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Abstract
Due to climate change, water availability will become increasingly variable, affecting nitrogen (N) availability. Therefore, we
hypothesised watering frequency would have a greater impact on plant growth than quantity, affecting N availability, uptake and
carbon allocation. We used a gravimetric platform, which measures the unit of volume per unit of time, to control soil moisture
and precisely compare the impact of quantity and frequency of water under variable N levels. Two wheat genotypes (Kukri and
Gladius) were used in a factorial glasshouse pot experiment, each with three N application rates (25, 75 and 150 mg N kg−1 soil)
and five soil moisture regimes (changing water frequency or quantity). Previously documented drought tolerance, but high N use
efficiency, of Gladius as compared to Kukri provides for potentially different responses to N and soil moisture content.Water use,
biomass and soil N were measured. Both cultivars showed potential to adapt to variable watering, producing higher specific root
lengths under low N coupled with reduced water and reduced watering frequency (48 h watering intervals), or wet/dry cycling.
This affected mineral N uptake, with less soil N remaining under constant watering × high moisture, or 48 h watering intervals ×
highmoisture. Soil N availability affected carbon allocation, demonstrated by both cultivars producing longer, deeper roots under
lowN. Reduced watering frequency decreased biomass more than reduced quantity for both cultivars. Less frequent watering had
amore negative effect on plant growth compared to decreasing the quantity of water.Water variability resulted in differences in C
allocation, with changes to root thickness even when root biomass remained the same across N treatments. The preferences
identified in wheat for water consistency highlights an undeveloped opportunity for identifying root and shoot traits that may
improve plant adaptability to moderate to extreme resource limitation, whilst potentially encouraging less water and nitrogen use.

Keywords Biomass allocation . Nitrogen use efficiency . Plant physiology . Triticum aestivum . Variable water . Water use
efficiency

1 Introduction

Current climate projections indicate increased variability in
precipitation in many regions of the world (Rebetzke et al.
2009). This is likely to have a profound impact on plants
grown in rain-fed systems. Similarly, in irrigated systems as
rainfall frequency becomes more variable, there will be in-
creased competition for water resources. Taken together, these
projected changes are likely to have an important impact on
global food production systems. Improving our understanding
of crop responses to limited and/or variable rainfall and irri-
gation is a key priority for future efforts concerned with the
sustainable intensification of agriculture.

Plant growth is affected by the amount, seasonality and
frequency of water supply (Austin et al. 2004; Gibson-Forty
et al. 2016; Izanloo et al. 2008). It is well established that a
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reduction in rainfall significantly reduces grassland biomass
compared to reduced rainfall frequency (Gibson-Forty et al.
2016). This is well demonstrated by Gibson-Forty et al.
(2016), where a reduced magnitude (50% reduction in water
amount) decreased total biomass, photosynthesis and stomatal
conductance, compared to reduced frequency (8 days between
watering events). In contrast, Padilla et al. (2013) found spe-
cific root length and total root length was higher when grass-
land species received the same amount of water once a week
(pulsed) as opposed to thrice weekly (regular). A thrice week-
ly watering pattern is very common in pot trials; therefore, the
implications of watering frequency is important. There was
substantial water stress at the end of the pulsed watering cycle;
however, it did improve water use efficiency, most likely due
to the increased soil moisture as a result of re-watering, which,
in turn, encouraged further root growth as plants search for
water and/or nutrients. It has been shown that a soil water
deficit can encourage roots to grow longer and deeper (Ješko
et al. 1997). Early water deficit has shown an increase in root
biomass in relation to shoot biomass, with plants able to re-
cover upon rewatering; however, an imposed water deficit
mid-season can cause severe damage to both below- and
aboveground biomass, even with subsequent rewatering
(Asseng et al. 1998). These differences in plant trait responses
highlight the importance and complexity of plant phenotypic
plasticity (the physiological or phenotypic changes in a plant).
Taken together, changes in the amount and frequency of sup-
ply can have both direct and indirect impacts on plants.

