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Abstract 21 

Potato (Solanum tuberosum) stem density variation in the field can be used to inform harvest timing 22 
to improve tuber size distribution. Current methods for quantifying stem density are manual with 23 
low throughput. This study examined the use of Unmanned Aerial Vehicle imagery as a high-24 
throughput alternative. A colour-based feature extraction technique and a deep convolutional 25 
neural network (CNN) were compared for their effectiveness in enumerating apical meristems as a 26 
proxy to subtending stems. Two novel colour indices, named the Cumulative Blue Differences Index 27 
and Blue Difference Normalized Index, showed significant differences (P<0.001) between 28 
meristematic leaves and mature leaves in comparison to other indices. The two indices were used to 29 
generate 500 pseudo-labelled human-corrected images as training data for the CNN. Benchmarked 30 
against a human labelled test dataset, the CNN performed better with a normalized Root Mean 31 
Square Error (nRMSE) of 0.09 than the sole use of the image analysis algorithm (nRMSE = 0.3) in 32 
predicting the number of meristems in a canopy at 52 days after planting. Furthermore, the CNN 33 
had better precision (Intersection over Union [IOU]: 0.49 and 0.56, respectively) than the image 34 
analysis algorithm (IOU: 0.33 and 0.13, respectively). Meristem counts in both approaches showed 35 
a linear relationship with actual subtending stem counts (P<0.001). This study demonstrates the 36 
validity of using traditional image analysis and CNNs to generate meristem detectors with 37 
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acceptable nRMSE. Transfer learning with CNN is proposed for developing meristem detectors for 38 
evaluating stem density variation from UAV images in the field. 39 

Key words: Vegetation Indices, Deep Learning, Potato, Plant Population, Phenotyping, Machine 40 
Vision 41 

1. Introduction 42 

At emergence, Potato (Solanum tuberosum L.) seed tubers produce variable sprout numbers 43 
depending on the physiological status of the seed, which results in variable stem numbers per potato 44 
plant (Knowles & Knowles, 2006). Estimation of spatial variation in plant density is important in 45 
potato production, with several studies linking it to tuber size and total yield variations at harvest 46 
(Bleasdale, 1965; Gray, 1972; Knowles & Knowles, 2006; Love & Thompson-Johns, 1999; Wurr, 1974). 47 
Potato growers normally have a contracted range of optimum tuber size, outside of which the value of 48 
the produce declines. Therefore, it is in the interest of growers to determine the factors that cause 49 
tuber size variation in the field and tailor management practices to mitigate the effects. 50 

At the stem level, a negative correlation between potato stem density and mean tuber size has been 51 
widely recognized (Goeser et al., 2012; Mangani et al., 2015), and predictive models have been 52 
produced to describe potato tuber size distribution using stem density as a covariate (Bussan et al., 53 
2007). To counteract the negative effect of stem density on average tuber size, several studies propose 54 
delayed harvesting to prolonging tuber bulking period as a strategy to increase tuber size (O’Brien & 55 
Allen, 1992; Rębarz et al., 2015; Waterer, 2007).  56 

With this background, there is interest in techniques for determining stem density within an actively 57 
growing crop to enable spatially and temporally variable downstream crop management like vine 58 
desiccation, to maximize yield within desired tuber size classes. Manual stem counting in randomly or 59 
systematically selected quadrants around the field give approximations of stem densities which can be 60 
geospatially interpolated to the whole field, however this is a laborious, sometimes destructive, and a 61 
low throughput method. The validity of data interpolation relies on assumption of a random 62 
distribution of stem numbers or the unpredictable chance of establishing enough spatial 63 
autocorrelation in stem numbers to model the variation with minimal error, which is not always 64 
possible.  65 

Using the spectral reflectance of potato plants to determine stem numbers from canopies is a potential 66 
approach for estimating accurate stem density from RGB or multispectral sensors mounted on 67 
Unmanned Aerial Vehicles (UAVs). This approach offers a high-throughput solution to estimate 68 
variation in stem population across the entire field without interpolation. Potato stems terminate with 69 
leaf primordia forming the growing tip of the stem, which sometimes convert to floral primordia 70 
depending on the variety (Firman et al., 1995). The leaf primordia therefore represents a distinct unit 71 
which can be used to estimate the total number of stems in a closed canopy. Plant canopies exhibit 72 
unique, species-dependent, responses to incident radiation, generally showing high absorption in the 73 
ultraviolet and Blue (490–450 nm) spectra, high reflectance in the Green (560–520 nm) spectrum, 74 
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high absorption in the Red (700–635 nm) spectrum and high reflectance in the near-infrared portion 75 
(800-2500 nm) (Gates et al., 1965).  Variability in chlorophyll content, water content and cell-to-air 76 
space ratio in the leaves directly influences spectral reflectance of plants in the visible  (400-700 nm) 77 
spectrum (Cochrane, 2000), which can enable the use of computer vision and image analysis 78 
techniques to decompose consolidated crop canopies and enumerate features of interest based on 79 
their spectral reflectance.  80 

Multispectral sensors with the near-Infrared band operating around 750 - 850 nm, enable the use of 81 
well-defined vegetation indices like the Normalized Difference Vegetation Index (NDVI) to assess and 82 
classify crop canopy components. Sankaran et al. (2015) used NDVI to extract and count emerging 83 
potato plant clusters from images taken at 15 metres above ground using a UAV at 32 days after 84 
planting with R2 values of up to 0.82 when regressed to manual plant counts.  However, predictive 85 
power was lost as the canopy gradually consolidated at 43 days after planting. The most widely used 86 
colour index for individual green plant segmentation from canopy remote sensing data is the Excess 87 
Green Index (ExG), first proposed by Woebbecke et al. (1995). The index has been used, in 88 
combination with other indices, for enumerating plant stands in wheat (Jin et al., 2017), rapeseed 89 
(Zhao et al., 2017), and in potatoes (Li et al., 2019), where the index was used to detect potato plant 90 
clusters at emergence. These techniques provide sufficient accuracy for counting clusters of stems 91 
from the same mother tuber at emergence before canopy closure. However, individual stem 92 
enumeration after full crop establishment, which is the level of accuracy required in precision farming 93 
for variable desiccation management, has not yet been reported.  94 

This study hypothesized that a colour index to extract clusters of leaf primordia and enumerate them 95 
as a proxy to actual stem counts would potentially offer a solution. Following the spectral properties of 96 
plants outlined in Gates et al. (1965), an ideal colour index would be one that is sensitive to the 97 
differences between Blue and Green reflectance since the meristematic tips have less chlorophyll, 98 
thereby exhibiting lower reflectance in the Blue range compared to older leaves. The performance of 99 
object detectors based on image colour calculations depends on the acquisition of high quality imagery 100 
with optimum light conditions which are not always possible in the field. A deep learning approach 101 
therefore potentially presents a more robust approach with respect to variation in image quality. 102 
Ground-truth labelled data is essential in deep learning training pipelines and forms the basis of 103 
model evaluation in so called supervised learning models. Labelling a large dataset of leaf primordia 104 
from closed canopies has a large time cost as it requires expertise in identifying irregular leaf 105 
primordia. Semi-supervised learning therefore becomes a potentially important solution. Pseudo-106 
labelling is a widely used technique to train Convolutional Neural Networks from non-labelled data 107 
with high accuracy. It involves the generation of an accurate model from a limited labelled dataset 108 
then using the model on unlabelled data and selecting all predicted labels that have high confidence as 109 
new labels, which helps to expand the labelled dataset.  110 

