activity on the soil surface 

where factors such as soil moisture and temperature, which vary throughout the growing 

season, can influence their behaviour (Choi et al., 2004). During periods of sub-optimal 

physical conditions, a significant proportion of the population retreats to a protected 

environment, below the soil surface (South, 1992) where they cannot be detected using 

refuge traps. Consequently, the patches of high slug population densities were not 

recorded at every sampling visit, but critically within a cropping season were located in the 

same areas of the field when they were detected, suggesting that slugs either move 

vertically between the upper soil horizon and the soil surface, or return to the same 

locations in the field when conditions are favourable. Understanding the mobility of slugs 

will be key to understanding the mechanisms underpinning the formation of population 

patches and thus their temporal stability. Successful suppression of slug populations 

following application of slug pellets may have contributed to masking of the location of the 
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field patches prone to harbouring higher slug numbers by significantly lowering trap 

catches across the field (including within the patches). Critically, however, as patches 

subsequently reappeared in the same areas when slug surface activity increased again, 

their location is likely to be dependent on spatially stable environmental characteristics 

(Carrick, 1942; Ondina et al., 2004). Where slug numbers were sufficient, within-season 

patch stability was high in all three growing seasons, confirming the second hypothesis 

“The areas of high slug densities identified are sufficiently spatially and temporally stable 

to facilitate the targeted application of controls”. The proposition that molluscicide use in 

agricultural fields may be reduced by targeted application of control measures to areas of 

high slug densities within fields is dependent on a cost-effective method of defining patch 

location at or before sowing of the crop can be developed. The size of patches identified 

in this study varied between 300 and 7000 m2, which would be suitable for molluscicide 

application using current technology. In a test of slug pelleters the spread width of pellets 

was found to be between 12 and 30 m (Mark, 2014), supporting the third hypothesis “The 

individual and cumulative size of the slug patches would allow the efficient targeting of 

control treatments”. 

Slug activity is known to be dependent on environmental conditions such as temperature 

and rainfall (Choi et al., 2004), the large variations in the number of slugs detected 

between years, could be a result of the variation in temperature and rainfall between 

years. November and December 2015-16 were mild compared to the following two years, 

the average minimum temperatures in November were 4.6°C and 3.4°C warmer than in 

2016 and 2017 respectively and 3.1°C warmer than the 30-year average (MetOffice, 

2018). Unlike other slug species which synchronise their development with photoperiod D. 

reticulatum will reproduce when conditions are favourable i.e. mild and damp and 

juveniles can continue to develop throughout the winter period, although the rate of 

development of eggs and juveniles is affected by temperature (South, 1982), contributing 

to the higher numbers of slugs observed in the milder 2015-16 season than in the colder 

2016-17 and 2017-18 seasons.  

Between season patch stability was not confirmed in this study, with limited data for 

multiple field seasons due to the low number of slugs detected in some fields. The data 

available makes a clear conclusion on patch stability between seasons difficult. The areas 

of higher density patches occurring in different areas of the grid in Uppington (1) in the 

2015-16 season and 2016-17. The low number of slugs in Adeney (Middle) during the 

2016-17 and 2017-18 field seasons meant detection of stable patches was not possible, 

however, when the location of the patch in 2015-16 was imposed on the heat maps for the 

following two seasons the highest number of slugs occurred in that area on two out of nine 

and three out of eight of assessments. The highest count in Lynn (Stoney Lawn) in the 

2016-17 season occurred in the same area of the field as the patch location in 2015-16. 

Further work is required looking at multiple seasons with high slug counts to enable a firm 
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conclusion to be made on patch stability between seasons. The effect of cultivations on 

slug distributions requires also warrants further investigation as there is evidence that 

movement of the soil may disrupt the distribution (Glen et al., 2006a). If patch stability 

between years does occur, then the cost of defining patch location would be reduced as 

the frequency of measurements would be lower and the initial cost could be shared over 

more than one year making any effective patch location method more economically viable. 

  This study suggests that there is the potential for slug patches to be sufficiently 

temporally and spatially stable within field seasons for targeted application of 

molluscicides. Further work is required to confirm long term stability of patches over 

multiple growing seasons. In order to overcome the commercial restrictions of low trap 

counts early in the season and the large number of refuge traps that were utilised in this 

research, alternative methods of locating the higher density patches will be investigated. 

Alternative methods of identifying the location of areas of higher slug densities within 

fields which are not reliant on surface activity are discussed further in the following 

chapters. These methods include use of damage as an indicator of patch location as well 

as soil characteristics. 

 

3.5. Conclusion 

Areas of high slug densities were found to be sufficiently stable throughout a growing 

season to allow the possibility of targeting molluscicide applications. In fields where slug 

numbers were high the correlation between trap counts were high throughout the season, 

where slug numbers were low the variation between trap counts was insufficient for 

identifying patches. Variations in environmental conditions resulted in differences in slug 

abundance between seasons, however, similar patterns were present in each of the 

seasons studied. No conclusive evidence for between season patch stability was found in 

this study.         
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Chapter 4. Assessing the potential of damage assessments to locate 

areas of higher slug densities 

 

In Chapter 3 slug patches identified in the study fields were shown to be stable over long 

periods of time (within a cropping season). This is an important characteristic if treatment 

applications solely targeting areas with high slug densities are to be developed as a viable 

management option. The need for an alternative method of locating slug patches has 

been introduced in previous chapters. Anecdotal evidence from growers and agronomists 

suggests that areas of damage can be used to identify where the highest slug numbers 

occur. This chapter investigates the potential for damage assessments to be used as a 

practical tool for locating areas of higher slug densities in arable fields, which can be used 

to inform slug management decisions. The 10 by 10 grid introduced in Chapter 2 will be 

used to relate damage to slug counts.  

 

4.1. Introduction 

4.1.1. Current method of pellet application decisions   

Current recommendations for cost effective molluscicide applications are dependent on 

refuge trap counts in conjunction with thresholds. Nine refuges (or 13 in fields over 20 ha), 

consisting of a 25 cm diameter plant pot saucer baited with chicken layers mash are set in 

each field in a ‘W’ pattern. Assessments are targeted to periods when the soil surface is 

moist and temperatures are between 5 and 25°C. Management guidelines state that 

refuge traps should be left overnight and the number of slugs using each trap recorded 

before temperatures rise and slugs leave the traps. The guidelines, however, do not 

specify what constitutes a temperature rise. The threshold for pellet application depends 

on the crop grown (Table 4.1; AHDB, 2016), with current recommendations that pellets 

are applied across the whole field where these levels are met or exceeded. Chapter 3 

demonstrated that slugs are not uniformly distributed across fields, and therefore, random 

placement of traps in a ‘W’ pattern across a field could lead inaccurate assessment of 

population levels. Petrovskaya et al. (2018) investigated the effect of reducing the 

frequency of traps and concluded that coarse trapping, in this case four traps per hectare, 

a lower density than currently recommended, would lead to unreliable population 

estimates. Consequently, a new method of locating patches needs to be developed to 

allow more reliable targeting of controls.  
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Table 4.1. Action thresholds for the application of control measures for slugs in major field crops 
(AHDB, 2016) 

Crop Threshold (mean number of slugs/trap) 

Winter cereal 4 

Oilseed rape (standing cereal) 4 

Oilseed rape (cereal stubble) 1 

Potatoes 1 

Field vegetables 1 

  

4.1.2. Variation in surface activity due to weather conditions 

One of the factors contributing to the low uptake of the current recommendations for 

commercial slug assessments and thresholds is the variability of slug surface activity 

related to different weather conditions (Choi et al., 2004), which may result in the refuge 

trap approach being unreliable. It has been suggested that alternative methods of locating 

patches, which avoid such variation due to changing weather conditions could potentially 

include using damage assessments or soil characteristics to identify areas of the field with 

higher slug densities.  

 

4.1.3. Current precision farming practices 

There are several existing examples of precision application methods where inputs, such 

as pesticides, fertiliser applications or irrigation, are not uniform across the field and are 

tailored to the requirements of different areas (Lindblom et al., 2017). There are 

alternative ways of detecting the varying requirements across fields, including in-field 

moisture sensors that vary the rate of irrigation to meet demand (Haghverdi et al., 2015) 

and thermal imaging drones informing fungicide application rates such as for Fusarium 

head blight in wheat (Mahlein et al., 2012). Currently the majority of targeted pesticide 

applications are for fungal related diseases such as take-all, powdery mildew and Septoria 

(Wójtowicz et al., 2016), whereby fungicides are applied to specific problem areas of the 

crop (Tackenberg et al., 2018). Increasingly the potential for precision targeting of 

insecticides is being investigated, for example targeted application of seed treatments for 

cabbage stem flea beetle (Sekulic and Rempel, 2016) and targeting pesticides for cotton 

fleahopper, verde plant bug and sugarcane aphids (Deleon et al., 2017).  

 

4.1.4. Discontinuous distributions offer potential for targeting pesticides 

Ferguson et al. (2003) demonstrated the potential for targeting insecticides in OSR for the 

control of cabbage shoot weevils, cabbage stem weevils, pollen beetle and brassica pod 

midge. Insects were found to be aggregated within OSR crops and these non-uniform 

distributions were linked to variation within the crop of seed loss, pod splitting, bud 

abscission and the rate of plant maturation, all of which will negatively affect the final yield. 
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They concluded that in order for insect populations to be targeted it is important that the 

interaction between insect behavioural and environmental factors which determine the 

distribution are properly understood before precision application of pesticides can be used 

reliably.  

 

4.1.5. Alternative methods of locating slug populations 

Methods of relating the location of slug patches to other factors in the field have been 

investigated by Bohan et al. (2000b) who related the distribution of slugs to carabid beetle 

activity as a basis for conservation biocontrol strategies. In this study destructive soil 

samples were taken to measure slug abundance, which meant that the grid for mapping 

slug populations was offset by 2.5 m from the grid for measuring beetle populations and 

the position of the grid had to move by 1.5 m on each sampling date to avoid the area 

where the soil had previously been removed. This technique allowed a comparison of slug 

and beetle populations on two sampling visits but the destructive nature of the sampling 

would not support long term studies. Mueller-Warrant et al. (2014) investigated slug 

numbers in relation to damage in Oregon, USA and found a weak correlation between 

slug counts and damage in clover fields, using a minimum of 30 slug blankets per field 

spaced at one blanket per acre. Counts of slugs were carried out weekly over a 19-week 

period and the percentage loss of crop stand was. Using non-destructive surface refuge 

traps the authors were able to repeatedly sample the slug distribution over time, however, 

this paper does not provide details of the frequency of crop assessments or the proximity 

to the slug counts. Literature sources (Bohan et al., 2000a; Glen et al., 2003) suggest that 

refuge traps would need to be positioned on a finer grid than that used by Mueller-Warrant 

et al. (2014) to obtain accurate assessments of the slug spatial distribution and damage 

assessments would need to be carried out in close proximity to the refuge traps.  

 

4.1.6. Slug damage in wheat 

Slugs cause damage to wheat crops primarily by seed hollowing, with the level of damage 

being dependent on seed depth at drilling, and the condition of the seed bed. Cloddy seed 

beds will allow slugs easy access to the seeds compared to a fine seed bed, and shallow 

drilled seed is more susceptible to slug damage than deeper drilled seed (Glen et al., 

1990b). After germination seedlings are also vulnerable to slug damage by leaf shredding 

until GS21 (main shoot and one tiller, AHDB, 2016). Crops are able to compensate for low 

levels of damage but even at low levels of damage slugs can be economically damaging 

(Table 4.2). It is questionable whether at the early growth stages the relatively low, but still 

economically important, levels of damage would be sufficient to identify patches of crop 

which would need to be treated.   
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Table 4.2. Percentage plant and yield losses following different levels of simulated slug damage. 
Losses are expressed as a % reduction in treatment plots with simulated slug damage compared to 
untreated control plots (Jessop, 1969). 

Simulated damage (%) Plant loss (%) Yield loss (%) 

25  20 4 

50 65 19 

92 82 34 

 

4.1.7. Objectives and hypotheses 

This chapter aims to draw conclusions on the potential for using damage assessments as 

a practical tool by investigating whether patches of higher slug density (that persist in a 

stable location throughout the growing season) can be identified in commercial winter 

wheat fields from plant damage caused by slug feeding alone.  

 

Objectives 

• To identify the location of the higher density slug patches using the standard 10 by 

10 grid. 

• To determine whether the distribution of plant damage caused by slug feeding is 

related to slug catches recorded in refuge traps.set in the sampling grid. 

Hypotheses 

• Crop patches which contain higher slug numbers can be identified in winter wheat 

fields using the standard trapping grid described in Chapter 2. 

• Plant damage caused by slug feeding within 50cm of refuge traps set in the 

standard trapping grid is consistently and significantly related to the number of 

slugs caught in those traps and supports the use of plant damage as a predictor of 

slug patch location in commercial practice. 

 

4.2. Materials and Methods 

The standard experimental grid developed in Chapter 2 (10 by 10 traps with 10 m 

intervals between nearest traps) was established in five commercial fields in Shropshire, 

UK each sown with winter wheat following a previous crop of OSR (Adeney (Middle), 

52°46'2.535"N -2° 26' 38.85"E, cv. Reflection; Adeney (Corner), 52°45'56.9268"N -

2°26'40.4736"E, cv. JB Diego; Lynn (Badjics), 52°43'44.8746"N -2° 20' 11.8392"E, cv. 

Reflection; Lynn (Stoney Lawn), 52°44'11.9112"N -2°21'2.2818"E, cv. Reflection, 

Uppington (1), 52°40'37.0848"N -2°34'49.296"E, cv. Horatio). All fields were cultivated 

using a subsoiler and disc harrow followed by rolling. At each site crop husbandry 

followed normal farm practice with between 1 and 3 applications of molluscicide.  
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4.2.1. Experimental design and slug assessments 

Grids were established at a minimum of 20 m from the nearest field edge and with the 

nearest edge of the grid parallel to the field edge. The number of slugs under each refuge 

trap was counted at approximately 14-day intervals between week commencing 30 

November 2015 (week 1) and 15 February 2016 (week 12), and thereafter monthly until 

week commencing 23 May 2016 (week 26). These counts were used to investigate the 

relationship between slug numbers and crop damage.  

 

4.2.2. Damage assessments 

The percentage leaf area damaged by slugs (slug damage identified following the 

definitions of AHDB (2014)) was recorded from 20 haphazardly selected leaves located 

within a circle (50 cm radius) centred on each refuge trap. The mean leaf damage was 

calculated for each trap at each sampling visit. Sampling for damage levels was extended 

beyond the period in which slug controls might usually be applied to test the relationship 

between damage and a wider range of slug populations, as reflected by the catches of the 

surface refuge traps. 

 

4.2.3. Analysis of slug distribution and crop damage  

Maps of slug numbers and damage distributions were produced using the interp function 

of R version 3.3.1. (R Core Team, 2013), a polynomial interpolation between the grid 

nodes. Hotspot analysis was used to identify areas of the field with significantly higher 

numbers of slugs than would be expected in a random distribution. The correlation 

between trap counts on different dates, and between trap counts and leaf damage 

assessments at each trapping point were quantified using Pearson's Product Moment 

correlation coefficient r. Statistical analysis comparing slug population size in different 

fields was conducted using analysis of variance, post hoc Tukey’s HSD tests were carried 

out to identify where significant differences were occurring.  

 

4.3. Results 

4.3.1. Deroceras reticulatum populations 

The number of slugs recorded in refuge traps varied both between assessment visits 

within fields and between different fields during the cropping season (F=12.10, d.f.=4,41, 

p<0.001. Post hoc (Tukey’s HSD) analysis showed that the significant difference between 

fields was due to the higher numbers recorded at the Lynn (Stoney Lawn) field site (833.8 

±129.4). No significant differences were detected between the mean of the total number of 

slugs recorded in the sampling grid at each visit during this period at Uppington, Adeney 

(Middle), Adeney (Corner) and Lynn (Badjics) (Table 4.3). 
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Slug numbers varied with time in the winter wheat fields studied (Figure 4.1). Significantly 

lower numbers of slugs were recorded between 30 November and 22 December 2015 

(F=6.47, d.f.=1,40, p=0.015), with a mean trap count of 204.6 ±44.4 slugs per trap on 

each assessment date compared to 451.6 ±72.2 for the period 4 January to 29 April 2016. 

Post hoc (Tukey’s HSD) analysis showed slug numbers at Lynn (Stoney Lawn) were 

higher during the period 4 January to 29 April 2016 (Figure 4.1). The mean total number 

of slugs recorded in the sampling grid at each assessment between 4 January and 29 

April 2016, was 257.5 ±94.8 at Uppington and corresponding figures of 319.7 ± 47.8 at 

Adeney (Middle), 284.2 ±42.1 at Lynn (Badjics), and 960.0 ±145.4 at Lynn (Stoney Lawn). 

Slug populations in Adeney (Corner) were not significantly different from Uppington, 

Adeney (Middle) and Lynn (Badjics) but did not follow the pattern of the other fields and 

remained low throughout this period with a mean of 72.8 ±18.3 slugs per assessment 

during this later period. Within each field, the maximum number of slugs recorded during 

an individual assessment visit was 663 at Uppington (week 22, 29 April), with 

corresponding maxima at Adeney (Middle) of 667 (week 22, 26 April), Lynn (Badjics) of 

400 (week 12, 18 February), Lynn (Stoney Lawn) of 1796 (week 16, 15 March) and 

Adeney (Corner) of only 133 (week 5, 5 January). Due to the low number of slugs 

recorded in Adeney (Corner), no further analysis of the data collected was undertaken. 

 

Table 4.3. The mean (±SE) number of slugs in Adeney (Middle), Adeney (Corner), Lynn (Badjics), 
Lynn (Stoney Lawn) and Uppington (1). Where letters differ significant differences occur (ANOVA 
and post-hoc Tukey’s HSD).  

Field 

Mean number of slugs per 

assessment 30 November 

2015 – 22 December 2015 

Mean number of slugs per 

assessment 4 January 

2016 – 29 April 2016 

Maximum 

number of 

slugs 

Adeney 

(Middle) 
144.0 ±24 a 319.7 ±47.8 a 667 

Adeney 

(Corner) 
47.0 ± 22 a 72.8 ±18.3 a 133 

Lynn (Badjics) 158.0 ±3 a 284.2 ±42.1 a 400 

Lynn 

(Stoney Lawn) 
412.0 ±55.7 b 960.0 ±145.4 b 1796 

Uppington (1) 156.5 ±8.5 a 257.5 ±94.8 a 663 
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4.3.2. Distribution of Deroceras reticulatum within fields 

 

 

 

 

 

 

 

 

Figure 4.1. The total number of slugs on each assessment date throughout the 2015-16 growing 
season. Slug counts were carried out in five winter wheat fields in Shropshire, UK using a 10 by 10 
grid of refuge traps placed at 10 metre intervals.  

 

Irrespective of the variable population sizes of slugs in different fields, hotspot analysis 

detected discrete areas of higher slug densities in all fields investigated (Figure 4.2). 

Variation between assessment visits in numbers of slugs that were active on the soil 

surface (reflected in refuge trap records) resulted in a corresponding disappearance of 

slug patches when very low catches were recorded and their reappearance in the same 

area of the field as trap catches increased (Figure 4.3).  
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Figure 4.2. Hotspot analysis confirming the discontinuous distribution of Deroceras reticulatum in 
four commercial winter wheat fields in Shropshire, UK, sampled in week 2 of the study (7 to 13 
December 2015). The area represents a 100 x 100 metre trapping grid used in the study in which 
100 refuge traps were positioned at 10 metre intervals in a 10 by 10 grid. Orange represents 
significant aggregations of slugs (areas where more slugs were found than would be expected if 
the slugs were randomly distributed across the field at p<0.05 significance level). Purple shows the 
areas of the field where the number of slugs observed was not significantly different to that 
expected if they were randomly distributed.  
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Figure 4.3. Heat maps showing slug distribution at (A) Adeney (Middle), (B) Lynn (Badjics), (C) 
Lynn (Stoney Lawn) and (D) Uppington (1) from assessments carried out between December 2015 
and May 2016. The numbers along the x and y axis show dimensions of the sampling grid in 
metres. 100 refuge traps were positioned at 10 metre intervals in a 10 by 10 grid. Colour scale 
represents the number of slugs, numbers in areas between traps were calculated by polynomial 
interpolation. The areas highlighted by red boxes show the location of the traps with the highest 
slug counts.  
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4.3.2. Correlation between location of damage and slug counts 

Slug feeding damage varied significantly between fields (F=8.90, d.f.=3,25, p<0.001). Post 

hoc (Tukey’s HSD) analysis showed the field with the highest percentage leaf area 

damaged was recorded in Lynn (Stoney Lawn) (Figure 4.4), reflecting the high slug 

numbers recorded in refuge traps. No significant differences in percentage leaf damage 

occurred between any of the other fields assessed. Damage scores decreased in all fields 

over the growing season reflecting the increase in plant size (Figure 4.4; 4.5; 4.6; 4.7; 

4.8), whereas the number of slugs per trap increased throughout the season (Figure 4.1).  

