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Abstract – Autonomous equipment for crop production is on the brink of commercialization in 

the United States but federal, state, and local policies could affect commercial viability and 

hinder adoption. This study examines the farm-level implications of both a speed restriction and 

on-site supervisory regulations.  The rules reduce the profitability of autonomous machinery and 

for some scenarios autonomous machines are no longer an economically viable alternative to 

conventional machinery.  Regulations also increase the optimal number autonomous machines 

required and influence production practices. Smaller farms have more flexibility in supporting 

the rules because they have more to gain from use of autonomous equipment. 
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How Will Regulation Influence Commercial Viability of Autonomous Equipment in U.S. 

Production Agriculture? 

Introduction 

 Autonomous equipment in production agriculture is on the verge of commercialization in 

the United States and worldwide.  From large machinery manufacturers to small non-traditional 

manufacturers and startups, there is a race to make autonomous equipment in U.S. production 

agriculture technically and economically feasible.  Goldman Sachs predicts that the small 

autonomous tractor market will be a $45 billion industry (Daniels 2016).  While autonomous 

equipment in agriculture has been the subject of research efforts for decades, mainstream media 

has only begun reporting on the opportunities that autonomous equipment offers to the 

agriculture industry.  Those reports highlight that autonomous equipment can help feed the world 

and solve the labor shortage in agriculture (Kolodny and Grigham 2018).  In the United States, 

labor shortages in agriculture has increased since 2018, with new immigration policies and the 

realization that pandemics, such as COVID-19, can exacerbate these issues.  Skilled labor 

shortages in the agriculture sector are not just an issue in the U.S. but globally and are a critical 

constraint facing agriculture, especially for essential operations requiring timely completion. 

Other media outlets highlight that autonomous equipment will "revolutionize" fieldwork in 

agriculture and introduce prototypes that are ready for commercialization, like Smart Ag's 

autonomous grain cart and Seedmaster DOT's autonomous platform, both now acquired by 

Raven Industries (Mark 2018; Belz 2018).   

The replacement of large, manned farm machinery with smaller, autonomous machinery 

has numerous benefits without losing the benefits traditionally afforded to larger machinery (e.g., 

economies of size, timeliness of operations, and capital-labor substitution).  While removing the 
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operator from the cab has direct labor and opportunity cost implications, especially those farms 

operating multiple sets of equipment (e.g. two planters), additional benefits exist.  First, there is 

potential to lower the capital cost of equipment in production agriculture (Lowenberg-DeBoer et 

al., 2021).   Second, the adoption of small autonomous machinery will offseting the 

environmental consequences of larger farm machinery.  As the size of farm machinery increases, 

soil compaction is more prevalent, which results in lower yields.  Additionally, it is becoming 

more challenging to apply a uniform application of inputs as machinery increases, resulting in 

off-target application and higher input costs.  Furthermore, if a large conventional machine goes 

down with problems, there is typically not a second waiting to continue operations.  With 

smaller, autonomous machinery operating in fleets, if one does go do, the other machines can 

continue operations. While autonomous machinery does not have to be smaller, the benefits 

listed above explain why some manufactures are developing automonous prototypes smaller than 

conventional machinery.  Even though autonomous machinery is near commercialization, 

federal, state, and local policies could impede adoption and economic feasibility (Luck et al., 

2011; Redhead et al., 2015; King 2017; Shockley, Dillon, and Shearer, 2019; Trimble, 2019). 

Currently, there are no federal policies on autonomous farm equipment in the United 

States.  However, a precedent has been set at the state level by the current restrictions for 

California's autonomous equipment. According to the current California code, the operator must 

monitor and supervise the tractor and surrounding workers at all times, and the autonomous 

equipment cannot exceed two miles per hour.  For comparison, typical corn planting speed is 

four to six miles per hour and applying pesticides with a self-propelled sprayer is ten to fifteen 

miles per hour depending on field conditions and characteristics.  A human supervisor, not 

located on the premise, would not adhere to the current California code.  The current California 
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code is dated and protects worker safety under the technology available at the time (Raven 

2001).  Since the policy's enactment, sensor technology, intelligent controls, safety measures, 

advanced guidance systems, and artificial intelligence have rapidly advanced.  If other states or 

the federal government, without substantial change, adopts California's current restrictions on 

autonomous equipment, this could hinder the commercialization and innovation of autonomous 

equipment in agriculture for the United States (Janzen 2017) 

