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Abstract 

Acute Oak Decline (AOD) is a tree health condition affecting two oak species in Britain 

Quercus robur and Q.petraea. Symptomatic trees develop vertical fissures with 

associated stem bleeding due to tissue necrosis. Two newly identified bacteria species 

Brenneria goodwinii and Gibbsiella quercinecans have been isolated from this exudate 

and are now thought to contribute to the inducement of stem bleeding. Genetic analysis 

has indicated both bacteria have the capacity to be pathogenic and are able break down 

plant tissue.  

How these bacteria colonise oak and any potential movement pathways allowing the 

spread of the bacteria within and between trees remains unknown. The association of 

Brenneria goodwinii and Gibbsiella quercinecans with the oak phyllosphere was first 

considered. Two primary pathways were then identified and explored. These were 

movement via insect vectors and airborne movement via rain water. A number of different 

techniques were used to establish whether any of these pathways had potential as 

colonisation routes. Stem lesions focus the collection on wood boring beetles as potential 

insect vectors and this will include A.biguttatus due to its associated distribution with 

symptomatic sites although as discussed there is limited evidence to support this. The 

presence of stem lesions and tissue necrosis symptomatic of Acute Oak Decline has led 

to suggestions a xylophagous (wood boring) insect may be involved. Other wood boring 

insects such as those with xylophagous and saproxylic lifestyles also utilise oak as a host 

and have potential to act as passive or active vectors as well. The second mechanism to 

be investigated will be the potential for airborne movement via rain to move bacteria within 

and between oak hosts.  

Results indicate that Brenneria goodwinii and Gibbsiella quercinecans are associated with 

live oak leaves, leaf litter, acorns and catkins. Investigations suggest that both are part of 

the oak bacterial community and hint at differences in lifestyles between Brenneria 

goodwinii and Gibbsiella quercinecans. In addition the results suggest that both bacteria 

potentially have multiple means of encountering new hosts.  
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Chapter 1 
 

Literature Review 

1.1 Acute Oak Decline 

The appearance of Acute Oak Decline (AOD) in the UK is first thought to have occurred 

during the 1980s (Denman et al., 2010). At that time it was considered a new condition 

impacting the health of two oak species in Britain (Quercus petraea and Q.robur). In 

particular, it was noted that trees over 50 years old were most likely to be affected (Denman 

et al., 2010).  

Acute Oak Decline is described as a decline disease (Denman et al., 2014) or a decline 

syndrome (Sapp et al., 2016). This concept was established by Manion (1991) who 

developed a decline disease spiral model to explain the progression of declines. Within the 

model the interaction of abiotic and biotic elements together result in a gradual decline in 

tree health. Elements can be categorised into three groups (Sinclair, 1965); ‘predisposing’ - 

affecting a trees ability to withstand adverse events; ‘inciting’ - causing initial decline 

symptoms and ‘contributing’ - additional factors furthering decline (Table 1) (Sinclair, 1965). 

Trees already weakened by predisposing and inciting factors are more exposed to being 

affected by additional contributing factors (Manion, 1991).  

 

Table 1. Categories and examples of abiotic and biotic elements influencing decline 

diseases 

 Predisposing Inciting  Contributing 

Mode of 

action 

   

Long term slow changing Short term Long and short term 

Site factors e.g.soil moisture1, 2 Defoliation1 Root decay fungi1 

Greater age2 Frost2 Canker fungi1 

Climate2 Drought1 Wood boring insects1 

Genetic makeup2 Injury2 Insect activity1 

  Viruses1 

 

1Sinclair (1965); 2Manion (1991) 
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The decline in the health of oak due to various abiotic and biotic factors has been reported 

across Europe throughout the last century (Sallé et al., 2014; Thomas et al., 2002; Führer, 

1998). Although oak declines have occurred previously in the UK these caused 

deteriorations in oak health by impacting foliage, via defoliation and mildew, rather than bark 

(Denman et al., 2010). Despite the differing visual symptoms these declines are now thought 

to have also been caused by AOD (Denman et al., 2010). This could indicate that trees 

affected by AOD show a variety of symptom expression or that impacts on foliage are a 

stage of disease infection. Defoliation could alternatively be a predisposing and mildew a 

contributing factor (Table 1). 

Due to often multiple and interchangeable influential factors decline diseases make 

management strategies difficult to establish. Deciding at what point during the disease 

development to intervene can prove problematic when declines can also be considered part 

of natural succession at affected sites (Manion, 1991). Management options can also 

become complicated without a clear idea of disease progression. Research to date has 

primarily focussed on the epidemiology of AOD in the UK and potential inciting and 

influential factors which are discussed in the following sections.  

1.1.1 Epidemiology of Acute Oak Decline 

The symptoms of AOD have been specified as stem bleeds from lesions and underlying 

necrotic bark tissue (Denman et al., 2014) (Figure 1, Figure 2). Exudate from these bleeds 

appears to be seasonal; usually occurring March to June and reappearing October to 

November (Denman et al., 2014). During July to September and December to February) the 

exudate dries up. A further symptom of exit holes and larval galleries of Agrilus biguttatus 

(Oak jewel beetle) is often included (e.g. Broberg et al., 2018) but this should be discounted, 

as a symptom is defined as the visible effect of a disease. Galleries and exit holes are more 

appropriately reported as signs (Denman et al., 2014) or as associated with lesions 

(Denman et al., 2018). There is, however a lack of evidence that galleries and exit holes 

found are those of A.biguttatus and that they are linked with AOD. The identification of a 

Q.robur tree in Spain with AOD symptoms reported the absence of larval galleries (González 

& Ciordia, 2019) and trees have been observed with exit holes and no visible bleeds 

(personal observation). 
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Figure 1. Tree with symptomatic   Figure 2. Cut log section with AOD symptomatic 

AOD lesions     bleeding lesions 

 

Understanding the epidemiology and disease progression for AOD has proved difficult since 

there appears to be no consistent pattern of infection or symptom development. Mortality of 

trees showing symptoms was initially reported as occurring within four to five years of 

symptoms developing (Denman et al., 2010). An epidemiological study using eight 

monitored woodland plots has, however, indicated that individual trees can enter remission 

following the previous years infection and that relapses in infection are also possible (Brown 

et al., 2016).  

In disease epidemiology, the epidemiological triangle (Figure 3) is a methodology which 

suggests that in order for disease to occur the presence of a causal pathogen alone is 

insufficient and factors related to the host and environment have to be present for it to 

establish (Page et al., 1995). The use of the epidemiological triangle in relation to AOD could 

therefore be appropriate with indications that characteristics of individual trees and the 

environment are important in determining susceptibility to AOD. 
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Figure 3. Example of an epidemiological triangle 

Site conditions were found to be important when considering the rate of AOD infection and a 

linear progression of increasing disease development has not been demonstrated (Brown 

2014). Local environmental factors may therefore be influencing infection (Brown, 2014). 

Over four study years the overall number of symptomatic trees remained stable at four sites 

potentially indicating AOD had reached a maximum level of potential hosts (Brown 2014). 

Full host resistance to a pathogen (Hughes, 1996) offers an explanation as to why not all 

trees are affected. Partial (Hughes, 1996) or quantitative host resistance, whereby the 

disease is reduced but not absent completely, is also possible (Poland, 2008).  

In addition to the basic triangle other factors such as vectors, time and external reservoirs 

can be added in (Page et al., 1995) and may be relevant to AOD. At seven of the eight 

woodland plots monitored by Brown, 2014 there was evidence of trees with symptoms 

'clustering'; suggested as indicating the cause and movement of the condition was more 

likely to be due to a local biotic agent than a wider environmental cause such as movement 

via rain (Brown et al., 2016). This supports the hypothesis that a pathogen could be 

influencing the pattern of infection shown (Brown et al., 2016). The level of clustering of 

affected trees was however variable between sites and over different scales and distances 

(Brown, 2014) and has additionally become less clear with increasing time (Brown, 2018 

conference presentation pers. comm.). Since plant pathogens can be dispersed by rain, 

wind, infected tissues, seeds or vectors (Esker et al., 2007) the variation in distances 

between symptomatic trees may therefore indicate multiple dispersal mechanisms (Brown, 

2014) or multiple reservoirs.  

A modelling study has been carried out to investigate potential predisposing abiotic factors 

including soil type, climate and pollutant deposition all of which may influence the presence 

of AOD at a site (Brown et al., 2018). Initial conclusions indicated that soil water level was a 

key influential factor with Acute Oak Decline more likely to be present where recorded 

rainfall was lower and on sites with seasonally waterlogged soil (Brown et al., 2018).  

Host

AgentEnvironment
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Both of these may be related to soil type as most AOD was on sites with soils rich in clay 

(Brown et al., 2018). Affected sites had a higher number of days above 11.5°C considered to 

indicate a longer growing season (Brown et al., 2018). Total deposition of nitrogen was 

higher and sulphur lower at sites with AOD than those without (Brown et al., 2018). This was 

suggested as being linked to sulphurs’ antibacterial properties and a potential decline in tree 

health status as a result of decreased levels (Brown et al., 2018). A higher level of soil 

nitrogen was also thought to represent lower tree health at a site (Brown et al., 2018).  

1.1.2 Bacterial component of Acute Oak Decline 

Work on the epidemiology of Acute Oak Decline suggested the involvement of a bacterial 

pathogen or pathogens. Two newly identified species; Gibbsiella quercinecans [Family: 

Enterobacteriaceae] and Brenneria goodwinii [Family: Pectobacteriaceae] had been 

consistently detected together from necrotic tissue and stem bleeds and were considered 

likely to be involved (Brady et al., 2010; Denman et al., 2012; Sapp et al., 2016).  

Brenneria goodwinii 

The genus Brenneria (Hauben et al., 1998 emend. Brady et al., 2012) forms a distinct 

phylogenetic group of gram negative bacteria 0.861-1.3 m with flagella on their surface 

(peritichous flagella). Strains of Brenneria can cause disease on trees (Hauben et al., 

1998). Examples of those causing bark cankers include B.alni, on Alnus (alder), 

B.nigrifluens and B.rubrifaciens on Juglans (walnut) (Hauben et al., 1998) and B.populi on 

Populus x euramericana (poplar).  

Species of Brenneria also affect other tissues e.g. B.salicis, affecting the xylem and 

cause of watermark disease of Salix (willow) and B.paradisiaca, causing rotting in the 

roots of Musa paradisiaca (banana) (Hauben et al., 1998). One Brenneria species able to 

colonise oak is Brenneria quercina 1  (Brady et al., 2012). This bacteria causes bark 

cankers and ‘drippy nut disease’, where acorns ooze sap and rot, (Biosca et al., 2003). 

When injected into the stems of Nicotiana sylvestris (tobacco) seedlings, two out of eight 

B.goodwinii isolates also initiated a hypersensitive response (Denman et al., 2012). 

Phylogenetic analysis has revealed that B.goodwinii is a facultative anaerobe (Denman et 

al., 2012) located alongside other Enterobacteriaceae ‘soft-rot’ necrotic bacterial 

pathogens (Doonan et al., 2019). It has been shown to be more associated with 

necrotrophs, which kill their host and utilises the dead matter, than hemibiotrophs, which 

can shift from living to dead tissues (Doonan et al., 2019).  

                                                
1Formally Erwinia quercina; reclassified into a new genus with a single species, Lonsdalea gen. nov., 
as Lonsdalea quercina comb. nov. (Brady et al., 2012).  
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A phylogenetic and cluster-based sequence analysis of 44 B.goodwinii strains from seven 

different locations revealed that the UK population is highly variable (Kaczmarek et al., 

2017). The study showed no pattern to the distribution of the 22 sequence types identified 

and suggested there is an endemic form of B.goodwinii in the UK with sequence types 

becoming dominant in their separate locations and even on separate trees.  

Gibbsiella quercinecans 

The genus Gibbsiella (Brady et al., 2010, gen nov.) are gram negative, facultatively 

anaerobic bacteria 0.9 × 1-1.5 m with fine fimbriae distributed over their surface (Brady 

et al., 2010). G.quercinecans has been identified in Spain on both Q.ilex (holm oak), 

Q.pyrenaica (pyrenean oak) (Brady et al., 2010) and Q.robur (González & Ciordia, 2019). 

In the UK it has also been isolated from Aesculus hippocastanum (horse chestnut), apple 

and pear (Denman et al., 2016). 

Several other bacterial genera containing plant pathogens have been isolated from lesions in 

lower concentrations (Brady et al., 2017). These include the cause of Poplar canker 

Lonsdalea quercina and several Erwinia sp., many of which cause soft rots (Brady et al., 

2017). Other species of Brenneria have also been identified along with Rahnella victoriana, 

another potential bacterial component of AOD (Brady et al., 2017). As detection is a 

reflection of the bacteria present and capable of being detected (Gonzalez et al., 2012) 

rather than pathenogenicity the role of other bacteria in tissue necrosis may have been 

overlooked. There are additionally biases to the detection of bacteria via PCR amplification 

which may over or underestimate the proportion of each taxa within the community 

(Gonzalez et al., 2012). Nevertheless G.quercinecans and B.goodwinii are now considered 

the microbial cause of tissue death and stem bleeding (Brady et al., 2010; Brady et al., 2017) 

with B.goodwinii thought to be more dominant (Broberg et al., 2018; Doonan et al., 2019). 

Genomic analysis has shown that B.goodwinii and G.quercinecans have the capacity to 

become pathogenic and furthermore that G.quercinecans has the genes necessary to 

degrade oak tissue (Doonan et al., 2019). In order to investigate the pathogenicity potential 

of B.goodwinii and G.quercinecans small holes were bored into sections of cut logs and then 

the bacteria either applied singly, together or in combination with A.biguttatus eggs (Denman 

et al., 2018). As tissue necrosis then followed the conclusion was that both B.goodwinii and 

G.quercinecans induce necrosis with and without the presence of A.biguttatus (Denman et 

al., 2018). Since wound controls also produced lesions (Denman et al., 2018), Brenneria 

goodwinii and G.quercinecans do not simply induce necrosis, rather they cause lesion 

formation after a wound has been created. The results therefore indicate that lesions can be 

formed as a result of bacteria entering a pre existing opening or wound.  
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Bacterial inoculations were also carried out on non-wounded tissue although their application 

was only in combination and with A.biguttatus eggs. With no test of the bacteria individually 

with and without eggs and results not presented from this trial, there is no experimental 

comparison with wounded logs. This would have provided an evaluation of bacterial actions 

with and without a wound. It further remains unknown at what population level bacteria 

induce a lesion response. Without this knowledge the applied inoculums may not have been 

realistically related to that found in nature. The Gibbsiella genus for example, is considered 

common in the environment and not a causative agent of oak decline (Geider et al., 2015).  

By using cut logs with a low moisture content, the actions of the bacteria are on 

compromised tissues. Larger lesions produced by introducing of eggs with bacteria could 

simply indicate the effect of multiple stress factors. The eggs themselves may also incite a 

plant defence response (Reymond, 2013). Eggs were also introduced onto a wound surface 

which does not replicate nature where eggs are laid on external bark. As previously 

mentioned, evidence of the involvement of A.biguttatus in AOD or vectoring the bacteria is 

non-existent. Isolation of bacteria along larval tunnels could mean they have entered via a 

wound created by an exit hole, are utilising larval frass as a resource or taking advantage of 

already degraded tissues. A comparison of another wood boring insect or a mechanically 

created tunnel would have provided evidence of how the bacteria may colonise a tree.  

Both B.goodwinii and G.quercinecans have been proposed by Doonan et al. (2019) as 

acting via necrogenic enzymes or secretion of effector proteins. Both of these mechanisms 

of action involve the bacteria secreting enzymes to cause tissue decay (McDonald and 

Denman, 2015) or introducing proteins to assist in pathogen invasion or suppress a host 

immune system (Alfano and Collmer, 2004). The bleeding lesions and tissue necrosis that 

resulted from bacterial inoculations onto cut oak logs is therefore not surprising and may 

indicate that a hypersensitive response has been stimulated within the tree. This defence 

response causes tissue necrosis in reaction to the presence of a pathogen; a mechanism of 

plant defences which is well established (Hughes, 1996).  

The development of molecular techniques has provided the ability to identify and separate 

bacterial species (Johnson, 2000). It is therefore possible that the symptoms now ascribed to 

AOD have been present for longer and attributed to other causes and it is the use of 

molecular identification that has resulted in the categorisation of a new condition. How 

G.quercinecans and B.goodwinii colonise oak tissues and from where they originate remains 

unknown. They may form part of an oak bacterial community or be present within a 

woodland and colonising from other sources or reservoirs. Whether the bacteria are 

transferred between individual trees and how they might transported be is also unknown.  
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1.2 Plants and associations with bacteria 

Of all the microorganisms, bacteria are the most abundant in nature (Lindow and Brandl, 

2003). Bacteria are widely present within the natural environment and are able to survive in 

a range of habitats, hosts and tissues. Plants in particular provide a large resource above 

and below ground for bacteria not all of which are pathogenic. The following sections 

highlight some of the associations, positive and negative, that exist between bacteria and the 

plant environment.  

The phyllosphere is an environment colonised by a variety of microorganisms including 

bacteria, yeasts and fungi (Lindow and Brandl, 2003). Phyllosphere is a term first introduced 

in the 1950s where it was used to refer to the microbial fauna of leaves (Fokkema, 1991). It 

is also used to describe the above ground parts of plants (Lindow and Brandl, 2003) where 

the term encompasses leaves, stems and flowers. Some authors subdivide the phyllosphere 

into separate components using terms such as caulosphere (stems), phylloplane (leaves), 

anthosphere (flowers) and carposphere (fruits).  

Bacteria can exist both endophytically within plant tissues, (Rosenblatt and Martinez-

Romero, 2006) and/or epiphytically on external surfaces (Lindow and Brandl, 2003). 

Bacterial endophytes are classified as either facultative or obligate; respectively able or 

unable to exist without the host plant (Hardoim et al., 2008). In a review of the interactions of 

endophytic bacteria and their hosts Rosenbleuth and Martinez-Romero (2006) discuss 

bacterial ability to enhance a host plants nutrient acquisition and uptake, increase plant 

growth, suppress pathogens and remove contaminants via phytoremediation.  

Interactions between epiphytic bacteria and plants have also been widely investigated 

including the bacterial synthesis of growth hormones and their ability to influence the rate of 

plant metabolism (Lindow and Brandl, 2003). Bacteria are unable to actively move into a 

plant instead relying on openings such as stomata or wounds (Manion, 1991) potentially 

indicating why microbial species have been isolated to a greater extent from plant exterior 

surfaces (Lindow and Brandl, 2003).  

Pathogenic bacteria in particular are able to colonise the tissues inside the leaves and avoid 

external limiting factors (Beattie and Lindow, 1999; Lindow and Brandl, 2003). Few 

estimates have been made of the number of plant pathogenic bacteria. Estimates have been 

put forward of at least 100 species already identified (Dickinson, 2004), with others 

suggesting of 7100 classified bacterial species, up to 150 cause disease by overcoming 

plant defences (Kannan et al., 2015). The most studied plant pathogens are those 

associated with crops (Daniels, 1998), with few associated with tree disease (Manion, 1991).  
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Phytopathogens fall into a range between two main types (Lucas, 1998; Glazebrook, 2005) 

(Table 2). Phytopathogens can also be saprotrophic – only utilising dead organic tissue 

(Lucas, 1998) or hemibiotrophic - shifting from biotroph to necrotroph during different life 

stages or situations (Glazebrook, 2005).  

Table 2. Key features of the two main types of pathogen, biotroph and necrotroph 

 Biotroph Necrotroph 

Key features   

Host Obligate on living host tissue 

Not able to grow without contact 

with host 

Kill and then utilise dead or dying 

host tissue 

Opportunistic pathogens not 

obligate on host 

Can exist as saprotrophs  

Mode of action Slow acting Rapid action  

 Invade directly into host or via 

natural openings 

Attack healthy tissue 

Invade via wounds or natural 

openings 

Attack damaged tissues 

Host range Limited range  

All age classes 

Wide range 

Younger age classes 

  Declining hosts 

 

Pathogenic bacteria can cause the visible disease symptoms through degradation of cell 

walls, production of toxins or by disrupting cell division (Manion, 1991). Plant defences to 

resist pathogens include cell structures designed to inhibit colonisation, acquired resistance 

and chemical defences (Hughes, 1996). Chemical defences can be preformed inhibitors 

(those continually present) and induced chemical responses (activated by the presence of 

the pathogen) (Hughes, 1996). One induced response that could indicate a pathogen attack 

is the necrosis of a plants own tissues (Hughes, 1996) which can appear as stem bleeds.  

1.2.1 Plants and bacterial communities – colonisation and establishment 

The majority of studies on phyllosphere bacterial communities have concentrated on leaves 

as they represent a large available area of a plant for colonisation (Lindow and Brandl, 

2003). There have been few studies on the bacterial communities of stems and fruit although 

some have been carried out on flowers (Aleklett et al., 2014), pollen (Stefani and Giovanardi, 

2011) and seeds (Rosenbleuth and Martinez-Romero, 2006; Green et al., 2007).  

Bacterial communities are known to vary with host species, surrounding environment and 

abiotic conditions (Laforest-Lapointe et al., 2016). Abiotic factors limiting and influencing the 

colonisation of bacteria of a leaf surface are conditions such as changes in light, 

temperature, humidity and exposure to the elements. In an urban environment air pollution 
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has also been found to have an influence on the bacterial community composition (Wuyts et 

al., 2020). Other influencers are the leaf physical characteristics for example the waxy cuticle 

and nutritional content (Lindow and Brandl, 2003).  

Scanning electron microscopy utilised to explore epiphytic bacterial communities revealed a 

higher density of bacteria on the underside of the leaf compared with above with 

concentrations along the leaf veins as well as near stomata and the bases of trichomes 

(Nongkhlaw and Joshi, 2014). These places of aggregation were in some cases forming 

biofilms, potentially as an adaptation to protect from environmental stress (Nongkhlaw and 

Joshi, 2014). Bacteria are also able to modify leaf surface conditions to allow a more 

effective colonization of plants (Beattie and Lindow, 1999). Examples include increasing 

nutrient concentrations on the leaf surface, producing extracellular polysaccharides and 

biofilms to aid surface adhesion and mitigate against desiccation (Beattie and Lindow, 1999). 

All of these factors mean that selection will favour those bacteria that can overcome the 

prevailing environmental conditions and plant host defences (Nongkhlaw and Joshi, 2014). It 

has also been suggested that a colonising bacterium may have a greater chance of 

establishment on a leaf with fewer bacteria already present; such as after rain, or a new leaf 

compared with a full grown leaf (Lindemann and Upper, 1985). Both Ercolani (1978) and 

Thompson et al. (1993) found young leaves generally hosted a greater number of taxa 

compared to older leaves. This supports the suggestion of Lindemann and Upper (1985) that 

a newly colonising species may have a greater likelihood of establishment on new leaves 

compared with older ones. Leaves from mature oak trees were found to have a higher 

species richness compared with leaves from younger trees which may have been linked to 

canopy height and site conditions (Jakuschkin, 2015). This is contrasted by an observation 

that bark microcores from Q.robur showed a significant decline in species richness as tree 

age increased (Meaden et al., 2016). Other influences on community composition may 

therefore be involved.  

When studying bacterial movement the use of a control can be used to differentiate between 

endemic phyllosphere communities and those colonising from the environment (Osteen et 

al., 2016). To evaluate whether there is a difference between endemic or introduced species 

Osteen et al. (2016) compared sterile plastic controls and live tomato plants. By using short 

sequences of 16S RNA (referred to as Operational Taxonomic Units OTUs) as a proxy for 

individual bacterial species Ottesen et al. (2016) identified the bacteria found. 

Enterobacteriaceae dominated the samples and results showed that only 10 percent of 

OTU’s were unique to the phyllosphere. Over 90 percent found on live plants were also 

shared with the inanimate controls (Ottesen et al., 2016).  



18 
 

Controls had a greater diversity of OTU's however these were present at lower abundances. 

The conclusion drawn from this was that a proportion of bacteria present within the air were 

finding a highly suitable plant host; in this case tomato leaves (Ottesen et al., 2016). Few 

bacteria were therefore endemic to the tomato leaves and environmental factors were 

important in introducing bacteria to plant surfaces (Ottesen et al., 2016).  

When looking at establishment of bacteria via irrigation water Telias et al. (2011) showed 

that whilst the bacterial communities of two different sources of water, ground and surface, 

were significantly different, the communities of the irrigated tomato plants were not. Only 

some of the bacterial species present in the irrigation water managed to establish 

themselves on the leaves of the tomato plants (Telias et al., 2011). This could indicate the 

influence of external environmental factors or alternatively the suitability of the tomato plant 

itself as a long term host only for certain species.  

Another influence on community composition is seen where damage to Fagus sylvatica 

(beech) leaves by Lepidopteran larvae resulted in a higher species diversity of epiphytic 

heterotrophic bacteria compared with undamaged leaves (Müller et al., 2003). There was no 

similar difference noted for Q. petraea leaves which may be due to differences in leaf 

structure (Müller et al., 2003).  

The compatibility or incompatibility of a plant and a bacteria influences the growth of the 

bacteria and its capacity to cause disease (Daniels, 1998). Pathogenic bacteria can have a 

non-pathogenic state existing on plant tissues without causing damage only transitioning to a 

pathogenic state in response to decreases in host defences (Lucas, 1998), environmental or 

nutrient changes (Toth and Birch, 2005). Humidity, for example appears to be important for 

certain pathogenic Pseudomonas syringae mutants to become established with increased 

growth in the resultant waterlogged apoplast observed at higher humidity (Xin et al., 2016). 

Bacterial phytopathogens are able to multiply on the surfaces of healthy plant tissues of host 

and non-hosts (Leben, 1974). Phytopathogens found amongst plant microbial communities 

of non-hosts have been shown to cause no detrimental effects, only becoming pathogenic 

once transferred to a host plant (Vanette, 1982).  

Bacteria with the ability to switch from an epiphytic to an endophytic lifestyle could be 

responsible for initiating disease (Beattie and Lindow, 1995). One example of a 

phytopathogenic bacteria able to colonise both the exterior leaf surface and internally is 

P.syringae pv. syringae (Beattie and Lindow, 1995; Meyer and Leveau, 2012). In this 

instance high rainfall initiates an increase in population with stomata potentially providing the 

opening for colonisation of internal tissues (Lucas, 1998).  
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Soil is another potential source of bacteria colonising plant tissues (Ryan et al., 2007). The 

colonisation of endophytic bacteria through the rhizosphere is a known mode of entry into 

internal plant tissues (Compant et al., 2010). Soil collected from the base of an old oak and 

subsequently inoculated with B.goodwinii and G.quercinecans showed that unlike 

G.quercinecans, which was detectable throughout the experiment, B.goodwinii had no 

viability although it was detectable via qPCR (Pettifor et al., 2020). Therefore soil as a 

source of these bacteria cannot be discounted. The ability of successfully colonising bacteria 

to move throughout the plant via intercellular spaces and xylem has also been established 

(Compant et al., 2010). Soil was considered to contribute to the bacterial community of oak 

trees due to the high abundance of Acidobacter within younger Q. robur trees compared with 

older trees and their generally high abundance in soil (Meaden et al., 2016).  