Water availability affects not only plant growth but the
concentration of plant available nutrients too. However, stud-
ies have shown that crops can perform better with co-
limitation of resources (where both water and N are limited).
For example, Cousins et al. (2020) found reduced water
coupled with medium soil N concentration encouraged plant
growth, particularly increasing root growth. In other work,
grain yield, N use efficiency and water use efficiency in-
creased with an increase in water and N co-limitation
(Cossani et al. 2010). This concept of resource allocation
was suggested by Bloom et al. (1985), whereby plants adjust
their carbon allocation particularly between shoot and roots
until the sugar produced equals the cost of sugar production.
Lower soil N availability has been shown to encourage more
root biomass in wheat (López-Bucio et al. 2003). In contrast,
too much soil N can be detrimental to growth, resulting in a
decrease in root length in wheat (Comfort et al. 1988). The
amount, form and behaviour of soil N are strongly affected by
soil water supply (Burger et al. 2005). Under drought condi-
tions, available N in soil is reduced partly due to a decrease in
microbial activity, which slows Nmineralisation (Jensen et al.
2003). High rainfall or irrigation (water pulses) could encour-
age breakdown of N forms locked up in organic matter, thus
increasing N availability (López-Bellido et al. 2005;
Schwinning and Sala 2004; Wang et al. 2015). These water

pulses increase drainage water and thus increase the risk of N-
fertiliser leaching and surface run-off into bodies of water
Bijay-Singh et al. 1995; Carstensen et al. 2014), reducing
plant growth, plant N content, particularly post-anthesis accu-
mulation and remobilisation of N, which in turn result in re-
duce grain yield (Masoni et al. 2008). Thus, this predicament
often results in more fertiliser being applied to compensate for
low N availability. Increased leaching could also reduce plant
growth Therefore, it is necessary to understand how N be-
haves under different water conditions (mirroring erratic rain-
fall patterns), and how we can maximise N use efficiency
under such water conditions. Moreover, a more targeted ap-
proach to crop management is needed, where the plant re-
sponse to water and N can be measured, and subsequently,
irrigation and fertiliser applications optimised.

Since weather events are becoming more extreme, both
plasticity and genotypic diversity in crops are becoming in-
creasingly important. Many plant varieties differ in their re-
sponses to water and nutrients, particularly adapting their
roots to optimise growth (Hurd 1964; Lynch 1995; Ober
et al. 2014). Root biomass allocation is central to optimising
water and N use efficiencies. Under any one condition, a root
system that allows foraging for nutrients or water, but not at
the expense of crop yield, is ideal (Elazab et al. 2016). These
root foraging strategies can differ depending on soil depth and
water or nutrient hotspots. Due to the complexity of root plas-
ticity in response to environmental conditions, identification
of the different root traits beneficial to plant growth are still in
progress. This means there is a clear need for detailed under-
standing of plant responses to variable water and N resource
supply if we are to identify target traits in plant breeding
programmes; such efforts will require fine-scale information
on plant response to variable water supply.

Understanding how water and N create variability in plant
plasticity is an important but complex undertaking. As noted
above, some studies have watered plants at different frequen-
cies to establish pulsed and regular watering treatments; how-
ever, such approaches still have a degree of pulsing (e.g.
watering thrice weekly as opposed to weekly). There is a need
for studies with a high degree of control over water supply;
however, precisely controlling and monitoring soil water con-
ditions in real time presents considerable technical difficulties.
It is possible to use wicking beds or tension tables, where pots
are placed onto a bed of sand equilibrated to a precise matric
potential allowing plants to take up water according to use
(Araya et al. 2010; Semananda et al. 2016; Tinklin and
Weatherley 1968). However, such an approach does not lend
itself well to establishing cyclic watering patterns that persist
in the field. One way to overcome this problem is to use
automated gravimetric platforms that allow very fine-scale
control of soil moisture dynamics byweighing each individual
plant pot and measuring water added (Rahimi Eichi et al.
2019; Riley et al. 2019; Tran et al. 2020). These fine scale
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weight measurements allow monitoring of plant adaptability
by measuring the amount of water used over time due to
environmental change, i.e. water or N treatments (Cousins
et al. 2020). The ability of a gravimetric system to simulate
possible rainfall or irrigation outcomes in the field make it a
unique tool to answer questions related to precision agricul-
ture. Importantly, gravimetric systems record water use on a
very fine temporal scale, providing valuable insights into plant
water use over their entire growth cycle.

