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Abstract: The practice of rearing cows and calves together is gaining popularity on dairy farms, with different systems currently under 
assessment in mainland Europe, the United Kingdom, and Oceania. Research into the effects of cow–calf rearing has primarily focused 
on direct health and welfare implications, and little work has examined the role of different rearing paradigms on calf microbiota. We 
trialed a cow–calf rearing system on a Canadian dairy farm and compared fecal microbiota of these calves with the microbiota of calves 
reared according to the conventional practice of the same farm (separated from the dam and fed waste milk). At 4 wk, the conventionally 
reared calves had reduced relative abundance of Lactobacillus and higher relative abundance of other taxa, including Sutterella, Pre-
votella, and Bacteroides. We also detected predicted functional differences, such as reduced l-tryptophan biosynthesis in conventionally 
reared calves. These results suggest that maternal contact may influence the calf microbiota, but the observed differences are also likely 
related to other aspects of the rearing environment independent of maternal contact (e.g., potential exposure to antibiotic residues in 
waste milk). These findings provide preliminary evidence of the effects of early rearing environments on the establishment of the dairy 
calf fecal microbiota. This research is needed, given the critical role of the bovine gut microbiome in behavioral, metabolic, and immune 
development.

In mammalian offspring, the gut microbiota plays a critical role in 
modulating host enteric development, immune function, growth, 

and energy balance (Arrieta et al., 2014; Petersen et al., 2019). The 
effects of early rearing conditions on neonatal fecal microbiota 
have been investigated in several mammalian species, including 
humans (Gritz and Bhandari, 2015), rats (Macrì, 2016), and piglets 
(Maradiaga et al., 2018); comparatively little work has been done 
to understand the influence of rearing conditions on the calf gut 
microbiota (Malmuthuge and Guan, 2017). Neonatal dairy calves 
are particularly susceptible to enteric infection: scours, linked 
to dysbiosis in the gut microbiome, are a leading cause of dairy 
calf mortality (Uetake, 2013; Cho and Yoon, 2014). Further un-
derstanding of rearing conditions for dairy calves may aid in the 
establishment of protective microbial communities.

The dairy calf is the only mammalian farm animal to undergo 
systematic separation from the dam at birth. In conventional dairy 
operations, calves are typically separated within 12 h and often 
housed in individual pens or hutches in an effort to monitor co-
lostrum intake and prevent exposure to pathogens (Vasseur et al., 
2010; Windsor and Whittington, 2010). However, there is mount-
ing interest in adopting dairy cow–calf rearing systems during the 
milk-feeding period (Johnsen et al., 2018). Early cow–calf separa-
tion could compound an already stressful period for the young calf, 
increasing the risk of microbial infection (Kouritzin and Guan, 
2017). Because composition of the neonatal gut microbiome has 

significant influence on future health, brain development, and be-
havior (Diaz Heijtz, 2016), the implications of cow–calf separation 
on dairy calf microbiota warrants exploration.

In human infants, composition of the microbiome is heavily 
influenced by commensal bacterial transfer from the mother by 
means of skin contact and consumption of breast milk (Jost et al., 
2014). Research on the establishment of fecal microbiota in lambs 
(Bi et al., 2019) has noted that feeding method (suckling the dam 
vs. bottle feeding) affects the sources of bacterial transmission 
from both the dam and the environment. In dairy calves, research 
has focused almost exclusively on conventionally reared (i.e., 
separated) animals, and bacterial species associated with weight 
gain, scours, and disease status have been identified (Oikonomou 
et al., 2013). Studies that have investigated specific early rearing 
conditions for dairy calves have mainly sought to examine differ-
ences in microbial populations as a result of differing diets and 
nutrition, (e.g., Dill-McFarland et al., 2019; Maynou et al., 2019). 
However, one recent study investigated differences in maturation 
of oral and fecal microbiota in maternally reared beef calves versus 
early-separated dairy calves, finding no demonstrable differences 
(Barden et al., 2020). Another study (Cunningham et al., 2018) 
identified differences in β diversity in the ruminal microbiome of 
dam-reared calves versus those fed milk replacer; further research 
is needed to determine the extent to which these differences are 
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related to diet and whether this pattern is mirrored in the calf fecal 
microbiome.

The present study aimed to compare fecal microbial composition 
in dam-reared animals with that of artificially reared counterparts 
(separated and fed waste milk) on the same farm. We hypothesized 
that early rearing environment and the presence or absence of the 
dam would be associated with alterations in the fecal microbiota of 
preweaned dairy calves. The study (ethics approval no. A15-0082) 
was conducted at the University of British Columbia (UBC) Dairy 
Education and Research Centre (Agassiz, BC, Canada). Thirty-
seven dairy calves were assigned prepartum to treatment group 
and enrolled at birth.

