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ABSTRACT Anaerobic gut fungi in the phylum Neocallimastigomycota typically
inhabit the digestive tracts of large mammalian herbivores, where they play an inte-
gral role in the decomposition of raw lignocellulose into its constitutive sugar mono-
mers. However, quantitative tools to study their physiology are lacking, partially due
to their complex and unresolved metabolism that includes the largely uncharacterized
fungal hydrogenosome. Modern omics approaches combined with metabolic model-
ing can be used to establish an understanding of gut fungal metabolism and develop
targeted engineering strategies to harness their degradation capabilities for lignocellu-
losic bioprocessing. Here, we introduce a high-quality genome of the anaerobic fun-
gus Neocallimastix lanati from which we constructed the first genome-scale metabolic
model of an anaerobic fungus. Relative to its size (200 Mbp, sequenced at 62� depth),
it is the least fragmented publicly available gut fungal genome to date. Of the 1,788
lignocellulolytic enzymes annotated in the genome, 585 are associated with the fungal
cellulosome, underscoring the powerful lignocellulolytic potential of N. lanati. The ge-
nome-scale metabolic model captures the primary metabolism of N. lanati and accu-
rately predicts experimentally validated substrate utilization requirements. Additionally,
metabolic flux predictions are verified by 13C metabolic flux analysis, demonstrating
that the model faithfully describes the underlying fungal metabolism. Furthermore,
the model clarifies key aspects of the hydrogenosomal metabolism and can be used
as a platform to quantitatively study these biotechnologically important yet poorly
understood early-branching fungi.

IMPORTANCE Recent genomic analyses have revealed that anaerobic gut fungi pos-
sess both the largest number and highest diversity of lignocellulolytic enzymes of
all sequenced fungi, explaining their ability to decompose lignocellulosic sub-
strates, e.g., agricultural waste, into fermentable sugars. Despite their potential, the
development of engineering methods for these organisms has been slow due to
their complex life cycle, understudied metabolism, and challenging anaerobic cul-
ture requirements. Currently, there is no framework that can be used to combine
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multi-omic data sets to understand their physiology. Here, we introduce a high-quality
PacBio-sequenced genome of the anaerobic gut fungus Neocallimastix lanati. Beyond
identifying a trove of lignocellulolytic enzymes, we use this genome to construct the
first genome-scale metabolic model of an anaerobic gut fungus. The model is experi-
mentally validated and sheds light on unresolved metabolic features common to gut
fungi. Model-guided analysis will pave the way for deepening our understanding of an-
aerobic gut fungi and provides a systematic framework to guide strain engineering
efforts of these organisms for biotechnological use.

KEYWORDS genome-scale metabolic model, 13C metabolic flux analysis, nonmodel
fungus, Neocallimastigomycota, flux balance analysis, Neocallimastix lanati, anaerobes,
anaerobic fungi

Anaerobic gut fungi in the early-branching phylum Neocallimastigomycota are
found in the digestive tracts of large mammalian herbivores, where they play an

integral role in the lignocellulolytic microbiome of their host (1). These fungi have an
unusual lifestyle involving both a vegetative state and motile zoospores, and contain
mitochondrion-like hydrogenosomes that are similar to organelles observed in other
anaerobic eukaryotes (2). Recent transcriptomic and genomic analyses revealed that
these fungi harbor an incredible diversity of carbohydrate-active enzymes (CAZymes)
that are tailored to excel at decomposing lignocellulosic plant biomass (3–7). Moreover,
these fungi appear to organize their biomass-degrading enzymes into unique eukaryotic
cellulosomes, which are large and dynamic extracellular complexes of enzymes that
likely contribute to the efficiency of biomass degradation by substrate channeling and
modularity (4). Given their ability to metabolize raw lignocellulose, anaerobic gut fungi
are an appealing biotechnological platform to drive the conversion of lignocellulose into
hydrolyzed sugars and, ultimately, into renewable chemicals via fermentation (8–10).

While the lignocellulolytic capabilities of anaerobic gut fungi motivate their bio-
technological interest, they are temperature sensitive, anaerobic, relatively slow grow-
ing, and hindered by requirements for specialized media. Moreover, their genomes are
extremely AT and repeat rich, which makes sequencing and genetic engineering chal-
lenging (7, 11, 12). No robust genetic engineering tools have been developed for this
class of fungi, hampering classic molecular biology techniques that can be used to
investigate, understand, and engineer their metabolism. Despite these challenges, ex-
perimental and omics data sets have emerged to elucidate some aspects of their me-
tabolism (7, 13–16). However, a framework to combine these data in a systematic man-
ner to understand and engineer anaerobic gut fungal metabolism for industrial
applications is not available. In particular, there is no clear consensus on the pathways
operating in their hydrogenosome, a mitochondrion-like organelle involved in their
energy and hydrogen metabolism. Current hypotheses suggest that either an energeti-
cally unfavorable pathway involving pyruvate formate lyase is used to produce H2 or a
pathway involving pyruvate ferredoxin oxidoreductase that is not supported by extracel-
lular metabolite measurements is used (14, 16).

Genome-scale metabolic models (GEMs) can be used to address these shortcom-
ings, as they are well suited to act as knowledge base platforms for integrating multi-
omic data sets and have been successfully used to drive the engineering of both pro-
karyotes and eukaryotes (17–19). Moreover, by experimentally testing the predictions
of a GEM, it is possible to systematically refine the understanding of the metabolism of
an organism. This ability to probe the metabolism in silico is particularly appealing in
the context of nonmodel microbes, such as the anaerobic gut fungi, where direct met-
abolic manipulation is challenging.

Here, we introduce a high-quality PacBio-sequenced genome (200 Mbp, 62� sequenc-
ing depth) of the anaerobic gut fungus Neocallimastix lanati. Comparative genomic
analyses revealed that N. lanati is metabolically similar to the other sequenced
Neocallimastigomycota, including the presence of many CAZymes (;1,788 CAZymes,

Wilken et al.

January/February 2021 Volume 6 Issue 1 e00002-21 msystems.asm.org 2

 on M
arch 29, 2021 by guest

http://m
system

s.asm
.org/

D
ow

nloaded from
 

https://msystems.asm.org
http://msystems.asm.org/


with 585 associated with the fungal cellulosome), suggesting that insights gained
from understanding its genome may be generalizable to other species in the clade.
Therefore, we used the genome of N. lanati to construct the first genome-scale meta-
bolic model of an anaerobic gut fungus. This fungus is well suited to act as a model
system to investigate the metabolism of anaerobic gut fungi because, unlike many of
them, it grows relatively well in completely defined (M2) medium (13, 20), it is rela-
tively fast growing among gut fungal strains (m = 0.0456 0.003 h21 in M2 medium)
(21–23), and it can be cryopreserved.

The 3-compartment (extracellular, cytosolic, and hydrogenosomal compartments)
model introduced here, named iNlan20, is composed of 1,018 genes, 1,023 reactions,
and 816 metabolites and models the primary metabolism of N. lanati. The model is sto-
ichiometrically consistent as well as mass and charge balanced. Experimental, genomic,
transcriptomic, and metabolic flux analysis data were used to build and validate the
model, which recapitulates extracellular metabolite production rates and accurately
models the observed fungal growth rate. Furthermore, the model refines and expands
on previous hypotheses regarding the metabolism of the gut fungal hydrogenosome.
Both the model and experimental data suggest that pyruvate formate lyase (PFL) is sig-
nificantly more active than pyruvate ferredoxin oxidoreductase (PFO) in the hydroge-
nosome but that hydrogen formation can only occur via the latter pathway. Going for-
ward, this fungus and its associated model can be used to guide efforts to further
refine aspects of gut fungal metabolism that remain unclear and direct metabolic engi-
neering strategies. Indeed, model-based analysis could be invaluable in designing sta-
ble consortia between anaerobic gut fungi and other industrially utilized organisms—
something that has not yet been fully realized (21, 24, 25).