 

 

Figure 4.4. Mean percentage leaf area damaged on each assessment date between December 
2015 and May 2016 at each field site. Damage was assessed as a percentage leaf damage of 20 
leaves within a 50 cm radius of each refuge trap across a 10 by 10 grid.   
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Figure 4.5. Heat maps showing the distribution of damage caused by Deroceras reticulatum 
feeding in a commercial winter wheat field, Lynn (Stoney Lawn) between January and May 2016. 
The numbers along the x and y axis show distance in metres. Sampling points were positioned at 
10 metre intervals in a 10 by 10 grid. Colour scale represents the percentage leaf area damaged; 
damage levels in areas between sampling points were calculated using polynomial interpolation. 

 

Significant correlations between the percentage feeding damage recorded on plants and 

slug catches in refuge traps at each grid point were found in each field. At Lynn (Stoney 

Lawn), the field with the highest number of slugs, there was one significant correlation on 

2/2/16 (Table 4.4), which was negative. The correlations between damage and slug 

numbers were positive in the other three fields; in 6 out of 7 assessments at Adeney 

(Middle), six out of seven assessments at Lynn (Badjics) and three out of eight 

assessments at Uppington (1) (Table 4.4; Figure 4.6; 4.7; 4.8). Pearson’s Correlation 

21-1-16 6-1-16 

2-2-16 18-2-16 

15-3-16 24-5-16 
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Coefficients at Adeney (Middle) varied between r = 0.24 (26/4/16) and r = 0.43 (29/1/16), 

at Lynn (Badjics) between r = 0.23 (6/1/16) and r = 0.52 (18/12/15) and at Uppington (1) 

between r = 0.18 (7/12/15) and r = 0.52 (17/12/15). Although statistically significant the 

correlations between the damage assessments and slug counts were weak (r < 0.39) or 

moderate (r = 0.40-0.59) and no positive correlation was found at Lynn (Stoney Lawn) 

where the field had the highest number of slugs. The weak relationship between apparent 

slug damage and numbers of slugs caught in refuge traps suggests that visible slug 

damage is a poor indicator of the location of patches of higher slug densities, even in 

winter wheat fields with higher slug populations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



107 
 

8-12-15 

5-1-16 

29-1-15 

26-4-16 

Damage Slug numbers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Heat maps of slug distributions and percentage leaf damage at Adeney (Middle) on 
assessments between December 2015 and April 2016. The numbers along the x and y axis show 
distance in metres. Sampling points were positioned at 10 metre intervals in a 10 by 10 grid. Colour 
scale represents the number of slugs and percentage damage, with the numbers in between 
calculated by polynomial interpolation. Damage assessments were carried out on 20 leaves in a 50 
cm radius of each refuge trap. 
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Figure 4.7. Heat maps of slug distributions and percentage leaf damage at Lynn (Badjics) on 
assessments between December 2015 and May 2016. The numbers along the x and y axis show 
distance in metres. Sampling points were positioned at 10 metre intervals in a 10 by 10 grid. Colour 
scale represents the number of slugs and percentage damage, with the numbers in between 
calculated by polynomial interpolation. Damage assessments were carried out on 20 leaves in a 50 
cm radius of each refuge trap. 
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Figure 4.8. Heat maps of slug distributions and percentage leaf damage at Uppington (1) on 
assessments between December 2015 and May 2016. The numbers along the x and y axis show 
distance in metres. Sampling points were positioned at 10 metre intervals in a 10 by 10 grid. Colour 
scale represents the number of slugs and percentage damage, with the numbers in between 
calculated by polynomial interpolation. Damage assessments were carried out on 20 leaves in a 50 
cm radius of each refuge trap. 



111 
 

Table 4.4. Pearson’s Correlation Coefficient (r) for damage and slug counts on different 
assessment dates in five fields in Shropshire, UK. Slug counts (from refuge traps) and damage 
assessments were carried out on a 10 by 10 grid with a 10 metre interval between points. 
Significant correlations are highlighted.  

Field  Date 
Pearson's 

Correlation  
Coefficient (r) 

t 
degrees 

of  
freedom 

p value 

Adeney (Middle) 08/12/2015 -0.03 -0.26 98.00 0.80 

Adeney (Middle) 22/12/2015 0.26 2.66 98.00 0.01 

Adeney (Middle) 05/01/2016 0.32 3.34 98.00 0.00 

Adeney (Middle) 18/01/2016 0.33 3.44 98.00 0.00 

Adeney (Middle) 29/01/2016 0.43 4.68 98.00 <0.0001 

Adeney (Middle) 12/02/2016 0.24 2.47 98.00 0.02 

Adeney (Middle) 26/04/2016 0.24 2.45 98.00 0.02 

Lynn (Badjics) 08/12/2015 0.39 2.44 34.00 0.02 

Lynn (Badjics) 18/12/2015 0.52 5.95 98.00 <0.0001 

Lynn (Badjics) 06/01/2016 0.23 2.38 98.00 0.02 

Lynn (Badjics) 20/01/2016 0.30 3.09 98.00 0.00 

Lynn (Badjics) 03/02/2016 0.40 4.36 98.00 <0.0001 

Lynn (Badjics) 18/02/2016 0.18 1.77 98.00 0.08 

Lynn (Badjics) 25/05/2016 0.16 1.56 98.00 0.12 

Lynn (Stoney Lawn) 07/12/2015 -0.33 -1.54 20.00 0.14 

Lynn (Stoney Lawn) 18/12/2015 -0.26 -1.37 26.00 0.18 

Lynn (Stoney Lawn) 06/01/2016 -0.04 -0.43 98.00 0.67 

Lynn (Stoney Lawn) 21/01/2016 -0.14 -1.37 98.00 0.17 

Lynn (Stoney Lawn) 02/02/2016 -0.26 -2.71 98.00 0.01 

Lynn (Stoney Lawn) 18/02/2016 -0.13 -1.27 98.00 0.21 

Lynn (Stoney Lawn) 15/03/2016 0.04 0.39 98.00 0.70 

Lynn (Stoney Lawn) 24/05/2016 0.09 0.85 98.00 0.40 

Uppington (1) 07/12/2015 0.18 1.80 98.00 0.01 

Uppington (1) 17/12/2015 0.52 5.95 98.00 <0.0001 

Uppington (1) 04/01/2016 0.04 0.39 98.00 0.70 

Uppington (1) 19/01/2016 0.25 2.50 98.00 0.01 

Uppington (1) 01/02/2016 0.16 1.55 98.00 0.12 

Uppington (1) 16/02/2016 0.04 0.39 98.00 0.69 

Uppington (1) 29/04/2016 -0.10 -1.01 98.00 0.31 

Uppington (1) 23/05/2016 0.05 0.44 98.00 0.66 

 

4.4. Discussion  

Deroceras reticulatum causes damage to a wide range of agricultural and horticultural 

crops, leading to significant economic losses (Nicholls, 2014; Twining et al., 2009). Slug 

damage to winter wheat is the result of seed hollowing or direct feeding on the leaves 

(Glen et al., 1990b; South, 1992). The refuge traps used in this study are a measure of 

slug activity on the soil surface, which in turn is affected by both the size of the local 

population and a range of environmental conditions (which can affect the proportion of the 

slugs that are above or below the soil surface; Young et al., 1991; Choi et al., 2004). As 
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such, damage assessments were focused on leaf feeding which is more directly related to 

surface activity. 

  Deroceras reticulatum is known to display two peaks of reproductive activity in arable 

fields, in the spring and autumn (Port & Port, 1986). In this study slug activity during 

autumn was reflected in refuge trap catches in December at all five study sites, with 

higher levels of activity recorded later in the field season at four of the sites. The 

discontinuous distribution of slugs in arable fields reported by Bohan et al. (2000a) and 

Archard et al. (2004) resulted in discrete patches of higher slug numbers interspersed 

within areas of lower slug densities being readily detected in all the fields investigated in 

this study. During periods of sub-optimal physical conditions, a significant proportion of the 

population retreats to a protected environment below the soil surface (South, 1992), 

where they cannot be detected using refuge traps. Consequently, as has been shown at 

other field sites and in other years, the patches of high slug population densities were not 

recorded at every sampling visit, but critically were located in the same areas of the field 

when they were detected, suggesting that slugs either move vertically between the upper 

soil horizon and the soil surface, or return to the same locations in the field when 

conditions are favourable. The first hypothesis “Crop patches which contain higher slug 

numbers can be identified in winter wheat fields using the standard trapping grid 

described in Chapter 2”, was confirmed by this work. Analytical approaches investigating 

the relationship between crop damage and patches of higher slug numbers, however, 

must take account of the periodic appearance and disappearance of slug patches when 

assessed using surface refuge traps. 

  As was concluded in Chapter 3, the temporal stability of slug patch location, support 

the proposal that the quantity of slug pellets (or other control products) used in agricultural 

fields may be reduced by targeting application of control measures to areas of high slug 

densities within fields, provided a cost-effective method of defining patch location soon 

after or before sowing of the crop can be developed. The concept of targeting of the 

patches of higher slug densities during pesticide application relies on the development of 

an equivalent (cost-effective) detection method. The number of traps required to detect 

patch location across a whole field would render the use of the current labour intensive 

refuge traps commercially uneconomic, so alternative approaches are required (Forbes et 

al., 2018; Petrovskaya et al., 2018). In addition, the variation in numbers of slugs recorded 

between assessments presents a problem for farmers using refuge traps as a decision-

making tool for pellet application (Glen et al., 2003; Rae et al., 2005). This issue may be 

further exacerbated by the finding that patches were more difficult to detect using refuge 

traps in fields with low slug densities. 

  The standard sampling grid developed in this work programme (Chapter 2) was used to 

investigate the relationship between percentage feeding damage on plants and the slug 

catches recorded in refuge traps at each grid point. Results were variable, with both 



113 
 

positive and some negative correlations recorded. Where statistically significant 

correlations occurred between the damage assessments and slug counts they were weak, 

suggesting that visible slug damage may not be a reliable indicator of the location of 

patches of higher slug densities, even in winter wheat fields with higher slug populations. 

The second hypothesis, “Plant damage caused by slug feeding within 50cm of refuge 

traps set in the standard trapping grid is consistently and significantly related to the 

number of slugs caught in those traps and supports the use of plant damage as a 

predictor of slug patch location in commercial practice”, was not upheld by the work. This 

contradicts the experience of many farmers and consultants, possibly because larger slug 

patches causing damage over a large area of crop may be accurately identified visually, 

whereas small patches (which can represent a significant proportion of slug damage in a 

field) are less readily recognised.  

  The weak correlations between leaf feeding damage and refuge trap catches in winter 

wheat fields sampled in this study suggest that crop damage could not be used as a 

reliable indicator of slug population level or slug patch location. Significant reduction in 

winter wheat crop yields can be caused by slugs before a crop emerges as a result of 

feeding damage to the germ of the seed, which results in seed hollowing that prevents 

germination, thus reducing plant density (Glen et al., 1993). The similarly weak correlation 

between post emergence plant density and slug numbers reported from North America 

(Muller-Warrant et al., 2014) support the conclusion that plant damage may not be a 

satisfactory assessment method for targeted pesticide applications. In addition, slug 

feeding often results in emerging seedlings being severed above the seed or at ground 

level, again affecting plant density (South, 1992). Such early feeding activity in patches 

with high numbers of slugs can result in lower plant densities in discrete areas of a crop. 

Where similar slug densities occur, this potentially results in greater proportional damage 

in such patches when compared to surrounding areas where pre-emergence feeding has 

not occurred, reducing the accuracy by which crop damage assessment reflects slug 

population size. In addition, lower plant densities at the seedling growth stages may result 

in increased dispersion of slugs to other areas in search of food (Hamilton and Wellington, 

1981), further lowering the strength of correlations between plant density and slug 

numbers in later assessments. As wheat plants grow, the characteristic leaf shredding 

caused by slug feeding occurs. Percentage leaf area affected by shredding has been 

used to assess damage at this stage, but the ability of the plant to rapidly produce new 

leaves when actively growing (AHDB, 2018) limits its value as an indicator of slug activity.  

  The ability to predict slug numbers and patch location using plant damage will also be 

affected by other factors relating to the environment in arable fields. There is evidence 

that the distribution of slugs can be altered by cultivations and the distribution pattern 

observed during the rest of the season may require a short time to stabilise (Glen et al., 

2006a). Winter planted crop growth is not linear during the growing season, and can, for 
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example, depend in part on temperatures and rainfall. These variations in crop growth rate 

(AHDB, 2018), combined with changes in slug population size (Port and Port, 1986; Willis 

et al., 2008) and different rates of feeding (Wareing and Bailey, 1986) are all dependant 

on environmental conditions which may result in the variable leaf damage and weaker 

correlations with slug numbers. In laboratory experiments, soil texture, seed depth and 

consolidation of the soil have all been shown to affect the damage caused by slugs 

(Stephenson, 1975). Subsequent field experiments have shown that slug biomass, the 

depth of sowing and the percentage of fine soil accounted for over 94 % of the variation in 

crop damage observed (Glen et al., 1989). There is also evidence that small slugs cause 

proportionally more damage to seed than larger slugs (Glen et al., 2006b), which further 

increases the complexity of the relationship between the number of slugs present and the 

damage observed. Glen et al. (2006b) found larger slugs consumed more of each seed 

but smaller slugs would eat only the embryo before moving on to the next seed, once the 

embryo is damaged the seed is no longer viable making total seed mass consumed 

irrelevant to the damage observed.    

  In summary, the discrete and stable areas within commercial winter wheat fields in which 

higher slug numbers occur (demonstrated in Chapter 3) supports the proposal that 

reduced use of molluscicides can be achieved through targeting the treatments at such 

areas alone. Commercially viable approaches to defining the location of these patches 

remain to be established, this study indicates that crop damage assessments have only 

limited potential. The relationship between the number of slugs present and the damaged 

observed is complex and this study indicates that crop damage assessments have only 

limited potential. In addition, as assessment of crop emergence would occur too late to 

protect against seed hollowing, and subsequent leaf shredding has proven to be an 

inaccurate method of forecasting areas of higher slug densities, therefore neither method 

can be used to locate and target treatments at the areas of the field at risk. A more 

effective approach may involve the characterisation of key factors of the physical 

environment that collectively lead to the formation of localised patches of high slug 

numbers, and development of cost effective approaches to their use in the field offers an 

alternative focus. 

 

4.5. Conclusion  

The relationship between slug numbers and plant damage is complex. Observed damage 

is affected by a range of factors; small slugs cause proportionally more damage than 

larger slugs, plant growth rates vary at different times in the season, environmental factors 

affect slug reproduction and activity, soil texture, seed depth and cultivations will all affect 

the damage observed. This study has confirmed that the variability caused by such factors 

result in damage assessment being an unreliable indicator of slug patch location and an 

unsuitable candidate for use in commercial practice. 
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Chapter 5. Relating location of slug patches to soil characteristics 

 

Previous chapters have demonstrated the potential for a more sustainable approach to 

the application of molluscicides for slug management, based on targeting applications at 

patches of higher numbers of slugs that are found in arable fields. A requirement for an 

alternative, commercially viable method of locating those patches was highlighted, as the 

use of refuge traps was unlikely to offer a cost-effective approach. Chapter 4 

demonstrated that assessment of visible plant damage resulting from slug feeding did not 

define the location of patches with sufficient accuracy to support targeted application of 

molluscicides. This chapter investigates potential soil characteristics which may influence 

the location of slug patches, and which might offer an alternative approach.  

 

5.1 Introduction 

5.1.1. Slug distributions and soil characteristics 

Carrick (1942) first suggested that edaphic factors, such as pH, soil moisture and organic 

matter, might influence the location of areas of higher slug numbers in arable fields. Few 

field studies investigating the relationship between slugs and soil characteristics have 

been conducted subsequently, with the majority of research being carried out under 

laboratory conditions and focusing on individual soil characteristics (moisture and 

temperature, Getz, 1959; pH, Wäreborn, 1970; temperature, Wareing and Bailey, 1985; 

organic matter, Speiser, 1999). The emerging trend from the literature suggests that pH, 

soil moisture and factors affecting seed bed condition are the key to understanding the 

distribution of slugs in arable fields.  

  South (1965) considered the discontinuous distribution of D. reticulatum in relation to 

several environmental factors in a grassland field, including distance from the headland, 

organic matter content of the soil, moisture and the stone coverage (as a percentage of 

the soil surface), but none of these factors were found to be significantly correlated with 

the distribution of slugs. More recently, the distribution of 17 species of terrestrial 

gastropods was related to a combination of soil characteristics in 10 km by 10 km grid 

squares in Iberia, using three samples from 124 grid squares taken in each year of the 

three-year study (Ondina et al., 2004). Three groupings of slugs were identified, the first 

showing a preference for acidic soil with a high proportion of coarse sand (>56.4 %), the 

second (including D. reticulatum) were associated with wetter, less acidic soil with high 

proportions of silt and clay and a third group which showed no preference. More 

specifically, D. reticulatum were found to occur in higher numbers in soils with high pH 

(5.6-8.5) and calcium levels (5.3-26.0 %), an intermediate level of moisture (36.8-41.6 %) 

and gravel fraction (8.3-14.0 %) and a low coarse sand fraction (14.7-24.2 %), low level 

aeration (22.3-27.1 %) and aluminium content (0.1-0.6 %) (Ondina et al., 2004). Further 
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work is required to investigate the influence of a range of selected factors, both 

individually and in combination on the distribution of D. reticulatum in arable fields in the 

UK. 

   

5.1.1.1 Organic matter 

Decomposing plant material not only provides a food source for slugs (Carrick, 1942) but 

it also affects other soil properties such as water holding capacity, soil structure and pH. 

Increasing the amount of organic matter in soils can increase the water holding capacity, 

resulting in moisture being retained for longer during dry periods (Franzluebbers, 2002). It 

has been estimated that for every 1 % increase in organic matter, there is a 3.6 % 

increase in the volume of water held at field capacity (Hudson, 1994). Slugs are 

dependent on their environment for water as they are unable to regulate their own body 

moisture (South, 1992). In soils with high clay content increasing organic matter content 

can also improve water infiltration through the soil (Boekel, 1963; Hillel, 2008). This 

reduces the incidence of waterlogging which is known to be detrimental to slug survival 

(Carrick, 1942). 

  Organic matter also improves structure and stability in soils and increases coherence of 

soil particles leading to soil aggregation, which increases the size of pores between 

aggregates therefore decreasing the bulk density of the soil (Keller and Håkansson, 

2010). The increase in soil aggregation and therefore number and size of pores will also 

create habitat for soil dwelling organisms including refuges for slugs (Franzluebbers, 

2002). A 1 % increase in organic matter leads to a decrease in bulk density of 0.14 g/cm3 

(Bauer, 1974) (see section 5.1.1.4.). As organic matter content varies widely within and 

between agricultural fields, depending on factors such as cultivation methods, crop 

rotations and soil texture (Franzluebbers, 2002), its effect on several soil properties which 

may impact slugs suggests that it could be an important factor in determining slug 

abundance.  

 

5.1.1.2. pH  

The literature reports variable results regarding the effect of pH on slug abundance. Early 

research investigating the relationship between molluscs (snails) and pH, suggested that 

a higher number of species occurred in soils over pH 6 (Atkins and Lebour, 1923) and a 

similar preference for neutral and alkaline soils might be expected in slugs. Although not 

visible externally (as with snails) slugs have a reduced calcareous shell under the mantle, 

an outer layer of calcium carbonate surrounding their eggs and granules of the compound 

are found in their slime (South, 1992), all of which require a source calcium carbonate 

(which is found in more alkaline soils). Boycott (1934) collated the results of a range of 

studies to investigate the relationship between soil pH and slug abundance of several slug 
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species (not including D. reticulatum) and found no relationship between soil pH and slug 

distribution. This study arrived at different conclusions to Atkins and Lebour (1923), who 

investigated the distribution of snails in relation to pH, suggesting that slugs may not show 

the same preference for calcareous soils as snails. Atkins and Lebour (1923) also 

suggested that there may be a difference between the habitat preference of snails with 

thick shells and those with thinner shells.  