The objective of this study was to use the spectral properties of plants in the visible wavelengths to 111 
develop colour indices for enhancing primordial features in canopies and use them to infer variation 112 
in actual stem number. The study also tested the use of colour indices for developing an automatic 113 
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labelling algorithm for generating a training dataset for transfer learning using  Faster Regions with 114 
Convolutional Neural Network” (Faster R-CNN) to generate a robust potato meristem detector for 115 
inferring variations in stem number.  116 

2. Materials and Methods 117 

2.1 Feature Engineering: Development of Colour Indices 118 

2.1.1 Data Acquisition 119 

Development and evaluation of colour indices was conducted using potato canopy imagery collected 120 
from Harper Adams University, Shropshire, England (52°46'26.8"N, 2°25'48.9"W) on a dark brown 121 
stone-less sandy loam soil. The images were collected from Amora and Maris Piper varieties at 91 and 122 
50 days after planting respectively as shown in Table 1. Four different cameras, with varying sensor 123 
sizes and resolutions were used to generate variable sensor sharpness and colour resolving power. 124 
This enabled evaluation of the ability of the colour indices to distinguish meristem and old leaf pixels 125 
at different sensor sharpness and colour resolving powers so as to select the indices with the most 126 
consistent performance across sensors.  127 

Table 1: Specifications of Unmanned Aerial Vehicle cameras and crop stage used in the study. 128 

Location Camera Description (Alias) Variety 

Days 
after 
Planting 

  Colour Index Development   

HAU, Shropshire, 
England 

DJITM Mavic Air UAV equipped with a  
1/2.3-inch CMOS sensor producing 12 MP 
still images at 88° FOV (Mavic) Amora 91 

HAU, Shropshire, 
England 

DJITM Inspire equipped with a Zenmuse X3 
Camera equipped with 1/2.3-inch CMOS 
sensor producing 12.4 MP still images at 
90° FOV (Inspire) Amora 91 

HAU, Shropshire, 
England 

3DR Solo UAV mounted with a MapirTM 
Survey 3N Camera with a Sony ExmorTM R 
IMX117 sensor, f/3.0 Aperture and 41° FOV 
(Mapir) Amora 91 

HAU, Shropshire, 
England 

3DR Solo UAV mounted with a GoProTM 
Hero 3+ Black Edition camera equipped 
with a 1/2.3-inch sensor with 12 MP and a 
fisheye lens with a 94.4° FOV (GoPro) Maris Piper 50 

  
Model Training Data 

    

HAU, Shropshire, 
England 

Phantom 4 pro UAV equipped with a 
Hasselblad L1D-20c aerial camera with a 1 
inch CMOS sensor producing 20 MP still 
images at 70° FOV Maris Piper 48 

HAU, Shropshire, 
England 

Phantom 4 pro UAV equipped with a 
Hasselblad L1D-20c aerial camera with a 1 
inch CMOS sensor producing 20 MP still 
images at 70° FOV Pentland Dell 48 



5 

 

HAU, Shropshire, 
England 

Phantom 4 pro UAV equipped with a 
Hasselblad L1D-20c aerial camera with a 1 
inch CMOS sensor producing 20 MP still 
images at 70° FOV Amora 82 

  
Model Testing Data 

    

Shawbury, Shropshire 

Mavic Air UAV equipped with a 1/2.3-inch 
CMOS sensor producing 12 MP still images 
at 88° FOV at 20 m attitude. 

45 different 
varieties (see 
Appendix A) 52 

MP=Mega pixels. CMOS = complementary metal-oxide-semiconductor. FOV = Field of View, DJI = 129 
Dà-Jiāng InnovationsTM, Shenzhen, China. HAU = Harper Adams University. 130 

The crops were grown using standard UK commercial practices for all inputs. For the Amora variety, 131 
the aerial images were captured with 4 different visible light (Red, Green and Blue) sensors on UAV 132 
systems as outlined in Table 1. The Maris Piper crop was added to increase variation in the dataset as 133 
well as capture soil background because the canopy had not fully consolidated to cover the soil. 134 
Additionally, the Maris Piper images were collected on a day where the field was partially irrigated, 135 
providing the option of sampling pixels from both dry and wet soil. The captured images were 136 
manually evaluated to exclude pictures with distortion or blur due to UAV speed and a total of 5 137 
images were selected from each camera, resulting in 20 images from which colour indices were 138 
evaluated.  139 

All image processing was done using MatlabTM R2020a. From each image, pixels from Meristems, 140 
Mature Leaves, wet Soil and Dry Soil features were manually selected, and reflectance values for Red, 141 
Green and Blue were extracted. For each canopy feature, grayscale values were calculated from all 142 
selected pixels and the first 25 pixels from either side of the mean were selected to create 50 pixels per 143 
feature per camera. The final dataset for the evaluation of colour indices therefore contained 500 144 
labelled data points of features with their Red, Green and Blue values.  145 

2.1.2 Visible Light Colour Index Selection 146 

Several colour indices were evaluated, with inclusion based on a literature search of widely used 147 
visible light spectrum indices as shown in Table 2. The ExG is most widely used for segmenting 148 
vegetation against soil background, however we are unaware of any evaluation of its potential for 149 
differentiating leaf age, health or stress has not been reported. Other indices included the Excess Red 150 
(ExR) Index for automatic segmentation of vegetation from soils, the difference between the Excess 151 
Green and Excess Red (xGxR), the Colour Index of Vegetation Extraction (CIVE) and the Excess Blue 152 
index (ExB), which is analogous to the ExR index. The Normalized Difference Red/Green Redness 153 
index (NDGR), normally used for enhancing the contrast between red backgrounds and vegetation 154 
was also considered.  155 

Following the spectral reflectance properties of meristematic leaves described by Gates et al. (1965), it 156 
was hypothesized that the difference between Blue and Red, and Blue and Green  reflectance at the 157 
pixel level would have the highest potential for maximizing contrast between meristems and older 158 
leaves. It was expected that meristematic pixels would reflect more Red than Blue while mature leaves 159 
would reverse this order due to darkening of the leaf as chlorophyll accumulated. Due to the darker 160 
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hue of soil, it was assumed that soil pixels would exhibit negligible differences in reflectance among 161 
the three light bands. Two novel indices were therefore derived based on these premises. The Red to 162 
Blue difference was plotted against the Green to Blue difference using all the selected pixels from 163 
section 2.1.1 as data points. Visual observations showed that the Manhattan Distance or Euclidian 164 
Norm of each point as a vector from the Cartesian origin would provide an index that maximizes the 165 
difference between meristems and non-meristems. These two distances were therefore simplified into 166 
linear expressions, with the Manhattan distance termed as the Cumulative Blue Difference Index 167 
(CBDI) and the Euclidian Norm termed as the Blue Difference Norm Index (BDNI). 168 

  169 
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Table 2: Descriptions and equations of popularly cited and custom colour indices based on standard 170 
Red, Green and Blue bands. 171 