RESULTS
The genome of N. lanati is rich in carbohydrate-active enzymes and metabolically

similar to other anaerobic gut fungi. Given the large repeat-rich genomes inherent to
anaerobic gut fungi (12), PacBio sequencing was used to obtain a high-quality genome
of the isolate N. lanati; this isolate was sourced from a fecal pellet of a sheep obtained
from an enclosure at the Santa Barbara Zoo (the Index Fungorum identification num-
ber is IF557810). While the genome of this fungus is large (Table 1), it is the second
least fragmented of all 5 published gut fungal genomes (see Table S1 in the supple-
mental material). The N. lanati genome encodes a rich array of carbohydrate-active
enzymes (CAZymes) in numbers similar to those reported from other gut fungal
genomes (Table S1) (3, 4, 7). In total, 1,788 CAZymes were identified in the genome, of
which, 1,253 were expressed in the transcriptome. Like other anaerobic gut fungi, N.
lanati deploys both complexed (cellulosomes) and uncomplexed CAZymes through its
rhizoidal network (Table 1; Fig. 1), both of which contribute to the decomposition of

TABLE 1 Summary of the features of the genome of N. lanatia

Featureb Value
Genome size (Mbp) 200.97
No. of contigs 970
Sequencing read coverage depth 62.05�
No. of predicted genes 27,677

No. of CAZymes 1,788
No. of GH genes 678
No. of GH genes containing a fungal dockerin domain 271

No. of metabolic genes 2,761
No. of transporters 1,754
aThe full genome (raw sequencing data, assembly, predicted genes and annotations) is available at https://
mycocosm.jgi.doe.gov/Neolan1/Neolan1.info.html.

bCAZyme, carbohydrate active enzyme; GH, glycoside hydrolase. Metabolic genes are defined as genes that have
an enzyme commission (EC) number assigned to them. GH genes that have a fungal dockerin domain are likely
present in cellulosomal complexes (4).
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lignocellulose. Figure S1 shows the breakdown of CAZyme domains identified in the
genome of N. lanati. This, in combination with its relatively high growth rate on
defined M2 media, suggests that N. lanati is a good model anaerobic gut fungus.

Despite advances in sequencing and annotation, a large number of putative gut
fungal genes remain completely unannotated (;48% of the 27,677 predicted genes of
N. lanati) (Table S1), which is consistent with previous genomic annotations in this
clade. These unannotated genes contributed to gaps found in the draft reconstructed
metabolism of N. lanati. A comparative genomic analysis within the primary metabo-
lism across all high-quality publicly available gut fungal genomes (Anaeromyces robus-
tus, Neocallimastix californiae, Pecoramyces ruminatium, and Piromyces finnis) revealed
that the gut fungi are metabolically similar. Of the 1,023 unique EC numbers identified
across these 5 genomes, fewer than ;3% are unique to each isolate (Fig. 2). This sug-
gests that gut fungi share a similar primary metabolism. Thus, some metabolic gaps in

FIG 1 The morphology of Neocallimastix lanati aids in the decomposition of unpretreated lignocellulose by disrupting the
lignocellulosic plant biomass to increase the surface area available for enzymatic attack. A micrograph of a mature N. lanati
sporangium growing on corn stover in M2 medium after 3 days of growth at 39°C. The filamentous rhizoidal network is used to
increase the surface area for its lignocellulolytic enzymes that decompose the lignocellulosic corn stover into its fermentable
sugar constituents.
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the draft reconstruction could be filled by searching for genes in N. lanati that are ho-
mologous to those encoded, and annotated, in the genomes of the other gut fungal
isolates. In this way, key enzymes in the biosynthesis pathways of arginine, asparagine,
biotin, riboflavin, lipids, and fatty acids were identified and included in the metabolic
reconstruction of N. lanati. In total, 35 gaps in the primary metabolic pathways were
identified and annotated in this manner, as noted in the confidence score and homolo-
gous gene annotation fields in the model.

The curated metabolic model of N. lanati captures the carbon, amino acid,
vitamin, fatty acid, nucleotide, and lipid metabolism. Based on the draft metabolic
reconstruction of N. lanati, a manually curated genome-scale metabolic model of N.
lanati was built (iNlan20) according to an established protocol for generating high-
quality reconstructions (26). The model contains 1,023 reactions, 816 metabolites, and
1,018 genes distributed across 3 compartments (hydrogenosome, cytoplasm, and
extracellular space). Where possible, experimental data were used to curate the model.
Materials and Methods details specifics on the curation process, as well as experiments
used to construct the biomass objective function of the model. Briefly, Table 2 shows
the experimentally measured macromolecular components of N. lanati that were used
to construct the biomass objective function for the genome-scale metabolic model.
Further simplifying assumptions were made to construct the specific biomass objective
function used in iNlan20. The insoluble carbohydrate component of the biomass was
assumed to be solely chitin (27), and the amino acid composition of the protein com-
ponent of the biomass was assumed to follow the amino acid distribution of the pre-
dicted genes (i.e., the predicted proteome). Similarly, the nucleotide composition was
assumed to follow the composition of the genome (for the DNA nucleotides) and the

FIG 2 Anaerobic gut fungi have very similar genetic metabolic potentials, suggesting that metabolic gaps can be filled by looking for homologous genes
found in the other sequenced isolates. Each Venn diagram was generated by inspecting the intersection of the annotated EC numbers contained in the
genome of each fungus for each metabolic module. Overlapping regions imply that those isolates share the EC assignments contained in each of the
metabolic modules. The EC numbers contained in each module are based the KEGG database (60) (see supplemental data 4 in the iNlan20 GitHub
repository available at https://github.com/stelmo/iNlan20 for the list of modules encompassing each Venn diagram), while the EC assignments for each
fungus are based on the JGI and bidirectional annotation data as described in Materials and Methods.
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transcriptome (for the RNA nucleotides). The lipid component was assumed to be com-
posed of myristic, palmitic, and stearic acids, which were found to be the major fatty
acid components of the lipid fraction of N. lanati (see Fig. S2). The growth-associated
and non-growth-associated maintenance (GAM and NGAM, respectively) functions
were estimated using experimental data (see Fig. S3).

The model focuses on the primary metabolism but includes CAZymes as general-
ized cellulase and hemicellulase reactions. Of the 791 metabolic genes included in the
model, 216 do not have gene assignments—reflecting the understudied nature of gut
fungal metabolism. Despite this, the model is stoichiometrically consistent as well as
mass and charged balanced (see Memote report or data set S1 in the iNlan20 GitHub
repository available at https://github.com/stelmo/iNlan20). Table S2 explains the confi-
dence rating assigned to the genes associated with each reaction in the model. In the
energy-generating pathways, particular attention was paid to modeling the hydroge-
nosome (a mitochondrion-like organelle that functions completely anaerobically),
which is discussed in greater detail in the following sections. More generally, the
Embden-Meyerhof-Parnas variant of glycolysis is present in N. lanati as well as path-
ways for mixed-acid fermentation (succinate, acetate, lactate, formate, and ethanol),
which are typically found in anaerobic gut bacteria (28). Interestingly, it was found that
N. lanati possesses both the NAD1 and NADP1 variants of glyceraldehyde-3-phosphate
dehydrogenase in glycolysis, with the latter used to conserve energy as NADPH instead
of ATP. The pentose phosphate pathway of N. lanati is incomplete, with glucose-6-
phosphate dehydrogenase and 6-phosphogluconate missing. These reactions regener-
ate NADPH and possibly explain the presence of the NADP1 variant of glyceraldehyde-
3-phosphate dehydrogenase as a compensating mechanism (29, 30). Despite these
missing genes, the model is still capable of producing nucleotide precursors. The xylose
isomerase pathway is also present in N. lanati, as has been found in other sequenced an-
aerobic gut fungi (21).