  Investigation of the relationship between pH and slug abundance in 41 potato fields in 

Scotland found no correlation between soil pH, the density of slugs and the level of 

damage to the crop, with the highest slug densities, including D. reticulatum, occurring in 

soils with pH 5.4-6.9 with the lowest slug numbers in pH 4.8-7.0 (Carrick, 1942). 

Conversely, a study by Ondina et al. (2004) demonstrated that D. reticulatum preferred 

soils with high pH (>5.6) and calcium levels (>5.33 %). The range of pH levels studied by 

Ondina et al. (2004) was wider, 3.6 to 8.1, than that in the earlier study of potato fields 

(4.8 – 7.2). Thus, pH may have a role in determining slug abundance in soils with a lower 

pH but within the range typically found in arable fields in the UK (5.5 to 7.5; Skinner and 

Todd, 1998)) it may not be a factor restricting the location of slug patches in most cases. 

 

5.1.1.3. Soil texture  

Soil texture varies according to the proportion of sand (large particles), silt (medium 

particles) and clay (small particles). Sand particles (0.02 – 2 mm) are rounded, meaning 

they do not pack closely together, leaving large pores between them leading to high water 

infiltration rates and poor water retention in soils with a high sand content. Clay particles 

are much smaller (<0.002 mm) and flaky; the particles can pack tightly together resulting 

in smaller pore sizes between clay particles than between sand particles increasing the 

volume of water the soil is able to retain (Gupta and Larson, 1979). Silt particles are of 

medium size (0.002<0.02 mm) and display intermediate properties to both sand and clay 

particles (Table 5.1).   

  Soil properties depend on the proportion of each size fraction of particles. Soils with a 

high proportion of clay have a more stable structure than sandy soils, and due to the 

swelling and shrinking of clay particles in wet and dry conditions (Hillel, 2008), these soils 

have a tendency to form clods and cracks when they dry out. The clods and cracks in the 

soil provide essential refuges for slugs (South, 1992). The majority of cereals grown in the 

UK are on clayey or loamy soils, with potatoes preferentially being grown on loamy or 

sandy loam soils (Chase, 1981). Soil texture is widely considered to be an important factor 

in determining crop damage from slugs in arable fields, damage records from the 1957 

and 1958 growing seasons in East Anglia showed a high correlation between crop losses 

in winter wheat and the soil type, the majority of damage occurring on clay loam soil, with 

no reports of damage on sandy soil (Gould, 1961). Ondina et al. (2004) further confirmed 

this finding whilst investigating population distributions in Iberia, with D. reticulatum 
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showing a preference for soils with high silt and clay proportions. In recent literature 

produced by AHDB Cereals and Oilseeds (2018), soil type is identified as a risk factor for 

slugs, with soils with high clay and silt proportions being considered more prone to high 

slug numbers.  

 

Table 5.1. Properties of the different size fractions of soil, sand (0.02-2 mm), silt (0.002-0.02 mm) 
and clay (<0.002 mm). (Rice, 2002; Hillel, 2008). 

Property Sand  Silt Clay 

Water holding capacity  Low Medium to high High 

Aeration when moist Good Medium Medium to poor 

Water conductivity  High Slow to medium Slow to very slow 

Soil organic matter level Low Medium to high High to medium 
 
Rate of organic matter 
decomposition High Medium Slow 

Compactability Low Medium High 

Shrink-swell potential Very low Low Moderate to very high 

Resistance to pH change  Low Medium High 

 

5.1.1.4. Bulk density  

Bulk density is a measure of the weight of soil in a given volume, which will vary according 

to soil type, compaction and as previously indicated, organic matter (Franzluebbers, 2002; 

Kalev and Toor, 2018). Soils with high clay content form aggregates and so will typically 

have a lower bulk density (Nimmo, 2004; Chaudhari et al., 2013). The gaps between 

aggregates can provide important refuges for slugs (South, 1992; Shirley et al., 2001). 

Compacted soils will also have a higher bulk density, as particles are forced closer 

together and the number and size of pores is reduced (Gupta et al., 1989; Van den Akker 

and Soane, 2005). Another factor associated with compaction and therefore high bulk 

densities is low water infiltration through the soil (Gupta et al., 1989; Kalev and Toor, 

2018), which can result in soils becoming waterlogged thus uninhabitable for slugs.  

  Glen et al. (1989) investigated the effect of seed bed conditions (e.g. bulk density) on 

slug numbers and crop damage in a clay loam field sown with winter wheat. Based on 

behavioural observations it had previously been suggested that soils with a high bulk 

density will inhibit the ability of slugs to move through the soil profile, reducing the 

availability of refuges (Stephenson, 1975). The bulk density of most agricultural soils in 

the UK lies between 0.76 and 1.82 gcm3 (Ball et al., 2000). For example, Fullen (1985) 

found bulk densities in east Shropshire between 0.89 and 1.71 gcm3. A bulk density value 

of more than 1.6 gcm3 is considered to reflect compacted soil (Kozlowski and Pallardy, 

1997). The results of the study by Glen et al. (1989) did not show a clear relationship 
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between the bulk density (range 1.09 to 1.24 gcm3, below the level indicating compacted 

soil) and the amount of damage in plots with different seed bed cultivations. The authors 

suggest that this may be due to slugs being killed by the additional cultivations, which is 

supported by other findings in the literature (Kennedy et al., 2013).  

 

5.1.1.5. Particle density 

Particle density is the measure of the weight of individual soil particles in a given volume 

of soil, with the average value for agricultural soils being reported as 2.65 gcm3 (Kalev and 

Toor, 2018). The particle density of a soil can be used in conjunction with bulk density to 

calculate soil porosity. Porosity is a measure of the proportion of soil in a given volume 

taken up by pores, the higher the soil porosity the more space there is in the soil (Hillel, 

2008). High soil porosity allows water to infiltrate the soil at a faster rate (Hillel, 2008), 

indicating that the soil is not compacted and may contain cracks that slugs can use as 

refuges.  

 

5.1.1.6. Infiltration  

Infiltration is a measure of how quickly water moves through the soil, which is also 

affected by soil texture, bulk density and organic matter content (Bauer, 1974; Dexter, 

2004). Soil moisture content is an important factor in determining the abundance and 

distribution of slugs, and is related to infiltration (Wareing and Bailey, 1985; Choi et al., 

2006). Where the soil is too dry (e.g. in areas of very high infiltration) slugs can be 

susceptible to desiccation, whereas if the soil is water-logged (infiltration rates are very 

low) then they are unable to use cracks in the soil as refuges and are susceptible to 

drowning if there is standing water on the soil surface (South, 1992).  

 

5.1.1.7. Moisture 

The soil characteristics discussed above, are factors which will change relatively slowly 

with time, and can remain stable for relatively long periods (months or years). In 

comparison, moisture and temperature can change rapidly over short periods of time. 

Despite this, the impact of these characteristics on slug activity is well documented. 

Although soil moisture and temperature influence day to day visible surface activity, 

prolonged periods of low temperature or low or high rainfall, can also affect population 

size.  

  Slugs cannot regulate moisture levels within their own bodies or in eggs, and with a 

water content of approximately 85 % rely on there being sufficient moisture in their 

environment to prevent desiccation. Risks to adult slugs associated with too much water 

in the environment (e.g. waterlogged soils) are reported in section 5.1.1.6 and in addition 

include inhibition of movement across the soil surface as they require a substrate on 
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which to lay a mucus trail, restricting their ability to find refuges (Denny, 1981; South, 

1992), and will prevent the development of eggs (Willis et al., 2008). Carrick (1942) 

reported a close relationship between soil moisture, D. reticulatum population size and 

plant damage with the largest slug populations detected in soils with an average moisture 

content of 25 %, whereas very low slug numbers and little damage were detected in a 

mean moisture content of 17 %. Laboratory experiments using moisture gradients, 

detected two thirds of the slugs were located in a band of soil at 64 % saturation (Carrick, 

1942). In another study, Ondina et al (2004) found that D. reticulatum have a preference 

for high soil moisture (>41.6 %), when investigating the distribution of gastropods in Iberia. 

Although slugs have displayed preferences for specific ranges of soil moisture content the 

different methods used in published research for reporting soil moisture (a saturation 

percentage cannot be readily compared to a soil moisture content percentage; Brouwer et 

al., 1985) has made definition of an accurate range difficult.  

  Laboratory experiments have shown that slug eggs desiccate under dry conditions, with 

no development recorded in eggs laid in soil at 25 % saturation. Optimum moisture levels 

for development and hatching were reported to be between 50 and 75 % saturation 

(Carrick, 1942). There is evidence that slugs can manipulate the number and size of eggs 

they lay, producing a higher total number and higher proportion of viable eggs under 

optimum conditions to minimise the loss to desiccation (Willis et al., 2008). They also 

modify their behaviour in response to ambient environmental conditions, when soil 

moisture is lower laying eggs further below the soil surface, where moisture levels are 

more stable (Carrick, 1942). Soil moisture is directly affected by rainfall but also by other 

soil properties such as bulk density, soil texture and organic matter which vary across 

fields indicating that interactions between various soil characteristics may affect slug 

population distributions.   

 

5.1.1.8. Temperature  

Daily temperature variation is recognised as an important factor in the surface activity of 

D. reticulatum (Carrick, 1942; Choi et al., 2004). Carrick (1942) found that the optimum 

temperature range was 10 – 20°C, with very little activity at 0°C or 25°C. Choi et al. (2004) 

reported an optimum temperature for activity of 15°C, with the upper and lower limits 

being 20°C and 3°C. The optimum temperatures for feeding (14°C, Wareing and Bailey, 

1985), maximum growth rate (18°C, South, 1982) and optimal egg laying conditions 

(18°C, Willis et al., 2008) each occur within these upper and lower limits for activity. Long 

term periods of very hot or very cold weather can impact not only activity but the 

abundance of slugs as feeding, lifespan and reproduction are reduced (South, 1982; 

Wareing and Bailey, 1985; Willis et al., 2008). In combination these studies suggest that 

the optimum temperature range for D. reticulatum activity is between 10 and 20°C, 

although slug activity has been recorded outside this range (Mellanby; 1961).    
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5.1.2. Objectives and hypotheses 

The majority of the research discussed has been carried out under laboratory conditions 

or investigated the distribution of slugs over a very large area, necessitating broad 

generalisations about habitat preference. Discontinuous distribution of slug populations on 

a smaller (commercial field) scale in relation to soil characteristics has received less 

attention, but it is known that characteristics can vary significantly between defined 

locations. The aim of the study reported in this chapter is to investigate and consider 

candidate characteristics of the physical environment which may contribute to determining 

where patches of higher slug densities form in arable fields. The conclusions may form a 

basis from which a method of predicting where such patches will be located (as part of a 

sustainable pest management approach) in future studies, but the aim of this chapter is 

solely to identify an initial list of possible candidate characteristics for further research.  

 

Objectives 

• To conduct laboratory experiments to investigate the responses of adult D. 

reticulatum to different temperatures, substrate moisture, soil moisture, pH, 

organic matter or temperature and draw conclusions on their potential for use as a 

predictor of slug patch location in the field. 

• To map selected characteristics of the physical environment, and slug densities in 

arable fields where slug patches have previously been identified, on the same 

standard 10 x 10, 10 m interval sampling grid. 

• To compare the variability of soil characteristics across the sampling grid with the 

areas of higher and lower slug densities. 

• To draw conclusions on which of the physical characteristics (if any) warrant 

further investigation as predictors (individually or in combination) of the location of 

patches of higher slug densities in arable fields.  

Hypotheses 

• When offered a choice of a range of soil moistures in laboratory experiments 

conducted using stepped gradients, adult slugs will display clear (statistically 

significant) preferences for defined moisture conditions. 

• Repeating similar experiments using stepped gradients, to test adult slug 

preferences for a range of conditions of temperature, or pH, or the level of organic 

matter, specific conditions will be favoured in each case.  

• Selected soil characteristics (soil organic matter content, pH, soil texture, bulk 

density, particle density, porosity, infiltration rate, soil moisture) will vary across 

standard sampling grids established at all experimental field sites, and a consistent 

(statistically significant) difference between the level of the individual soil 
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characteristics measured in areas containing patches of high slug density and 

areas with low slug densities will occur. 

5.2 Materials and Methods 

5.2.1. Laboratory experiments - Soil characteristic gradients  

Eighty adult slugs (D. reticulatum) were collected from two field sites (Harper Adams 

University (52°46’01.26’N 002°34’50.14’W) and Wigan (53° 30′ 22.66″ N 

002° 42′ 25.54″ W)) and returned to the laboratory for a 48 hour acclimatisation period in a 

Fitotron (Sanyo SGC097.CFX.F - Fitotron Temperature/Humidity Test Chamber, Weiss 

Technik UK Ltd, UK; 14 hours light at 15°C: 10 hours dark at 10°C, 60% humidity). As 

slugs are active at night, experimental assessments would need to be made during the 

scotophase. To facilitate this all individuals were acclimated to a light dark cycle in which 

scotophase commenced at 08:00. 

 Individual slugs were maintained in a rearing enclosure comprising a 250 ml circular 

plastic container (11.5 cm diameter; 4.2 cm high) with eight 1 mm diameter holes drilled 

through the lid. The base of each enclosure was covered with a 4 cm2 disc of damp paper 

towel (2 ply blue centre feed roll, Cater4you, UK), moistened with 1 ml of distilled water, 

which was replaced daily. Slugs were fed ad-libitum on 1 cm thick slices of carrot which 

were replaced daily. Stepped soil gradients (investigating soil moisture, pH, organic matter 

or temperature; Table 5.2) were established. Each gradient consisted of 4 compartments 

(15 cm x 22 cm x 3.3 cm) made from foil trays (D-272-33, Cater For You, UK), connected 

by making 2.5 cm cuts in the corners of one of the long edges and folding them to create 

a join between adjacent compartments (Figure 5.1). A 2 cm band of Vaseline and salt 

mixture (ratio 4:3) was applied to the edge (but not the connecting platform) of each 

compartment in order to contain the slugs within the experimental arena.  
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Figure 5.1. Stepped soil gradients used to investigate slug preference for soil moisture, pH, organic 
matter (pictured) or temperature were established. Four compartments (15 cm x 22 cm x 3.3 cm) 
with a 2 cm band of Vaseline and salt mixture (ratio 4:3) was applied to the outer edges in order to 
contain the slugs within the experimental arena. Each compartment contained 330 cm³ of air dried 
soil and 1 cm slices of carrot were placed in the centre of each compartment to ensure slugs had 
access to food at all points along the gradient.    

 

  Each individual tray was weighed before 330 cm³ of air dried (for a minimum of 72 hours 

at 35°C) and sieved (through 2 mm mesh) soil (collected from 52°46’01.26’N 

002°34’50.14’W) was added to each tray, providing a 1 cm deep layer, with its surface 

level with the joint between compartments. The compartments were then reweighed to 

calculate the exact weight of the soil contained. Distilled water was added to all 

compartments to elevate the moisture content to field capacity (16 %), apart from those 

used in the moisture gradient experiment (in which water was added at varying rates to 

create the gradient described in Table 5.2). Field capacity of the soil was calculated using 

the pressure membrane technique (Richards and Weaver, 1944). A total weight of each 

assembled compartment (including foil tray, soil, Vaseline/salt and water) was recorded 

for each compartment, to allow for any water lost through evaporation to be replaced at 

daily intervals.  

  Food was offered ad-libitum and consisted of a singular circular disc (approximate 

diameter 2 cm; depth 0.5 cm) of carrot, placed in the centre of each compartment. These 

discs were of sufficient size to ensure a constant food supply was always available in 

each compartment throughout the experiment. Experiments for each soil characteristic 

were run simultaneously and slugs were randomly assigned to an experimental gradient 

(soil moisture, temperature, pH or organic matter). In each replicate, 20 replicates per 
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treatment group for moisture (low), pH, organic matter and temperature, a single pre-

weighed slug was released into a compartment determined using a random number 

generator. A further eight slugs were collected for the moisture (high) experiment, the 

number of replicates in this experiment was reduced due to time constraints. Experiments 

were carried out in a Fitotron under the same conditions as those used during the 

acclimatisation period and commenced simultaneously 1 hour after the start of the 

scotophase. The position of each slug within each experimental arena was recorded 3 

times per day at 0900, 1300 and 1700 for a five-day period. 

  

Table 5.2. Levels of five soil characteristics tested in a stepped gradient to investigate substrate 
preferences of adult Deroceras reticulatum. Moisture = % field capacity; organic matter = % by 
weight. 

Characteristic 

gradient 

Compartment 

1 

Compartment 

2 

Compartment 

3 

Compartment 

4 

Moisture (low) 50 % 75 % 100 % 125 % 

Moisture (high) 125 % 200 % 290 % 370 % 

pH 5.86 6.26 6.51 6.97 

Organic matter 0 % 3 % 6 % 9 % 

Temperature 4°C 5°C 14°C  25°C 

 

5.2.1.1. Organic matter 

Air dried and sieved soil (1.5 kg) was heated in a furnace (AAF11/18, Carbolite Gero, UK) 

for 4 hours at 550℃ to remove organic matter (Ministry of Agriculture, 1986), before being 

placed in the compartments of the stepped gradient. A gradient was created by adding 

known percentages of compost (97 % organic matter content, Godwin’s multi-purpose 

compost, E. J. Godwin (Peat Industries) Ltd). To calculate the organic matter content of 

the compost it was air dried and 10 g was added to a pre-weighed crucible. The weight of 

compost was recorded to nearest 0.1 µg (Precisa 262SMA-FR, Precisa Ltd, UK) before 

being placed in a 105°C oven (LCO/42H/DIG, Genlab, UK) for 24 hours and reweighed. 

The sample was then put into an ashing furnace (AAF11/18, Carbolite Gero, UK) for 4 

hours at 450°C, then allowed to cool before being reweighed. The following equation was 

used to calculate the organic matter content.  

 

Organic matter % =  (dry weight – final weight) x 100 

                               dry weight  

 

(Ministry of Agriculture, 1986) 
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No compost was added to the soil in compartment 1 and increasing rates of compost were 

added to compartments 2, 3 and 4 to create a gradient (Table 5.2).   

 

5.2.1.2. pH 

The pH of the soil collected from the field was determined. Ten grams of air dried and 

sieved soil was placed into a 100 ml beaker 50 ml water was added before the cap was 

secured on the beaker and placed on an orbital shaker (HS 501 digital, IKA, Germany) at 

240 RPM for 15 minutes. The pH meter used (3510 pH meter, Jenway, UK) was 

recalibrated after every 50 samples, using pH 4.0 (Buffer Colour Coded Solution pH 4.00 

(Phthalate) Red, Fisher Scientific, UK) and pH 7.0 buffer solutions (Buffer Colour Coded 

Solution pH7.00 (Phosphate) Yellow, Fisher Scientific, UK). The electrode was placed in 

test solutions until the pH reading became stable, and was then rinsed with distilled water 

between samples (Ministry of Agriculture, 1986). Using pre-weighed volumes of soil and 

water, either citric acid or calcium carbonate was added in known quantities and the pH of 

the soil retested until the target pH was achieved. This was confirmed by adding the 

known quantity of either citric acid or calcium carbonate to 10 soil samples, for each pH 

level and retesting the soil pH. Using this data the amount of citric acid or calcium 

carbonate required to alter the pH of the soil in each compartment of the pH arena to 

create the pH gradient detailed in Table 5.2 was calculated.  