While autonomous equipment for crop production is on the brink of commercialization in 

the United States, federal, state, and local policy uncertainty will impact the economic viability 

and hence, adoption.  Two missing elements in previous economic studies are on-site 

supervisory requirements and speed restrictions that California's policy impose.  Therefore, this 

study aims to expand upon Shockley, Dillon, and Shearer (2019) to assess the farm-level 

implications of California's policy on the economic feasibility of operating autonomous 

equipment in U.S. grain production.  The specific objectives include: 

1) Determine the economic impact of a supervisor monitoring each autonomous 

machine while operating versus one supervisor monitoring the entire fleet of 

autonomous machines while operating; 

2) Determine the impact a speed restriction has on economic viability and the 

number of autonomous machines required for grain crop production; 

3) Determine the economic impact of a policy mandating both an on-site supervisor 

and speed restriction; and 

4) Determine if a supervisor requirement and speed restriction influence the 

economic feasibility of autonomous machinery for various farm sizes.    
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This study provides insights into the on-farm economic consequences of  mandatory on-

site monitoring of autonomous equipment and speed restriction for grain operations in the U.S.  

Policymakers interested in federal, state, or local restrictions on autonomous machinery should 

consider the results of this study before enacting policies that could hinder the economic viability 

of autonomous machinery in grain crop production.   

Economic and Policy Review of Autonomous Machinery in Agriculture 

Macroeconomic and microeconomic questions still exist with the commercialization of 

autonomous equipment in production agriculture.  How will autonomous equipment impact labor 

markets?  Are modifications needed to the structure of current insurance programs? Will policies 

at the federal, state, and local levels restrict ownership and provide operational guidelines?  What 

is the farm-level profitability of autonomous equipment?   

Most studies focus on farm level profitability with the goal of informing engineers in the 

research and development of commercial prototypes (Goense 2005; Pedersen et al. 2006; 

Pedersen, Fountas, and Blackmore 2007; Shockley, Dillon, and Shearer 2019). Lowenberg-

DeBoer et al. (2019) conducted a systematic review of published autonomous equipment studies 

from 1990-2018.  They found 18 contained some form of economic analysis, mostly partial 

budgets, and all identified scenarios in which autonomous equipment in agriculture would be 

profitable. Shockley, Dillon, and Shearer (2019) conducted a whole farm planning analysis that 

compared autonomous equipment to conventional grain production in the United States.  This 

study identified the economic feasibility and break-even levels of investment for intelligent 

controls to guide research and development.  Furthermone, this study illustrated that autonomous 

equipment provides the opportunity for smaller operations to realize economies of size typically 
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only achieved by larger farming operations.  However, the suite of benefits will depend on the 

type of autonomous equipment that becomes commercially available.   

Lowenberg-DeBoer et al. (2021) expanded the economic literature by examining 

autonomous equipment's economic feasibly in field crops in the United Kingdom.  Shockley, 

Dillon, and Shearer (2019) and Lowenberg-DeBoer et al. (2021) employ linear programming to 

demonstrate how autonomous equipment shifts the production costs curves for various farm sizes 

and structures.  Lowenberg-DeBoer et al. (2021) utilized data collected from the Hands Free 

Hectare project at Harper Adams University. They actively experiment with and operate 

autonomous equipment at scale by retrofitting a conventional tractor with autonomous 

technology for grain crop production. While economic feasibility studies exist, no studies 

examine the implications of various policy restrictions on field operations.   

Policy Review of Autonomous Machinery in Agriculture 

At the federal level, no policies currently exist for regulating autonomous machinery 

operations in agriculture across the U.S.  However, California's autonomous farm equipment 

operations are governed by the Occupational Safety and Health Administration (OSHA, 

California Code of Regulations, Title 2, Section 3441 (b)).  This code requires that an operator 

be present at the vehicle's controls, but not necessarily in the tractor's cab, potentially with 

remote access.  However, for remote operations, the controls must be readily accessible.  

Futhermore, autonomous machinery must not exceed two miles per hour when in operation.   

Federal regulations do exist for other autonomous aerial technologies for agriculture.  

The Federal Aviation Administration (FAA) regulates unmanned aerial systems (UAS), a.k.a. 

unmanned aerial vehicles and drones, operating in production agriculture.  If UASs collect data 
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on the farm for making management decisions, their classification is for Commercial Use.  