The major components (amino acids, nucleotides, vitamins, fatty acids, and lipids)
of the anabolic metabolism of N. lanati were found to be present, in agreement with
its ability to grow in M2 medium without these components added. Specifically, the
complete biosynthesis pathways for all the proteogenic amino acids and the modeled
fatty acids were found. Most of the canonical vitamin and cofactor (vitamin B5, vitamin
B6, riboflavin, and thiamine) biosynthesis pathways were found to be complete, with
the exception of folate, where no synthesis mechanism of 4-aminobenzoate was
found. The heme and biotin biosynthesis pathways appeared to be incomplete; how-
ever, the latter vitamin was not found to be essential (experimentally) in defined me-
dium, suggesting that the pathway is either poorly annotated or that the fungus does
not require it for growth. Finally, the model recapitulates the experimentally observed

TABLE 2 Experimentally measured macromolecular constituents of N. lanati that were used
to construct the biomass objective function for the genome-scale metabolic modela

Biomass component
or function Mass fraction (%)
Carbohydrate 32.46 1.6
Protein 43.76 1.2
Lipids 4.96 0.2
DNA 0.26 0.1
RNA 0.66 0.1

Sum 81.86 3.2

GAM 76b

NGAM 2.3c

aExperimental data were used to estimate the biomass objective function. See Materials and Methods for more
details.

bmmol ATP/g (dry weight)/h.
cmmol ATP/g (dry weight).
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growth rate in defined medium using only the measured flux of glucose (1.5mmol/g
[dry weight]/h) as an input constraint (flux balance analysis predicted m = 0.044 h21

versus an experimentally measured m = 0.0456 0.003 h21).
iNlan20 includes an expanded model of the hydrogenosomal metabolism.

Anaerobic gut fungi possess a variant of the hydrogenosome, with the core set of
enzymes that catalyze the conversion of malate and pyruvate to acetate, H2 and for-
mate already identified, as shown in Fig. 3 (2, 14, 16, 31). However, the metabolic path-
way leading to H2 production is not resolved, with literature suggesting either pyru-
vate ferredoxin oxidoreductase (PFO) or pyruvate formate lyase (PFL) as possible
routes (Fig. 3). Both enzymes were identified in the genome and transcriptome and are
thus included in the model of the hydrogenosome.

By combining literature sources, gene annotation, transcriptomic expression, and
subcellular localization data, we have included additional pathways in the model of
the hydrogenosome for N. lanati (Table 3 and Fig. 3). Of note is the inclusion of a puta-
tive ATP synthase (32, 33), which was previously speculated to be present in other an-
aerobic gut fungal isolates (7, 16). Additionally, we also found evidence that complex 2
of the mitochondrial electron transport chain is present: homologs to all four subunits
were found to be expressed and localized to the hydrogenosome (complex 2, subunits
A, B, C, and D). We could not find any homologs of the membrane-bound subunits of
complex 1 or the ATP synthase in the N. lanati genome, as was also reported previously
for other anaerobic gut fungi (34). A possible explanation for this is that many of the
membrane-bound subunits of the electron transport chain are encoded by mitochon-
drial DNA, which the fungal hydrogenosome appears to have lost. Despite this, it is
perplexing that no homologs of the membrane-bound subunits of complex 1 were
found, since these are used to shuttle electrons between the two complexes in the
inner membrane of the mitochondrion, and it remains unclear how complex 2 could
function without them. However, homologs of the soluble subunits of complex 1,
nuoF and nuoE, are highly expressed relative to the other core enzymes of the hydro-
genosome (Table 3). The presence of the soluble subunits, coupled with the absence
of the membrane-associated subunits of complex 1, has also been observed in the
hydrogenosomes of, e.g., Trichomonas vaginalis (35, 36) and Nyctotherus ovalis (37).

FIG 3 An expanded model of the hydrogenosome is included in the model based on genomic annotation,
literature, and predicted localization data (14–16). Core hydrogenosome enzymes are colored in blue, while
speculative enzymes are shown in black. PFL, pyruvate formate lyase; PFO, pyruvate ferredoxin oxidoreductase;
Ac, acetate; SucCoA, succinyl coenzyme A; CoA, coenzyme A; AcCoA, acetyl coenzyme A; Frdx, ferredoxin.
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This raises two possibilities. First, that N. lanati possesses a proton-pumping mecha-
nism, but the missing membrane-bound genes are unannotated. While the mem-
brane-bound subunits of complex 1 and the ATP synthase appear to be missing, we do
find preliminary evidence of a pH gradient inside the hydrogenosome (see Fig. S4).
This provides some support for a mechanism, possibly involving complex 1, 2, and the
ATP synthase, that makes use of this gradient to generate energy, as found in other
hydrogenosomes (32), if these genes are present but unannotated. Second, it is possi-
ble that its hydrogenase associates with the identified nuoF-like subunit of complex 1
to form a bifurcating hydrogenase, as has been speculated to occur in the hydrogeno-
some of T. vaginalis (32, 35). Indeed, we find high-homology sequences in the N. lanati
genome to all three of the bifurcating hydrogenase subunits that have been enzymati-
cally characterized in Thermotoga maritima (38) (see data set S2 in the iNlan20 GitHub
repository available at https://github.com/stelmo/iNlan20). In this case, the function of
the membrane-bound subunits of complex 2 and the soluble subunits of the ATP syn-
thase are unknown. In either case, further experimental work is needed to clarify these
questions.

Taken together, our expanded model of the hydrogenosome includes the core
enzymes previously reported in other gut fungal species as well as a speculative bifur-
cating hydrogenase, ATP synthase, and proton-pumping module composed of the
complex 1 and complex 2 enzymes identified in the N. lanati genome (similar to what
has been found in other H2-producing mitochondria [32]). Given the speculative nature
of the proton-pumping mechanism, the ATP synthase, and the bifurcating hydrogen-
ase, these reactions are constrained to carry zero flux in the base case model. These
constraints were modified to investigate the consequences of this extended hydroge-
nosomal metabolism, as discussed later. Additionally, it was previously suggested that
a hydrogen dehydrogenase [NAD(P)1 1 H2 $ H1 1 NAD(P)H] operates in the reverse

TABLE 3 Enzymes included in the model of the hydrogenosome metabolism

Enzymea
Gene
(protein ID)b

Mean
expression
(TPM)c Localizationd

No. of other gut
fungi where this
gene was found

PFL 1 981064 1967 Cytoplasm 5
PFL 2 1027775 182 Cytoplasm 5
PFO 623223 17 Mitochondrion 4e

Ac:SucCoA trans 1731457 217 Cytoplasm 5
Ac:SucCoA trans 1316948 217 Cytoplasm 5
SucCoA syn sub A 1636158 1048 Mitochondrion 5
SucCoA syn sub B 1276456 1544 Mitochondrion 5
Hydrogenase 1 1341048 219 Mitochondrion 5
Hydrogenase 2 1718044 17 Cytoplasm 5
Complex 1: nuoF 1047445 339 Mitochondrion 5
Complex 1: nuoE 993995 519 Mitochondrion 5
Complex 2: sub A 1702000 4 Mitochondrion 5
Complex 2: sub B 1688149 13 Mitochondrion 5
Complex 2: sub C 1286787 12 Mitochondrion 3
Complex 2: sub D 1677752 8 Mitochondrion 2
Fumarase 985684 4 Cytoplasm 5
ATP syn: sub alpha 1037070 1 Mitochondrion 5
ATP syn: sub beta 1706307 8 Mitochondrion 5
ATP syn: sub delta 1045818 26 Mitochondrion 5
ATP syn: sub gamma 1061751 3 Mitochondrion 5
aPFL, pyruvate formate lyase; PFO, pyruvate ferredoxin oxidoreductase; Ac, acetate; SucCoA, succinyl coenzyme
A; syn, synthase; trans, transferase; sub, subunit.

bID, identifier.
cTPM, transcripts per million. Transcriptomic expression count data are derived from the M2 cellobiose
expression data set and represent the means from triplicates for each enzyme.
dLocalization was predicted using DeepLoc (55). Mitochondrial localization probably implies hydrogenosomal
localization due to their evolutionary relationship (7).