 

5.2.1.3. Moisture 

The field capacity of the soil was calculated using the pressure membrane technique. Air 

dried and sieved soil was soaked overnight in distilled water, 10 rubber rings (5.4 cm 

diameter, 1 cm high) were placed on a porous plate and then filled with saturated soil. The 

samples were placed in the pressure plate apparatus (5 bar pressure plate extractor, Soil 

Moisture Equipment Corporation, USA). A pressure differential of 1.3 atmospheres was 

applied for 6 hours. The soil within each ring was then weighed and placed into a crucible, 

the samples were then oven dried at 105°C until a constant weight was achieved. The 

samples were then reweighed and the soil moisture content of the samples after the 

pressure differential had been applied were calculated (Richards and Weaver, 1944). Soil 

moisture at field capacity was calculated as 16 %. The amount of distilled water to be 

added to each compartment to create the gradient (initially 50 – 125 %) was calculated as 

a percentage relative to field capacity (Table 5.2). A second moisture gradient from 125 to 

370 % was established following the results of the initial moisture gradient experiment in 

order to include soil with standing surface water (370 %).  
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5.2.1.4. Temperature  

In order to create a temperature gradient, the experimental arenas were constructed in a 

cold room (SCS Group, UK) set at 4℃ and 14h light: 10h dark cycle. Heat lamps 

(MvPower AC 220V 150W Ceramic Emitter Heater Pet Reptile Heat Lamp Bulb Black, 

Shenzhenshi Musen Shiyefazhanyouxiangongsi, China) and Reptile Vivarium Clamp 

Lamps (White 150W, Aquapet, UK) were placed at one end of the gradient and data 

loggers (DS1921G-F5 thermochron ibutton, Homechip, UK) set at 5 cm intervals on the 

soil surface along the gradient to monitor the temperature throughout the experiment.  

 

5.2.2. Field study 

Soil samples (approximately 250 g) were collected from three fields (Oadby, 

Leicestershire; South Kyme (1), Lincolnshire and Wigan, Lancashire) at the end of the 

2016-17 growing season and three fields (Adeney (Middle), Shropshire; Uppington (2), 

Shropshire; Wigan, Lancashire) at the end of the 2017-18 growing season from each point 

on a standard grid (described in Chapter 2). The fields were selected because detailed, 

cropping season long assessments of slug numbers would be available from refuge 

trapping conducted using the same grids to investigate the presence and spatial stability 

of patches of higher slug numbers (reported in Chapter 3). Samples were taken from each 

grid point and returned to the laboratory for analysis of organic matter, pH and particle 

density along with a separate sample for bulk density. Only a subset of samples were 

analysed for soil texture due to limited resources. In addition, at each grid point infiltration 

rates were measured at the time of soil sample collection, and soil moisture was recorded 

on each visit to the field for slug assessments.  

On return to the laboratory soil samples were air dried for a minimum of 36 hours at 35°C, 

ground using a pestle and mortar and passed through a 2 mm sieve prior to analysis.  

 

5.2.2.1. Organic matter and pH    

Organic matter content and pH of each soil sample was determined using the methods 

described in sections 5.2.1.1 and 5.2.1.2. respectively (Ministry of Agriculture, 1986). 

 

5.2.2.2. Soil texture 

Air dried and sieved soil (10 g) was placed into a 600 ml laboratory beaker before 20 ml 

hydrogen peroxide was added and the soil left to soak overnight for a minimum of 15 

hours. An additional 10 ml hydrogen peroxide was then added and the beaker placed on a 

hot plate (SD 500 digital hotplate, Stuart Equipment, UK) set at 90°C for one hour, being 

stirred at 10-minute intervals and the volume maintained at 25 ml by adding distilled water 

as required, the solution was then boiled for 2 minutes to complete the breakdown of 

organic matter before being allowed to cool to the laboratory ambient temperature. The 
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solution was poured into a beaker, ensuring all soil from the beaker and the rod were 

included, before 10 ml of a dispersing agent (35 g sodium hexametaphosphate and 7 g 

sodium carbonate in 1 L distilled water) was added and the solution placed on the orbital 

shaker for 10 minutes. In a pre-weighed crucible, 10 ml of a dispersing agent was oven 

dried overnight to determine the residual weight. After shaking, all the contents from the 

beaker were poured into a 500 ml measuring cylinder through a 63 µm sieve. The 

contents of the sieve were transferred into a pre-weighed crucible (sample a) and oven-

dried (60°C). The contents of the measuring cylinder were made up to 500 ml and mixed 

thoroughly. A 25 ml sample was taken from 90 mm depth and transferred to a pre-

weighed crucible (sample b) and oven-dried (60°C). After the solution had been allowed to 

settle for 7.5 hours, a second 25 ml sample from 90 mm depth was taken (sample c) and 

transferred to a pre-weighed crucible and oven-dried (60°C). The samples were 

reweighed at 24-hour intervals until they reached a constant, once a constant weight was 

reached the weights for sand (sample a), silt (weight sample b minus sample c) and clay 

(sample c) were recorded (Ministry of Agriculture, 1986; Kettler et al., 2001).  

 

Sand % = weight sample a / total weight sample a + sample b*20 * 100 % 

 

Silt % = weight sample b minus sample c – residue weight *20/ total weight sample a + 

sample b*20 *100 % 

 

Clay % = weight sample c – residue weight * 20 / total weight sample a + sample b*20 

*100 %  

 

5.2.2.3. Particle density 

Oven dried and sieved soil (40 g) was placed in a pre-weighed 100 ml flask and the 

weight recorded before 50 ml of water were added. The mixture was allowed to stand for 

5 minutes before the total volume was recorded. The total volume of soil solids and 

particle density calculated using the equation below.  

 

  

Particle density = oven dry weight of soil (g)  

   Volume of soil (ml) 

(Tan, 2005) 

5.2.2.4. Bulk density 

Within 10 cm of each field grid point a metal soil corer (7.5 cm diameter x 7 cm height) 

was fully inserted into the ground. The soil sample contained within the core was 

removed, and returned to the laboratory in a plastic bag, where it was transferred to a 
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paper bag and dried for 72 h (or until a constant weight was recorded in successive 

assessments) at 105°C in an oven. The volume of the soil was calculated using the 

volume of the cylinder (π r2 h) and bulk density was calculated using the equation below. 

 

 

 

Bulk density =   dry weight of soil (g)  

volume of soil (ml) 

(Wood, 2006) 

 

5.2.2.5. Soil porosity 

Following analysis of the soil particle density and bulk density soil porosity was calculated, 

using the following equation 

  

 

Soil porosity = particle density – bulk density x 100 %  

Particle density 

(Tan, 2005) 

 

5.2.2.6. Infiltration rate – simplified falling head method   

When the soil was close to field capacity, a metal corer (15.3 cm diameter x 14.5 cm high) 

was inserted 5 cm into the ground and soil moisture inside the cylinder was measured 

using a soil moisture probe (Field Scout TDR, Spectrum Technologies Inc., USA). Water 

(500 ml) was added to the cylinder and the time for this water to drain from the container 

was recorded using a stopwatch. The soil moisture inside the cylinder was re-measured 

and the rate of infiltration was measured using the following equation. 

 

 

 
     (∆ᶿ)   D  D + 1   (1-∆ᶿ)D 
Kfs =    -        α*      ln  1 +      
  

(1-∆ᶿ) ta (∆ᶿ)  (1-∆ᶿ)   (∆ᶿ) D+ 1 
        α* 

 

 

Where ∆ᶿ = difference between field-saturated water content and the initial water content, 

α* = constant, D = Volume of water / cross-sectional area of the infiltrating surface, t = 

time 

 

(Bagarello et al., 2004) 
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5.2.2.7. Soil moisture  

Soil moisture was recorded at 5 cm depth at each grid point on each sampling visit to the 

field using a soil moisture probe (Field Scout TDR, Spectrum Technologies Inc., USA). 

 

5.2.3. Statistical analysis 

All statistical analyses were conducted using R 3.3.3. (R core Team, 2015). All residuals 

were tested for normality and equal variance. 

 

5.2.3.1. Laboratory experiments 

The analysis of the four gradient experiments was carried out using a generalized linear 

mixed effect model (GLMER). Non-significant terms were removed from the model to 

reach a minimum adequate model.   

 

5.2.3.2. Field study 

Maps of slug counts created using the interp and filled.contour functions in R. The number 

of slugs in between traps was calculated by polynomial interpolation. The presence of 

hotspots was determined using the ScanLRTS function in R. The areas of higher slug 

densities were identified using the analysis carried out in Chapter 3. A Student’s t test was 

carried out to analyse the results of each soil characteristic within areas of higher slug 

density compared to areas of lower slug density. Where the assumptions of normality and 

equal variance were not met a non-parametric Wilcoxon Mann-Whitney test was carried 

out. 

 

5.3. Results 

5.3.1. Soil characteristic gradients 

In experiments investigating slug responses to characteristics of the physical environment, 

the number of slugs recorded in different compartments of the stepped gradients at the 

end of the 5-day exposure varied. Statistically significant differences in slug numbers 

between compartments were found in experiments investigating organic matter content, 

low moisture, high moisture and temperature gradients, but no significant difference was 

observed between the numbers of slugs in each compartment of the pH gradient (Table 

5.3).  
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Table 5.3. Proportion of individual slugs recorded at the end of the 5-day experimental period in 
each of the four compartments of the stepped gradients used to investigate the responses of slugs 
to organic matter content of soil, or soil pH, moisture or temperature. Figures followed by different 
letters were significantly different (p <0.05). Each soil characteristic were investigated separately 
and conditions in each compartment (C1-C4) in the five experiments were; Exp A: Organic matter 
content – C1= 0%, C2=3%, C3=6%, C4=9%; Exp B: pH – C1=5.86, C2=6.26, C3=6.51, C4=6.97; 
Exp 3: Moisture (low) – C1=50% of field capacity, C2=75%, C3=100%, C4=125%; Exp 4: Moisture 
(high) - C1=125%, C2=200%, C3= 290%, C4=370%; Exp 5:Temperature – C1=4°C, C2=5°C, 
C3=14°C, C4=25°C. 

 

5.3.1.1. Organic matter 

The number of slugs recorded in the section of the gradient with 0 % organic matter at the 

end of the experiment was significantly higher than in all other compartments (z=3.28, 

d.f.=54,3, p=0.001; Table 5.3; Figure 5.2). Differences in slug distribution between 

compartments started to emerge during day 2 of the experiment and increased in 

magnitude thereafter (Figure 5.2). 

 

 

 Compartment 

1 

Compartment 

2 

Compartment 

3 

Compartment 

4 

Organic matter 

(n=20) 

0.70 a 0.10 b 0.10 b 0.10 b 

pH  

(n=20) 

0.15 a 0.23 a 0.31 a 0.31 a 

Moisture - low 

(n=20) 

0.10 a 0.10 a 0.10 a 0.70 b 

Moisture – high 

(n=8) 

0.37 a 0.37 a 0.18 a 0.08 b 

Temperature 

(n=12; lower due 

to mortalities) 

0.00 a 0.46 b 0.46 b 0.08 a 
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Figure 5.2. Proportion of slugs observed in each compartment of the stepped organic matter 
gradient at the end of each scotophase period during the five-day experimental period. The four 
compartments contained soil with 0, 3, 6 or 9 % organic matter content, 

  

5.3.1.2. pH 

No significant differences were detected between the number of slugs observed in the 

different compartments of the pH gradient at the end of the experiment (when compared 

with the compartment with soil pH 5.86; the compartment with soil 6.26 - z=-0.73, 

d.f.=3,84, p=0.47; soil pH - 6.51 z=1.77, d.f.=3,84, p=0.078; soil pH - 6.97 z=0.89, 

d.f.=3,84, p=0.37; Table 5.3; Figure 5.3). 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Proportion of slugs observed in each section of the stepped pH gradient at the end of 
each scotophase period during the five-day experimental period. The four compartments contained 
soil with a pH of 5.86, 6.26, 6.51 or 6.97. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5

P
ro

p
o

rt
io

n
 o

f 
sl

u
gs

Day

0

3

6

9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5

P
ro

p
o

rt
io

n
 o

f 
sl

u
gs

Day

5.86

6.26

6.51

6.97



132 
 

5.3.1.3. Moisture 

In the experiment in which the lower range of soil moisture was investigated (50-125 % 

field capacity), a significantly higher number of slugs were recorded in the gradient 

compartment offering the highest moisture content (125 %; z=4.93, d.f.=3,72, p<0.001; 

Table 5.3; Figure 5.4(A)). Differences between the compartments with different soil 

moisture were apparent from early in the experiment and was maintained thereafter 

(Figure 5.4(A)). When the experiment was repeated using a gradient with soil moisture 

ranging from 125 % to 370 % of field capacity, significantly fewer slugs were recorded in 

the compartment with 370 % field capacity (z=2.99, d.f.=3,58, p=0.003; Table 5.3; Figure 

5.4(B)). Differences between compartments containing the two higher soil moistures, and 

those with lower moisture levels appeared to start emerging during day 2 of the 

experiment and were largely maintained thereafter (Figure 5.4(B)).   

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
Figure 5.4. Proportion of slugs observed, at the end of each scotophase period during the five-day 
experimental period, in two stepped moisture gradients containing soils with moisture content (A) 
50 to 125 % field capacity and (B) 125 to 370 % field capacity. 
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5.3.1.4. Temperature 

A significantly higher number of slugs were recorded in the 5 and 14°C compartments of 

the stepped gradient used to investigate responses to temperature than in the more 

extreme temperatures offered (when compared with the compartment with the lowest 

temperature, 4°C; 5°C z=2.87, d.f.=3,12, p=0.004; 14°C z=2.49, d.f.=3,12, p=0.013; 24°C 

z=0.64, d.f.=3,12, p=0.64; Table 5.3; Figure 5.5). In addition, 3 slug mortalities were 

recorded in the compartment with the lowest temperature (4°C; 2 on day 1 and 1 on day 

2) and 5 mortalities in the highest temperature section of the gradient (24°C; 2 on day 1, 2 

on day 2 and 1 on day 3). No mortalities were recorded in the 5 and 14°C compartments. 

Differences between the numbers of slugs in different compartments emerged from day 2 

of the experiment and were maintained thereafter until the final assessment (Figure 5.5). 

 

 

Figure 5.5. Proportion of slugs observed in each section of the temperature gradient at the end of 
each scotophase period during the five-day experimental period. The four compartments contained 
soil maintained at 4, 5, 14 or 24°C. 

 

5.3.1.5 Selection of candidate soil characteristics for field testing 

The results of the laboratory experiments suggest a range of candidate soil characteristics 

for further investigation in field experiments evaluating factors that affect the spatial 

location or temporal stability of patches of higher slug density in arable fields. 

  Soil moisture has long been associated with slug activity (see section 5.1.1.7) but varies 

rapidly with weather conditions (e.g. temperature, wind, insolation etc.) making correlation 

with slug numbers caught in refuge traps difficult. Its recognised importance, however, 

necessitates its inclusion in the planned field study, but a range of other factors that 

influence soil moisture levels in the field will also be considered. These include infiltration 

(section 5.1.1.6), and factors that can affect both water infiltration/retention or the ability of 
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slugs to penetrate into the upper horizons of the soil such as soil texture (section 5.1.1.3), 

bulk density (section 5.1.1.4) and particle density (section 5.1.1.5).  

  Temperature was strongly associated with slug activity in the laboratory experiments but 

is also a factor that changes rapidly making field study difficult, and will not be included in 

this work programme.  

  The pH of soil and has also been related to slug activity in published studies (section 

5.1.1.2) with variable outcomes. The laboratory experiments conducted under the current 

programme did not replicate published findings, but due to the importance of pH to soil 

organisms, the factor will be further investigated in the planned field experiment. Similarly, 

laboratory results relating to the organic matter content of soil also failed to replicate 

published findings, but the known importance of organic matter both directly to slugs and 

via its effect on other soil characteristics such as soil structure and water infiltration 

(section 5.1.1.1.; neither of the latter were tested by the laboratory experiment) warrants 

inclusion of the factor in the planned field investigation. 

 

5.3.2. Soil characteristics and slug distribution in arable fields  

Inter-field variation between the soil characteristics assessed was detected in the six 

arable fields investigated (organic matter, F=834.3, d.f.=5,594, p<0.001; pH, F=120.5, 

d.f.=5,594, p<0.001; bulk density, F=298.2, d.f.=5,594, p<0.001; particle density (due to 

limited resources a subset of samples were analysed for particle density), F=3.6, 

d.f.=5,48, p<0.008; porosity, F=329.0, d.f.=5,594, p<0.001; infiltration rate (due to 

unsuitable conditions infiltration rates were not recorded in the 2017-18 season in Wigan 

(2017-18) or at some grid points in Adeney (Middle) or Uppington (2), F=29.3, d.f.=4,453, 

p<0.001; moisture, F=508.5, 5,594, p<0.001; Table 5.4). In four of the six fields significant 

differences were detected in the level of at least one of the soil characteristics between 

traps located in the patches of high or low slug densities, as defined in Chapter 3 (Table 

5.5). For example, in the 2016-17 season in Oadby bulk density (t=-2.13, d.f.=98, 

p=0.036) and porosity (t=2.08, d.f.=98, p=0.040) and in Wigan organic matter content 

(t=2.40, d.f.=98, p=0.018) and pH (t=2.03, d.f.=98, p=0.045) were found to differ 

significantly between patches of higher slug numbers and the spaces between these 

patches which contained lower slug densities. In the 2017-18 season pH in Adeney 

(Middle) (t=2.51, d.f.=98, p=0.014) and the maximum soil moisture content at the Wigan 

site (t=2.04, d.f.=98, p=0.044) were also found to vary significantly between areas in which 

slug patches had formed and those areas not incorporated into patches. In addition, 

assessments of soil texture were taken at a single field site (Adeney (Middle)) and 

significant differences were recorded between percentage sand (t=-3.89, d.f.=21, 

p<0.001), percentage silt (t=3.41, d.f.=21, p=0.002) and percentage clay (t =3.12, d.f.=21, 

p=0.005) recorded in soil samples from within patches of higher slug densities and the 

areas between these patches.      
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Table 5.4. Mean (± standard error) values for soil characteristics sampled in a 100 m by 100 m 
area of each of three arable fields in each of two cropping years, using the 10 by 10 grid with a 10 
metre interval between nodes. Where letters differ, a significant difference occurs (p<0.05).    

Year Field 
Organic 

matter % 
pH 

Bulk 

density  

gcm-3 

Particle 

density 

Porosity    

% 

Infiltration 

rate 

mm/s 

Moisture  

% 

2
0
1
6
-1

7
 

Oadby 8.2 ±0.05 

a 

5.9 ±0.03 

a 

1.2 ±0.01 

a 

2.4 ±0.04 

a 

50.0 ±0.4 

a 

6.1 ±0.6 

ab 

34.9 ± 0.33 

a 

South  

Kyme 

9.6 ±0.1 

b 

7.0 ±0.05 

b 

1.2 ±0.01 

b 

2.2 ±0.03 

b 

47.1 ±0.3 

b 

4.9 ±0.7 

ab 

48.9 ± 0.34 

b 

Wigan 6.8 ±0.1 

c 

6.2 ±0.03 

cd 

1.3 ±0.01 

c 

2.4 ±0.02 

a 

47.8 ±0.5 

c 

2.6 ±0.5 

a 

30.5 ± 0.24 

c 

2
0
1
7
-1

8
 

Adeney  

(Middle) 

5.1 ±0.05 

d 

6.1 ±0.03 

c 

1.3 ±0.01 

c 

2.3 ±0.06 

ab 

41.9 ±0.4 

d  

9.4 ±1.7 

b 

36.5 ± 0.34 

d 

Uppington 

(2) 

3.2 ±0.04 

e 

6.3 ±0.04 

d 

1.6 ±0.01 

d 

2.4 ±0.03 

a 

31.3 ±0.3 

e 

25.9 ±3.9 

c 

27.6 ± 0.34 

e 

Wigan 4.5 ±0.1  

F 

6.6 ±0.02 

e 

1.3 ±0.01 

b 

2.4 ±0.04 

a 

44.2 ±0.4 

f 

* 34.8 ± 0.35 

a 

*no infiltration data collected as large cracks present in soil 
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Table 5.5. The range of soil characteristics in areas of fields assessed for patches of higher slug densities. In each field stable slug patches were detected 
using catches of refuge traps set at each node of a standard 10 by 10 grid, with a 10 metre interval between nodes.  Soil assessments were taken at the 
same nodes. Figures represent mean slug count across the whole trapping grid, or for the maximum and minimum value for each soil characteristic. 
Values highlighted in grey indicate significant (p <0.05) differences between areas within and outside slug patches. * = no measurements taken. 