Under this classification, the owner must follow the FAA's Part 107 regulations.  These included 

becoming a certified UAS pilot, registration and appropriate display of assigned number on the 

UAS, and adherence to the FAA rules of operation.  These federal rules of operation include 

limiting UAS size, operational speeds, and time of day of flying.  Furthermore, the rules require 

mandatory oversite and have restrictions on operating in certain weather conditions and cargo 

(Murphy and Bergman 2020; United States, Federal Aviation Administration 2019).  Various 

states also have policies for UAS operations.  In 2019, six states prohibited flying UASs over 

correctional, defense, and telecommunications facilities, as well as railroads (National 

Conference of State Legislatures 2020b). 

The United States is not alone regarding the lack of policies for operating autonomous 

equipment in production agriculture.  Currently, the E.U. Machinery Directive 2006/42/EC 

guides all agriculture equipment operating in the European Union.  These guidelines include road 

and operator safety, as well as environmental standards.  However, members of the European 

Union have different rules for operating tractors on farms and roadways.  Germany currently has 

operational guidelines for highly automated tractors that includes safety measures like shut down 

requirements and speed restrictions.  On the other hand, the United Kingdom has the opportunity 

to define and develop new policies regarding autonomous farm machinery operations since their 

recent departure from the E.U. (Lowenberg-DeBoer et al. forthcoming; European Commission 

2010).  In Australia, there are limited regulations for operating autonomous equipment on private 

property.  Therefore, Australian agriculture lobbying groups and manufacturer associations are 

taking the initiative to develop operating policies and procedures in hopes of adoption at the state 

and federal levels (Grain Producers Australia 2019).   
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Economic Model  

Consistent with the study objectives of evaluating the farm-level economic impacts of 

potential autonomous machinery policies, the research methods employed in this study consist of 

a mathematical programming framework similar to Shockley, Dillon, and Shearer (2019).  This 

multi-faceted whole farm planning model is a mixed integer formulation and incorporates three 

optimization models: resource allocation, machinery selection, and sequencing.  The model 

evaluates how cropping practices, machinery management, labor requirements, and timing of 

field operations change with the introduction of autonomous machinery for a Western Kentucky 

commercial corn and soybean producer.  With updating Shockley, Dillon, and Shearer (2019), 

prescriptive solutions to the policy issues the autonomous machinery industry faces can be 

evaluated.  The remainder of this section will provide a general model description followed by a 

more detailed discussion of the model enhancements, experimental policy procedures, and data 

updates germane to this study.  

Model Description 

In the tradition of neoclassical microeconomic firm theory, the objective function presented in 

Shockley, Dillon, and Shearer (2019) reflects a farm manager's desire to maximize net returns 

above specified costs.  These specified costs include input costs associated with the optimal 

enterprise mix and production levels. Additional costs include the variable and fixed costs 

associated with the optimal machinery choice.  Therefore, the estimated net returns represent a 

return to land, management, overhead labor, and other overhead expenses.  The decision 

variables incorporated in the mathematical programming model include production, marketing, 

and machinery management decisions.  Production decision variables reflect the land planted in 

corn and soybeans as defined by planting dates and maturity groups relevant to the study area.  
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Corn and soybean sales accounting variables reflect the marketing component of the model.  The 

machinery decision variables are the foundation of the whole farm planning model and provide 

insight into the optimal size of conventional machinery and the optimal number of autonomous 

vehicles (and implements) required to perform specific agricultural field operations common in 

grain crop production.  Like Shockley, Dillon, and Shearer (2019), the application of lime, 

phosphorus, and potassium are custom-hired activities.  Furthermore, harvesting activities are 

custom hired.  An accounting variable for the accumulation of required machinery supervisory 

time is also included in the model. 

Constraints represented in the formulation include a series of accounting equations for net 

returns calculation, crop marketing balances, and computation of required supervisory time.  

Resource constraints include land and machinery operation time due to suitable field conditions 

for all associated activities. Furthermore, sequencing constraints assure proper timing of 

machinery operations and the implementation of a two-year crop rotation.   

Model Enhancements and Experimentation Procedures 

The expansions of the mathematical programming model described above from 

Shockley, Dillon, and Shearer (2019) primarily relates to modeling a new autonomous machine 

prototype (described the data section below), implementing the speed limit restriction, and 

modeling the supervision policies.  Internal calculations of autonomous performance rates (acres 

operated per hour) allow for analyzing a speed limit restriction of two miles per hour with ease.  