Here, we present results of an investigation into the com-
bined effects of (precisely controlled) variable water and N
supply on two cultivars of wheat (Gladius and Kukri). We
hypothesised (1) that the frequency of watering would have
a greater impact on plant growth than quantity, and (2) the
water regimes imposed would affect N availability, uptake
and subsequently create differences in carbon allocation.
Based on the different water and N use efficiencies of both
wheat cultivars, we also hypothesised that (3) Gladius and
Kukri would showcase different phenotypes, although any
differences would need to be statistically confirmed in a com-
bined experiment for both varieties.

2 Materials and Methods Introduction

2.1 Glasshouse Plant Experiment Set-up

The growth medium used for this experiment was a mixture of
clay loam, UC (University of California; Baker 1957) sand
mix and cocopeat (1:1:1 W:W:W) (referred to as ‘soil’ hence-
forth). This medium has been used extensively in previous
experiments on N and water responses of wheat (e.g.
Cousins et al. 2020; Honsdorf et al. 2014; Takahashi et al.
2015). A 660 kg batch of the soil was prepared by combining
clay loam, UC sandmix and cocopeat (220 kg each) with 60 L
of a solution containing basal nutrients at the following con-
centrations: dolomite lime 0.98 g L−1, ag lime 2.72 g L−1,
hydrated lime 0.63 g L−1, gypsum 0.98 g L−1, superphosphate
1.96 g L−1, iron sulphate 2.45 g L−1, iron chelate 0.163 g L−1,
micromax (ICL Australia and New Zealand, New South
Wales, Australia) 0.98 g L−1. This ensured N was the only
limiting nutrient. Additional water was added to assist mixing,
such that the final gravimetric water content of the soil was
0.18 g g−1. The field capacity of the soil (FC hereafter) was
determined to be 16% (i.e. a gravimetric water content of
0.16 g g−1) using the method described by Cavagnaro
(2016). In brief, a known sample of soil was packed into a
sintered glass funnel connected to a 100 cm water column.
The soil was saturated with water and allowed to drain for
48 h. The soil was weighed, then dried for 48 h at 105 °C,
and weighed again.

The soil batch was split into three portions, to which urea
was added with thorough mixing at three different rates:

25 mg of N kg−1 (equivalent to 33 kg ha−1) of soil (referred
to as 25 N hereafter); 75 mg of N kg−1 (100 kg ha−1) of soil
(75 N hereafter) and 150 mg of N kg−1 (200 kg ha−1) of soil
(150 N hereafter). After the addition of the urea to the soil, the
concentrations of ammonium (NH4

+-N) and nitrate (NO3
−-N)

in the soils were measured on 2 M KCl extracts, as described
by Forster (1995) and Miranda et al. (2001). The starting soils
of 25, 75, 150 mg of N kg−1 of soil had 22 ± 1.0; 69 ± 0.1; 90
± 1.1 of NH4

+-N (mg kg−1 dry soil); and 10 ± 0.9; 11 ± 0.2; 10
± 1.5 of NO3

−-N (mg kg−1 dry soil), respectively (see Online
Resource Table S1). Concentrations of NH4

+-N increased
with increasing urea, whereas NO3

−-N remained at similar
levels.

For each treatment, 2.2 kg of air-dried soil equivalent was
placed in a 2.5-L free-draining pot (145 × 190 mm, diameter ×
height); in total, there were 120 pots with wheat and 21 plant-
free controls (to compare water use with the plants). Since the
initial water content of the soil (0.18 g g−1) was higher than the
initial target moisture content (0.16 g g−1, i.e. FC), all pots
were placed in the glasshouse and dried down until they
reached FC then held at this water content until water regimes
were implemented between 12 and 14 days.