eNot identified in the genome of N. californiae; however, a transcript with close homology to PFO was identified.
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direction in the hydrogenosome (7, 14, 15). Consequently, this hydrogen dehydrogen-
ase simultaneously produces H2 and prevents the accumulation of NAD(P)H produced
by the malic enzyme in the hydrogenosome. However, in this direction, the reaction is
energetically very unfavorable, with a DG of �346 5.9 kJ/mol assuming physiologically
realistic conditions. Therefore, the flux bounds of this reaction in the hydrogenosome
were set to reflect the assumption that the hydrogen dehydrogenase only carries flux
in the forward, energetically favorable, direction.

iNlan20 accurately predicts substrate utilization and in vivo fluxes. The curated
model was validated using a combination of growth curve, extracellular metabolite,
and metabolic flux analysis (MFA) data. Substrate utilization tests were performed on
36 different carbon sources, focusing on metabolites that are present in the digestive
tract environment of the anaerobic gut fungi (Table 4). The qualitative prediction accu-
racy of the model for the substrate utilization and vitamin essentiality validation tests
is 89% (Matthews correlation coefficient, 0.79). Interestingly, despite the apparent pres-
ence of a full xylose isomerase pathway, N. lanati did not grow using xylose as its sole
carbon source, as has been found in other gut fungi (21). In this case, the model’s pre-
dictions were incorrect. It was previously suggested that transport limitations may
cause this issue (21). However, a xylose transporter was identified in the genome, sug-
gesting that cellular regulation might explain this discrepancy better. Vitamin essen-
tiality tests were also conducted (Table 4). It was found that both heme and 4-amino-
benzoate were essential for growth, in agreement with the model’s predictions. In
other gut fungi, heme has also been found to be essential (39), suggesting that its de
novo biosynthesis pathway may be absent across the clade. It was found that only cys-
teine could be used as a sulfur source. However, it is not clear if this is a nutritional
requirement, since every other reducing agent tested (Na2S, 2-mercaptoethanol, and
dithiothreitol) appeared to be toxic to the fungus. Since cysteine was used to ensure
anaerobicity of the medium, we could not test nitrogen source utilization.

Metabolic flux analysis (MFA) was also used to experimentally verify the predicted in-
tracellular fluxes of the GEM. A 1,2-13C-labeled glucose tracer was used in conjunction
with a carbon atom transition model built from the N. lanati metabolic reconstruction.
For the MFA model, metabolic degeneracy caused by the ability of the hydrogenosome
to metabolize both malate and pyruvate resulted in large bounds on the fluxes involving
these metabolites. To circumvent this, the MFA model was constrained to only import
pyruvate into the hydrogenosome, based on previous observations (14). Extracellular
metabolic product measurements (ethanol, formate, H2, acetate, succinate, and lactate)
were also used to constrain the MFA model. This resulted in accurate internal metabolic
flux measurements based on a statistically significant fit between measured and simu-
lated proteinogenic amino acid labeling patterns (Fig. 4). These 13C measured fluxes
were then compared to the fluxes predicted using the GEM with independently meas-
ured metabolite flux constraints (Table 5). Parsimonious flux-based analysis (pFBA) was
then used to find unique flux predictions. Using these constraints, the coefficient of
determination between the pFBA and MFA simulation was found to be 0.98 (linear
regression fit P , 0.01) (see Fig. S5). This suggests that the constrained metabolic model
accurately predicts the steady-state measured intracellular fluxes of N. lanati.

The core hydrogenosome metabolism uses PFO to produce hydrogen, but PFL
carries the most flux. There remains uncertainty regarding the presence of pyruvate
ferredoxin oxidoreductase (PFO) and its relative importance in the hydrogenosomal
metabolism of anaerobic fungi. Earlier enzymatic characterization of hydrogenosomal
proteins in Neocallimastigomycota suggested that PFO is the primary route for H2 pro-
duction through an associated ferredoxin hydrogenase, as found in the hydrogeno-
somes of other organisms (16, 31, 32, 40). However, more recent studies suggest that
PFO is either absent or of only marginal importance in the gut fungal hydrogenosomal
metabolism (14, 15). These later studies suggest that pyruvate formate lyase (PFL),
which was likely acquired through horizontal gene transfer from bacteria (41), is signifi-
cantly more active than PFO. It has been suggested that hydrogen evolution occurs
through a hydrogen dehydrogenase working in an energetically infeasible reverse
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direction (7, 14). Both PFO and PFL were identified in all published gut fungal genomes
as well as in N. lanati (Table 3). The model was used to reconcile the role and relative
importance of these two enzymes to hydrogenosome function under steady-state
growth conditions.

Due to the reaction stoichiometry of PFL, the molar ratio of formate to acetate and

TABLE 4 Substrate utilization results suggest that the model accurately captures phenotypic
behavior of N. lanatia

Substrate

Growthb

Model prediction Exptl observation
Carbon utilization
Glucose 1 1
Cellobiose 1 1
Sorbitol 1 2
Fructose 1 1
Galactose 1 2
Maltose 1 1
Mannose 1 2
Sucrose 1 1
Xylose 1 2
Arabinose 2 2
Rhamnose 2 2
Pyruvate 2 2
Succinate 2 2
Citrate 2 2
Glycerol 2 2
Pectin 2 2
Cellulose 1 1
Lignocellulose 1 1
Acetate 2 2
Fumarate 2 2
N-Acetyl-glucosamine 2 2
Lactate 2 2
Maltodextrin 1 1
Methanol 2 2
Oxaloacetate 2 2
Xylan 1 1
Ethanol 2 2
Malate 2 2
Formate 2 2
Raffinose 1 1
Phenylalanine 2 2
Arginine 2 2
Leucine 2 2
Proline 2 2
Serine 2 2
Threonine 2 2

Vitamin essentiality
Pyridoxine 1 1
p-Aminobenzoic acid 2 2
Biotin 2 1
Cyanocobalamin 1 1
Riboflavin 1 1
Folic acid 1 1
Pantothenate 1 1
Nicotinic acid 1 1
Thiamin 1 1
Heme 2 2

aThe model accurately predicts phenotypic responses in 89% of the tested cases (Matthews correlation
coefficient, 0.79). See Materials and Methods for details about the experiments that yielded these results.

b1, the model predicted growth/there was experimentally observed growth;2, no predicted growth/no
experimentally observed growth.
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ethanol produced is expected to approach unity (1:1) if PFL is metabolically dominant.
This is because ethanol and acetate are only produced from PFL (via acetyl coenzyme
A) in the cytosol (15). Since PFO only produces acetate, and not formate, the ratio of
formate to acetate and ethanol will not be unity if PFO carries significant metabolic
flux. Figure S6A shows that the experimentally measured molar ratios of formate to ac-
etate and ethanol are not significantly different (using the unequal variance test, P ,

0.05) from unity for N. lanati. This is in agreement with earlier metabolite measure-
ments for Piromyces sp. strain E2, suggesting that PFL is dominant (14). Figure S6B
shows that the unconstrained model predicts a wide range of possible ratios, reflecting

FIG 4 The genome-scale metabolic model accurately predicts the in vivo carbon metabolism of N.
lanati. Experimentally determined MFA fluxes and predicted pFBA fluxes (top and bottom, respectively)
for glycolysis, the TCA cycle, and the hydrogenosome of N. lanati. Error estimates denote one standard
deviation from the reported mean for the MFA measurements. Three serially passaged [1,2-13C]glucose
tracer experiments, grown in M2 medium at 39°C and harvested during exponential phase, were used
to measure the in vivo fluxes (see Materials and Methods for more details and the model).
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the metabolic degeneracy of the carbon metabolism of N. lanati. Since there is no
energetic cost associated with using PFO versus PFL (both produce one ATP molecule
per pyruvate) (Fig. 3), the model predicts that both could be used to maximize ATP
production in the hydrogenosome. However, external metabolite flux measurements
show only modest H2 production (Table 5), suggesting that cellular regulation may
play a role in diverting flux to PFL instead of PFO. This can also be seen in the relative
expression difference between PFL and PFO (an order of magnitude difference between
them) in Table 3. When the model is constrained by the measured metabolite fluxes
shown in Table 5, the range of possible ratios is reduced to those observed experimen-
tally (Fig. S6B). Since PFO is the only (known) energetically feasible way to produce H2,
this result is not surprising. Using this constraint, the model suggests that PFL carries the
most flux in the hydrogenosome, but that PFO is used to produce H2.