1.2.2 Plants and bacterial communities – survival and persistence 

Two strategies have been put forward by Beattie and Lindow (1995) that allow foliar bacteria 

to survive - avoidance and tolerance. Bacteria with an avoidance strategy will take 

advantage of spaces within leaf cells (Beattie and Lindow, 1995). Living endophytically 

affords protection from external conditions such as changes in temperature or moisture 

(Beattie and Lindow, 1995). Those with a tolerance strategy in contrast have adapted to the 

prevailing epiphytic conditions; producing pigments for example, to protect against U.V 

radiation (Beattie and Lindow, 1995).  

Temporal and spatial differences in bacterial communities have been observed in different 

temperate forest species (Laforest-Lapointe et al., 2016) and the influence of physical 

geographical distance has been seen for the bacterial communities of oak (Sapp et al., 

2016). Across five sites studied the composition of the oak bacterial communities differed by 

site (Sapp et al., 2016). In contrast, at an individual tree level, the location of a canopy leaf 

sample from five different species; Acer saccharum, A.rubrum, Betula papyrifera, Abies 

balsamea and Picea glauca was not a significant factor in accounting for differences in 

community composition (Laforest-Lapointe et al., 2016).  

Individual leaves can show variation in their bacterial composition (Jakuschkin, 2015). There 

were observed differences between individuals of the same species and between different 

host species (Laforest-Lapointe et al., 2016). The greater influence of a larger distance on 

bacterial community composition could be due to site abiotic differences determining which 

bacteria are present (Sapp et al., 2016). Temporal differences may be due to changes 

occurring within the phyllosphere which alter available nutrition and/or physical condition of 

the colonisable surface (Lindow and Brandl, 2003).  



20 
 

Seasonal changes in the bacterial population of Olea europaea (Olive) leaves (Ercolani, 

1978) and Beta vulgaris (sugar beet) (Thompson et al., 1993) have been observed. For 

B.vulgaris, the lowest bacterial diversity recorded correlated with a warm and dry period and 

the highest with low temperature and high rainfall (Thompson et al., 1993).  

The concept of 'quorum sensing' whereby bacteria, once they reach a certain population 

level, communicate via 'signalling molecules' to coordinate certain actions has been applied 

to the interactions between bacteria and plants (Braeken et al., 2008). These signalling 

molecules have been identified in the genes of plant pathogens including those resulting in 

the production of proteins and enzymes, regulation of gene expression and pathenogenicity 

as well as the initiation of plant defences and stress responses (Braeken et al., 2008). The 

expression of the same molecules in different species is also suggestive of the capacity for 

intraspecies communication and interactions (Breaken et al., 2008). Some plants are, 

however, able to disrupt these signals (Breaken et al., 2008). So far both signalling and 

interference are uninvestigated for the bacteria associated with AOD.  

Plant pathogens that are able to persist through gaps in host availability, such as that 

caused by seasonal growth changes, will have an advantage (Allen et al., 2009). 

Persistence can therefore prevent eradication of pathogens (Martins et al., 2018). 

Contaminated plant litter as well as other plant species can provide phytopathogens with an 

overwintering resource (Vanette, 1982). Others persist in soil (Brown, 1997), insects, seeds 

or the atmosphere (Allen et al., 2009). Bacteria are also able to survive in dry diseased 

tissues, reduce their metabolism (hyperbiotic state) or through aggregation (Leben, 1974). 

Although understudied, phytopathogens may also use 'persister cells' which inactivate their 

metabolism to survive resistance and then reinitiate growth (Martins et al., 2018).  

Bacteria with very different lifestyles exhibit this strategy (Martins et al., 2018). These include 

canker inducing bacteria e.g. Erwinia amylovora, responsible for stem cankers on Rosaceae 

and Clavibacter michiganensis, responsible for cankers on tomato and spread via seeds 

(Martins et al., 2018). Other bacteria with this strategy are Ralstonia solanacearum a wilt 

inducing bacteria on a range of crops, Xylella fastidiosa, which causes leaf chlorosis, and is 

an inhabitant of Xylem and the fore gut of 'sharpshooter' insect vectors (Martins et al., 2018). 

Opportunistic pathogens e.g. Pseudomonas syringae can also avail themselves of this 

strategy (Martins et al., 2018). Long term survival will however be dependent on 

environmental conditions (Leben, 1974).  

It is possible the bacteria found within bleeds on trees diagnosed with AOD exist 

epiphytically or endophytically on external oak tissues. They may, alternatively, be found 

within the environment and as Ottensen et al. (2016) suggest find oak a suitable host to 
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colonise in larger numbers. Entering via leaves may be one way the bacteria associated with 

AOD are able to colonise oak tree tissues. Alternatively, if they are already part of any 

aspect of the phyllosphere certain environmental conditions may induce pathenogenicity or 

an increase in population which overwhelms plant defences.  

1.2.3 Plants and bacterial communities – dispersal and movement pathways 

Persistence and dispersal are understudied aspects of bacterial life stages (Allen et al., 

2009). Identifying how bacteria disperse is an important aspect in understanding their 

interactions with plants (Frank et al., 2017) with the origin of the microbiota associated with 

plant surfaces highlighted by Ottesen et al. (2016) as a research gap. Bacteria are not able 

to actively disperse to new hosts and rely on transmission (Frank et al., 2017) and 

opportunistic encounters (Vanette, 1982).  

Although bacteria can be dispersed solely by air, direct movement is not thought to be a 

common mechanism (Kannan and Bastas, 2015). Movement is more likely to be via insect 

vectors (Kannan and Bastas, 2015), through rain picking up airborne bacteria or rain splash 

directly on plant surfaces or via soil water (Frank et al., 2017). Bacteria can also be moved 

by multiple methods, for example bacteria able to colonise new hosts independently may still 

form a relationship with an insect for transmission (Orlovskis et al., 2015). This section 

focuses on the movement pathways of bacteria with an emphasis on phytopathogens.  

1.2.3.1 Insect vector transmission of bacteria 

The ‘microbial colonization’ of insects and whether they have indigenous bacteria is 

unknown for most species, as is the function of the bacteria themselves (Dillon and Dillon, 

2004). The role of bacteria within an insect, can be to aid and improve digestion of food or 

provide nutrients or digestive enzymes (Dillon and Dillon, 2004; Douglas, 2009; Klepzig et 

al., 2009; Engel and Moran, 2013). Bacteria can confer other benefits to insects such as 

resistance to pathogens (Eleftherianos et al., 2013), resistance to parasites, defence against 

predation (Engel and Moran, 2013) and pheromone production (Dillon and Dillon, 2004).  

Insect vectors can be important to the movement of bacteria and is one of the more studied 

movement pathways for bacteria to colonise new hosts (Kannan and Bastas, 2015). It is 

therefore one way in which B.goodwinii and G.quercinecans may be transferred between 

trees. Insect transmission of plant pathogens has evolved independently several times over 

and many different insect species are utilised by plant pathogens for the transmission of 

bacteria (Orlovskis et al., 2015). For many insects the microorganisms present within their 

guts are also widespread within the environment (Engel and Moran, 2013).  
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For an insect-bacteria relationship to be successful or persistent the two must have the 

opportunity to come into contact (Nadarash and Stavrinides, 2011). Some bacteria can alter 

plant olfactory signals to insects thereby increasing the chances of successful encounter 

(Orlovskis et al., 2015). Movement of bacteria can additionally be through incidental 

encounter by insects which act as passive agents of transmission or through a closer 

association between specific bacteria, plant host and insect (Orlovskis et al., 2015).  

Pathogens have adapted to use insect feeding routes to enter plant tissues (Orlovskis et al., 

2015). Some are dependent on insects for movement to new hosts particularly those that are 

phloem restricted such as Candidatus species (Bové and Garnier, 2002). Xylem restricted 

bacteria vectored by insects include Xylella fastidiosa, Clavibacter xyli subsp. xyli1  and 

Pseudomonas.syzygii2 (Bové and Garnier, 2002). These restricted bacteria enter via the 

piercing mouth parts of insects e.g. hemipterans, aphids (Orlovskis et al., 2015). 

Others enter plant tissues through decaying tissues caused e.g. by flies (Basset et al., 

2003). Bacteria can also colonise through wounds created as insects with chewing 

mouthparts e.g. beetles feed. Another example of a close association between insect and 

bacteria is that of Erwinia carotovora3 and the black onion fly (Tritox aflexa) (Venette, 1982). 

The surface of the egg has bacteria on and the larva create an entry hole for colonisation 

while the larva use nutrients from the bacterial infection to develop (Venette, 1982).  

A different association has evolved between E.carotovara1 and the iris borer (Macronoctua 

onusta) whose larva use bacterially degraded tissues as food, the bacteria survive in the 

digestive system and are deposited on frass (Venette, 1982). A similar association has 

developed between Erwinia tracheiphila, a bacterial wilt of cucurbits, and the striped 

cucumber beetle (Acalymma vittatum) (Mitchell and Franks, 2009). Bacteria are spread 

through wounds created as the beetle feeds (Orlovskis et al., 2015) as well as deposited in 

the beetle frass where it remains viable up to 48 hours (Mitchell and Franks, 2009). 

In an extension of a vector relationship some phytopathogenic bacteria are capable of using 

insects as alternative hosts in very specific associations (Nadarash and Stavrinides, 2011). 

(Nadarash and Stavrinides, 2011). These bacteria are divided into 'circulative 

nonpropagative' or 'circulative propagative' modes of action (Nadarash and Stavrinides, 

2011). Nonpropagative bacteria do not replicate within the insect and ingestion by feeding is 

followed by bacterial movement to the mid or hindgut (Nadarash and Stavrinides, 2011). 

Propagative bacteria replicate within the insect and spread through the body (Nadarash and 

                                                
1Reclassified as Leifsonia xyli subsp. xyli (Davis et al. 1984) Evtushenko et al. 2000  
2Reclassified as Ralstonia syzygii (Roberts et al. 1990) Vaneechoutte et al. 2004 emend  
3Reclassified as Pectobacterium carotovorum subsp. carotovorum (Hauben et al., 1998) 
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Stavrinides, 2011). Transfer to a new host in both cases is via salivary glands during feeding 

(Nadarash and Stavrinides, 2011). Figure 4. taken from Orlovskis et al. (2015) illustrates 

these different strategies phytopathogens use for dissemination via insect transmission.  

 

Figure 4. Three strategies phytopathogens use for dissemination via insect transmission 

(Orlovskis et al., 2015). Whilst feeding bacteria are acquired by the insect (a, b, c). Diagrams 

(a) and (b) represent circulative propagation where bacteria grow within the gut or insect 

body. Diagram (c) represents non-circulative propagation where bacteria attach to the 

foregut. Bacteria transfer into plants via feeding wounds (a), in saliva through mouthparts (b, 

c) or infectious frass (a). Bacteria then spread through xylem (a, b) or phloem (c) 

Bacterial propagation within an insect can be from days to months (Orlovskis et al., 2015). 

Genetic adaptations for survival have been uncovered including those for adhesion to gut 

walls, enhancing survival and for persistence and forming biofilms (Orlovskis et al., 2015). 

Bacteria may alter plant physiology to attract insects e.g. changes to volatile compounds, 

leaf yellowing or through immune response suppression (Orlovskis et al., 2015). Conversely 

bacteria may increase insect movement to new hosts by blocking xylem or phloem, 

decreasing available resources (Orlovskis et al., 2015).  

A modelling study into insect-pathogen relationships highlighted several interactions that 

influence insect behaviour and therefore pathogen spread (Crowder et al., 2019). Overall, 

interactions that increased vector fitness e.g. predator reduction, increased pathogen 

spread, with the converse also true (Crowder et al., 2019). When pathogens were 

categorised as persistent (circulating through an insect prior to transmission) or non 

persistent (brief contact prior to transmission) they responded differently in the model to 

interactions (Crowder et al., 2019). Decreased insect feeding rate lowered the spread of both 

types, however increased vector-host encounters increased the spread of non persistent but 

not persistent pathogens (Crowder et al., 2019).  
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Bacteria are not necessarily harmful to the insect (Basset et al., 2003). For example only 

three out of the 16 E.carotovora1 strains tested induced an immune response in Drospophila 

melanogaster larvae after ingestion (Basset et al., 2003). The presence of a single gene was 

identified as necessary for colonisation and spread within the body of D.melanogaster 

(Basset et al., 2003). It was also suggested that the pathogenic nature of E.carotovora is 

somehow recognised by the immune system of D.melanogaster (Basset et al., 2003).  

The stem lesions and tissue necrosis of AOD has led to suggestions an insect, A.biguttatus, 

may be involved (Denman et al., 2018). Xylophagous insects nearly always feed on wood as 

adults or larvae and many utilise oak as a host. Insects with a saproxylic lifestyle also 

depend on dead or decaying wood for all or part of their lifecycle. Insects with either lifestyle 

therefore have the potential to act as passive or active vectors. 

1.2.3.2 Environmental transmission of bacteria 

Wind and rain are mechanisms by which bacteria can be transferred to new hosts. Although 

the amount of bacteria removed will be related to the population density rain is an effective 

disperser of bacteria over short distances (Butterworth and McCartney, 1991). Raindrops are 

known to be able to disperse soil bacteria into the atmosphere where the bacteria can 

survive for more than an hour (Joung et al., 2017). Tracking of atmospheric pathogen 

movement is an emerging area of research in developing plant health risk management 

strategies (Schmale and Ross, 2015) and new sampling methods (West and Kimber, 2015). 

Rainsplash can also dislodge bacteria from the surfaces of leaves (Butterworth and 

McCartney, 1991). To show this experimentally three bacteria, Pseudomonas syringae, 

Klebsiella planticola and Bacillus subtilis were sprayed onto a leaf surface and then 

rainsplash was artificially simulated with sterile water (Butterworth and McCartney, 1991). A 

comparison of bacterial presence on leaves before and after indicated that both splash 

droplets collected onto agar and the water runoff from the leaf contained bacteria 

(Butterworth and McCartney, 1991). A greater proportion of the dislodged bacteria were 

found in the runoff compared to the splashes (Butterworth and McCartney, 1991). A similar 

experiment found that artificially generated wind and rain were able to dislodge the bacteria 

Xanthomonas axonopodis pv. citri, which causes cankers on citrus, from the canopies of 1.5 

m tall grapefruit trees (Citrus × paradisi) (Bock et al., 2005). These cankers appear as 

necrotic lesions on leaves, shoots, branches and fruit (Bock et al., 2005).  

The distance that bacteria can travel via wind and rain is one area of investigation for plant 

pathogens. Bacteria are able to be dispersed thousands of kilometres through the 

atmosphere (Frank et al., 2017).  
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Rain and wind dislodged bacteria from the canopies of grapefruit saplings were found up to 

12m downwind of the leaf source area in a time frame of 10 minutes (Bock et al., 2005). The 

highest concentration of bacteria was at 1m with bacterial concentration decreasing with 

time and distance (Bock et al., 2005). In an investigation on the deposition of bacteria 

dislodged from the surfaces of bean leaves researchers noted that with a windspeed of ~6 

km h-1and peak deposition occurring 6-9 hours after initial displacement the bacteria could 

potentially travel 40-65 km from their original source (Lindemann and Upper, 1985).  

Collectors placed on the ground below the grapefruit sapling canopies contained higher 

bacterial concentrations compared with those placed in front of the canopy possible related 

to the angle of spray related to the collection funnel (Bock et al., 2005). A greater amount of 

bacteria were also dispersed from trees with lesions less than 6 months old (Bock et al., 

2005). Strategies that may enhance the environmental transmission of bacteria include 

biofilm development (Morris et al., 2008) and formation of lesions (Allen et al., 2009). 

Although lesions are thought more likely to facilitate short term rather than long term 

persistence and dispersal (Leben, 1974).  

The diversity of bacteria makes them a challenging area of study. Much about their lifestyle 

and modes of action remains understudied and this includes Brenneria goodwinii and 

Gibbsiella quercinecans. 

1.3 Thesis objectives 

The interactions of Brenneria goodwinii and Gibbsiella quercinecans with the oak 

phyllosphere remains an unexplored area as does their potential dispersal and colonisation 

pathways. The focus of this thesis will therefore be to research how Brenneria goodwinii and 

Gibbsiella quercinecans are associated with oak and investigate potential transmission 

mechanisms. 

The objectives of this thesis will be to:  

1) Identify the associations of B.goodwinii and G.quercinecans with the oak phyllosphere, 

focusing on live oak leaves, leaf litter, acorns and catkins. 

2) Investigate two potential transmission mechanisms 

 i. movement via insect vectors to focus on xylophagous coleoptera. 

 ii. airborne movement via rain. 
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Chapter 2 
 

Site descriptions and general methodologies 

 

Over the three years of study insect and phyllosphere samples were collected from different 

woodlands, with and without AOD, in different years (Figure 5). The following chapter 

provides descriptions of each site and details the sampling carried out. Methodologies and 

sampling protocols used at all sites are outlined along with lab techniques. 

 

 

  Year one: 2016 - two sites; both with AOD 

  Year two: 2017 - six sites; 5 with and 2 without AOD 

  Year three: 2018 - three sites; 2 with and 1 without AOD 

 

Figure 5. Map with locations of sampling sites used over three years 2016-2018 
 

2.1 Site descriptions 

2.1.1 Initial investigation 2016 

The initial investigation in 2016 involved two locations where AOD is present and confirmed 

by a positive detection of G.quercinecans or B.goodwinii in an active stem bleed. Insect 

trapping was carried out throughout July and August. Autumn leaves and acorns were 

collected in September.  No spring leaves, catkins or litter were collected. Due to a limited 

number of trees with active bleeds and accessible canopies, trees were not selected 

randomly but chosen based on those available.  
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Attingham Park: Rookery wood (Grid Ref. SJ 54882 09933) (Figure 6) is an area of oak 

dominated woodland approximately 1.4 ha within the larger parkland. There is little 

understorey vegetation. The soilscapes classification is 18: 'Slowly permeable seasonally 

wet slightly acid but base-rich loamy and clayey soils' (Cranfield University, 2017). The site 

was used for insect sampling and autumn leaves. 

 

Attingham Park: South East plantation (Grid Ref. SJ 55840 09593) (Figure 7) is an area 

of oak woodland approximately 1.7 ha within the parkland. There is a stream on the south 

eastern side and little ground vegetation. The soilscapes dataset classification is 6: 'Freely 

draining slightly acid loamy soils' (Cranfield University, 2017). The site was used for insect 

sampling and autumn leaves. 
 

         

Figure 6. Rookery wood           Figure 7. South East plantation 

Richmond Park (Grid Ref. TQ 20256 72967) 

Ham Cross plantation (Figure 8) is an area of oak dominated woodland approximately 6 ha 

within Richmond Park. Throughout the wood are a series of drainage ditches and a dense 

undergrowth of bracken. The soilscapes dataset classifies the soil as 18 (Cranfield 

University, 2017). This site was used for insect sampling, autumn leaves and acorns. 

 

  Figure 8. Ham Cross plantation 
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2.1.2 Further investigation 2017 

A further investigation in 2017 involved seven sites in Suffolk. Five of these sites had AOD 

present at varying degrees of infection. Presence of AOD was confirmed by a positive 

detection of the bacteria G.quercinecans or B.goodwinii in an active stem bleed. A further 

two sites where AOD is absent were used as comparison sites; one for insect and the other 

for phyllosphere samples.  

The focus of the further investigation was an expansion of insect trapping and a focus on 

collection of phyllosphere samples. Insect trapping took place throughout July and August. 

Spring leaf samples were taken in June and autumn leaf and litter samples in September. 

No catkin or acorn samples were collected in 2017. 

 

Priestley wood (Grid Ref. TM 08142 52929) 

Priestley wood (Figure 9) is a mainly oak woodland approximately 23.68 ha. The soilscapes 

dataset is 9 'Lime-rich loamy and clayey soils with impeded drainage' (Cranfield University, 

2017). Considered for this study as without AOD and used as a comparison site for insect 

sampling.  

Broaks wood (Grid Ref. TL 79052 31263) 

Broaks wood is 62 ha of mixed woodland. The area used (Figure 10) was around 16 ha. The 

soilscapes dataset classifies the soil as 8 'Slightly acid loamy and clayey soils with impeded 

drainage' and 6 (Cranfield University, 2017). Considered for this study as being without AOD 

and used as a comparison site for phyllosphere samples of spring leaves, autumn leaves 

and litter. 

 

        

Figure 9. Priestley wood        Figure 10. Broaks wood (Geograph.org 2016) 
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Site one (Grid Ref. withheld at request of site owner) 

Site one (Figure 11) is an area of c. 3.0 ha oak dominated woodland within a larger parkland 

landscape of new plantings and mixed farmland. Considered as an early stage infection site. 

Several trees show visibly active bleeds. The soilscapes classification is 18 (Cranfield 

University, 2017). This site was used for insect sampling.  

 

 

                Figure 11. Site One Western side 

 
 

Northfield wood (Grid Ref. TM 02822 60198) 

Northfield wood (Figure 12, Figure13) is 33.26 ha of mixed woodland with areas of mainly 

oak. Two smaller areas c. 4.7 ha and c. 1.7 ha were used. Considered for this study as an 

early stage infection site. One tree in the woodland shows a visibly active bleed which tested 

positive for B.goodwinii. The soil is soilscape 8 (Cranfield University, 2017). This site was 

used for insect sampling.  

 

        

Figure 12. Northfield wood area one      Figure 13. Northfield wood area two 
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Site Two (Grid Ref. withheld at request of site owner) 

Site two (Figure 14) is a stand of ancient oak approximately 1.5 ha; part of a larger 

landscaped park of around 160 ha of mainly ancient or veteran oak trees alongside newly 

planted individual trees. Considered for this study as a late stage infection site. Four trees 

have visibly active bleeds. The soilscape is 18 (Cranfield University, 2017). This woodland 

was used for insect sampling.  

 

  Figure 14. Site Two 

 

Site Three (Grid Ref. withheld at request of site owner) 

Site three (Figure 15, Figure 16) is an area of c. 2.5 ha ancient and veteran oak trees within 

a larger parkland, over 80 ha in size dominated by ancient and veteran trees. Considered as 

a late stage infection site. Several trees in the area show visibly active bleeds. The 

soilscapes classification is 10 'Freely draining slightly acid sandy soils' (Cranfield University, 

2017). This site was used for insect and phyllosphere sampling of autumn leaves and litter.  

     

Figure 15. Site Three in spring     Figure 16. Site Three in summer 
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Ickworth Park (Grid Ref. TL 81500 62210) 

A large parkland of c.300 ha dominated by ancient and veteran trees alongside younger 

plantings. A smaller 6.5 ha area (Figure 17, Figure 18) was used. Considered as a late stage 

infection site. The soilscape is 8 (Cranfield University, 2017). Used for insect and 

phyllosphere sampling of spring leaves, autumn leaves, acorns and litter.  

      

Figure 17. Ickworth park         Figure 18. Ickworth park 
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2.1.3 Additional investigation 2018 

In 2018 two sites with AOD and one where AOD is absent were used. The focus in 2018 

was to continue the phyllosphere and litter sampling. In addition the potential for airborne 

movement of G.quercinecans and B.goodwinii would be investigated through the collection 

of rain water.  

Spring leaf samples were taken in June and autumn leaf and litter samples in September. 

No catkins or acorns were sampled in 2018.  

Rain water was collected in June and then again in September. 

Harper Adams University Woodland (Grid Ref. SJ 70850 21266) 

An area of mature woodland c. 10 ha dominated by oak with a dense. A smaller area about 

3 ha (Figure 19) was used. No AOD is present on the site. The soilscapes dataset classifies 

the soil as a mix of 18 and 10 (Cranfield University, 2017).  

 

 

     Figure 19. Harper Adams University woodland 
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Dudmaston Hall (Grid Ref. SO 74145 88500) 

A parkland of c.1214 ha with ancient and veteran trees and younger plantings surrounded by 

farmland. A smaller area was used (Figure 20, Figure 21). Considered as a late stage 

infection site; four trees with active bleeds. The soilscapes dataset classifies the soil as 

soilscape 6 (Cranfield University, 2017).  

  

Figure 20. Dudmaston in Winter      Figure 21. Dudmaston in Spring 

 

Uncylls, Wyre Forest (Grid Ref. SO 76139 75282) 

The Wyre forest is over 2500 ha of mature mixed woodland, plantations and grassland. A 

smaller 2 ha area (Figure 22) was used. Considered as a late stage infection site; seven tree 

were recorded with active bleeds. The area is soilscape 8 (Cranfield University, 2017).  

 

          Figure 22. Uncylls woodland 
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2.2 General Research Methodologies  

2.2.1 Biosecurity and Aseptic techniques 

Throughout the field and laboratory work a number of biosecurity measures, ascetic and 

sterile techniques were used to minimise contamination. These are described below: 

Field sampling 

- Between uses insect traps were washed with detergent and then sterilised by 

submerging in 10 % sodium hypochlorite solution before being rinsed.  

- During collections of phyllosphere samples to avoid contamination from touching the 

leaves the bag was placed over the leaves whilst still attached to the twigs and then the 

leaves removed using the bag itself.  

- Any equipment used was alcohol and flame sterilised between trees.  

- Sites were visited from low to high risk to prevent potential spread of AOD.  

- Shoes were rinsed and sprayed with disinfectant between sites.  

- Collected samples were stored separately for transportation. 

- Samples were placed into clean clear sealable plastic bags and frozen at -26C until 

used.  

Laboratory practice 

- Gloves were worn and replaced between samples from different trees.  

- Sample bags were weighed before collection to avoid removing the samples when 

weighed after collection. 

- Where required equipment and chemicals were autoclave sterilised before use.  

- Any water used was distilled water which was autoclave sterilised before use.  

- DNA was extracted in a separate area from Polymerase Chain Reaction (PCR) 

preparation.  

- PCR reagents were prepared within a U.V. sterilised PCR cabinet.  

- PCR reagents were kept on ice while in use. 

- Sterile gloves were used for all DNA extraction and PCR work.  

- Sterile filter tips were used when pipetting and filter tips were used with PCR reagents.  

- Extracted DNA was kept in a different freezer to unprocessed samples and reagents.  