Index Name Formula Source 

Excess Green 𝐸𝐸𝐸𝐸𝐸𝐸 = 2𝐺𝐺 − 𝑅𝑅 − 𝐵𝐵  (Woebbecke et al., 

1995) 

Excess Red 𝐸𝐸𝐸𝐸𝐸𝐸 = 1.4𝑅𝑅 − 𝐺𝐺  (Meyer & Neto, 

2008) 

Excess Green minus 

Excess Red 

𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸𝐸𝐸 = 3𝐺𝐺 − 2.4𝑅𝑅 − 𝐵𝐵  (Zhao et al., 2017) 

Colour Index for 

Vegetation Extraction 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 0.441𝑅𝑅 − 0.811𝐺𝐺 + 0.385𝐵𝐵 + 18.78745  (Kataoka et al., 

2003) 

Excess Blue 𝐸𝐸𝐸𝐸𝐸𝐸 = 1.4𝐵𝐵 − 𝐺𝐺  (Guijarro et al., 

2011) 

Normalized Difference 

Blue Index 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = R−G

R+G
  (Bannari et al., 1995) 

Cumulative Blue 

Difference Index 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑅𝑅 + 𝐺𝐺 − 2𝐵𝐵  Generated in this 

study 

Blue Difference Norm 

Index 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = �(𝑅𝑅 − 𝐵𝐵)2 + (𝐺𝐺 − 𝐵𝐵)2  Generated in this 

study 

 172 

All colour indices were calculated for all pixel features.  The resulting dataset was comprised of pixel 173 
values as observations, the four features as factors and the 8 colour indices as continuous independent 174 
variates. Differences in means from sensors which only contained Meristem and Leaf features were 175 
analysed using the T-Test while data from the GoPro sensor, which contained dry and wet soil features 176 
apart from the canopy vegetation features, was analysed by ANOVA using R version 4.0.2 (R Core 177 
Team, 2020) adopting a Completely Randomized Design and means were compared using Fisher’s 178 
unprotected Least Significant Difference. The colour indices with significant highest differences in 179 
index value between meristematic and other features were selected for further analysis. 180 

Following selection of colour indices, an algorithm was designed to estimate the number of stems in 181 
an image using MatlabTM R2020a. Briefly, the model consisted of (1) K-means clustering for 182 
segmenting the image into foreground pixels of interest and background pixels and (2) establishing an 183 
objective process for consolidating fragmented pixels of leaflets into single meristem units. These two 184 
components were used to create and test a feature-extraction and object detection process as 185 
illustrated in Fig.1. 186 
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2.1.3 Image Segmentation using k-Means Clustering 187 

Both Otsu-based and adaptive threshold methods have been extensively reported in literature for 188 
green vegetation segmentation, but they perform poorly in images where the frequency of target and 189 
non-target pixels does not result in a bi-modal distribution of intensities (Yang et al., 2012). 190 
Meristematic tips constitute a small percentage of the image area in comparison to the rest of the 191 
canopy and non-canopy features. Consequently, intensity histograms from indices that maximize the 192 
reflectance of meristems against all other features like the CBDI and BDNI are expected to follow an 193 
exponential decay, which renders Otsu-based threshold selection unreliable for effective 194 
segmentation.  195 

Since the images predominantly contained 3 object classes (i.e. Soil, and the non-meristematic canopy 196 
component as background and the meristems as the foreground), k-means clustering with three 197 
means was applied as the most appropriate method for clustering the three classes and segmenting 198 
the foreground without computation of a threshold. Using k-means clustering for segmentation is 199 
effective to separate object classes by minimizing the intra-class squared distance (Hartigan & Wong, 200 
1979), and is widely applied in foreground segmentation in canopy images collected from UAVs and 201 
remote sensing systems (Chen et al., 2019; Cinat et al., 2019; Sun et al., 2019).  Accordingly, the pixel 202 
with the maximum greyscale intensity in each image was identified, then k-means clustering was 203 
performed on each image and the cluster containing the identified pixel was chosen to represent the 204 
meristems. The image was then binarized with the selected cluster as foreground and all other clusters 205 
as background. 206 

2.1.4 Noise Reduction and Final Bounding Box Generation 207 

Due to the compound nature of potato leaves, the k-means-based segmentation produced 208 
unconsolidated meristem binary objects. Therefore, it was necessary to consolidate unconnected 209 
meristematic pixels that belonged to the same stem to minimize the chances of double-counting, while 210 
ensuring that meristems belonging to adjacent stems were not wrongly attributed. Morphological 211 
operations like erosion or dilation have the risk of consolidating some independent but proximal 212 
objects in a binary image (Pesaresi & Benediktsson, 2001). To avoid this, a custom noise reduction 213 
technique was created by shrinking every binary object in the image to its centroid pixel, followed by a 214 
pixel-wise iterative range search to index all other pixels located within a Euclidian distance that 215 
corresponded to the average size of a stem in the image. The average size of a stem at the plot level 216 
was estimated by calculating the average number of pixels per foreground object in each binary image. 217 
As a result, all pixels located in close proximity to each other were indexed together and considered to 218 
originate from the same primordia, then joined together. Pixels that were separated by a distance 219 
more than the estimated average stem size were not connected and constituted separate instances of a 220 
meristem. The number of connected components was then used as an approximation of the number of 221 
stems in the image and a minimum bounding box was generated to approximate the location and size 222 
of each stem, signalling the end of the algorithm. The flow chart of the algorithm was as illustrated in 223 
Fig.1 224 
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2.2 Development of a Transfer Learning Model 225 

An aerial survey with a UAV was conducted at Harper Adams University on 09th June 2020 to develop 226 
a model training dataset of images images collected at 15 m altitude using a Phantom 4 pro UAV as 227 
specified in Table 1. Varieties covered in the survey were Maris Piper (0.5 ha) and Pentland Dell  (0.5 228 
ha) at 48 days after planting and Amora (9.4 ha) at 82 days after planting. The images were then 229 
cropped into 500 images of 500 pixels wide and 1500 pixels long then processed using the developed 230 
algorithm to generate bounding boxes around proposed potato meristems. The generated bounding 231 
for each of the 500 images were inspected and corrected manually by deleting erroneous detections 232 
and adjusting the extent of each valid box to fit the extent to which a human would label the data. Wu 233 
et al. (2020) emphasize on the computational constraint of training faster R-CNN object detectors 234 
from large UAV images, in their case 5472 X 3648 pixels, which necessitated the cropping of their 235 
images to 1000 X 800 pixels for optimized computation. The sensor used in this study produced 5472 236 
X 3648 pixels, which were cropped to 1500 X 500 pixels to approximate the size of each plot in a 237 
compiled test dataset. All generated bounding boxes were stored as pseudo-labels to create a training 238 
dataset for deep learning with a CNN.  239 