Calves in the maternal contact group (n = 22) remained with the 
dam in the maternity area for a minimum of 24 h after birth before 
transfer to the experimental setup. They were fed 4 L of quality-
controlled colostrum within the first 6 h of life. Calves were then 
moved to a “calf creep,” a sawdust-bedded pen measuring approxi-
mately 10 × 3 m, where they remained during the day from 0630 
to 1730 h. The sawdust was replaced as needed and completely 
refreshed on a weekly basis. Calves were offered unpasteurized 
whole milk twice per day (0900 and 1600 h) ad libitum. This milk 
was obtained in the milking parlor from a single trial cow to mimic 
milk that a nursing calf would obtain from the dam. (This cow 
was varied over the course of the trial due to the dynamic nature 
of cow–calf enrollment). The milk initially was offered via nipple 
bottles when the calves were <3 d old, and subsequently was of-
fered from a milk bar. At approximately 1730 h each evening, 
calves were transferred to a freestall pen where their dams were 
housed. Calves were provided ad libitum access to the cow’s hay 
and TMR during the night, and these rations were also provided 
in the calf creep and refreshed daily. Because this experiment was 
part of a larger study aimed at assessing dairy cow motivation 
(Wenker et al., 2020), the dams of 11 calves in this group wore 
udder nets to prevent suckling; however, calves could perform all 
other affiliative behaviors with their dams and could suckle from 
all other dams in the pen. Where possible, calves were randomly 
allocated to groups; however, some calves were born overnight, 
and the possibility that they had nursed could not be ruled out. 
Because these calves were not immediately separated, they were 
included in the cow–calf nursing group.

Calves in the conventional group (n = 15) were raised accord-
ing to standard practice at the UBC Dairy Education and Research 
Centre (i.e., separated from the dam within 6 h and moved to indi-
vidual cubicles in a calf barn located approximately 300 m away). 
Similar to calves in the maternal contact group, calves were fed 4 
L of quality-controlled colostrum within the first 6 h of life. Sub-
sequently, calves were fed pasteurized waste milk from the herd at 
an allowance of 4 L twice per day by bottle. On this farm, waste 
milk mostly consisted of transition cow milk (within 2–6 d after 
calving) supplemented by whole milk from the bulk tank. Milk 
from cows with high SCC was also included, as was milk from 
any cows treated with antimicrobials. At approximately 7 d of age, 
calves in this group were transferred to sawdust-bedded group pens 
(each 4.9 × 7.3 m) with up to 8 other calves. Sawdust was replaced 
as needed and completely refreshed on a weekly basis. In group 
pens, calves were fed pasteurized waste milk from automatic calf 
feeders at an allowance of 12 L/d and offered hay and grain (Hi-
Pro Medicated, Hi-Pro Feeds) ad libitum.

Health events that occurred throughout the trial, including 
scours, elevated temperature, and coughing, were recorded for 
both groups of calves. Health was comparable across the groups, 
with 7 (32%) maternal contact calves and 7 (47%) conventional 
calves experiencing at least 1 adverse health event over the course 
of the trial. One maternal contact calf was treated with antibiotics 
(Resflor Gold, Intervet Inc.); however, exclusion of this calf from 
the analysis did not affect results.

Fecal samples were collected from calves when they were ap-
proximately 4 wk of age (mean ± SD = 26 ± 2.8 d). Following 
the afternoon feeding, samples were collected rectally using sterile 
palpation sleeves with lubricant (First Priority Inc.). The lubricant 
was subsequently used as a negative extraction control. Environ-
mental samples were obtained at each visit by sampling bedding 
material, within the 2 d before bedding change, from different 
areas within the calf creep, freestall pen, and calf barn. All samples 
were collected in sterile palpation sleeves, transferred immediately 
into 2-mL microfuge tubes at the onsite laboratory, and frozen at 
−70°C.

At the end of the trial, samples were transported on dry ice to 
UBC’s Michael Smith Laboratories for DNA extraction using a 
QIAamp PowerFecal DNA Kit (Qiagen Inc.) according to the 
manufacturer’s instructions. Picogreen quantification ensured that 
samples had minimum DNA concentrations of 1 ng/µL. Samples 
were then shipped to Integrated Microbiome Resources (IMR; 
Dalhousie University, Halifax, NS, Canada) for sequencing. 
MiSeq Short Amplicon sequencing was performed to amplify the 
variable V4–V5 regions of the 16S sequencing target. The library 
was prepared according to the IMR protocol (see https: / / imr .bio/ 
protocols .html). Demultiplexed sequencing data used in this study 
are deposited into the Sequence Read Archive of NCBI (accession 
no. PRJNA700665).