- Preparation of agar plates was carried out in a fume cupboard.  
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2.2.2 Methodology used for field collection of phyllosphere and litter samples 

Oak phyllosphere samples were collected across three years (Table 3). All were collected 

from the lower canopy since this has been shown to be suitable for quantifying differences in 

phyllosphere communities (Laforest-Lapointe et al., 2016). Litter was collected from the base 

of the tree. 

Table 3. Phyllosphere and litter samples collected from sites 2016-2018 

Year 2016 2017 2018 

Sites Symptomatic Asymptomatic Symptomatic Asymptomatic Symptomatic Asymptomatic 

 2 0 2 1 2 1 

Spring 

leaves 

 - (1 site)    

Autumn 

leaves 

 -     

Acorn (1 site) - (1 site)    

Catkins  - (1 site)    

Litter  -     

 

Spring and autumn leaves: Leaves were collected in June and September respectively from 

the lower canopy at each of the four cardinal points and placed all together into a sample 

bag. A separate bag was used per tree. Long handled loppers were used where the canopy 

was not in arms reach to either hold down the branch or, where possible, sever a small 

branch, which was caught before touching the ground and leaves stripped from twigs. 

Approximately 20 g were collected per tree.  

Acorns: Where present, 5-10 acorns were collected in September from each tree and placed 

into separate sample bags. Collection followed the same protocol as the leaves.  

Catkins: Catkins were collected in June from each tree and placed into separate sample 

bags. Collection followed the same protocol as the leaves.  

Litter: Samples were collected in September from directly under the canopy of the same 

trees used for spring and autumn leaf collection. Litter was collected into a sample bag; one 

per tree with a final average collection weight of 26 g per tree.  
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2.2.3 Methodology used for collection of xylophagous Coleoptera 

There are a number of different methods of collecting Coleoptera ranging from direct 

acquisition from searching e.g. stumps, logpiles, standing dead wood to the use of traps in 

the field (Aguilar, 2010). When collecting on a large scale there are other considerations 

such as cost and practicality that have to be taken into account and these influence the 

method chosen. Trap location within a sampling area is an important consideration as is trap 

height and may influence success.  

In 2016 two sites and in 2017 six sites were sampled for xylophagous beetles. Three 

different trap types were used in various combinations across different sites and years 

(Table 4). The combinations of trap types used were: 

- Yellow blue vane traps (SpringStar, Inc) (Figure 23). 

- Purple blue vane traps; created by spraying the containers of the yellow blue vane traps 

with PlastiKote™ Sumptuous purple (Figure 23). 

- Purple panel traps (AgBio, Inc) (Figure 23); cardboard traps (20 x 25 cm) with a sticky 

surface. A double panel trap was also created by securing two together with staples to 

create a trap 40 x 50 cm.  

- Yellow blue vane + purple panel; a yellow blue vane trap immediately above which was a 

purple panel trap (Figure 23). 

- Purple blue vane + purple panel; a yellow blue vane trap immediately above which was a 

purple panel trap.  

These traps were selected based on the use of visual cues used by Buprestidae, specifically 

Agrilus species. Several Agrilus species have been found to have a preference for purple 

traps namely A.planipennis (Francese et al., 2008), A.sulcicollis (Haack et al., 2009), 

A.auroguttatus (Coleman et al., 2009), A.laticornis and A.biguttatus (Brown, 2014).  

Propylene glycol acted as a preservative and all traps were emptied and preservative and 

purple panels replaced fortnightly. Traps were hung approximately 6 m above the ground for 

practicality on metal hangers in the outer canopies of trees in open situations to maximise 

visibility. Trees in sunny situations were selected as a positive association between the 

number and abundance of buprestid species caught and forest edges has been 

demonstrated (Wermelinger et al., 2007).  
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Figure 23. Purple blue vane trap (L) and yellow blue vane trap with purple panel above (R) 

Table 4. Trap combinations used for insect sampling in 2016 and 2017 

Year 2016 2017 

Number of Sites Symptomatic  Asymptomatic  Symptomatic  Asymptomatic  

2 0 5 1 

Trap details                        Number of traps used per site  

Yellow blue vane   9 - 5 5 

Purple blue vane  9 - 5 5 

Purple panel (single)  0 - 5 5 

Purple panel (double)  0 - 5 5 

Yellow blue vane + purple panel    0 - 5 5 

Purple blue vane + purple panel   0 - 5 5 

 

In 2016 traps were hung singly per tree, alternated by colour and placed within oak trees 

approximately 20-30 m apart. In 2017 seven symptomatic trees were selected across each 

site used and a combination of four trap types placed in each oak tree with two trees having 

five per tree.  
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2.2.4 Methodology used for field collection of rainwater samples 

In 2018 rainwater was collected to investigate the potential of rain and wind to disperse 

B.goodwinii and G.quercinecans. Two symptomatic and one asymptomatic site were used.  

Rainwater traps were constructed from 1 L plastic bottles. The tops were cut off the bottles, 

upturned and secured with tape to create a funnel (Figure 24). A piece of mesh was 

stretched over the open end of the created funnel to exclude debris. Ground traps were 

created by attaching the trap to short canes secured in the ground so that trap bases were 

level with the soil. Canopy traps were hung with string in the lower canopy at approximately 

3 m from the ground.  

 

      Figure 24. Rain trap  

One trap was placed in each of three symptomatic and asymptomatic oak trees. Three 

additional traps were placed in open ground within the woodland. New traps were made for 

each sampling period and the used traps recycled. Traps were deployed in June and then 

again in September. Traps were emptied after one week. The volume of water collected was 

dependent on the weather however at least 50 ml was collected per trap per site however at 

one symptomatic site no sample was collected in autumn due to lack of rain. 

Table 5. Details of raintraps deployed at three sites in 2018  

 Symptomatic Asymptomatic 

Number of sites 2 1 

Rain traps   

   

Spring canopy   

Spring ground   

Autumn canopy   

Autumn ground   
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2.2.5 Methodology used for molecular analysis 

There are two main techniques for studying bacterial populations; culture and culture 

independent methods. The first involves isolating and cultivating the bacteria on growing 

media. The second involves the use of molecular analysis through PCR (Polymerase Chain 

Reaction). Since culture dependent methods do not necessarily detect all bacterial species 

present (Yang et al., 2011) and may be also point out that be restricted by the cultivability of 

bacteria (Lindow and Brandl 2003). A culture independent method was followed and 

molecular analysis followed a two step process of DNA extraction and real time PCR for 

detection of the target bacteria which are outlined in the next sections.  

2.2.5.1 Methodology used for DNA extraction 

DNA extraction for phyllosphere samples followed the protocol set out in the FastDNA® 

SPIN Kit (MP Biomedicals) with a modification at the elution stage of the DNA pellet being 

eluted by resuspension with DES (DNA Elution Solution - Ultra pure DNAse free water) and 

incubating for 30 minutes at 55C before centrifuging to elute the DNA into a clean tube. 

DNA extraction for insect samples followed the protocol set out in the DNeasy Blood and 

Tissue kit (Quiagen).  

Sample preparation - initial investigation 2016 

Leaf samples - Three visibly undamaged green leaves were selected from the collected 

leaves and a 200±10 mg sample was used for DNA extraction.  

From each individual leaf a section was cut, using a scalpel, from the tip, centre and midrib 

onto a ceramic tile. Using forceps the sections of each leaf were next transferred to the 

lysing tube. A single lysing tube was used for each leaf; resulting in three lysing tubes each 

containing sections from an individual leaf. The lysing tube was then weighed and a final 

sample weight of 200±10 mg achieved. The samples were then homogenised with lysing 

agent according to the FastDNA® SPIN Kit instructions and the resulting supernatant from 

each of the leaves pooled to give a single leaf sample per tree.  

Acorns - Three visibly undamaged acorns were selected from those collected. A 200±10 mg 

sample was used for the DNA extraction which included sections of inner and outer tissue. 

All preparation followed the same protocol as the leaf samples and the supernatant from 

each of the acorns was pooled to give a single acorn sample per tree.  

Insects - Xylophagous beetles were sorted from the collected samples. Samples were 

macerated prior to DNA extraction.  
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Sample preparation further and additional investigations 2017-2018 

A different approach was used for phyllosphere samples taken in 2017 and 2018 in order to 

analyse a greater proportion of the sample for bacteria.  

Leaf samples - The collected leaves were flash frozen before use at -80°C. Distilled water 

that had been autoclave sterilised was added to the bag using 1 ml for every 1 g of material. 

The leaf material was then macerated for 1 minute per 10g within the same sample bag. 

After maceration 2 ml of the resultant supernatant was pipetted off using sterile filter pipette 

tips into a 2 ml microcentrifuge tube. This was then frozen at -26°C.  

Before use the sample was defrosted at room temperature and spun at 13,000 rpm for 1 

minute. 200l was pipetted off with sterile filter pipette tips for use in extraction.  

Litter samples - Litter was processed in the same way as the leaf samples.  

Acorns - Three visibly undamaged acorns were selected and placed in small bags with 

enough perlite added to just cover the acorns. The perlite was then dampened with tap 

water. The bags were placed outside until the acorns germinated.  

Sections of the outer and inner tissue were then cut, using a scalpel, onto a ceramic tile. 

Using forceps 200±10 mg was transferred to four separate lysing tubes; two for inner and 

two for outer tissue.  

Rain - The collected rain water was first filtered with filter paper into autoclaved sterile glass 

beakers. The filtrate was then transferred 50 ml at a time to 50 ml filter centrifuge tubes into 

which a 2 µl filter had been placed and spun at 3000 rpm for 20 minutes. The supernatent 

was carefully poured off and 20 ml kept for analysis.  

Insects - Xylophagous beetles were sorted from the collected samples. These were 

separated and species were grouped up to a maximum of four individuals by date collected. 

Samples were macerated prior to DNA extraction.  

2.2.5.2 Methodology used for Real-Time PCR (Polymerase Chain Reaction) 

Initial investigation 2016 

A multiplex method developed by Kaczmarak et al. (unpublished; pers.comm) using the 

gene sequences presented was used in 2016. Although not a focus for this investigation this 

method included a probe and primer for the detection of Rahnella victoriana which has been 

detected in exudate (Denman et al., 2018). A reaction mix for 100 10 l reactions was 

prepared in a 2 ml reaction tube.  
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Each reaction contained: 

5.0l Taq DNA polymerase (Thermo Fisher) 

1.3l Molecular water 

0.25 l each forward and reverse Rahnella primer 

[15F 5’-CACCCAGACTTACGTGCAT] [134R 5’ TCAGTGTGATTGGTGAAGGT] 

0.25 l each forward and reverse Gibbsiella primer 

[284F 5’-GGCTTTGATAGTGGTGGCC] [418R 5’ CGTTCCGTTATCACCGTGG] 

0.10 l Rahnella probe 

Rv57P [5’-Rox AGTGATTGGCGATACTGACGTGACC] 

0.10 l Gibbsiella probe 

GQ342P [5’-Cy5 AACAGTTCCAGCGCCATTTTCTT] 

0.50 l Brenneria mixed probe and primer 

forward primer [5’-CTGGCCGAGCCTGGAAAC], reverse primer 

[5’AGTTCAGGAAGGAGAGTTCGC], probe [5-FAM-

CCAGAATCTCATATTCGAACTCCACCATGTT] 

2.5 l template DNA 

Using a 96 well plate kept on ice, 45 l of the mix was pipetted into the 1st and 7th column. 

A multichannel pipette was then used to transfer 7.5 l to each cell. DNA was quantified for 

each sample using a NanoDrop™. Into each well 2.5 l of template DNA was then added 

with three replicate wells used per sample. Positive controls with DNA concentration of 

5ng/l for B.goodwinii (Strains FRB 21, FRB 23) and G.quercinecans (Strains FRB 31, FRB 

33, FRB 36) were used along with molecular grade water negative control. A cover was 

attached to the plate which was then spun in a centrifuge at 3700 rpm for one minute. A 

Roche LightCycler ® 480A was set up for a 10l volume reaction (Table 6):  

Table 6. Roche LightCycler ® 480A programme setup  

Stage Cycles Time (mm:ss) Temperature (C) 

Initial denaturation 10 10:00 95 

 

qPCR 

 

40 

00:10 95 

00:30 63 

00:01 72 

Cooling 1 00:01 40 
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In real time PCR the amount of fluorescence is read after each amplification cycle. A positive 

reaction results when the fluorescence intensity exceeds background levels. For a positive 

detection to be declared at least two control wells for the relevant bacteria and two of the 

sample replicates had to show a positive detection curve and detection before 35 detection 

(Ct) cycles.  

Further and additional investigations 2017-2018 

For samples taken in 2017 and 2018 two separate single assays were used for Brenneria 

goodwinii and Gibbsiella quercinecans. The reaction mix was prepared for 100 25l 

reactions using two 2 ml reaction tubes. Primers designed by Forest Research to target 

bacterial DNA gyrase B gene (gyrB) were used along with probes. 

G.quercinecans each reaction contained: 

12.5 µl Taqman® Environmental Master Mix 2.0 (Fisher Scientific) 

7.125 µl PCR grade water (Merck) 

0.125 µl probe (100 pmol/l Eurofins Genomics)  

G.quercinecans: [5’-Cy5 AAAACCCATCTGATGCCAAAA 3’] 

0.125 µl forward primer (60 pmol/l Eurofins Genomics) 

G.quercinecans gyrB : [5’ GCGGTTGAACAACAGETG 3’]  

0.125 µl reverse primer (60 pmol/l Eurofins Genomics) 

G.quercinecans gyrB: [5’ GCCGCATCAATGATTTTG 3’]  

5.0 µl template DNA 

 

B.goodwinii each reaction contained: 

12.5 µl Taqman® Environmental Master Mix 2.0 (Fisher Scientific) 

7.125 µl PCR grade water (Merck) 

0.125 µl probe (100 pmol/l Eurofins Genomics) 

B.goodwinii: [5’-FAM CCAGAATCTCATATTCGAACTCCACCATGTT 3’] 

0.125 µl forward primer (100 pmol/l Eurofins Genomics)  

B.goodwinii gyrB: forward primer [5’ CTGGCCGAGCCTGGAAAC 3’] 

0.125 µl reverse primer (100 pmol/l Eurofins Genomics)  

B.goodwinii gyrB: [5’ AGTTCAGGAAGGAG AGTTCGC 3’] 

5.0 µl template DNA 

DNA was quantified for each sample using a NanoDrop™. Concentrations of DNA varied so 

DNA with similar concentrations were selected for analysis for each plate. A 96 well plate 
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kept on ice was used for the subsequent PCR reaction. The plate was within a U.V sterilised 

cabinet. 60 l of the mix was pipetted into the 1st, 5th and 9th column. A multichannel 

pipette was then used to transfer  20 l of the mix into each well. 5 l of template DNA was 

then added with three replicate wells used per sample.  

Positive controls (5ng/l -100ng/l) for B.goodwinii (Strains FRB 171, FRB 186) and 

G.quercinecans (Strains FRB 97, FRB 24) were used along with a negative control of 

molecular grade water. A cover was attached to the plate which was then placed in a BioRad 

CFX96 which was set up for a 25 l volume reaction. Analysis settings were adjusted for 37 

cycles, baseline subtracted curve fit, Cq determination single threshold. Baseline threshold 

was altered manually where needed. This was then run as follows for G.quercinecans (Table 

7) and for B.goodwinii (Table 8). 

 

Table 7. BioRad CFX96 programme set up for G.quercinecans 

Stage Cycles Time (mm:ss) Temperature (C) 

Initial denaturation 1 10:00 95 

 

qPCR 

 

40 

00:15 95 

01:00 62 

00:01 72 

Cooling 1 00:30 40 

 

Table 8. BioRad CFX96 programme set up for B.goodwinii 

Stage Cycles Time (mm:ss) Temperature (C) 

Initial denaturation 1 10:00 95 

 

qPCR 

 

40 

00:15 95 

00:30 65 

00:01 72 

Cooling 1 00:30 40 
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Chapter 3 
 

Investigating the relationship between the oak 

phyllosphere (leaves, acorns, catkins) and two bacteria 

associated with Acute Oak Decline; B.goodwinii and 

G.quercinecans 

3.1 Introduction 

The phyllosphere, where the definition encompasses the above ground parts of plants, 

represents a large area of study for bacteria as covered in section 1.2 of the literature review 

the majority of research has concentrated on leaves as they represent a large available area 

of a plant for colonisation (Lindow and Brandl, 2003).  

Plant pathogens, including bacteria, are not widely considered to be obligate on a single 

host indicating their potential to disperse and exist in multiple hosts and environments 

(Morris et al., 2008; Frank et al., 2017). Bacteria are known to be moved via wind, by water 

through soil, via rain splash directly on plant surfaces or soil and through rain picking up 

airborne bacteria (Frank et al., 2017). Those with a more stable means of transmission can 

however show a greater level of host specificity (Engel and Moran, 2013). The presence of 

bacteria on external tissues such as leaves suggests potential movement pathways for the 

bacteria to reach new hosts.  

Leaves and acorns represent external surfaces and possible routes of entry for bacteria. 

They are not thought able to penetrate directly through the outer cuticle of leaves, relying 

instead on naturally created openings such as damage or stomata (Underwood et al., 2007; 

Frank et al., 2017). Bacteria acquired via flowers are also known to be able to transfer into 

developing seeds (Frank et al., 2017). Oak leaves represent a difficult habitat for 

microorganisms to colonise due to their waxy surface and presence of tannins that can 

interfere with establishment and growth (Müller et al., 2003). This could indicate that bacteria 

colonizing oak leaves are able to overcome these defences in some way.  

3.1.1 The oak phyllosphere and Acute Oak Decline (AOD) 

The sole area of investigation to date for bacteria associated with AOD has been various 

bark tissues and the necrotic tissue of the lesions. Both B.goodwinii and G.quercinecans 

have been consistently isolated from the necrotic tissue in the UK (Brady et al., 2010; 
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Denman et al., 2012; Sapp et al., 2016; Broberg et al., 2018; Denman et al., 2018) and from 

a tree in Spain (González and Ciordia, 2019). Brenneria goodwinii was more predominant in 

lesions compared to G.quercinecans suggesting it is the most active (Broberg et al., 2018). 

A comparison of the bacterial communities in different bark layers of AOD symptomatic and 

asymptomatic oak has been carried out (Sapp et al., 2016; Denman et al., 2016). Bark 

panels were removed from 5 asymptomatic and 10 symptomatic trees across five sites. A 

further set of panels were taken from non symptomatic areas of AOD symptomatic trees. 

Tissues were then separated into heartwood, sapwood, inner bark and outer bark in 

Denman et al. (2016) with A.biguttatus larval galleries additionally investigated by Sapp et al. 

(2016).  

A comparison of the bark tissues found that there were differences in bacterial communities 

between the symptomatic tissue and both asymptomatic and non symptomatic tissues 

(Denman et al., 2016). A shift in the bacterial community with a transitional phase was 

concluded (Denman et al., 2016). There was however a lower yield of bacteria from samples 

of asymptomatic (18%) and non symptomatic tissues (33%) compared to symptomatic 

tissues (82%) (Denman et al., 2016) which may have influenced results. The level of 

similarity between the asymptomatic and non symptomatic tissues was also low (Denman et 

al., 2016) at odds with the conclusion there was a transitional community.  

The associated study by Sapp et al. (2016) found there was no significant difference in the 

overall bacterial community of asymptomatic compared to symptomatic trees (Sapp et al., 

2016) contradicting the study by Denman et al. (2016). For symptomatic trees, overall 

bacterial community did differ between symptomatic and asymptomatic tissues (Sapp et al., 

2016). Bacteria were not however found to be consistently separated by bark tissue type 

across all sites (Sapp et al., 2016). This indicates a potential lack of niche partitioning for 

resources (Sapp et al., 2016) although since the species identified in the different tissues 

were not reported this cannot be further substantiated.  

An explanation put forward for the two studies dissimilar results was a dilution effect as a 

consequence of the Sapp et al. (2016) analysis of non symptomatic and symptomatic tissues 

as two tissue types (Denman et al., 2016). The results reported could be considered as 

being from different spatial scales. This could account for the apparent disappearance of the 

significant effect at the larger scale and raises the question of what scale is more 

appropriate. The differentiation of microbial communities at separate spatial scales has been 

observed in ecology (Ladau et al., 2019) and can be an influence on species diversity 

(Martiny et al., 2011). 
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One of the bacteria, B.goodwinii, put forward by Denman et al. (2018) as a causal agent of 

AOD, was additionally highlighted as being present in the tissues of trees without evidence 

of AOD as well as trees with advanced symptoms (Sapp et al., 2016; Broberg et al., 2018). 

Although there was no indication of whether G.quercinecans was similarly present in healthy 

as well as symptomatic trees Geider et al. (2015), examined the nucleotide sequences from 

16S rRNA and the housekeeping genes dnaJ, gyrB, recA and rpoB of several species of 

Gibbsiella, and concluded that they are commonly occurring, including G.quercinecans.  

The presence of B.goodwinii in diseased trees is not unexpected however the detection on 

healthy trees could indicate an epiphytic or endophytic lifestyle and this has been alluded to 

by Denman et al., (2018). Alternatively it may indicate their presence in the wider 

environment or the ability of these bacteria to switch from non-pathogenic to pathogenic 

lifestyles (Broberg et al., 2018). Both bacteria have been detected by qPCR after inoculation 

into soil although only G.quercinecans was concurrently culturable (Pettifor et al., 2020). For 

this reason B.goodwinii was proposed as an endosymbiont as it may have entered a viable 

but non-culturable state (Pettifor et al., 2020). The well-studied pathogenic bacteria 

Pseudomonas syringae pv. syringae for example has been shown to exist on both 

symptomatic, non-symptomatic and non-host plant leaves (Lindemann et al., 1984). Its 

capacity to cause disease has also been highly correlated with the population size present 

on leaves (Rouse et al., 1994). Although there has been no investigation into whether 

B.goodwinii and G.quercinecans have any association with oak leaves a similar situation 

may be occurring where a population threshold needs to be passed or environmental 

conditions met before its presence becomes pathogenic and symptoms are expressed.  

In a study on the microbiome of healthy Q.robur leaves the largest bacterial components 

were from the Phylum Proteobacteria (Jakuschkin, 2015). For comparison the three most 

abundant phyla in bark microcores were Acidobacteria, Actinobacteria and Proteobacteria 

(Meaden et al., 2016). A study using microcores that investigated the bacterial bark 

microbiome of 64 healthy Q.robur trees on a site without AOD, found no evidence of 

sequences that were identified as belonging to the Brenneria genus (Meaden et al., 2016). 

The detection by Sapp et al. (2016) on asymptomatic trees may therefore be as a result of it 

already being present on the AOD site and colonising but not affecting an oak host. 

One aspect that may be significant is that B.goodwinii has flagella (Denman et al., 2012) 

compared to the fimbriae of G.quercinecans (Brady et al., 2010). These structures have 

been found to be important in binding to host cells and formation of biofilms (Suoniemi et al., 

1995; Haiku and Westerlund-Wikström, 2013; Rossez et al., 2015) and are also important for 

the movement of bacteria (Haiko and Westerlund-Wikström, 2013; Rossez et al., 2015).  
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3.1.2 Pathogenic capability of Brenneria goodwinii and Gibbsiella quercinecans 

The evolution of virulence factors within phytopathogens has enabled them to manipulate 

the processes of a hosts cell in order to effectively colonize and survive within the host plant 

(Speth et al., 2007). Identified virulence factors include plant cell wall degrading enzymes , 

protein secretion systems (notably T3SS) and their associated effector proteins (Doonan, 

2019). Secretion systems are vital to pathogenic bacteria as they are used to secrete 

proteins across phospholipid membranes into host cells to aid colonisation (Green and  

Mecsas, 2016). These proteins can enhance bacterial virulence through e.g. improving 

attachment to cells, enhancing resource availability, or direct toxicity to host cells (Green and 

Mecsas, 2016).   

Bacterial virulence factors have been identified in samples of AOD lesion tissue including 

those involved in regulation, signalling, membrane transport and plant cell wall degrading 

enzymes (Broberg et al., 2018). Genomic analysis of B.goodwinii and G.quercinecans 

indicates they encode for several different types of secretion systems (Doonan et al., 2019). 

A T2SS and T6SS have been identified in G.quercinecans and a T2SS, T3SS, T4SS and 

T6SS in B.goodwinii (Doonan et al., 2019). All of these secretion systems are involved in 

protein transport into host cells with the T4SS also known to transfer DNA and the T6SS 

utilised to transfer proteins into bacterial cells (Green and Mecsas, 2016). 

Doonan et al. (2019) have proposed that the bacteria they act via necrogenic enzymes or 

the secretion of effector proteins to alter biological action, degrade host tissue and overcome 

host defences. Proteins have been identified from symptomatic samples; 121 proteins 

identified, 23.5 % of which were bacterial and 18 associated with B.goodwinii and 3 with 

G.quercinecans (Broberg et al., 2018). Those associated with B.goodwinii included effector 

proteins involved in tissue degradation and suppression of host defences (Broberg et al., 

2018). 

The presence of a T2SS secretion system (Doonan, 2016), used in obtaining nutrients from 

dead cells (Kraepiel and Barny, 2015) suggests both have the capacity to utilise decayed 

tissue and this is supported by the evidence of their presence in necrotic bark tissue. In 

addition when single cultures were applied to a wound created in an oak log, tissue decay 

followed (Denman et al., 2018). Since G.quercinecans and B.goodwinii are already known to 

have genes necessary to degrade plant tissue (Denman et al., 2018) the resulting decay is 

not unexpected. It is not clear though whether these bacteria require an initial wound to 

begin colonisation or whether they are able to degrade the outer bark layer since the results 

of a comparison with non-wounded logs were not presented.  
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Another secretion system, T3SS, known to be involved in the suppression of host defences 

(Kraepiel and Barny, 2015) and transition to a necrotrophic lifestyle (Lee and Rose, 2010) 

was absent in the genomic analysis of G.quercinecans (Doonan et al., 2019). An example of 

this can be found in P. syringae pathovars which utilise a T3SS to manipulate host defences 

and metabolism in order to enhance colonisation and maintain a nutrient supply (Toth et al, 

2006).   

The B.goodwinii genome has been shown to be more aligned to that of a necrogenic 

phytopathogen compared that of G.quercinecans which was allied to saphrophytes as well 

as pathogens (Doonan et al., 2019). The predominance of B.goodwinii within lesion samples 

(Broberg et al., 2018) and its greater genome encoded pathogenic potential compared to 

G.quercinecans implicates B.goodwinii as the major causal agent (Doonan et al., 2019).  

A high genetic diversity has been identified in the genomic analysis of G.quercinecans 

(Doonan et al., 2019). A separate study into Gibbsiella spp. has also indicated that certain 

genes (recA and ppiD)5 had a greater variability in expression than would be required for a 

pathogen with a specific host (Geider et al., 2015). This was suggested as indicating an 

ability to adapt to different environments and a wide host range (Geider et al., 2015) which 

would be an advantage for a commonly occurring generalist bacteria.  