Electron bifurcation and proton pumping may form part of the hydrogenosomal
metabolism. Electron bifurcation is an energy conservation mechanism that can be
used to drive thermodynamically unfavorable reactions by coupling endergonic and
exergonic reactions through an enzyme complex (42). In the simplest case, this phe-
nomenon is used by anaerobes to increase the yield of ATP through their carbon me-
tabolism by using H2 as an electron sink for the recycling of NADH to NAD1 (42). In the
case of the anaerobic gut fungi, the hydrogenosome can be used to generate 2 extra
moles of ATP for every mole of glucose that enters glycolysis. However, not all the gly-
colytic flux can be diverted to the hydrogenosome, because NAD1 needs to be regen-
erated from the NADH that is produced by glycolysis to maintain cellular redox balance.
As mentioned before, NAD1 is unlikely to be produced by the hydrogen dehydrogenase
since the redox potential of NADH/NAD1 is too electropositive to reduce H1 directly
(32). On the other hand, the ferredoxin-based hydrogenase included in the model only
recycles the oxidized ferredoxin, produced by PFO, to reduced ferredoxin and does not
impact the NADH/NAD1 pools in the cell. Sequence homology suggests that the N.
lanati hydrogenosome could potentially house a bifurcating hydrogenase, which would
couple the reduction of H1 to the oxidation of NADH through the ferredoxin produced
by PFO. This hydrogenase enzyme complex would allow more flux to be channeled into
the hydrogenosome for energy production, since the hydrogenase would now generate
NAD1 as well as H2 (Fig. 3).

These findings suggest that there is a significant energetic advantage associated
with possessing a bifurcating hydrogenase. The model captures this benefit by predict-
ing a 16% increase in growth rate associated with the use of the bifurcating hydrogen-
ase, as opposed to the ferredoxin hydrogenase (m = 0.051 h21 versus m = 0.044 h21,
respectively). The model also dictates that the production of NAD1 shifts from the
cytosol to the hydrogenosome when the bifurcating hydrogenase is used, as shown in
Fig. 5. However, this requires metabolic flux to be diverted from PFL to PFO in the
hydrogenosome. Consequently, significantly more H2 is predicted to be produced,
which is not observed experimentally (Table S3). This discrepancy could be due to met-
abolic regulation that is unaccounted for in the GEM. Further experimental work needs

TABLE 5 Experimentally measured external fluxes of various metabolites produced by
N. lanati growing on cellobiose in M2 medium during exponential phasea

Metabolite

Flux (mmol/g [dry weight]/h)

Mean SD Lower bound Upper bound
Succinate 0.03 0.01 0.02 0.05
Lactate 0.87 0.14 0.72 1.09
Ethanol 0.66 0.20 0.47 1.01
Formate 1.40 0.30 1.09 1.79
Acetate 0.56 0.12 0.42 0.71
H2 0.10 0.06 0.05 0.19
aSee Materials and Methods for details.
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to be conducted to investigate the potential presence of the bifurcating hydrogenase
in the anaerobic gut fungal hydrogenosome.

Given that the hydrogenosome in anaerobic fungi is relatively understudied yet
related to the mitochondrion (32, 43), we assumed that their metabolite trafficking ma-
chinery is similar. Specifically, we assumed that the hydrogenosome has an inner mem-
brane that is impermeable to H1, like those of mitochondria (44). This implies that H1

can only enter and leave the hydrogenosome through the action of transporters. The
H1 balance in the hydrogenosome has a direct effect on the ability of the putative ATP
synthase to produce ATP. However, the impact of the ATP synthase on ATP production
was found to be small, with it only supporting small fluxes (;3% of the glucose flux
into the model) (Fig. 5). This suggests that the putative hydrogenosomal proton gradi-
ent (Fig. S4) may not be important for the generation of ATP, as is also suggested by
the low expression of the ATP synthase complex subunits (Table 3), or that the proton
gradient mechanism is not yet fully understood. Without further experimental evi-
dence, it remains an open question whether the identified ATP synthase components
are localized to the hydrogenosome or to some other subcellular organelle (34).
Furthermore, the mechanism by which the putative complex 2 operates without the
membrane-bound subunits of complex 1 remains to be determined.

Metabolic degeneracy is related to the redox balance. As is typical of uncon-
strained GEMs, the modeled gut fungal metabolism displays significant degeneracy, as
shown by the high degree of flux variability (Table S4). The degeneracy is primarily due
to the ability of N. lanati to regulate how NAD1 is regenerated through its mixed acid
fermentation pathways, i.e., through a combination of lactate dehydrogenase, acetal-
dehyde dehydrogenase, and alcohol dehydrogenase. Interestingly, the relative mean
error between the predicted flux distributions and experimental measurements of the
fermentation products is much more sensitive to constraints placed on acetate produc-
tion than any other single measured external metabolite flux, as shown in Fig. 6.

FIG 5 The effects of including additional reactions in the hydrogenosome on NAD1 and ATP production show that the
putative bifurcating hydrogenase has a large positive effect on NAD1 and ATP generation. Conversely, the putative ATP
synthase has a negligible effect on both. The increase in growth rate caused by the putative bifurcating hydrogenase is
due to NAD1 being regenerated in the hydrogenosome; this allows more flux to be channeled into the organelle, which
in turn produces more ATP. Flux sampling was used to determine the fluxes associated with NAD1 and ATP production in
each metabolic configuration. The base case model only includes the ferredoxin hydrogenase. The ferredoxin hydrogenase
was replaced by a bifurcating hydrogenase to analyze its effect on the model. Finally, a complex 1, 2, and ATP synthase
module was added to the base case model to investigate the consequences of this expanded metabolism. The model was
constrained to produce biomass at 90% of the maximum yield; subsequently, 2,000 samples were drawn from each case.
The average production of each metabolite in the hydrogenosome and cytosol are shown.
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Likewise, constraints placed on lactic acid flux also narrow the deviation of the pre-
dicted flux distributions. This effect is due to the different yields of NAD1 that can be
achieved per mole of pyruvate depending on which mixed-acid fermentation pathway,
or combination thereof, is constrained. Without the bifurcating hydrogenase, H2 pro-
duction does not significantly impact the overall redox balance of the cell. This possibly
explains why its constraint has the smallest effect on the flux variability predicted by
the model and may allow the cell to fine tune its metabolism to suit the environmental
needs, e.g., sugar availability, by up- or downregulating the flux channeled to the
hydrogenosome (2).

DISCUSSION

While anaerobic gut fungi specialize in lignocellulose decomposition, they are not
as well understood as model microbes such as Escherichia coli and Saccharomyces cere-
visiae (45). The most recent GEMs of E. coli and S. cerevisiae map 1,515 and 1,150 genes
to reactions, respectively (46, 47). In comparison, iNlan20 maps 567 metabolic genes to
reactions, mainly within the primary metabolism, with the balance being CAZymes.
The large number of unannotated predicted genes (;13,300) (Table S1) likely form part
of the fungal secondary metabolism (48). Moreover, of the remaining ;14,400 genes
annotated with at least a single domain, only 2,761 were associated with EC numbers
(Table S1), highlighting how undercharacterized this early-branching clade of fungi is. In
iNlan20, annotation gaps are centered around transporters and lipid metabolism. With
improvements in gene annotation and more experimental characterization, this cover-
age is likely to increase. Various simplifications were also made during the model con-
struction that may affect the predictions. First, it was assumed that the carbohydrate
content of N. lanati is wholly composed of chitin; this is a simplification, as gut fungi
make use of other carbohydrate moieties as well (e.g., glycosylation sugars [12, 27]).
Second, the biomass function only accounts for fatty acid synthesis and no other lipids,
resulting in the bulk of the blocked reactions and dead-end metabolites being associ-
ated with lipid metabolism. While cell wall and membrane biosynthesis are clearly essen-
tial building blocks in cellular homeostasis, these metabolites were not included in the

FIG 6 The absolute relative error between the model predictions and the experimentally measured values
suggest that constraining the flux of acetate production has the biggest impact on the model’s accuracy. The
flux of acetate (Ac), ethanol (EtOH), formate (For), H2, and lactate (Lac) was constrained, individually, to their
observed ranges (variables on the x axis). The resultant predicted fluxes of these metabolites (generated by
sampling 2,000 possible solutions where the biomass objective function was within 90% of its optimal value and
subject to the respective additional constraints as shown in the figure) were then compared to the experimental
observations as shown in the legend.
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objective function of the model because the gut fungal lipid composition is not well
studied. Thus, expanding knowledge of lipid and cell wall anabolism will likely improve
the model as well as possibly contributing to a deeper understanding of how the gut
fungi secrete very large proteins (e.g., the cellulosome,;1 MDa [4]).