Fuentes et al. (2017) tested the Visual Geometry Group’s (VGG-16) CNN (Simonyan & Zisserman, 240 
2015) against deeper residual networks in the similar task of deep feature extraction of disease-caused 241 
leaf colour changes in tomatoes and found that the VGG-16 performed better than the deeper 242 
networks with up to 83% mean average precision. To keep the number of network backbone layers 243 
minimal for producing the simplest model with faster training times, A Faster R-CNN model (Ren et 244 
al., 2017) with the VGG-16 network backbone and imagenet weights was chosen. Faster R-CNN is a 245 
unified framework that learns an object region proposal network from a CNN feature map, classifies 246 
each proposed region and localizes the class of the object within the region with the introduction of 247 
anchor boxes, from which object bounding boxes are learnt and refined by regression. To convert a 248 
VGG-16 CNN into a Faster R-CNN object detector, a region proposal network was trained on the final 249 
convolutional feature map and the last max pooling layer was replaced by an ROI-max-pooling layer 250 
after which Faster R-CNN’s classification and box regression layers were added to achieve object 251 
detection and localization. The training was conducted on an Nvidia GeForce GTX 1070 GPU with 8 252 
GB Video RAM for 11 hours. The model was trained with a fixed learning rate of 0.0001, a single 253 
image mini batch size and 48 anchor boxes. The anchor boxes used in this study were predetermined 254 
iteratively by estimating an increasing number of anchor boxes and their sizes with each iteration, 255 
then checking their IoU with the ground truth data using the estimateAnchorBoxes function in 256 
MatlabTM R2020a. The final number and size of anchor boxes was chosen by observing the asymptote 257 
of the scatter plot of the determined IoU against the number of anchor boxes. Loss was optimized 258 
using the stochastic gradient descent with 0.95 momentum. The model converged after 50000 259 
iterations in 100 epochs. The flow chart of the training pipeline is as illustrated in Fig.2. 260 

2.3 Model Testing 261 

2.3.1 Data Acquisition 262 
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The traditional image analysis algorithm and the deep learning model were tested for performance 263 
accuracy using a training dataset of images collected from 45 potato varieties (see Appendix A for a list 264 
of the varieties) grown at Eaton Upon Tern Runway (Fig.3), Shawbury, Shropshire, England 265 
(52°48'19.3"N, 2°30'41.8"W)  on a Clayey Loam soil. The potato varieties came from the four 266 
determinacy classifications (Group one to four) and some varieties were non-classified by 267 
determinacy.  Twenty Seven of the 45 varieties were drawn from the top 50 varieties grown in the UK 268 
in 2019 in terms of area planted. The varieties acted as a source of variation in stem numbers per unit 269 
area and canopy colour intensity. Differential performance between varieties was not considered in 270 
order to generalize model accuracy across varieties. The 45 varieties were planted on 2019-04-29, 271 
uniformly managed throughout the season and harvested on 2019-09-10. The ground-truth number of 272 
above ground stems was manually determined on 2019-09-10 before harvest. The number of visible 273 
meristems on top of the canopy was also manually counted. To create the model testing image dataset, 274 
two adjacent rows of 5 metres each per variety were imaged on 2019-06-20 at 52 days after planting at 275 
20 m altitude using a Mavic Air UAV as specified in Table 1. 276 

2.3.2 Image Processing and Data analysis 277 

The aerial images were cropped manually around each of the 45 varieties plots to create an image for 278 
each plot for analysis then bounding box labels were manually defined for all meristems in each 279 
cropped image using MatlabTM R2020a’s “image labeller” application. For each image in the test set, 280 
meristem counts were generated using the image analysis algorithm and the Faster R-CNN model 281 
then compared to the manually counted number of meristems. Bounding boxes were generated from 282 
the two predictive models. For each image representing a plot, the bounding boxes for the ground 283 
truth, Faster R-CNN detections and image analysis detections were converted into binary masks then 284 
confusion matrices were computed for the two detection models against the ground truth. The rates of 285 
true positives (TP) and false positives (FP) were computed for each of the 45 plots from confusion 286 
matrices. From these metrics, classification precision, as a measure of model performance, was 287 
computed as follows: 288 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 289 

Precision was chosen over Recall and F1-score metrics because the image analysis approach was based 290 
on the detection of minor colour aberrations at the apex of the plant. This meant that bounding boxes 291 
for the image analysis approach were expected to be smaller than the human-verified ground truth 292 
where shape features that distinguish a meristem from older leaves were identified and the bounding 293 
boxes expanded. This was projected to cause a high rate of false negatives which would penalize Recall 294 
and subsequent F1-scores and therefore, the precision metric was used. The most important output of 295 
the model for practical decision support is the detection of the presence of a meristem for calculating 296 
stem density, while its size and extent are secondary considerations. Furthermore, the Intersection over 297 
Union (IoU) was calculated as follows:  298 
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𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 =
𝐵𝐵1 ∩ 𝐵𝐵2
𝐵𝐵1 ∪ 𝐵𝐵2

 299 

Where B1 represents the ground truth and B2 represents the predicted bounding boxes from the two 300 
models. 301 

The final dataset contained the variety, breeder, number of manually counted above ground stems, 302 
number of manually counted meristems, and the number of meristems predicted by the image 303 
analysis and Faster R-CNN approaches. Observed vs Predicted plots were plotted for each prediction 304 
against the ground truth data to examine the residuals then the Root Mean Square Error (RMSE) was 305 
calculated for each model as follows: 306 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  ��
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)2

𝑛𝑛

𝑛𝑛

𝑖𝑖=1

 307 

The RMSE was divided by the mean of the observed stem or meristem counts to calculate the 308 
normalized RMSE (nRMSE). 309 

3. Results 310 

3.1 Feature Engineering and Selection of Appropriate Indices 311 

When the difference between Green and Blue light was plotted against the difference between Red and 312 
Blue light, grouped by the pixel source, four distinct clusters were visually discernible in Cartesian 313 
space. The data points of the meristems clustered in the first quadrant, the mature leaf data points 314 
clustered in the second quadrant while the two soil sources clustered near the origin (Fig.4). Upon 315 
visual assessment (Fig.4), the meristem data points were clustered at the largest Euclidian distance 316 
from the origin, followed by mature leaves. From this assessment, the CBDI and BDNI were 317 
considered to have potential to represent the overall variation linearly and guaranteeing that the 318 
meristematic pixels would be at the maxima of this variation’s range, therefore enabling a predictable 319 
threshold selection. The CBDI and BDNI were calculated and compared with established RGB-based 320 
colour indices.  321 

All the colour indices exhibited significant statistical differences between pixels from meristems and 322 
older leaves in mean intensity values (P<0.05), a trend sustained across all sensor types except for the 323 
ExR in the Mapir camera (Table 2). This suggests that the features of interest occur in exclusive 324 
quantiles of the range of each index, and therefore a k-means clustering approach would adequately 325 
segment the image into meristems and background, eliminating the need for determination of a 326 
subjective threshold. To maximize the chances of accurate segmentation, it was necessary to select 327 
colour indices that maximize the value of the meristematic pixels while maintaining a large separation 328 
with all other features. To achieve this, the separation between the maximum and minimum quantile 329 
of mature leaves and meristems was evaluated and the percentage overlap was calculated, with the 330 
aim of selecting the colour index with the largest difference between the values of meristem and non-331 
meristem features.  332 
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Of all the colour indices, the BDNI (Fig.5-a) and CBDI (Fig.5-b) had the most consistent maximization 333 
of the index values for meristematic pixels, with distinct visual separation between the targeted and 334 
background features in boxplots of the indices. Boxplots of ExG, (Fig.5-c) and CIVE (Fig.5-d) showed 335 
an overlap of index values between the mature leaves and meristems. The minimum quantiles of 336 
meristematic pixels were consistently higher than the maximum quantiles of the mature leaves in only 337 
the CBDI and BDNI (Table 3). The opposite trend was consistently observed in the ExB, where the 338 
meristematic pixels had negative values due to a Blue colour deficit while the soils and mature leaves 339 
had excess Blue, resulting in a positive index, except in the Mavic and Mapir images. Unlike the EXG-340 
ExR (Fig.5-e), NDGR (Fig.5-f) ExR (Fig.5-g), indices, the ExB index (Fig.5-h) achieved a linear 341 
positioning of features that would enable clustering. However, there were overlaps in the index values 342 
of meristem and mature leaf features from images obtained with all cameras except the GoPro, with 343 
the Inspire having a 28% overlap (Table 3).  344 