However, to reflect the new autonomous machine prototype and analyze supervisory restrictions, 

adjustments to the base model are required.  Specifically, the base case assumes an on-site 

supervisory time of autonomous machines equal to 10% of total machinery time, consistent with 

Lowenberg-DeBoer et al. (2021).  This labor cost also includes the replenishement of seed, 
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fertilizer and pesticides for field operations.  The following balance equation reflects the 

inclusion of a base supervisory time: 

� 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐,𝑚𝑚𝑚𝑚𝑂𝑂𝑃𝑃𝑂𝑂𝑒𝑒𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚,𝑤𝑤𝑤𝑤 −  
1

𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒 %
𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂 ∗ 𝐵𝐵𝑆𝑆𝐵𝐵𝑆𝑆𝑒𝑒𝐵𝐵𝐵𝐵𝑆𝑆 = 0

𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚,𝑤𝑤𝑤𝑤

 

Where the sets include crops (c), crop planting date (cpd), machinery operation (mo), and 

week (wk); coefficients include performance rate (PerfRate, in hr/ac) and supervision percentage 

time (Supervise %, specifically 10% for the base case). The inclusion of supervision percentage 

time allows for analyzing any policy restriction addressing a fleet of autonomous machines' 

mandatory supervision.  The variables include decision variables for the performance of 

machinery operations (OPER in acres), an accounting variable for supervision time 

(SUPVSETIME in hours annually) and an integer decision variable for the purchase of tractors 

(BUYTRACT).  For a per machine on-stite supervision regulation case, the integer purchase 

decision variable (BUYTRACT) in the above equation is omitted.  Given the nonlinear term and 

integer variable inclusion, the model is now a mixed integer nonlinear programming model. TO 

allow on-site supervision of the fleet by a single human, it is assumed that all autonomous 

machines are working in one field. 

Data: Programming Model Coefficients 

Data needed for the model may be categorized as economic (objective function 

coefficients), technical (coefficients), and resource endowments (right-hand side values).  

Economic data consists of expected crop prices and specified costs for production and machinery 

operation and ownership.  Expected prices for corn and soybean are $3.71/bu and $9.03/bu, 

respectively.  These crop prices reflect the three-year marketing average prices for Kentucky, 

less $0.17/bu hauling cost (USDA-NASS 2020a; Halich 2020a).  Specified costs include 
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operating and ownership costs for the conventional machinery options outlined in Table 1 and 

2020 custom hire rates applicable to Kentucky (Halich 2020a; Laughlin and Spurlock 2020).  

While lime, phosphorus, and potassium applications are assumed custom hired, the application 

of nitrogen fertilizer is conducted by conventional or autonomous machinery.  All conventional 

machinery specifications are from the Mississippi State Budget Generator, which follows the 

American Society of Agricultural and Biological Engineering (ASABE) Standards D.497.7 and 

EP496.3 (Laughlin and Spurlock 2020).  The input rates and associated costs for planting, 

spraying, and fertilizing applications are from the 2020 Kentucky no-till grain crop budgets 

(Halich 2020b).   

In addition to conventional machinery, autonomous machinery data are required to 

evaluate policy impacts of economic viability.  The current status of autonomous equipment 

ranges from small, one row, machines that perform specific taks (e.g., “Xaver” by Fendt 

(AGCO) and Naio Technologies’ weeding robot) to medium and large autonomus tractors 

capable of multiple tasks via implement attachments (e.g., DOT’s autonomous platform, John 

Deere’s autonomous electric tractor, CNH Industrial and New Holland autonomous tractors).  

While there are numersous examples of machines developed for autonomous operation, another 

pathway for autonomous equipment in U.S. production agriculture is retrofitting autonomous 

technology on current conventional tractors (e.g., Raven’s OmniDrive system, X-Pert by 

Precision Makers, and Autonomous Solutions).  In addition to the economic study by Shockley, 

Dillon, and Shearer (2019) that examined a medium sized autonomous tractor, Lowenberg-

DeBoer et al. (2021) recently evaluated the economic feasibility of retrofitting autonomous 

technology on current conventional tractors in the United Kingdom via the Hands Free Hectare 

(HFH) demonstration project.  Similar to Shockley, Dillon, and Shearer (2019), Lowenberg-
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DeBoer et al. (2021) found that retrofitting autonomous technology on current conventional 

tractors is technically and economically feasible.   