Bacteria have been shown to be able to work as pairs to initiate disease (Allen et al., 2009). 

The T6SS identified in both bacteria and the presence of the T3SS secretion system 

(Doonan et al., 2019) further hints at a potential mutualistic relationship between the two 

bacteria and why they are consistently isolated together. It has been suggested 

G.quercinecans is the primary coloniser creating the conditions required for B.goodwinii to 

colonise and express virulence factors (Doonan et al., 2019). Alternatively the presence of 

the T3SS secretion system in B.goodwinii and not in G.quercinecans (Doonan et al., 2019) 

could indicate host defences already need to be compromised for G.quercinecans to be able 

to effectively colonise internal tissues.  

The possibility of survival on other oak tissues is another important question in 

understanding the epidemiology of AOD. Both B.goodwinii and G.quercinecans were 

separately inoculated into 15 acorns from an asymptomatic tree through a needle puncture 

(González and Ciordia, 2019). After 15 days a rotting was observed around the wound and 

inside the acorns of those applied with B.goodwinii and G.quercinecans whilst the sterile 

water control showed no necrosis. Both bacteria were reisolated from the inoculated acorns 

(González and Ciordia, 2019). 

                                                
5The recA gene is involved in genetic recombination (Selbitschka et al., 1991) and the ppiD (peptidyl-
prolyl cis-trans isomerase D) gene is linked to protein folding (Dartigalongue & Raina). 
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Although the genomes of B.goodwinii and G.quercinecans have been sequenced we lack 

information on much of their basic ecology. Key questions over host specificity and potential 

movement mechanisms remain uninvestigated. Live leaves represent a large available and 

uninvestigated area for B.goodwinii and G.quercinecans. Leaves could be a potential way for 

bacteria to enter the trees and a pathway from which bacteria colonise new hosts and leaf 

litter may offer an overwintering resource. Similarly acorns and catkins are both a potential 

dispersal mechanism and colonisation entry point.  

3.1.3 Chapter Aims 

The aim of this chapter is to investigate whether there is any association between the oak 

phyllosphere, here represented by leaves (live and litter), acorns, catkins and the bacteria 

B.goodwinii and G.quercinecans.    
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3.2 Methodology 

3.2.1 Field investigation 

Leaves, litter, acorns and catkins were collected over three years (Table 10) according to the 

protocol in section 2.2.2. Sample preparation and DNA extraction followed section 2.2.5.1. 

Detection of G.quercinecans and B.goodwinii was via PCR as covered in section 2.2.5.2.  

Table 10. Locations and number of trees from which leaf, litter and acorn samples were 

taken between 2016 and 2018 at symptomatic (S) and asymptomatic (A) sites 

Site ATT1 RIC2 ICK3 S34 BRO5 WYR6 DUD7 HAU8 

Status S A S S A S S A 

Year 2016 2016 2017 2017 2017 2018 2018 2018 

Number of trees sampled       

Autumn leaves 
        

   Symptomatic  5 4 6 5 N/A 5 4 N/A 

   Asymptomatic  7 4 9 9 9 9 9 9 

Total 12 8 15 14 9 14 13 9 

Spring leaves 
        

   Symptomatic  0 0 0 0 N/A 5 5 N/A 

   Asymptomatic  0 0 9 0 9 9 9 9 

Total 0 0 9 0 9 14 14 9 

Acorns 
        

   Symptomatic  2 2 2 0 0 - - - 

   Asymptomatic  2 3 4 0 0 - - - 

Total 4 5 6 0 0 - - - 

Litter 
        

   Symptomatic  - - 6 5 N/A 5 4 N/A 

   Asymptomatic  - - 9 9 9 9 9 9 

Total - - 15 14 9 14 13 9 

Catkins         

   Symptomatic  - - 2 0 0 - - - 

   Asymptomatic  - - 6 0 0 - - - 

Total - - 8 0 0 - - - 
1Attingham 2Richmond 3Ickworth 4Site 35 Broaks 6Wyre 7Dudmaston 8Harper Adams. For site descriptions see section 2.1 
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3.2.2 Additional field and glasshouse investigations 

In addition to the field collection of phyllosphere samples two further studies outlined below 

were set up.  

3.2.2.1 Field investigation into the presence of G.quercinecans and B.goodwinii on 

leaves via culture of washings from leaves and litter 

The aim of this investigation was to establish whether G.quercinecans and B.goodwinii were 

present on leaf surfaces as live bacteria by washing a collected bag of leaves and culturing a 

sample of the washings. 

Sampling followed the same protocol detailed in section 2.2.2. In September 2018 leaf 

samples were taken at Uncylls woodland (Figure 22) from four symptomatic trees and four 

asymptomatic trees. Litter samples were collected from below the same trees and combined 

to create one bag of litter from symptomatic trees and one from asymptomatic trees.  

Whilst on site 100 ml of distilled sterilised water was added to each of the bags and the 

sample macerated for 1 minute. A single use pipette was then used to pipette off 1 ml onto 

general nutrient agar plates (Oxoid). The plates were then returned to the lab and incubated 

at 37C for 24 hours after which the surface was scraped using a single use spreader into a 

2 ml microcentrifuge tubes.  

DNA extraction then followed the protocol outlined in section 2.2.5.1. Detection of the 

presence of G.quercinecans and B.goodwinii was via PCR as covered in section 2.2.5.2.  

3.2.3.2 Glasshouse investigation into the survival of G.quercinecans and B.goodwinii 

on leaves after inoculation 

The aim of this investigation was to identify whether both bacteria singly and in combination 

were able to survive 24 hrs after being spread onto newly opened leaves of oak saplings. 

Sixty Quercus robur 40-60 cm high bare root saplings (Maelor Nursery) were planted into 20 

cm diameter and 60 cm depth pots filled with 65C heat treated soil (John Innes). Trees 

were planted before leaves had opened and were placed into the experimental glasshouse 

room. Trees used for the control placed into a separate glasshouse room. Watering was 

carried out as necessary.   
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A single colony of G.quercinecans and B.goodwinii were separately added to 50 ml of 

nutrient broth. After 48 hrs of room temperature agitation a 10 fold serial dilution of 1 ml 

original starting culture was then carried out in a fume cupboard using distilled sterilised 

water. Three of the dilutions for each of the bacteria individually (10-2, 10-3, 10-4) plus a 

combination of G.quercinecans and B.goodwinii and a control of sterilised water were then 

used in the investigation.  

Six replicates were used for each treatment. In the experimental glasshouse room three 

benches were arranged. One each for the single applications and one for the combination. 

The treatments were then applied in a randomised block design.  

For each tree 300 µl of each of the treatments was pipetted into an individual well of a 96 

well PCR plate and then sealed. This was then used to inoculate three newly opened leaves 

per tree with a separate sterile cotton bud used for each tree.  

After 24 hrs the three leaves were harvested and placed individually into clean bags. A 

single leaf from three different trees per treatment was then randomly selected for analysis. 

To the bag selected 2 ml of distilled sterile water was added and gently agitated and 1 ml 

pipetted and spread onto general nutrient agar (Oxoid). The plates were then incubated at 

37C for 24 hours after which the surface was scraped using a single use spreader into a 

2ml microcentrifuge tubes.  

DNA extraction then followed the protocol outlined in section 2.2.5.1. Detection of the 

presence of G.quercinecans and B.goodwinii was via PCR as covered in section 2.2.5.2.  
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3.3 Results 

3.3.1 Field investigation 

3.3.1.1 Spring and autumn Leaves 

In this section results are presented for spring and autumn leaves tested in 2016, 2017 and 

2018. For site identification refer to Table 10.  

Table 11 indicates the percentage of positive detections per leaf sample type based on tree 

health status, independent of site health status.  

Figures 25-28 show the overall number of trees per site, sample period and year which were 

positive or negative for B.goodwinii or G.quercinecans. Results are presented separately for 

asymptomatic and symptomatic trees and separately for each bacteria. 

Tables 12-15 show the detail behind the graphs with the results per site and year of the trees 

which had a positive detection of B.goodwinii or G.quercinecans in spring and/or autumn leaf 

samples. Results are presented separately for asymptomatic and symptomatic trees and 

separately for each bacteria. 

 

Table 11. The percentage of positive samples for G.quercinecans and B.goodwinii in each of 

the different sample types based on tree health status, independent of site health status 

Tree health status Sample type Positive samples % 

Asymptomatic 

Gq Spring leaves 35 

Bg Spring leaves 58 

Gq Autumn leaves 46 

Bg Autumn leaves 45 

Gq Litter 62 

Bg Litter 46 

Symptomatic 

Gq Spring leaves 20 

Bg Spring leaves 15 

Gq Autumn leaves 43 

Bg Autumn leaves 57 

Gq Litter 45 

Bg Litter 30 
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Results for asymptomatic trees  

A higher percentage of spring leaf samples from asymptomatic trees, independent of site, 

were positive for B.goodwinii (58%) compared to G.quercinecans (35%) (Table 11). In 

autumn leaf samples a similar percentage from asymptomatic trees, independent of site, 

were positive for G.quercinecans (46%) and B.goodwinii (45%) (Table 11).  

Gibbsiella quercinecans 

At asymptomatic sites across the two sampling years and periods ten out of the 36 trees 

sampled were positive for G.quercinecans (Figure 25). In comparison at symptomatic sites 

across the three sampling years and periods 30 out of the 74 trees sampled were positive for 

G.quercinecans (Figure 25). 

In symptomatic sites where both autumn and spring leaves were sampled the number of 

detections of G.quercinecans was higher in two autumn compared to one site in spring 

(Figure 25). At asymptomatic sites detections were equal at one site and higher in spring at 

the other (Figure 25). 

Brenneria goodwinii 

Twenty five out of the 36 trees sampled across the two sampling years and periods were 

positive for B.goodwinii at asymptomatic sites (Figure 26). In comparison at symptomatic 

sites across the three sampling years and periods 26 out of the 74 trees sampled were 

positive for B.goodwinii (Figure 26). 

Where both autumn and spring leaves were sampled in symptomatic sites, the number of 

detections of B.goodwinii was higher in two autumn compared to one site in spring (Figure 

26). At asymptomatic sites detections were greater at one site in autumn and one in spring 

(Figure 26) with the site in spring also having higher detections of G.quercinecans. 
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Figure 25. Positive and negative detections of G.quercinecans in the total number of 

asymptomatic trees sampled across three years 2016-2018 from asymptomatic and 

symptomatic sites in spring and autumn 

The results presented for the overall number of trees in Figures 25 and 26 do not indicate 

whether the same tree was positive or negative in each sampling period. For example as 

Table 12 and Table 13 show at the 2017 asymptomatic site it was the same tree which was 

positive for G.quercinecans and B.goodwinii in both spring and autumn. At the 2018 

asymptomatic site two of the nine trees were positive for G.quercinecans and B.goodwinii in 

both sample periods. Leaves sampled in both periods in 2018 at the two symptomatic sites 

resulted in four trees across these sites testing positive for G.quercinecans; three of these 

trees coming from one site (Table 13). However only one of these three trees also tested 

positive for B.goodwinii in spring and autumn (Table 13). 
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Figure 26. Positive and negative detections of B.goodwinii in the total number of 

asymptomatic trees sampled across three years 2016-2018 from asymptomatic and 

symptomatic sites in spring and autumn 
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Table 12. Positive results of the detection of G.quercinecans in spring and autumn leaf 

samples from asymptomatic trees in symptomatic and asymptomatic sites 2016-2018  

Tree 

identification 

Site health 
status 

Sample year G.quercinecans 

Spring leaves 

G.quercinecans 

Autumn leaves 

BRONB9 Asymptomatic 2017 positive positive 

HAUNB1 Asymptomatic 

2018 

positive positive 

HAUNB2 Asymptomatic positive negative 

HAUNB3 Asymptomatic positive negative 

HAUNB5 Asymptomatic negative positive 

HAUNB6 Asymptomatic positive positive 

HAUNB8 Asymptomatic positive negative 

ATTNB1 Symptomatic 
2016 

not taken  positive 

RICNB4 Symptomatic not taken  positive 

ICKNB1 Symptomatic 

2017 

negative positive 

ICKNB2 Symptomatic positive positive 

ICKNB3 Symptomatic negative positive 

ICKNB4 Symptomatic negative positive 

ICKNB5 Symptomatic negative positive 

ICKNB6 Symptomatic negative positive 

ICKNB8 Symptomatic missing positive 

ICKNB9 Symptomatic negative positive 

SITE3NB2 Symptomatic not taken positive 

SITE3NB4 Symptomatic not taken positive 

SITE3NB5 Symptomatic not taken positive 

SITE3NB6 Symptomatic not taken positive 

SITE3NB7 Symptomatic not taken positive 

DUDNB1 Symptomatic 

2018 

negative positive 

DUDNB2 Symptomatic negative positive 

DUDNB4 Symptomatic positive positive 

DUDNB8 Symptomatic positive negative 

WYRNB1 Symptomatic positive negative 

WYRNB2 Symptomatic positive negative 

WYRNB3 Symptomatic positive positive 

WYRNB4 Symptomatic positive positive 

WYRNB5 Symptomatic positive positive 

WYRNB6 Symptomatic positive negative 

WYRNB7 Symptomatic negative positive 

WYRNB8 Symptomatic negative positive 
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Table 13. Positive results of the detection of B.goodwinii in spring and autumn leaf samples 

from asymptomatic trees in symptomatic and asymptomatic sites 2016-2018 

Tree identification Site health 
status 

Sample year B.goodwinii 

Spring leaves 

B.goodwinii 

Autumn leaves 

BRONB1 Asymptomatic 

2017 

positive positive 

BRONB2 Asymptomatic positive positive 

BRONB3 Asymptomatic positive positive 

BRONB4 Asymptomatic negative positive 

BRONB5 Asymptomatic positive positive 

BRONB6 Asymptomatic negative positive 

BRONB7 Asymptomatic negative positive 

BRONB8 Asymptomatic positive positive 

BRONB9 Asymptomatic positive positive 

HAUNB1 Asymptomatic 

2018 

positive positive 

HAUNB3 Asymptomatic positive negative 

HAUNB4 Asymptomatic positive negative 

HAUNB5 Asymptomatic positive negative 

HAUNB6 Asymptomatic positive positive 

HAUNB7 Asymptomatic positive negative 

HAUNB8 Asymptomatic positive negative 

HAUNB9 Asymptomatic positive negative 

SITE3NB4 Symptomatic  not taken positive 

SITE3NB5 Symptomatic not taken positive 

SITE3NB6 Symptomatic not taken positive 

ICKNB1 Symptomatic positive negative 

ICKNB2 Symptomatic positive negative 

ICKNB3 Symptomatic positive negative 

ICKNB4 Symptomatic positive negative 

ICKNB5 Symptomatic positive positive 

ICKNB7 Symptomatic positive negative 

ICKNB9 Symptomatic negative positive 

DUDNB1 Symptomatic 

2018 

negative positive 

DUDNB2 Symptomatic negative positive 

DUDNB3 Symptomatic positive positive 

DUDNB4 Symptomatic negative positive 

DUDNB7 Symptomatic positive positive 

DUDNB8 Symptomatic positive positive 

DUDNB9 Symptomatic positive negative 

WYRNB5 Symptomatic positive negative 

WYRNB6 Symptomatic negative positive 

WYRNB7 Symptomatic positive positive 

WYRNB8 Symptomatic  negative positive 
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Results for symptomatic trees  

For symptomatic trees there was a greater percentage of positive detections of 

G.quercinecans (20%) compared to B.goodwinii (15%) in spring leaf samples (Table 11). A 

greater percentage of autumn leaf samples from symptomatic trees had a positive detections 

of B.goodwinii (57%) compared to G.quercinecans (43%) (Table 11). 

Gibbsiella quercinecans 

In the 2016 and 2017 sample years at symptomatic sites only autumn leaves were analysed 

(Figure 27). Of the 20 samples collected 11 showed positive and nine negative for 

G.quercinecans (Figure 27). In 2018 both spring and autumn leaves were analysed from two 

symptomatic sites (Figure 27). Across both seasons of the 10 trees sampled this resulted in 

six positive and three negative for G.quercinecans (plus one lost autumn sample) one site 

and all 10 samples negative at the second site (Figure 27). 

Brenneria goodwinii 

In 2016 all nine autumn leaf samples from symptomatic sites (5ATT:4RIC) had a negative 

result for B.goodwinii (Figure 28). Autumn samples from both symptomatic sites in 2017 

indicated four negative and seven positive B.goodwinii detections (Figure 27). Of the 19 

spring and autumn samples analysed in 2019 (plus one autumn sample lost) 12 were 

negative and seven positive for B.goodwinii (Figure 27). 
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Figure 27. Positive and negative detections of G.quercinecans in the total number of 

symptomatic trees sampled across three years 2016-2018 from symptomatic sites in spring 

and autumn 

The results presented for the overall number of trees at symptomatic site in Figures 27 and 

28 do not show whether it is same tree positive and/or negative for both bacteria within the 

sampling period. In 2017 across both sites five trees were positive for both bacteria (1 SITE3 

: 4 ICK) (Table 14, Table 15). In 2018 at site WYR no trees were positive G.quercinecans in 

either spring or autumn or B.goodwinii in spring with only two trees positive for B.goodwinii in 

autumn (Figure 27, Figure 28). 

At the other symptomatic site (DUD) in 2018 a single tree was both positive for B.goodwinii 

and G.quercinecans in spring (Table 14, Table 15). A single, different tree was positive for 

both B.goodwinii and G.quercinecans in autumn (Table 14, Table 15) 
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Figure 28. Positive and negative detections of B.goodwinii in the total number of 

symptomatic trees sampled across three years 2016-2018 from symptomatic sites in spring 

and autumn 
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Table 14. Positive results of the detection of G.quercinecans in spring and autumn leaf 

samples from symptomatic trees in symptomatic sites 2016-2018 

Tree  
identification 

Sample year G.quercinecans 
Spring leaves 

G.quercinecans 
Autumn leaves 

RICB1 

2016 

not taken positive 

ATTB3 not taken positive 

ATTB4 not taken positive 

ATTB5 not taken positive 

SITE3B1 

2017 

not taken positive 

SITE3B2 not taken positive 

ICKB1 not taken  positive 

ICKB2 not taken positive 

ICKB3 not taken positive 

ICKB5 not taken positive 

ICKB6 not taken positive 

DUDB3 

2018 

positive negative 

DUDB4 negative positive 

DUDB5 positive missing sample 

 

 

Table 15. Positive results of the detection of B.goodwinii in spring and autumn leaf samples 

from symptomatic trees in symptomatic sites 

Tree 
identification 

Sample year B.goodwinii 
Spring leaves 

B.goodwinii 
Autumn leaves 

SITE3B1 

2017 

not taken positive 

SITE3B3 not taken positive 

SITE3B4 not taken positive 

ICKB2 not taken positive 

ICKB3 not taken positive 

ICKB5 not taken positive 

ICKB6 not taken positive 

DUDB1 

2018 

negative positive 

DUDB3 negative positive 

DUDB4 positive positive 

DUDB5 positive missing sample 

WYRB2 negative positive 

WYRB4 negative positive 
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3.3.1.2 Litter 

Independent of site, a higher percentage of litter samples from asymptomatic trees were 

positive for G.quercinecans (62%) compared to B.goodwinii (46%) (Table 11). For 

symptomatic trees there was a greater percentage of positive detections of G.quercinecans 

(45%) compared to B.goodwinii (30%) (Table 11). 

In 2017 three litter samples from symptomatic trees and ten from asymptomatic trees were 

positive for G.quercinecans (Figure 29). In 2018 litter samples from ten asymptomatic and 6 

symptomatic trees were positive for G.quercinecans (Figure 29).  

Across the two symptomatic sites sampled in 2017 only one out of 18 litter samples from 

asymptomatic trees was positive for B.goodwinii (Figure 29). None of the 11 litter samples 

from symptomatic trees were positive for B.goodwinii (Figure 29). In 2018 litter samples from 

13 asymptomatic and 6 symptomatic trees were positive for B.goodwinii (Figure 29). 

In 2017 of the litter samples from symptomatic sites that tested positive G.quercinecans 

none were also positive for B.goodwinii (Table 16). In addition the single sample that was 

positive for B.goodwinii was negative for G.quercinecans (Table 16).  

In 2017 all nine litter samples from the asymptomatic sites were positive for G.quercinecans 

with five also positive for B.goodwinii (Figure 30). In 2018 samples from four trees were 

positive for G.quercinecans (Figure 30). Of these four were also positive for B.goodwinii 

(Table 17). 

Of the 2018 litter samples from symptomatic sites 10 from asymptomatic trees and six from 

symptomatic trees were positive for G.quercinecans (Table 16). Of these, 10 asymptomatic 

and five symptomatic trees were also positive for B.goodwinii (Table 16). 
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Figure 29. Positive and negative detections of G.quercinecans and B.goodwinii in the total 

number of litter samples from asymptomatic and symptomatic trees sampled across two 

years 2017-2018 from symptomatic sites in autumn 
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Figure 30. Positive and negative detections of G.quercinecans and B.goodwinii in the total 

number of litter samples from asymptomatic trees sampled across two years 2017-2018 

from asymptomatic sites in autumn 
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Table 16. Positive results of the detection of G.quercinecans and B.goodwinii in litter 

samples from asymptomatic and symptomatic trees in symptomatic sites 

Tree 

identification 

Tree health status Sample year G.quercinecans 
Litter 

B.goodwinii 
Litter 

ICKB1 Symptomatic 

2017 

positive negative 

ICKNB3 Asymptomatic positive negative 

ICKNB5 Asymptomatic positive negative 

ICKNB6 Asymptomatic positive negative 

ICKNB7 Asymptomatic positive negative 

SITE3B1 Symptomatic positive negative 

SITE3B5 Symptomatic positive negative 

SITE3NB1 Asymptomatic positive negative 

SITE3NB2 Asymptomatic positive negative 

SITE3NB3 Asymptomatic positive negative 

SITE3NB4 Asymptomatic negative positive 

SITE3NB5 Asymptomatic positive negative 

SITE3NB7 Asymptomatic positive negative 

SITE3NB9 Asymptomatic positive negative 

DUDNB1 Asymptomatic 

2018 

positive positive 

DUDNB2 Asymptomatic negative positive 

DUDNB3 Asymptomatic positive positive 

DUDNB4 Asymptomatic negative positive 

DUDNB6 Asymptomatic negative positive 

DUDNB7 Asymptomatic positive negative 

DUDB1 Symptomatic positive positive 

DUDB3 Symptomatic positive negative 

DUDB4 Symptomatic negative positive 

WYRNB1 Asymptomatic positive positive 

WYRNB2 Asymptomatic positive positive 

WYRNB4 Asymptomatic positive positive 

WYRNB5 Asymptomatic positive positive 

WYRNB6 Asymptomatic positive positive 

WYRNB7 Asymptomatic positive positive 

WYRNB8 Asymptomatic positive positive 

WYRNB9 Asymptomatic negative positive 

WYRB1 Symptomatic positive positive 

WYRB2 Symptomatic positive positive 

WYRB4 Symptomatic positive positive 

WYRB5 Symptomatic positive positive 
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Table 17. Positive results of the detection of G.quercinecans and B.goodwinii in litter 

samples from asymptomatic sites 

Tree 

identification 

Tree health status Sample year G.quercinecans 
Litter 

B.goodwinii 
Litter 

BRONB1 Asymptomatic 

2017 

positive positive 

BRONB2 Asymptomatic positive negative 

BRONB3 Asymptomatic positive positive 

BRONB4 Asymptomatic positive positive 

BRONB5 Asymptomatic positive positive 

BRONB6 Asymptomatic positive positive 

BRONB7 Asymptomatic positive negative 

BRONB8 Asymptomatic positive negative 

BRONB9 Asymptomatic positive negative 

HAUNB2 Asymptomatic 

2018 

positive positive 

HAUNB5 Asymptomatic positive positive 

HAUNB6 Asymptomatic positive positive 

HAUNB7 Asymptomatic negative positive 

HAUNB8 Asymptomatic negative positive 

HAUNB9 Asymptomatic positive positive 

 

3.3.1.3 Acorns  

In 2016 acorns were collected from two symptomatic sites and in 2017 from one site (Figure 

31, Table 18). Acorns were collected from asymptomatic and symptomatic trees with the 

exception of one site in 2016 where no acorns were collected from asymptomatic trees. 

Catkins were collected from a single symptomatic site in 2017 (Table 19). In 2016 one acorn 

sample from an asymptomatic tree was positive for G.quercinecans (Figure 31). The same 

sample was also positive for B.goodwinii (Table 18).  

In 2017 there was a positive detection of G.quercinecans from the inner acorn tissue of two 

symptomatic and one asymptomatic tree (Figure 31). The outer acorn tissue of four 

asymptomatic and two symptomatic samples were positive for G.quercinecans (Figure 31). 

Brenneria goodwinii was detected in the inner acorn tissue of two asymptomatic and two 

symptomatic samples (Figure 31). Two asymptomatic and one symptomatic outer acorn 

samples were positive for B.goodwinii (Figure 31).  

There were detections of both bacteria in two symptomatic inner acorn samples (Table 18). 

Of these one sample of outer acorn tissue was also positive for G.quercinecans; although it 

was negative for B.goodwinii (Table 18). Two inner acorn samples from asymptomatic trees 

were positive for both bacteria (Table 18). The inner and outer acorn tissue from one 

asymptomatic tree was positive for both bacteria (Table 18). 
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Figure 31. Positive and negative detections of G.quercinecans and B.goodwinii in the total 

number of acorn samples from asymptomatic and symptomatic trees sampled across two 

years 2016-2017 from symptomatic sites in autumn 
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Table 18. Acorn samples taken from symptomatic and asymptomatic trees in 2016 at AOD 

symptomatic sites with a positive detection G.quercinecans or B.goodwinii 

 

3.3.1.4 Catkins 

Catkin samples from seven asymptomatic trees in 2017 were positive for G.quercinecans 

and six for B.goodwinii (Table 19). Both bacteria were detected in four catkin samples from 

asymptomatic trees and one sample from a symptomatic tree (Table 19). 