As illustrated in table 3, the performance of the indices was consistent across camera type used to 345 
collect the data. Index values of the features of interest overlapped in 6 out of 8 indices in images 346 
taken with the Mapir Camera. The Mavic, Inspire and GoPro cameras had overlaps in five, four and 347 
two indices respectively. The ExG index consistently showed overlapping in all the cameras while the 348 
CBDI and BDNI indices only overlapped in the Mapir camera images. Based on this analysis, the 349 
CBDI and BDNI were chosen for use in the k-means clustering. In all further images, the two indices 350 
where calculated at each pixel and the resulting images normalized to 8-bit range then the two indices 351 
were combined into a single channel by averaging. The resultant grayscale image was then used for k-352 
means clustering and subsequent stem count generation and bounding box approximation for both 353 
the image analysis and Faster R-CNN approaches.354 
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Table 3: Mean values of colour indices calculated from the pixels of Leaves, Meristems, Wet soil and Dry soil using four different cameras 355 

 356 

Cameraa Feature BDNI CBDI CIVE ExB ExG xGxR ExR NDGRc 

GoPro Leaf 40.3 (2.7) 12.3 (11.7) -15.6 (2.3) 19.8 (9.8) 87.8 (5.6) 97.5 (11.2) -9.7 (7.6) -20 (3.0) 

GoPro Meristem 82.1 (17.8) 115.6 (25.2) -6.7 (5.6) -32.1(13.0) 70.2 (14.6) 27.2 (15.8) 42.9 (8.9) -3.0 (0.2) 

GoPro Wet Soil 4.9 (1.9) -10.0 (3.2) 23.6 (1.0) 56.9 (5.9) -8.3 (2.1) 41.1 (9.2) 33.6 (7.7) 1.0 (0.2) 

GoPro Dry Soil 7.4 (2.4) 5.2 (4.3) 21.8 (1.6) 39.1 (5.8) -1.6 (3.8) -64.3 (9.0) 62.7 (5.9) 1.0 (0.3) 

GoPro Gapb 0.3*** 1.4*** -3.0*** 0.1*** -3.0*** 0.1*** 2.5*** 27*** 

Inspire Leaf 33.5 (4.9) -16.5 (4.9) -3.1 (7.1) 19.3 (4.8) 54.0 (17.5) 75.8 (26.6) -21.5 (10.3) -3 .0(1.0) 

Inspire Meristem 87.8 (14.7) 115.4 (22.6) -28.7 (5.2) -28.2 (16.4) 125.0 (13.0) 103.9 (19.8) 21.2 (11.1) -1.0 (0.4) 

Inspire Gapb 1.0*** 1.5*** -1.0*** -2.8*** -0.4*** -7.0*** 0.1*** 0.1*** 

Mapir Leaf 81.2 (17.9) 114.3 (25.6) -6.6 (5.6) -31.7 (13.2) 69.9 (14.7) 27.5 (15.6) 42.4 (8.4)NS -3.0 (0.02) 

Mapir Meristem 150.1 (16.1) 211.20 (22.5) -31.9 (8.3) -91.4 (15.9) 135.6 (21.04) 93.2 (27.7) 42.41 (9.6)NS -0.6 (0.02) 

Mapir Gapb -1.0*** -1.0*** 1.9*** 2.4*** -1.6*** -2.1*** -0.1 -1.0*** 

Mavic Leaf 50 (5.5) 43.20 (10.9) -23.6 (3.9) -14.9 (14.6) 107.2 (9.5) 131.8 (17.9) -24.6 (12.0) -3.0 (0.7) 

Mavic Meristem 127.4 (16.6) 170.40 (24.3) -47.5 (7.7) -77.5 (18.8) 171.80 (17.9) 170.5 (28.3) 1.4 (13.2) -2.0 (0.3) 

Mavic Gapb 1.5*** 2.1*** -0.1*** -0.8*** -0.2*** -4.5*** -5.1*** 28*** 

a = Camera alias, unless otherwise stated, there was significant difference in mean index values between meristem and non-meristem features in each camera 357 
(P<0.05). Standard deviations from each mean are expressed in parentheses. b = the interval between the minimum value of meristems and the maximum value 358 
of a mature leaf, expressed as a proportion of the range x 10-1 (x 10-2 for NDGR), negative values indicate that the ranges of the two features overlap. c = NDGR 359 
x 10-2. NS=No significant difference between meristem and non-meristem features. CBDI = Cumulative Blue Difference Index, ExG = Excess Green Index, 360 
NDGR = Normalized Difference Green Redness, ExR = Excess Red, ExB = Excess Blue, xGxR = Excess Blue to Excess Red difference, CIVE = Colour Index of 361 
Vegetation Extraction, BDNI = Blue Difference Normalized Index. 362 
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3.2 Model Testing 363 

3.2.1 Mean Stem Counts 364 

Table 4: Performance of image analysis and Convolutional Neural Network approaches 365 
in the enumeration of meristems in all the varieties. The varieties are grouped into 366 
determinancy types for presentation purposes and “Actual Stem Number” information is 367 
included to illustrate the difference between meristem and stem counts. 368 

Variety 

Group 

Actual 

Meristem 

Number 

Actual Stem 

Number 

Image Analysis 

Meristem 

Prediction 

CNN Meristem 

Prediction 

1 77.5 (2.1) 40.5 (3.5) 82.0 (2.8) 70.0 (2.8) 

2 82.6 (12.2) 50.3 (13.2) 102.0 (32.1) 75.0 (8.5) 

3 78.4 (7.9) 47.4 (6.7) 87.1 (22.6) 73.0 (8.0) 

4 67.3 (3.1) 48.7 (5.1) 74.0 (16.1) 67.7 (1.5) 

UGa 81.1 (9.1) 49.3 (11.5) 92.2 (28.2) 75.8 (10.0) 

Grand Mean 79.8 48.7 90.6 74.5 

RMSEmb   24.1 7.3 

nRMSEmb - - 0.3 0.1 

RMSEsc   46.9 26.8 

nRMSEsc 0.7 -  0.9 0.6 

RMSE = Root Mean Square Error. nRMSE = Normalized Root Mean Square Error. a = 369 
Unknown variety group. b = RMSE or nRMSE with meristem ground truth as the 370 
observed variable. c = RMSE or nRMSE with manual stem counts as the observed 371 
variable 372 