The data used herein reflects the retrofitting approach used by Lowenberg-DeBoer et al. 

(2021) as part of HFH project at Harper Adams University (Table 2). The HFH autonomous 

tractor a conventional 38 hp tractor ($19,500) that is retrofitted with hardware and software to 

enable autonomous operation.  The hardware and software required for autonomous operation 

include safety equipment ($4,446), control systems and adaptations ($5,812), communications 

equipment ($1,110), and wiring ($780).  Agro Business Consultants (2018) provided the initial 

investment costs for the autonomous tractor and are converted from pounds to dollars using an 

average September 2020 conversion ratio of 1GBP = $1.30USD (Board of Governors of the 

Federal Reserve System 2020).  

Furthermore, the purchase prices for both the sprayer and nitrogen applicator implements 

used for autonomous operations are those estimated as part of the HFH project.  However, the 

HFH project's planter was a grain drill and not representative of equipment used for planting 

corn and soybeans in U.S. production agriculture.  Therefore, this study uses the same 4-row no-

till planter in Shockley, Dillon, and Shearer (2019).  All operating costs for autonomous field 

operations follow Redman (2018), while the autonomous performance rates and engineering 

parameters in Table 2 are determined using Witney (1995) and Laughlin and Spurlock (2020).  

While the autonomous tractor used for the HFH project is for small grain production in the 

United Kingdom, the retrofitting technology is readily available and transferable to conventional 

tractors in the United States.   

Additional technical coefficients needed for model completion are expected crop yields 

by production practice and autonomous machinery benefits assumptions.  Expected crop yields 
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use the biophysical simulation data described in Shockley, Dillon, and Shearer (2019).  

Autonomous machinery use offers the potential for yield benefits due to the reduced compaction 

from smaller machines (McPhee et al., 2020;Asseng and Asche, 2019).  While yield benefits 

from reduced compaction will vary across fields and operations, Murdock and James (2008) 

report a 7% yield reduction in corn and soybeans due to compaction in Kentucky.  Therefore, a 

7% yield increase is assumed as a autonomous machinery benefit.  In addition to yield benefits, 

cost benfits exist for autonomus machinery from more targeted application of inputs (pesticides) 

using advanced machine vision (Relf-Eckstein, Ballantyne, and Phillips, 2019; Ruckelshausen et 

al., 2009; van Henten et al., 2009; Pederson et al. 2006; Blackmore et al., 2004).  While the 

benefit from reduced inputs range from 12 to 90 percent in the studies above, a 10% reduction of 

select inputs, consistent with Shockley, Dillon, and Shearer (2019), is assumed for this study.  

All four benefit possibilities are examined for each policy case investigated.  

A land resource endowment of 2,100 acres for the base case analysis reflects a 

commercial-sized farm in Kentucky.  However, it important to examine farms of all sizes due to 

the impact automous machinery has on economies of scale.  Given the average farm size in the 

U.S. is 444 acres, it is important to understand how autonomus machinery impacts smaller 

farming operations (USDA-NASS, 2020b).  Therefore, land resource allotments of 500 acres and 

3,100 acres are examined to address objective four of this study.  The weekly total available time 

for performing machinery operations depends on expected suitable field days per week 

(Shockley and Mark, 2017) and the hours worked per day.  The human operator limits 

conventional farm machinery to 13 hours per day (Shockley, Dillon, and Stombaugh 2011).  

However, autonomous machinery can operate 22 hours per day, allowing two hours for repairs 

and maintenance (Lowenberg-DeBoer 2019a).  
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Results 

Given the model described above, autonomous machinery's economic viability without 

any policy restrictions is first determined.  Table 3 outlines the unrestricted economic results for 

conventional and autonomous machinery based on each anticipated benefit scenario.  The 

optimal conventional machinery set for the 2,100-acre corn and soybean farm is a 130 hp tractor, 

8-row planter, 8-row fertilizer applicator, and a 60-foot sprayer, which results in an expected net 

return of $691,278.  For all scenarios examined, autonomous machinery is an economically 

viable alternative to conventional machinery.  Under the scenario of a yield increase coupled 

with a cost reduction, autonomous machinery increases expected net returns by 20.8% compared 

to conventional machinery. In all unrestricted autonomous farm scenarios, the optimal machinery 

management plan is to purchase two autonomous tractors. 