  

Fields  
2016-17 

Slug 
numbers 

Organic 
matter 

% 

pH Texture-  
sand 

% 

Texture -  
silt 
% 

Texture -  
clay 

% 

Bulk 
density 
gcm-3 

Particle 
density 
gcm-3 

Porosity 
% 

Infiltration 
rate 
mms-1 

Mean 
moisture 
% 

Max. 
moisture 
% 

Min. 
moisture 
% 

                          

Oadby 0-6 6.4-9.6 5.2-6.7    0.97-1.52 2.4 36.7-65.0 0-32 26-44 36-57 11-33 

               

South 
Kyme (1) 

0-6 7.1-12.4 5.8-7.9    0.95-1.33 2.2 39.5-56.8 0.1-58 39-57 46-69 20-52 

               

Wigan 0-24 3.9-9.3 5.5-6.8    1.02-1.46 2.4 38.8-58.3 0-48 23.5-36.5 31-51 4-29 

                          

Fields  
2017-18 

              
  

        

Adeney 
(Middle) 

0-6 3.6-6.8 5.2-6.9 28.7-49.8 16.6-29.4 31.4-43.3 1.0-1.55 2.3 32.4-56.5 0-75 28-45 33-52 17-38 

               

Uppington 
(2) 

0-31 2.4-4 5.5-7.5    1.36-1.79 2.4 35.4-43.1 0-90 20-37 24-47 11-29 

               

Wigan 0-8 2.2-7.2 6.1-7.3    1.12-1.52 2.4 36.6-53.2 * 25-42 29-50 20-37 
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5.3.2.1. Organic matter 

The organic matter content of individual soil samples in the six fields sampled varied from 

2.2 % (Wigan 2017-18) to 12.4 % (South Kyme (1) 2016-17; Table 5.5). Although 

laboratory experiments showed no differences in slug activity between soils with 

enhanced organic matter content, a significant correlation between slug numbers and soil 

characteristics was detected at one of the six study sites. The spatial variation in the 

organic matter content of the soil at the Wigan site in 2016-17 is illustrated in Figure 

5.6(A). The discrete patches of higher slug densities were defined using the method 

described in Chapter 3, an example of the distribution at the Wigan site is shown in Figure 

5.6(B). The level of organic matter in soils adjacent to refuge traps set within patches of 

high slug densities (7.06) was compared with and found to be significantly greater than 

those in areas of lower slug densities (6.55 %; t=2.4, d.f.=98, p=0.018). The Wigan site 

displayed the largest range of organic matter (3.9-9.3 %; Table 5.5) potentially indicating 

that sufficiently large spatial variation is required before the effect of the factor can be 

detected using the methods employed. South Kyme (1) displayed a range that was only 

slighter lower than at Wigan (7.1-12.4 %; Table 5.5), but with no significant correlation 

between slug numbers and soil organic matter. The lowest level of organic matter content 

in this case was higher (7.1 % in South Kyme (1) compared to 3.9 % in Wigan). 

 

Figure 5.6. The percentage of organic matter (A) and an illustration of the distribution of slugs in 
Wigan (2-3-17) (B) at each point on the standard sampling grid. The x and y axes show dimensions 
of the sampling grid in metres. Slug distributions were determined from 10 assessments carried out 
between October 2016 and June 2017 using 100 refuge traps positioned at 10 metre intervals in 
the 10 by 10 grid. Soil samples for organic matter content were taken from the same positions. 
Colour scale represents the organic matter (A) and number of slugs (B), the numbers between 
traps was calculated by polynomial interpolation. 

 

 

A B
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5.3.2.2. pH 

The pH of individual soil samples in the six fields sampled varied from 5.2 (Oadby 2016-

17 and Adeney (Middle) 2017-18) to 7.9 (South Kyme (1) 2016-17; Table 5.5). There was 

a significant difference in the pH level of the soil samples taken from areas of higher slug 

density when compared with those with lower slug density at two of the sites investigated 

(Table 5.5). The spatial variation in soil pH across the sampling grid at the Wigan site in 

2016-17 is illustrated in Figure 5.7(A), an example of the slug distribution at the Wigan site 

is shown in Figure 5.7(B). The mean pH of soil samples taken within slug patches (6.28) 

was found to be significantly higher than in those samples taken from areas with lower 

slug densities (6.16; t=2.03, d.f.=98, p=0.045). In Adeney (Middle) in the 2017-18 

comparison of the spatial variation in soil pH across the sampling grid (Figure 5.8(A)) 

showed that the average pH in patches containing higher slug densities (6.32) was also 

significantly greater than in areas with lower slug densities (6.16; t=2.51, d.f.=98, p=0.014; 

Figure 5.8).  

 

 

Figure 5.7. The pH of the soil (A) and an illustration of the distribution of slugs in Wigan (22-3-17) 
(B) at each point on the standard sampling grid. The x and y axes show dimensions of the 
sampling grid in metres. Slug distributions were determined from 10 assessments carried out 
between October 2016 and June 2017 using 100 refuge traps positioned at 10 metre intervals in 
the 10 by 10 grid. Soil samples for pH were taken from the same positions. Colour scale represents 
the pH (A) and number of slugs (B), the numbers in between traps was calculated by polynomial 
interpolation.     

A B 
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Figure 5.8. The pH of the soil (A) and an illustration of the distribution of slugs in Adeney (Middle) 
(20-12-17) (B) at each point on the standard sampling grid. The x and y axes show dimensions of 
the sampling grid in metres. Slug distributions were determined from 8 assessments carried out 
between September 2017 and May 2018 using 100 refuge traps positioned at 10 metre intervals in 
the 10 by 10 grid. Soil samples for pH were taken from the same positions. Colour scale represents 
the pH (A) and number of slugs (B), the numbers in between traps was calculated by polynomial 
interpolation.    

 

5.3.2.3. Moisture 

Soil moisture was assessed at each node of the standard sampling grid, on each 

assessment visit to all six field sites. The individual soil moisture measurements recorded 

in the fields ranged from the lowest of 4 % (Wigan, 2016-17) to the highest of 69 % 

moisture content (South Kyme (1) 2016-17; Table 5.5). Soil moisture measurements 

varied between assessments, for example, at the Wigan site the mean soil moisture 

content was 27.7 % on 12-4-17, 9.5 % on 10-5-17 and 30.9 % on 8-6-17. No significant 

differences in either the mean soil moisture (mean for each point calculated from 

individual measurements from each assessment) or minimum soil moisture (minimum 

recorded for each point on the grid on any assessment date) assessments between the 

areas of higher or lower slug densities were identified (Table 5.5). A significant difference 

was detected between the maximum moisture content of the soil in areas of higher slug 

density (43.1) when compared to areas of lower slug density (40.6%) in a single site, 

Wigan (2017-18) (t=2.76, d.f.=98, p=0.010). The spatial variation in maximum soil 

moisture content and an illustration of slug distribution across the sampling grid at Wigan 

are shown in Figure 5.9.    

 

 

 

 

A B 
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Figure 5.9. The maximum moisture content of the soil (A) and the distribution of slugs in Wigan (12-
1-18) (B) at each trap location on the grid. The numbers along the x and y axis show dimensions of 
the sampling grid in metres. 100 refuge traps were positioned at 10 metre intervals in a 10 by 10 
grid. Colour scale represents the maximum moisture content (A) and number of slugs (B), the 
numbers in between traps was calculated by polynomial interpolation.               

 

5.3.2.4. Soil texture 

Due to limited resources soil texture analysis was carried out on a subset of samples in 

only one field (Adeney (Middle) 2016-17). There was a significant difference in the 

percentage of each particle size fraction between soil taken from areas containing higher 

slug densities and those with lower densities, clay (t=3.12, d.f.=21, p=0.005), silt (t=3.41, 

d.f.=21, p=0.003) and sand (t=-3.89, d.f.=21, p<0.001) (Figure 5.10).  

  

Figure 5.10. The relative proportions of sand, silt and clay in soil samples taken within patches of 
higher slug densities and in areas of lower densities in Adeney (Middle) (2016-17), n=23. Error 
bars show the standard error.  

 

The average proportion of clay in soils taken from within the area of higher slug density 

was significantly higher (41.3 %) than in those from areas with lower densities (37.5 %). 
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Similarly, a higher proportion of silt was found in samples from within the area of higher 

slug density (25.5 %) compared to other areas (21.7 %). Conversely, the proportion of 

sand in the area of higher slug density was lower (33.2 %) compared to the area of lower 

slug density (40.8 %) (Figure 5.10).  

 

5.3.2.5. Bulk density  

Bulk density recorded in individual samples from all six experimental fields ranged from 

0.95 gcm-3 (South Kyme (1) 2016-17) to 1.79 gcm -3 (Uppington (2) 2017-18; Table 5.5). A 

significant difference in the bulk density of the soil was detected between areas of higher 

slug density compared to areas of lower slug density in only one field. At Oadby in the 

2016-17 season the average bulk density of the soil in patches of higher slug density was 

1.18 gcm-3 compared with 1.22 gcm-3 in the patches with a lower density (t=-2.13, d.f.=98, 

p=0.036; Figure 5.11). The bulk density measurements at Oadby covered the largest 

range of those recorded in all six study sites.  

Figure 5.11. The bulk density of the soil (A) and an illustration of the distribution of slugs in Oadby 
(2-9-16) (B) at each point on the standard sampling grid. The x and y axes show dimensions of the 
sampling grid in metres. Slug distributions were determined from 8 assessments carried out 
between September 2016 and June 2017 using 100 refuge traps positioned at 10 metre intervals in 
the 10 by 10 grid. Bulk density samples were taken from the same positions. Colour scale 
represents the bulk density (A) and number of slugs (B), the numbers in between traps was 
calculated by polynomial interpolation.        

 

5.3.2.6. Particle density 

A subset of samples were analysed for particle density, little variation between individual 

samples was detected, for example, the mean of 26 samples taken from Wigan 2017-18 

was 2.41 ±0.03 gcm-3. As the initial analysis indicated that the differences between 

samples (±0.03 gcm-3) were less than the accuracy of the technique (±0.2 gcm-3) and time 

resources were limited it was decided not to continue with particle density measurements 

at individual grid points. Instead sample points were collated from nine areas of the grid 

A B 
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and the mean particle density for the field used in the calculation for soil porosity 

measurements.       

 

5.3.2.7. Soil porosity  

Soil porosity is a measure of the proportion of a defined volume of soil that is taken up by 

pores and can be calculated from measurements of bulk density and particle density, and 

as such is not independent of these two factors. The soil porosity recorded in individual 

soil samples taken from the six fields investigated ranged from 32.4 % (Adeney (Middle) 

2017-18) to 65.0 % (Oadby 2016-17). A significant difference in the porosity of the soil 

was detected in areas of higher slug density compared to areas of lower slug density at 

one site, Oadby (2016-17).  At Oadby the average soil porosity in patches of higher slug 

density was 50.8 % compared to 49.1 % in the areas with lower slug density (t=2.08, 

d.f.=98, p=0.040). The spatial variation in soil porosity and an illustration of slug 

distribution at Oadby (2016-17) are shown in Figure 5.12.  

 

 

 

 

 

 

 

 

 

Figure 5.12. The porosity of the soil (A) and an illustration of the distribution of slugs in Oadby (2-9-
16) (B) at each point on the standard sampling grid. The x and y axes show dimensions of the 
sampling grid in metres. Slug distributions were determined from 8 assessments carried out 
between September 2016 and June 2017 using 100 refuge traps positioned at 10 metre intervals in 
the 10 by 10 grid. Porosity for each point was calculated using bulk density and particle density 
measurements. Colour scale represents the soil porosity (A) and number of slugs (B), the numbers 
in between traps was calculated by polynomial interpolation.            

 

5.3.2.8. Infiltration rate 

Infiltration rates were assessed in five of the fields investigated and outcomes ranged from 

the lowest individual assessment of 0 mms-1 (occurring in all fields except South Kyme (1) 

2016-17) to the highest rate of 90 mms-1 (Uppington (2) 2017-18). No significant 

difference in the infiltration rate was detected in areas of higher slug density compared 

with areas of lower slug density in any of the fields tested.   
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5.4 Discussion 

Development of a commercially viable integrated pest management system in which 

control measures are targeted at patches of higher slug densities (as defined in Chapter 

3), relies on a cost-effective method of identifying the location of those patches. 

Assessment of visible crop damage was not found to be sufficiently reliable (Chapter 4), 

and use of soil characteristics that affect slug behaviour and population development were 

proposed as an alternative approach. In order to identify candidates which may have a 

role in determining slug location, laboratory experiments were first carried out to identify a 

set of characteristics that may influence the location of slugs in the field. These candidate 

characteristics were then tested along with selected additional characteristics in a field 

study.  

  Decomposing plant material provides both a food source for slugs and can modify other 

properties of soil including water holding capacity, soil structure and pH. Increasing the 

amount of organic matter in soils can improve access of slugs to the upper soil horizons, 

providing refuges from predators or during periods of adverse environmental conditions 

(Franzluebbers, 2002; Keller and Håkansson, 2010). A study manipulating organic matter 

on forest floors found that a reduction was associated with a reduction in the population 

density of Collembola (Eaton et al., 2004). The underlying mechanism may lie in leaf litter 

not only providing a food source and refuge for the Collembola but also regulating the 

temperature and moisture of the forest floor. Increased organic matter content can also 

increase the water holding capacity resulting in moisture being retained for longer during 

dry periods, an important feature as slugs are unable to regulate their own body moisture 

(South, 1992; Hudson, 1994). Slugs have been reported to show a preference for soils 

containing high levels of organic matter levels suggesting that variation in organic matter 

content across fields may influence their distribution (Carrick, 1942; South, 1992). 

Laboratory tests conducted in the current study using a stepped gradient, however, 

resulted in slugs aggregating in compartments with no added organic matter rather than 

those with supplemented organic matter content. This may have been due to the 

substrate used (a commercial multi-purpose compost) to increase organic matter content, 

as anaerobically digested matter has previously been found to deter slugs. Speiser (1999) 

reported slug repellency with 96 % of the individuals tested avoiding lettuce that was 

offered in association with anaerobically digested matter in a choice test. Further field 

tests showed significantly lower lettuce leaf loss from slug feeding in plots treated with 

newly digested matter compared to untreated plots or those treated with older digested 

matter, or with a barrier of newly digested matter around the plot (Speiser, 1999). 

Preliminary choice tests have been carried out which show farmyard manure does not 

elicit the same repellent response as the compost used in this study (Patel, 2018). Further 

testing is required using different substrates to confirm the slug preference for higher 

levels of organic matter widely reported in the literature. Therefore, although the 
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laboratory experiments in this current study did not provide evidence supporting the 

inclusion of organic matter for further testing in field experiments it was selected as a 

candidate soil characteristic based on evidence from the published literature.  

  Slugs require a source of calcium carbonate as a reduced calcareous shell is present 

under the mantle, granules of the compound are found in their slime, and a layer of 

calcium occurs in eggs (South, 1992). Calcium carbonate is found in more alkaline soils, 

suggesting that pH may influence habitat choice, although the findings of studies 

investigating the effect of pH on slug and snail abundance are variable. Carrick, (1942) 

investigated slug populations in potato crops but found no consistent relationship between 

soil pH and the density of slugs. The highest slug densities (including D. reticulatum) 

recorded, occurred when soil pH was within the range 5.4-6.9, with the lowest slug 

numbers found in soil ranging from pH 4.8-7.0. Investigating a wider range of soil pH (4.8 

– 7.2), Ondina et al. (2004) demonstrated that D. reticulatum preferred soils with a pH 

>5.6. Although the laboratory experiment conducted in the current study did not 

demonstrate a preference for specific soil pH, this may have been the result of the limited 

range tested (pH 5.9-7.0) which spans the levels that earlier studies suggest are 

preferred. Soil pH may have a role in determining slug abundance but within the range 

typically found in arable fields in the UK (5.5 to 7.5; Skinner and Todd, 1998) it may not be 

a primary determinant of the location of slug patches. Collectively, however, these findings 

suggest that further work is required to identify the optimum pH range for slugs, and 

accordingly, it was retained as a candidate soil characteristic for field investigation. 

  Slug responses to the laboratory moisture gradient in this current study indicated a 

significant preference for moist soils, a comparable result to the findings of Carrick (1942). 

Moisture is widely known to play a role in surface activity (South, 1992; Shirley et al., 

2001; Choi et al., 2004), with slugs showing a preference for damp but not waterlogged 

soils (Young and Port, 1991; Glen and Symondson, 2003). The second moisture gradient 

included compartments with waterlogged soils, which were avoided by slugs, again 

supporting published observations. These results suggest that soil moisture may be an 

important characteristic influencing the location of higher slug densities but practical 

considerations preclude its use in a viable IPM approach. Soil moisture is affected by a 

range of weather (e.g. insolation, temperature, wind etc.) and environmental factors (e.g. 

water retention capacity of the soil, which in turn is affected by multiple soil 

characteristics), resulting in high temporal variability. Such variability results in soil 

characteristics that affect water retention being more attractive candidates for inclusion in 

the field experiment, including soil texture, bulk density, particle density, porosity and 

infiltration rate).  

  Studies of the effect of temperature have reported low slug activity below 5°C (South, 

1992). Activity increases as temperatures exceed 10°C (Young et al., 1991), with an 

optimum of between 13°C (in winter) and 17°C (summer; Wareing and Bailey, 1985). The 
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temperature gradient experiment conducted in the current study in part supported these 

findings, with significantly fewer slugs at the end of the experiment located in the 

compartments with the lowest (4°C) and highest (24°C) temperatures than in those with 

intermediate temperature of 14°C. A similar number of slugs were found, however, in the 

compartments with temperatures of 5°C and 14°C.  A higher rate of mortality was 

observed in the temperature gradient experiment when compared to the other laboratory 

studies. In order to create the gradient, a heat lamp was used to raise the temperature at 

one end of the continuum. Although moisture lost through evaporation was replaced daily, 

the compartments in the temperature gradient required more water to be replaced than in 

the organic matter, pH and moisture experiments. The highest mortality rate was recorded 

in the compartment with the highest temperature (24°C), potentially the result of reduced 

soil moisture and the lack of refuges within the compartment resulting in desiccation, 

rather than as a direct result of the heat. A series of experiments investigating tolerance of 

D. reticulatum to temperature extremes found slugs to be tolerant of temperatures up to 

36°C. The same series of experiments investigated desiccation and found all individuals 

died between 2 and 12 hours after being subjected to dry conditions (Getz, 1959), time 

periods that are shorter than those used in this study. Although soil temperature 

significantly affects slug activity, as was the case for soil moisture, temperature in the 

upper horizons of the soil and above the soil surface is highly variable, and can vary 

widely in relatively short periods of time. As such it was not selected for further study in 

the field experiment but should remain a consideration for farmers when considering the 

optimum timing for slug control applications.  

  The results of the laboratory gradient experiment investigating soil moisture support the 

first hypothesis that “When offered a choice of a range of soil moistures in laboratory 

experiments conducted using stepped gradients, adult slugs will display clear (statistically 

significant) preferences for defined moisture conditions”. The second hypothesis 

“Repeating similar experiments using stepped gradients, to test adult slug preferences for 

a range of conditions of temperature, or pH, or the level of organic matter, specific 

conditions will be favoured in each case” was not fully supported. Although statistically 

significant preferences for temperature were identified, no differences between the four 

levels of soil pH offered to slugs were detected. In addition, although significant 

differences were established between slug preferences for the unenhanced soil samples 

when compared to those to which various amounts of organic matter had been added, no 

preference was found between the variable organic matter content of the enhanced soils. 

 

5.4.1. The impact of soil characteristics under field conditions   

The laboratory gradient experiments demonstrated that slugs may identify and select 

some soil conditions that are most favourable for their survival, and may favour areas of 

fields offering such conditions, forming patches with higher slug densities. The location of 
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such patches may not, therefore, be solely reliant on the availability and quality of the food 

plants within the patch (provided a deficit in food availability does not occur). This 

supports the hypothesis that soil characteristics may indicate the location of areas of 

higher slug densities in arable fields.  

  Based on the results of the laboratory experiments and literature sources, nine soil 

characteristics were selected for further investigation in a field study conducted over two 

years in commercial winter wheat fields (section 5.3.1.5). These included soil organic 

matter content, pH and other physical factors that affect water retention (soil texture (% 

sand, % silt, % clay), bulk density, particle density, porosity, and infiltration rate. In 

addition, regular measurements of soil moisture were taken. 

  Although variable between sites and years the field study did demonstrate that variation 

in the soil characteristics within fields may influence the location of the areas of higher 

density of D. reticulatum. Six of the soil characteristics were found to vary significantly 

between patches of higher and lower slug densities. The lack of consistency between 

fields or years, however, suggests that a single individual factor cannot be used to reliably 

predict the locations that are at risk of the development of higher slug numbers. Further 

work is required to develop an improved understanding of the effect of each characteristic, 

for example, whether an optimal range or critical threshold exist which may allow more 

accurate definition of favourable habitat conditions.  