Actual main stem counts from the field validation showed that the average number of 373 
above-ground stems per determinacy group had low variation ranging from 47 to 50 374 
stems while there was more variation in the actual number of meristems counted, ranging 375 
from 67.3 in group 4 varieties to 82.6 in group 2 varieties (Table 4).  Faster R-CNN had a 376 
better predictive accuracy for the total number of meristems (nRMSE=0.09) than the 377 
image analysis method (nRMSE=0.3). Both Faster R-CNN and image analysis algorithms 378 
had low accuracy in predicting the actual number of stems in the plot (nRMSE was 0.6 379 
and 0.9 respectively) and the same observation was made when manually labelled 380 
meristem were compared to the manual stem counts (nRMSE = 0.7) as shown in table 4.  381 
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Least squares linear models of the predicted meristem counts against manual meristem 382 
counts showed an R2 value of 0.57 (Fig.6) and 0.73 (Fig.7) for the image analysis method 383 
and Faster R-CNN learning method respectively. Additionally, there was a significant 384 
(P<0.001) relationship between manual counts of main stems and Faster R-CNN meristem 385 
detections (Fig.8) as well as counts from the image analysis approach (Fig.9).  386 

3.2.2 Localization Accuracy 387 

The image analysis method had a low mean IoU (0.3) and Precision (0.1) compared to the 388 
Faster R-CNN method (IoU = 0.5, Precision = 0.6) against the ground truth bounding 389 
boxes (Table 5).  The Image Analysis algorithm had an average bounding box size that was 390 
closer to the average size of the ground truth boxes than observed in the faster R-CNN 391 
model (Table 5). The Inter-quartile Range (IQR) showed that there was more spread in the 392 
bounding box predictions of the image analysis method than the Faster R-CNN method, 393 
which predicted more equally sized bounding boxes (IQR=159.6).  394 

Table 5: Means and standard deviations (in parentheses) of detection and localization 395 
performance metrics of the image analysis and Convolutional Neural Network against 396 
manually labelled meristem data 397 

  Ground 
Truth Image Analysis  Faster R-CNN 

Variety 
Group BBa Size  IoUb Prc BBa Size  IoUb Pr BBa Size 

1 
2991.1 
(657.5) 

 
0.4 
(0.3) 

0.2 
(0.2) 

1739.8 
(584.2 )  

0.5 
(0.5) 

0.6 
(0.2) 

3161.1 
(45.2) 

2 
2382.7 
(745.9 ) 

 0.31 
(0.5) 

0.1 
(0.7) 

1253.8 
(222.2)  

0.4 
(0.5) 

0.4 
(0.1) 

3168.9 
(130.6) 

3 
2985.4 
(366.9) 

 
0.32 
(0.7) 

0.1 
(0.6 
) 

2468.9 
(304.2)  

0.5 
(0.7) 

0.6 
(0.2) 

3159.0 
(111.4) 

4 2851.7 ( 
 0.3 

(0.5 ) 
0.1 
(0.7 ) 

938.8 
(343.7)  

0.4 
(0.3) 

0.6 
(0.1) 

3015.9 
(172.2) 

UGd 
2996.3 
(553.5 ) 

 
0.34 
(0.9) 

0.4 
(0.9) 

2132.6 
(204.9)  

0.5 
(0.5) 

0.6 
(0.1) 

3125.9 
(110.6) 

Mean 2930.2  0.3 0.1 2009.8  0.5 0.6 3129.2 

IQRe 814.4    609.9    159.6 

a = Bounding Box. b = Intersection over Union, standard deviation values are x 10-1. c = 398 
Precision, standard deviation values are x 10-1. d = Unknown Variety Group. eInterquartile 399 
Range 400 

4. Discussion 401 
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4.1 Feature Engineering and Development of Colour Indices 402 

Both the CBDI and BDNI indices achieved better classification of the meristematic leaves 403 
than the other indices compared.   The CBDI and BDNI indices were derived in such a way 404 
as to take advantage of the theory that plant leaves exhibit variable reflectance of the Blue 405 
wavelength based on the age of the leaves, and the maximization of index values in 406 
meristematic features in line with the projected spectral signature of Gates et al. (1965).  407 
The Excess Blue index equally agrees with the findings of Gates et al. (1965) as it shows 408 
sensitivity to the diminished level of Blue light reflectance in meristematic structures, 409 
leading to lower index values than older leaves and soil.  410 

In agreement with findings from Woebbecke et al. (1995), The Excess Green index 411 
adequately separated soils from canopy features. However, the index showed insensitivity 412 
to the amount of reflected green light between the meristematic structures and leaves, 413 
though the matured leaves had a higher mean reflectance than the meristems. The range of 414 
the Excess Green index and all other indices (Fig.5) in meristematic leaves overlaps with 415 
the range of the matured leaves, reflecting different levels of chlorophyll in meristematic 416 
leaves as affected by the age of the leaf. This is expected as noted by Gates et al. (1965) that 417 
a sharp drop in Red reflectance accompanies the continued increase in green reflectance 418 
with leaf age as proto-chlorophyll is converted to chlorophyll.  419 

Though potatoes generally contain a larger concentration of the lighter shaded chlorophyll-420 
a than chlorophyll-b (Anžlovar et al., 1996), a noticeable difference in Blue reflectance can 421 
be expected in mature leaves compared to the meristems which still have proto-chlorophyll. 422 
This is confirmed by Gates et al. (1965) who illustrates a slightly higher reflectance in the 423 
Blue range from mature leaves than younger leaves in reflectance curves. The CBDI and 424 
BDNI achieve better classification of meristematic leaves because they take this Blue light 425 
reflectance into account in relation to green reflectance.  The difference between these two 426 
wavelengths is responsible for the high Manhattan distance and Euclidian norm from the 427 
origin in the meristems (Fig.4). The results also show that the difference between Blue and 428 
green reflectance is minimal in soils, showing more reflectance in the green range than the 429 
Blue range in dry soils. This is in agreement with soil reflectance curves reported by Huete 430 
(2004) which show a linear increase in reflectance from Blue to Near Infrared. 431 
Baumgardner et al. (1986) reported similar curves which consistently show more Red than 432 
Blue reflectance in soil. The findings for dry soils in this study concur with Baumgardner et 433 
al. (1986), however, wet soils were found to reflect more Blue light than Red. Huete (2004) 434 
and Baumgardner et al. (1986) discussed a decrease in reflected energy which makes soils 435 
appear darker, consistent with the high reflectance of Blue wavelength observed. These 436 
findings make the CBDI and BDNI ideal as they minimize the index values of soils and 437 
mature leaves in comparison to meristems. Comparison of the boxplots of the two indices 438 
additionally shows that the BDNI can be used as a general colour index as it additionally 439 
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separates vegetation from soils, while the overlap between mature leaves and soils in the 440 
CBDI would make it unsuitable as a general colour index.  441 

When targeting sparse features that do not show a peak in the feature space’s histogram, 442 
Otsu-method binarization of an image is known to produce non-satisfactory segmentation. 443 
K-means segmentation adopted in this study provides an alternative that formulates 444 
clusters of features based on the variation in the feature space (Yang et al., 2012) rather 445 
than a subjective segmentation threshold. Where the feature space is defined by the 446 
Manhattan distances using the CBDI or Euclidian distances in the BDNI, automatic 447 
selection of a cluster of interest as a basis for binarizing the image is made possible since 448 
the meristems cluster is bound to occur at the upper quantiles of the histogram.  449 