Data were analyzed using R (version 3.6.1; R Core Team) and 
Qiime 2 (Quantitative Insights into Microbial Ecology 2, version 
2019.1; Bolyen et al., 2019). Predictive functional analysis was 
conducted using the PICRUSt2 tool (Phylogenetic Investigation 
of Communities by Reconstruction of Unobserved States; Douglas 
et al., 2020). Specifically, raw sequences were preprocessed in 
Qiime2 using a modified code from the IMR repository (Comeau 
et al., 2017). Exported files from Qiime2, and the metadata, were 
imported using Phyloseq in R.

Sample quality was high; the average raw sequencing depth 
was 32,822 reads per sample, or 21,984 reads (interquartile range: 
15,268–27,229) after a quality control step (DADA2) was applied 
to remove erroneous reads. A total of 8,966 distinct bacterial and 
archaeal amplicon sequence variants (ASV) were identified in the 
129 samples. The final feature count (after removing features ap-
pearing <0.1% of the mean sequencing depth across all samples) 
was 4,436 distinct ASV. As the lowest calf sample depth was 5,903 
reads, samples were rarefied to a sequencing depth of 5,000 reads. 
There was no amplification in any negative controls.

For β diversity plots, samples were further log-transformed. 
Bray-Curtis principal coordinates analysis revealed dissimilarity in 
microbiota composition between maternal contact calves and con-
ventional calves (P = 0.001, permutational multivariate ANOVA; 
Figure 1). Established communities of microbes are resilient to 
transformation (Dill-McFarland et al., 2019); thus, optimization 
of the early rearing environment could be critical to establishing 
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the continued presence of beneficial microbes. The microbiota of 
conventionally reared calves in this study may be representative 
of calves reared under similar management practices in British 
Columbia and arguably elsewhere in the world.

Raw abundances were transformed into relative abundances, 
and ASV were aggregated into species-level identification. We 
identified differences in relative abundance of specific bacterial 
taxa (Figure 2) using false discovery rate-corrected Mann-Whitney 
U tests. The conventionally reared calves had reduced relative 
abundance of Lactobacillus members (P = 0.003) and increases in 
other taxa such as Bacteroides stercoris (P < 0.001). Previous re-
search has identified distinct taxonomic clusters in the preweaned 
calf ileum that are either Lactobacillus or Bacteroides dominant 
(Malmuthuge et al., 2019). Lactobacillus spp. have been shown to 
have probiotic effects for calves and offer protection against calf 
scours (Fernández et al., 2018). According to Malmuthuge et al. 
(2019), early exposure to Lactobacillus may prime the host (via 
initial expression of key proinflammatory chemokines) for future 
anti-inflammatory responses. Such early exposure could be helpful 
for neonatal calves due to naïve mucosal immune status. Mater-
nal contact calves also had higher relative abundance of Blautia, 
which has been identified (e.g., in Jang et al., 2019) as a prominent 
genus in the gut of healthy calves.

In addition to Bacteroides stercoris, conventionally reared 
calves showed increases in several other relevant taxa, including 

Coprobacter (P < 0.001), Prevotella 9 (P = 0.002), Sutterella (P 
= 0.003), Butyricimonas (P = 0.02), Parasutterella (P = 0.04), 
Burkholderia (P = 0.04), and unknown Prevotella (P = 0.04). Both 
Bacteroides and Burkholderia comprise significant pathogenic 
species with high antimicrobial resistance rates (Wexler, 2007; 
Rhodes and Schweizer, 2016); however, these taxa also predomi-
nate in healthy calves (Klein-Jöbstl et al., 2014; Borsanelli et al., 
2018; Song et al., 2019). Similarly, Prevotella has been identified 
in the fecal microbiota of both diarrheic and healthy calves (Ma 
et al., 2020). Prevotella is a dominant genus in the ruminant gas-
trointestinal tract and is known to serve important functions in the 
rumen ecosystem, including production of short-chain fatty acids 
such as propionate and acetate (Dill-McFarland et al., 2017) and 
amino acids (Belanche et al., 2012). The abundance of Prevotella 
is influenced by the level of fiber in the diet (Klein-Jöbstl et al., 
2014) and is thus particularly relevant during calf weaning, when 
milk is withdrawn and fiber-rich feeds such as hay and calf starter 
are introduced.