Table 19. Catkin samples with a positive detection G.quercinecans and/or B.goodwinii taken 

from symptomatic and asymptomatic trees in 2017 from a single symptomatic site 

   

  

Tree 
identification 

Tree health 
status 

Sample 
year 

Acorn section G.quercinecans B.goodwinii 

RICB3  Symptomatic 
2016 Acorn (entire) 

positive negative 

RICNB4  Asymptomatic positive positive 

ICKB1 Symptomatic 

2017 

Acorn (inner) 

positive positive 

ICKB6 Symptomatic positive positive 

ICKNB2 Asymptomatic positive positive 

ICKNB8 Asymptomatic negative positive 

ICKB6 Symptomatic 

Acorn (outer) 

positive negative 

ICKNB2 Asymptomatic positive positive 

ICKNB5 Asymptomatic positive negative 

ICKNB6 Asymptomatic positive negative 

ICKNB8 Asymptomatic positive positive 

Tree  
identification 

Tree health status G.quercinecans B.goodwinii 

ICKNB1 Asymptomatic positive positive 

ICKNB2 Asymptomatic positive positive 

ICKNB3 Asymptomatic positive negative 

ICKNB4 Asymptomatic positive negative 

ICKNB5 Asymptomatic positive positive 

ICKNB7 Asymptomatic positive positive 

ICKNB9 Asymptomatic negative positive 

ICKNB10 Asymptomatic positive negative 

ICKB1 Symptomatic positive negative 

ICKB2 Symptomatic positive positive 
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3.3.2 Field investigation into the presence of G.quercinecans and B.goodwinii on 

leaves via culture of washings from leaves and litter 
 

Two symptomatic and two asymptomatic leaf wash samples from the single symptomatic 

site (WYR) were positive for G.quercinecans (Table 20). Three symptomatic and four 

asymptomatic leaf was samples were positive for B.goodwinii (Table 20). Two asymptomatic 

and one symptomatic leaf wash sample were positive for both bacteria (Table 19). Washed 

symptomatic tree litter was positive for both bacteria however that from asymptomatic trees 

was only positive for B.goodwinii (Table 20). 

Table 20. All washed leaf samples with positive and/or negative detections of 

G.quercinecans and/or B.goodwinii taken from symptomatic and asymptomatic trees in 2018 

from a single symptomatic site (WYR) 

 

3.3.3 Glasshouse investigation into the survival of G.quercinecans and B.goodwinii 

on leaves after inoculation 
 

Control trees had no detection of G.quercinecans, however two samples were positive for 

B.goodwinii (Table 21). Where leaves were inoculated with a combination of G.quercinecans 

and B.goodwinii no samples at any dilution factor were positive for G.quercinecans, whereas 

B.goodwinii was detected in all three samples of the highest dilution factor (Table 22).  

There was no detection of G.quercinecans at any dilution factor on the surfaces of the 

inoculated oak sapling leaves (Table 23). Conversely B.goodwinii was detected on the leaf 

surface at all three applied dilution factors (Table 24).  

 

 

Tree  
Identification 

Tree health 
status 

Sample type G.quercinecans B.goodwinii 

WASHWB1 Symptomatic 

Washed leaves 

positive positive 

WASHWB2 Symptomatic negative positive 

WASHWB3 Symptomatic positive negative 

WASHWB4 Symptomatic negative positive 

WASHWNB1 Asymptomatic positive positive 

WASHWNB2 Asymptomatic negative positive 

WASHWNB3 Asymptomatic positive positive 

WASHWNB4 Asymptomatic negative positive 

WASHWBLi Symptomatic 
Washed litter 

positive positive 

WASHWNBLi Asymptomatic negative positive 
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Table 21. Positive detections of G.quercinecans and B.goodwinii on the surfaces of control 

oak leaf saplings inoculated with sterile distilled water 

 

Table 22. Positive detections of G.quercinecans and/or B.goodwinii on the surfaces of oak 

leaf saplings inoculated with combination of three dilutions of G.quercinecans and 

B.goodwinii  

 

Table 23. Positive detections of G.quercinecans on the surfaces of oak leaf saplings 

inoculated with combination of three dilutions of G.quercinecans  

 

  

Tree  
identification 

G.quercinecans B.goodwinii 

EXPCONTROL1 negative negative 

EXPCONTROL3 negative positive 

EXPCONTROL7 negative positive 

Tree  
identification/dilution factor 

G.quercinecans B.goodwinii 

Gq/Bg10-2 Tree4 negative positive 

Gq/Bg10-2 Tree5 negative positive 

Gq/Bg10-2 Tree3 negative positive 

Gq/Bg10-3 Tree7 negative negative 

Gq/Bg10-3 Tree1 negative negative 

Gq/Bg10-3 Tree6 negative positive 

Gq/Bg10-4 Tree1 negative negative 

Gq/Bg10-4 Tree7 negative negative 

Gq/Bg10-4 Tree6 negative negative 

Tree  
identification/dilution factor 

G.quercinecans 

GQ10-2 Tree7 negative 

GQ10-2 Tree6 negative 

GQ10-3 Tree 6 negative 

GQ10-3 Tree 4 negative 

GQ10-3 Tree 1 negative 

GQ10-4 Tree 1 negative 

GQ10-4 Tree 2 negative 

GQ10-4 Tree 5 negative 
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Table 24. Positive detections of B.goodwinii on the surfaces of oak leaf saplings inoculated 

with combination of three dilutions of B.goodwinii  

  

Tree  
identification/dilution factor 

B.goodwinii 

BG10-2 Tree 3 positive 

BG10-2 Tree7 positive 

BG10-2 Tree 2 positive 

BG10-3 Tree 4 positive 

BG10-3 Tree 1 positive 

BG10-4 Tree 5 negative 

BG10-4 Tree 6 positive 

BG10-4 Tree 5 positive 
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3.4 Discussion 

The aim of this chapter was to investigate whether there is an association between the 

oak phyllosphere and two bacteria associated with Acute Oak Decline; B.goodwinii and 

G.quercinecans. Their detection on live oak leaves, litter, acorns and catkins are new 

findings and are newly revealed by this study to exist outside of the stem bleeds. 

Evidence that they can occur either on or within the tissues of both symptomatic and 

asymptomatic trees is also a new discovery. These results support the suggestion that 

G.quercinecans and B.goodwinii have an association with the oak phyllosphere.  

Differences in the number of positive detections in live leaves were observed between 

asymptomatic and symptomatic sites. At asymptomatic sites a greater number of spring 

and autumn samples were positive for B.goodwinii compared to G.quercinecans. At 

symptomatic sites, regardless of tree health status, samples had a similar number of 

positive detections for each bacteria in both spring and autumn leaf samples. When tree 

health status is taken into account at symptomatic sites, asymptomatic trees, with the 

exception of G.quercinecans in autumn leaves, had a higher percentage number of 

positive detections of both bacteria in all sample types. 

There were differences in the percentage of positive detections in the leaves of 

asymptomatic trees (regardless of site). Asymptomatic trees regardless of site had a high 

percentage (58%) of positive detections of B.goodwinii in spring leaf samples followed by a 

consistent detection in the autumn (45%) and litter samples (46%). In contrast the 

percentage of positive detections of G.quercinecans rose with increasing leaf age from 

spring leaves (35%) to autumn leaves (46%) to litter (62%).  

These results could indicate differences in prevalence of the two bacteria. It may be that 

B.goodwinii is the more widely occurring bacteria within the oak phyllosphere, accounting for 

its greater detection. The relatively constant detection of B.goodwinii at symptomatic sites 

and on asymptomatic trees regardless of site supports this. Detection of B.goodwinii but not 

G.quercinecans in asymptomatic bark tissue on AOD sites (Sapp et al., 2016; Denman et al., 

2016) also adds to this idea. It is however in contrast to Meaden et al. (2016) where no 

Brenneria sequences were identified in microcores of health Q.robur trees on a non AOD 

sites. This suggests that additional factors influence the presence of B.goodwinii on bark 

and potentially other oak tissues, such as an already declining tree or abiotic conditions. 

At individual sites there were interesting patterns to be observed. At one asymptomatic site 

in 2017 (BRO) for example eight out of the nine trees sampled were negative in spring 

leaves for G.quercinecans however all nine were positive for this bacteria in litter. In 2018 at 
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one symptomatic site (WYR) no spring leaf samples were positive for B.goodwinii or 

G.quercinecans however both were detected in litter samples. Environmental factors are 

known to affect the presence of bacteria within the phyllosphere (Laforest-Lapointe et al., 

2016). Oak bacterial communities can also vary over geographic distance (Sapp et al., 

2016). The results could therefore indicate site dependent abiotic effects on the appearance 

of B.goodwinii and G.quercinecans. Differences in temperature, moisture or nutrients 

could all influence the colonisation and establishment of both bacteria at the site level.  

Soil water level has been shown to be a key factor influencing the likelihood of AOD being 

present on a site (Brown et al., 2018).  A high water content in leaf intercellular spaces 

may also suppress plant defences in response to pathogen secreted effector proteins 

(Beattie 2011). Experiments with Xanthomamonas campestris pv. vesicatoria and 

Pseudomonas syringae indicate that low leaf water content may inhibit pathogen growth 

(Beattie 2011). Lower rainfall, clay rich and seasonally waterlogged soil were all found to be 

more prevalent on AOD sites (Brown et al., 2018).  Sites with a high level of soil nitrogen, a 

potential indicator of low tree health was also more likely to be higher at sites with AOD 

(Brown et al., 2018). 

It has been suggested that there is an interplay between the two bacteria and that 

G.quercinecans is the primary coloniser creating conditions for B.goodwinii (Doonan et al., 

2019). When all samples from asymptomatic and symptomatic trees are considered together 

regardless of site there was no clear evidence that a positive detection of either bacteria in a 

spring leaf sample led to any subsequent detections of another in an autumn leaf sample. 

Indeed only one tree from an asymptomatic site was positive in both spring and autumn 

for both bacteria. This indicates a lack of evidence for interaction between B.goodwinii and 

G.quercinecans within leaves. Sample size, particularly for the spring samples, was small 

so the results are not conclusive. 

Both bacteria were present in the leaf washings of symptomatic and asymptomatic trees at 

the symptomatic site (WYR). This implies that they do not specifically require a declining 

host. It also supports the suggestion that both bacteria can be non-pathogenic in the oak 

phyllosphere and that it is external factors which induce pathenogenicity. With the exception 

of a single symptomatic tree all leaf washing samples were positive for B.goodwinii; positive 

detections of G.quercinecans were not consistent.  

It may be that B.goodwinii is more widespread than G.quercinecans and so had a higher 

detection rate. This further adds to the evidence from the leaf analysis where B.goodwinii 

was detected in a higher overall number of samples. Alternatively this may be evidence that 
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B.goodwinii is primarily an epiphyte and G.quercinecans primarily an endophyte. That 

B.goodwinii has the ability to exist as an epiphyte has been mentioned previously (Denman 

et al., 2018). A number of virulence factors have been identified in non-pathogenic bacteria 

and may be involved in host interactions unrelated to pathenogenicity (Niu et al., 2013). Both 

species may be opportunistic pathogens, becoming virulent in response to abiotic factors or 

changes to a host. The detection of B.goodwinii in asymptomatic bark from an AOD site 

(Sapp et al., 2016) may be additional evidence other factors are required to induce virulence. 

Bacteria that can survive through gaps in host availability have an advantage over those that 

cannot (Allen et al., 2009). The detection of both bacteria in litter samples suggests they 

could have an overwintering life stage. Exudate appears from lesions during spring which 

could be a hypersensitive response triggered by bacterial presence. Additionally oak host 

defences have been shown to be triggered by the presence of both bacteria in lesions 

(Broberg et al., 2018). The absence of exudate appearing from bleeds in winter (Denman 

et al., 2014) is supportive of a period of reduced activity and may point to the use of litter as 

an alternative resource.  

There was a greater number of positive detections of B.goodwinii in the litter washings at the 

symptomatic site (WYR). These show that B.goodwinii was detected alive in the litter from 

under symptomatic and asymptomatic trees whereas G.quercinecans was only detected in 

the litter from under symptomatic trees. This is interesting as B.goodwinii is considered the 

more pathogenic and is closely aligned with necrogenic phytopathogens (Doonan et al., 

2019). It may be that B.goodwinii is more adapted to utilising litter as an alternative resource 

and so detection over time is relatively consistent. The lower pathogenic potential of 

G.quercinecans (Doonan et al., 2019) or a need for more time to become established could 

have resulted in the apparent increase in detection over time. The presence of a T3SS 

secretion system in B.goodwinii and not in G.quercinecans (Doonan et al., 2019) further 

supports the idea that host defences need to be compromised before G.quercinecans is able 

to effectively colonise. Alternatively, the results from leaves and litter may simply indicate 

differences in activity or abundance and therefore likelihood of detection.  

The implications that G.quercinecans is an endophyte bacteria and B.goodwinii an epiphyte 

is further supported by evidence from the inoculation trial. Results suggests that whilst 

B.goodwinii can survive on the surfaces of leaves, G.quercinecans cannot. The negative 

results of G.quercinecans could be due to unviable colonies however previous attempts at 

serial dilutions had showed still viable colonies after the same time period. Another 

explanation could be that whilst B.goodwinii may not have entered the leaf at the point of 

sampling, G.quercinecans had indicating they both may be able to switch between lifestyles. 
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Saplings may have not been left for long enough after inoculation to look at independent 

survival from any lingering growth media. Brenneria goodwinii was also detected on control 

trees, which may indicate its presence already in oak tissues before inoculation.  

At the single symptomatic site (ICK) there was evidence that trees with catkins that were 

positive for B.goodwinii or G.quercinecans later had a positive detection within an acorn. 

This may indicate a continuum of colonisation from an initial presence on a catkin although a 

prior detection on a spring leaf was not necessarily positive.  

Differences in the number of detections on the various tissues may indicate niche 

partitioning or that there are differences in the ability of the bacteria to colonise different 

tissues. Niche partitioning may further explain the greater presence of G.quercinecans on 

acorns and catkins. This may be evidence to suggest that the bacteria are acting in different 

ways and are potentially adapted to different oak tissue types. The increasing number of 

detections of G.quercinecans in asymptomatic trees as leaf age increases is suggestive 

of this bacteria requiring a greater level of leaf senescence before colonisation can take 

place. Where the bacteria are detected is an important aspect in understanding how the 

bacteria act. This may point towards whether they are epiphytes or endophytes or able to 

switch between both lifestyles and influence any future attempts at control or prevention. 

Bacteria are known to utilise existing openings such as stomata or wounds to enter into a 

hosts tissue and that they can be transferred from flowers to seeds (Frank et al., 2017). The 

results presented here hint that these may be potential colonisation roots for B.goodwinii and 

G.quercinecans. 

The presence of G.quercinecans and B.goodwinii at asymptomatic and symptomatic sites 

challenges the idea that these bacteria are specific to oak. This discovery hints at the 

possibility the bacteria may be present in the wider woodland environment  and as 

Ottesen et al. (2016) and Telias et al. (2011) have suggested are managing to establish 

themselves on oak trees. The findings were across both sites which suggests local abiotic 

factors were influential and that the presence of the bacteria on these tissues was further 

due to the suitability of the tissue itself for colonisation.  

Considered a causal agent of stem bleeds (Brady et al., 2010; Brady et al., 2017) a 

management approach for is likely to be challenging if both bacteria are widespread in the 

environment and can exist on multiple types of oak tissue. In addition their presence on 

external tissues indicates indirect transmission via wind and water could be possible. 

Direct or indirect movement of bacteria by vectors is also a possibility. Management 
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may therefore be better directed at improving overall tree and site health for example 

managing soil water conditions since this appears to be a primary factor in AOD. 

An association of A.biguttatus with AOD has been suggested in several papers e.g. Denman 

et al., 2014; Denman et al., 2018, but, as previously discussed there has been no evidence 

to support its implied status as a vector. The evidence presented here of the presence of 

both B.goodwinii and G.quercinecans on a variety of oak tissues brings this assumption 

further into question. With detections on leaves, acorns, litter and catkins a number of 

movement pathways are possible. Two of those possible, vectoring by any potential insects 

and rainsplash, are discussed further in Chapters 4 and 5 respectively.  

3.5 Conclusion 

The recent rise in oak decline in Britain and in Europe is a cause for concern. The 

identification of Acute Oak Decline has led to questions over its epidemiology and 

spread both within sites and across the country. One of these key questions is the origin 

of the two bacteria associated with bleeds and the means by which they colonise oak 

tissues. This study has demonstrated the presence of the bacteria in asymptomatic and 

symptomatic sites and on the live oak leaves, litter, acorns and catkins of asymptomatic 

and symptomatic trees. These findings indicate a likely widespread presence of both 

bacteria in the woodland environment and offer an explanation as to their entry routes 

and movement pathway to new hosts.   
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Chapter 4 
 

Investigating the relationship between xylophagous 

Coleoptera and two bacteria associated with Acute Oak 

Decline; B.goodwinii and G.quercinecans 

4.1 Introduction 

Insect-bacteria interactions can be defined as commensalism, mutualism or parasitism. In 

commensalism one organism benefits whilst the other is neither positively nor negatively 

impacted. Mutualism benefits both organisms and parasitism benefits one to the detriment of 

the other. Inherited symbionts may be obligate, unable to exist without each other, or 

facultative, choosing to exist together (Engel and Moran, 2013). There is further a 

differentiation to be made between permanent or indigenous (autochonous) bacteria of an 

insect microbial community and those that are transient (allochthonous) and ingested via 

food intake or acquired from the environment (Dillon and Dillon, 2004).  

Many insects have evolved to accommodate microorganisms such as protists, fungi, 

archaea, and bacteria within their digestive system (Engel and Moran, 2013). The role of 

bacteria found within intestinal organs can be to aid and improve food digestion through the 

provision of nutrients or digestive enzymes (Dillon and Dillon, 2004; Douglas, 2009; Klepzig 

et al., 2009; Engel and Moran, 2013). Bacteria can aid in the digestion of lignin and cellulose 

through carbohydrate fermentation, nitrogen fixing (Rizzi et al., 2013) and via the production 

of amino acids and vitamins (Dillon and Dillon, 2004). Other beneficial associations include 

bacteria providing resistance to pathogens (Eleftherianos et al., 2013), resistance to 

parasites and aiding in defence against predation (Engel and Moran, 2013).  

The presence of indigenous bacteria is unknown for most species as is the function of the 

bacteria themselves (Dillon and Dillon, 2004). Microorganisms present within the guts of 

insects have also been found to be widespread within the environment (Engel and Moran, 

2013). Rather than being transferred between individuals or between generations this 

suggests many are obtained from the environment and colonisation of insects by bacteria 

may be more opportunistic (Engel and Moran, 2013). This has led to the proposal by Engel 

and Moran (2013) that many bacteria may be ingested and only those required by the insect 

retained. Alternatively it may be only those bacteria able to colonise successfully that remain 

(Orlovskis et al., 2015).  
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Discussed in section 1.2.3.1 insects can have associations with phytopathogens. Bacteria 

acquired via feeding can be spread via 'circulative propogative' (bacteria acquired replicate 

within the insect) or 'circulative non-propogative' (bacteria acquired do not replicate within 

the insect) means Orlovskis et al. (2015). 

Many microorganisms are unable to automatically colonize the gut and may only become 

established when circumstances are favourable (Engel and Moran, 2013). Colonisation 

success can be determined by pH or influenced by gut structure or nutrients (Engel and 

Moran, 2013). Bacteria, through quorum sensing, respond to population density; accordingly 

regulating gene expression (Bassler, 1999). These modifications can in turn determine which 

microorganisms are present and may limit the niches which the insect can exploit (Engel and 

Moran, 2013). Insects may conversely impact nutrient cycling by influencing bacterial 

colonisation; damaged oak leaves for example had more bacterial isolates able to utilize 

ammonia and nitrate than those on damaged beech leaves (Müller et al., 2003).  

A number of obstacles to the study of the insect microbiome have been expressed in a 

review by Dillon and Dillon (2004). They highlight the difficulty of laboratory studies in 

replicating interactions that may be present in reality and difficulties in distinguishing 

between permanent or transient microorganisms (Dillon and Dillon, 2004). An additional 

implication from Dillon and Dillon (2004) was that the functional ability of a bacterial 

community is independent of its composition. A community can therefore appear stable 

since those bacteria required by the insect are both part of its physiology as well as acquired 

transiently when needed from the environment.  

4.1.1 Bacteria and associations with xylophagous insects 

The presence of stem lesions and tissue necrosis symptomatic of Acute Oak Decline has led 

to suggestions a xylophagous (wood boring) insect may be involved (Denman et al., 2014; 

Denman et al., 2018). Species whose adults or larvae which burrow into wood are a 

potential contributing factor to decline diseases and as discussed in section 1.1.  

A meta-analysis of 62 insect species reported two classes of bacteria, Proteobacteria 

(57.4%) and Firmicutes (21.7%), as the main components (Colman et al., 2012). Although 

the bacterial communities of few individual xylophagous species have been studied, 

Proteobacteria also accounted for 97.8% of the community across all life stages of the bark 

beetle Dendroctonus rhizophagus (Briones-Roblero et al., 2017). Bacteria within the 

Enterobacteriaceae were however found to be the primary constituents of the gut bacteria of 

Anoplophora chinensis (citrus long-horn); an invasive pest in Europe whose larvae feed on 

tree cambium, phloem and xylem (Rizzi et al., 2013). 
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There are indications that variation in bacterial communities exists between different 

xylophagous insects and there have also been observed differences between individuals of 

the same species (Engel and Moran, 2013). When cultured, the gut bacterial community of 

Ips pini (pine engraver) was low in species richness, consisting of only six bacterial genera 

(Delalibera Jr. et al., 2007). In comparison a higher species richness was found in a study of 

various life stages of the bark beetle D.rhizophagus with 23 genera identified via 454 

pyrosequencing of 16S rRNA. The genera were however dominated by Rahnella species 

which accounted for 91 percent (Briones-Roblero et al., 2017).  

Diet may be an important influence on the composition of the community present (Colman et 

al., 2012). In a meta-analysis of 62 insects their diet was significantly linked to their gut 

bacterial communities (Colman et al., 2012). For xylophagous insects this study showed that 

species with a dead wood habitat had higher average levels of operational taxonomic units6 

than those with a live wood habitat (Colman et al., 2012). This could therefore potentially be 

a reflection of the habitat and the bacteria necessary to utilise a dead wood resource.  

Host plant may influence the bacterial communities found and gut bacteria may also mean 

insects have the capacity to exist on a host that is of poorer quality (Dillon and Dillon, 2004). 

Adult A.chinensis fed on Alnus and Acer had different gut bacterial communities to larvae fed 

on Liquidambar and Salix (Rizzi et al., 2013). A similar change in diversity was found for 

A.glabripennis (Asian long-horn) larvae reared on different hosts suggesting an explanation 

for the capacity of Anoplophora to exploit a range of hosts (Geib et al., 2009). An ability to 

adapt to a host is advantageous in generalist feeders, allowing unrestricted availability of 

food. In the case of invasive insects there is the potential for this to pose a greater threat to 

the invaded plant community.  

As insects go through developmental stages bacteria can be lost during transformations and 

there is not a clear indication in many cases of how, or indeed whether, bacteria can be 

transferred from female to egg or between adults or larvae (Engel and Moran, 2013). Often 

insect adult and larval stages have different diets so it may be possible that at different life 

stages the bacteria change to suit the food source (Duan et al., 2015). When looking at 

differences in gene expression between A.planipennis moulting larvae and during 

metamorphosis Duan et al. (2015) identified an enzyme that expressed 22 times higher in 

adult mid guts compared to larva. This enzyme is involved in lignin digestion and the 

concentration therefore may reflect the different diets of larvae and adult (Duan et al., 2015).  

                                                
6Operational Taxonomic Units (OTU's) are short sequences of 16S RNA used to characterise 
bacterial species based on the similarity of the sequence. 
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4.1.2 Agrilus biguttatus and its connection to oak 

As mentioned in section 1.1 several studies have implied an association between Acute Oak 

Decline and A.biguttatus. The UK reports of AOD (Figure 32) and the geographical 

distribution of A.biguttatus (Figure 33) cover a similar range and the high level of association 

has led to concerns it could be a potential factor in the disease (Brown et al., 2015). 

A.biguttatus has been implicated as having a causal role (Denman et al., 2018) however 

there is no evidence to date to support this or identify it as a vector.  

It is possible to make a visual comparison between the geographical distribution of AOD and 

other insects with oak as a host (Figure 33). As with A.biguttatus the apparent correlation 

without evidence does not indicate a causal role and the distribution may match habitat 

requirements of these insects.  

 

Figure 32. Distribution of positive sites to        Figure 33. Distribution comparison of          

March 2016 (Forestry Commission, 2016)       a) A.biguttatus b) A.mysticus c) C.glandium

                              and d) S.melanura (NBN, 2016) 

 

There are 3,069 Agrilus species and subspecies recorded worldwide, only 22 percent of 

which have a recorded plant association (Jendek and Poláková, 2014). Six species of 

Agrilus are found in the UK which have associations with several different plant species 

(Jendek and Poláková, 2014). These are summarised in Table 25 with full details in 

Appendix 1, Table 1. Agrilus biguttatus is a native UK species associated with ancient and 

declining oaks. Females are thought to seek out bark crevices in which to lay their eggs and 

after hatching the larvae bore into the bark and develop within the vascular tissue (Brown et 

al., 2014).  

a) b) c)

d)  
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Adults upon emerging are assumed to move up to the canopy to feed and mate. Based on 

observations Agrilus species are believed to use visual cues to locate ovipositing sites, food 

plants and for mating (Domingue et al., 2011). Adults of A.biguttatus have however also 

been shown in laboratory experiments to respond to the volatile organic compounds (VOC’s) 

of the leaves and bark of oak (Vuts et al., 2016).  

Table 25. Summary of host plant associations of six Agrilus species found in the UK as 

reported in Jendek and Poláková (2014). See Appendix 1, Table 1 for full details 

Species Summary of host plant associations 

A.angustulus Records of larva and adults on Castenea (Sweet chestnut), Corylus (Hazel), Fagus 

(Beech) and Quercus species. 
 

A.biguttatus The primary larval host are Quercus species. Larvae have also been reared from 

Castenea and Fagus species.  
 

A.cuprescens Rosa and Rubus (Rosaceae) are the primary larval host plant.  
 

A.cyanescens Lonicera species are the primary larval host plants. Adults have also been recorded 

on other Caprifoliaceae.  
 

A.laticornis Primary larval hosts are species of Quercus. Larvae have also been reared from 

Castenea species. Associations are also reported on Corylus and Rosa.  
 

A.sinuatus Larvae develop in various species in the Rosaceae.  
 

A.sulcicollis Primary larval host are Quercus species. Larvae have also been found in species of 

Fagus and Castenea.  
 

A.viridis Associations reported on Acer, Alnus (Alder), Betula (Birch), Fagus and Salix 

(Willow) species. 

 

The attraction of a specialist insect to its specific host is to be expected however whether 

individuals are more attracted to infected or weakened trees or what may attract individuals 

to infected trees has not yet been established (Vuts et al., 2016). There are indications that 

leaf loss has to reach a certain threshold before A.biguttatus move in with exit holes only 

observed for trees with over 90 percent leaf loss (Vansteenkiste et al., 2004). Canopy 

condition may therefore be important to A.biguttatus when selecting hosts or it may be that 

the condition of the canopy is a reflection of the health of the tree. A percentage leaf loss 

over 90 per cent indicates a severely weakened tree and the presence of A.biguttatus at this 

point is suggestive of a secondary pest (Vansteenkiste et al., 2004).  