 When a supervisory regulation exists, either for each machine or for the entire fleet, 

autonomous machinery's economic viability decreases (Table 4).  As anticipated, regulations 

requiring individual machinery supervision decreases net returns more than a fleet supervision 

regulation.  An individual machine supervisory policy reduces autonomous machinery's 

profitability potential by 2.1% for the yield increase and cost reduction scenario.  Not only does a 

supervisory policy influence the profitability of autonomous machinery, but it also affects the 

optimal number of autonomous machines.  For a fleet supervisory policy, the optimal number of 

autonomous machines increases from two to three.  This increase is explained in part by the 

lower marginal input cost of a machine under fleet supervision as compared to individual 

machinery supervision.  While additional ownership and other operating costs for an autonomous 

machine are equal between the two scenarios, the marginal cost of supervisory time is zero for 

any additional autonomous machines required greater than one in the fleet supervison case.   
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 Similar to a supervisory policy, restricting the speed at which autonomous machines can 

operate reduces net returns.  A speed restriction decreases the profitability potential more than a 

supervisory policy and jeopardizes the economic viability of autonomous machinery for the 

scenario where no yield increases or cost reductions exist.  Furthermore, restricting speeds 

increases the optimal number of autonomous machines and influences the production practices 

for corn and soybeans.  The increase in autonomous machines does not fully offset the speed 

reduction, resulting in untimely planting and a slight yield reduction.   

 Table 5 illustrates the impact of a combined supervisory (both individual machine and 

fleet) and a speed restriction policy.  As expected, a combination of both policies has the greatest 

reduction in net returns.  The coupling of policies results in three scenarios for which 

autonomous machinery is not an economically viable alternative to conventional machinery, 

relative to when only a supervisory policy is evaluated.   The speed restriction would need to 

increase to 3.4 mph, from 2 mph for the cost only scenario when coupled with the fleet 

supervisory policy, for autonomous machinery net returns to equal conventional machinery and 

therefore induce the adoption of autonomous machinery.  Similar to the stand-alone policy 

results, the optimal number of autonomous machines also increases, influencing both production 

practices and yields for corn and soybeans. For a fleet supervisory policy coupled with a 2 mph 

speed restriction, the optimal number of autonomous machines increases to five, compared to 

two under the unrestricted scenario. 

 For all scenarios, both a supervisory policy and a speed restriction policy will reduce the 

profitability potential and influence autonomous machinery's commercialization.  Additionally, 

both fleet supervisory and speed restriction policies increase the capital expenditure required for 

autonomous machinery to be economically viable. Furthermore, production practices, 
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specifically optimal planting dates, change due to these policies.  However, these results could 

change based on farm size.   

 Shockley, Dillon, and Shearer (2019) illustrate that autonomous machinery has the 

potential to be more profitable at smaller farm size (< 500 acres).  Smaller farm sizes can capture 

economies of size in their operation with autonomous machinery, traditionally afforded to larger 

farming operations.  Therefore, to address objective four, this study examines both a 500-acre 

and a 3,000-acre farm to determine if supervisory and speed restriction policies affects 

autonomous machinery's economic feasibility.  For the 500-acre farm, in the baseline no 

regulation scenario autonomous machines are more profitable than conventional machinery for 

all benefit cases examined.  Compared to conventional machinery, the increase in expected net 

returns for autonomous machinery without supervisory requirements or speed restrictions ranges 

from 11% to 29% for the 500-acre farm, depending on the anticipated yield and cost benefits.  

The smaller farm has more to gain from autonomous equipment than the 2100-acre 

baseline farm. For the 500-acre farm in the baseline no regulation scenario, autonomous 

equipment increases per acre net returns by almost $33/acre, but for the 2100-acre farm that 

autonomous equipment advantage is only about $14/acre. The 2100-acre farm has a cost of 

production advantage due to economies of scale, but in that scenario, autonomous equipment 

narrows the 2100-acre farm economies of scale net return advantage from about $27/acre to only 

slightly more than $7/acre.  