4.2 Model Testing 450 

Observed vs predicted plots of the number of meristems in the image analysis and Faster 451 
R-CNN methods had R2  values of 0.57 and 0.73 respectively (Fig.6 and 7). Faster R-CNN 452 
has an advantage over image analysis with a low nRMSE of 0.09 compared to 0.3 nRMSE 453 
observed in the image analysis. With no previous studies on potato stem detection, these 454 
results can be benchmarked against models that detect variation in leaf colour and shape 455 
due to viral leaf yellow mottling and crinkling akin to the underdeveloped leaves of 456 
meristematic tips. In this respect, the Faster R-CNN performs comparably to findings by 457 
Duarte-Carvajalino et al. (2018) where convolutional neural networks achieved a 458 
maximum of 0.82 R2 value for the detection of incidences of Late Blight (Phytophthora 459 
infestans) on potato leaves when compared to manually labelled ground truth data.  460 
Comparably, Sugiura et al. (2016) similarly developed an image analysis protocol for 461 
estimating the severity of late blight with R2 of 0.77. The results presented here show that 462 
the Faster R-CNN approach is as efficient as other studies that aim to detect objects of 463 
interest in potato canopies that are humans identify based on colour and leaf shape. The 464 
difference between predicted counts and observed counts in the image analysis approach 465 
show the need to account for more variation within the image by improving the image 466 
segmentation and the algorithm’s inclusion criteria of an independent stem. Improvements 467 
in the image segmentation can be achieved by further feature engineering to generate more 468 
robust colour indices. Furthermore, although K-means clustering and subsequent cluster 469 
segmentation overcomes the problems of Otsu-based segmentation in non-bimodal data, 470 
the hard-coding of cluster number introduces the possibility of misclassification of 471 
ambiguous pixels, a double-edged sword that caused both false positives and false negatives 472 
(Kanungo et al., 2002). More in-depth studies into possible adaptive threshold selection 473 
techniques at the image level are needed to generate robust clustering and threshold 474 
selection rules to improve accuracy. Differences between predictions and observations in 475 
the Faster R-CNN model can partially be attributed to the limited variation in the training 476 
dataset, generated from two potato varieties, against the testing dataset which contained 477 
45 varieties with variable canopy characteristics.  478 



18 

 

The performance of region-based CNNs is influenced by the adequate determination of the 479 
number of anchor boxes and their sizes at the training phase (Zhao et al., 2019). The 480 
irregularity of potato meristems means there needs to be a representative compendium of 481 
anchor boxes to cover the high variation in ground truth bounding box sizes. In this study, 482 
the ground truth bounding boxes had a high IQR of 814.38 pixels compared to the predicted 483 
bounding boxes of the CNN (159.61) and image analysis (609.86) on the test dataset (table 484 
5). The CNN model produced regular (equally-sized) but larger bounding boxes than the 485 
ground truth while the image analysis approach produced smaller bounding boxes than the 486 
ground truth but were more variably sized, more naturally representing the variation in 487 
sizes of meristematic tips. In subsequent studies with the CNN approach, a more exhaustive 488 
method of anchor box size estimation is warranted, but equally so is the development of 489 
the model from lower resolution imagery at higher UAV altitude to reduce the ground truth 490 
IQR of the test dataset and potentially improve the model accuracy, though this comes at a 491 
cost of more errors in labelling low resolution imagery. These observations signal potential 492 
improvements to the data collection and hyper-parameter settings which may improve 493 
model accuracy in future studies. The small bounding boxes in the image analysis approach 494 
were reflective of the results of k-means clustering on the novel colour indices which were 495 
highly optimized to maximize values of meristematic pixels against mature leaves. 496 
However, the high R2 values observed in both models show that there is a significant 497 
correlation between the predicted and actual meristem counts, as well as actual main stem 498 
counts (Fig.8 and 9), which shows that both models can be used in mapping this variation 499 
at field scale, a key desire for farmers who seek to vary vine desiccation dates based on stem 500 
density to manage potato tuber sizes and their distribution at harvest.  501 

The faster R-CNN model achieved higher precision (0.56) and mean IoU (0.49) across the 502 
variety groups compared to the image analysis method (0.13 and 0.33 precision and IoU 503 
respectively), showing better efficiency at learning the features that a human labeller would 504 
identify with meristems, as well as the effect of the human-verification and adjustment of 505 
training labels in section 2.2 on the final model. In the absence of potato meristem 506 
segmentation studies, precision scores were benchmarked against the Potato Virus Y 507 
(Polder et al., 2019), whose primary symptom is chlorotic foliage akin to the signal being 508 
detected by the image analysis approach to label stems. Polder et al. (2019) found precision 509 
scores between 0.23 and 0.54 when a fully convolutional network was used to achieve 510 
semantic segmentation of Potato Virus Y. This is comparable with the performance of the 511 
faster R-CNN approach but outperforms the image analysis method. While the image 512 
analysis approach also adequately identifies the presence or absence of a meristem, the size 513 
and centroid of its resultant bounding boxes is less consistent since the system is purely 514 
based identifying the extent of the colour aberration at the very tip of the youngest leaves 515 
and not learning any other advanced features as in the Faster R-CNN. As a result, the image 516 
analysis approach produces highly variable meristem sizes within an image as shown by 517 
the high IQR. However, its inclusion in the Faster R-CNN pipeline is justified as it speeds 518 
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up the labelling of a large dataset, allowing a human-labeller to only correct the computer 519 
generated labels. Potato meristems are not difficult to annotate for domain non-experts. 520 
The image analysis method allows the generation of initial annotations to guide labellers 521 
and train non-expert labellers to identify canopy features of interest from which they can 522 
simply adjust bounding box extents and hence speed up the annotation process. 523 

For the purposes of deriving a management or phenotyping tool for evaluating variations 524 
in stem sizes across different stem densities, the establishment of a significant linear 525 
relationship between predicted stem counts and actual counts is important despite the 526 
presence of residuals because the linear relationship can be used to model spatial 527 
variation in stem density at field scale. While Sankaran et al. (2015) reported a predictive 528 
model with R2 values of 0.83 for modelling plant density variation at emergence using the 529 
NDVI, they observed that predictive accuracy was lost as the canopy consolidated and 530 
they were not able to successfully run the prediction after 43 days from emergence. 531 
Furthermore, the effective unit of plant density in the potatoes is the stem, which can only 532 
be evaluated when all potential stems have developed, after plant canopy consolidation 533 
(Wurr & Morris, 1979). The overall 0.73 R2 value in this study’s CNN method gives a level 534 
of accuracy that is comparable to Sankaran et al. (2015) while offering the desired ability 535 
to enumerate the preferred unit of plant density, which can be incorporated in vine 536 
desiccation decision support systems for manipulating tuber size distribution at harvest 537 
and in high throughput phenotyping. With 40 tubers planted per plot, the actual stem 538 
counts found in this study mean that the average number of above ground stems per plant 539 
(1.21) falls within the ranges (1-4.4) reported in literature (Wurr & Morris, 1979). Most 540 
plants had one or two primary stems due to physiologically young seed tubers, stored 541 
below induced dormancy-breaking temperature. While the meristems represent the 542 
termination of both primary and secondary stems as well as sympodial branches, it can be 543 
noted that the average number of meristems per plant (2.01) also falls within the range of 544 
the number of main stems per potato plant reported in literature (Wurr & Morris, 1979) 545 
and further suggests that most plants in this study produced one or two primary stem and 546 
one secondary stem. The potato main stem always terminates with a meristem in all 547 
varieties and a sympodial branch continues growth in indeterminate varieties 548 
(Almekinders & Struik, 1996). The average number of secondary branches per stem 549 
reported in literature is minimal ranging from 0.5 to 0.9 branches per main stem (Vos & 550 
Biemond, 1992; Wurr & Morris, 1979). Therefore, while the number of meristems does 551 
not directly correspond to the number of main stems, its density variation across the field 552 
is a predictable proxy for stem density variation, which is the main desired unit of potato 553 
plant density whose determination at field-scale had so far been elusive (Wurr & Morris, 554 
1979).  555 