On 20 June 2017, seeds (two per pot) were sown directly
into pots; half of the pots were sown with Triticum aestivum
cv. Gladius, and others with cv. Kukri (both spring wheat
varieties). Kukri is derived from CIMMYT wheat lines and
was adapted at the University of Adelaide Roseworthy breed-
ing programme for 1999 release by Seednet. Gladius is de-
rived from a complex cross and was selected by breeders for
grain yield maintenance under drought stress, and then pub-
licly released in 2007 (Kastury et al. 2018;Melino et al. 2015).
Gladius was documented as high yielding under drought con-
ditions (Bennett et al. 2012; Izanloo et al. 2008), and both
Gladius and Kukri have previously demonstrated high N use
efficiency (Mahjourimajd et al. 2016; Sitlington Hansen
2019). Therefore, growing these cultivars together could pro-
vide potentially different responses to N and soil moisture
content. After seedling emergence (5 days after sowing), seed-
lings were thinned to one per pot, and the soil surface was
covered with a semi-permeable mesh to allow water to filter
through but minimise evaporative loss.

This experiment utilised an automated gravimetric
watering system (DroughtSpotter, Phenospex, Heerlen,
Netherlands). Briefly, this system weighs each plant separate-
ly using the load cell every 10min, then water is added to each
pot when it falls below a certain target weight. The system
collects all the individual pot weights over time, in addition to
the amount of water added over time (Fig. 1). This system
allowed for constant monitoring of water addition over the
whole experiment. Conditions in the glasshouse were 22/
15 °C day/night, and light levels were supplemented with
400 μmol/m2/s LEDs (GreenPower LED toplighting module
DR/B HB 400 V, Philips Electronics Australia Ltd., New
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SouthWales, Australia) with a 12/12 h day/night photoperiod.
The relative humidity (RH) of the glasshouse averaged be-
tween 48 and 68% RH.

Five water treatments were implemented (Table 1). Two
treatments involved watering to field capacity: one (FC) was
watered to weight as required (monitored every 10 min) and
one (FC 48 h) was watered only every 48 h. A further two
were kept at half field capacity: one (0.5FC) was watered to
weight as required (monitored every 10 min) and one (0.5FC
48 h) was watered only every 48 h. The final treatment was a
wet/dry treatment where pots were dried down to half of field
capacity, then re-wet to field capacity and maintained at field
capacity until harvest (Fig. 2). With the gravimetric system,

every time the pot weighed 0.5% below the target weight for a
particular soil moisture content (16% for FC, 8% for 0.5FC), it
was watered back to that soil moisture content. With the 48 h
watering treatments, pots were watered to the target soil mois-
ture content, but the soil moisture content was allowed to drop
approximately 3% in between the 48-h irrigation. The auto-
mated gravimetric watering system was programmed to re-
water up to the target weight. (Table 1). As expected, there
was no water drainage from the pots in any of the treatments
since water contents were maintained below saturation at all
times.

2.2 Plant Sampling and Analysis

After 41 days of growth (31 July 2017), plants were destruc-
tively harvested by carefully removing soil from the pots (a
sub-sample of soil was retained for N analysis, see below),
and roots washed of any adhering soil using reverse osmosis
(RO) water. The roots were partially pot-bound. The roots and
aboveground biomass were separated, and fresh weights de-
termined. Total root length was measured (on a sub-sample of
roots of a known fresh weight) using the gridline intersection
method (Newman 1966). The plants varied between 37 and 58
on the Zadoks growth scale, with the flag leaf just visible on
the least developed plants (Zadoks stage 37) and up to 80% of
the wheat spike visible in the most developed plants (late
heading, Zadoks stage 58).

All plant biomass was oven-dried (60 °C) until a constant
weight was achieved and dry weights recorded and root:shoot
ratios calculated. The dried shoot material was homogenised
and ground to a fine powder, using a ring mill (Standard Ring
Mill, SRM-RC-3P; Rocklabs Ltd., Auckland, New Zealand)

Spigot
(adjustable 
height)

pot
saucer

load cell 

(a)

(b)

load 
cell 

11.5 cm 

21
.5

 c
m

 

Fig. 1 Diagram of gravimetric watering system, with watering done from
the top of the pot

Table 1 Combinations of water quantity, frequency and N amounts

Water quantity Water frequency Nitrogen

FC (field capacity)
16% gravimetric moisture

Constant 25 N (25 mg N kg−1 soil)

75 N (75 mg N kg−1 soil)

150 N (150 mg N kg−1 soil)

FC 48 h
Watered every 48 h from 13 to 16%

48-h intervals 25 N (25 mg N kg−1 soil)