 When either supervisory regulations or a speed restriction is included, expected net 

returns decrease, reducing autonomous machinery's economic viability compared to 

conventional.  However, the implications of supervision and speed regulations are slightly better 

supported by the 500-acre farm compared to the 2,100-acre farm becaasue the 500-acre farm has 
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more to gain from autonomous equipement.  For example, if on-site supervision is required and 

speed restrictions are imposed, expected net returns are higher with conventional human 

operated equipment for both the 500-acre and 2,100-arce farms.  However, with a 10% cost 

savings from reduced input use the 500-acre farm is better off with autonomous equipement, 

whereas the 2100-acre farm still favor conventional equipment.  With both yield and cost 

benefits included, and both speed restriction restrictions and per machine on-site supervision, the 

autonomous equipment advantage for the 500-acre farm is $43.30/acre, but for the 2100-acre 

farm it is only $17.92/acre.  Furthermore, a fleet supervisory regulation combined with a speed 

restriction increases the optimal number of autonomous machines for the 500-acre farm from one 

to two, hence increasing capital expenditures.  Unlike the 2,100-acre scenario, this increase in the 

number of autonomous machines did not influence corn and soybeans' production practices.  

Overall, the smaller farm has more flexibility in supporting the supervisory regulations and speed 

restrictions because it gains more from the use of autonomous machinery than the larger farm.  

 The larger farm size examined (3,000 acres) has similar results to the 2,100-acre farm 

scenario.  All supervisory policies and speed restriction scenarios examined reduced the 

profitability of autonomous machines compared to conventional machines.  Furthermore, 

autonomous machines are not an economically viable alternative to conventional if no 

anticipated benefits are experienced for autonomous machine usage when a speed restriction 

regulation is in place, alone or coupled with either supervisory policy.  Likewise, autonomous 

machines are not economically viable if only a cost reduction benefit occurs and a speed 

restriction coupled with a per machine supervisory policy exist. Furthermore, both policies 

increase the optimal number of autonomous machines compared to the unrestricted case.  Unlike 

the 2,100-acre farm scenario, a fleet supervisory policy affects the production practices for corn 
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and soybeans.  If a speed restriction exists, the optimal number of autonomous machines is six, 

compared to two when only a per machine supervisory policy exists.  Similar to the 2,100-acre 

farm, the increase in autonomous machines due to the policies impacts the production practives 

for corn and soybeans. 

Conclusions 

 While autonomous equipment is on the verge of commercialization in the U.S., policies 

restricting operational speed or mandate supervision would directly affect this technology's 

economic viability and hinder adoption.  This policy evaluation indicates that individual machine 

supervision decreases expected net returns of autonomous machinery more than a fleet 

supervisory policy.  Under specific scenarios, autonomous machines are no longer an 

economically viable alternative to conventional machinery if an individual machinery 

supervisory policy is enacted.  Furthermore, supervisory policies increase the optimal number of 

autonomous machines required to perform grain production activities and influence the optimal 

production practices for corn and soybeans.  If stringent supervisory time and speed regulations 

are adopted, autonomous equipment is only profitable with substantial yield improvements and 

variable cost savings.  These policies increase the urgency of research to measure how small 

autonomous equipment reduces soil compaction and improves soil health, and accurately 

quantify input reduction from site-specific applications. 

 Speed restrictions reduces the profitability potential of autonomous machinery in grain 

crop production in the U.S. more than a supervisory regulations. Like a supervisory regulation, a 

speed restriction will increase the number of optimal autonomous machines required and affect 

production practices.  While speed and supervisory regulations are intended to aid in safe 

operations of autonomous machinery in production agriculture, policymakers need to understand 
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the farm level's economic implications.  Implementing such policies will affect autonomous 

machinery's commercial viability, require larger capital investment at the farm level, and 

influence production practices. Furthermore, speed and supervisory regulations will influence 

adoption based on farm size.  Results herein indicate that smaller farm sizes are influenced less 

by these regulations compared to larger grain farms.  This is attributed to the greater profitability 

potential of autonomous equipment on smaller farming operations and their ability to absorb the 

economic ramifications caused by both regulations.   
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Table 1.  Conventional machinery options considered for comparing against autonomous 

machinery to conduct traditional grain production activities in Kentucky.   

Tractor (hp) 105, 130, 190, 300, 400 

Sprayer (broadcast, feet) 27, 40, 50, 60, 90, 120 

No-till split-row planter 4-row, 6-row, 8-row, 12-row, 16-row, 24-row 

Nitrogen applicator 6-row, 8-row, 12-row  

Source: Shockley, Dillon, and Shearer (2019) 
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Table 2. Autonomous equipment specification based on the HFH example. 