  Accordingly, several characteristics may have to be used in combination to improve the 

accuracy of predictions of patch location. For example, the importance of soil moisture in 

slug habitats is widely recognised but is influenced by a range of soil characteristics 

affecting water retention. Of those assessed in this experiment, soil taken from within or 

outside slug patches differed significantly in their sand, silt and clay content, or in organic 

matter, bulk density, and porosity, in at least one field. By combining assessments of 

these related factors, and establishing optimum ranges or thresholds for each, they might 

be layered to create a more accurate map of areas with favourable slug habitats within 

each field. Further work is required to investigate the potential of this approach but the 

current study has identified some candidate soil characteristics. 

  At South Kyme (1), the field site in which organic matter was highest, there was no 

significant difference between the organic matter content within and outside the areas of 

higher slug densities. This was despite the difference between organic matter content of 

the two sets of samples being the second largest recorded in any of the fields studied, 

possibly indicating that the importance of this factor is lower when a generally high (and 

adequate) soil organic matter content is found throughout the field. In the field with a 

similar range (Wigan (2016-17; 3.9-9.3 %), but starting at a lower organic matter content, 

a significant difference between the area of higher and lower slug densities was detected. 

Further work is required to identify whether there is a critical threshold for organic matter 

content in determining the location of slugs in arable fields.     
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  Lewis and Magnuson (2000) investigated spatial patterns of species richness of aquatic 

snails in relation to variations in environmental conditions. They found that calcium 

content of the water, pH and habitat availability could all influence the species richness of 

a lake and the distribution within individual lakes. In this study, pH was significantly higher 

within areas of higher slug density in two of the three fields with the lowest pH of the fields 

sampled, reflecting the results of Ondina et al (2004) who suggested that D. reticulatum 

have a preference for soils with a higher pH (>5.60). 

  Results from Adeney (Middle), the only site at which soil texture was analysed, suggest 

that further investigation of soil texture in a greater number of fields is warranted. A 

significant difference was found between soil textures in areas with higher slug density 

when compared to those with lower slug density. The higher clay content of the soil, 

coupled with a higher silt and lower sand content within the area of higher slug density, 

links the patch location with soils displaying higher water retention. The proportion of 

sand, silt and clay affects the water retention properties of soil. Soils with high proportions 

of sand display poor water retention and are more prone to drying, whilst those with a high 

proportion of clay have better water retention properties. Soils with high silt content are 

intermediate between the two (Rice, 2002; Hillel, 2008). This is consistent with evidence 

from the literature that slugs show a preference for heavier soils with a higher clay 

content, partly because of the higher moisture retention characteristics (Gould, 1961; 

South, 1992; Ondina et al., 2004; AHDB, 2016). Firm conclusions cannot be drawn from 

results from the single field site, but soil texture is identified as a candidate for future 

studies. 

  Bulk density and associated porosity are influenced by soil texture and organic matter 

content (Franzluebbers, 2002; Kalev and Toor, 2018), but they are also affected by 

compaction, caused by cultivation method and the weather conditions at the time of 

cultivation (Franzluebbers, 2002; Batey, 2009). As a result, bulk density cannot be directly 

correlated with soil texture and organic matter. Soils with higher bulk densities display 

lower water infiltration rates and those above 1.6 gcm-3 are considered to be compacted 

(Kozlowski and Pallardy, 1997). Uppington (2) was found to have areas of compaction, 

with bulk densities up to 1.79 gcm-3 detected. The effect of compaction may result in fewer 

large aggregates and cracks in the soil, resulting in fewer available refuges for slugs in 

those areas. A lack of refuges has been associated with increased mortality (Shirley et al., 

2001). Based on behavioural observations it has been suggest that even in soils that are 

not compacted, a higher bulk density can inhibit the ability of slugs to move through the 

soil profile, reducing the availability of refuges (Stephenson, 1975). A significant difference 

was detected between the bulk densities recorded within patches of higher slug density 

(1.18gcm-3) and areas of lower slug density (1.22 gcm3) at the Oadby site, making this 

another candidate for future investigation.  
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  No significant relationship was found in any of the fields sampled, between infiltration 

rate and the density of slugs, perhaps in part due to the large variation in infiltration rates 

between adjacent traps. The simplified falling head method used in this study has been 

found to be a good measure of the mean infiltration rate but does result in much higher 

variation than both the double ring infiltrometer (Verbist et al., 2010) and pressure 

infiltrometer techniques (Bagarello et al., 2012). The alternative methods require longer 

recording time and more equipment (pressure infiltrometer method) reducing the number 

of possible readings from each of the fields sampled. In order to maximise the accuracy of 

the simplified falling head method for measuring the rate of infiltration, measurements 

should be taken shortly after rainfall when the soil moisture is close to field capacity. The 

2017-18 season was particularly dry, which prevented infiltration rates being recorded in 

one field, due to the occurrence of cracks that allowed water to dissipate quickly or the 

formation of a crust on the soil surface preventing water movement down the soil profile. 

The variation in measurements and necessity of certain soil conditions makes infiltration a 

less suitable characteristic for determining the location of areas of higher slug densities in 

commercial crops.  

  Moisture and temperature are widely known to influence slug activity (Choi et al., 2004), 

however, soil moisture was only found to be a significant factor at one site, Wigan. 

Although recognised as an important factor affecting the behaviour and activity of slugs in 

arable fields, soil moisture varies widely and on a short temporal scale in the field, making 

it difficult to utilise as a reliable indicator of the areas of fields that are at risk of developing 

patches of higher slug densities. Instead, soil characteristics that affect the retention of 

moisture, such as soil texture, bulk density, particle density, porosity, or infiltration rate 

may offer greater potential. Both temperature and surface moisture may, however, play a 

more crucial role in determining the optimal timing of molluscicide pellet applications 

(Shirley et al., 2001). Surface activity of slugs is affected by weather conditions and 

applying controls at a time when surface activity is highest would increase the number of 

slugs exposed to the pellets, improving the efficacy of treatment applications. 

  The third hypothesis (defined in section 2.1.2.) “Selected soil characteristics (soil organic 

matter content, pH, soil texture, bulk density, particle density, porosity, infiltration rate, 

moisture) will vary across standard sampling grids established at all experimental field 

sites, and a consistent (statistically significant) difference between the level of the 

individual soil characteristics measured in areas containing patches of high slug density 

and areas with low slug densities will occur”, was not supported by the results of the field 

experiments. 

  When planning future work, in addition to the soil characteristics suggested by the 

current study, additional factors that also affect habitat quality and which were not 

investigated should also be considered, such as compaction and chemical composition 

(e.g. calcium content) (Ondina et al., 2004). In addition to physical factors, biological 
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factors may also be important in determining the spatial distribution of a population (Lewis 

and Magnuson, 2000). Predators of slugs such as carabid beetles are known to have a 

discontinuous distribution across arable fields (Bohan et al., 2000b) and slug populations 

may be limited even in otherwise suitable environmental conditions by the presence of 

these predators.   

 

5.5. Conclusion 

Although no one individual soil factor was associated with slug patch location, several 

candidate characteristics (organic matter, bulk density, porosity, soil texture (percentage 

of sand, silt and clay) and pH) were identified as being significantly different between 

areas of higher and lower slug densities in at least one of the fields studied. These factors 

are known to influence soil moisture and/or the soil structure (providing access for slugs to 

the upper horizons of the soil). Further investigation of these factors is required in a larger 

number of fields to improve our understanding of each characteristic both individually and 

in combination. For example, the existence of optimal ranges or critical thresholds for 

each characteristic should be considered. Additional research into the stability of these 

soil characteristics over time is also required. This work should also include an 

investigation of the potential for improving our understanding of the role of soil (and other) 

factors, such as calcium content and level of predation, in determining the location of 

patches of higher slug densities, by investigating combinations of related factors. In order 

to be part of a commercially viable tool for identifying patch location, the selected 

characteristics would need to be sufficiently stable over time. 
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Chapter 6. Using Radio Frequency Identification tags to track the 

movement of Deroceras reticulatum above and below the soil surface 

 

To mitigate for risks associated with the breakdown of slug patches an improved 

understanding of the behaviours which lead to patch formation and cohesion is required. 

Patches may result from the cumulative effect of individuals ranging continuously across 

whole fields, but spending longer periods in more localised areas that offer environmental 

conditions that are beneficial to their survival or reproduction, than in other less attractive 

areas. Under this scenario damage will be more widespread and reliable targeting may 

not be possible. Alternatively, if slugs display a more restricted range and remain in such 

areas for long periods of time retreating into soil during periods of adverse physical 

conditions, slug patches may be more reliably stable and targeting of applications of 

control agents is likely to be more reliable. A third potential mechanism involves temporary 

arrestment following the chance encounter of slugs with other individuals (or signs of the 

presence of other individuals) of the same species, which cumulatively may promote the 

formation of patches of higher densities. The known habit of slime trail following (Wareing, 

1986) may, for example, contribute to the development of the discontinuous distribution of 

some slug species. This chapter investigates slug locomotor behaviour in arable fields to 

determine the mechanism driving patch formation. Current slug monitoring techniques do 

not allow for determining individual slug location using assessments taken in a time series 

over several weeks. A technique using RFID technology which allowed the movement of 

individual slugs to be monitored was developed.  

 

6.1. Introduction 

6.1.1. Understanding the mechanism underlying slug patch formation 

Few studies have investigated the behavioural responses that influence the formation of 

areas of higher slug densities (patches) or their spatial or temporal stability. Difficulties 

associated with studying and effectively tracking D. reticulatum in the field have hampered 

investigations. A large but variable proportion of the slug population in arable fields is 

located beneath the soil surface, with a smaller proportion active on the soil surface 

(South, 1992), resulting in the number of surface-active slugs varying widely under 

different environmental conditions. In cold or dry weather a smaller proportion of the 

population will be observed on the soil surface as slugs move down the soil profile where 

conditions remain more constant (Choi et al., 2006). Various techniques have been 

developed to assess populations, including surface searching, refuge traps, hand sorting 

of soil, soil flooding, DATs and capture-recapture approaches (South, 1992), and have 

been used to confirm the non-uniform distribution of D. reticulatum. The lack of data on 

slug population size and individual movement beneath the soil surface, contributes to 
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there being no conclusive findings on the mechanisms underpinning the formation, 

stability or location of higher density patches (Forbes et al., 2017).     

 

6.1.2. Tracking individual slugs 

Previous studies of the behaviour of D. reticulatum have attempted to track the movement 

of individuals using approaches such as freeze-marking (marks made on the mantle using 

hot copper wire irons; Richter, 1976), dye injected into the slug (Hogan and Steele, 1986), 

UV dye (Foltan and Konvicka, 2008) and radioactive isotopes (Hakvoort and Schmidt, 

2002). A common problem with these methods is the requirement for the slug to be on the 

soil surface in order for it to be located and individually identified. In addition, the markers 

can be short-lived or difficult to distinguish in the field making the identification of 

individuals difficult. For example, the radioactive isotopes used by Hakvoort and Schmidt 

(2002) could only be identified for approximately 10 days after the radioactive feed source 

was removed. Moreover, the freeze-marks applied to the slug’s mantle by Richter (1976) 

only lasted for up to 2 months on mature D. reticulatum while the injected dyes used by 

Hogan and Steele (1986) were difficult to detect on darker individuals making them hard 

to distinguish in the field.   

 

6.1.3. Radio frequency identification technology   

Radio Frequency Identification (RFID) tags have been used to track movement in a range 

of vertebrate and invertebrate species, including fish (Roussel et al., 2000), honey bees 

entering and exiting hives (Henry et al., 2012) and vine weevils (Pope et al., 2015), and 

the technology allows individuals to be uniquely identified. Additionally, fields tests 

showed RFID tags buried in the upper horizons of soil can be detected at least 20 cm 

below the surface. Tests were carried out in the field using RFID tags in eppendorfs, 

which were buried at different depths (from 10 cm up to a maximum of 30 cm) and using 

the HPR Plus reader (Biomark, USA) and BP Plus Portable antenna (Biomark, USA) 

located. The tags buried up to 20 cm were repeatedly located, those buried at 25 and 30 

cm depth were only picked up by the HPR Plus reader on 60 and 40 % of occasions 

respectively (repeated 5 times at each depth). Whilst the technique has a high potential 

for tracking slug movement and behaviour, regardless of their position in the soil profile, 

few studies have attempted to develop its use. Grimm (1996) injected RFID tags into the 

foot of Arion lusitanicus, a much larger (<13 cm long) slug species than D. reticulatum (<5 

cm), and demonstrated that tag insertion had no effect on survival and egg laying, 

although no work was done to establish the impact on either feeding or locomotor 

behaviour. The technique has since been employed by Ryser et al. (2011) to assess field 

survival rates of A. lusitanicus and A. rufus and by Knop et al. (2013) to investigate 

locomotor activity of A. lusitanicus and A. rufus in arable fields. In both cases, however, 

the method was used as in a mark-recapture technique rather than for tracking the 
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movement of individuals. The use of RFID tags to study the behaviour of the much smaller 

slug species such as D. reticulatum has not been investigated to date. In order to be an 

effective method for tracking individual slugs, the method of marking must not affect key 

aspects of biology and behaviour, must allow for differentiation between individuals, and 

be sufficiently long-lasting.  

 

6.1.4. Objectives and hypotheses 

This study investigated potential behavioural mechanisms that lead to establishment and 

cohesion of areas of arable fields with higher numbers of slugs with the aim of drawing 

conclusions on the likely combination of responses that result in the appearance of stable 

patches.  

Objectives 

• To develop a method of attaching RFID tags to D. reticulatum, and testing the 

effects of the process on survival, feeding, egg laying and locomotion of individual 

slugs. 

• To investigate the free movement of individual slugs in arable fields using RFID 

tracking to establish the extent of the range of individual slugs. 

• To draw conclusions on the potential importance of behavioural mechanisms on 

the formation, cohesion and stability of slug patches. 

 

Hypotheses 

• RFID tags can be implanted within the body cavity of D. reticulatum, without, 

(following a defined recovery period) affecting survival, feeding, egg laying and 

locomotion of the individual. 

• The free movement of individual slugs in arable fields can be tracked over 

extended periods of time using RFID technology.  

• Unless challenged by adverse conditions, individual slugs remain within a small, 

defined area of arable fields, with lateral movement restricted to less than 20 m for 

extended periods of time. 

 

6.2. Materials and Methods 

6.2.1. Laboratory studies 

Deroceras reticulatum were collected using surface refuge traps baited with approximately 

75g chicken feed pellets (Young, 1990) from two field sites in Uppington (52°40’36.68’N 

002°34’50.14’W) and Adeney (52°46’01.26’N 002°34’50.14’W), Shropshire, UK during the 

two-week period before the start of each experiment (between January 2016 and 

November 2017). Slugs weighing over 300 mg were returned to the laboratory and 

maintained individually in 250 ml circular plastic rearing containers (11.5 cm diameter; 4.2 
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cm high) with 1 mm diameter puncture holes in the lid. The base of each container was 

lined with paper towel (approximately 2 cm x 3 cm) moistened with 5 ml distilled water, 

which was replaced daily. Lettuce leaves (cv. Romaine) were offered ad libitum to each 

slug as food, and replaced with fresh leaves daily. Slugs were maintained in a controlled 

environment room under standard rearing conditions of 60 % humidity, 10:14 hour light: 

dark cycle, and at 15°C during the light phase and 10°C during dark, to reflect UK 

conditions in autumn and spring, and allowed a 48-hour acclimatisation period before 

being used in experiments.  

 

6.2.2. Insertion of RFID Tag 

To insert an RFID tag, each slug was removed from its rearing container and placed 

individually into a smaller circular lidded plastic container (28 ml, height 33 mm, top 

diameter 44 mm, base diameter 31 mm) with a 5 mm hole drilled through the top. CO2 was 

gently released through the hole into the container using a Corkmaster CO2 dispenser and 

8 g CO2 bulb (Sparklets, UK), for approximately 20 seconds or until the slug was fully 

extended. The anaesthetised slug was then removed from the pot and held between the 

thumb and index finger either side of the mantle with the head facing away from the 

technician. The needle of an MK165 implanter (Biomark, USA) was then positioned at an 

approximately 30° angle to the body wall (left side), level with the top of the keel, and ¾ of 

the way along the length of the slug from the anterior end. With the tip of the needle 

pointing toward anterior end, it was inserted through the body wall and when no longer 

visible, the tag (a chip and antenna coil encased in glass, 8 mm long and 1 mm wide) 

(HPT8 tag, Biomark, USA) was released before withdrawing the needle from the slug.  

 

6.2.3. Treatments 

Five treatments, with 20 slugs per treatment, were used to assess the effect of different 

aspects of the tagging process:  

Tagged (T) + CO2 + Glue (G) – slugs were anaesthetised using CO2, an RFID tag inserted 

and glue (Loctite Precision Max, Loctite, USA), applied over the insertion site to seal the 

wound.  

Tagged (T) + CO2 - slugs were anaesthetised using CO2 and an RFID tag was inserted. 

CO2+ - slugs were anaesthetised and the implanter needle was inserted through the body 

wall but no tag was injected. 

CO2 - slugs were anaesthetised with CO2 only. 

U - untreated control (slugs were maintained in the rearing cages without any part of the 

tag implanting process being applied). 
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6.2.4. Slug survival 

Following RFID tag insertion, slugs were returned to their individual rearing containers and 

maintained under the conditions described above for 28 days. During this period, slug 

mortality, defined as a lack of response to a mechanical stimulus, coupled with a 

characteristic change in body form following death (body extended and shrivelled), was 

recorded at 24 h intervals throughout the experiment. Mortality assessments were 

confirmed when similar observations were recorded for three consecutive days). The 

experiment was replicated three times.   

 

6.2.5. Feeding  

RFID tagged slugs were maintained under the conditions described above for 28 days.  

To assess relative rate of food consumption between treatments, each slug was offered 

pre-weighed lettuce (approx. 1.5 g). After 24 h the remaining lettuce was re-weighed and 

consumption estimated by subtraction and replaced with fresh lettuce. The procedure was 

repeated throughout the 28-day experimental period.  

 

6.2.6. Production of egg batches 

The impact of implanting RFID tags on rate of reproduction was assessed by recording 

the number of egg batches laid at 24-hour intervals throughout the 28 days period 

following treatment. 

 

6.2.7. Locomotor behaviour  

Slugs were maintained in the laboratory for a 48-hour acclimatisation period following tag 

implantation under the conditions described above, before they were randomly allocated 

to one of two treatment groups. Slugs in the first group were implanted with an RFID tag 

and those allotted to the second treatment remained untagged (controls). All tags were 

inserted using the procedure described above (T + CO2; no glue was applied to the 

insertion site), and both tagged and untagged control slugs were then maintained under 

the standard rearing conditions for 14 days before being used for behavioural recordings. 

Lettuce was fed ad libitum and replaced daily throughout this period.   

  On days 14, 21 and 28 after insertion of the RFID tags, the slugs were released 

individually at the centre of a 50 cm diameter arena comprised of a circular plywood board 

painted with white gloss paint (Colours Pure brilliant white Gloss Wood & metal paint 

B&Q, UK). The recordings took place between 2 and 8 hours after the lights came on in 

the controlled environment rooms, with the order of slugs being randomised on each 

recording occasion. A video-camera (SONY HDR-CX240E Handycam, SONY, Japan) 

was positioned at 100 cm above the centre of the arena and focussed to record slug 

activity over the whole arena. Slug behaviour was continuously recorded for 60 minutes or 

until it had left the arena, whichever occurred first. Video recordings were uploaded into 
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Ethovision XT (Noldus, The Netherlands) and analysed for total distance moved and 

mean velocity. Distance moved was assessed using the centre point of the slug, which 

risked additional distance being added when the slug contracted and the size of its profile 

changed. To control for this the Ethovision settings were adjusted to ensure that a new 

point along the track was only recorded once the slug had moved more than 0.25 cm. The 

length of time it took for the slug to leave the arena was also recorded.  

 

6.2.8. Locomotor behaviour of D. reticulatum in winter wheat 

The behaviour of the slugs was investigated in commercial winter wheat crops in 

Shropshire, UK (52°46’01.26’N 002°34’50.14’W), in spring (April; 9 slugs) and autumn 

(November; 20 slugs) 2017. A 4 x 5 grid of refuge traps (as described in Chapter 2) was 

established in the study area, with 2 m between adjacent traps. Slugs were collected from 

these traps and the grid node at which each individual was caught recorded. After 

sufficient specimens had been collected, the traps were removed and each was replaced 

with a fibreglass flexi-cane to mark the grid nodes.  