75 N (75 mg N kg−1 soil)

150 N (150 mg N kg−1 soil)

0.5FC
8% gravimetric moisture

48-h intervals 25 N (25 mg N kg−1 soil)

75 N (75 mg N kg−1 soil)

150 N (150 mg N kg−1 soil)

0.5FC 48 h
Watered every 48 h from 5 to 8%

48-h intervals 25 N (25 mg N kg−1 soil)

75 N (75 mg N kg−1 soil)

150 N (150 mg N kg−1 soil)

Wet/dry cycle
Dried down to 8%, then re-wet to 16% for 7 days (see Fig. 2)

Irregular 25 N (25 mg N kg−1 soil)

75 N (75 mg N kg−1 soil)

150 N (150 mg N kg−1 soil)
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with a stainless-steel head (CHRO-40-BLP or CHRO-200-
BLRP depending on the size of plant biomass) for 1–2 min.
The ground samples were analysed for total nitrogen (TN) by
dry combustion (http://www.apal.com.au/; Rayment and
Lyons 2011).

2.3 Soil Sampling and Analysis

At harvest, after root excavation, the soil from an individual
pot was thoroughly mixed to ensure homogeneity, a sample of
approximately 100 g was taken from each pot and divided into
two sub-samples. One sub-sample was used for analysis of
NH4

+-N and another for analysis of NO3
−-N, as described

previously (see section 2.1.).

2.4 Statistical Analysis

The experiment used a split-plot design for each genotype,
with each genotype located on different sides of the gravimet-
ric system. There were four replicates per genotype of the 15
combinations of N addition (three levels) and soil watering
treatments (five levels); thus, there were 120 pots in total (with
additional 21 pots set up as plant-free controls). The water
treatments were assigned to the main plots and the nitrogen
treatments to the subplots. A split-plot factorial ANOVA was
performed on the 60 values of each variable for each genotype
(Online Resource Table S2). In these analyses, blocks, whole
plots and subplots were represented by replicates, water treat-
ment and plants (detailing nitrogen treatment), respectively.
The data for each of the variables were tested for normality

prior to analysis, and some were treated by applying either
natural log or square root functions where appropriate (see
Online Resource Table S3). Response variables included in
the analysis were shoot and root biomass, soil NH4

+-N and,
NO3

−-N content, shoot total N and soil total N. Where the
ANOVA revealed a treatment effect (p < 0.05), differences
between individual treatments were identified using least sig-
nificant differences of means at the 5% level (LSD of means)
tests. The statistical analyses were performed using GenStat
19th Edition.

3 Results

3.1 Plant Biomass

Biomass accumulation and distribution between shoots and
roots differed between different water and N treatments for
both genotypes (Fig. 3).

For Gladius, the shoot dry mass (Fig. 3a) differed between
watering treatments irrespective of N addition treatment.
Plants with access to the full soil water capacity (FC and to
a lesser extent FC 48 h) had significantly higher above-ground
biomass than plants with access to half the soil water capacity
(0.5FC and 0.5FC 48 h) and the wet/dry cycling treatment. In
contrast, Gladius root dry weights were influenced by both
water and N (significant interaction, p < 0.05). Belowground
biomass increased (to varying extents) with increasing N in all
water treatments, except the FC 48 h treatment where root dry
weights were greatest in the intermediate N addition treatment
(75 N). For Kukri, both water and N addition treatments had a
significant main effect on both shoot and root dry weights
(Fig. 3b). Kukri shoot dry weight was higher in the wetter
treatments (FC and FC 48 h) than the drier treatments
(0.5FC, 0.5FC 48 h, wet/dry) irrespective of N treatment.
With regard to N, 25 N had less biomass than 75 N and
150 N (N p < 0.01, 25Na 75Nb 150Nb). With Kukri roots, all
water treatments resulted in more biomass with wetter water
treatments, regardless of the N treatments. The FC treatment
resulted in particularly large root systems, and 0.5FC 48 h
treatment had the smallest root systems.