Compared to the MFA estimates, the model-based flux predictions were the most
accurate around the central glycolytic pathways (Fig. 4). The largest relative discrepan-
cies were observed in the tricarboxylic acid (TCA) cycle, specifically in the reductive
branch leading to succinate production: 126 3 versus 1 (normalized flux units) for
MFA and pFBA, respectively. In eukaryotes, the TCA cycle is typically involved in pro-
ducing a proton gradient within the mitochondrion, which in the context of the gut
fungi, would suggest that it may be localized to the hydrogenosome. Model-based
analysis indicated that the proton-pumping module and associated ATP synthase were
of negligible importance (Fig. 5). Yet, the experimental data were more inconclusive:
while the expression of these genes was comparatively low (Table 3), the JC-1 staining
suggested that the hydrogenosome did possess an electrochemical gradient (Fig. S4).
The absence of any identified membrane-bound subunits of complex 1 and the ATP
synthase makes it hard to reconcile these data. These ambiguous observations suggest
that experimental characterization of the gut fungal hydrogenosome (e.g., through
enzyme purification and proteomics) is critically important for improving the model and
answering lingering questions surrounding the metabolic role of the hydrogenosome.

Under the growth conditions analyzed here, neither the model predictions nor the
experimental data suggested that PFO carries high flux. Consequently, low H2 produc-
tion was expected and observed. However, literature sources indicate that stable gut
fungal/H2-consuming methanogen cocultures are readily formed synthetically and
observed in nature (25, 49, 50). Given the tight association between H2-consuming
methanogens and gut fungi, it is surprising that the H2 flux is low and not more tightly
coupled to the central metabolism. It is possible that there may be more complex cel-
lular regulation at play within the hydrogenosome regarding PFO and PFL than mod-
eled here. Interestingly, there is both a large size difference between PFO and PFL
(;539 kDa versus 90 kDa, respectively) and a catalytic rate difference (;486 38 s21

versus 86 5 s21, respectively; data derived from BRENDA [51]). It is possible that under
high sugar availability conditions, as used here, N. lanati produces the smaller slower
enzyme (PFL) without compromising growth. In contrast, under more challenging condi-
tions, e.g., when the fungus is using lignocellulose as a carbon source, it might produce
more PFO. Alternatively, recent high-resolution growth rate data suggest that gut fungi
have highly variable growth rates that fluctuate with environmental conditions (22).
Thus, it is also possible that the gut fungi modulate the expression of PFO and, conse-
quently H2 production during their life cycle. High-temporal-resolution proteomics and
transcriptomics that examine various life stages may shed more light on this question.

Despite these discussed caveats, the iNlan20 shows good agreement with experimen-
tal measurements. Due to their nonmodel nature, anaerobic gut fungi are vastly under-
studied, which presents unique challenges when constructing a metabolic model of
these cryptic organisms. Model-based analysis represents a systematic framework that
can be used to identify high-impact knowledge gaps and focus experimental attention,
and in this case, the model indicates that focus should be directed toward a detailed
characterization of the gut fungal hydrogenosome. Within the realm of nonmodel
microbes, metabolic modeling is an appealing technique that can be used to speed up
the biotechnological translation of anaerobic gut fungi and other nonmodel microbes.

Conclusion. Here, we have introduced a high-quality genome and transcriptome of
a novel anaerobic gut fungus, N. lanati. While the genome is large, it is relatively
unfragmented compared to the genomes of the other sequenced anaerobic gut fungi.
Additionally, the genome encodes a large number and diversity of CAZymes, most of
which are expressed in the transcriptome. This genome was used to construct the first
genome-scale metabolic model of an anaerobic gut fungus. The model, iNlan20, accu-
rately recapitulates the observed growth rate, in vivo fluxes, and substrate
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consumption and requirement profiles. The model refines and expands on our under-
standing of gut fungal hydrogenosomal metabolism. We confirm previous findings
that suggested that PFL carries more flux than PFO in the hydrogenosome, but an en-
ergetically favorable route to hydrogen production still requires the action of PFO. The
possible presence of a bifurcating hydrogenase and/or a proton-pumping mechanism
suggests that anaerobic fungi may have evolved more complex energy conservation
mechanisms that allow them to compete with faster-growing rumen bacteria.
Experimental work, likely involving the isolation, purification, and enzymatic characteri-
zation (through assays and proteomic analysis) of the hydrogenosome, is necessary to
further refine our understanding of its metabolism. This model is well poised to serve
as a platform to build a better understanding of these nonmodel organisms. Moreover,
the model will serve as a valuable tool to systematically guide future engineering
efforts of gut fungi for converting lignocellulose into value-added products.

MATERIALS ANDMETHODS
Metabolic reconstruction, visualization, and simulation. All publicly available annotated genomes

within the clade Neocallimastigomycota were downloaded from the Joint Genome Institute’s (JGI)
MycoCosm database (48). This includes the high-quality PacBio-sequenced genomes of Anaeromyces
robustus, Piromyces finnis, and Neocallimastix californiae (4) as well as the novel isolate Neocallimastix lanati
introduced here. The genomes of Pecoramyces ruminatium, also known as Orpinomyces sp. strain C1A (7,
52), and Piromyces sp. strain E2 (4) were also included for completeness. The gene annotation data sup-
plied by the JGI was combined with annotations derived from bidirectionally searching by blast (using
BLASTp [53]) the predicted genes from the gut fungal genomes against the curated Swiss-Prot database
from UniProt (54). Briefly, bidirectional blast searching annotates a predicted gut fungal gene if (i) the top
hit using the fungal genome as the query and the reference collection as the database is the same as
when (ii) the gut fungal genome is used as the database and the reference collection is used as the query.
Furthermore, only matches with E values smaller than 1e220 were considered for assigning Enzyme
Commission (EC) annotations to genes. This information was collated into a master metabolic table (see
data set S3 in the iNlan20 GitHub repository available at https://github.com/stelmo/iNlan20) and subse-
quently used to construct the model and assign genes to reactions. Enzyme complexes were assigned by
using the “Subunit structure” field in the UniProt database. Protein localization was predicted using
DeepLoc (55). Reaction directions were primarily inferred from MetaCyc (56), and specific Gibbs free
energy change of reactions reported were calculated using eQuilibrator (57). Transcriptomic and expres-
sion experiments for N. lanati were conducted as part of this study (described later). These omics data sets
were used to assign a confidence score to each gene in the model of N. lanati. Gaps in the model of N.
lanati were filled by inspecting the EC assignments found for each other anaerobic fungus, as well as the
GEMs of E. coli and S. cerevisiae, using the approach described above and looking for homologous genes
in the genome of N. lanati (46, 58). The universal reactions and metabolites from the BiGG Models platform
(59) was used to construct the in silico model where possible; if a reaction did not exist in that database it
was manually added. The KEGG and MetaCyc databases were used as references to reconstruct the draft
metabolic model based on the EC assignments of the metabolic annotation data (56, 60). The curated
model for N. lanati was constructed by carefully following established genome-scale metabolic model con-
struction protocols to refine the draft model (26). Specifically, each reaction was inspected to ensure con-
sistency, mass, and charge balance where possible. Model quality was benchmarked by the Memote appli-
cation (see data set S1 in the iNlan20 GitHub repository at the above-mentioned URL) (61). The curated N.
lanati model as well as the entire reconstruction pipeline and all the data used in this work can be found
in the model repository at https://github.com/stelmo/iNlan20. An experimentally measured flux of
1.5mmol/g (dry weight)/h of glucose was used in all simulations. Flux balance analysis was used to simu-
late the genome-scale metabolic model of N. lanati using the COBRA Toolbox and COBRApy (62, 63). Flux
samples (N=2,000) were generated by sampling from the model and constraining the objective function
to be within 90% of the optimum found by FBA. This threshold was set to reflect the assumption that the
gut fungi need to maintain a high growth rate to compete with faster growing bacteria in their native
microbiome (1). Escher was used to visualize the metabolism (64). Example code that can be used to run
the model and computational experiments is supplied as an IPython notebook in the model repository
available at the URL mentioned above.