  Slugs were returned to the laboratory where an RFID tag was inserted (each with a 

unique identifying code) into individual slugs using the technique described above (T + 

CO2; i.e. without the application of glue), before being maintained under the standard 

rearing conditions for a 14-day recovery period. Individual slugs were then released (at 

sunset) back into the study grid at the node from which they were originally collected.  

  Movement was tracked after release by recording the location of the slugs at 

predetermined intervals using a HPR Plus reader (Biomark, USA) and a combination of 

two antennae (BP Plus Portable antenna; Racket antenna; Biomark, USA). Initially the 

racket antenna (which has a smaller read range (up to 10 cm) facilitating more accurate 

determination of location) was used to systematically search the area within a 1 m radius 

of the last known location of the slug. If the slug was not found the larger BP Plus Portable 

antenna (read range up to 20 cm) was used, allowing the area contained within ever 

larger concentric circles to be searched efficiently until the slug was located. In cases 

where the BP Plus Portable antenna was used to find the RFID tag in a wider area, a 

more precise location was then determined using the racket antenna. When an RFID tag 

was detected the identity of the slug was confirmed using the unique identifying code, its 

precise position was confirmed visually (if on the surface), and its position marked using a 

labelled peg recording the identifying code, assessment number, and the time of the 

observation. In addition, records of the slug presence above or below the soil surface, and 

its current activity, (leaf eating, linear locomotion, etc.) were made. Slugs were tracked at 

approximately 20-minute intervals for two hours post release in April 2017 and for 8 hours 

post-release in November 2017. In November 2017 slugs were also tracked on the 

following two nights for 8 hours. Following these initial periods of intense monitoring, slugs 
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were tracked daily, and then at weekly intervals for a maximum of 38 days or until a period 

of 2 weeks had elapsed without any movement being observed.    

  Immediate accurate measurement of the distances travelled by D. reticulatum were more 

challenging during evening assessments. Accordingly, the distance between sequential 

marker pegs were measured the following morning. To avoid accumulation of errors that 

may accrue if measurements were made between sequential marker pegs, the location of 

each marker peg in relation to the original release point (marked by the flexi-cane on the 

grid node) were determined before the distance between sequential marker pegs was 

calculated. The location of each peg was also recorded using a hand-held GPS accurate 

to 18 mm (Leica RX1220T, Germany). On each night of tracking and on subsequent visits 

to the field, soil moisture was recorded (three points across the grid) using a soil moisture 

probe (Field Scout TDR 100, Spectrum technologies, Inc, USA) and soil and air 

temperature were recorded at 30-minute intervals using data loggers (iButton DS1921G-

F5 thermochrons, Maxim integrated Products, USA). 

 

6.2.9. Statistical analyses 

6.2.9.1. Effect of implanting RFID tags on survival, feeding and production of egg batches 

Following tests for normality and heterogeneity of the data (using the diagnostic plots in R 

to check residuals vs fitted values, Q-Q plots, scale-location plots and residual vs leverage 

plots), the effect of treatment on mortality rate, lettuce consumption and production of egg 

batches was investigated using repeated measures ANOVA. 

 

6.2.9.2. Effect of implanting RFID tags on locomotor behaviour 

Following tests for normality and heterogeneity of the data (using the diagnostic plots in R 

to check residuals vs fitted values, Q-Q plots, scale-location plots and residual vs leverage 

plots), the effect of treatment on mean velocity and total distance moved was investigated 

using ANOVA.   

 

6.2.9.3. Locomotor behaviour of D. reticulatum in winter wheat 

Maps of individual slug movement in the field were created using the ‘plot’ function in R. 

The mean total distance moved over the experimental period and the mean distance from 

the start point at the end of the trial period were calculated. Distances moved were 

calculated using linear interpolation of the x and y coordinates of two consecutive tracking 

points, the distance between each point and the total displacement (distance between the 

final location and the original release point) were calculated using Pythagoras’ theorem. 

The distances between each point were added together to give a total distance moved. 

Daily temperature and rainfall were correlated with the number of active slugs using 

Pearson’s Correlation Coefficient.  
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6.3. Results 

6.3.1. Laboratory studies 

6.3.1.1. Survival  

Over the full experimental period a significantly lower survival rate of D. reticulatum was 

recorded in treatments in which RFID tags were implanted into slugs (T + CO2 + G and T 

+ CO2) (F=45.8, d.f.=4,10, p<0.001; Figure 6.1). During the seven days after tag insertion, 

a mean of 5.8±1.7 of the 20 slugs in the treatment groups with an implanted RFID tag (T + 

CO2 + G and T + CO2) died compared with an average of 0.9±0.3 slugs in each of the 

treatment groups with no RFID tag inserted (CO2+, CO2 and U) (Figure 6.1).  

  During the 14 days post-insertion, mortality had risen to 8.1±1.1of the 20 slugs in groups 

with an RFID tag inserted (T + CO2 + G and T + CO2), and 1.3±0.4 of the 20 in those 

groups without tags (CO2+, CO2 and U). After day 15, slug survival was unaffected by the 

RFID tag insertion. Between day 15 and 28 there was no statistically significant difference 

in mortality recorded in different treatment groups (F=3.4, d.f.=4,8, p>0.05) irrespective of 

whether an RFID tag had been implanted. Mortality in both the tagged and untagged 

treatment groups was low from day 15 to 28, with a mean of 0.26 slugs per day dying in 

the treatment groups with an implanted RFID tag (T + CO2 + G and T + CO2) and 0.09 

slugs per day in each of the treatment groups with no RFID tag inserted (CO2+, CO2 and 

U).    

 

Figure 6.1. The effect of treatments on the survival of Deroceras reticulatum (n=100) over three 28-
day periods. Mortality was recorded daily for 28 days post-tag insertion. Points show the mean for 
the treatment group, bars show ± SE. (T (Tag inserted) + CO2) Slug anaesthetised using CO2, a 
hole made in the body wall using the tag implanter and an RFID tag injected. (T + CO2 + G (Glue 
applied to insertion site)) Slug anaesthetised using CO2 and with an RFID tag injected as in 
treatment Tag inserted + CO2, but with the resultant hole in the body sealed with the addition of a 
small drop of glue (Loctite Precision Max, Loctite, USA). (CO2+) Slug anaesthetised using CO2, a 
hole made in the body wall using the tag implanter but without injection of an RFID tag. (CO2) Slug 
anaesthetised using CO2 only. (U) Untreated slug. 
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6.3.1.2. Lettuce consumption 

Over the full experimental period a significantly lower daily consumption of lettuce was 

recorded in treatments in which RFID tags had been implanted into slugs (T + CO2 + G 

and T + CO2) (F=10.1, d.f.=4,1977, p<0.001; Figure 6.2(A)). During the 7-day period after 

tag insertion, slugs consumed a mean of 0.03±0.03 g per day in the T + CO2 treatment 

group and 0.05±0.03 g for the T + CO2 + G treatment group, compared to 0.14±0.02 g for 

the control group (U), 0.11±0.02 g for the CO2+ treatment group and 0.11±0.02 g for the 

CO2 treatment group (Figure 6.2(A)).  

  A significant interaction between treatment group and day was observed (F=7.3, 

d.f.=4,1977, p<0.001) indicating that the initial effect of treatment reduced over time. From 

day 15 to day 28 no significant difference in lettuce consumption was recorded between 

treatment groups irrespective of tagging status (F=1.2, d.f.=4,960, p>0.05), indicating a 

sustained and full recovery in food consumption rate by those tagged slugs that survived 

the procedure, occurred after an initial period of reduced intake.    

 

6.3.1.3. Egg production 

There was no statistically significant effect of treatment on the number of batches of eggs 

laid by slugs surviving the full 28-day experimental period over the first seven days (F=0.7, 

d.f.=4,66, p>0.05) or across the full 28 days (F=2.3, d.f.=4,66, p>0.05; Figure 6.2(B)).   
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Figure 6.2. The effect of the RFID tagging process on (A) food consumption of Deroceras 
reticulatum (n=100) in four successive 7-day periods after treatment. Bars represent mean 
consumption (g) for each treatment group ± SE and (B) production of egg batches over the course 
of the 28-day experimental period following treatment by individual Deroceras reticulatum alive on 
day 28 (n=71; F=2.255, d.f.=4,66 p>0.05). Bars are mean number of batches produced ±SE. (T 
(Tag inserted) + CO2) Slug anaesthetised using CO2, a hole made in the body wall using the tag 
implanter and an RFID tag injected. (T + CO2 + G (Glue applied to insertion site)) Slug 
anaesthetised using CO2 and with an RFID tag injected as in treatment Tag inserted + CO2, but 
with the resultant hole in the body sealed with the addition of a small drop of glue (Loctite Precision 
Max, Loctite, USA). (CO2+) Slug anaesthetised using CO2, a hole made in the body wall using the 
tag implanter but without injection of an RFID tag. (CO2) Slug anaesthetised using CO2 only. (U) 
Untreated slug.  

 

6.3.1.4. Locomotor behaviour 

The mean distance travelled in the one-hour observation period by tagged and untagged 

slugs did not differ significantly in recordings made either 14, 21 or 28 days after tag 

insertion (F=0.3, d.f.=1, p>0.05; Figure 6.3(A)). No significant difference in the mean 

velocity was observed between tagged and untagged slugs in any of the experimental 

assessments made at 14, 21 and 28 days after tag insertion (F=0.001, d.f.=1, p>0.05; 

Figure 6.3(B)). 
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Figure 6.3. (A) Mean distance moved (cm ±SE) and (B) mean velocity (cms-1 ±SE) around a 
circular (50 cm diameter) arena by 17 tagged (t) and 17 untagged (u) slugs on day 14, 21 and 28 
after tag insertion. 

 

6.3.2. In-field tracking of slugs with implanted RFID tags  

Following release into the field, slugs were readily detected when both above and below 

the soil surface. Tracking of slugs released in April 2017 was terminated after 38 days, 

whilst observations were made for 35 days following November releases. 

 

6.3.2.1. April 2017  

For the first 2 hours after release, eight of the nine slugs remained close (23.5 ±7.3 cm) to 

the release point (Figure 6.4(A)) and tagged slugs were observed feeding and moving 

over the surface. The ninth slug was not detected again after release. The first observed 

tagged slug feeding occurred 35 minutes after release. Two slugs were no longer visible 

on soil surface 1-hour post-release with all being detected within the soil horizon during 

assessments made at 15 hours post-release. Of the nine slugs labelled with RFID tags 

that were released into the field, five were regularly detected for the duration of the full 

five-week experimental period. The five slugs monitored throughout that period were all 

recorded within a short distance of the original release point (Figure 6.4(B)). The mean 

linear distance between detection points during the five weeks was 247 ±31.4 cm, and at 

the end of the experiment, the mean total displacement from the initial release point was 

78.7 ±33.7 cm.  
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Figure 6.4. Map of Deroceras reticulatum movement in a field in Shropshire over (A) a two-hour 
period and (B) a five-week period from 5th April to 12th May 2017 using RFID technology to track 
and identify individuals. X and Y axis show distance (cm) from release point one (where the lines 
cross at 0, 0). Each circle shows a position where the slug was detected, the joining lines connect 
consecutive points along the slug’s path but do not necessarily represent the route taken by the 
slug between points. 

 

6.3.2.2. November 2017 

During the three periods of intense monitoring (the night of release and following two 

nights) all twenty slugs remained close to their release point/first point of detection (43.3 

±10.2 cm). During the three nights of intense monitoring, slugs were observed feeding, 

with the first observation occurring 24, 183 and 131 minutes after sunset respectively. In 

total 10, 5 and 10 slugs were observed feeding on at least one occasion during the 

respective monitoring periods. Thereafter, of the 20 slugs released, 18 were detected 

regularly during the five-week experimental period (Figure 6.5). The mean linear distance 

between detection points during the five weeks was 514.8 ±72.0 cm, and at the end of the 

experiment the mean distance from the original release point was 101.9 ±24.1 cm, with 

the maximum distance from the original release point being 408.8 cm.  

 

A B 
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Figure 6.5. Map of Deroceras reticulatum movement in an 800 by 1000 cm area of a field in 
Shropshire over a five-week period from 15th November to 21st December 2017 using RFID 
technology to track and identify individuals. X and Y axis show distance (cm) from release point 
one (where the lines cross at 0, 0). Each circle shows a position where the slug was detected, the 
joining lines connect consecutive points along the slug’s path but do not necessarily represent the 
route taken by the slug between points.  

 

6.3.3. Effect of temperature and rainfall 

6.3.3.1. April/May 

Temperatures at the April/May 2017 field site (Figure 6.6(A)) were 1.2 and 2.6°C higher 

respectively and rainfall lower by 24.3 and 15.3 mm respectively than the 30-year average 

(Met Office, 2018). Within the field study period, there were 25 consecutive days with no 

rainfall (< 1 mm). Slug movement between daily observations showed a significant but 

weak correlation with temperature (Pearson’s correlation; r=0.4, t=2.1, d.f.=28, p<0.05, 

R2=0.1) but no significant correlation with rainfall (Pearson’s correlation; r=-0.2, t=-1.1, 

d.f.=28, p>0.05) (Figure 6.6(A)). 

 

6.3.3.2. November/December  

The temperature (maximum and minimum within 0.6°C) during the two months of 

November/December (Figure 6.6(B)) was similar to the 30-year average, rainfall was 
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lower by 9.7 mm in November and higher by 15.7 mm December (Met Office, 2018). The 

number of slugs active during the daily scotophase was not significantly correlated with 

the maximum temperature (Pearson’s correlation; r=0.4, t=1.9, d.f. =21, p>0.05) but there 

was a significant weak correlation with daily rainfall (Pearson’s correlation; r=0.4, t=2.2, 

d.f.=21, p<0.05). There was a period of snowfall, which remained on the ground from 8th – 

15th December, coinciding with a period of low and declining slug activity (Figure 6.6(B)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. The number of active slugs overnight in relation to the maximum daily temperature (°C) 
and daily rainfall (mm) during (A) the five-week tracking period from 5th April 2017 and (B) the five-
week tracking period from 20th November 2017. 

 

6.4. Discussion 

The reduction of pesticide usage based on application of molluscicides to areas of higher 

slug densities requires an understanding of the behavioural mechanisms which may lead 

to the formation of these patches as well as their cohesion and stability. Tracking the 
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movement of D. reticulatum individuals over an extended period in the field would give an 

insight into these behaviours. RFID tags, unlike other techniques (Richter, 1976; Hogan 

and Steele, 1986; Foltan and Konvicka, 2008; Hakvoort and Schmidt, 2002) do not rely on 

slugs being active on the soil surface but can be used to track movement for extensive 

periods beneath the soil surface. 

  Although RFID tags have been inserted into a larger, Arion species (Grimm, 1996), it 

was previously thought that the technology could not be used in smaller slug species such 

as D. reticulatum as the relative size of RFID tags and fully grown adults would result in 

lethal damage being caused to the body during implanting (Foltan and Konvicka, 2008). 

Whilst still large in comparison to body size, advances in technology have meant smaller 

RFID tags are available; 8 mm tags were used in this study, compared with the 11 mm 

tags used by Grimm (1996). By elimination of the other components of the insertion 

procedure, it can be concluded that the initial effect on survival and feeding detected in 

the current study during the first two-week post-implantation period were due to the RFID 

tag itself. Slugs into which tags were implanted suffered initial increases in mortality unlike 

the larger Arion spp. tagged by Grimm (1996) and it is probable that their size made them 

more susceptible to damage to internal organs caused by the process, as proposed by 

Foltan and Konvicka (2008).  

  The digestive gland and crop are found on the left lateral side of a slug body (South, 

1992) and damage to these organs would result in mortality occurring due to starvation 

over a period of days. The heart, kidney and reproductive organs are located on the right 

lateral side and so less are less vulnerable to damage caused by tag insertion using the 

procedure developed for this study; damage to these organs would be likely to lead to 

faster mortality than that observed in the laboratory experiments. There were no instances 

of immediate mortality at the time of tag insertion but increased slug mortality was 

recorded during a period of up to 14 days post implantation. Damage to the gustatory 

system may explain these observations and is supported by the finding that feeding in 

tagged slugs was also negatively affected. Damage to the gustatory system may limit 

feeding rate by reducing the capacity of the crop, leading to progressive starvation over a 

period of time. The ultimate recovery to normal feeding levels observed in some slugs 

suggests that they are able to adapt to the tag so long as the initial implantation did not 

cause excessive damage to internal organs or obstruct feeding to the point of starvation. 

No effect on egg production was identified (reflecting Grimm, 1996), supporting the 

proposition that organs on the right lateral side of the body are less likely to be affected by 

the procedure.  

  RFID tags were used successfully by Knop et al., (2013) as a method of marking slugs in 

mark-recapture experiments investigating the locomotor activity of a native and invasive 

species. The current study extends this work, by showing that their insertion had no 

significant effect on slug locomotion, including the distance moved or velocity of tagged 
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slugs. In addition, it was confirmed that the technique could be used to effectively track 

and record detailed behavioural characteristics pertaining to the dispersion of individual 

slugs in the field over a sustained period of time. The latter is a critical observation that 

allows the technique to be used in the field to investigate the impact of D. reticulatum 

behaviour on slug patch formation and stability. This study supports the first hypothesis 

“RFID tags can be implanted within the body cavity of D. reticulatum, without (following a 

defined recovery period) affecting survival, feeding, egg laying and locomotion of the 

individual”. 

  Visual observations made during periods of intense monitoring in the field experiments 

indicated that the emergence and resumption of activity on the soil surface of naturally 

occurring D. reticulatum as dusk approached, coincided with the time of appearance of 

the first tagged slugs in the same area of the field, increasing confidence in the validity of 

the technique. Similarly, tagged slugs were found to actively feed and move over the soil 

surface during the night, whereas during the day they were not visible on the soil surface, 

consistent with published reports that slugs are more active during hours of darkness and 

find refuge during the day (Wareing & Bailey, 1985; South, 1992; Hommay et al., 1998).  

The impact of both temperature and rainfall on tagged slug activity in the current study 

were also consistent with published findings. Mean temperatures in the April/May field 

experiment were close to the optimum for slug activity (movement: 17°C; feeding: 14°C; 

Wareing & Bailey, 1985). However, rainfall was low, which meant that soil conditions were 

dry throughout the experimental period, and the resultant large cracks that developed 

facilitated slug movement deeper into the soil than under less dry conditions (South, 

1992). Significantly reduced slug activity is known to occur after extended periods of low 

rainfall (Choi et al., 2004) and this was reflected in there being little lateral slug movement 

recorded on the surface, and individual slugs not being detected at every monitoring visit 

during the April/May period (the latter mirroring qualitative observations of naturally 

occurring slugs in the same field). The lack of detection, although not confirmed in this 

study, would suggest slugs moving vertically down the soil profile, where the temperature 

and moisture remains more constant, to a depth greater than the read range of the 

antennae. In the November/December monitoring period, the effect of rainfall was again 

consistent with published findings (Wareing & Bailey, 1985; Choi et al., 2004), with 

increases in the number of active slugs coinciding with periods of rainfall. Although a 

period of snowfall coincided with a reduction in slug activity, some movement was still 

detected supporting the findings of Mellanby (1961) who found D. reticulatum active at 

temperatures as low as 0.8°C. The second hypothesis “The free movement of individual 

slugs in arable fields can be tracked over extended periods of time using RFID 

technology” was upheld by this study.    

  Results from both of the experimental tracking periods show that the majority (80 %) of 

the slugs followed had remained within a relatively short distance from their original 
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release position at the end of the experimental periods (up to 38 days later). This 

suggests that longer distance dispersal of slugs within arable fields is limited, at least in 

established wheat crops, which may be a contributory mechanism leading to the formation 

of temporally and spatially stable slug patches. Formation and cohesion of the patches 

would be reinforced by behavioural responses that result in slugs following slime trails left 

by others when they are encountered (Wareing, 1986). Such mechanisms may result in 

the majority of slugs in winter wheat fields existing in semi-discreet groups. The low 

proportion of more active individuals that either rapidly dispersed from the initial release 

point or were otherwise found to have moved away (further than the 5 m intensive search 

area around the release points) from the main slug patch at the end of the observation 

period (approximately 20 % – 3 out of 8 slugs released in April 2017 and 2 out of 20 slugs 

released in November 2017), would lead to regular exchange of individuals between 

patches. The third hypothesis “Unless challenged by adverse conditions, individual slugs 

remain within a small, defined area of arable fields, with lateral restricted to less than 20 m 

for extended periods of time” is confirmed by this study. 