Specific root length (Fig. 4) was highly variable among
water treatments for both varieties. For Gladius, there was
an interaction between water and N addition treatments, with
specific root length generally greatest in the low N addition
treatment, and especially so in the 0.5FC 48 h and wet/dry
treatments (Fig. 4a). Whilst Kukri showed a similar pattern
overall, only the main effect of N addition treatment was sig-
nificant with specific root length highest in the 25N treatment,
lowest in 150 N and intermediate in the 75 N treatment
(Fig. 4b). However, it is important to note that there was little
variation within the treatments for Kukri.

Time (days)

Seedling 
emergence

15 34 41

FC

0.5FC

W
at

er

¾ of pots dried 
down to Dry 
treatment

Harvest

All pots dried 
down to Wet 
treatment

5

Once Dry reached, ¼ of pots 
re-wet to Wet 
Treatment (day 34), and 
maintained

Fig. 2 Schematic diagram of the five experimental water treatments, set
up on the DroughtSpotter
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3.2 Plant Water Use

In addition to providing a precise watering regime,
DroughtSpotter provided the amount of water applied to each
pot over time (by weight). The amount of water applied per
day was used to calculate cumulative water applied per pot for
both varieties (see Online Resource Fig. S1, S2), with average
total cumulative water shown in Online Resource Table S4.
The plant-free controls (watered only to FC) received a cumu-
lative total of 645.7 mL water over 6 weeks, compared to a
cumulative total of 1488.4 mL water for the pots with wheat.
From this, we calculated the wheat pots watered to FC had
approximately an extra 842.7 mL of water over the course of
the experiment.

Water use efficiency, i.e. the amount of plant (shoot + root)
biomass (g dry weight) produced per unit water (L) applied
(which includes both evaporation and transpiration), was cal-
culated (Fig. 5). For Gladius, there was a significant interac-
tion between water and N, with water use efficiency signifi-
cantly lower in the 0.5FC 48 h × 25 N treatment compared to
the rest of the treatments (Fig. 5a). However, with Kukri
(Fig. 5b), only water was significant as the main effect

(regardless of N). FC water treatment resulted in the highest
water use efficiency (p < 0.05).

3.3 Nitrogen Dynamics

Plant N concentrations were affected by both water and N
addition treatments (Fig. 6). Overall, shoot total N concentra-
tion did not differ greatly between treatments. However, there
was a significant water by N interaction for Gladius (Fig. 6a).
For Kukri, shoot total N concentration did not differ between
water treatments FC, 0.5FC and 0.5FC 48 h (regardless of N
addition treatment), but shoot total N concentration was sig-
nificantly higher for the wet/dry treatments, regardless of N
addition treatment (Fig. 6b).

Mineral N (the sum of NO3
−-N and NH4

+-N left in the soil
at harvest) was highly variable within water and N treatments,
and between genotypes (Fig. 7). For both genotypes, there
was a significant interaction between water and N addition
treatments. In the case of Gladius (Fig. 7a), the amount of
mineral N left in the soil was generally highest for the 150 N
(150 mg of N kg−1 of soil) addition treatments, with the FC
treatment as the exception. Mineral N level for Kukri (Fig. 7b)
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Fig. 3 Average shoot dry weight
(pale shading, above x-axis) and
root dry weight (dark shading,
below x-axis) for Gladius (a) and
Kukri (b); with five water
treatments (FC (field capacity);
FC 48 h, 0.5FC, 0.5FC 48 h, wet/
dry) and three nitrogen
treatments: 25 N (25 mg kg−1 of
N), 75 N (75 mg kg−1 of N),
150 N (150mg kg−1 of N). Values
are presented as mean values ±
SE. Using ANOVA and LSD of
means 5% level, means with
different letters are shown to be
significantly different (p < 0.05 or
0.001). Gladius (a) shows
significant main effect for shoots,
letters above bars (water p < 0.05;
N not significant); for roots, water
× N p < 0.05, letters above bars.
For Kukri shoots (b), main effects
present for both water and N,
letters for water above bars (water
p < 0.001 with N p < 0.05, 25Na

75Nb 150Nc). For Kukri roots,
main effects were present for
water p < 0.001 (letters above bar)
and N (p < 0.05; 25Na 75Nb

150Na)
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was similar to Gladius and was also generally higher for the
150 N treatment. Overall, mineral N for Kukri was generally
lower in the FC and FC 48 h treatments. Finally, the soils were
NO3

− dominated with NO3
−-N values up to 13 times greater

than NH4
+-N concentrations (see Online Resource Table S1).