Culturing conditions used for experiments. Standard anaerobic gut fungal culturing techniques
were used (11) for all experiments. Briefly, N. lanati was grown at 39°C in sealed Hungate tubes (10-ml
liquid volume) or 70-ml serum bottles (40-ml liquid volume) in both undefined complex medium C (MC)
(65) and completely defined medium 2 (M2) (66), with 100% CO2 headspace unless otherwise specified.
Pressure accumulation in the headspace (67) was used as a proxy for growth, and the fungus was serially
passaged after 2 to 3 days of growth. The carbon source was cellobiose (5 g/liter) unless otherwise
noted. The cultures were not shaken.

Genome and transcriptome isolation, sequencing, and analysis of N. lanati. N. lanati was isolated
from the feces of a sheep located at the Santa Barbara Zoo according to an established protocol (3).
Fungal cell pellets for genomic DNA (gDNA) isolation were grown by inoculating 20ml from a serum
bottle of fungi in exponential phase (2 to 3 days of growth given a 10% inoculation volume into the
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serum bottle) into a 1-liter bottle of medium C, using cellobiose as a carbon source. The serum bottle
used to grow the inoculum was treated with chloramphenicol to reduce the risk of contamination. After
4 days of growth, the fungal cell mat was spun down and frozen at 280°C. Four of these frozen samples
were subsequently shipped to the Arizona Genome Institute (University of Arizona, Tucson, AZ), where
high-quality gDNA was isolated using a modified cetyltrimethylammonium bromide (CTAB) protocol
(68). Briefly, these fungal cell mats were ground to a fine powder in a frozen mortar with liquid N2 fol-
lowed by very gentle extraction in CTAB buffer, which included proteinase K, polyvinylpyrrolidone, mo-
lecular weight 40,000 (PVP-40), and 2-mercaptoethanol (Sigma, St. Louis, MO), for 1 h at 50°C. After cen-
trifugation, the supernatant was gently extracted twice with 24:1 chloroform–iso-amyl alcohol. The
upper phase was removed, adjusted to one-tenth volume with 3 M potassium acetate, and gently
mixed, and the gDNA was precipitated with iso-propanol. Subsequently, the gDNA was collected by cen-
trifugation, washed with 70% ethanol, air dried for 20min, and dissolved thoroughly in 1� Tris-EDTA
(TE) buffer at room temperature. The purified gDNA was shipped to the JGI, where it was sequenced
and annotated. Briefly, 10mg of genomic DNA was sheared to approximately 15 to 20 kb using
Megaruptor3 (Diagenode). The sheared DNA was treated with DNA Prep to remove single-stranded
ends and then with DNA damage repair mix, followed by end repair, A tailing, and ligation of PacBio
overhang adapters using SMRTbell template prep kit 1.0 (Pacific Biosciences). The final library was size
selected with BluePippin (Sage Science) at a 10-kb cutoff size and purified with AMPure PB beads.
PacBio Sequencing primer v3 was then annealed to the SMRTbell template library, and sequencing poly-
merase was bound to them using a Sequel binding kit 3.0. The prepared SMRTbell template libraries
were then sequenced on a Pacific Biosystem’s Sequel sequencer using 1M v3 SMRT cells, and version 3.0
sequencing chemistry with 10-h movie run times. Subsequently, the main assembly consisted of 62.05�
of PacBio read coverage (7,821 bp average read size) and was assembled using MECAT version 1.8; the
resulting sequence was polished using ARROW (version 2.2.3). The assembled genome was annotated
using the JGI annotation pipeline. The genome is available at https://mycocosm.jgi.doe.gov/Neolan1.

RNA for transcriptome and expression analysis was isolated as previously described (3, 21), in the
Biological Nanostructures Lab (University of California Santa Barbara, CA). For the transcriptome, the
RNA was harvested from fungal cell pellets grown in serum bottles on a variety of substrates (cellobiose,
filter paper, reed canary grass, and corn stover, solids loading 1% [wt/vol], in both medium C and me-
dium 2) to capture as much transcript diversity as possible. For expression analysis, triplicate serum bot-
tles of fungus grown on medium M2, using cellobiose as the sole carbon source, were used. The RNA
was isolated and purified using an RNeasy kit (Qiagen, Germantown, MD). The concentration and quality
of the RNA were measured on a Qubit (Qubit, New York, NY) and TapeStation 2200 (Agilent, Santa Clara,
CA). The RNA used for the transcriptome was pooled in equal parts before sequencing. RNA libraries
were made using NEBNext Ultra II directional RNA with mRNA purification beads (NEB, Ipswich, MA);
these were subsequently sequenced on a NextSeq 500 (Illumina Inc., San Diego, CA) using high-output
300-cycle settings and 150-base pair paired-end reads (the resultant coverage is 470 and 364 for the
transcriptome and expression analysis, respectively). The reads were assembled using Trinity (69).
TransDecoder (https://github.com/TransDecoder/TransDecoder/wiki) was used to find the highest likeli-
hood coding regions in the transcriptome. The transcript abundance was estimated using Kallisto (70).
The raw assembled transcriptome and filtered output of TransDecoder may be found at https://github
.com/stelmo/iNlan20. The mean expression data of transcripts mapped to genes may be found in the
GitHub repository of the model available at the URL mentioned above.

A separate transcriptome was sequenced to aid the genome annotation; the same conditions as
mentioned previously were used. Stranded cDNA libraries were generated using the Illumina TruSeq
stranded mRNA library prep kit. mRNA was purified from 200 ng of total RNA using magnetic beads con-
taining poly(T) oligonucleotides. mRNA was fragmented using divalent cations and high temperature.
The fragmented RNA was reversed transcribed using random hexamers and SSII (Invitrogen) followed by
second-strand synthesis. The fragmented cDNA was treated with end repair, A tailing, adapter ligation,
and 10 cycles of PCR. The prepared libraries were quantified using KAPA Biosystem’s next-generation
sequencing library quantitative PCR (qPCR) kit and run on a Roche LightCycler 480 real-time PCR instru-
ment. The libraries were then multiplexed into pools, and sequencing was performed on the Illumina
NovaSeq 6000 sequencer using NovaSeq XP v1 reagent kits and S4 flow cell and according to a 2-by-150
indexed run protocol. This transcriptome may be found at https://mycocosm.jgi.doe.gov/Neolan1.