For another Agrilus species, A.planipennis, girdled ash trees had an altered chemical 

composition of their phloem, with increases in sesquiterpene compounds, which could be 

detected and used by A.planipennis when seeking host trees (Crook et al., 2008). A similar 

effect could be occurring with A.biguttatus.  
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Larval galleries of A.biguttatus have been found when actively searched for behind lesions in 

over 95 percent of cases (Brown et al., 2015). On this evidence the conclusion that 

A.biguttatus may be acting as a secondary coloniser or vector is understandable however 

there are difficulties with this inference. Although larval galleries were found alongside sites 

of lesion formation the identification of these is based on the fact that larvae found at one 

site were identified as A.biguttatus (Denman et al., 2014). All subsequent similar looking 

galleries were then interpreted as belonging to A.biguttatus (Denman et al., 2014) without 

further corroboration e.g. via molecular analysis of frass or swabs of the gallery surface.  

In a comparison of the bacterial communities found in different bark layers of symptomatic 

and asymptomatic oak trees (10 AOD: 5 non AOD trees) Sapp et al. (2016) also investigated 

the larval galleries found although the results were not reported. Insect galleries may 

nevertheless be a potential pathway of spread through the tree as bacteria can colonise both 

damaged tissue (Underwood et al., 2007) and frass (Mitchell and Hanks, 2009). Entry and 

exit holes created by insects may also provide an ingress point that allows initial bacterial 

colonisation or a mechanism by which bacteria can be ‘moved’ as the insect leaves the tree.  

In an experiment to test whether B.goodwinii and G.quercinecans singly, together and in 

combination with A.biguttatus eggs were able to initiate stem bleeding results indicated that 

all combinations, including a control application of water, were able to induce necrosis 

(Denman et al., 2018). The assumed involvement of A.biguttatus led to no other wood boring 

insects being investigated, neither were tunnels created artificially to see whether the 

bacteria were utilising already degrading tissues. Without eliminating other possibilities there 

is still no clear evidence for any involvement of A.biguttatus.  

A.biguttatus has previously been considered solely as attracted to weakened oaks (Evans et 

al., 2004) and whose galleries may kill the trees via girdling (Moraal and Hilszczanski, 2000). 

These support the view that A.biguttatus may be a contributing factor to a decline syndrome. 

The correlation found between the necrotic lesions and larval galleries however does not 

mean that there is a causal relationship. Furthermore the evidence obtained by Brown 

(2014) on the composition of the adult gut bacteria was not supportive of A.biguttatus as a 

vector. The question of whether A.biguttatus, or other insects associated with oak, are a 

causal agent, vector or a contributing factor in the decline syndrome remains unanswered.  

4.1.3 Chapter Aims 

The aim of this chapter is to investigate whether there is any association between 

xylophagous coleoptera and B.goodwinii and G. quercinecans.    
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4.2 Methodology 

Xylophagous Coleoptera were collected from two sites in 2016 and six sites in 2017 (Table 

4). Insects were collected according to the protocol set out in section 2.2.3 with subsequent 

sample preparation and DNA extraction following the protocol outlined in section 2.2.5.1. In 

order to maximise the potential for detection of G.quercinecans and B.goodwinii DNA was 

extracted from several individuals of the same species where possible. Individuals of the 

same species were grouped together by date, up to a maximum of four individuals and DNA 

extracted from the group. 

Detection of the presence of G.quercinecans and B.goodwinii was via real-time PCR as 

covered in section 2.2.5.2. Additional A.biguttatus were provided by Forest Research in 2016 

and 2018. No cage caught adults were available for this project in 2017 due to poor 

emergence. Individual adults were collected from sections of symptomatic oak from AOD 

sites which had been placed in emergence cages (Figure 34). See Reed et al. (2018) for 

methodology of rearing A.biguttatus. Adults were stored without preservative at -26C.  

 

Figure 34. Sections of symptomatic oak from AOD sites placed in emergence cages  

Five field collected xylophagous Coleoptera, which have associations with oak, were 

selected for analysis (Table 26). A single adult A.biguttatus was field collected in 2016. 

These species were found to be the most consistently caught across all sites.  

Table 26. The five xylophagous Coleoptera selected to analyse for the presence of 

G.quercinecans and B.goodwinii   

Species  Family Ecology 

Agrilus laticornis1 Buprestidae Larvae develop in bark; adults feed on oak leaves 

Curculio glandium2 Curculionidae Larvae develop in acorns 

Curculio venosus2 Curculionidae Larvae develop in acorns 

Glischrochilus quadripunctatus3 Nitidulidae Predatory on Buprestidae, utilises existing tunnels 

Platypus cylindrus4 Curculionidae Adults bore into bark to lay eggs 

Identification keys: 1Vorst, O. (2009); 2Morris, M.G. (2012); 3Hackston, M. (2012); 4Duffy, E.A.J. (1953)   
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4.3 Results 

Agrilus biguttatus 

Neither G.quercinecans nor B.goodwinii were detected in the single 2016 field caught 

A.biguttatus. In 2016 no A.biguttatus from the emergence cages were positive for either 

bacteria.  

In 2018 five emergence cage samples from three different sites were positive for B.goodwinii 

compared to two, from the same site, for G.quercinecans (Table 27).  

 

Table 27. The total number of A.biguttatus analysed in the emergence cage samples which 

were positive or for G.quercinecans or B.goodwinii in 2016 and 2018 

Sample Site Year 
Number of 
individuals 
analysed 

G.quercinecans B.goodwinii 

I1 

Site A 2016 

1 negative negative 

I2 1 negative negative 

I3 1 negative negative 

E1 

Site B 

2018 

4 positive negative 

E4 1 negative positive 

E5 1 negative positive 

E6 1 negative negative 

E7 1 positive positive 

E2 Site C 1 negative positive 

E3 Site D 1 negative positive 

 
 

Symptomatic and asymptomatic sites 

In 2016 and 2017 A.laticornis was collected from all sites (Figures 35-38). At only one 

symptomatic site in 2017 (ICK) were all five xylophagous Coleoptera collected (Figure 35, 

Figure 36). At this site (ICK) all five species also had a grouped sample with a positive 

detection of B.goodwinii (Figure 36).  

 

Agrilus laticornis 

A higher number of sites had a positive grouped sample detection of B.goodwinii compared 

to G.quercinecans (Table 28). Both bacteria were detected in samples from three 

symptomatic sites (Table 28). A single grouped sample from an asymptomatic site was 

positive for B.goodwinii with no samples from either asymptomatic site positive for 

G.quercinecans (Figure 37, Figure 38). 
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Curculio glandium 

Overall a greater number of grouped samples from a higher number of sites had a positive 

detection of B.goodwinii compared to G.quercinecans (Table 29). Only two grouped samples 

from symptomatic sites had positive detections of both bacteria (Table 29). The sample 

collected from one asymptomatic site (NOR) was positive for B.goodwinii (Figure 38) but not 

for G.quercinecans (Figure 37). 

Curculio venosus 

A single grouped sample from a symptomatic site in 2017 had a positive detection of 

B.goodwinii with G.quercinecans not detected in any samples (Table 30). No C.venosus 

were caught at asymptomatic sites (Table 30). 

Glischrochilus quadripunctatus 

There was no detection of G.quercinecans in any samples from asymptomatic or 

symptomatic sites and only a single grouped sample from a symptomatic site in 2017 was 

positive for B.goodwinii (Table 31).  

Platypus cylindrus 

Two grouped samples from symptomatic sites, one in 2016 and one in 2017, were positive 

for G.quercinecans. Of these one was also positive for B.goodwinii (Table 32). No 

P.cylindrus were collected from asymptomatic sites (Table 32). 
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Figure 35. Total number of grouped xylophagous Coleoptera species samples with a positive 

or negative test result for G.quercinecans at symptomatic sites in 2016 and 2017 

 

 

Figure 36. Total number of grouped xylophagous Coleoptera species samples with a positive 

or negative test result for B.goodwinii at symptomatic sites in 2016 and 2017 
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Figure 37. Total number of grouped xylophagous Coleoptera species samples with a positive 

or negative test result for G.quercinecans at asymptomatic sites in 2017 

 

 

Figure 38. Total number of grouped xylophagous Coleoptera species samples with a positive 

or negative test result for B.goodwinii at asymptomatic sites in 2017 
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Table 28. The total number of individual adult A.laticornis analysed in 2016 and 2017 and the number of grouped samples which were positive 

for G.quercinecans or B.goodwinii 

      Number of groups positive Number of groups negative 

Site Year 
Site health 
status 

Total 
caught 

Total 
individuals 
analysed 

Number of 
groups by 
sample date 

G.quercinecans B.goodwinii G.quercinecans B.goodwinii 

NOR 
2017 Asymptomatic 

7 5 3 0 1 3 2 

PRI 0 0 0 0 0 0 0 

ATT 
2016 

Symptomatic 
 

8 8 4 2 3 2 1 

RIC 54 14 4 0 1 4 3 

SITE1 

2017 

12 10 3 1 1 2 2 

SITE2 34 15 4 0 2 4 2 

SITE3 15 11 4 0 0 4 4 

ICK 17 10 3 2 2 1 1 

 

Table 29. The total number of individual adult C.glandium analysed in 2016 and 2017 and the number of grouped samples which were positive 

for G.quercinecans or B.goodwinii 

      Number of groups positive Number of groups negative 

Site Year 
Site health 
status 

Total 
caught 

Total 
individuals 
analysed 

Number of 
groups by 
sample date 

G.quercinecans B.goodwinii G.quercinecans B.goodwinii 

NOR 
2017 Asymptomatic 

5 4 1 1 0 0 1 
PRI 0 0 0 0 0 0 0 

ATT 
2016 

Symptomatic 
 

8 4 2 0 2 2 0 

RIC 0 0 0 0 0 0 0 

SITE1 

2017 

1 1 1 1 1 0 0 

SITE2 4 4 1 0 1 1 0 

SITE3 8 8 4 0 2 4 2 

ICK 9 9 3 1 3 2 0 
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Table 30. The total number of individual adult C.venosus analysed in 2016 and 2017 and the number of grouped samples which were positive 

for G.quercinecans or B.goodwinii 

      Number of groups positive Number of groups negative 

Site Year 
Site health 
status 

Total 
caught 

Total 
individuals 
analysed 

Number of 
groups by 
sample date 

G.quercinecans B.goodwinii G.quercinecans B.goodwinii 

NOR 
2017 Asymptomatic 

0 0 0 0 0 0 0 
PRI 0 0 0 0 0 0 0 
ATT 

2016 

Symptomatic 
 

0 0 0 0 0 0 0 
RIC 3 3 3 0 0 3 3 
SITE1 

2017 

0 0 0 0 0 0 0 
SITE2 0 0 0 0 0 0 0 
SITE3 2 2 2 0 0 2 2 
ICK 6 6 2 0 1 2 1 
 

Table 31. The total number of individual adult G.quadripunctatus analysed in 2016 and 2017 and the number of grouped samples which were 

positive for G.quercinecans or B.goodwinii  

      Number of groups positive Number of groups negative 

Site Year 
Site health 
status 

Total 
caught 

Total 
individuals 
analysed 

Number of 
groups by 
sample date 

G.quercinecans B.goodwinii G.quercinecans B.goodwinii 

NOR 
2017 Asymptomatic 

1 1 1 0 0 1 1 
PRI 3 3 1 0 0 1 1 
ATT 

2016 

Symptomatic 
 

0 0 0 0 0 0 0 
RIC 0 0 0 0 0 0 0 
SITE1 

2017 

0 0 0 0 0 0 0 
SITE2 0 0 0 0 0 0 0 
SITE3 0 0 0 0 0 0 0 
ICK 3 3 1 0 1 1 0 
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Table 32. The total number of individual adult P.cylindrus analysed in 2016 and 2017 and the number of grouped samples which were positive 

for G.quercinecans or B.goodwinii 

      Number of groups positive Number of groups negative 

Site Year 
Site health 
status 

Total 
caught 

Total 
individuals 
analysed 

Number of 
groups by 
sample date 

G.quercinecans B.goodwinii G.quercinecans B.goodwinii 

NOR 
2017 Asymptomatic 

0 0 0 0 0 0 0 
PRI 0 0 0 0 0 0 0 
ATT 

2016 

Symptomatic 
 

1 1 1 1 1 0 0 
RIC 1 1 1 0 0 1 1 
SITE1 

2017 

1 1 1 1 0 0 1 
SITE2 0 0 0 0 0 0 0 
SITE3 0 0 0 0 0 0 0 
ICK 5 3 2 0 2 2 0 
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4.4 Discussion  

The association of G.quercinecans and B.goodwinii with insects is a new finding. The results 

presented here indicate that both bacteria may have relationships with a variety of insects, 

including those analysed in this chapter. It may be that as these coleoptera use oak as a 

habitat, they have incidentally come into contact with the bacteria. Alternatively their 

relationship may be closer. The lifestyles of these five Coleoptera; A.laticornis, C.glandium, 

C.venosus, G.quadripunctatus and P.cylindrus also suggest potential entry routes for the 

bacteria.  

Overall, low numbers of Coleoptera were caught. This might be due to the trap types used, 

abundance at each site or a reflection of insect activity during the trapping period. The only 

species to be collected at all seven sites was A.laticornis with both asymptomatic and 

symptomatic site samples positive for B.goodwinii and G.quercinecans. This adds to the 

evidence from Chapter 3 that the bacteria are present at both symptomatic and 

asymptomatic sites. Only three species were collected from both asymptomatic sites; 

A.laticornis, C.glandium and G.quadripunctatus. This may be a reflection of the age of the 

sites with symptomatic sites generally containing older oaks or due to site conditions and 

available resources. Collection within fewer sites with a greater number of traps may have 

been a better strategy for maximising numbers caught. 

Bacteria rely on transmission pathways to move to new hosts (Frank et al., 2017) and insect 

vectors are a common mechanism by which they can do this (Kannan and Bastas, 2015). 

The results of Chapter 3 show that B.goodwinii and G.quercinecans are present on/within 

various oak tissues. Four symptomatic sites used for phyllosphere sampling (2016: ATT & 

RIC; 2017 SITE3 & ICK) were also used for insect trapping. At all four sites autumn samples 

were collected and at one (ICK) spring leaf samples were also collected. All sites had 

positive detections of G.quercinecans and B.goodwinii within leaf, acorn and litter samples.  

The presence of G.quercinecans and B.goodwinii in bark tissue (Sapp et al., 2016) and oak 

leaf samples shows that they have the opportunity to come into contact with insects; an 

important component in any insect-bacteria relationship (Nadarash and Stravindes, 2011). 

Adults of A.laticornis, C.glandium and C.venosus are all known to feed on oak leaves and 

individuals could have ingested bacteria through feeding. Another possibility is incidental 

contact whilst moving over the canopy or, in the case of G.quadripunctatus and P.cylindrus, 

through tunnels burrowed into bark. The results of Chapter 3 also indicate both bacteria are 

present within acorns and could further account for the presence on C.glandium and 

C.venosus via larvae feeding within the acorn or contact as adults emerge.  
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Ingestion of G.quercinecans and B.goodwinii via feeding does not explain the detection from 

A.biguttatus emergence cage samples as there were no leaves for the adults to feed on. The 

presence of the bacteria could therefore be accounted for by incidental contact moving 

round the cage or contact within tunnels or bark as adults emerged.  

Incidental contact and feeding are both viable modes of bacterial transmission between 

hosts (Frank et al, 2017). Bacteria can enter plant tissues during feeding as they are 

regurgitated from within an insects gut (Orlovskis et al., 2015). In order for this strategy to be 

successful bacteria need to persist through the digestive tract (Orlovskis et al., 2015) and 

three different methods have been highlighted in section 1.2.3.1. Wounds created by the 

chewing feeding action and burrowing of beetles is also a means by which bacteria can 

enter into plant tissue (Orlovskis et al., 2015). 

Questions remain over the exact nature of the insect-bacteria relationship. As discussed in 

section 4.1 commensalism, mutualism and parasitism are all potential interactions (Engel 

and Moran, 2013). Any of these five Coleoptera, or other insects, could have a close 

association with both or either G.quercinecans or B.goodwinii however it is not possible to 

draw any firm conclusions from the results in this chapter.  

The plant cell wall degrading enzymes identified within the genomes of G.quercinecans and 

to a greater extent in B.goodwinii (Broberg et al., 2018; Doonan et al., 2019) may confer 

advantages onto both the larvae and adults of the insects discussed in this chapter all of 

which have a life stage that either feeds on or excavates out plant tissue. When all the 

species are considered B.goodwinii was identified in a greater number of samples and this 

was also reflected in the leaf sampling. This may be a reflection of bacterial abundance 

within the oak phyllosphere or could indicate B.goodwinii is more adapted to colonise and 

survive within insects.  

Both bacteria have the capacity to utilise decayed tissue (Kraepiel and Barny, 2015) and 

could be in turn be used by xylophagous insects. In addition B.goodwinii, through its ability to 

suppress host defences (Doonan, 2016), may be why it is present in a greater number of 

samples. Although the number of individuals caught and analysed was low, both Curculio 

species samples for example had positive detections of B.goodwinii. In comparison in 

A.laticornis samples both bacteria were positively detected. This could reflect the bacteria 

required for the different habitat niches used by these insects. Any bacteria with a specific or 

non-specific association with one or many insects either as hosts or vectors will though need 

to overcome insect defences (Nadarash and Stavrinides, 2011) and it is not clear 

G.quercinecans or B.goodwinii have the capacity to do this. 
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A model developed to look at insect-pathogen relationships showed that there are many 

influences on vector-host relationships as well as on rate of pathogen spread (Crowder et 

al., 2019). The Coleoptera discussed in this chapter will have interactions as described by 

Crowder et al. (2019) such as competition for resources and predation. For example in the 

case of A.laticornis, C.glandium and C.venosus there will be competition for food resources. 

Between C.glandium and C.venosus for egg laying opportunities and interactions with 

G.quadripunctatus may involve predation. Interactions affecting vector movement are a key 

influence on the spread of plant pathogens and a greater understanding of these factors is 

therefore important in understanding plant disease ecology (Crowder et al., 2019).  

The seasonal appearance of G.quercinecans or B.goodwinii has been discussed previously. 

Drought induced changes to plant metabolism and defences which result in altered vector 

behaviour have also been found increase the risk of disease and reduction in tree health 

(Szczepaniec and Finke, 2019). Climate change is predicted to increase the frequency of 

drought and heat waves (Sallé et al., 2014). Temperature will also influence the geographic 

range of species (Sallé et al., 2014). A modelling study of A.biguttatus for example showed 

that the thermal requirement of A.biguttatus is the limiting factor to its current UK distribution 

(Reed et al., 2018). The predicted increase in summer temperatures as a result of climate 

change was therefore found to predict an increase in A.biguttatus range (Reed et al., 2018). 

Bacteria with multiple movement pathways may be less affected by environmental changes 

which could explain the lack of a clear pattern to detection on phyllosphere and insect 

samples.  

A review on the plant responses to the combined effects of herbivory, drought and pathogen 

transmission has highlighted the lack of studies into plant responses to multiple stresses 

(Szczepaniec and Finke, 2019). Particularly understudied are three way plan host-vector-

pathogen relationships (Szczepaniec and Finke, 2019). The effects of drought will influence 

insect behaviour and host plant resistance simultaneously (Szczepaniec and Finke, 2019). 

One key impact is a drought induced decrease in plant resistance to phytopathogens with a 

concurrent increase in insect movement to new, more palatable, hosts (Szczepaniec and 

Finke, 2019).  

Drought may already be linked to incidences of AOD (Brown et al., 2018) and is known to be 

a predisposing factor in insect damage (Sallé et al., 2014). Insect activity and wood boring 

insects are considered contributing factors to decline diseases (Sinclair, 1965; Manion, 

1991) and this disease model has been discussed in section 1.1. It is possible that all or 

some of the insects mentioned here could be contributing to oak decline. In Europe both 

A.biguttatus and P.cylindrus are considered to be associated with oak declines as secondary 
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pests of trees in poor health (Sallé et al., 2014) and defoliations in particular have been 

implicated in previous AOD outbreaks (Denman et al., 2010). If the exudate from bark cracks 

is considered an induced hypersensitive response to bacterial colonisation it appears that 

current outbreaks of AOD are more severe than previous ones. This could indicate that other 

factors, such as insect activity or abiotic conditions are exacerbating the situation. 

Although much has been made of the association of Acute Oak Decline with A.biguttatus 

(Denman et al., 2014; Denman et al., 2018). Detection of both bacteria in samples from the 

five Coleoptera do not support the idea that it is a sole vector or causal agent. This is 

supported by the evidence of Brown (2014) which indicated the composition of the adult gut 

bacteria was not supportive of A.biguttatus as a vector. None of the trap types used proved 

effective at capturing A.biguttatus despite being a colour and height that has proved effective 

in other studies (Brown, 2014). The addition of a lure based on volatiles attractive to 

A.biguttatus (Vuts et al., 2016) may offer a more effective solution in future. The use of 

emergence cages has proved successful however the limited numbers of adults available for 

analysis restricted the data collection. It is also not possible to eliminate contact between the 

emerging adults and exudate on the logs, although this incidental contact would still be a 

viable transmission mechanism.   

Insects are habitually thought of solely in terms of a vector based relationship with 

phytopathogens (Nadarash and Stavrinides, 2011). There is evidence that insects can act as 

alternate hosts to aid bacterial persistence through gaps in host availability (Allen et al., 

2009). Phytopathogens can also exploit insects, as they would plants, as additional hosts 

(Nadarash and Stavrinides, 2011) and can induce chemical changes to volatile emissions 

that manipulate insects (Szczepaniec and  Finke, 2019).  

The association of insects with phytopathogens can be coincidental but could prove to be an 

evolutionary stage on the way to becoming a closer relationship (Nadarash and Stavrinides, 

2011) e.g. vector-pathogen or mutualistic. Infection of a host plant can still occur in the 

absence of a particular insect vector (Orlovskis et al., 2015) through the use of multiple 

pathways (Orlovskis et al., 2015).  Several other phytopathogens use several different 

insects as well as rain and wind to encounter new hosts (Orlovskis et al., 2015). These 

include Ralstonia solanacearum, cause of various plant wilts and Erwinia amylovora, cause 

of fireblight (Orlovskis et al., 2015). The presence of G.quercinecans and B.goodwinii on 

multiple insects and external plant tissues does not rule out potentially multiple transmission 

mechanisms.  
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4.5 Conclusion 

How G.quercinecans and B.goodwinii colonise oak and their potential movement pathways 

to new hosts has been an unanswered question. The results presented here indicate that 

both bacteria could be moved via multiple insects either as vectors or through incidental 

contact. Other potential routes to the colonisation of new hosts could be via feeding damage 

or burrowing through bark.  

The exact relationship G.quercinecans and B.goodwinii have with insects does still however 

remain unknown. It may be that the detection is a result of incidental contact or there may be 

benefits conferred by the bacteria such as aiding in digestion of oak tissues and suppressing 

host defences. Multiple transmission mechanisms of G.quercinecans and B.goodwinii cannot 

be discounted and another potential movement pathway is the subject of the next chapter. 
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Chapter 5 
 

Investigating the potential of rain as a transmission 

mechanism for two bacteria associated with Acute Oak 

Decline; B.goodwinii and G.quercinecans 

5.1 Introduction 

Airborne dispersal is an important means by which bacteria colonise new hosts (Frank et al., 

2017) and wind and rain have previously been highlighted in section 1.2.3.2 as key 

transference mechanisms. The presence of both G.quercinecans and B.goodwinii in lesions 

and in phyllosphere samples, particularly leaves (Chapter 3) indicates that this may be a 

potential movement pathway.  

Lesions can be a source of bacteria in the atmosphere (Pruvost et al., 2002; Bock et al., 

2005). A greater amount of bacteria was collected from trees with newer lesions on leaves 

and twigs (Bock et al., 2005). Bacteria was also more easily released from younger lesions 

of citrus trees with Xanthomonas axonopodis pv. citri cankers (Pruvost et al., 2002). Aerial 

movement can be an effective disperser of bacteria between leaves of the same plant 

(Lindemann and Upper, 1985), over short distances (Butterworth and  McCartney, 1991) and 

has also been suggested as an explanation for the long distance spread of pathogens to 

new areas (Viljanen-Rollinson et al., 2007). Biogeography, studying species geographic 

distribution through time, has however been highlighted as an understudied influence on 

bacterial dispersal (Baltrus, 2020). The practical difficulties of sampling at a large enough 

scale being a limiting factor for research (Baltrus, 2020).  

Bacteria able to survive transport are likely to be more successful colonising new areas 

(Šantl-Temkiv et al., 2018). In an experiment by Pettifor et al. (2020) G.quercinecans, but not 

B.goodwinii was able to produce viable colonies up to 28 days after inoculation into sterile 

rainwater. Erwinia amylovora (fire blight) has been shown to be able to survive and remain 

pathogenic in rainwater and is also able to survive at low temperature (4C) (Biosca et al., 

2019). For another phytopathogen, Pseudomonas syringae, the water cycle may be 

important for transport to new habitats and hosts (Morris et al., 2008). Detections in rain, 

snow, mountain streams and lakes as well as non-crop wild plants highlight the potential for 

travel over large distances and the ability to adapt in order to colonise the different niches 

sampled (Morris et al., 2008).   
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The formation of bio aerosols, small airborne particles released into the atmosphere, can be 

initiated via rain splash and is a means by which bacteria accumulate on foliar surfaces 

(Frank et al., 2017). Rainsplash has been experimentally shown to displace bacteria from 

both leaves (Butterworth and McCartney, 1991; Bock et al., 2005) and soil (Joung et al., 

2017) and an increase in bacterial growth has been observed in the days following rain 

(Lindemann and Upper, 1985). The number of phytopathogenic sequences has also been 

shown to increase following rain (Jang et al., 2018). Duration of rainfall was important with a 

shorter rainfall event found to be more effective for bacterial dispersal (Pruvost et al., 2002). 

This was concluded to be because a longer timeframe resulted in bacteria being washed off 

rather than becoming aerosolised (Pruvost et al., 2002). 

Rain can be an influence on phyllosphere bacterial communities through several means 

(Allard et al., 2020). Rain can bring new bacteria, increase the water available to existing 

species and remove weakly attached cells thereby creating space for colonisation (Allard et 

al., 2020). An additional explanation suggested by Champoiseau et al. (2009) for increase in 

X.albineans was due to stomata opening in the high humidity associated with rainfall.  