4 Discussion

The DroughtSpotter automated irrigation system allowed a
precise level of control over watering and fine-scale water
use data. The ability to simulate rainfall or irrigation scenarios
coupled with variable N will benefit precision agriculture by
improving our understanding of resource use efficiency.
Water and N treatments, whether in combination or alone,
had significant impacts on plant water use, biomass accumu-
lation, N uptake and soil N dynamics. Biomass accumulation,
especially in roots, increased under lower N and wetter con-
ditions, and longer, thinner roots were produced under drier
conditions.

Under optimal conditions, wheat responses can differ de-
pending on genotype. Gladius root biomass increased with
increasing N when water content was held at FC. In the field,
Gladius has performed well under water stressed conditions
and better than other commercial varieties; therefore, this
could aid its response to water variability (Bennett et al.
2012; Izanloo et al. 2008). For Kukri, the higher root (and
shoot) growth observed under 75 N, could be a result of
Kukri’s higher N use efficiency, thus enabling it to adapt
and produce more biomass growth under lower N levels.
This pattern (greatest biomass at 75 N) was also present under
FC 48 h for both varieties. It is possible that FC 48 h became a
potential stress condition as water was not constant; therefore,
plants responded by producing longer roots (not necessarily
thinner) to access both N and water.

Although water was a limiting factor, the timing of
watering affected the ability of the plants to adapt to water
and/or N variability more. This is shown by 0.5FC 48 h plants
having the smallest root:shoot ratios for both varieties, be-
cause both quantity and frequency of watering imposed
some limitation on growth. Also, the 0.5FC 48 h plants were
smaller than wet/dry plants and 0.5FC plants for Kukri. There
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have been several studies that explore the pulsed water effect,
i.e. how the frequency as well as the quantity of water influ-
ence plant growth. For example, Ivans et al. (2003) found that
with just one simulated rainfall event, plant acquisition of N
was stimulated encouraging higher root N uptake. It is possi-
ble that plants under the wet/dry treatment had more roots
before the dry-down happened, shown by less root biomass
for 0.5FC plants than wet/dry. Gibson-Forty et al. (2016)
showed that a 50% reduction in rainfall quantity had a more
severe impact on growth than a reduction in frequency.
However, different magnitudes or frequencies of pulsed water
supply impact plants differently, even when water quantity
remains the same (Padilla et al. 2013). The frequency and
quantity of water also impacted soil moisture and drying dy-
namics. This is consistent with other studies, where wetting-
drying events or pulsed water events changed the way soil
dries or re-wets (Fierer and Schimel 2002; Padilla et al.
2013). Having frequent watering but reduced quantity resulted
in a drier soil over the short period of time between watering
(the change in soil moisture content can be monitored using

the automated gravimetric watering system), whereas less fre-
quent watering resulted in wetter soil conditions for a longer
period of time, most likely due to the larger water pulses
(Padilla et al. 2013). These studies highlights that frequency
of watering is vitally important in plant biomass allocation,
but none of these studies have looked at truly constant
watering, where water content is precisely maintained more
frequently than 24 h. Under variable water conditions (0.5FC,
0.5FC 48 h, wet/dry), specific root length increased, with roots
getting longer and thinner to access water or N pools at depth,
a strategy that is important to access nutrients and water at
depth in drying soils. In this case, it would be to access soil
moisture increasing further down the pot (Fig. S3); in this
way, this pot study may be reflecting an important feature of
soil moisture availability in the field. Additionally, producing
longer, thinner roots reduces the mean root diameter, creating
a larger root surface (Fitter 2002). This enables the plant to
maximise water and N uptake, particularly under resource
limitation. Although specific root length does not quantify
the actual thickness of the root, there are two relevant
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assumptions: (1) the length of the root is proportional, or re-
lated to resource acquisition, and (2) root biomass or the
weight is proportional to the maintenance of the root or plant
(Eissenstat andYanai 1997; Ostonen et al. 2007). If a plant has
thinner and longer roots, it becomes less expensive for the
plant to maintain these roots, than if they were thicker
(Withington et al. 2006).