  Although the initial work to establish the use of RFID tags for investigating slug 

behaviour in the field is complete, further work is needed to develop and improve 

understanding of the ecological relevance of the field findings of the current study. In 

particular, the vertical movement through the soil profile requires further investigation in 

relation to weather conditions to determine the combinations of temperature and rainfall 

which would result in a large proportion of the population moving down the soil profile. 

Understanding this vertical movement would allow more efficient timings of slug control 

applications.    

  Current concerns about the impact of agricultural and horticultural practices on the 

natural environment have resulted in widespread recognition of the need to optimise or 

minimise the use of agro-chemicals in crop production (Walters and Cherrill, 2018). Whilst 

maintaining effective control, substantial reduction in the amount of active ingredient used 

to manage slug populations could be achieved by use of precision application technology 

to target treatments at slug patches, whilst leaving inter-patch areas untreated (Forbes et 

al., 2017). Before such an approach can be investigated, however, clear evidence that the 

slug patches are spatially and temporally stable is required, together with development of 

a commercially viable method of identifying their location and dimensions. Difficulties 

associated with effectively tracking D. reticulatum in the field have hampered 

investigations into slug behaviour that may affect patch formation and stability, but this 

study has indicated that the small spatial range of individual D. reticulatum, may be a 

major contributory factor. Research is ongoing to confirm these findings, quantify the 

temporal period over which patches remain cohesive, and to identify soil characteristics 

that define the locations in which they form.  

 



167 
 

6.5. Conclusion 

In summary, RFID tagging meets the primary requirements of an effective method of 

tracking individual slugs, which can be identified from the unique tag numbers even when 

below the soil surface, and they can be tracked over periods of at least five weeks under 

field conditions. The data on individual slug movement collected using this technique 

provides evidence for a potential mechanism leading to the formation and stability of 

higher density slug patches in arable crops. As the pressure to reduce pesticide usage 

increases, improved understanding of the behaviour of D. reticulatum will potentially have 

significant economic and environmental benefits if it facilitates research into both 

commercially viable methods for locating slug patches in arable fields and precision 

application of pesticides.  
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Chapter 7. General discussion 

 

7.1. Introduction  

In commercial arable crops, the grey field slug (Deroceras reticulatum) is reported to 

display a discontinuous distribution whereby patches of higher numbers of slugs are 

distributed within areas of lower slug densities (South, 1992; Bohan et al., 2000a; Archard 

et al., 2004; Mueller-Warrant et al., 2014). In response to increasing pressure to reduce 

pesticide usage, this thesis investigated the potential for targeting molluscicide application 

to these higher density patches of D. reticulatum. This was achieved by determining the 

temporal and spatial stability of the high slug density patches, assessing the locomotory 

behaviour of D. reticulatum which underlies these discontinuous distributions observed in 

arable crops, and identifying some physical soil characteristics which could influence 

patch location. In this chapter the results and their implications are discussed in relation to 

commercial control of slugs, together with the limitations of the study and future work 

required before a commercially acceptable procedure can be developed to implement the 

findings.    

 

7.1.1. Potential for patch application of molluscicides  

The discontinuous distribution of slug populations in arable crops has been established in 

both North America and Europe, but little information is available on the temporal and 

spatial stability of the resultant patches of higher slug numbers. Mueller-Warrant et al. 

(2014) investigated the distribution of slugs, and reported that where numbers were 

highest (maximum mean number of slugs assessed using surface refuge traps of between 

7.9 and 21.1 per trap) significant aggregations appeared in the same area of the field on 

different assessment dates, suggesting stable patches occurred. In the two field sites 

where the highest trap counts were below 3 slugs per trap (2.8 and 2.3), however, no 

stable areas of higher slug densities were detected (Mueller-Warrant et al., 2014). In the 

current study, an analogous discontinuous distribution of slugs was observed in all fields 

in which the slug population was sufficiently large for statistically significant differences 

between high and low trap counts to be distinguished (approximate mean of 3 slugs per 

trap). In these fields, the patches that were defined by grid sampling were found to be 

spatially stable throughout the cropping season. Spatial stability is key if patch application 

(applying molluscicides only to areas of fields where higher slug densities occur) is to be 

successful, once identified growers need confidence that the area identified as having a 

higher density of slugs will remain in the same location throughout the susceptible crop 

growth stages.    

  Identification of stable patches was dependant on the number of slugs present 

suggesting that when using the trapping grid developed, a threshold for reliable patch 
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location of approximately 3-4 slugs per trap is required to accurately locate higher density 

patches. In all fields with a mean trap count of 4 slugs per trap or above, spatially and 

temporally (across the cropping season) stable patches were identified. The difficulties 

associated with detecting areas of higher slug densities in the fields with low populations 

of surface-active slugs (in the region of 3-4 slugs per trap and below) may not indicate that 

in these areas they were not present, only that they could not be accurately identified with 

the methods of refuge trapping used in this study (Petrovskaya et al., 2018). In future 

research the patch stability detected in both the current work and that of (Mueller-Warrant 

et al., 2014), may reduce difficulties associated with the requirement for a minimum level 

of slug activity on the soil surface before accurate patch location can be achieved. As 

patches remained in similar positions for extended periods in the crops studied, mapping 

may be achieved with as little as one assessment. As weather exerts a significant effect 

on slug behaviour (South, 1992; Choi et al., 2004), days with optimum conditions could be 

selected for this assessment. Commercial confidence in such research may benefit from 

the current AHDB recommended threshold for pellet application in standing cereal crops, 

a mean of 4 slugs per trap from traps distributed across the field (AHDB, 2016). Future 

assessment of patch location in research developing patch treatment techniques would be 

undertaken at population levels close to those at which decisions on pellet application are 

made.  

  If patches with higher slug densities are to be used for targeted molluscicide 

applications, then an understanding of the biological and behavioural mechanisms 

underpinning their formation and coherence is essential if reliance on spatial correlation 

(with associated risks) is to be avoided. Investigation of slug locomotory behaviour and 

dispersion in the field has been hampered by their vertical distribution above and below 

the soil surface. Various methods have been developed for assessing slug numbers in 

both locations (dye marking; Hogan and Steele, 1986, surface refuge traps, soil flooding, 

DATs; South, 1992, UV dye; Foltan and Konvicka, 2007), but movement between these 

horizons has made collection of detailed data on the locomotory behaviour of individual 

animals over extended periods of time difficult. 

  The development of RFID technology offered a new method of identifying individual 

slugs using tags attached to the body surface or inserted into the body cavity (Grimm, 

1996). The first use in the field was in a study of Arion lusitanicus, in which tagged slugs 

were released into grassland, demonstrating the potential for identifying individuals over 

extended periods of time (Grimm and Paill, 2001). The method was subsequently adopted 

for the assessment of field survival rates and locomotor activity of Arion spp. but in both 

cases as a mark-recapture technique rather than for tracking individual movement (Ryser 

et al.  2011, Knop et al. 2013), it was also concluded that damage caused when attaching 

tags to smaller species such as D. reticulatum may result in significant mortality or 

behavioural modification in survivors. 
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  The current work extended the use of the technology by developing and testing a 

process by which tags could be inserted into the body cavity of D. reticulatum without 

affecting subsequent behaviour of survivors selected for use in experimental work. The 

method was used to investigate behavioural traits that result in the formation and 

coherence of slug patches in arable fields. RFID tracking in the current study yielded a 

higher “recapture” rate than reported by Grimm and Paill (2001) for both spring and 

autumn releases. This higher rate could be due to the larger read range of modern 

equipment; Grimm and Paill (2001) used a device with a read range up to approximately 

15 cm (when there was no a barrier between tag and device) compared to a range of up 

to 20 cm depth of soil in this study.    

  Individual slugs were successfully tracked for up to 5 weeks in this study and showed 

that they did not return to the same refuge each night, confirming the finding of Hommay 

et al. (1998) that slugs were using the same refuge for a maximum of two consecutive 

nights. Despite this, the lateral dispersion of individual slugs was low. Although 20% of 

tracked individuals moved away and were lost after release, the mean linear displacement 

of the remaining 80% was only 78.7 cm (April 2017) and 101.9 cm (November 2017) from 

the initial release point after the 5-week period. Such a low linear displacement will result 

in retention of slugs in areas offering favourable soil conditions, supporting formation and 

cohesion of higher density patches, which in turn will be reinforced by the known slime 

trail following behaviour displayed by the species (Rollo and Wellington, 1981). The 

limited dispersion of slugs during the two tracking periods supports the work carried out 

looking at patch stability, providing improved understanding of a mechanism leading to 

areas of higher slug density remaining in the same location for extended periods of time. 

The low proportion of slugs that quickly moved away from the initial release point in the 

current field study was similar to the 27 % of slugs reported to have left the study area 

established in previous work (Grimm and Paill, 2001). Such dispersers may contribute to 

the inter-change of individuals between the discrete slug patches, and tracking these 

individuals, may allow conclusions to be drawn on their importance for patch cohesion and 

possibly the establishment of new slug patches. 

 

7.1.2. Current limitations for patch application of molluscicides 

Refuge trapping is a method of assessing surface activity of slugs rather than providing 

absolute population estimates (Hommay et al., 2003), their use for identifying the location 

of slug patches in a commercially viable integrated pest management system is therefore 

limited. Crop damage is caused by slug grazing on plants above the soil surface, and in 

some crops on the seeds in the soil (Glen et al., 1990b; South, 1992). As slug populations 

are distributed between the surface and the upper horizons of the soil and the proportion 

in each varies with time due to the effect of a range of environmental factors, trapping 

methods that focus on surface activity can result in inaccurate assessments of population 
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distribution across arable fields, particularly if reliant on a single or few assessment dates. 

In addition, based on the size and distribution of patches identified in the current study, 

models have indicated that the density of trapping points required in arable crops would 

preclude economic viability (Petrovskaya, 2018). 

  Two alternative methods for locating the areas of higher slug densities were investigated 

during this study. Anecdotal evidence from growers (P. Jackson, Pers. Comm.) suggest 

that parts of fields in which higher crop damage is more regularly observed indicate areas 

at generally increased risk from slug activity. Identification of such areas allows either the 

targeting of standard slug pellet applications to areas where they may have maximum 

impact, or the view is sometimes expressed by some farmers that they are best applied at 

a higher rate in these areas. The results from this study and the similarly weak correlation 

between post emergence plant density and slug numbers reported from North America 

(Muller-Warrant et al., 2014) support the conclusion that plant damage may not be a 

satisfactory assessment method for targeted pesticide applications. Damage from slugs 

before a crop emerges can prevent germination and reduce plant density (Glen et al., 

1993). Leaf shredding during the early growth stages in patches with high numbers of 

slugs can also result in lower plant densities. These reductions in plant density potentially 

result in greater proportional damage in such patches when compared to surrounding 

areas where feeding has not occurred, combined with the ability of the crop to rapidly 

produce new leaves when actively growing (AHDB, 2018), the value of crop damage as 

an indicator of slug activity is limited. Environmental factors will affect crop growth (AHDB, 

2018), slug population size (Port and Port, 1986; Willis et al., 2008) and different rates of 

feeding (Wareing and Bailey, 1986), which may also lead to variations in visible damage 

and weaker correlations with slug numbers. 

 

7.1.3. Edaphic factors and areas of higher slug densities 

The investigation of the possible use of soil characteristics to identify the locations in 

which slug patches may form was more successful and shows potential. Several soil 

characteristics, pH, soil moisture, bulk density (and associated porosity), soil texture and 

organic matter, were identified in this study as factors which could influence the 

distribution of slugs in arable fields and will be further investigated during a future AHDB 

funded project.  

  The importance of soil moisture for surface activity has been demonstrated by several 

authors (South, 1992, Shirley et al., 2001; Choi et al., 2004), with slugs showing a 

preference for damp but not waterlogged soils (Carrick, 1942; Young and Port, 1991; Glen 

and Symondson, 2003). Laboratory experiments in this study supported these findings, 

but field experiments resulted in significant differences between areas with high or low 

slug densities being identified at only a single site. Soil moisture levels are affected by a 

range of environmental conditions and are highly variable over relatively short periods of 
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time, potentially making direct measurement inappropriate for work relating slug patch 

location to this factor, soil characteristics that affect water retention may be more suitable 

candidates for procedures identifying the location of slug patches. Factors affecting water 

retention include organic matter, soil texture, bulk density and infiltration. 

  Decomposing plant matter in the soil can affect soil properties in addition to providing a 

food source for slugs. Higher organic matter content can improve the water holding 

capacity of the soil (Franzluebbers, 2002) and improve soil structure (Boekel, 1963; Hillel, 

2008) both of which are important for slugs. Slugs are unable to regulate their own body 

moisture and so rely on water in their environment (South, 1992), therefore, increased 

water retention in the soil during dry conditions would be favourable for slugs. Increased 

organic matter can improve soil structure, reducing bulk density of the soil and provide 

access to refuges within the upper soil horizons, which is important to slugs during 

adverse environmental conditions or for reducing the risk of predation. The results of 

earlier studies showing preferences for soils with higher organic matter content were not 

replicated in laboratory experiments in this work, however, this was possibly a result of the 

type of organic matter used. Significant effects demonstrated at one of the field sites and 

the results of other published work supports its inclusion in future work. 

  Soil texture (percentage of sand, silt and clay) were only assessed at a single site in this 

study, but a significant difference between the level of each of the three size fractions was 

found to occur between areas of the field with patches of higher and lower slug densities. 

Higher clay or silt content and lower sand content in soil will result in increased water 

retention making them less prone to drying (Rice, 2002; Hillel, 2008). Published evidence 

suggests that slugs display a preference for heavier soils with a higher clay content, partly 

because of the higher moisture retention characteristics (Gould, 1961; South, 1992; 

Ondina et al., 2004; AHDB, 2016). Soil texture remains a candidate for investigation in 

future research. 

  Bulk density and associated porosity are linked to soil texture, organic matter content 

and compaction resulting from weather at the time of cultivation and cultivation method 

(Franzluebbers, 2002; Nimmo, 2004; Chaudhari et al., 2013; Kalev and Toor, 2018). Soils 

with higher bulk densities inhibit the ability of slugs to move through the soil profile, with 

fewer cracks resulting in fewer available refuges and increased slug mortality 

(Stephenson, 1975; Kozlowski and Pallardy, 1997; Shirley et al., 2001). Field experiments 

under the current project yielded limited evidence of significant impact of bulk density on 

the location of patches of higher slug density, but the factor requires further research to 

fully understand its role. 

    Infiltration rate was not found to be significantly related to slug patch location in any of 

the fields investigated in this study. The method used for assessment of this factor 

(simplified falling head method) may have contributed to this outcome due to the high 

variation in measurements. The alternative techniques require longer recording time, 
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making infiltration a less suitable characteristic for determining the location of areas of 

higher slug densities in commercial crops.  

  No individual soil characteristic was strongly related to the location of slug patches in the 

six fields studied in this work programme. With the exception of soil pH, those factors for 

which a significant relationship was established with the distribution of slugs in at least 

one field site may affect soil moisture or the ability of slugs to move into and through the 

soil profile (potentially providing them a refuge from adverse environmental conditions of 

predators). The lack of a single factor that was related to patch location in all or most of 

the fields studied suggests, however, that such relationships are complex and it is likely 

that a combination of edaphic factors will influence the location of higher density slug 

patches.  

 

7.1.4. Potential for development/uptake of targeted application for slug control 

New technology for precision farming is emerging onto the market, for example, 

Terramap, a system that maps up to 21 different soil characteristics in arable fields has 

recently been released (Hutchinsons Ltd, 2016). These characteristics include several 

which were identified in this study as potential candidates for locating areas of higher slug 

densities, including pH, texture, organic matter and moisture. The system currently 

produces maps using 800 sampling points per hectare, a density that would create a finer 

grid than used in this study and so has potential for adaptation for the purpose of slug 

patch location. The evidence suggests that the use of precision agriculture techniques is 

increasing in England, a survey of over 2800 farmers in 2012 reported an increase in the 

use of GPS (14 to 22 %), soil mapping (14 to 20 %), variable rate applications (13 to 16 

%) and yield mapping (7 to 11 %; Defra, 2013). The trend of increased uptake of precision 

agriculture practices continued in the 2018 survey (>2500 farmers), with 17 % of farmers 

having introduced new precision agriculture technologies in the previous 12 months and 7 

% of farmers intending to adopt further new techniques in the following 12 months (Defra, 

2019). The adoption of soil maps for the purposes of pest management has already been 

used for targeting nematicides for potato cyst nematode control (Perry et al., 2006), PCN 

are a relatively immobile pest compared to many insect pests, such as aphids and beetles 

facilitating targeted control (Godwin and Miller, 2003). Given the adoption of precision 

agriculture is increasing, soil characteristics identified in this thesis are currently being 

mapped for other purposes (offering potential for cost sharing between different on-farm 

tasks) and sufficient stability of areas of higher slug densities has been confirmed, a well-

researched approach for slug control may be of interest to the industry. 

 

7.1.5 Future work 

As indicated in section 7.1.3, the development of a new IPM system for slug control relies 

initially on an improved understanding of the interactions between the various candidate 
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factors identified in the current study, their relationship with and impact on slug biology 

and behaviour, and the establishment of a combination of stable soil characteristics that 

strongly identifies the location of patches of higher slug density. 

  The work in this thesis has primarily concentrated on wheat and OSR crops, however, 

the combination of soil characteristics which determine the location of the higher slug 

densities may also apply to other crops, for example, potatoes, brassicas, lettuce, 

asparagus and strawberries where slug damage is also economically important (Speiser 

et al., 2001; The Andersons Centre, 2014). Further work would be required to confirm this 

hypothesis. In potato crops, for example, the creation of ridges for planting alters the field 

environment (Stalham and Allison, 2015). Cultivation method and seed bed conditions are 

known to affect the number of slugs (Glen and Symondson, 2003), by creating a non-

uniform surface, drier ridges with fine soil tilth and furrows with a higher moisture content. 

These differences would need to be investigated in potato crops in relation to slug 

distribution and movement to confirm whether the same method of locating patches can 

be used. 

  Between season stability was not confirmed in this study, there are several possibilities 

for this which need to be investigated further, such as cultivation method, effect of 

compaction, natural changes in the soil properties or changing distribution of natural 

enemies. Understanding the inter-season stability of the areas of higher slug densities 

remains an important area for future work.  

   

7.1.6. Potential for pesticide reduction   

Following the removal of methiocarb (HSE, 2014) from the European market and the 

uncertain future of metaldehyde (Appleby, 2019; Pickstone, 2019) it is increasingly 

important that the remaining active ingredient, ferric phosphate (Defra, 2018b) is used as 

sustainably as possible. Sustainable use can be promoted by optimising pesticide use 

through targeted application, bringing potential environmental benefits and possibly some 

direct savings to the grower. In addition to reducing the environmental effects of active 

ingredients it may also improve the cost effectiveness of alternative options such as the 

use of nemtatodes. Currently nematodes are not considered to be a viable option in many 

crops such as wheat and oilseed rape. Although unlikely to solve this issue in isolation, 

targeted application of the products may improve cost-benefit calculations. 

  The size of the slug patches detected, using a 100 m by 100 m grid, in this study varied 

between fields from 300 to 7000 m2, in order to fully establish the mean size and number 

of these patches in arable fields, and so potential pesticide reductions, further work would 

need to be done.  
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7.2. Conclusions 

Although no single individual soil factor was strongly associated with slug patch location, 

several candidate characteristics (organic matter, bulk density, porosity, soil texture 

(percentage of sand, silt and clay) and pH) varied significantly between areas of higher 

and lower slug densities in at least one of the fields studied. The factors identified are 

known to influence soil moisture through water retention, and/or the soil structure (which 

can provide access to refuges for slugs in the upper horizons of the soil). Future research 

should investigate the impact of using two or more of these functionally related factors in 

combination on the strength of the relationship between slug density (and slug patch 

location) and soil characteristics. In support of this work, research to improve our 

understanding of optimal ranges or critical thresholds for each characteristic should be 

considered. Additional research into the stability of these soil characteristics over time is 

also required. 
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