High-performance liquid chromatography, gas chromatography, and liquid chromatography-
mass spectrometry measurements. Liquid samples for high-performance liquid chromatography
(HPLC) analysis were stored in microcentrifuge tubes at 220°C for batch analysis. Sulfuric acid (0.5 M)
was added to the samples (1 in 100 volumes), vortexed, and allowed to mix at room temperature for 5
min. Thereafter, the samples were centrifuged for 5min at 21,000� g and filtered using a 0.22-mm sy-
ringe filter into HPLC vials. The samples were run on an Agilent 1260 Infinity (Agilent, Santa Clara, CA)
using a Bio-Rad HPX-87H column (Bio-Rad, Hercules, CA). Samples were run at two column conditions to
effectively separate all the fermentation products (71, 72). Succinate, lactate, cellobiose, glucose, and
ethanol were measured at 50°C with a flow rate of 0.5ml/min and run length of 30min. Fumarate, for-
mate, and acetate were measured at 25°C with a flow rate of 0.4ml/min and a run length of 40min. The
mobile phase in both cases was 5mM sulfuric acid, and the injection volume was 20ml. Cellobiose, glu-
cose, and ethanol were measured with a refractive index detector, and the other compounds were
measured on a variable wavelength detector (l = 210 nm). Standard curves for each compound were
made at 3 concentrations bracketing the range expected in the samples. Gas samples were analyzed on
a Thermo Fisher Scientific TRACE gas chromatograph according to a previously established protocol
(25). Standard curves of H2 were made daily from supplier (Douglas Fluid & Integration Technology,
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Prosperity, SC) mixed gas at 1, 2, and 5% (mole basis). Fatty acid composition and extracellular amino
acid concentrations were measured on a liquid chromatograph-mass spectrometer (LC-MS) using an
Agilent Polaris 3 C18-ether 150-by-3.0mm (part number [no.] A2021150X030) column. Total run time was
13 min and injection volume was 5ml with a column temperature of 30°C and flow rate of 0.3ml/min.
The MS was run in negative ionization mode, with the gas temperature at 230°C and a flow rate of 12 lit-
ers/min. Standards were made to bracket the expected concentration ranges of the fatty acids.

Biomass composition measurements. The biomass composition of N. lanati was experimentally
determined in triplicates for each major component (DNA, RNA, lipid, carbohydrate, and protein).
Cultures grown in serum bottles on medium C, with cellobiose as the carbon source, were harvested
during exponential phase for each measurement. DNA and RNA were immediately isolated from the wet
cell pellet using a previously established CTAB protocol (73). A reference set of triplicate fungal mats
was harvested at the same time and lyophilized to estimate the dry mass fraction of DNA and RNA.
Lipids and total carbohydrates, which we assumed to be exclusively chitin, were isolated according to
established protocols (74). Lipid composition was further refined by mass spectrometry using a fatty
acid C18-ether column as described above. Protein extraction from fungal cell pellets was according to a
previously developed method (75), and the concentration was measured on a Qubit (Q33327; Thermo
Fisher Scientific). The amino acid composition of the protein fraction was assumed to follow the amino
acid distribution of the predicted proteome.

Additionally, both the growth and non-growth-associated maintenance (GAM and NGAM, respectively)
functions were estimated from experimental data. Briefly, five triplicate sets of Hungate tubes with various
concentrations of cellobiose (1, 2, 3, 4, and 5 g/liter initially) in medium M2 were inoculated with 1ml each
(total liquid volume, 10ml) from a single serum bottle of N. lanati growing at exponential phase (3 days
postinoculation) in medium M2 with cellobiose as the carbon source. Pressure accumulation was measured
twice daily to calculate the fungal growth rate (67). Liquid and gas samples from each triplicate set were
harvested during two time points in exponential phase, 24h apart. The gas samples were analyzed on a GC
to determine the H2 fraction of the gas, and the liquid samples were analyzed by HPLC for organic acid con-
centration (see “High-performance liquid chromatography, gas chromatography, and liquid chromatogra-
phy-mass spectrometry measurements” for details). After the last measurement, the fungal cell pellets were
harvested by centrifugation, lyophilized, and weighed. The estimated growth rate for each sample was
then used to extrapolate the dry cell mass at the respective time points (67). The fluxes of the fermentation
products could then be estimated by the molar accumulation of each compound divided by the time
between measurements and the difference in cell dry masses between these points. The difference in cell
masses was taken because each mature cell lyses and dies; thus, its remaining biomass no longer contrib-
utes to metabolism. Finally, these estimated fluxes were used to constrain the model and maximize the
ATP yield. The GAM and NGAM were then estimated by finding the line of best fit through the plot of maxi-
mum ATP yield predicted by the model and the growth rate associated with the fluxes previously measured
(26).

13C metabolic flux analysis for N. lanati. Three serially passaged Hungate tubes using [1,2-13C]glu-
cose as the sole carbon source in medium 2 at an initial concentration of 5 g/liter were used for the
labeling experiment. Each Hungate tube was passaged during exponential growth phase, after which,
the cell pellet and remaining media were frozen at 220°C for later processing. The medium was ana-
lyzed for glucose and fermentation products using the HPLC protocol described above. The pellets were
lyophilized, after which GC-MS measurements were used to quantify the isotopic labeling of protein-
bound amino acids, glycogen-bound glucose, and RNA-bound ribose as described previously (76). A car-
bon transition model for flux analysis was constructed using the genome-scale metabolic model of N.
lanati as a basis for the flux reactions and biomass equation. Other carbon transition models were used
to check the accuracy of the MFA model (77, 78). An ATP demand reaction was added to the carbon
transition model and constrained to the maximum ATP flux capable of being generated by the system.
This constraint ensured that the maximum feasible flux is routed through the hydrogenosome. INCA
was used to perform the flux analysis and sensitivity calculations (79). The carbon transition model, con-
straints, and the GC-MS data can be found in the GitHub repository of the model available at https://
github.com/stelmo/iNlan20.

Model validation experiments. Carbon utilization and vitamin essentiality experiments were con-
ducted to test the predictive accuracy of the model. Carbon utilization was tested by growing N. lanati
in medium 2 with each carbon source listed in Table 5 at 5 g/liter initial concentration instead of cello-
biose. A carbon substrate was deemed able to support growth if the fungus could be passaged on it for
4 generations and still produce more than 8 lb/in2 gauge of accumulated pressure (no-carbon blanks
produce ,1 lb/in2 gauge of accumulated pressure). Similarly, the vitamin requirements of N. lanati were
tested by individually removing each vitamin in medium 2 (listed in Table 5) and growing the fungus
without it for 4 consecutive generations using cellobiose as the carbon source. Fluxes for comparing
model predictions to experimental observations were measured similarly to how the fluxes for finding
the GAM and NGAM functions were estimated; however, only 5 g/liter cellobiose loading was used. The
total equivalent flux of glucose into the cell was calculated by measuring glucose accumulation and cel-
lobiose depletion in the medium. It was assumed that N. lanati imports glucose, and not cellobiose, due
to release of beta-glucosidases that decomposed the cellobiose in the medium.

Hydrogenosome staining protocol. The JC-1 dye was purchased from Invitrogen (part no. T3168;
Carlsbad, CA, USA), and a standard protocol was used to visualize the presence of electrochemical gra-
dients. Briefly, JC-1 was dissolved in dimethyl sulfoxide (DMSO; 1mg/ml) and frozen until use. Dye ali-
quots were thawed and added to cultures of anaerobic gut fungal zoospores using final dye concentra-
tions of 1mg/ml. Zoospores were incubated with JC-1 for 30 min anaerobically in standard M2 medium
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at 39°C. After incubation, cultures were filtered onto 3-mm polycarbonate membranes (part no. TSTP02500;
Millipore Sigma, Burlington, MA, USA) with a nitrocellulose backing filter (part no. HAWP04700; Millipore
Sigma). Cells were counterstained with 49,6-diamidino-2-phenylindole (DAPI; 2mg/ml) and mounted on glass
slides using an antifade mounting solution composed of 4:1 Citifluor (part no. AF1; Electron Microscopy
Sciences, Hatfield PA, USA) to Vectashield (part no. H-1000; Vector Laboratories, Burlingame, CA, USA).
Prepared slides were placed on ice and imaged immediately using a Zeiss Axiovert M200 fluorescence micro-
scope (Carl Zeiss AG, Oberkochen, Germany).

Data availability. The full genome, raw sequencing data, assembly, predicted genes, and annota-
tions are available at https://mycocosm.jgi.doe.gov/Neolan1/Neolan1.info.html.
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