In a study of bacteria associated with snap bean plants, significant increases in airborne 

bacteria were seen during rain indicating that they had been dislodged from leaves 

(Lindemann and Upper, 1985). This displacement can be very effective. Up to 90 percent of 

three bacteria applied to the leaves of two crop plants was washed off through artificially 

generated rain splash (Butterworth and McCartney, 1991). Wind driven rain has been linked 

to the spread of Erwinia amylovora (fire blight) in a nursery setting (McManus, 1994) and an 

increase in Xanthomonas albineans, (sugar cane leaf scald) was also linked to greater 

rainfall with infection rate simultaneously increasing (Champoiseau et al., 2009). 

Significant increases in viable airborne bacteria, measured by Colony-Forming Units (CFU) 

counts on agar, have been observed to occur at the hottest part of a dry, sunny day 

(Lindemann and Upper, 1985). Relative humidity and sample season were linked to 

differences in airborne bacterial communities after rain (Jang et al., 2018) and a high 

humidity level similarly resulted in increased growth of endophytic bacteria (Xin et al., 2016).  

The survival of aerosolised P.syringae was on the other hand found to be influenced by 

lower humidity although this was in conjunction with temperature (Walter et al., 1990). 

Bacteria were detected at all distances (up to 15 m) from source, however over 1 m survival 

rate did not differ from controls whereas over 3 m relative humidity and temperature became 

more influential on the rate of bacterial decline (Walter et al., 1990). An increase in 

temperature also increased the amount of bacteria collected from citrus canker infected 

trees following a simulated wind/rain event (Bock et al., 2005). The development of 
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symptoms associated with E.amylovora, was dependent on temperature appearing earlier at 

the higher temperature of 28C followed by 14C, with the slowest development occurring at 

4C (Biosca et al., 2019). 

Leaf structure is an influence on bacterial colonisation and establishment (Muller et al., 

2003). Leaf structure was a factor in determining whether or not newly arrived bacteria 

successfully colonised a leaf surface suggesting different areas of a leaf are more conducive 

to colonisation than others (Monier and Lindow, 2005). Bacteria landing on veins or 

glandular tricomes, were more likely to survive when compared to normal epidermal cells or 

bases of hooked tricomes (Monier and Lindow, 2005). The effect was observed when trees 

were under drought stress so it is not clear whether the same effect would be observed in 

unstressed plants. It may be that these areas are less prone to drying or are slower to dry 

than other leaf areas (Monier and Lindow, 2005).  

When large, more rigid leaves, were compared to light flexible ones both leaf size and 

flexibility were found to influence the type of dispersal mechanism and the 'pathogen load' 

released (Gilet and Bourouiba, 2015). An increase in leaf flexibility reduced the range of the 

splashed droplets however once a leaf reached a certain rigidity threshold the ejection 

mechanism changed to favour larger droplets which had a greater range (Gilet and 

Bourouiba, 2014). For larger, stiffer leaves the droplet on droplet means was effective at 

displacing the contaminated droplet greater distances and could result in a more localised 

pathogen spread (Gilet and Bourouiba, 2015). Larger water droplets were further found to be 

more likely to infect nearby plants (Gilet and Bourouiba, 2014). Oak leaves are fairly rigid so 

this mechanism is potentially the more effective. The evidence of 'clustering' of AOD infected 

trees has previously been taken to indicate a biotic agent rather than an environmental 

agent, such as rain, was responsible for pathogen movement (Brown, 2014). The evidence 

from Gilet and Bourouiba, (2015) suggests a rain dispersal mechanism would result in a 

local clustering of infected trees.  

A number of experiments have been carried out to demonstrate the efficacy of the airborne 

movement of various plant associated bacteria by simulated wind and rain. When an agar 

plate inoculated with Azospirillum brasilense, a nitrogen fixing bacterium, was placed near 

glasshouse ventilation, colonies were subsequently detected on agar plates 1.5 m and 6 m 

away (Bashan, 1991). Inoculated plants were also able to act as a source of bacteria 

(Bashan, 1991). Uninoculated plants and agar plates placed in the same glasshouse were 

both found to have A.brasilense present with the amount collected decreasing with 

increasing distance from the inoculum source (Bashan, 1991).  
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In another greenhouse experiment P.syringae and Erwinia herbicola were aerosolized using 

a fan placed near plants sprayed with the two bacteria; bacteria were also directly applied to 

leaves as a control (Walter et al., 1990). Directly applied bacteria survived up to eight days 

however those that had drifted onto the leaves via air only survived 48 hours on the plants 

(Phaseolus vulgaris var. humilis and Avena sativa var. Cayuse) (Walter et al., 1990).  

A slightly different experiment was carried out with trees infected with Xanthomonas 

axonopodis pv. citri, cause of citrus canker (Bock et al., 2005). Infected trees were exposed 

to simulated wind driven rainsplash and bacteria subsequently collected up to 12 m from the 

source (Bock et al., 2005). The quantity of bacteria collected was highest in the first few 

minutes following simulated wind/rain, declining over the first hour (Bock et al., 2005).  

The results of these studies show experimentally that bacteria can be aerially transported to 

new hosts in several different ways. In the case of A.brasilense it was via air alone (Bashan, 

1991), P.syringae and E.herbicola were displaced by wind after arriving on leaves in water 

droplets (Walter et al., 1990), whilst X.axonopodis pv. citri was transferred in wind driven rain 

(Bock et al., 2005). All of these methods proved effective as movement mechanisms for 

bacteria and could apply to G.quercinecans and B.goodwinii. The amount of bacteria 

collected was dependent on the distance from the source (Bashan, 1991) as well as the time 

elapsed since a dispersal event was initiated (Walter et al., 1990; Bock et al., 2005) and 

wind speed (Bock et al., 2005). This indicates that environmental differences have an 

influence on aerial dispersal. At a local level microclimates are considered to have an impact 

on the survival of bacteria (Baltrus, 2020).  

The type of dispersal mechanism and timing of dispersal is additionally thought to influence 

the structure of plant microbial communities, including bacteria (Baltrus, 2020). When trees 

were under water stress the successful survival of new bacteria was strongly influenced by 

the bacteria already present on a leaf surface (Monier and Lindow, 2005). Using bean leaves 

with previously established colonies of Pantoea agglomerans (299R) the survival of 

immigrant cells of Pseudomonas fluorescens (A506), P.syringae (B728a) and 

P.agglomerans was then investigated (Monier and Lindow, 2005). Aggregates formed by 

P.agglomerans influenced the survival of newly deposited bacteria and either aided or 

hindered survival under drought stress (Monier and Lindow, 2005). Whilst survival of 

P.syringae was similar whether landing on aggregates or clear leaf areas, the chance of 

survival for P.fluorescens and P.agglomerans was almost doubled when landing on 

aggregations compared to a clear area (Monier and Lindow, 2005). Single resident cells 

were additionally found to have a higher death rate under dry conditions compared to 

resident aggregated bacteria (Monier and Lindow, 2005). 
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An investigation into the dynamics of rainsplash on leaf surfaces indicated water applied to 

the leaves remained as small droplets rather than fully wetting the leaf as a film (Gilet and 

Bourouiba, 2014). Droplets of rain on the leaf surface could move bacteria, resulting in their 

accumulation at certain points (Monier and Lindow, 2005). This may encourage the 

formation of localised bacterial aggregations (Monier and Lindow, 2005) or biofilms (Morris 

and Monier, 2003) strategies thought to increase survival (Nongkhlaw and Joshi, 2014). 

Bacteria with the ability to adhere more effectively to a leaf will benefit from resistance to 

dislodgment by rain and any advantage in adhesion increases the chance of colonisation 

(Suoniemi et al., 1995). Structures such as pili, fimbriae and flagella act as anchoring 

mechanisms for bacteria on a plant surface (Suoniemi et al., 1995; Haiku and Westerlund-

Wikström, 2013; Rossez et al., 2015).  

The development of biofilms has been suggested as a strategy to enhance the rain 

transmission of bacteria (Monier et al., 2003). The positioning of biofilms e.g. on trichomes, 

raises the bacteria above the leaf surface thereby exposing them to the wind speeds and 

sheer force necessary to break the biofilm and release cells (Morris and Monier, 2003). A 

type three secretion system (T3SS) such as that found in the genomic analysis of 

B.goodwinii can be an indication of the capacity to form biofilms (Doonan, 2016). 

Chapter 3 has already presented evidence that G.quercinecans and B.goodwinii are 

associated with the oak phyllosphere with detections on leaves, litter, acorns, catkins and 

bark. Both bacteria are also present in stem lesions. Together these results indicate that 

airborne transmission of G.quercinecans and B.goodwinii is a viable and potential means by 

which these bacteria can encounter new hosts.  

5.1.1 Chapter Aims  

Although both wind and rain separately are able to move bacteria it is likely that under field 

conditions both together will play a part. Direct movement by air is also not considered a 

common mechanism (Kannan and Bastas, 2015). Bacteria found to be present in rainwater 

will give an indication of their potential to be moved by various aerial mechanisms including 

wind, rainsplash and wind driven rain.  

The aim of this chapter is to explore the potential of B.goodwinii and G.quercinecans to be 

transmitted though aerial movement by investigating rainwater for their presence. 
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5.2 Methodology 

As detailed in section 2.2.4 in spring and autumn 2018 rain traps were placed in the lower 

canopies of symptomatic and asymptomatic trees in two symptomatic and one asymptomatic 

sites. Three additional traps were placed in open ground.  

Table 33 indicates the sites used and number of traps which successfully collected 

rainwater.  At WYR three autumn traps did not collect due to lack of rain. At DUD one ground 

trap in autumn and one ground and one canopy in spring were trampled and two spring 

canopy traps failed to collect rain. 

Variable amounts of rainfall were collected so that whilst all the rain was filtered according to 

the protocol in 2.2.4, only 20ml was used for analysis to reflect the lowest volume collected. 

Table 33. Sites used in spring and autumn 2018 for the collection of rainwater and the 

number of traps which successfully collected rain 

1Wyre; 2Dudmaston; 3Harper Adams. For site descriptions see section 2.1 

 

Sample preparation and DNA extraction following the protocol outlined in section 2.2.5.1 

Species specific PCR assays were then used for the detection of G.quercinecans and 

B.goodwinii as detailed in section 2.2.5.2.  

Site DUD2 WYR1 HAU3 

Site health status Symptomatic Symptomatic Asymptomatic 

Year 2018 2018 2018 

Number of raintraps deployed (Number of raintraps successful) 

Spring     

   Symptomatic  3 (2) 3 (3) N/A 

   Asymptomatic  3 (1) 3 (2) 3 (3) 

   Ground 3 (2) 3 (3) 3 (3) 

Autumn    

   Symptomatic  3 (3) 3 (0) N/A 

   Asymptomatic  3 (3) 3 (0) 3 (3) 

   Ground 3 (2) 3 (0) 3 (3) 
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5.2.1 16S rDNA PCR assay 

A complementary universal 16S rDNA bacterial PCR assay was carried out on a 

supplementary set of samples subsampled from the rain water collected (Table 34). 

Although Nanodrop™ results would indicate the presence of DNA, this assay would confirm 

whether bacterial DNA was being successfully extracted via the technique detailed in section 

2.3.4, providing a greater level of confidence to any subsequent positive detections of 

B.goodwinii and G.quercinecans in rain samples.  

The use of 16S rDNA assay is widely used as a way of identifying and separating bacteria 

(Clarridge, 2004; Woo et al., 2008) since it is highly conserved across bacterial species. The 

successful amplification of the 16S region via PCR would determine whether there is 

bacterial DNA in the sample.  

Table 34. Number of raintrap samples subsampled to be used in a bacterial 16S rDNA PCR 

1Wyre; 2Dudmaston; 3Harper Adams. For site descriptions see section 2.1 

 

A search of literature related to either AOD or any of the bacteria G.quercinecans or 

B.goodwinii was undertaken to see if a 16S universal assay had been used in any previous 

research in order to identify potential primers. The only study to detail the primers used was 

that by Meaden et al. (2016) whose study successfully used primers to amplify the V4 region 

of bacteria extracted from bark microcores including B.goodwinii.  

Site DUD2 WYR1 HAU3 

Site health status Symptomatic Symptomatic Asymptomatic 

Year 2018 2018 2018 

Number of raintrap samples used 

Spring     

   Symptomatic  2 3 N/A 

   Asymptomatic  1 2 3 

   Ground 2 3 3 

Autumn    

   Symptomatic  1 0 N/A 

   Asymptomatic  3 0 2 

   Ground 2 0 2 
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The forward and reverse universal primer GTGCCAGCMGCCGCGGTAA (5'-3') and 

GGACTACHVGGGTWTCTAAT (5′-3′) used were identified as primer sequences F515 and 

R806 respectively. A further literature search was then undertaken to find details of any PCR 

assay setup using F515 and R806. The most detailed setup was that referenced in the 

highly cited Caporaso et al. (2011). This protocol was therefore selected for use with an 

alteration of extending the denaturing for 12 minutes, as recommended for the Master Mix 

used, and the addition of a cooling step. The reaction mix was prepared for 100 25 l 

reactions using two 2 ml reaction tubes. Each reaction contained: 

10.0 µl Hot FirePol EvaGreen (Soils BioDyne) Master Mix (Newmarket Scientific) 

13.0 µl PCR grade water (Merck) 

0.5 µl forward primer (Eurofins Genomics) 10µM final concentration 

F515 [5’ GTGCCAGCMGCCGCGGTAA 3’]  

0.5 µl reverse primer (Eurofins Genomics) 10µM final concentration 

R806 [5’ GGACTACHVGGGTWTCTAAT 3’]  

1.0 µl template DNA 

A 96 well plate was used for the subsequent PCR reaction. The plate was kept on ice within 

a U. V sterilised cabinet and primers were kept on ice whilst being used. 24l of the mix was 

pipetted into each well. 1l of sample (template) DNA was then added with two replicate 

wells used per sample. Positive controls of a mix of B.goodwinii (Strain FRB 21), 

G.quercinecans (Strain FRB 31) and Rahnella victoriana (Strain FRB 1) were used along 

with a negative control of molecular grade water. A cover was attached to the plate which 

was then placed in A BioRad CFX96 which was set up for a 25 l volume reaction (Table 

35). A positive detection was one out of the two wells.  

Table 35. BioRad CFX96 programme set up for 16S amplification 

Stage Cycles Time (mm:ss) Temperature (C) 

Initial denaturation 1 12:00 95 

 

qPCR 

 

40 

00:45 95 

0:50 60 

00:90 72 

Extension  10. 00 72 

Cooling 1 00:30 40 
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5.3 Results 

5.3.1 16S rDNA PCR assay 

Of the spring canopy rainwater collected, five asymptomatic and four symptomatic canopy 

samples had a positive detection of bacterial DNA. In the autumn, rain canopy samples from 

two asymptomatic and two symptomatic trees had a positive detection of bacterial DNA. 

Four spring and two autumn ground raintrap samples had a positive detection of bacterial 

DNA.  

5.3.2 Spring and autumn raintrap samples 

5.3.2.1 Spring and Autumn canopy raintrap samples 

Asymptomatic site 

In spring one sample was positive for G.quercinecans with all three positive for B.goodwinii 

(Figure 39; Table 36). In autumn no samples were positive for G.quercinecans with two 

remaining positive for B.goodwinii (Figure 39; Table 36). 

Symptomatic sites 

Across both sites and sample periods only one asymptomatic raintrap at one site was 

positive in autumn for G.quercinecans (Figure 39; Table 36). In contrast B.goodwinii was 

present in rain samples from both sites and sample periods (Figure 39; Table 36). A similar 

result was seen for symptomatic traps; one autumn trap in one site was positive for 

G.quercinecans whereas B.goodwinii was detected at both sites and in both sample periods 

(Figure 40; Table 36). 
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Figure 39. Positive and negative detections of G.quercinecans and B.goodwinii in the total 

number of canopy rain trap samples from asymptomatic trees sampled in spring and autumn 

in 2018 at asymptomatic and symptomatic sites 
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Figure 40. Positive and negative detections of G.quercinecans and B.goodwinii in the total 

number of canopy rain trap samples from symptomatic trees sampled in spring and autumn 

in 2018 at symptomatic sites 
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Table 36. Positive and negative detections of G.quercincans and B.goodwinii in canopy rain 

trap samples from asymptomatic and symptomatic trees at asymptomatic and symptomatic 

sites collected in spring and autumn 2018 

Site health 
status 

Sample 
period 

Site Tree 
health 
status 

Trap ID G.quercinecans B.goodwinii 

Asymptomatic 

Spring 

HAU ASYM 

HAUC1 negative positive 

HAUC2 negative positive 

HAUC3 positive positive 

DUD 

ASYM 

DUDC1 negative negative 

DUDC2 lost lost 

DUDC3 lost lost 

Symptomatic 

SYMP 

DUDC1 negative positive 

DUDC2 lost lost 

DUDC3 negative positive 

WYR 

ASYM 

WYRC1 lost lost 

WYRC2 negative positive 

WYRC3 negative positive 

SYMP 

WYRC1 negative positive 

WYRC2 negative positive 

WYRC3 negative negative 

Asymptomatic 

Autumn 

HAU ASYM 

HAUC1 negative positive 

HAUC2 negative positive 

HAUC3 negative negative 

DUD 

ASYM 

DUDC1 positive negative 

DUDC2 negative positive 

DUDC3 negative negative 

Symptomatic 

SYMP 

DUDC1 positive positive 

DUDC2 positive positive 

DUDC3 negative positive 

WYR 

ASYM 

WYRC1 no rain no rain 

WYRC2 no rain no rain 

WYRC3 no rain no rain 

SYMP 

WYRC1 no rain no rain 

WYRC2 no rain no rain 

WYRC3 no rain no rain 
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5.3.2.2 Spring and Autumn ground raintrap samples 

Spring ground rain samples at the asymptomatic site had a positive detection within them of 

G.quercinecans and B.goodwinii (Figure 41; Table 37). At one symptomatic site two spring 

samples at one site had a positive result for G.quercinecans (Figure 41; Table 37). In 

autumn two samples from the asymptomatic site were positive for B.goodwinii with 

G.quercinecans not detected at all (Figure 41; Table 37). Rain was only collected at one 

symptomatic site in autumn with B.goodwinii an G.quercinecans both detected (Figure 41; 

Table 37). 

 

 

Figure 41. Positive and negative detections of G.quercinecans and B.goodwinii in the total 

number of ground rain trap samples from asymptomatic and symptomatic trees sites 

sampled in spring and autumn in 2018 
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Table 37. Positive and negative detections of G.quercinecans and B.goodwinii in ground rain 

trap samples from asymptomatic and symptomatic sites collected in spring and autumn 2018 

Site health 
status 

Sample 
period 

Site Trap ID G.quercinecans B.goodwinii 

Asymptomatic 

Spring 

HAU 

HAUG1 positive negative 

HAUG2 negative negative 

HAUG3 positive positive 

Symptomatic 

DUD 

DUDG1 negative positive 

DUDG2 negative positive 

DUDG3 lost lost 

WYR 

WYRG1 negative positive 

WYRG2 positive negative 

WYRG3 positive positive 

Asymptomatic 

Autumn 

HAU 

HAUG1 negative positive 

HAUG2 negative positive 

HAUG3 negative positive 

Symptomatic 

DUD 

DUDG1 negative positive 

DUDG2 negative negative 

DUDG3 lost lost 

WYR 

WYRG1 no rain no rain 

WYRG2 no rain no rain 

WYRG3 no rain no rain 
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5.4 Discussion 

The association of G.quercinecans and B.goodwinii with rainwater is a new finding. The 

results presented in this chapter indicate aerial transport is a viable movement pathway for 

these bacteria and that they have the potential to be transported via rain and transferred to 

new hosts. 

The presence of G.quercinecans and B.goodwinii on various external oak tissues indicates 

their availability for transport and detection in leaf washings highlights their capacity to be 

dislodged by water (Chapter 3). Rain collected from both symptomatic and asymptomatic 

sites were positive for G.quercinecans and B.goodwinii. This agrees with the results from 

Chapter 3 that the bacteria are present at both symptomatic and asymptomatic sites.  

It also provides further evidence that both bacteria could be present within the wider 

environment and exist without causing harm to a plant host. Oak may therefore be one of 

many plant hosts utilised by G.quercinecans and B.goodwinii. Multiple hosts can be used by 

phytopathogens, not necessarily causing detrimental effects (Leben, 1974; Vanette, 1982). 

One such phytopathogen is P.syringae for which non-host plants can provide alternative 

hosts (Morris et al., 2008). The capacity of G.quercinecans and B.goodwinii to become 

pathogenic may consequently be prompted by environmental conditions or changes to host 

susceptibility (Broberg et al., 2018) such as a decline in host resistance (Lucas, 1998). 

Bacteria are also able to regulate their populations via quorum sensing (Bassler, 1999) and 

this may be occurring for G.quercinecans and B.goodwinii. In a study on P.syringae pv. 

syringae the capacity of the phytopathogen to initiate symptom expression was correlated to 

population size present on leaves (Rouse et al., 1994). It remains unknown what population 

size of G.quercinecans and B.goodwinii is needed to initiate a host response, however it is 

possible a certain threshold needs to be reached before pathogenicity is triggered. 

Investigation of the population levels required to initiate a host defence response e.g. 

through controlled application of different bacterial concentrations onto various oak tissues 

would add to the understanding of AOD progression. 

Abiotic conditions influence bacterial colonisation and communities (Laforest-Lapointe et al., 

2016; Ottesen et al, 2016). For example, increased bacterial growth following rain has been 

recorded in several experiments (Lindemann and Upper, 1985; Champoiseau et al., 2009; 

Jang et al., 2018; Allard et al., 2020). The amount of collected airborne bacteria has also 

been shown to increase during hot sunny days (Lindemann and Upper, 1985). Relative 

humidity (Xin et al., 2016; Jang et al., 2018) and temperature (Walter et al., 1990; Biosca et 

al., 2019) may also have an effect.  
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Geographical distance and abiotic factors were an influence on the bacterial communities of 

oak (Sapp et al., 2016) and site conditions have been shown to be a predisposing factor in 

determining the susceptibility of a location to AOD (Brown, 2014). Sites with lower recorded 

rainfall and seasonally waterlogged soil were found to be more likely to have AOD present 

(Brown et al., 2018). Remission from AOD infection is possible (Brown et al., 2016) and a 

linear disease progression of AOD was not found over four years at eight monitored 

woodland plots (Brown, 2014). Evidence from studies on bacterial colonisation and growth 

as well those on the epidemiology of AOD suggest that site conditions and abiotic factors 

influence the presence AOD. The results from this chapter indicate that rainfall potentially 

plays a key role in disease development. 

Raintraps placed in the lower canopy and on the ground were a successful means of 

collecting rainwater. Collected rain may have been directly captured as it fell, runoff from 

leaves or wind driven rain. As observed from other studies rain can dislodge bacteria from 

leaf surfaces (Butterworth and McCartney, 1991) and along with wind driven rain transport 

them over various distances (Bashan, 1991; Bock et al., 2005). In a study on the aerial 

dispersal of Arctic bacteria both long distance movement and local sources were found to 

contribute to atmospheric bacteria available for deposition (Šantl-Temkiv et al., 2018). The 

presence of G.quercinecans and B.goodwinii in ground and canopy caught rain could 

therefore indicate they are able to be transferred between leaves of the same tree and over 

short distances.  

Oak leaves are relatively stiff and evidence from rainsplash dynamics shows that this type of 

leaf favours a droplet on droplet dispersal (Gilet and Bourouiba, 2015) and the displacement 

of larger water droplets (Gilet and Bourouiba, 2014). This was found to be effective at 

displacing droplets over greater distances (Gilet and Bourouiba, 2014) and could result in a 

more localised pathogen spread (Gilet and Bourouiba, 2015). As both bacteria have been 

detected after inoculation in soil (Pettifor et al., 2020), it cannot be discounted that the traps 

may have contained cells displaced from the soil by rain. Trees with AOD have been 

observed to 'cluster' (Brown, 2014), so a localised spread via rain is possible. Evidence from 

Gilet and Bourouiba (2014) also suggest transport of G.quercinecans and B.goodwinii over 

longer distances could be possible.  

No rain collection in autumn at one site and lost samples have limit the ability to draw 

definitive conclusions from the results. In addition it remains uncertain whether detections of 

G.quercinecans and B.goodwinii in rainwater were of live or dead cells. Using sterile rainfall 

inoculated with cultures of G.quercinecans and B.goodwinii Pettifor et al. (2020) found that 

B.goodwinii did not produce viable colonies at initial inoculation or at any time point after.  
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On the other hand G.quercinecans colonies were countable throughout the experiment. A 

similar approach with collected rainwater would give an indication of their survival potential. 

Raintraps at increasing distances from a tree and across a site could also reveal whether 

long distance movement is possible. Alternately there are several methods for the collection 

of airborne bacteria (Lundholm, 1982; Després et al., 2012; Mbareche et al., 2017) which 

could be utilised to investigate transport of G.quercinecans and B.goodwinii. 

There was little consistency to the positive and negative detections from the same traps; a 

result in spring not correlating to the result in autumn. Detection of G.quercinecans was 

higher in autumn canopy samples compared with spring samples. Compared to B.goodwinii, 

fewer samples were also positive for G.quercinecans in spring. Within symptomatic tree 

canopy samples G.quercinecans was only detected in autumn rain whereas B.goodwinii was 

recorded in spring and autumn canopy traps. The same pattern was observed in ground 

traps at asymptomatic and symptomatic sites.  

These differences suggest seasonal changes in environmental conditions affects bacterial 

survival or might be simply a reflection of abundance. Seasonal changes to leaves (Lindow 

and Brandl, 2003) and leaf structure can determine successful colonisation and 

establishment of deposited bacteria (Muller et al., 2003; Monier and Lindow, 2005). Results 

from Chapter 3 however identified both G.quercinecans and B.goodwinii in spring, autumn 

and litter leaf samples. Greater detection of B.goodwinii may be due to it being present more 

consistently on leaf surfaces; adding support to the suggestion of Chapter 3 that 

G.quercinecans is endophytic and B.goodwinii epiphytic. Bacteria can shift from an epiphytic 

to an endophytic state (Beattie and Lindow, 1995) therefore it cannot be discounted that 

G.quercinecans has an epiphytic phase. 

The overall greater number of detections of B.goodwinii at symptomatic sites could lend 

support to the proposal that it has a primary role in AOD (Broberg et al., 2018). The apparent 

capacity of B.goodwinii to form biofilms (Doonan, 2016), a potential mechanism that 

increases the aggregation of cells at certain places on a leaf and enhances the likelihood of 

cells being dislodged by rain (Monier et al., 2003; Morris and Monier, 2003) could also be 

responsible for a greater level of detection.  