Mineral N analysis showed NO3
−-N values were up to 13

times greater than NH4
+-N concentrations. The amount of

mineral N left in the soil differed greatly between genotypes,
with less mineral N available under FC or FC 48 h conditions
with Kukri than Gladius. This has been tentatively interpreted
as being due to the varieties as opposed to the environmental
conditions of the glasshouse; therefore, further experiments
would be needed to confirm this. However, the lower concen-
tration of mineral N available for Kukri under high moisture
content suggests that water was the main driver for N uptake.
Soil type is also important with respect to nutrient availability.
The soil had a high organic matter content, which suggests
greater nutrient availability. A pulse of water, i.e. 48 h
watering, flushes the soil system, re-wetting the soil and
allowing for pockets of previously inaccessible urea to be-
come mobile again, encouraging microbial activity and
mineralisation of urea into plant-available forms of N (Cui
and Caldwell 1997; Gordon et al. 2008; Ivans et al. 2003).

Plant tissue N was generally uniform across the treatments
suggesting good internal N homeostasis. Overall, plant total N
ranged between 3 and 5%, which is well above the critically N
deficient range for wheat of 1.28–1.39% (as suggested by
Reuter and Robinson 1997). Our study highlights how carbon
allocation in roots is also affected by N availability. A reduction
in soil N content can reduce root uptake of N and subsequent N
remobilisation; however, to compensate for low N accumula-
tion, research shows an increase in N remobilisation, especially
post-anthesis and at grain filling (Masoni et al. 2008). Under
high soil NO3

−-N concentrations, the shoots dominate assimi-
lation of NO3

−-N, but this is an energy-intensive process. Under
low soil NO3

−-N concentrations, root C:N ratio becomes
higher, so most of the NO3

−-N is taken up and functions as a
signal molecule to nitrate transporters, affecting auxin produc-
tion, which regulates root growth (Krouk et al. 2010). Such
conditions are likely to favour formation of lateral roots
(Zhang et al. 1999). As a result, very little of the assimilated
NO3

−-N is translocated to the shoots. Obviously, the C:N ratio
andwhat plants determine as a low or highNO3

−-N level differs
between species (Wang and Ruan 2016; Zheng 2009). If soil
NO3

−-N concentrations increased (root C decreases overall),
more NO3

−-N could be translocated to the shoots. This result
mirrors what was shown by Bloom et al. (1993), who found
that with higher concentrations of NO3

−-N and NH4
+-N, root

growth was significantly lowered, due to a smaller root able to
acquire enough N for its root function, and send surplus to the
shoot. Therefore, it would be unnecessary to produce more root

biomass, as this would require more energy reallocation of
sugars from the shoots to the roots, potentially causing a carbon
deficit in the shoots.

5 Conclusions

Our observation of less frequent watering having a more neg-
ative effect on plant growth compared to a reduction in water
quantity has important implications for agriculture, as most
recent climate change projections indicate significant varia-
tions in rainfall frequency are likely, and issues of water scar-
city already exist in many areas of the globe. Such findings are
key for future agricultural management of water. Evidence of
an interaction between water and N is important, because it
highlights the effect on C allocation. The changes to root
thickness, even when root biomass remained the same, show
it is not necessary to have the highest inputs of water and N in
order to achieve healthy plants. We found large differences
between precision-controlled constant watering versus 48-h
watering intervals, which show that attempting to maintain
water levels manually as is undertaken in most similar studies
may alter plant physiology, soil water physical properties and
nutrient cycling processes. This has profound implications for
future research in this area and highlights how watering fre-
quency can have a more negative impact on plant growth than
the watering amount. However, in irrigated systems, alternat-
ing between a high watering amount and a period of no water
(i.e. wet/dry cycle) may be a way to encourage plants to adapt
to small stresses and still have healthy growth, in addition to
conserving water. This knowledge supports future farming
irrigation practices encouraging less water and nitrogen use,
leading to several potential environmental and socio-
economic benefits. Further identifying root and shoot traits
that may improve plant survival under moderate to extreme
resource limitation could also be introduced into breeding
programmes.
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