The number of main stems formed by a potato is largely variable and contingent upon the 556 
physiological age, plant population density and other agronomic and management factors 557 
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(Knowles and Knowles, 2006). The number of secondary stems formed is also dependant 558 
on factors that affect apical dominance like inherent determinacy characteristics and frost 559 
events (Chang et al., 2014). Additionally, differences in growth rates between stems means 560 
some meristems are occluded from view at the top of the canopy by other leaves, hence 561 
cannot be captured by UAV. These factors all contribute to the residuals between the 562 
number of actual main stems and the number of meristems detected at the top of the 563 
canopy. The results of this study suggest that the number of meristems visible at the top of 564 
the canopy can be predicted using a CNN with low residuals (nRMSE = 0.09). Predicting 565 
the actual number of stems from the meristems proved to be less accurate due to the 566 
influence of secondary stems that also terminated in a meristem. However, this study 567 
established that the predicted number of meristems at the top of the canopy explains a large 568 
portion of the variation in the actual number of stems, providing a statistical route for 569 
generating 2D density maps of the variation in stem density from UAV, using meristem 570 
density as a proxy. Future studies must focus on generating methods for distinguishing a 571 
meristem originating from a main stem from those originating from branches and 572 
secondary stems. Unlike the physiologically young seed used in this study, temperature-573 
primed physiologically old seed is mostly used in commercial production, with low apical 574 
dominance, forming multiple primary main stems at emergence and only branching late in 575 
the season after flowering (Knowles and Knowles, 2006). To partially solve the problem of 576 
secondary stems, it if therefore suggested that the meristem detection models should be 577 
used before significant branching occurs. Future studies must also focus on determining 578 
the optimum timing of imagery for minimizing the probability of detecting secondary 579 
meristems. 580 

5. Conclusion 581 

This study represents the first attempt to enumerate potato stem number after canopy 582 
consolidation using UAV based sensors. The prospect of accurately mapping variation in 583 
stem density across a field enables the possibility of using precision agriculture techniques 584 
to manipulate potato tuber size distribution through variable harvesting dates and other 585 
in-season management practices. This study provides evidence that deep learning and 586 
image analysis approaches can be used to accurately enumerate potato meristems and 587 
estimate stem density variation in 45 UK potato varieties. Based on the spectral properties 588 
of plants, the colour indices developed in this study should also have potential applicability 589 
in mapping physiological maturity and leaf discolouration due to biotic or abiotic stress. 590 
More studies to test the wider applicability of these indices are therefore recommended. 591 
The study has also demonstrated the validity of automated labelling for generating a large 592 
dataset of pseudo-labelled ground truth data which can be more rapidly quality-checked 593 
and adjusted by a human labeller then used to train deep learning models that learn the 594 
features of interest and achieve high IoU with manually labelled test data.  595 
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Figure Titles 762 

Fig.1 Flow chart of the image analysis algorithm for generating meristem objects and 763 
infering stem number  764 

Fig.2 Flow chart of the Faster R-CNN algorithm for training a potato meristem object 765 
detector  766 

Fig.3 Aerial image of the testing site for the image analysis and convolutional neural 767 
network algorithms  768 

Fig.4 The difference between Green and Blue colour plotted against the difference 769 
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between Red and Blue colour in pixels selected from four prevalent features in a 770 
potato canopy  771 

Fig.5 Index values of Meristems, Leaves, Dry soil and Wet soil using eight colour indices, 772 
from images taken before canopy consolidation of partially irrigated Sandy Loam 773 
soil. a - Blue Difference Normalized Index, b - Cumulative Blue Difference Index, c - 774 
Excess Green Index, d - Colour Index of Vegetation Extraction, e - Excess Green 775 
minus Excess Red Index, f - Normalized Difference Green Redness Index, g - Excess 776 
Red, h - Excess Blue Index 777 

Fig.6 Observed vs Predicted of the number of meristems in potato canopies when 778 
predictions were made using the traditional image analysis approach 779 

Fig.7 Observed vs Predicted number of meristems when predictions were made using a 780 
Convolutional Neural Network-based object detector 781 

Fig.8 Observed number of stems vs Predicted number of meristems when predictions 782 
were made using a Convolutional Neural Network 783 

Fig.9 Observed number of stems vs Predicted number of meristems when predictions 784 
were made using the traditional image analysis approach 785 

Appendices 786 

Appendix A A list of the varieties used to test the object detection models 787 

Purpose Breeder Variety 

Chipping Agrico Agria 

Crisping HZPC Alcander 

Chipping HZPC Althea 

Chipping HZPC Alverstone Russet 

Crisping Agrico Arsenal 

Chipping HZPC Asterix 

Unknown Unknown Babylon 

Crisping PepsiCo Brooke 

Chipping HZPC Challenger 

Crisping Agrico Corsica 

Prepack Agrico Desiree 
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Prepack Agrico Estima 

Crisping HZPC Heraclea 

Chipping HZPC Innovator 

Chipping HZPC Ivory Russet 

Prepack Greenvale Jelly 

Prepack Unknown King Edward 

Crisping Meijer Lady Clair 

Prepack Branston Lanorma 

Prepack Branston Laura 

Salad Agrico Maris Peer 

Chipping Agrico Maris Piper 

Crisping Agrico Markies 

Prepack Meijer Melody 

Prepack HZPC Mozart 

Prepack IPM Nectar 

Prepack HZPC Panther 

Chipping SCRI Pentland Dell 

Chipping Agrico Performer 

Chipping Norika Pirol 

Chipping Higgind Group Ramos 

Chipping IPM Rooster 

Chipping McCains Royal 

Chipping Unknown Russett Burbank 

Chipping HZPC Sagitta 

Crisping Stet SHC1010 

Crisping PepsiCo Shelford 

Unknown Unknown Sorentina 
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Prepack HZPC Sunita 

Crisping HZPC Taurus 

Unknown Unknown Thalassa 

Crisping Unknown Titan 

Crisping HZPC Triple 7 

Unknown Unknown VDW 07-197 

Crisping Stet VR808 
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