Two culture methods have been compared by Yadav et al., (2010); leaf imprint - whereby a 

leaf was pressed into nutrient agar and serial dilution plating - where leaves were 

homogenized and spread on nutrient agar in a serial dilution. This comparison found serial 

dilution plating more effective for looking at the total abundance of epiphytic bacterial 

populations although the use of leaf imprints had a higher ability to detect bacteria on a leaf 

surface (Yadav et al., 2010).  
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Using methods like these the locations of G.quercinecans and B.goodwinii on leaves could 

be found along with population density. This would both give an indication of whether either 

species forms aggregations and help answer the question of the threshold population 

needed to initiate host responses. 

The use of a 16S universal assay to detect whether any bacterial DNA was present within 

the rain samples indicates that the method of DNA extraction used was effective. Filtering 

and centrifuging the rainwater to concentrate bacterial cells allowed a greater proportion of 

the collected rain to be analysed and potentially resulted in a higher number of detections. 

An increased length of time in the centrifuge and further filtering would potentially yield a 

higher amount bacterial cells.  

5.5 Conclusion 

The mechanism by which G.quercinecans and B.goodwinii colonise new hosts has been an 

unanswered question. The results of this chapter has highlighted aerial transference e.g. rain 

splash and airborne distribution as potential movement pathways. There is also evidence to 

suggest that whilst both bacteria are found together they may have different lifestyles and 

survival strategies.  
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Chapter 6 
 

Overall discussion and recommendations for further study 

6.1 Overall discussion 

The association of Brenneria goodwinii and Gibbsiella quercinecans with the oak 

phyllosphere has been an under investigated area in Acute Oak Decline research. How 

G.quercinecans and B.goodwinii might be transported to new hosts was also an unanswered 

question in the epidemiology of AOD. The focus of this thesis was therefore to: 

1) Identify the associations of B.goodwinii and G.quercinecans with the oak phyllosphere, 

focusing on live oak leaves, leaf litter, acorns and catkins. 

2) Investigate two potential transmission mechanisms 

 i. movement via insect vectors to focus on xylophagous coleoptera. 

 ii. airborne movement via rain. 

 

6.1.1 The oak phyllosphere, B.goodwinii and G.quercinecans  

The plant phyllosphere is known to harbour a diverse array of microorganisms, including 

bacteria, so the detection of G.quercinecans and B.goodwinii is a valid one. For foliar 

bacterial endophytes and epiphytes the surface of the leaves is where initial colonisation is 

likely to take place (Vanette, 1982; Beattie and Lindow, 1999; Lindow and Brandl, 2003; 

Frank et al., 2017). Detection of G.quercinecans and B.goodwinii on leaves (Chapter 3) 

indicates this may be a point of initial colonisation. Other phyllosphere bacterial communities 

utilise flowers and seeds (Aleklett et al., 2014; Rosenbleuth and Martinez-Romero, 2006). 

Both G.quercinecans and B.goodwinii have been identified on acorns and catkins (Chapter 

3); together with leaves indicating they may be part of the oak bacterial community. 

The inability of bacteria to actively create openings through which they can move into a plant 

hosts tissues means they need to exploit existing openings (Manion, 1991) such as wounds 

or stomata. Stomata in particular are an established entry point for pathogens and this may 

be a means by which they enter oak tissue. Feeding wounds created by insect leaf feeding 

(Orlovskis et al., 2015) or through excavating exit holes are another possibility and wounds 

on bark have already been shown experimentally to facilitate entry of G.quercinecans and 

B.goodwinii into vascular tissues (Denman et al., 2018). 
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The possibility of B.goodwinii or G.quercinecans being epiphytic or endophytic has been 

previously alluded to (Denman et al., 2018) and phylogenetic analysis indicates B.goodwinii 

is closely associated with necrotrophs and G.quercinecans with saprophytes (Doonan et al., 

2019). Necrotrophs utilise dead or dying tissue of declining hosts, are opportunistic and non 

obligate whilst saphrotrophs use only dead tissue (Lucas, 1998, Glazebrook, 2005). Unlike 

G.quercinecans, which was identified in all samples, the detection of B.goodwinii via qPCR 

but not culturing after soil inoculation has additionally led to the proposal it is an oak obligate 

endosymbiont and unable to exist outside the host environment (Pettifor et al., 2020); its 

presence in qPCR a result of entering a viable but non-culturable state in the soil (Pettifor et 

al., 2020). The presence of B.goodwinii in litter samples (Chapter 3) could however mean 

that it requires this resource and is unable to exist alone in soil. The results of Chapter 3 

have also added to the wider suggestion that G.quercinecans and B.goodwinii have different 

lifestyles and niches or are able to switch between epiphytic and endophytic states. 

The presence of virulence factors in G.quercinecans and B.goodwinii (Brown et al., 2018) 

may therefore not necessarily be an indication of pathogenicity. There is evidence virulence 

factors in opportunistic pathogens can confer advantages to the bacteria e.g. enhancing 

survival (Brown et al., 2012). Most plant pathogens, bacteria included, are also not usually 

obligate on a single host (Morris et al., 2008; Frank et al., 2017). UK populations of 

B.goodwinii have been shown in phylogenetic analysis to be highly diverse with individual 

sequence types dominating different sites and individual trees (Kaczmarek et al., 2017). The 

ability of G.quercinecans to survive in soil also supports the suggestion it is a generalist 

bacteria and potentially widely distributed in a forest environment (Pettifor et al., 2020). 

Evidence from Chapters 3-5 indicates both bacteria within leaves, litter, acorns and catkins, 

insect samples and rainwater adding to the suggestion both bacteria are opportunistic taking 

advantage of a weakened or stressed host. 

Bacteria able to survive host gaps have an obvious advantage over those that cannot (Allen 

et al., 2009). Survival strategies include using overwintering resources, persistence in 

additional hosts or alternative hosts, aggregation and reducing metabolism (Leben, 1974; 

Vanette, 1982, Brown, 1997; Allen et al., 2009). Several of these may be applicable to 

G.quercinecans and B.goodwinii. Results from Chapter 3 suggest litter could act as an 

overwintering resource in the period December to February when exudate dries up (Denman 

et al., 2014) whilst Chapter 4 shows various oak associated Coleoptera may act as 

additional or alternate hosts. The presence of both bacteria in rainwater (Chapter 5) also 

hints at the use of aggregation and the potential for other hosts besides oak. 
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One bacterial adaptation that may be applicable to AOD is persister cells. Phytopathogens 

use this strategy to survive periods of stress and is potentially a reason why they are not 

eliminated by the biotic and abiotic stresses to which they are subjected (Martins et al., 

2018). Persister cells can be activated by changes in temperature, toxicity and oxidative 

stress (Martins et al., 2018). Although there are few known mechanisms of persister 

formation for phytopathogenic bacteria, in P.syringae the MarR (Multiple antibiotic resistance 

regulator) and LysR regulators are stimulated and in E.amylovora the RpoS (RNA 

polymerase, sigma S) regulator is involved (Martins et al., 2018). These regulators repress 

virulence factors and the TCA (Tricarboxylic Acid Cycle) cycle within the bacteria ultimately 

leading to ceasing of cell growth and finally persistence (Martins et al., 2018). 

G.quercinecans and B.goodwinii have MarR and RpoS and G.quercinecans LysR (Doonan, 

2016). The use of insects as alternative hosts (Nadarash, 2011) is also a possibility given 

the evidence presented in Chapter 4.  

The bacterial communities of oak have been shown to vary with site, potentially due to 

abiotic conditions (Sapp et al., 2016) and seasonal changes have been observed in the 

bacterial communities of other plant species (Ercolani, 1978; Thompson et al., 1993). These 

findings are reflected in the results from this study where individual sites showed different 

patterns in bacterial detection as well as seasonal differences. Over time it has been 

observed that available nutrient resources and competition become limiting factors to 

bacterial population density on plant surfaces (Suoniemi et al., 1995). Site abiotic and biotic 

differences could therefore play a key role in determining bacterial presence; an aspect of 

AOD that has already been highlighted (Brown et al., 2018).  

In an agricultural setting it has been noted that the continuous growing of a monoculture in 

the same place can lead to the soil and surrounding environment becoming biased towards 

a selective group of bacteria (Baltrus, 2020). The bacteria that are detected have adapted 

over time to survive alongside the crop and could be said, in effect, to have been selected 

for by the plants (Baltrus, 2020). This could be happening in the case of AOD within the oak 

dominated woodlands and parklands used in this study.  

Exudates and VOC's released by plants have been shown to attract microbes (Baltrus, 

2020) and are thought to prime plant defences to mitigate against future stresses (Brilli et al., 

2009, Liu and Brettel, 2019). They are important for plant to plant communication (Moreira 

and Abdala-Roberts) and can act either to prevent colonisation of bacteria that may 

negatively impact a plant or to selectively enhance the growth of beneficial bacteria (Baltrus, 

2020). In addition Orlovskis et al. (2015) noted that bacteria can alter plant signals to attract 



118 
 

insects. For AOD, VOC's have only been studied in relation to A.biguttatus (Vuts et al., 

2016) however it may be that the VOC's emitted by oak have a more wide reaching purpose. 

Co-evolution between plants and microbes is important in understanding long term 

interactions, geographical differences and biogeographic patterns however its influence is 

largely unknown (Baltrus, 2020). An increased understanding of microbial biogeography 

could further lead to predictions of future changes and their roles in ecosystems (van der 

Gast, 2015).   

6.1.2 Potential movement pathways of B.goodwinii and G.quercinecans 

In order to move to and successfully colonise new hosts bacteria must utilise movement 

pathways since they are unable to actively move themselves (Frank et al., 2017). Several 

dispersal mechanisms for phytopathogenic bacteria are by now widely established including 

wind, rain, seeds and vectors (Esker et al., 2007; Frank et al., 2017). Colonization can be 

described as vertical, whereby bacteria survive through successive host generations or 

horizontal with each host generation acquiring the bacteria anew from their environment 

(Bright and Bulgheresi, 2010). A combination is also possible (Bright and Bulgheresi, 2010). 

Multiple dispersal routes for G.quercinecans and B.goodwinii has already been proposed 

(Brown, 2014) and the results of Chapters 3-5, support this suggestion. 

One example of a horizontal transmission route is via insects and this has been highlighted 

in Chapter 4 as a potential path for G.quercinecans and B.goodwinii. For insect transmission 

to be possible there must be contact between the two (Nadarash and Stavrinides, 2011). 

Multiple insects are known to be involved in transmission (Orlovskis et al., 2015) and the five 

Coleoptera that were analysed all have associations with oak. The positive detections on 

Coleoptera with differing lifestyles is suggestive of incidental contact rather than a specific 

host-vector association.  

Microorganisms found within the environment can also be present in the guts of insects 

(Engel and Moran, 2013) and these Coleoptera may have acquired bacteria via feeding on 

oak tissues. In order to persist through the digestive tract (Nadarash, 2011, Orlovskis et al., 

2015) both G.quercinecans and B.goodwinii would have to overcome insect defences 

however further evidence is needed on whether these bacteria are able to do this. 

Nevertheless incidental contact is still a viable route for G.quercinecans and B.goodwinii to 

come into contact with new hosts.  

Both G.quercinecans and B.goodwinii have been found on acorns and catkins (Chapter 3) 

which could indicate the potential use of a vertical transmission pathway. Bacteria on seeds 
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may be beneficially selected for by parents, for example if they aid germination, and 

transferred to the next generation. (Truyens et al., 2014). This transference from parent to 

seed has been shown for several crop species (Truyens et al., 2014).  

Detecting bacteria in seed and flowers does not necessarily mean the parent plant is the 

original source since seeds and flowers can acquire bacteria from the environment (Frank et 

al., 2017). One mechanism through which seeds can attract bacteria is via chemical 

secretion (Truyens et al., 2014). In a review study of 131 bacterial genera from 25 different 

plants most were reported as similar to soil strains indicating this as the likely place of 

colonisation (Truyens et al., 2014). The number of acorn samples in this study was low so 

strong conclusions cannot be drawn, however G.quercinecans has been shown to survive in 

soil (Pettifor et al., 2020) and therefore this transmission pathway should not be ruled out.  

The involvement of A.biguttatus is mentioned continuously in AOD studies (Denman et al., 

2010; Denman et al., 2014; Brown et al., 2015; Vuts et al., 2016; Broberg et al., 2018; 

Denman et al., 2018). Evidence from a review on European oak declines suggests bark and 

wood boring beetles, including A.biguttatus, are mainly secondary colonisers of trees in poor 

health (Sallé et al., 2014). The larval galleries found behind necrotic tissue and exit holes on 

trees with AOD (Brown et al., 2015) also suggest a secondary impact. The results of Chapter 

4 do not support the idea of A.biguttatus as a vector in agreement with Brown (2014) 

although incidental contact with G.quercinecans and B.goodwinii is clearly possible.  

Climate change will affect interactions between pathogens, hosts and environment (Sturrock 

et al., 2011). Host susceptibility, phenological changes and the geographic distributions of 

host and pathogens are all predicted to change (Sturrock et al., 2011). As pathogens are 

able to adapt to new conditions and move to more favourable areas faster than a long lived 

stationary tree the impacts could be uncertain and complex (Sturrock et al., 2011). Research 

has already focussed on the temperature range of A.biguttatus and its potential shift due to 

climate change (Reed et al., 2018) however the temperature range of G.quercinecans and 

B.goodwinii, established as factors in Acute Oak Declines, may be of importance for 

predicting future outbreaks. Additional factors such as vectors and external reservoirs (Page 

et al., 1995), potentially identified for AOD as the oak phyllosphere and soil (Pettifor et al., 

2020), may prove relevant to the movement of AOD under climate change scenarios.  
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6.1.3 Is management of Acute Oak Decline possible? 

Acute Oak Decline is currently identified as a decline disease (Denman et al., 2014) with 

biotic and abiotic factors sequentially contributing to a decline in tree health (Manion, 1991). 

These components have been separated into predisposing, inciting and contributing factors 

(Table 1) and this model can be applied to Acute Oak Decline (Table 38).  

Table 38. Predisposing, inciting and contributing factors of the decline disease concept 

(Manion, 1991) applied to Acute Oak Decline 

 Predisposing Inciting  Contributing 

Mode of 

action 

   

Long term slow changing Short term Long and short term 

Soil moisture1 

 
Drought1 

G.quercinecans and 

B.goodwinii 3 

Clay rich soil1 Seasonally 

waterlogged soil1 
Insect activity4,5,6 

High soil nitrogen1 Defoliation2,3  

1Brown et al., 2018; 2Denman et al., 2010; 3Brady et al., 2010; 4Vansteenkiste et al., 2004; 5Sallé et al., 2014; 6Moraal and 
Hilszczanski, 2000 

 

Not all decline syndromes however fit a single model (Oliva et al., 2013) with Sinclair and 

Hudler (1988) presenting four scenarios; i) decline by continuous effect of one factor ii) 

decline by single major factor and secondary stress iii) interchangeable predisposing, inciting 

and contributing factors and iv) group decline. Earlier decline disease concepts interpreted 

and advanced by Manion (1999) have also evolved (Manion, 2003). Earlier ideas of i) 

disease is not healthy and ii) decline disease affects weakened trees (Manion, 1999) have 

developed into i) a sustainable amount of disease is needed and ii) decline diseases remove 

dominant trees to stabilize the forest (Manion, 2003). This is expanded to explain that whilst 

dominant trees within the canopy have succeeded competitively it is potentially at the 

expense of genetic diversity and stress tolerance (Manion, 2003). The function of decline is 

therefore to naturally remove a portion of these mature trees so other individuals can mature 

and increase genetic diversity (Manion, 2003).  

The multiple interacting components of the decline disease model make a clear 

management strategy challenging leading to questions over its place as a distinct disease 

category (Ostry et al., 2010). The main points against its use are that tree diseases are 

naturally complex and even those caused by a single damaging agent will have associated 

symptoms and be affected by environmental conditions, host susceptibility and interacting 

factors e.g. climate, insect damage (Ostry et al., 2010). Whilst a decline model can illustrate 

the complexity of tree disease, an equally applicable model to use for AOD is an 
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epidemiological triangle whereby interactions between host-environment-agent are required 

for disease to occur (Ostry et al., 2010, Oliva et al., 2013). When this is applied to AOD 

(Figure 42) the most likely factors involved can be clearly seen. 

 

   

Figure 42. The epidemiological triangle disease model applied to AOD 

Using this model it is easier to see where management interventions can be used (Ostry et 

al., 2010). Under the supposition of decline being a natural phenomenon the role of disease 

in forest health should be thought of in terms of its impact and the extent of the effect on 

individual sites since differing levels of negative impacts will be sustainable (Manion, 2003). 

By establishing a baseline tolerance to AOD as suggested by Manion (2003), management 

can be aimed at preventing the baseline from being exceeded and an unhealthy level of 

disease and tree loss occurring.  

Although plant responses to multiple stresses still require more investigation (Szczepaniec et 

al., 2019, Crowder et al., 2019) by predicting future outbreaks mitigation measures can be 

applied (Oliva et al., 2013). The developing field of precision arboriculture using remotely 

piloted aircraft to survey large areas, modelling and mapping tree health (de Petris et al., 

2019) has potential to help with assessing AOD in the field. Genetic, population and age 

uniformity all increase vulnerability to disease epidemics (Oliva et al., 2013). To reduce host 

and site susceptibility the use of resistant oak varieties and increasing genetic variability on a 

site could help prevent an unsustainable level of disease being reached.  

Low rainfall was associated with AOD presence on sites and appears to be an 

environmental, inciting factor in disease development (Brown et al., 2018). Restricting water 

availability and localising desiccation at the infection site are a plant defence mechanism to 

restrict bacterial growth (Beattie, 2011). Drought can decrease plant resistance to 

Environment -

Drought, soil

Agent -
G.quercinecans and 

B.goodwinii

Susceptible host -
Oak; Q.robur and 

Q.petraea
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phytopathogens through changes to metabolism and defences (Szczepaniec et al., 2019) 

and is a recognised factor in increased risk of insect damage (Sallé et al., 2014). The effects 

of drought on plants impact insect behaviour and could increase vector movement to new 

hosts (Szczepaniec et al., 2019). Plants have also been shown to prioritise water stress over 

pathogen infection (Beattie, 2011). 

Climate change is predicted to increase the frequency of drought events (Sallé et al., 2014). 

This has implications for AOD as an increase could to lead to a higher risk of it developing 

on a site. Water retention in a forest can be influenced by different site features and where 

retention is enhanced can mitigate the effects of drought (European Environment Agency, 

2015). Influential features can include the area and density of tree cover, species 

composition, age and extent of lower vegetation layers (European Environment Agency, 

2015). Management practices can impact all of these at a site level for example multiple 

storey vegetation enhances water interception whilst mixed aged stands ensure continuous 

cover (Schüler, 2006).  

Other environmental factors, all related to soil, appear to provide a favourable environment 

for AOD establishment (Brown et al., 2018). Seasonally waterlogged soil, high soil clay 

content, high soil nitrogen and low sulphur were all correlated with the presence of AOD on a 

site (Brown et al., 2018). These soil parameters all have effects on tree health. High soil 

nitrogen and low sulphur are both associated with poor tree health (Brown et al., 2018). A 

high clay content and waterlogging both leave soils vulnerable to compaction which has 

negative impacts on plant growth, soil microorganisms (Nawaz et al., 2013), reduces 

aeration and available water for plant uptake (Sekwakwa and Dikinya, 2012).  

A uniformity of crop can facilitate the build up of a pathogen due to the high availability of 

potential hosts and may perpetuate its survival (Schuster and Coyne, 1974). Diversifying the 

tree species on site could therefore help reduce the number of potential hosts and the 

establishment of G.quercinecans and B.goodwinii. Diversification of species could also have 

additional benefits. One management strategy suggested to disrupt the splash dynamics of 

rainfall dissemination of bacteria was to alternate plants with varying leaf structures (Gilet 

and Bourouiba, 2014). By interspersing trees that have light flexible leaves in between oaks, 

with more rigid leaves, the contamination range of droplets carrying G.quercinecans and 

B.goodwinii could be reduced. Encouraging mixed species woodland or stands could 

therefore be advantageous in mitigating the spread of G.quercinecans and B.goodwinii via 

rain. In addition increasing spacing between plants beyond that of the minimum distance 

required for rain splashed water droplets to travel could reduce contamination risk by rain 

(Gilet and Bourouiba, 2014). 
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Conclusion 

Acute Oak Decline is currently affecting Q.robur and Q.petraea in the UK. This study has 

newly shown that G.quercinecans and B.goodwinii, bacteria associated with stem bleeds, 

are also present in the oak phyllosphere. Several potential vectoring mechanisms have in 

addition been highlighted. These new findings contribute to the existing research on AOD 

and can feed into management strategies, several of which have been discussed here. 

6.2 Recommendations for further research 

As a result of the conclusions presented in this thesis two areas of further research are 

suggested.  

 

 

i) Although part of the research in Chapter 3 showed that G.quercinecans and B.goodwinii 

were alive samples of oak leaves and litter since they could be cultivated there still 

remains the question of whether all the detections from the phyllosphere samples were of 

live or dead bacteria. The use of culturing techniques for samples of leaf washes and 

rainwater immediately after collection could show the viability of cells. Collections of air 

samples could also be taken to look at this transmission pathway. 
 

 

ii) There are suggestions that G.quercinecans and B.goodwinii have different lifestyles. 

Examining the genetic composition of G.quercinecans and B.goodwinii was beyond the 

scope of this study however further study into their lifestyles would be beneficial. For 

example: if these bacteria are opportunistic, what triggers a change to pathogenic? Are 

both or one of the bacteria epiphytic or endophytic or able to switch between the two? 

Knowing what may trigger potential transitions could help with disease management.   
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Appendix 1 

Six species of Agrilus are found in the UK. Their associations as reported in Jendek & 

Poláková (2014) are shown in Table 1. Information up to the end of February 2014 was 

included. A confidence rating increasing from 0-3 was used to assess the reliability of the 

records found. For this reason only records with a confidence of 1-3 are included. Plant 

varieties have been excluded and species with the same confidence level for one or more 

Agrilus have been grouped together for simplicity.  

0. Misidentification or misinterpretation of the association 

1. Evidence from adult host record. No larval host record available.  

2. Supported by adult host record where the source is considered the most reliable. 

Also includes host plants where larval associations with the plant genus are 

available as supporting evidence.  

3. The most reliable associations supported by larval host records. Also includes 

records where the adults are commonly collected from the same plant species but 

larval host is unknown.  
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Table 1. Host associations as referenced in Jendek & Poláková (2014) Host Plants of World Agrilus 

 

 

 

Agrilus species  A.angustulus A.biguttatus A.cuprescens A.cyanescens  A.laticornis A.sinuatus A.sulcicollis A.viridis 

Confidence rating    

Plant association     

Acer sp.; A.campestre; A.opalus; A.platanoides; 
A.tataricum; A.pseudoplatanus 

 
 

 
  

 
 

3 

Alnus sp.   
 

 
 

1  
 

3 

A.cordata; A.viridis  
 

 
  

 
 

2 

A.glutinosa 1 
 

 
  

 
 

3 

A.incana  
 

 
  

 
 

3 

Betula sp.  1 
 

 
 

1  
 

3 

B.nana  
 

 
  

 
 

2 

B.pendula 1 
 

 
  

 
 

3 

B.pubescens  
 

 
  

 
 

3 

Carpinus sp.; C.betulus 1 
 

 
 

1  
 

3 

C.orientalis  
 

 
  

 
 

3 

Castenea sp.  3 
 

 
  

 1 
 

C.sativa 3 3  
 

3  
 

2 

Corylus sp.; C.avellana 3 
 

 
 

3 1 
 

3 

Cotoneaster  
 

 
  

3 
  

Crateagus sp.; C.azarolus; C.curisepala; 
C.laevigata; C.monogyna 

 
 

 
  

2 
  

Cydonia  
 

 
  

 
  

Fagus sp.  3 3  
 

1  3 3 

F.sylvatica 3 3  
  

 3 3 

F.orientalis  
 

 
  

 
 

3 

Lonicera sp; L.implexa; L.nigra; 
L.periclymenum; L.tatarica; L xylosteum 

 
 

 3 
 

 
  

L.caerulea; L.involucrata; L.morrowii  
 

 2 
 

3 
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Malus sp; M.domestica; M.pumila  
 

 
  

3 
  

Mespilus sp.; M.germanica  
 

 
  

 
  

Myrica gale  
 

 
  

 
 

3 

Ostrya carpinifolia 3 
 

 
  

 
 

1 

Populus sp.  
 

 
  

3 
  

Prunus sp.; P.davaicata  
 

 
  

3 
  

Pyrus sp; P.amygdaliformis; P.communis; 
P.pyraster 

 
 

 
  

 
  

Quercus sp.; Q.petraea; Q.pubescens; Q.robur 3 3  
 

3  3 
 

Q.cerris 3 3  
 

2  2 
 

Q.suber 3 3  
 

2  
  

Q.coccifera; Q.rubra 3 
 

 
  

 
  

Q.delachampii 3 3  
  

 
  

Q.faginea 2 3  
  

 
  

Q.frainetto 3 
 

 
  

 3 
 

Q.ilex 2 3  
 

2  
  

Q.macranthera 3 
 

 
  

 
  

Q.rotundifolia 2 
 

 
  

 
  

Rhamnus sp.; R.carthartica  
 

 3 
 

 
  

R.alaternus  
 

 
  

 
 

1 

Rosa sp; R.acicularis; R.arkansana; R.blanda; 
R.canina; R.carolina; R.damascena; R.jundzillii; 
R.laxa; R.multiflora; R.nitida; R.rubiginosa; 
R.rubrifolia; R.silverhjelmii; R.spaldingii; 
R.spinosissima; R.woodsii 

  3 
  

 
  

R.alpina   2 
  

 
  

R.hugonis   2 3 
 

 
  

R.rugosa;    3 3 
 

 
  

Rubus sp.; R.caesius; R.fruiticosus   3 
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Salix sp.; S.alba; S.aurita; S.caprea; S.cinerea; 
S.purpurea; S.sachalinensis; S.schwerinii; 
S.viminalis 

 
 

 
  

 
 

3 

S.auriculata; S.lanata  
 

 
  

2 
 

2 

S.elaeagnifolia;   
 

 
  

3 
  

Sorbus sp.; S.aria; S.acuparia; S.hardeggensis; 
S.intermedia 

 
 

 
  

 
  

Symphoria racemosa  
 

 1 
 

 
  

Symphoricarpos sp.; S.orbiculats  
 

 1 
 

 
  

Tilia sp.; T.cordata  
 

 
  

 
 

3 

Ulmus laevis  1  
  

 
  

U.minor  
 

 
  

 
 

1 
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