 Tractor Planter a Sprayer Spinner Spreader 

Purchase Price $31,648 $34,600 $6,370 $4,550 

Implement Specifications     

   Base Speed (mph)  5 8 8 

   Width (ft.)  10 13 40 

   Efficiency (%)  70 70 70 

   Performance Rate 

(acres/hour) 

 4.2 8.8 27.2 

Repairs and Maintenance ab 40% 50% 20% 20% 

Useful Life (years) 20 10 10 10 

Annual Usage (hours) 600 150 200 150 

a Planter substituted for the drill used by the HFH project to adapt equipment set for US corn and 

soybean cropping system.  Planter cost and specifications based on the Mississippi State Budget 

Generator. 

b Repairs and maintenance is reflected as a percent of purchase price over the total useful life of 

the equipment 
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Table 3. Economic and machinery selection results for various anticipated autonomous 

machinery benefits under no policy restrictions for a 2100-acre grain farm.  

Conventional Machinery Expected Net Returns1 = $691,278 

Yield 

Increase2 

Cost 

Reduction3 

Autonomous 

Machines 

 Expected Net 

Returns (N.R.)1 

N.R. Diff. from 

Conventional 

No No 2 $719,806 4.1% 

No Yes 2 $749,551 8.4% 

Yes No 2 $805,596 16.5% 

Yes Yes 2 $835,341 20.8% 

1 Returns to land, management, overhead labor and other overhead expenses 

2 7% yield increase due to reduced compaction 

3 10% cost reduction on selected production inputs (herbicide, insecticide, seed, and nitrogen) 
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Table 4. Economic and machinery selection results for various anticipated autonomous 

machinery benefits under an individual machine supervisory policy, fleet supervisory 

policy, or a speed restriction for a 2100-acre grain farm.  

Supervisory 

Policy 

Yield 

Increase1 

Cost 

Reduction2 

Autonomous 

Machines 

Expected Net 

Returns (N.R.)3 

N.R. Diff. from 

Conventional 

Machine No No 2 $702,027 1.6% 

Machine No Yes 2 $731,772 5.9% 

Machine Yes No 2 $787,818  14.0% 

Machine Yes Yes 2 $817,563  18.3% 

Fleet No No 3 $711,813  3.0% 

Fleet No Yes 3 $741,558  7.3% 

Fleet Yes No 3 $797,604  15.4% 

Fleet Yes Yes 3 $827,349  19.7% 

      
Speed 

Policy 

Yield 

Increase1 

Cost 

Reduction2 

Autonomous 

Machines 

Expected Net 

Returns (N.R.)3 

N.R. Diff. from 

Conventional 

2 mph No No 4 $676,530  -2.1% 

2 mph No Yes 4 $706,275  2.2% 

2 mph Yes No 4 $761,927  10.2% 

2 mph Yes Yes 4 $791,672  14.5% 

1 7% yield increase due to reduced compaction 

2 10% cost reduction on selected production inputs (herbicide, insecticide, seed, and nitrogen) 

3 Returns to land, managemenet, overhead labor and other overhead expenses 
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Table 5. Economic and machinery selection results for various anticipated autonomous 

machinery benefits under an individual machine or fleet supervisory policy restriction 

coupled with a 2 mph speed restriction for a 2100-acre grain farm. 

Supervisory 

Policy 

Yield 

Increase1 

Cost 

Reduction2 

Autonomous 

Machines 

Expected. Net 

Returns (N.R.)3 

N.R. Diff. from 

Conventional 

Machine No No 4 $613,850  -11.2% 

Machine No Yes 4 $643,595  -6.9% 

Machine Yes No 4 $699,159  1.1% 

Machine Yes Yes 4 $728,904  5.4% 

Fleet No No 5 $663,185  -4.1% 

Fleet No Yes 5 $692,930  0.2% 

Fleet Yes No 5 $748,617  8.3% 

Fleet Yes Yes 5 $778,362  12.6% 

1 7% yield increase due to reduced compaction 

2 10% cost reduction on selected production inputs (herbicide, insecticide, seed, and nitrogen) 

3 Returns to land, managemenet, overhead labor and other overhead expenses 
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