Further research aimed at identifying specific operational taxo-
nomic units in calves reared with and without the dam could provide 
important insights into the observed difference in Prevotella. For 
example, one specific operational taxonomic unit has been found 
to be negatively correlated with ADG in calves (Dill-McFarland et 
al., 2017), and several Prevotella species are associated with peri-
odontal disease in cattle (Borsanelli et al., 2018). Others, however, 
may simply be a function of the developmental stage of the rumen. 
Sutterella and Parasutterella are associated with gastrointestinal 
disease in humans, and Sutterella possess the ability to degrade 
IgA (Chen et al., 2018; Kaakoush, 2020). However, these effects 
have not been investigated in calves.

Difference in the taxonomic abundance between groups further 
resulted in changes within the predicted functional microbiomes 
(according to PICRUSt2 analysis; Figure 3). Conventionally reared 
calves were predicted to have reduced levels of l-tryptophan and 
l-ornithine biosynthesis (false discovery rate-corrected P-values of 
0.032 and 0.035, respectively) in addition to reduced expression 
of the mevalonate pathway (P = 0.042) and the superpathway of 
geranylgeranyl diphosphate biosynthesis (P = 0.046). Tryptophan 
is a precursor of serotonin, which stimulates components of both 
the innate and adaptive immune systems and may enhance the 
calf’s immune response to pathogens (Hernández-Castellano et 
al., 2018). Lactobacillus, which as previously described was more 
abundant in the calves allowed dam contact, has also been linked to 
greater tryptophan and l-ornithine metabolism within the gut (Qi et 
al., 2019). Collectively, these differences in both taxonomic com-
position and predicted functionality suggest potential advantages 
for calves reared with maternal contact compared with convention-
ally reared counterparts. However, the functional differences can 
only be predicted because the analyses are solely on 16S targets, 
and PiCRUST has been based on the human microbiome.

Additionally, we cannot be certain to what extent maternal 
contact itself influenced changes in relative abundance of taxa 
and associated functional differences. There were no observable 
differences in α diversity (P > 0.05 in Wilcoxon rank sum tests, 
according to the Shannon diversity index). With regard to differ-
ences in β diversity, it is likely that these factors were also affected 
by environment and diet. To investigate the effect of environment, 
we compared the microbiota in environmental samples using Bray-
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Figure 1. Principal coordinates analysis (PCoA) plot of Bray-Curtis dissimilari-
ty in β diversity between treatment groups. Ellipses delineate 95% prediction 
areas for each group, with the dotted lines assuming a multivariate normal 
distribution and the solid lines assuming a multivariate t distribution. The 
red ellipse represents maternal contact calves, and the teal ellipse represents 
conventionally reared calves. The P-value corresponds to results from the 
adonis permutational multivariate ANOVA.
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Curtis principal coordinates analysis. The microbiota composition 
for the calf barn, in which the conventional calves were housed, 
differed from that of the area in which the maternal contact calves 
were housed (calf creep during the day and freestall pen at night; P 
= 0.01 permutational multivariate ANOVA). Comparison between 
the calf creep and the calf barn yielded a nonsignificant tendency 
(P = 0.07). Taxa-specific differences in environmental samples 
also showed tendencies (P ≤ 0.1 > 0.05) for higher concentrations 
of Coprobacter and Prevotella 9 in the calf barn compared with 
the calf creep and for lower concentrations of Lactobacillus. Thus, 
differences in the environment appeared to reinforce the differ-
ences between the groups to some extent. The inverse, however, is 
equally plausible: that the calves themselves led to environmental 
differences, given that the groups had different microbiota.

Several other important questions remain to be answered. For 
instance, the maternal contact calves in our study were group 

housed during the day, with collective nighttime access to their 
dams. As this housing likely involved regular reciprocal lick-
ing and other affiliative behaviors between dams and calves, we 
may have expected a high degree of homogeneity of microbiota 
between the calves, as social transmission of microbiota has been 
observed in other species (Münger et al., 2018). The data presented 
in Figure 1, however, do not seem to support this conclusion. Pre-
vious research in which calves were housed in a manner similar 
to that in the current study (dynamically, with nighttime access to 
their dams) suggests that calves spend more time nursing their own 
dam compared with other dams (Johnsen et al., 2015) and that, 
regardless of suckling opportunity, dam–calf pairs engage in more 
affiliative behaviors with each other relative to other animals in the 
same group (Johnsen et al., 2015).

To tease apart the nuances of social microbiota transmission 
from dam to calf, future studies could house calves individually 

Beaver et al. | Influence of early rearing on dairy calf microbiota

Figure 2. Relative abundance of significantly different bacterial taxa present within stool of maternal contact (Mat.Contact; n = 22) and conventionally 
reared (Conv.Reared; n = 15) calves. P-values represent results from false discovery rate-corrected Mann-Whitney U tests. Rel. = relative; unk. = unknown. The 
midlines represent median values for each group. The boxes represent interquartile range (IQR), whiskers are 1.5 × IQR, and dots represent any datapoints 
beyond 1.5 × IQR.
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with their respective dams. This experimental design may have 
limited feasibility in commercial contexts, and it is unknown, from 
a welfare perspective, whether dam–calf contact alone is an ad-
equate substitute for the welfare benefits afforded by interactions 
between calves (Costa et al., 2016). One advantage of the current 
study design is that it more closely mimics the natural herd dynam-
ics exhibited by semi-wild cattle (Vitale et al., 1986) and may be 
a more feasible option for implementation on commercial dairy 
farms.

Research on vertical transfer of microbes from ruminant milk 
is limited (Oikonomou et al., 2020). In humans, the direct con-
tribution of milk microbiota to the infant has been estimated at a 
modest 4.9%, with additional indirect contributions hypothesized 
(Williams et al., 2019). The conventionally reared calves in our 
study were fed waste milk from the herd (albeit pasteurized), 
which may have contained antibiotic residues; this diet could have 
contributed to increased prevalence of genera associated with anti-
microbial resistance. The literature provides conflicting messages 
on the effects of feeding calves milk containing antimicrobials. For 
example, Feng et al. (2020) found no difference in fecal microbiota 
of calves fed whole milk with and without pirlimycin when com-
pared across the Comprehensive Antibiotic Resistance Database. 
Conversely, Van Vleck Pereira et al. (2014) found that fecal sam-
ples from calves fed raw milk containing drug residues (e.g., from 
ceftiofur, ampicillin, penicillin, and oxytetracycline) had a higher 
proportion of multidrug-resistant Escherichia coli. In a follow-up 
study (Van Vleck Pereira et al., 2016), the microbiota of calves fed 
raw milk with and without drug residues could be distinguished at 
the genus level. Waste milk feeding is common practice on North 
American dairy farms, with the percentage of herds feeding waste 
milk ranging from approximately 48 to 78% depending on region 
(Vasseur et al., 2010; USDA, 2016). It should be noted that feed-
ing calves milk from treated cows does not represent best practice 
(Aust et al., 2013), but as long as this practice remains common, 
further research is needed to understand its long-term implications 
on the calf microbiome.

In their review, Malmuthuge and Guan (2017) emphasized the 
importance of understanding maternal factors and their effects on 
the dairy calf microbiome. These authors were alluding to maternal 
factors such as stress during gestation, methods of delivery, and 

maternal genetics. However, the presence of the dam herself as 
a maternal factor merits consideration, particularly in light of the 
increasing popularity of dairy cow–calf rearing systems and as-
sociated effects on welfare and health (Johnsen et al., 2018; Beaver 
et al., 2019; Meagher et al., 2019). Future research should aim to 
better to separate the influence of maternal contact from diet and 
environment. This effort could be facilitated by increasing the size 
and number of relevant groups to create a factorial design. There 
is a pseudoreplication issue inherent in housing different treatment 
groups in separate environments; however, there is also evidence 
of horizontal transmission of microbiota in mammalian species 
in shared environments, including baboons (Tung et al., 2015), 
chimpanzees (Moeller et al., 2016), and humans and canines (Song 
et al., 2013). Although transmission modes of gut microbiota in 
mammals are still poorly understood, it is likely that a shared en-
vironment produces homogenizing effects. A delicate balance is 
therefore needed in future studies to minimize the effects of pseu-
doreplication while simultaneously mitigating the homogenizing 
effect of housing multiple groups of calves in the same environ-
ment.

Recent work with a small number of beef and dairy calves 
(Barden et al., 2020) has suggested a greater phylogenetic similar-
ity between calf fecal microbiota and the oral (vs. fecal and milk) 
microbiota of cows. In contrast, the early gut microbes of lambs 
permitted to nurse were derived primarily from the teat skin of 
their dams (Bi et al., 2019). If the presence of the dam is indeed 
found to be a significant factor, maternal contact itself could be 
further deconstructed to establish the primary sources of calves’ 
microbiota.
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